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Abstract

We study an economy in which exchange occurs pairwise, there is no commitment, and

anonymous agents choose between random monetary trade or deterministic credit trade.

To accomplish the latter, agents can exploit a costly technology that allows limited record-

keeping and enforcement. An equilibrium with money and credit is shown to exist if the cost

of using the technology is sufficiently small. Anonymity, record-keeping and enforcement

limitations also permit some incidence of default, in equilibrium.
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1 Introduction

This paper considers a variant of the monetary search model in Shi (1995) and Trejos and

Wright (1995), in order to study the coexistence between money and credit in a decentralized

trading environment. The variations considered partially relax some of the frictions that are

assumed in the typical model. Specifically, we maintain the assumption of no commitment

and pairwise matches, but we introduce a costly technology as in Camera (2000), which allows

deterministic matches, some enforcement, and an improvement in record-keeping. So, ‘credit-

like’ trades become possible among anonymous partners, and these trades can coexist with

monetary exchange in equilibrium.

The model is as follows. If agents can produce during a period, then they can opt to exploit

the costly technology instead of trading as in the typical monetary search model. The former

option generates disutility for the period, but also allows these agents to be anonymously paired

as a potential consumer or producer, in each of two consecutive periods. An agent’s initial

role is determined by a coin flip and is reversed in the second period. In a credit trade, initial

producers (creditors) transfer consumption to their partners (debtors), and these promise to

reciprocate with transfers to whomever will be their next-period partner. Debtors may not wish

to meet their obligations, and default may arise due to limitations in record-keeping and some

enforcement. Agents who did not keep promises in their last credit trade are assigned a bad

credit record, as opposed to good. If they attempt another credit trade, then the technology

may recognize them; this triggers a one-time utility sanction and resets their record to good.

The analysis shows that for sufficiently small costs of the technology, equilibrium outcomes

arise in which credit trades coexist with monetary exchange. These outcomes, however, display

some incidence of default. The intuition is as follows. In the model, transfers are assumed to

satisfy take-it-or-leave-it offers from consumers to producers. So, transfers reflect producers’

continuation payoffs, which depend not only on the enforcement parameters but also on the

cost of credit trading. This cost must be sufficiently low or the expected return from credit

would not be sufficiently attractive relative to monetary trade. The return from credit, however,

cannot be too high or no one would sell for money. Thus, there must also be some default, which

means that enforcement cannot be perfect. Indeed, we characterize the trade-off between the

technology’s cost and enforcement capabilities in sustaining equilibria with money and credit.
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This analysis contributes to a monetary literature concerned with how the availability of

credit affects allocations, and the role of money. In one strand of this literature, credit is sus-

tained thanks to financial intermediaries that are introduced in otherwise competitive economies

with frictions (e.g., see Azariadis et al., 2001, Jafarey and Rupert, 2001, or Bullard and Smith,

2003). In another strand, random meetings, anonymity, no commitment and enforcement lim-

itations provide explicit microfoundations for money. Here, if individual trading histories are

public, then any monetary allocation could be replicated without money, while there can be no

credit if histories are private (Kocherlakota, 1998). To open the door to credit and money, some

of this work introduces imperfect or partial knowledge of individual histories. For example, in

Kocherlakota and Wallace (1998) individual histories are made public only with a lag, which

lessens the threat of punishment for defectors and sustains equilibria with money and credit.

In the mechanism design analysis of Cavalcanti and Wallace (1999a,b), instead, money (inside

or outside) coexists with credit because only a subset of agents has public histories. Yet other

examples on the coexistence of money and credit introduce what basically amounts to a limited

participation friction in a prototypical banking sector (e.g., Cavalcanti et al. 1999, Williamson

1999, 2004), or alternatively consider various possibilities of long-term partnerships (e.g., Shi

1996, Li 2001, Corbae and Ritter 2004).

Our paper adds to this literature by providing a further example of coexistence of money and

credit, though we do not employ a mechanism design analysis. Our framework is in the tradition

of the microfoundations of money literature, and displays pairwise exchange, anonymity, private

histories, no commitment, and enforcement limitations. Anonymity and no commitment open

the door to default, and money is used in trade only by some agents, as in some of the existing

studies that have introduced some knowledge of individual histories, limited participation, or

long-term partnerships. Unlike those studies, credit-like trades in our model are made possible

thanks to the introduction of a costly technology that improves upon the random meeting process

and also permits some limited record-keeping and enforcement. It is these limitations, as well

as anonymity, that let money coexist with credit in our model.

