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 2 

Abstract 16 

In this study, a DNA mini-barcoding methodology was developed for the differentiation of species 17 

commonly found in canned tuna. Primers were designed to target a 236-base pair (bp) fragment of the 18 

mitochondrial control region (CR) and a 179-bp fragment of the first internal transcribed spacer region 19 

(ITS1). Phylogenetic analysis revealed the ability to differentiate 13 tuna species on the basis of the CR mini-20 

barcode, except in a few cases of species introgression. Supplementary use of ITS1 allowed for 21 

differentiation of introgressed Atlantic bluefin tuna (Thunnus thynnus) and albacore tuna (Thunnus alalunga), 22 

while differentiation of introgressed Atlantic bluefin tuna and Pacific bluefin tuna (Thunnus orientalis) 23 

requires a longer stretch of the CR. After primer design, a market sample of 53 commercially canned tuna 24 

products was collected for testing. This mini-barcoding system was able to successfully identify species in 23 25 

of the products, including albacore tuna, yellowfin tuna (Thunnus albacares), and skipjack tuna (Katsuwonus 26 

pelamis). One instance of mislabeling was detected, in which striped bonito (Sarda orientalis) was identified 27 

in a product labeled as tongol tuna (Thunnus tonggol). PCR amplification and sequencing was unsuccessful 28 

in a number of products, likely due to factors such as the presence of PCR inhibitors and DNA fragmentation 29 

during the canning process. Overall, CR and ITS1 show high potential for use in identification of canned tuna 30 

products; however, further optimization of the assay may be necessary in order to improve amplification and 31 

sequencing success rates. 32 

 33 

Keywords: DNA mini-barcoding; canned tuna; species identification; mitochondrial control region; first 34 

internal transcribed spacer region 35 

 36 
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Introduction 44 

 Fish species substitution is a type of misbranding that involves one fish species being substituted for 45 

another and sold as a mislabeled product. Mislabeling of fish species has been known to occur on the 46 

commercial market, with one U.S. market survey reporting that 33% of fish tested nationwide were 47 

mislabeled (Warner et al. 2013) and another study finding that 25% of fish samples collected in North 48 

America were potentially mislabeled (Wong and Hanner 2008). Mislabeling of fish products is carried out 49 

for reasons such as economic gain or avoidance of trade restrictions (Rasmussen and Morrissey 2008). Fish 50 

that are substituted or mislabeled are considered in violation of the Federal Food Drug and Cosmetic Act 51 

Section 403: Misbranded Food (21 U.S.C. 343). The potential for seafood mislabeling on the commercial 52 

market has become an increasing concern due to factors such as changes in the supply of particular fish 53 

species, increasing international trade, and increased production of processed seafood (Rasmussen Hellberg 54 

and Morrissey 2011). Whole, unprocessed fish can typically be identified by morphological characteristics. 55 

However, species identification becomes more challenging after commercial processing, when distinguishing 56 

external features of the fish have been removed. 57 

 Canned tuna is among the top-three consumed seafoods in the United States (NFI 2014), and has high 58 

potential to be the target of intentional or unintentional mislabeling. There are fourteen species listed in the 59 

Code of Federal Regulations (CFR) that can legally be sold in the United States as canned tuna fish (21 CFR 60 

161.190). Canned tuna labeled as “white” can only contain albacore (Thunnus alalunga) with a Munsell 61 

value of 6.3 or higher while “light” tuna can contain any species listed in 21 CFR 161.190, as long as the 62 

tuna has a Munsell value ≥ 5.3. Different tuna species have varying quality, value, availability, and 63 

restrictions, leading to the potential for fraudulent species substitution (Chuang et al. 2012; Jacquet and Pauly 64 

2008). For example, the average 2014 ex-vessel price paid in the U.S. for commercial landings of skipjack 65 

tuna (Katsuwonus pelamis) was US$1.50/kg while the average price paid for bigeye tuna (Thunnus obesus) 66 

was US$6.78/kg (NMFS 2015). Besides economic deception, tuna species mislabeling can also present a risk 67 

to human health. For example, sushi products labeled as “white tuna” have been reported to instead contain 68 

escolar (Lepidocybium flavorunneum) (Lowenstein et al. 2009; Warner et al. 2013). Escolar contains high 69 

levels of wax esters and is banned for sale in Japan and Italy because it can cause gastrointestinal distress 70 

