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Running head: Rapid evolution in two annual exotic grasses 

 

Summary 

1. Global climate models suggest that many ecosystems will experience reduced precipitation 

over the next century and the consequences for invasive plant performance are largely unknown.  

Annual invasive species may be able to quickly evolve traits associated with drought escape or 

tolerance through rapid genetic changes.   

 

2. We investigated the influence of five years of water and nitrogen manipulations on trait values 

in a southern California grassland system.  Seeds from two annual grass species (Avena barbata, 

Bromus madritensis) were collected from experimental plots and grown in a common 

environment over two generations.  We measured 14 physiological, morphological, 

phenological, and reproductive traits.   

 

3. Both species displayed phenotypic differences depending on the water treatment from which 

they were collected, but not depending on the nitrogen treatment.  Both species displayed trait 

values characteristic of drought escape (e.g., earlier flowering in A. barbata and B. madritensis, 

lower water-use efficiency in B. madritensis) when grown from seeds collected from plots that 

experienced five years of reduced precipitation.  Furthermore, A. barbata individuals grown 
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from seeds collected from drought plots had higher reproductive output and higher 

photosynthetic performance than individuals grown from water addition plots, with individuals 

grown from ambient plots displaying intermediate trait values.  Notably, we found no phenotypic 

variation among treatments for six root traits.   

 

4. Synthesis. Trait differences were observed following two generations in a common garden, 

suggesting that treatment differences were genetically based.  This suggests that populations 

were responding to selection over the five years of water manipulations, a remarkably short time 

period.  The rapid evolutionary responses observed here may help these two widespread invasive 

grass species thrive under reduced precipitation scenarios, which could have important 

implications for fire dynamics, invasive species management, and native plant restoration in 

communities invaded by annual grasses. 

 

Key-words: annual species, Avena barbata, Bromus madritensis, drought escape, invasion 

ecology, invasive species, phenology, photosynthesis, root traits, water-use efficiency
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Introduction 

Global change, including increases in temperature, atmospheric CO2 concentration, and 

nitrogen (N) input from anthropogenic activities, is one of the most significant threats to natural 

ecosystems.  Further, global climate models have predicted alterations in inter- and intra-annual 

precipitation in many regions (Melillo et al., 2014).  Biological invasion is another important 

agent of global change with significant effects on global biodiversity (Millennium Ecosystem 

Assessment, 2005).  A meta-analysis of 1041 cases of invasion found that alien invasive plants 

decrease the abundance and diversity of native resident plant species by 43.5% and 50.7%, 

respectively (Vilà et al., 2010).  Significant impacts on native resident species’ abundance and 

diversity are more likely to occur if the invading species is an annual grass (Pyšek et al., 2012).  

Refining our understanding of how invasive plants respond to environmental variation will 

improve our ability to predict their effects on natural plant communities in the face of global 

change.  In this study, we explore the adaptive responses of two annual invasive grass species to 

declines in precipitation and increased N deposition in a southern California grassland.  

There are two major strategies a plant can employ to cope with reduced water 

availability: drought tolerance and drought escape.  Drought tolerance, characterized by low 

photosynthetic activity, high water-use efficiency (WUE; the rate of carbon assimilation relative 

to transpiration), and slow growth, allows an individual to conserve resources while continuing 

to be active during the drought period (Sherrard and Maherali, 2006, Franks, 2011).  Conversely, 

drought escape involves the completion of an individual’s life cycle before the drought reaches 

its most extreme state.  Drought escape is characterized by high photosynthetic rates, low WUE, 

and early flowering (Sherrard and Maherali, 2006, Franks, 2011).  An increase in N allocation to 

photosynthetic enzymes and chlorophyll content in leaves may act to increase light harvesting 
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(Terashima and Evans, 1988, Evans, 1989) and, consequently, carbon fixation over a shorter 

period of time.  Thus, increased N availability resulting from human activities may enhance 

growth in species displaying a drought escape strategy. 