2



2 The Model

The basic layout combines the models in Shi (1995) and Trejos and Wright (1995) with the

variation in Camera (2000). Time is discrete and continues forever and there is a unit-mass

continuum of non-storable commodities and infinitely-lived individuals, who are anonymous

and specialize in consumption/production. Agents and commodities are uniformly distributed

among N ≥ 3 different sets denoted i = 1, ..., N and we refer to any agent from set i as agent

i. Agent i consumes commodity i and can produce commodity i + 1 (modulo N), has period

utility u(q) from q ≥ 0 consumption and suffers disutility q from producing q ≥ 0. Assume

u(q) is strictly increasing, concave, twice differentiable, u(0) = 0, u (0) = ∞, and u(q) ≥ q for
q ∈ [0, q̂]. The common discount rate is r > 0.

Initially, a population fraction m ∈ (0, 1) has one indivisible unit of fiat money, while the
remaining agents can produce q ≥ 0 units of their specific commodity. In order to avoid multiple
asset holdings, we make the standard assumption that an agent can produce only if he has no

money and can hold at most one unit of money. So, we call producer someone without money

and consumer everyone else. At the end of the initial date, agents with money are free to discard

it, in order to become producers.

There are two spatially separated trading sectors, denoted spot and credit market. Only

producers can choose to trade in the credit market, while everyone else must trade in the spot

market. The spot market is a standard search economy in which trade histories are unobservable,

and there is neither commitment nor enforcement (e.g. Shi 1995 or Trejos and Wright 1995). In

particular, meetings are random and such that the probability of a meeting is simply the sum of

the population fraction of agents present in the spot market. For simplicity it is assumed that

in every meeting a type i agent is matched with probability 1
2 to (a randomly selected) agent of

type i+ 1 and of type i− 1 (mod. N) otherwise. So, even if all matches are single coincidence,
meetings are difficult if few people trade in the spot market.

The credit market makes use of a technology that allows some partial record-keeping, better

matching and limited enforcement. Producers who access it on date t suffer φ > 0 disutility

and must remain in it until the end of date t + 1. The disutility φ is assumed to accrue upon

entrance, because we interpret it as the cost of operating a technology that lessens some of the

frictions present in the spot market. Specifically, the technology’s features are as follows.
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Record keeping. The technology keeps only a partial record of every agent’s credit market

history; it includes the last dates on which he entered and exited the credit market, his match

on those dates and the actions taken. Given their record, agents can have one of four possible

labels on date t ≥ 1. Those who last entered the credit market on t − 1 and are still present
at the start of t, can be labeled either debtors or creditors. Agent i is a debtor if on t − 1 he
met some agent i− 1, and is a creditor if he met some agent i+ 1. Agents who last exited the
credit market at the end of date τ ≤ t−1 can be labeled as having either a bad or a good credit
record, denoted j = b, g. This depends on their actions and labels on date τ . Agent i has a good

record (j = g) if on date τ he was either a creditor, a debtor who produced for some creditor

i + 1, or was sanctioned for having a bad record (more below). He has a bad record (j = b) if

on date τ he was a debtor who defaulted, i.e., did not produce for some creditor i + 1. Thus,

creditors who suffer a default do not consume in their second date on the credit market and

start the following date as producers with credit record g.

Enforcement and matching. Consider credit market participants on date t. Some entered

on date t−1 and some are new entrants. The former are debtors or creditors and the technology
pairs each debtor of type i to a randomly selected creditor of type i + 1. Those who entered

now, on date t, are all producers and, upon entrance, the technology checks their credit record.

Good records are correctly identified but a bad record is identified as good with probability

1 − θ ∈ (0, 1). Those recognized as having a good record must stay in the market for two
periods. On the first (date t) they are matched among themselves as in the spot market, so

producer i meets a (randomly selected producer) type i + 1 or i − 1, according to a coin flip.
Those recognized as having a bad record are imposed a one-time utility loss, their record is reset

to g and must exit the credit market at the end of the period (they can return in the future).