(EFSA 2004). Proper labeling of canned tuna is also needed to allow at-risk consumers to properly follow the 71 
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U.S. Food and Drug Administration (FDA)/U.S. Environmental Protection Agency (EPA) guidelines for fish 72 

consumption (FDA/EPA 2014). In order to limit mercury exposure, children and pregnant women are 73 

advised to eat no more than six ounces per week of canned albacore, but are encouraged to eat eight to twelve 74 

ounces of fish lower in mercury, such as light canned tuna. 75 

 Due to the processed nature of canned tuna, DNA-based testing is typically required for species 76 

identification (Espiñeira et al. 2009; Quinteiro et al. 1998). DNA barcoding is one of the major DNA-based 77 

tests used to identify fish species, and it has been adopted by the FDA for testing of regulatory samples 78 

(Handy et al. 2011a; Handy et al. 2011b). This method is a sequencing-based test that differentiates between 79 

animal species based on a standardized gene fragment (Hebert et al. 2003). In fish, the standard fragment 80 

used for DNA barcoding is 655 base pairs (bp) in length and is located near the 5’ end of the cytochrome c 81 

oxidase subunit 1 (COI) mitochondrial gene (Handy et al. 2011a). DNA barcoding has proven to be a highly 82 

successful method for differentiating most fish species, but the COI gene fragment cannot always 83 

successfully differentiate between closely-related tuna species due to low genetic divergences (Cawthorn et 84 

al. 2011; Ward et al. 2009). Furthermore, the high-heat treatment that occurs during the canning process 85 

degrades DNA to fragments roughly 100 to 360 bp in length (Rasmussen and Morrissey 2009), often 86 

preventing species identification with the full-length COI barcode.  87 

 DNA mini-barcoding, which targets shorter regions within the full-length barcode, can be employed to 88 

differentiate fish species even after heavy processing (Rasmussen Hellberg and Morrissey 2011; Shokralla et 89 

al. 2015). A COI mini-barcoding system has been developed for the identification of fish species; however, 90 

canned tuna products could not consistently be differentiated at the species level with this method and the use 91 

of alternative genetic markers was suggested (Shokralla et al. 2015). Previous studies have reported some 92 

success in differentiating canned tuna using short fragments of the mitochondrial gene coding for cytochrome 93 

b (Espiñeira et al. 2009; Unseld et al. 1995); however, these studies did not consider the possibility of 94 

introgression, which has been reported to occur in a small percentage of cases and results in identical or 95 

extremely similar mitochondrial DNA sequences across multiple species (Viñas and Tudela 2009). The 96 

mitochondrial DNA control region (CR), which is a non-coding stretch of DNA that shows high levels of 97 

genetic variation, is a promising option for differentiating tuna species using DNA mini-barcoding. Previous 98 

studies have reported the ability to reliably identify tuna species based on sequence variation in a fragment of 99 
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the CR approximately 450 bp in length (Cawthorn et al. 2011; Viñas and Tudela 2009). This region has also 100 

been studied with introgressed tuna sequences and a secondary nuclear fragment targeting the  first internal 101 

transcribed spacer region (ITS1;~600-650 bp) has been identified for supplemental species differentiation 102 

(Chow et al. 2006; Viñas and Tudela 2009). Despite the success of these genetic markers in differentiating 103 

tuna species, the fragments targeted by previous studies are too long to be reliably recovered from canned 104 

tuna products. Therefore, the objective of this study was to develop a DNA mini-barcoding system for tuna 105 

species identification based on the CR and ITS1 and to test this system against a variety of canned tuna 106 

products. 107 

Materials and Methods 108 

Primer design and optimization 109 

 Primers were designed to target a short (< 250 bp) fragment of the CR in tuna fish species listed in the 110 

CFR for canned tuna (21 CFR 161.190). A total of 1,580 CR sequences were downloaded from GenBank for 111 

the following species: Atlantic bluefin tuna (Thunnus thynnus), albacore tuna (Thunnus alalunga), bigeye 112 

tuna (Thunnus obesus), yellowfin tuna (Thunnus albacares), Southern bluefin tuna (Thunnus maccoyii), 113 

longtail tuna (Thunnus tonggol), blackfin tuna (Thunnus atlanticus), skipjack tuna (Katsuwonus pelamis), 114 

slender tuna (Allothunnus fallai), bullet tuna (Auxis rochei), frigate tuna (Auxis thazard), kawakawa 115 