Will invasive species benefit from projected arid, N-rich conditions?  High soil N 

concentrations can increase invasive species performance (Huenneke et al., 1990, Ostertag and 

Verville, 2002, Gross et al., 2005, Davis et al., 2000); however, the effects of N addition are 

complex and will depend on soil water availability, competition, and the form of available N 

(Everard et al., 2010, Ross et al., 2011, Eskelinen and Harrison, 2014).  Furthermore, an analysis 

of several U.S. databases suggests that invasive species tend to initiate leaves and flower earlier 

in the growing season compared to native species (Wolkovich and Cleland, 2011).  This 

phenological pattern, consistent with drought escape, suggests that many annual invasive species 

may be well-suited to increasingly arid conditions.   

Many studies have shown that invasive species can be phenotypically plastic in response 

to changes in water, light and nutrient availability (e.g., Funk, 2008, Davidson et al., 2011); 

however, fewer studies have examined the potential for invasive species to adapt to 

environmental variation through genetic changes.  In a study comparing flowering times of 

annual Brassica rapa before and after a four year drought in southern California, Franks et al. 

(2007) found that seeds collected from wet and dry environments post-drought flowered 

significantly earlier than those collected before the drought, which is characteristic of a drought 

escape response.  Further, Franks (2011) suggested that populations of B. rapa escape drought 

through reduced WUE, which allows for rapid development and earlier flowering.  A study of 

the annual invasive grass Avena barbata grown in wet and dry environments also found strong 

evidence that earlier flowering was adaptive under drought (Sherrard and Maherali, 2006).   
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Despite evidence of rapid evolution in the flowering times of B. rapa and A. barbata, 

adaptive responses to climate change may be slower or lacking in other traits and for other 

species (Franks et al., 2007).  Anatomical and physiological characteristics of roots will 

influence both water and N acquisition, yet few studies have examined root adaptation along a 

precipitation gradient.  Studies using congeneric and conspecific pairs occurring in high and low 

rainfall sites suggest that low specific root length (SRL, m g-1), large root diameter, or slow root 

elongation rates may be favored under drier conditions, reflecting an investment in thick, longer-

lived roots that more efficiently transport water (Wright and Westoby, 1999, Nicotra et al., 2002, 

Heschel et al., 2004).   

We searched for evolutionary responses to N and water manipulations in two invasive 

grass species (A. barbata and Bromus madritensis) that are widespread throughout much of the 

west coast of North America.  We subjected populations of both species to altered precipitation 

and N availability for five years, collected seeds from multiple maternal plants, and grew them in 

a common environment over two generations.  We measured a suite of above- and below-ground 

traits that are associated with water and N use to address this question:  Did invasive species 

exhibit trait differences in response to the 5-year environmental manipulations that persisted after 

two generations in a common environment?  If so, our results would suggest that the trait 

differences were genetic and, thus, the result of rapid evolution in response to environmental 

change.  Answering this question is a critical first step in understanding how invasive species 

may respond to future climate change. 
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Materials and Methods 

Study site & seed source 

The study site was located in a grassland community within the Irvine Ranch 

Conservancy in Orange County, California (Kimball et al., 2014, Allison et al., 2013, Potts et al., 

2012).  Orange County has a Mediterranean climate characterized by hot, dry summers and cool, 

wet winters.  We focused on two invasive grass species, A. barbata and B. madritensis, which 

were abundant at our site.  These species are native to the Mediterranean Basin and, due to 

repeated introductions, have widespread global distributions.  In California, where our study was 

conducted, A. barbata and B. madritensis have overlapping but slightly different geographic 

distributions, with B. madritensis occurring in more arid environments including the Mojave 

Desert (DeFalco et al., 2003, Steers et al., 2011).   

Twenty-four experimental plots (6.7 m × 9.3 m) extending over an area roughly one acre 

in size were imposed on existing vegetation, with each plot randomly exposed to one of three 

precipitation treatments (ambient, water addition, or water reduction, n=8 per treatment, Fig. 1).  

Each plot was divided lengthwise with each half receiving one of two N treatments (ambient or 

N addition).  The water reduction treatment received approximately 51% less water than the 

ambient water treatment while the water addition treatment received approximately 33% more 

over the five year manipulation period (March 2007-May 2012) (Kimball et al., 2014).  Clear, 

retractable roofs were deployed during a subset of winter storms to control water input into the 

reduction plots.  Rainfall collected from reduction plots was stored in opaque polyethylene tanks 

and used to supplement water addition plots through a system of gasoline-powered pumps 

connected to drip tubing (Kimball et al., 2014).  Baseline N deposition at our study site is 
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approximately 1.5 g m-2 yr-1 (Kimball et al., 2014).  Nitrogen addition plots received 6g N m-2 

year-1, a value chosen to simulate a site approaching N saturation after years of continuous 

deposition (Kimball et al., 2014).  Supplemental N was given in two applications: 2 grams of 

quick-release calcium nitrate following the first storm of the season and 4 grams of slow-release 

calcium nitrate following the first month of the growing season (Kimball et al., 2014).  

