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Abstract Nanostructured lanthanum-strontium manganites were synthesized using two 
different co-precipitation approaches, one in bulk solution, and the other in reverse 
micelles of CTAB/1-hexanol/water microemulsion. In both cases, precursor cations were 
precipitated by using oxalic acid. The properties of the materials synthesized by using 
these two methods were compared in order to reveal potential advantages of the 
microemulsion-assisted approach. The influence of the annealing conditions on the 
properties of synthesized manganites was investigated by using X-ray diffraction, 
transmission electron microscopy, differential thermal analysis, thermogravimetric 
analysis and magnetic measurements.  
 
Introduction 

Preparation of materials within reverse micelles1-3 belongs to the family of wet 
synthesis procedures, known of a number of advantages comparing to the traditional 
high-temperature solid-state processing methods, such as excellent control of the final 
powders' stoichiometries with possibilities of obtaining homogeneity and mixing on 
atomic scale, narrow particle sizes distribution, negligible contamination of the product 
during the homogenization of the starting compounds, low energy consumption, low 
aging times and simple equipment. Parameters of reverse micellar synthesis of nano-
particles, usually manipulated and controlled in the courses of variety of design 
procedures, include: water-to-surfactant4,5 and surfactant-to-co-surfactant6 molar ratios, 
ionic strength7,8, temperature9, aging time10,11, etc. However, due to the signs of frequent 
uniqueness and significant narrowness of limiting conditions in the processes of reverse 
micellar preparation of materials, deep questions have recently been raised upon the 
problem of justifying the generalizations of relationships between particular parent 
microemulsion systems and the obtained particles12. 

It is known that catalytic activity of LaSr-manganites largely depends on the 
method of its synthesis13. Although the methods for the preparation of LaMnO3 in reverse 
micelles were already reported in the literature14-16, the only synthesis of LaSrMnO3 or of 
any mixed lanthanum manganite within reverse micelles, published elsewhere is our 
previous work17 concerning co-precipitation preparation of La0.67Sr0.33MnO3+δ in 
CTAB/1-butanol/1-hexanol/water microemulsion by using tetramethylammonium 
hydroxide as an alkali precipitating agent. Synthesis of different perovskite mixed metal 
oxides by using oxalate precursors (including La1-xSrxMnO3)18 has been noticed 
elsewhere, and is largely excepted as a method which produces uniform cation 
distribution19,20.  
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Experimental 

Two different wet, oxalate-precursor co-precipitation approaches to the synthesis 
of LaSr-manganites - one in bulk solution and the other in the reverse micelles of 
CTAB/1-hexanol/water microemulsion, were performed and investigated within the work 
presented here. In both cases, the composition La0.67Sr0.33MnO3+δ was desired as the final 
product. The following chemicals were used in the course of the syntheses procedures:  