(Euthynnus affinis), and Pacific bluefin tuna (Thunnus orientalis). Although T. orientalis is not listed in the 116 

CFR for canned tuna, it is now considered to be a separate species from T. thynnus (Collete 1999; ITIS 2015). 117 

The downloaded CR sequences included introgressed individuals of T. thynnus and T. orientalis, as identified 118 

in previous studies (Alvarado Bremer et al. 2005; Carlsson et al. 2007; Carlsson et al. 2004; Viñas and 119 

Tudela 2009). CR sequences were not available in GenBank for two of the species listed in the CFR for 120 

canned tuna: spotted tunny (Euthynnus alletteratus) and black skipjack tuna (Euthynnus lineatus). All 121 

sequences were aligned with ClustalW using the default settings in MEGA 5.2 (Tamura et al. 2011). The 122 

sequences were then manually examined in BioEdit Sequence Alignment Editor, v.7.1.3.0 (Hall 1999) and 123 

potential primer-binding sites were identified by searching for conserved regions flanking highly variable 124 

regions. Parameters such as primer-dimer potential, %GC, and annealing temperatures were assessed using 125 

the Thermo Scientific Multiple Primer Analyzer online tool 126 

(http://www.thermoscientificbio.com/webtools/multipleprimer/). Based on the results of in silico analyses, a 127 

http://www.thermoscientificbio.com/webtools/multipleprimer/
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cocktail of three primers was designed for amplification of a 236-bp region of the CR (Table 1). Two reverse 128 

primers were designed to account for differences in the primer-binding region among the target species. 129 

Phylogenetic analysis of this genetic region was carried out in MEGA 5.2 (Tamura et al. 2011) using a subset 130 

of sequences representing each target species. Genetic divergence was calculated using the Kimura 2-131 

parameter distance method (Kimura 1980) with pairwise deletion for missing data, and a neighbor-joining 132 

(NJ) tree was compiled (Saitou and Nei 1987). The robustness of the tree was evaluated using nonparametric 133 

bootstrap analysis with 1,000 iterations. In order to allow for differentiation of albacore-like T. thynnus and T. 134 

alalunga, an additional primer set was designed to target a short (<250 bp) region of ITS1 in both species 135 

(Table 1). Primers were designed based on ITS1 sequences for T. alalunga, T. thynnus, and albacore-like T. 136 

thynnus published previously (Chow et al. 2006; Viñas and Tudela 2009). Primer design and optimization, as 137 

well as phylogenetic analysis, were carried out using the same methodology described above for the CR.   138 

Following phylogenetic analyses, all newly designed primers were synthesized with M13 tails to facilitate 139 

DNA sequencing (Handy et al. 2011a). Primers were optimized using gradient polymerase chain reaction 140 

(PCR) with annealing temperatures of 45º-65ºC (temperature increasing in 2ºC increments) using a 141 

Mastercycler nexus gradient thermal cycler (Eppendorf, Hamburg, Germany). Additional PCR parameters 142 

are described in the “PCR and sequencing” section. Optimal reaction conditions were determined based on 143 

amplification success with canned K. pelamis (CR primers only), canned T. alalunga, and fresh/frozen T. 144 

alalunga. Following optimization, primers were tested against commercially canned tuna samples as 145 

described below.   146 

Sample collection 147 

 A total of 53 canned tuna fish products representing a variety of commonly sold species were collected 148 

for use in testing the DNA mini-barcoding system developed here (Table 2). Products were purchased from 6 149 

online retail sources and 8 retail outlets in Orange County, CA. Fish tissue (~10 mg) was collected from each 150 

canned tuna sample using sterile forceps and placed into a sterile 1.5 ml microcentrifuge tube for DNA 151 

extraction. The remaining portion of each sample was stored at -80ºC. 152 

DNA extraction 153 

 DNA extraction was carried out for all fish samples using the DNeasy Blood and Tissue Kit, Spin-154 

Column protocol (Qiagen, Valencia, CA) with modifications described previously (Handy et al. 2011a; 155 