In May 2012, seeds were collected from randomly selected maternal plants of A. barbata 

and B. madritensis and transported to Chapman University, which is located 16 km from the 

field site and has similar weather conditions.  To ensure representation of the entire population, 

and minimize the effect of genetic drift, we tried to sample individuals from all plots (n=8) per 

watering treatment.  However, some plots did not contain individuals of both species.  When a 

species was present in a given plot, we collected seeds from one to eight maternal plants in that 

plot.  Only seeds mature enough to be removed with a gentle pull of the spikelet were collected.  

Separate envelopes were used to ensure offspring from each mother plant remained isolated.  On 

December 3, 2012, we germinated seeds on moist filter paper at 4oC for 96 hours.  After 

germination, only one seedling from each mother plant was used; thus, each replicate had a 

different mother.  Because later analyses showed that there was no significant effect of N on any 

of the traits measured, individuals from the two N treatments were grouped within each water 

treatment.  We had at least nine replicates per water treatment for B. madritensis and at least 20 

replicates per water treatment for A. barbata (Table 2).  Following germination, seedlings were 

transferred to 4.1L pots filled with moistened potting soil (Sunshine Mix #1, Sun Gro 

Horticulture).  Plants were grown in full sun at Chapman University and watered daily to 

saturation. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Because adaptation cannot be assumed based on the phenotypes displayed in one 

generation (Turner et al., 2014), common garden experiments must occur over multiple 

generations in order to differentiate between genetic and epigenetic effects, including maternal 

effects (Moran and Alexander, 2014).  Maternal effects refer to a situation in which an 

individual’s phenotype is determined not only by its genotype and current environment, but by 

the environment experienced by its mother (Lacey, 1998).  We controlled for maternal effects by 

growing seeds collected from the field (F1) and their offspring (F2) in a common environment 

(see Fig. 1).  Any maternal effects present in the F1 generation should have been eradicated in 

the F2 generation because F1 plants were grown under identical environmental conditions.  

Thus, treatment differences observed in the F2 generation should be the result of genetic 

differences rather than maternal effects.  We collected seeds from each F1 mother plant and 

germinated them as described above so that each F2 replicate had a different mother.  Because of 

some mortality during germination and establishment, we had slightly fewer replicates in the F2 

generation (n=67 A. barbata, n=42 B. madritensis) than in the F1 generation (n=72 A. barbata, 

n=43 B. madritensis) across treatments. 

 

Above-ground measurements 

Collection of physiological measurements began 70 days after germination of the F2 

generation (February 2014).  We conducted gas exchange measures with a LI-6400 portable 

photosynthesis system (LI-COR, Lincoln, NE, USA).  We maintained constant chamber 

conditions that approximated growing conditions, including CO2 at 400 μL L-1, light at 1800 

μmol photon m-2 s-1, chamber temperature at 25 oC, and relative humidity at 52-62%.  Measures 
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included photosynthetic rate, stomatal conductance, transpiration rate, and instantaneous WUE 

(photosynthetic rate/transpiration rate).  When leaves were too small to fill the chamber, the leaf 

area was determined and used to correct gas exchange data.  

We measured leaf chlorophyll content with a portable chlorophyll SPAD-502 meter 

(Spectrum Technologies, Plainfield, IL, U.S.A.).  Three leaves were harvested following gas 

exchange and chlorophyll measures to determine leaf dry mass per unit area (LMA) and leaf N 

concentration.  The leaves were scanned to determine total leaf area, dried at 60 oC for 72 hours, 

and weighed.  The dried leaves were then ground in a Wiley mill with a 40 mesh screen and leaf 

N was determined with an elemental analyzer (Costech 4010, Pioltello, Italy).   