Summing up, producers or money holders can trade in the spot market, as in the typical

search monetary model. Producers can opt to engage in a two-period sequence of unilateral

transfers on a credit market where a costly technology allows better matching as well as imperfect

record-keeping and enforcement. A transfer received (given) in the first period represents a loan

and makes the producer a debtor (creditor). Debtor i’s repayment obligation is discharged in

the second period via a transfer to any creditor i + 1. Debtors may skip repayment but risk a

future one-period utility sanction. Creditors who suffer a default do not consume for the period.
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The assumed restrictions on record-keeping reduce the set of possible histories, the state space,

hence complexity. Anonymity, enforcement and record-keeping limitations, instead, open the

door to default and to the coexistence of money and credit.

3 Stationary Equilibria

To discuss the coexistence of money and credit we will restrict attention to subgame perfect

equilibria in which (i) strategies are time-invariant and symmetric across agent types, (ii) both

trading sectors are active, and (iii) money circulates on the spot market.1

At the beginning of each date an agent can be in one of six possible states. He can be in the

credit market, as a creditor or a debtor. Or he can be outside the credit market as a producer

or a money holder with (credit) record j. We say that the agent is a ‘defaulter’ if j = b. Let

Gpand Gm denote the beginning-of-period stationary population fractions (for any agent type

i) of producers and money holders with record j = g; for defaulters we use Bp, Bm. On the

credit market, the population fractions of creditors and debtors are denoted Pc and Pd. Letting

α ∈ [0, 1] be the equilibrium probability that the representative debtor repays the debt, we have

that the population fraction αPc represents creditors who get repayment, and (1− α)Pc are

creditors who suffer a default.

In (monetary) equilibrium we must have

m = Gm +Bm,

1−m = Gp +Bp + Pd + Pc.
(1)

After the start of a period, producers choose a market. Let σj ∈ [0, 1] be the probability that
the representative producer with record j selects the credit market. So, the population fraction

Pp ≡ Gp(1− σg) +Bp(1− σb),

comprises spot market producers. The fraction Gpσg+Bpσb(1−θ) includes producers who enter
the credit market and are recognized as having a good record. During each period, these agents

are equally likely to become creditors or debtors, so

Pc = Pd = P ≡ Gpσg +Bpσb(1− θ)

2
.

1Previous research suggests that several types of stationary outcomes can arise in the model, with one or both

markets active, depending on the size of φ (see Camera, 2000).
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The population fraction Bpσbθ is producers with record b who enter the credit market and

are sanctioned. Clearly, if both sectors are active and money is valued, then we must have

P ∈ (0, 1−m).

3.1 Value Function

In the credit market, let qc and qd denote the first and second period equilibrium transfers

between producers, i.e., the loan and the repayment; let qp denote the utility penalty imposed

on producers found to have a bad record. In the spot market, let qm denote the commodities

that trade for money in equilibrium.

Denote the stationary end-of-period expected lifetime utility as Vj,k for an agent who starts

next period in state (j, k) with k = p,m (producer or money holder); use Vd and Vc for those

starting next period as debtors or creditors. Also, let ΠSj and Πj denote (expected) trade

surpluses, in the spot and credit market, to producers with record j. In equilibrium

rVj,p = σj(Πj −ΠSj ) +ΠSj
rVd = max(−qd + Vg,p − Vd, Vb,p − Vd)
rVc = Vg,p − Vc + αu(qd)

rVj,m =
Pp
2 [u(qm) + Vj,p − Vj,m]

(2)

The right hand sides of these functional equations display expected flow returns from trade.

The first line shows that, at the start of any date, a producer with record j earns ΠSj surplus on

the spot market. Entering the credit market (with probability σj) gives Πj − ΠSj surplus. The
next two lines show that a debtor can repay qd or can default, and then leaves the credit market;

a creditor gets repayment qd with probability α and starts next date as a producer with record

g. The last line is the value to having a money to those with record j; a spot trade consumption

opportunity arises with probability
Pp
2 , and the agent buys qm consumption.