 7 

Handy et al. 2011b). Buffer ATL (50 µl) and Proteinase K (5.56 µl) were added to each sample tube 156 

described above and tissues were lysed at 56ºC for 1-3 h, with vortexing approximately every 30 min. After 157 

lysis, Buffer AL (55.6 µl) and 95% ethanol (55.6 µl) were added and each sample was vortexed. Samples 158 

were then transferred to silica spin columns, centrifuged at 8,000 rpm for 1 min, and transferred to fresh 159 

collection tubes. Wash buffer AW1 (140 µl) was then aliquoted into each spin column and samples were 160 

again centrifuged at 8,000 rpm for 1 min before being placed in a fresh collection tube. Wash buffer AW2 161 

(140 µl) was then added to each spin column followed by a centrifugation step of 14,000 rpm for 3 min. 162 

Finally, the silica columns were placed in 1.5 ml microcentrifuge tubes and 50 µl of pre-heated Buffer AE 163 

(37ºC) were added to each column. Samples were incubated at room temperature for 1 min, followed by 164 

centrifugation at 8,000 rpm for 1 min to allow elution of the DNA.  The extracted DNA was stored at -80ºC 165 

until PCR and sequencing. Reagent blanks with no fish tissue added were included as negative controls for 166 

each set of samples extracted. 167 

 Samples that failed sequencing underwent a repeat DNA extraction that incorporated the use of the MP 168 

FastPrep-24 Tissue and Cell Homogenizer (MP Biochemicals, Solon, Ohio). One sample of fish tissue (20-25 169 

mg) was collected from each sample and placed into an MP Lysing Matrix A tube (MP Biochemicals). 170 

Buffer ATL (180 µl) from the DNeasy Blood and Tissue Kit was added to each Lysing Matrix A tube and the 171 

tubes were homogenized in the FastPrep-24 instrument at 6.0 m/s for 40 s. Samples were then spun down 172 

briefly and Proteinase K (20 µl) was added to each sample. The tissues were lysed for 2 h with vortexing 173 

approximately every 30 min. After lysis, DNA extraction was carried out using the DNeasy Blood and Tissue 174 

Kit according to the manufacturer’s instructions. DNA was eluted in 50 µl of preheated (37ºC) Buffer AE. 175 

Reagent blanks with no fish tissue added were included as negative controls for each set of samples extracted. 176 

PCR and sequencing 177 

 The DNA samples extracted from each product underwent PCR along with reagent blanks and non-178 

template controls. Each reaction included the following components: 0.5 OmniMix HS PCR bead (Cepheid, 179 

Sunnyvale, CA), 0.5 µl of each 10 µM primer or primer cocktail (Table 1), 2-3 µl DNA template, and 180 

molecular grade water for a total volume of 25 µl. The CR mini-barcode region was amplified using one 10 181 

µM forward primer (CR_F) and two reverse primers mixed together (CR_R1 and CR_R2, each at a 182 

concentration of 10 µM in the mixture), while the ITSI target was amplified with one 10 µM forward primer 183 
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(ITS1_F) and one 10 µM reverse primer (ITS1_R). A subset of samples was initially tested with both 2 and 3 184 

µl of DNA. Increased sequencing success was achieved with 3 µl DNA and this volume was used in 185 

subsequent testing. PCR for the CR mini-barcode region was carried out under the following conditions: 186 

94ºC for 2 min; 35 cycles of 94ºC for 30 s, 49ºC for 40 s, and 72ºC for 1 min; and a final extension of 72ºC 187 

for 10 min. Thermocycling for ITS1 included the same parameters except that the annealing temperature was 188 

adjusted to 61ºC. Thermocycling was carried out using a Mastercycler nexus gradient thermal cycler 189 

(Eppendorf). PCR products (10 µl) were loaded onto pre-cast 2.0% E-Gel agarose gels (Life Technologies, 190 

Carlsbad, CA) and the gels were run for 10 min with an E-Gel Powerbase (Life Technologies). The results 191 

were photographed with a Transilluminator FBDLT-88 (Fisher Scientific, Hampton, New Jersey) and a 192 

FOTO/Analyst Express (Fotodyne, Hartland, WI) and visualized with PCIMAGE (version 5.0.0.0 Fotodyne). 193 

PCR products then underwent cleanup using ExoSAP-IT (Affymetrix, Santa Clara, CA) according to the 194 

manufacturer’s instructions.  All samples and negative controls were then sent to GenScript (Piscataway, NJ) 195 

for bi-directional sequencing using M13 primers (Table 1) with BigDye Terminator v3.1 Cycle Sequencing 196 