We assessed plant size by measuring canopy cover prior to flowering, estimated as the 

product of plant width along two perpendicular axes.  We checked plants daily and recorded date 

of flowering, defined as the first appearance of florets.  While both species largely reproduce by 

selfing in natural populations (Johansen-Morris and Latta, 2006, Grossman and Rice, 2014), 

outcrossing does occur; thus, plants from different treatments were grown in the same area but 

with physical barriers between them to avoid cross-fertilization.  Though spatially separated, all 

treatments received similar light and water levels daily.  From March to June 2014, mature seeds 

were collected, air dried, and weighed to determine total seed biomass as a metric of 

reproductive fitness.  

 

Root measurements 

To obtain root measures for the F2 generation, seeds from a subset of F1 plants from the 

aboveground trait survey were germinated using the procedure described above and transferred 
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to 4.1L pots filled with a moistened sand-perlite-vermiculite (1:1:1) mixture.  Plants were 

randomly selected within plots and, as with above-ground measures, we sampled from all plots 

(n=8) per watering treatment where possible.  We had eight replicates per watering treatment for 

each species.  Seedlings were grown for five weeks, receiving a total of 0.05 g N, 0.05 g P, and 

0.05 g K (Miraclegro) over the first two weeks.  Plants were watered daily to saturation except 

on days when pots received fertilizer.   

After five weeks, plants were harvested and roots were washed and scanned using the 

WinRHIZO image analysis system (Regent Instruments Inc., Quebec, QC, Canada) to determine 

total root length.  Root growth rate (cm per day), root length density (root length per volume of 

soil), and fine root ratio [the ratio of fine root length (diameter <0.5mm) to total root length] 

were calculated.  We separated below and above ground biomass, dried them at 60°C for 72 

hours, and weighed them to determine root to shoot biomass ratio (R:S) and specific root length 

(SRL, m g-1).  Biomass was combined, ground and analyzed for N concentration as described 

above.  Plant N uptake rate (g N per day) was calculated as [(plant biomass x plant N)/growing 

day number].   

 

Statistical analyses 

Box-Cox transformations of the data were used where necessary to meet the assumptions 

of normality for statistical analyses.  We performed analysis of variance (ANOVA) with water 

and N treatment as fixed effects and plot as a random effect to compare trait values between 

treatments within each species.  The significance of fixed effects was assessed using 

Satterthwaite approximated degrees of freedom.  We used type III sums of squares ANOVA for 
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a mixed effects model in the LME4 package in R (http://www.r-project.org, v.3.2.0).  Following 

Moran (2003), all P-values are reported and sequential Bonferroni corrections for multiple 

statistical tests were not conducted.  Post hoc analyses were performed using Tukey’s honestly 

significant difference.   

 

Results 

There was no significant effect of N on any trait; thus, data from the two N treatments 

were grouped within a water treatment and N as a main effect was excluded from all subsequent 

analyses.  Water availability affected several aboveground traits in A. barbata as well as first 

flowering date and water-use efficiency in B. madritensis (Table 1).  With respect to 

physiological traits, photosynthetic rate and leaf chlorophyll content in A. barbata differed across 

water treatments with a trend toward higher trait values in the water reduction treatment relative 

to the ambient and added precipitation treatments (Table 1, Fig. 2).  Photosynthetic rate and 

chlorophyll content did not differ across treatments in B. madritensis (Table 1, Fig. 3).  Water-

use efficiency was lower in plants from the reduced precipitation plots in B. madritensis 

compared to the ambient and water addition treatments (Table 1, Fig. 3). There was no difference 

in WUE across treatments in A. barbata (Fig. 2).  The pattern observed in B. madritensis was 

driven by higher transpiration rates in plants from reduced precipitation plots (data not shown).  

Water had no significant effect on leaf N content in either species (Table 1, Fig. 2).      

With respect to growth and reproductive traits, flowering date was earlier in the water 

reduction and ambient water treatments relative to the water addition treatment in both A. 

barbata and B. madritensis (Fig. 2,3; Table 1).  Plants from the water reduction plots in A. 
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barbata also produced greater seed biomass relative to the addition plots, with plants from the 

ambient plots displaying intermediate seed biomass (Fig. 2).  There was a significant effect of 

water on canopy cover in A. barbata with higher canopy cover in water reduction plots relative 

to water addition plots (Table 1, Fig. 2).  However, there was no difference in seed biomass or 

canopy cover across watering treatments in B. madritensis (Fig. 3).  LMA did not differ among 

treatments for either species (Fig. 2, Fig. 3).  