In the expressions above

ΠSj =
m
2 (Vj,m − qm − Vj,p),

Πg = −φ+ 1
2(Vd + u(qc)− Vg,p) + 1

2(Vc − qc − Vg,p),
Πb = −φ+ (1− θ)[12(Vd + u(qc)− Vb,p) + 1

2(Vc − qc − Vb,p)] + θ(Vg,p − qp − Vb,p).
(3)

The expected surplus to a spot market producer, ΠSj , depends on his record j, the strategies

of others, and the distribution of agents. With probability m
2 he meets a buyer with money;
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voluntary selling generates net payoff Vj,m−qm−Vj,p ≥ 0. In all other encounters, the producer’s
net payoff is zero. The second and third lines describe the expected surplus to producers with

record g and b who enter the credit market, given σj > 0 for some j. After suffering disutility

φ their credit records are checked. With probability θ a defaulter is discovered, sanctioned qp

and leaves the market. Unrecognized defaulters are free to trade as producers g, and are equally

likely to consume or produce.

3.2 Terms of trade, best responses and distribution of agents

Terms of trade are determined via bilateral negotiations assumed to satisfy take-it-or-leave-it

(TOL) offers from consumers to producers. On the spot market trading histories are private

information so the equilibrium offer qm cannot depend on producers’ records, unless their dis-

tribution across markets is degenerate. Hence, offers may leave unequal surpluses to producers

with different records. To see why, a buyer with money selects qm ∈ {qg,m, qb,m} where

qj,m = Vj,m − Vj,p, for j = b, g

i.e., the optimal offer leaves no surplus to at least some producers. No other offer can increase

the probability of a purchase, without decreasing the buyer’s expected gain. Since all buyers

face the same matching probabilities, qm is independent of the buyer’s record.

The optimal offer qm of a buyer with credit record j is unique and must maximize his

expected surplus, contingent on a random match with a producer:

qm = argmax{[Vj ,p + u(xm)− Vj ,m](Bp1b +Gp1g) : xm = qg,m, qb,m} (4)

where 1j = 1 if Vj,m − xm ≥ Vj,p and 0 otherwise.
Now consider the credit market. Only producers recognized as g can trade, so

qc = Vc − Vg,p and qd = Vg,p − Vd, (5)

because of TOL offers. Thus, if Vg,p > Vb,p, then the undetected defaulters may earn surplus

from lending. We also define the utility sanction by qp where

qp = Vg,p − Vb,p. (6)

So, discovered defaulters simply earn no surplus for the period.
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Now let {α ,σj} denote the representative agent’s best responses given that everybody else
selects {α,σj} and the terms of trade are as above. Individual optimality requires

α = argmax{x(Vg,p − qd − Vb,p) : x ∈ [0, 1]},
σj = argmax{x(Πj −ΠSj ) : x ∈ [0, 1]},
u(qm) + Vj,p ≥ Vj,m.

(7)

The last inequality ensures that it is optimal to spend money, instead of holding on to it.

The population fraction Gp is time-invariant if

Bpσbθ + αPd + Pc +Gm
Pp
2 −Gpσg −Gp(1− σg)

m
2 = 0 (8)

The inflows include four terms. The term Bpσbθ is the sanctioned producers b (who become g);

αPd+Pc accounts for debtors who do not default and creditors since they both become producers

g; Gm accounts for money holders g who spend money in the spot market. The outflows are

producers g who choose credit and those who sell for money. Time-invariance of Bp requires

(1− α)Pd +Bm
Pp
2 −Bpσb −Bp(1− σb)

m
2 = 0, (9)

where (1− α)Pd are debtors who default and become producers b and Bpσb accounts for the

fact that every producer b who enters the credit market changes state, either due to sanctioning

or confusion over his record. Finally, Gm and Bm are time invariant if

Gp(1− σg)
m
2 −GmPp

2 = 0,

Bp(1− σb)
m
2 −BmPp

2 = 0.
(10)

We are now ready to present a definition of equilibrium.

Definition 1 Given (θ,φ), a symmetric stationary equilibrium with coexistence of money and

credit (an equilibrium, for short) is a list of strategies {α,σb,σg}, quantities {qc, qd, qm, qp}, value
functions {Vc, Vd, Vj,m, Vj,p}j=b,g, and distribution of agents {Pc, Pd,Gk, Bk}k=m,p that satisfy
(1)-(10), P ∈ (0, 1−m), and {α ,σb,σg} = {α,σb,σg}.

4 The coexistence of money and credit

In equilibrium money and credit coexist, so we must have qc > 0 (there must be credit) and

0 < Pp < 1−m (there must be producers on both markets). Several equilibrium strategy vectors
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{α,σb,σg} are possible. The next result narrows down the set of strategies compatible with this
equilibrium (all proofs are in the appendix).