The co-precipitation synthesis in bulk solution proceeded as follows. The 6 ml of 
aqueous solution comprised the molar ratio of precursor cations Mn : La : Sr = 4.6 : 2.2 : 
1. MnCl2 (>99%, Merck-Alkaloid), La(NO3)3 (99.9%, Alfa Aesar) and Sr(NO3)2 (>99%, 
Kemika) were used as precursor salts. MnCl2 was preferred over Mn(NO3)2 due to easy 
oxidation of Mn2+ by dissolved oxygen in the aqueous nitrate solution. However, Mn2+ 
ions ought to be added in an amount that surpasses the stoichiometric amount due to the 
formation of Mn2+ - complex compounds20 with nitrate ions, that are stable in the 
presence of an acidic precipitating agent. Different amounts of pure ethanol (99.8 %, 
Carlo Erba) were then added into the prepared solution. Saturated aqueous solution of 
oxalic acid (>99.5%, Alkaloid) was then added into the hydro-alcoholic solution so that 
the volume of the acid was 1.1 times the volume of the precursor solution. The colloid 
solutions were aged for 3 h at room temperature. Subsequently, the samples were 
repeatedly sedimented by performing centrifugation, and washed with ethanol - water 
(1:1) mixture, whereas the yielded powder was then dried at 80 oC. The dried powders 
were then calcined in air at different temperatures and for different times.  
 The co-precipitation method of synthesis by using reverse micellar microemulsion 
was proceeding as follows. Two microemulsions with the identical CTAB (>99%, Alfa 
Aesar) : 1-hexanol (>98%, Merck-Schuchardt) : H2O = 29.7 : 55.1 : 15.2 weight ratios, 
were prepared, whereby in place of the aqueous phase, the first one carried aqueous 
solution of MnCl2, La(NO3)3 and Sr(NO3)2 with resulting cation concentration of 0.5 M 
and molar ratio of Mn2+ : La3+ : Sr2+ = 5 : 2: 1, whereas the second one comprised 0.84-M 
aqueous solution of oxalic acid, which served as the precipitation agent. The weight ratio 
between the precursor and the precipitating microemulsion was set to 1.5. The two 
microemulsions were mixed and aged for 3 h at room temperature. The resulting oxalate 
precipitate, finely and uniformly dispersed within the resulting microemulsion, was then 
separated by centrifugation and repeatedly washed with 0.06-M solution of oxalic acid in 
ethanol. The powder was then dried at 70 oC in air, and subsequently calcined under 
various annealing conditions.   
 The as-dried and subsequently calcined powders were analyzed by using TEM 
(JEOL JEM-2000FX), DSC and TGA measurements (Mettler-Toledo STAR System), 
room-temperature magnetic measurements (Manics DSM10 magnetometer), temperature-
dependent magnetic measurements and X-ray diffraction analysis (D4 Endeavor 
diffractometer). Room-temperature measurements of the saturation magnetization were 
performed in the external field range from 0.84 to 1.06 T. Average particle sizes were 
estimated by using Debye-Scherrer's equation. DSC and TGA measurements were 
performed in air up to 1200 oC, with heating rates of 10 oC/min. 
 
Results and discussion 
 On Figs. 1 and 2, XRD diagrams of the sample synthesized in bulk conditions, 



calcined at different temperatures for 2 h (Fig. 1) and at 700 oC for 2-24 h (Fig. 2), are 
shown. The formation of perovskite phase begins at between 500 and 700 oC (Fig. 1). 
During the heating at 700 oC, the crystallization and grain growth processes were 
completed after between 2 and 3 h of the annealing time (Fig.2). The average particle size 
of the samples calcined for 3 or more hours is 11 nm, according to Debye-Scherrer’s 
equation. The samples calcined at 900 oC and 1100 oC were according to this account 
having average particle sizes of 13 and 27 nm, respectively.  

 
Fig. 1. XRD diagrams of the sample synthesized in bulk conditions. As-dried powder is denoted with a, 
whereby the samples calcined at 500, 700, 900 and 1100 oC  for 2 h are denoted with b, c, d and e, 
respectively. 

      
Fig. 2. XRD diagrams of the sample synthesized in bulk conditions and calcined at 700 oC for 2 h (a), 3 h 
(b), 5 h (c), 10 h (d) and 24 h (e).  
 



          
Fig. 3. XRD-determined weight ratio of perovskite manganite phase in the bulk-synthesized samples vs. 
ethanol-to-water volume ratio. 
 
 The dependence of the weight ratio of the obtained perovskite manganite phase 
within the synthesized samples vs. volume ratio of ethanol-to-water, is presented in Fig. 
3. The optimal volume ratio of ethanol to water for the used initial concentrations and 
proportions of precursor salts, was found to be 2, in which case, the perovskite phase was 
the only detected phase comprising the calcined samples. It is worth noting that for the 
samples represented by two end points in Fig. 3, Mn3O4 is gained as the only secondary 
phase, whereas in all the other cases La2O3 was detected as the only present crystalline 
secondary phase.  
 The samples calcined at 1100 oC were suspensed in water (10 mg in 20 ml of 
water); pH value was 5.7 for the sample synthesized in microemulsion and 6.5 for the 
sample synthesized in bulk conditions, which was, due to the fact that amorphous SrO 
readily slakes with water yielding a crystalline hydrated hydroxide behaving as a strong 
base, a clear indication that Sr ions were not present in form of oxides separate from 
manganite phase.  



 
Fig. 4. XRD diagrams of the sample synthesized in reverse micelles. As-dried powder is denoted with a, 
whereby the samples calcined at 600, 800, 1000 and 1100 oC  for 2 h are denoted with b, c, d and e, 
respectively. o stands for perovskite La0.67Sr0.33MnO3; m stands for Mn3O4; x stands for La2SrOx; y stands 
for cubic Mn2O3; * stands for tetragonal La2O2CO3.  
 