Kit (Life Technologies) and a 3730xl Genetic Analyzer (Life Technologies). 197 

Sequence analysis 198 

 Sequences were assembled and edited using Geneious R7 (Biomatters, Ltd., Auckland, New Zealand) 199 

(http://www.geneious.com, Kearse et al. 2012). Consensus sequences were aligned using ClustalW with the 200 

default settings in Geneious R7 and trimmed to the target CR or ITS1 fragments. The consensus sequence 201 

lengths, number of ambiguities, and percent high quality bases (HQ%) were recorded for each sample. 202 

Sequences were queried in GenBank using the Basic Local Alignment Search Tool (BLAST) and the top 203 

species matches were recorded. Samples that could not be identified at the species level with BLAST were 204 

subjected to phylogenetic analysis using MEGA 5.2, as described above. Any sample found to be potentially 205 

mislabeled was subjected to a second round of DNA extraction, PCR, and sequencing to confirm the initial 206 

result.  207 

Results and Discussion 208 

Phylogenetic analysis  209 

 Phylogenetic analysis of the CR mini-barcode targeted by the primers developed in this study revealed 210 

clear differentiation for ten of the thirteen tuna species for which sequences were available, with strong 211 
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bootstrap support (Fig. 1). While non-introgressed sequences showed clear differentiation across all thirteen 212 

species, inclusion of the introgressed sequences resulted in an inability to separate T. thynnus from T. 213 

orientalis and an inability to differentiate albacore-like T. thynnus from T. alalunga.  Although the inability 214 

to differentiate introgressed individuals of T. thynnus and T. orientalis is a limitation of this methodology, 215 

bluefin tuna are highly-valued and are almost exclusively prepared as a delicacy in sashimi and sushi dishes 216 

(SeafoodHealthFacts 2015).  Since neither of these species is typically found in canned tuna products, a 217 

longer CR fragment (~450 bp) previously found to differentiate these two species could be used for 218 

identification of bluefin tuna in raw or lightly processed tuna products (Viñas and Tudela 2009).  On the 219 

other hand, T. alalunga is commonly found in canned tuna and, although most reference sequences of this 220 

species grouped in a species-specific cluster (Fig. 1), one sequence grouped more closely to an albacore-like 221 

T. thynnus sequence. The inability to differentiate T. alalunga and albacore-like T. thynnus has been reported 222 

previously for the ~450 bp region of CR targeted by Viñas and Tudela (2009). Although introgression of 223 

these two species is known to occur, it is an uncommon event, with only 2-3% of T. thynnus showing an 224 

identical sequence to T. alalunga (Viñas and Tudela 2009). However, this could be problematic if a tuna 225 

product labeled as containing T. alalunga showed a top sequence match to T. thynnus. In order to verify 226 

species in this case, additional analysis would be recommended using a nuclear DNA target. In this study, 227 

ITS1 was chosen as the supplemental nuclear DNA target, due to a previous study reporting the ability to 228 

differentiate T. alalunga and albacore-like T. thynnus using a ~650 bp region of the ITS1 region (Viñas and 229 

Tudela 2009). In order to allow for identification in a canned tuna product, primers targeting a 179-bp region 230 

within ITS1 were designed in the current study. As shown in Figure 2, phylogenetic analysis of T. alalunga 231 

and T. thynnus reference sequences for this region resulted in clear separation between the two species, with 232 

all albacore-like T. thynnus sequences grouping within the T. thynnus cluster (100% bootstrap support).   233 

Among species groups for which more than one CR reference sequence was available, the average 234 

intraspecies genetic variation for the CR mini-barcode ranged from 0.60 ± 0.39% for T. obesus to 12.54 ± 235 

2.32% for K. pelamis, not including introgressed sequences.  Similarly, Cawthorn et al. (2011) previously 236 

reported T. obesus to show the lowest average intraspecies variation (0.46 ± 0.08%) among Thunnus species 237 

for a 450-bp fragment of the CR. In order for a DNA target to be used for species differentiation with DNA 238 

barcoding, the maximum intraspecies variation must be less than the minimum interspecies variation. This is 239 
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commonly referred to as a DNA barcode gap and can be represented graphically by plotting the maximum 240 

intraspecies divergence on the x-axis and the minimum interspecies divergence on the y-axis (Rasmussen et 241 

al. 2009). Species that have a DNA barcode gap will then be represented by data points that fall above the 1:1 242 