There was no significant effect of water on root traits of either species in the F2 

generation (Table 1, Fig. S1 in Supporting Information).  

  

Discussion 

Our results suggest that invasive species may exhibit rapid evolutionary change following 

five years of global change manipulations.  Trait differences occurred in response to altered 

water availability, but not in response to changes in available N.  Earlier flowering (A. barbata 

and B. madritensis) and lower WUE (B. madritensis) in the reduced water treatment is in line 

with a drought escape response as found in previous work (Franks, 2011, Sherrard and Maherali, 

2006, Franks et al., 2007).  Avena barbata from water reduction plots also had significantly 

higher total reproductive biomass than individuals from water addition plots and photosynthetic 

rate and leaf chlorophyll content showed trends toward higher values in water reduction plots 

than ambient water plots, suggesting that these physiological responses may be advantageous in 

drought prone regions.  High leaf chlorophyll content may allow for increased light harvesting 

over shorter periods of time, as evidenced by higher photosynthetic rates, and thus enable 

increased reproductive output.  Higher reproductive output may also have resulted from an 
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earlier flowering time or a shift in allocation from vegetative to reproductive structures (Wolfe 

and Tonsor, 2014), and could increase the number of successful offspring in arid environments, 

where establishment is difficult.     

Notably, we found that field manipulations did not alter root traits, which is largely 

unstudied outside of model organisms (reviewed in Comas et al., 2013).  Previous studies of root 

adaptation in natural systems have focused on conspecific or congeneric comparisons of species 

from different rainfall environments, which reflect evolution over potentially long timescales 

(Wright and Westoby, 1999, Nicotra et al., 2002, Heschel et al., 2004).  It is possible that our 

five-year experiment was too short to observe differences in root traits.  In the absence of rapid 

genetic responses, plasticity in root traits may be an important mechanism for responding to 

environmental changes on short time scales.  In response to reductions in water availability, 

individual plants can increase root biomass, root elongation rate, and SRL to maximize water 

acquisition (e.g., Williams and Black, 1994, Padilla et al., 2009, Drenovsky et al., 2012, Larson 

and Funk, 2016).  Several of these responses (rapid elongation, high SRL) are contrary to 

strategies found in species adapted to low rainfall environments (Wright and Westoby, 1999, 

Nicotra et al., 2002).  More data are needed to understand the relative role of plasticity and 

genetic adaptation in belowground trait responses to variation in water availability.  

In contrast to water manipulation, nitrogen addition over a five-year period did not result 

in detectable trait differences.  Previous work from these field plots suggested that N addition 

only increased grassland productivity when combined with water addition, and only in some 

years (Goulden et al., unpublished data).  It is possible that the proximity of the subplots 

(ambient and N addition within a single plot) may explain why N addition failed to alter traits in 

either species.  Cross-pollination or seed dispersal may have contributed to gene flow among 
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subplots.  While many studies have found that exotic annual grasses respond positively to N 

addition (e.g., Huenneke et al., 1990, Davis et al., 2000, Gross et al., 2005), growth rates may 

saturate or decline at high soil N (e.g., Padgett and Allen, 1999, Mattingly and Reynolds, 2014).  

Our site is relatively fertile (0.19 % N and 628.3 mg P kg-1; Funk, unpublished data), likely 

resulting from historic cattle grazing and N deposition in the Orange County area.  Thus, N 

manipulations may yield different results if conducted in more N-limited environments. 

One novel implication of our study is that it may be possible for invasive plant species to 

adapt to environmental change over just five years or five generations.  Although there are 

examples of rapid evolution in other weed species (Franks et al., 2007, Frenck et al., 2013, 

Sultan et al., 2013, Grossman and Rice, 2014), five years is a remarkably short time period based 

on data from other studies.  In a review of evolutionary responses of invasive species to novel 

environmental conditions, Moran and Alexander (2014) suggested that significant evolutionary 

changes in relevant traits are not likely to be observed in less than 25 generations.  For example, 

Turner et al. (2014) confirmed that rapid evolution in growth and reproductive output has 

occurred in populations of Centaurea diffusa in the invaded range, which were separated from 

native populations by 100 years, or approximately 50 generations.  Similarly, Dlugosh and 

Parker (2008) found evidence for rapid evolution of growth rate, date of first flowering, and size 

of Hypericum canariense in what they predicted to be 25 generations following introduction.  