 From XRD diagram of the sample synthesized in microemulsion and calcined at 
different temperatures, presented in Fig. 4, it might be seen that precursor oxalates 
(and/or carbonates) comprising the as-dried powder transform to La2O2CO3 and Mn2O3 
after heating at 600 oC for 2h, and possibly to less crystalline SrO, which was not 
identified by using XRD. Annealing of the as-dried powder in air at 700 oC for 10 h did 
not significantly change XRD pattern (not shown herein), still comprising Mn2O3 and 
La2O2CO3 diffraction peaks, which suggests that relatively high temperatures are 
necessary condition for the formation of manganite phase within microemulsion-assisted 
procedure of the synthesis as presented herein. After heating at 800 oC for 2h, LaO2CO3 
and SrO transform to La2SrOx, which subsequently, at higher calcination temperatures, 
reacts with Mn2O3 giving LaSr-manganite with a slight amount of secondary Mn3O4 
secondary phase. The samples calcined at 1000 oC and 1100 oC have average particle size 
of 23 nm, according to Debye-Scherrer’s equation. 



    
           a.)                                b.) 
Fig. 5. DTA and TGA diagrams of the heating of the as-dried powders, synthesized under bulk conditions 
(a) and in microemulsion (b).  
 
 

DTA and TGA diagrams of the heating of the as-dried powders, one synthesized 
in bulk conditions and the other in reverse micellar microemulsion, are shown in Fig. 5. 
Stoichiometric calculations have shown that 34% weight loss is expected during the 
process of decomposition of oxalate precursors (with account to the stoichiometric, non-
complete precipitation of Mn2+ ions) into La0.67Sr0.33MnO3, which is in accordance with 
experimental results. From the TGA results, water loss might be approximated to ~ 15 % 
and the rest ~ 35 % belongs to the decomposition of oxalates. The endothermic peak at ~ 
150 oC derives from thermal dehydration of the oxalate precursors. Two more major 
exothermic peaks might be noticed at bulk-synthesized sample, with maximums at the 
temperatures of 312.3 oC (typical for the wet approaches to the La-manganite synthesis21) 
and 421.6 oC, whereby the sample synthesized within microemulsion exhibits the same 
two peaks slightly moved to higher temperatures: one at 316.8 oC, and the second at 
426.3 oC, whereby the third exothermic peak is present with maximum at 491.1 oC. The 
exothermic peak at ~ 315 oC is attributed to the thermal decomposition of C-H and C-C 
bonds of oxalate precursors22 and to the subsequent formation of oxycarbonate 
intermediate. Lanthanum oxalate is known to lose all of its bound water up to the 
temperature of 225 oC, at 400 oC exothermally transforms to carbonate, then 
endothermally to oxycarbonate, and at 710 oC to oxide23. Strontium oxalate is known to 
endothermally release all bounded water up to 250 oC, to exothermally transforms to 
strontium carbonate at between 420 and 590 oC, whereby carbonate transforms 
endothermally to oxide24 at between 770 oC and 1020 oC. Small endothermic peaks 
observed at T > 700 oC might thus belong to the gradual incorporation of Sr ions into 
already formed manganite perovskite lattice. The minor weight loss step (starting at ~ 
700 oC) in case of the microemulsion-assisted synthesized sample might as well occur 
due to the emission of carbon dioxide, since La2O2CO3 (that later transforms to 
perovskite oxide) was detected in the sample after heating at 800 oC (Fig. 4).  



  
Fig. 6. XRD diagrams of the bulk-synthesized sample quenched up to 350 oC (a) and 470 oC (b) with the 
heating rate of 10 oC/min. o stands for cubic α-MnC2O4, whereas m denotes cubic Mn3O4. 
 