ratio line between these axes, while species with data points falling below the line cannot be differentiated 243 

with the gene target. As shown in Figure 3, a barcode gap was present for the CR mini-barcode region 244 

targeted in this study for four of the seven species that could be analyzed in this manner. Due to the inclusion 245 

of introgressed sequences, T. orientalis, T. thynnus, and T. alalunga did not have barcode gaps for the CR 246 

mini-barcode region. However, when introgressed sequences were excluded, all seven species showed a CR 247 

mini-barcode gap (results not shown). DNA barcode gaps could not be determined for species with only one 248 

reference sequence available, as intraspecies variation could not be calculated in these cases. Use of the ITS1 249 

supplementary marker to differentiate T. alalunga from albacore-like T. thynnus revealed the presence of a 250 

barcode gap (Fig. 3). These results indicate that the ITS1 fragment targeted in this study could be used for 251 

species confirmation in instances where a sample labeled as albacore tuna shows a top species match to T. 252 

thynnus based on the CR mini-barcode.        253 

Sequencing results 254 

Of the 53 samples tested in this study with the CR mini-barcode, 26 showed successful PCR 255 

amplification based on the results of gel electrophoresis and 24 were successfully bi-directionally sequenced 256 

(Table 2). This includes 23 samples extracted initially and 1 sample labeled as “white albacore tuna” that 257 

underwent a repeat DNA extraction with the MP FastPrep-24 instrument. The sequences had an average 258 

consensus length of 232 ± 14 bp, average HQ% of 82.6 ± 22.2%, and an average ambiguity percentage of 259 

0.20 ± 0.49%.  The quality of these sequences was slightly lower than previous species identification studies 260 

involving the full-length COI barcode, which have reported averages of 87.5-93.6%HQ and 0.05-0.14% 261 

ambiguous bases (Kane and Hellberg 2016; Quinto et al. 2016). The difference in quality is likely due to the 262 

highly processed nature of the canned tuna products, as compared to uncooked meat products examined in 263 

the previous studies. Among the 24 canned tuna products for which sequences were obtained, 21 could be 264 

identified at the species level based on the results of BLAST, with a query coverage of ≥ 98% and at least a 265 

95% identity match (Table 2).  266 
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Two of the products that could not be identified at the species level with BLAST (T18 and T50) were 267 

labeled as either albacore or white tuna and showed 99% sequence identity to multiple GenBank entries for 268 

both T. alalunga and T. thynnus. As shown in Figure 1, the CR mini-barcode sequences for these two 269 

products grouped within the T. alalunga/albacore-like T. thynnus clade. In order to verify species, these two 270 

canned tuna samples were subsequently sequenced with the ITS1 primers designed in this study (Table 1).  A 271 

successful sequence was obtained for one (T50) of the two samples and this result allowed for a positive 272 

identification of T. alalunga, with 100% sequence identity in GenBank.  Furthermore, as shown in Figure 2, 273 

the ITS1 sequence for this sample showed a clear phylogenetic grouping within the T. alalunga cluster.  274 

The third sample that could not be identified at the species level based on the results of BLAST was 275 

labeled as yellowfin tuna (T14). The CR mini-barcode for this sample showed a 99% identity match to 276 

thirteen GenBank entries for T. albacares and to one entry for T. thynnus (Accession ID DQ087565). While 277 

it is possible that this represents an instance of introgression, previous studies reporting introgression 278 

between these two species could not be found. The T. thynnus entry was published as part of a study that 279 

sequenced T. thynnus larvae collected in the Gulf of Mexico (Carlsson et al. 2007). T. albacares is also 280 

known to inhabit the Gulf of Mexico (Collette and Nauen 1983) and it is possible that this sample was 281 

morphologically misidentified in its larval form. Furthermore, when the CR mini-barcode for T14 was 282 

analyzed alongside the reference sequences used in this study, it showed a clear grouping within the T. 283 

albacares clade (Fig. 1). Therefore, based on the combination of BLAST and phylogenetic results, the 284 

sample was determined to be T. albacares.  285 

Among the two successfully sequenced samples labeled as “tuna” or “light tuna”, one was identified as K. 286 

pelamis and the other was identified as T. alalunga, respectively. Both of these species are listed in the CFR 287 

for canned tuna, so these two products are considered to be properly labeled (21 CFR 161.190). However, the 288 

use of T. alalunga in a product labeled as “light tuna” could be misleading to consumers that are intentionally 289 

limiting their consumption of T. alalunga due to mercury concerns, as products containing T. alalunga are 290 

typically associated with the designation of “white tuna” (Burger and Gochfeld 2004).  291 