Lemma 1 If an equilibrium exists, then it must have the following characteristics: (i) α ∈ (0, 1)
and 0 < σb < σg = 1; (ii) Vc > Vg,p > Vb,p = Vd = 0 and Vg,m > Vb,m > 0; and (iii) qm = Vb,m.

Two features of the equilibrium stand out. First, if money and credit coexist, then there

must be some default. Intuitively, deterministic credit trade is preferable to random spot trade.

This implies that a good credit record is valuable, as it ensures unfettered access to deterministic

trading. It also implies that α < 1. If, in fact, debt-repayment is always individually optimal,

then the resulting absence of default removes any incentive to trade on the spot market. Of

course α > 0, or lending would be suboptimal due to the absence of any future repayment. To

see why, notice that certain default cannot be an equilibrium because discounting would imply

Vc < Vg,p, hence qc < 0.

Second, only producers with credit record b trade in the spot market and hold all the money.

Due to take-it-or-leave-it offers, the value to being a producer b must thus be zero, so the value

of money must satisfy qm = Vb,m > 0. The latter is uniquely defined by the solution to

qm − Pp
2r+Pp

u(qm) = 0, (11)

which satisfies the individual optimality condition u(qm) + Vj,p ≥ Vj,m. Note also that in

equilibrium producers g would not sell for money on the spot market because Vb,m < Vg,m. We

are now in a position to discuss existence of equilibrium.

Proposition 1 If φ is sufficiently small, then an equilibrium with money and credit exists. In

equilibrium the loan and repayment amounts qc and qd must satisfy

u(qc) =
φ[2(1+r)−θ]
(1+r)(1−θ) and qd =

φθ
(1+r)(1−θ) . (12)

The central result is that an equilibrium with money and credit exists as long as the tech-

nology used to sustain credit trading is sufficiently inexpensive. Credit, in this case, is granted

despite the fact that there is some default in equilibrium and bad loans have no residual value.

The intuition is simple. Producers trade off the direct cost generated by credit trades with

the indirect cost associated to random monetary spot exchange. If credit market transactions
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are cheap, then there is a threshold level of default below which those who have a good record

strictly prefer to avoid random monetary trade. Those who have defaulted, instead, are simply

indifferent to trading locations; their continuation payoff is zero whether they sell for money

(due to TOL offers) or if they attempt to get credit (due to enforcement). This last feature,

explains why there is default in equilibrium. The continuation payoff to those who repay debts

is zero (due to TOL offers), so they are indifferent to defaulting.

Figure 1

We illustrate our findings with the help of Figure 1 drawn for u(q) =
√
q and r = .01. The

area under the curve indicates regions of the parameter space (φ, θ) under which an equilibrium

is possible. Note that φ must be sufficiently small, and that, given φ, we must have θ ∈ (θ, θ) ⊂
(0, 1). The reason for this latter finding is that as θ → 0 then there is no sanctioning for default,

so α > 0 cannot be individually optimal. The opposite is true when θ → 1, since defaulters

would never access the credit market. Notice also that, for this parameterization, there can be

two values of θ that are consistent with the same equilibrium default rate α. Intuitively, all else

equal, the more difficult is to sanction defaulters, i.e., the lower is θ, the greater is the incentive

for debtors to not reciprocate for the original transfer (loan). This, in turn reduces the incentive

to lend. We see from (12) that both qc and qd fall as θ falls. It follows that if θ is low, a given α

can be sustained in equilibrium only if the transfers are also low. If θ is high, instead, defaulters

are sanctioned sufficiently often that the amount of credit granted can be much higher.
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5 Final remarks

This article provides a further example of the coexistence of money and credit in an economy with

frictions and pairwise exchange. The model is in the tradition of the microfoundations of money

literature, and it assumes pairwise exchange among anonymous agents who face commitment,

enforcement and informational limitations. Previous work has explored the coexistence of money

and credit in similar frameworks by either introducing imperfect public knowledge of individual

histories, or limited participation, or the possibility of long-term partnerships. In our model,

instead, credit-like trades are made possible thanks to the introduction of a costly technology

that can be freely selected by any agent who can produce. This technology improves upon the

random meeting process and also permits some limited record-keeping and enforcement. It is

these limitations, as well as anonymity, that allow money to coexist with credit in our model.