 XRD diagrams of the bulk-synthesized powder heated up to temperatures 
corresponding to the end-points of two of the largest common exothermic phase 
transitions observed within the DSC measurements, are shown in Fig. 6. All diffraction 
peaks of the sample quenched to 350 oC correspond to cubic α-MnC2O4, whereby all the 
peaks of the sample quenched at 470 oC correspond to cubic Mn3O4. However, the 
formation of perovskite phase might be noticed at the same XRD pattern. Therefore, the 
first exothermic peak on DSC diagram corresponds to the transformation of La and Sr 
precursors to amorphous oxycarbonates, whereby the second peak corresponds to the 
transition of Mn-oxalate to Mn3O4, followed by the gradual formation of perovskite 
manganite. Although thermal decomposition of hydrous manganese oxalate in air leads 
normally to an exothermic (in the temperature range 230 – 330 oC)25 formation of MnO2, 
it is known that different oxalate hydrate stoichiometries and different environments can 
result in the formation of different manganese oxide products26. 

  
Fig. 7. XRD diagrams of the samples synthesized in microemulsion and quenched up to 370 oC (a), 460 oC 
(b) and 500 oC with the heating rate of 10 oC/min. 
 
 In case of the microemulsion synthesis, after the first exothermic DSC peak at 317 
oC no major changes in the XRD pattern were detected, whereas a gradual formation of 
manganese oxide phase through a transient amorphous phase is obvious to occur during 



the continual heating to both 420 oC and up to 500 oC (Fig. 7). Therefore, the first, 
endothermic DSC peak corresponds to the water loss, second, endothermic one to the 
phase transition in amorphous state, whereby the third peak corresponds to the transition 
of the crystalline phase comprising as-dried powder into manganese oxide phase, which 
subsequently reacts with LaSrOx, yielding as a result, after sufficient thermal treatment, 
the manganite phase (Fig. 4).  

           
       a.)                               b.) 
Fig. 8. EDS diagrams of the samples synthesized in bulk conditions (a) and within reverse micelles (b), 
calcined at  1100 oC.  
 
 From the presented EDS spectra (Fig. 8) of the samples synthesized both in bulk 
conditions and within reverse micelles, and calcined at 1100 oC, it is obvious that all 
three of the desired cations were constituent within the obtained products. Origin of the 
Cu peaks belongs to the copper grid used as the powder carrier within the TEM 
measurements.  

                     
             a.)                                                            b.) 
Fig 9. TEM images of the as-dried powders synthesized in bulk conditions (a) and in microemulsion (b).  



                  
                       a.)                                                                                                   b.) 
Fig. 10. TEM images of the samples synthesized in bulk conditions and calcined at 700 oC (a) and 1100 oC 
(b) for 2 h. 

     
           a.)                                                     b.)                                                        c.)          
Fig. 11a,b,c. TEM images of the sample synthesized in bulk conditions and calcined at 700 oC for 3h (a, b) 
and of the sample synthesized in microemulsion and calcined at 1100 oC for 2h (c).  
 
 TEM micrographs of some of the synthesized samples are presented in Figs. 9-11. 
Comparison of Fig.9a and Fig. 9b leads to the conclusion that much restricted growth 
processes in the precipitation of oxalate precursors occurred in the case of reverse 
micellar synthesis, as compared to the bulk case. Almost completely amorphous structure 
of the sample synthesized in bulk conditions and calcined at 700 oC for 2h, is presented in 
Fig. 10a, whereby crystalline nano-sized particles (in the range of 20 – 50 nm) of the 
sample synthesized in bulk conditions and calcined at 1100 oC for 2h, are presented in 
Fig. 10b. Uniform nano-sized particles of the sample synthesized in bulk conditions and 
calcined at 700 oC for 3h are presented in Figs. 11a and 11b, whereby low polydispersity 
of the sample synthesized in microemulsion and calcined at 1100 oC for 2 h, might be 
noticed from Fig. 11c.  



 
             a.)     b.) 
Fig. 12. Dependency of saturation magnetization on the calcination temperature for the samples synthesized 
in bulk conditions (-∆-) and in microemulsion (-ο-) (a) and the dependence of the saturation magnetization 
on the calcination time for the sample synthesized in bulk conditions and calcined in air at 700 oC.  