One instance of mislabeling was discovered in this study, with a sample labeled as tongol tuna identified 292 

as striped bonito (Sarda orientalis) with 98% sequence identity. This result was confirmed upon re-293 

sequencing and the sample was determined to be mislabeled, as striped bonito is not listed in the CFR for 294 
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canned tuna. In this case, it is possible that S. orientalis was accidentally harvested alongside tongol tuna and 295 

processed into cans labeled as tongol tuna, considering that striped bonito often school with small tunas in 296 

the Indian and Pacific Oceans (Collette et al. 2011). Although this specific substitution was not reported 297 

previously, S. orientalis has been known to be processed as canned tuna (Lin and Hwang 2007). The rate of 298 

mislabeling found in this study (4.5%) is similar to a previous study on canned salmon, which tested 80 299 

products and found 5% to be mislabeled (Rasmussen Hellberg et al. 2011).  Another study investigating 300 

canned tuna products in European countries reported a higher mislabeling rate of 15%, with mislabeling 301 

found in products labeled as T. albacares, A. rochei, and A. thazard (Espiñeira et al. 2009).   302 

In this study, the sequencing success rate was highest among products labeled as albacore or white tuna 303 

(64.3%), followed by products labeled as yellowfin tuna (50%) and tongol tuna (50%). During primer 304 

optimization, amplification success was obtained with albacore tuna (canned and fresh/frozen) as well as 305 

skipjack tuna (canned). However, only one of ten commercial samples labeled as skipjack tuna was 306 

successfully sequenced and only one of the five products labeled as light tuna was successfully sequenced. 307 

Additional optimization based on sequencing success in both fresh/frozen and canned samples may help to 308 

improve the performance of the assay. Interestingly, sequencing success in the current study was observed 309 

more frequently in samples containing oil (57.9% success), including olive, canola, and soybean oil, 310 

compared to samples canned in water with no oil (42.9% success) or samples canned in water and vegetable 311 

broth with no oil (18.2% success). Similarly, Chapela et al. (2007) reported that higher quantities of DNA 312 

were obtained from tuna samples canned in oil than from samples canned in vinegar, brine, or tomato sauce, 313 

suggesting a protective effect of oil. Because most samples with sequencing failure also showed a negative 314 

result following gel electrophoresis, there appears to have been a problem with PCR amplification of the 315 

target region. Possible explanations for this include the presence of PCR inhibitors, lack of primer-binding 316 

and DNA fragmentation from the canning process. Most samples that failed sequencing had short sequence 317 

reads (~ 100 bp) that were poor quality and did not pass assembly. These reads showed a similar pattern of 318 

chromatogram peaks as the first ~100 bp for the sequence reads which were successfully assembled, 319 

suggesting that the primers were binding but that the target fragment was not completely elongated. Similarly, 320 

previous studies have reported limited success in amplifying 200-400 bp fragments of DNA from canned 321 

tuna (Lin and Hwang 2007; Quinteiro et al. 1998; Unseld et al. 1995). However, when these studies targeted 322 
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shorter regions of DNA ranging from 123 to 176 bp in length, amplification was successful, indicating that 323 

DNA may be fragmented to less than 200 bp during the canning process. In the few cases where no sequence 324 

reads were recovered, a possible explanation for sequencing failure could be the presence of a non-tuna 325 

species that could not be amplified by the CR primers.  326 

Conclusions 327 

 In the current study, a DNA mini-barcoding system was developed for the identification of fish species 328 

commonly found in canned tuna. Phylogenetic analysis revealed that a 236-bp CR mini-barcode could 329 

differentiate all 13 tuna species examined, except in rare cases of introgression involving T. thynnus/T. 330 

alalunga and T. thynnus/T. orientalis. Use of a supplemental ITSI marker allowed for the differentiation of 331 

introgressed individuals of T. alalunga and T. thynnus. Although the methodology developed in this study 332 

does not allow for the differentiation of introgressed individuals of T. thynnus and T. orientalis, these species 333 

are not typically found in canned tuna, and can be identified with a previously identified stretch of the CR. 334 