We conclude with three comments. First, the model admits multiple equilibria; for instance,

there can be outcomes in which there is only credit or only money. Second, changes in the

quantity of money do not affect equilibrium consumption on the credit market (see (12)), for

two reasons. Changes in money do not meaningfully affect the outside options of credit market

participants since producers g never sell for money and producers b never earn surplus by selling

for money (due to TOL bargaining). Changes in money also do not affect credit meetings, as

these do not depend on the proportion of market participants. Finally, we conjecture that if bad

loans had some residual value, then repayment could be unnecessary to sustain credit. Suppose,

for instance, that creditors who suffer a default could receive some small consumption q < qd at a

later date. This could be accomplished by forcing discovered defaulters to produce or by taxing

all credit market participants. If agents are patient enough, then even the certainty of default

could sustain an equilibrium with money and credit. In addition, bad loans could conceivably

circulate as a form of valuable inside money, even if their residual worth is minimal.
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Appendix

Proof of Lemma 1

Consider outcomes as in Definition 1 and use the expressions in (2)-(3).

1. Clearly, qc > 0, or no one would enter the credit market because φ > 0. Since qc = Vc−Vg,p,
then we need Vc > Vg,p. We must also have α > 0. If in fact α = 0, then Vc =

Vg,p
1+r and

so qc = Vc − Vg,p < 0, a contradiction. For α > 0 to be individually optimal we need

−qd + Vg,p ≥ Vb,p; since qd = Vg,p − Vd, then it follows that Vd = 0 and so Vb,p = 0. The
latter also implies ΠSb = Πb = 0. Clearly, Π

S
b = 0 requires qm = Vb,m (since Vb,p = 0).

2. Proving that α < 1. Suppose that, in fact, α = 1. Here all producers have record g.

In order for money to have value some producers g must sell on the spot market, so we

need σg ∈ (0, 1), which requires Πg = ΠSg = rVg,p. Take-it-or-leave-it offers then imply

qm = Vg,m−Vg,p; so, ΠSg = 0 = Πg = Vg,p. But then, since qd = Vg,p−Vd = Vg,p, we would
have qd = 0, which implies Vc =

Vg,p
1+r = 0 and so qc = 0, a contradiction. Therefore we

must have α ∈ (0, 1).

3. Proving that σj > 0 for j = b, g. When α ∈ (0, 1) we have Bp, Gp > 0 and, clearly, we

cannot have σb = σg = 0. Suppose that σg > σb = 0. This contradicts the stationarity

condition (9), since the fraction of producers b would increase over time (due to default

and absence of sanctioning). A similar contradiction arises if σb > σg = 0. Hence, we must

have σj > 0 for j = b, g. The latter implies rVg,p = Πg. Of course, Vg,p > 0 or else we

would have qd = 0, and so Vc = qc = 0, which is not an equilibrium.

4. Proving that σg = 1 and σb ∈ (0, 1). Recall that α ∈ (0, 1) and Vb,p = Πb = ΠSb = 0.

Suppose that, in fact, σg ∈ (0, 1). In this case we must have ΠSg = Πg = rVg,p, by

individual optimality. Using (2), we get Vg,m − Vb,m ≤ Vg,p whenever Vg,p ≥ 0 = Vb,p.

Hence, ΠSg =
m
2 (Vg,m− Vb,m− Vg,p) ≤ 0, which implies Vg,p ≤ 0, a contradiction. To prove

σb ∈ (0, 1) suppose that, in fact, σb = 1. Then Pp = 0 because σg = 1. So Vj,m = 0 for

j = b, g, which is not an equilibrium. Hence, Pp = Bp (1− σb) , Gm = 0 and Bm = m. It

is immediate from (2) that Vg,m > Vb,m > 0 for qm > 0 satisfying (11).
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Proof of Proposition 1

Use Lemma 1 and note that in equilibrium Vg,p =
u(qc)−2φ
1+2r < u(qc). The last line in (3) indicates

that Πb = 0 if
2φ
1−θ − Vg,p = u(qc). Substitute for Vg,p to get

u(qc) =
φ[2(1+r)−θ]
(1+r)(1−θ) ,

so u(qc) > 2φ for all r, θ, and Vg,p > 0. We conclude that the equilibrium qc solving (12) is

unique, positive, and increases in θ, φ, r. Given (12) we obtain

Vg,p =
φθ

(1+r)(1−θ) . (13)

From the third line in (2) we must have αu(qd) > Vc − Vg,p = qc, or else Vc < 0. Since

qd = Vg,p, we need αu(Vg,p) > qc. Given α ∈ (0, 1), note that αu(Vg,p)− qc is hump-shaped in φ

and vanishes for φ = 0, which is when Vg,p = qc = 0. Note also that qc and Vg,p increase in φ.