 
The increase in saturation magnetization with an increase in calcination 

temperature, for the samples prepared by using both synthesis routes, is evident from the 
Fig. 12a. The magnetization of the bulk-synthesized sample calcined at 1100 oC for 2h is 
twice smaller comparing to the microemulsion-assisted synthesized sample calcined at 
the same conditions. The magnetization of the sample synthesized in reverse micelles and 
calcined at 800 oC derives from the small amount of perovskite manganite phase, the sign 
of which is visible on the corresponding XRD diagram (Fig. 4c). At 800 oC, the 
perovskite phase had obviously already started forming in case of the reverse micelle 
synthesized sample. From Fig. 12b, a large increase in magnetization value between the 
samples synthesized in bulk conditions and calcined at 700 oC for 2 and 3 h, respectively, 
has been noticed, after which magnetization slowly increases when the calcination time is 
prolonged from 3 – 24 h. The magnetization increase in this case goes together with an 
increase in crystallinity as is obvious from Fig. 2.  

      
Fig. 13. Dependence of saturation magnetization on the measurement temperature for the sample 
synthesized in microemulsion and calcined at 1000 oC. The dependencies denoted by a, b, c and d 
correspond to the used external magnetic field of 1500, 3000, 5000 and 10 000 Oe, respectively. 



 
   a.)        b.) 
Fig. 14. Dependence of saturation magnetization on the measurement temperature for the samples 
synthesized (a) in bulk conditions and calcined at 1100 oC and (b) in microemulsion and calcined at 1000 
oC. 

 
The dependencies of saturation magnetization on the measurement temperature 

towards zero temperature for the sample synthesized in microemulsion and calcined at 
1000 oC, under various external fields, are presented in Fig. 13. The blocking temperature 
(the existence of which implies partly superparamagnetic nature of the synthesized 
particles), the temperature where field-cooled and zero field-cooled curves divert, 
decrease with the increase in the intensity of the external magnetic field. A glimpse at the 
unidentified phase transition, occurring at 37 K, can be catched. Similar saturation 
magnetization vs. measuring temperature (towards Curie point) dependencies, of the 
sample synthesized in bulk conditions and calcined at 1100 oC and of the sample 
synthesized in microemulsion and calcined at 1000 oC, are presented in Fig. 14. Almost 
linear decrease in magnetization from room temperature to 90 oC is noticed in both cases. 
Curie point was in both cases ~ 100 oC. 

 
Conclusions 
 Two co-precipitation procedures for the synthesis of LaSr-manganite were 
successfully employed. The one was based on the precipitation of precursor cations in 
aqueous-ethyl-alcoholic solution by using oxalic acid, and subsequent annealing thereof, 
whereby the second method was based on the precipitation of precursor cations in reverse 
micellar domain of CTAB/1-hexanol/water microemulsion, together with subsequent 
calcination of the obtained precipitate. Whereby in the first, so-called bulk-case 700 oC 
was sufficient temperature for obtaining the desired chemical composition, temperatures 
higher than 1000 oC ought to be reached in case of the microemulsion-assisted procedure 
in order to obtain the desired LaSr-manganite product. Studying the chemical pathways 
leading to the formation of the desired product yielded suggestions that within the bulk 
procedure, Mn-oxalate transforms to Mn3O4 that gradually reacts with LaSr-
oxycarbonates to give perovskite manganite, whereas in case of the microemulsion-
assisted procedure Mn2O3 and La2O2CO3 were detected as the intermediate products with 
La2O2CO3 transforming into La2SrOx which then reacts with Mn2O3 to give manganite 
structure. The certain restrictions in the size of co-precipitated particles were detected in 



case of the reverse micellar synthesis as compared to the powders derived from the bulk 
synthesis. Narrowly dispersed manganite particles in size were detected within the 
samples co-precipitated in bulk conditions and calcined at 700 oC for 3h and at 1100 oC 
for 2h, as well as within the sample co-precipitated in microemulsion and calcined at 
1100 oC. However, the dispersing effects of reverse micelles did not have large influence 
on the morphological uniformity of the produced powders in comparison with the results 
obtained by following the co-precipitation procedure in an ordinary aqueous solution. 
Saturation magnetization increases with the calcination temperature up to values of 45 
emu/g and 23 emu/g for the microemulsion-assisted and bulk synthesized samples, 
calcined at 1100 oC, respectively. Curie point was, comparing the cases of the bulk-
synthesized sample calcined at 1100oC and microemulsion-assisted synthesized sample 
calcined at 1100 oC, in both cases found at ~ 100 oC. The blocking temperature detected 
at between 35 K and 5 K when the external magnetic field varied from 1500 Oe towards 
10000 Oe, suggests partly superparamagnetic nature of the manganite sample, 
synthesized by performing microemulsion-assisted procedure and calcined at 1000 oC.  
 