Laboratory testing of the CR primers developed in this study demonstrated successful identification for T. 335 

alalunga, K. pelamis, T. tonggol, and T. albacares in canned tuna, as well as S. orientalis, which is not listed 336 

on the CFR for canned tuna and was detected in a mislabeled product. However, DNA sequencing was 337 

unsuccessful in a number of products, likely due to factors such as DNA fragmentation and PCR inhibitors 338 

present in canned tuna. Use of a shorter genetic region within the CR and/or further optimization of the assay 339 

may help to improve PCR amplification and sequencing success. 340 
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Table 1. Primers used in this study. All primers include M13 tails described previously (Handy et al. 2011a). 466 

Primer 

set 

Primer name Primer sequence (5’-3’) Described Ta Target fragment 

lengtha  

CR Tuna CR_F CAC GAC GTT GTA AAA CGA CGC AYG TAC ATA 

TAT GTA AYT ACA CC 

In this work 49ºC 236 bp 

 Tuna CR_R1 GGA TAA CAA TTT CAC ACA GGC TGG TTG GTR 

GKC TCT TAC TRC A 

In this work   

 Tuna CR_R2 GGA TAA CAA TTT CAC ACA GGC TGG ATG GTA 

GGY TCT TAC TGC G 

In this work   

ITS1 ITS1_F CAC GAC GTT GTA AAA CGA CTC TCC TGG TCA 

GGA CCT CGT 

In this work 61ºC 179 bp 

 ITS1_R GGA TAA CAA TTT CAC ACA GGA AGC CTC CGC 

TKC CGC GCT T 

In this work   

M13 M13F (-29) CAC GAC GTT GTA AAA CGA C Handy et al. 

(2011a) 

N/A N/A 

 M13R GGA TAA CAA TTT CAC ACA GG Handy et al. 

(2011a) 

N/A N/A 

aNot including primers 467 

 468 

 469 
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Table 2. Summary of the 53 canned tuna products analyzed in this study with the CR mini-barcode. Top species matches were determined using BLAST. 470 

Product label n Expected species Top species match in GenBank % Sequence 

identity 

Albacore/white tuna 7 T. alalunga T. alalunga 97-99% 

Albacore/white tuna 2 T. alalunga T. alalunga/T. thynnus 99% 

Albacore/white tuna 5 T. alalunga Failed sequencing N/A 

Light tuna 1 Variety of potential species T. alalunga 95% 

Light tuna 4 Variety of potential species Failed sequencing N/A 

Skipjack tuna 1 K. pelamis K. pelamis 97% 

Skipjack tuna 9 K. pelamis Failed sequencing N/A 

Tongol tuna 2 T. tonggol T. tonggol 97-98% 

Tongol tunaa 1 T. tonggol S. orientalis 98% 

Tongol tuna 3 T. tonggol Failed sequencing N/A 

Tuna 1 Variety of potential species K. pelamis 97% 

Tuna 3 Variety of potential species Failed sequencing N/A 

Yellowfin tuna 8 T. albacares T. albacares 99-100% 

Yellowfin tuna 1 T. albacares T. albacares/T. thynnus 99% 

Yellowfin tuna 5 T. albacares Failed sequencing N/A 

a Mislabeled sample.  471 

 472 
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Figure Captions 473 

Figure. 1 Neighbor-joining tree of the 236-bp CR mini-barcode targeted in this study. GenBank accession 474 

numbers are shown for all reference sequences. The Kimura 2-parameter method was used to calculate 475 

genetic distances and bootstrap values greater than 70% are shown. The tree includes three of the canned 476 

commercial samples tested in the current study (T14, T18, T50) 477 

Figure. 2. Neighbor-joining tree of the 179-bp ITS1 fragment targeted in this study. GenBank accession 478 

numbers are shown for all reference sequences and Katsuwonus pelamis was used as an outgroup. The 479 

Kimura 2-parameter method was used to calculate genetic distances and bootstrap values greater than 70% 480 

are shown. The tree includes one of the canned commercial samples tested in the current study (T50) 481 

Figure. 3 Mini-barcode gaps for the tuna species targeted in this study, including introgressed sequences. 482 

Data points are representative of the CR mini-barcode unless otherwise noted. Genetic distance was 483 

calculated using the Kimura 2-parameter method. Species with only one reference sequence are not shown 484 
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