By concavity of u and u (0) =∞, we have αu(Vg,p) > qc if φ is sufficiently small.
In equilibrium σg = 1 is individually optimal if Πg ≥ ΠSg . Suppose a producer with record g

deviates and enters the spot market. Then, ΠSg = 0 since he would not sell for money. To see

it, notice that from (2) and (11) we have

Vg,m − Vg,p =
Pp

2r+Pp
u(qm)− 2r

2r+Pp
Vg,p = qm − 2r

2r+Pp
Vg,p,

which implies Vg,m − qm < Vg,p. Since rVg,p = Πg > 0 in equilibrium, then Πg > ΠSg .
To complete the proof, note that α ∈ (0, 1) must satisfy qc = Vc − Vg,p > 0. Using qd = Vg,p

and Vc from (2) we get

Vc − Vg,p = 1
1+r [Vg,p + αu(Vg,p)]− Vg,p

⇒ qc =
1
1+r [αu(Vg,p)− rVg,p]. (14)

In equilibrium α ∈ (0, 1) must satisfy (14) given that qc satisfies (12) and Vg,p satisfies (13).
The unique qc and Vg,p that satisfy (12) and (13), are positive and constant in α. Define the RHS

of (14) by the continuous function f(α; θ,φ), increasing in α. Clearly f(0; θ,φ) < 0 < f(1; θ,φ).

Also, f(1; θ,φ) is hump-shaped in Vg,p, vanishing at Vg,p = 0 and at some other value Vg,p > 0.

Recall that qc and Vg,p increase in φ as well as θ and that qc, Vg,p → 0 as φ → 0 for any

given θ ∈ (0, 1). Since u is concave and u (0) = ∞, it follows that, given θ ∈ (0, 1), we have
qc < f(1; θ,φ) for φ > 0 sufficiently small and qc ≥ f(1; θ,φ) for φ sufficiently large. So, there
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are sufficiently small positive values φ, which depend on θ, such that f(0; θ,φ) < qc < f(1; θ,φ).

In that case, the intermediate value theorem implies that there exists a unique value of α ∈ (0, 1)
such that qc = f(α; θ,φ).

Now observe that Vg,p → 0 as θ → 0 and ∂Vg,p
∂θ > 0; so, given φ > 0 we have that f(α; θ,φ) is

hump-shaped in θ, vanishing at θ = 0 and at some other value θ < 1. Hence, given φ > 0, there

are two values of θ ∈ (0, 1) that solve qc = f(α; θ,φ) because f(α; 0,φ) = 0 < qc|θ=0 while, for
θ sufficiently close to one, we have qc > f(α; θ,φ) = 0. Using the implicit function theorem and

(14), we have that dαdθ < 0, for the low value of θ, and
dα
dθ > 0 otherwise.

Once we have α, we obtain σb by means of the laws of motion. Clearly, P = P ∗ =
Gp+Bpσb(1−θ)

2 , Pp = Bp(1 − σb), Gm = 0 and Bm = m. From (9) we get P (1 − α) = Bpσb

and so, using P , we get Gp = G
∗
p with

G∗p =
Bpσb[2−(1−α)(1−θ)]

1−α .

It is easy to see that (8) is always satisfied by P = P ∗ and Gp = G∗p. Finally, the constraint (1)

with P = P ∗ and Gp = G∗p gives us

1−m = Bp{1 + σb[3 + θ + α(1− 3θ)]}.

There is a continuum of pairs (Bp,σb) ∈ (0, 1−m)× (0, 1) that satisfies the above. As (Bp,σb)
change, then qm changes since Pp changes. Thus the equilibrium pairs (Bp,σb) must satisfy

Vg,m ≥ Vg,p, i.e., those with money at the end of the initial date (who have never defaulted in
the past) keep it instead of becoming a producer g. The inequality gives

Pp
2r+Pp

[u(qm) + Vg,p] ≥ Vg,p,

which is satisfied if φ is sufficiently small, i.e., if Vg,p is sufficiently small.
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