References 

1. D. O. Yener, H. Giesche – “Synthesis of Pure and Manganese-, Nickel-, and Zinc-Doped Ferrite 
Particles in Water-in-Oil Microemulsions”, Journal of the American Ceramic Society 84 (9) 1987-
95 (2001). 

2. U. Natarajan, K. Handique, A. Mehra, J. R. Bellare, K. C. Khilar – “Ultrafine Metal Particle 
Formation in Reverse Micellar Systems: Effects of Intermicellar Exchange on the Formation of 
Particles”, Langmuir 12, 2670 – 78 (1996). 

3. V. Uskoković, M. Drofenik – “Synthesis of Nanocrystalline Nickel-Zinc Ferrites via a 
Microemulsion Route”, Materials Science Forum 453 – 4, 225 – 30 (2004). 

4. M. P. Pileni, T. Zemb, C. Petit – “Solubilization by Reverse Micelles: Solute Localization and 
Structure Perturbation”, Chemical Physics Letters 118 (4), 414 – 20 (1985). 

5. E. E. Carpenter, C. T. Seip, C. J. O'Connor – “Magnetism of Nanophase Metal and Metal Alloy 
Particles Formed in Ordered Phases”, Journal of Applied Physics 85 (8) 5184 – 6 (1999). 

6. C. C. Wang, D. H. Chen, T. C. Huang  - “Synthesis of Palladium Nanoparticles in Water-in-Oil 
Microemulsions”, Colloids and Surfaces A 189, 145 – 154 (2001). 

7. J. C. Linehan, J. L. Fulton, R. M. Bean – “Process of Forming Compounds Using Reverse Micelle 
or Reverse Microemulsion Systems”, US Patent 5,770,172 (1998). 

8. M. A. Lopez-Quintela – “Synthesis of Nanomaterials in Microemulsions: Formation Mechanisms 
and Growth Control”, Current Opinion in Colloid & Interface Science 8, 137 – 44 (2003). 

9. A. Košak, D. Makovec, M. Drofenik – “The Preparation of Spinel Ferrite Nanoparticles Using 
Precipitation in Water-in-Oil Microemulsions”, Journal of Metastable and Nanocrystalline 
Materials 23, 251 – 4 (2005). 

10. X. M. Sui, Y. Chu, S. X. Xing, M. Yu, C. Z. Liu – “Self-Organization of Spherical PANI/TiO2 
Nanocomposites in Reverse Micelles”, Colloids & Surfaces A 251 (1-3) 103 – 7 (2004). 

11. S. Vaucher, M. Li, S. Mann – “Synthesis of Prussian Blue Nanoparticles and Nanocrystal 
Superlattices in Reverse Microemulsions”, Angewandte Chemie - International Edition 39, 1793 – 
6 (2000). 

12. V. Uskoković, M. Drofenik – “Synthesis of Materials within Reverse Micelles”, Surface Review 
and Letters 12 (5) 2005. 

13. R. J. Bell, G. J. Millar, J. Drennan – “Influence of Synthesis Route on the Catalytic Properties of 
La1-xSrxMnO3”, Solid State Ionics 131, 211 – 20 (2000). 

14. A. E. Giannakas, T. C. Vaimakis, A. K. Ladavos, P. N. Trikalitis, P. J. Pomonis – “Variation of 
Surface Properties and Textural Features of Spinel ZnAl2O4 and Perovskite LaMnO3 
Nanoparticles Prepared via CTAB-Butanol-Octane-Nitrate Salt Microemulsion in the Reverse and 
Bicontinuous States”, Journal of Colloid and Interface Science 259, 244 – 53 (2003). 

15. M. Hayashi, H. Uemura, K. Shimanoe, N. Miura, N. Yamazoe – “Enhanced Electrocatalytic 



Activity for Oxygen Reduction over Carbon-Supported LaMnO3 Prepared by Reverse Micelle 
Method”, Electrochemical and Solid-State Letters 1 (6) 268 – 70 (1998). 

16. A. E. Giannakas, A. K. Ladavos, P. J. Pomonis – “Preparation, Characterization and Investigation 
of Catalytic Activity for NO – CO Reaction of LaMnO3 and LaFeO3 Perovskites Prepared via 
Microemulsion Method”, Applied Catalysis B 49, 147 – 58 (2004). 

17. V. Uskoković, D. Makovec, M. Drofenik – “Synthesis of Lanthanum-Strontium Manganites by a 
Hydroxide-Precursor Co-Precipitation Method in Solution and Reverse Micellar Microemulsion”, 
Materials Science Forum 494, 155 – 60 (2005). 

18. S. Guillemet-Fritsch, P. Alphonse, Ch. Calmet, H. Coradin, Ph. Tailhades, A. Rousset – 
“Synthesis of La1-xSrxMnO3 Powders from Different Precursors”, Comptes Rendus Chimie 8 (2) 
219 – 27 (2005). 

19. L. M. Gan, L. H. Zhang, H. S. O. Chan, C. H. Chew, B. H. Loo – “A Novel Method for the 
Synthesis of Perovskite-Type Mixed Metal Oxides by the Inverse Microemulsion Technique”, 
Journal of Materials Science 31, 1071 – 9 (1996). 

20. X. L. Li, J. F. Liu, Y. D. Li – “Low-temperature Conversion Synthesis of M(OH)2 (M = Ni, Co, 
Fe) Nanoflakes and Nanorods”, Materials Chemistry and Physics 80, 222 – 7 (2003). 

21. M. Gaudon, C. Laberty-Robert, F. Ansart, P. Stevens, A. Rousset – “Preparation and 
Characterization of La1-xSrxMnO3+δ (0 ≤ x ≤ 0.6) Powder by Sol-Gel Processing”, Solid State 
Sciences 4, 125 – 133 (2002). 

22. Y. H. Huang, Y. G. Xu, C. H. Yan, Z. M. Wang, T. Zhu, C. S. Liao, S. Gao, G. X. Xu – “Soft 
Chemical Synthesis and Transport Properties of La0.7Sr0.3MnO3 Granular Perovskites”, Solid State 
Communications 114, 43 – 47 (2000). 

23. B. A. A. Balboul, A. M. El-Roudi, E. Samir, A. G. Othman – “Non-Isothermal Studies of the 
Decomposition Course of Lanthanum Oxalate Decahydrate”, Thermochimica Acta 387, 109 – 114 
(2002). 

24. E. Knaepen, J. Mullens, J. Yperman, L. C. Van Poucke – “Preparation and Thermal 
Decomposition of Various Forms of Strontium Oxalate”, Thermochimica Acta 284, 213 – 227 
(1996). 

25. X. Gao, D. Dollimore – “The Thermal Decomposition of Oxalates. Part 26. A Kinetic Study of the 
Thermal Decomposition of Manganese(II) Oxalate Dihydrate”, Thermochimica Acta 215, 47 – 63 
(1993). 

26. B. Donkova, D. Mehandjiev – “Mechanism of Decomposition of Manganese(II) Oxalate 
Dihydrate and Manganese(II) Oxalate Trihydrate”, Thermochimica Acta 421 (1-2), 141 – 9 
(2004). 

 


	Chapman University
	Chapman University Digital Commons
	8-2006

	Synthesis of Lanthanum-Strontium Manganites by Oxalate-Precursor Co-Precipitation Methods in Solution and in Reverse Micellar Microemulsion
	Vuk Uskoković
	Miha Drofenik
	Recommended Citation

	Synthesis of Lanthanum-Strontium Manganites by Oxalate-Precursor Co-Precipitation Methods in Solution and in Reverse Micellar Microemulsion
	Comments
	Creative Commons License
	Copyright


	Introduction
	Preparation of materials within reverse micelles1-3 belongs to the family of wet synthesis procedures, known of a number of advantages comparing to the traditional high-temperature solid-state processing methods, such as excellent control of the final...
	It is known that catalytic activity of LaSr-manganites largely depends on the method of its synthesis13. Although the methods for the preparation of LaMnO3 in reverse micelles were already reported in the literature14-16, the only synthesis of LaSrMnO...
	Experimental
	Two different wet, oxalate-precursor co-precipitation approaches to the synthesis of LaSr-manganites - one in bulk solution and the other in the reverse micelles of CTAB/1-hexanol/water microemulsion, were performed and investigated within the work pr...
	Results and discussion

	Conclusions
	References