Our results suggest that populations of annual invasive grasses can show significant changes in 

response to environmental conditions in as little as five generations.  

Higher rates of carbon assimilation, earlier phenology, and higher reproductive output in 

weedy species under conditions of reduced precipitation could have important implications at the 

community level.  In Mediterranean climate ecosystems, such as our southern California site, 
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rainfall occurs almost exclusively during the winter months (November to May) and drought 

often brings reduced rainfall and/or a shorter rainfall period.  Invasive species that are able to 

complete their life cycle during a shorter wet season while maintaining or, in our case, enhancing 

reproductive output (A. barbata) will have an advantage over species that have longer life cycles 

and are adversely affected by drought.  Although A. barbata may be more evolutionarily 

responsive to water manipulation than B. madritensis (displayed more phenotypic responses), 

differences in absolute trait values suggest that B. madritensis was better at executing a drought 

escape strategy than A. barbata (lower LMA and WUE, higher total reproductive biomass and 

leaf N content compared to A. barbata; Fig 2,3).  Consequently, B. madritensis was one of the 

most common species in reduced precipitation plots after five years (Goulden et al., unpublished 

data).  While we did not measure trait values in co-occurring native species, the plot-level 

community composition data suggest that native grassland species may have limited potential to 

respond to drought on short timescales.  Future research should test for adaptive evolution in co-

occurring native and invasive species to assess the potential impact that rapid evolution may 

have on community-level processes and ecosystem function. 

 

Acknowledgements 

 We thank Julie Larson and Diane Campbell for comments on the manuscript.  Plots were 

established with funding from the U.S. Department of Energy Program in Ecosystem Research.  

Additional support was provided by Chapman University and the Center for Environmental 

Biology at the University of California Irvine.   

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Data Accessibility 

-F2 generation root traits figure: Uploaded as online Supporting Information  

-F2 above- and below-ground trait data: Zenodo doi: 10.5281/zenodo.46049  

 

References 

Allison, S. D., Lu, Y., Weihe, C., Goulden, M. L., Martiny, A. C., Treseder, K. K. & Martiny, J. 

B. H. (2013) Microbial abundance and composition influence litter decomposition 

response to environmental change. Ecology, 94, 714–725. 

Assessment, M. E. (2005) Ecosystems and Human Well-Being: Biodiversity Synthesis. World 

Resources Institute, Washington, DC. 

Comas, L. H., Becker, S. R., Cruz, V. M. V., Byrne, P. F. & Dierig, D. A. (2013) Root traits 

contributing to plant productivity under drought. Frontiers in Plant Science, 4:442, doi: 

10.3389/fpls.2013.00442. 

D'Antonio, C. M. & Vitousek, P. M. (1992) Biological invasions by exotic grasses, the grass/fire 

cycle, and global change. Annual Review of Ecology and Systematics, 23, 63-87. 

Davidson, A. M., Jennions, M. & Nicotra, A. B. (2011) Do invasive species show higher 

phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. 

Ecology Letters, 14, 419–431. 

Davis, M. A., Grime, J. P. & Thompson, K. (2000) Fluctuating resources in plant communities: a 

general theory of invasibility. Journal of Ecology, 88, 528-534. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

DeFalco, L. A., Bryla, D. R., Smith-Longozo, V. & Nowak, R. S. (2003) Are Mojave Desert 

annual species equal? Resource acquisition and allocation for the invasive grass Bromus 

madritensis subsp. rubens (Poaceae) and two native species. American Journal of Botany, 

90, 1045-1053. 

Dlugosh, K. M. & Parker, I. M. (2008) Invading populations of an ornamental shrub show rapid 

life history evolution despite genetic bottlenecks. Ecology Letters, 11, 701-709. 

Drenovsky, R. E., Khasanova, A. & James, J. J. (2012) Trait convergence and plasticity among 

native and invasive species in resource-poor environments. American Journal of Botany, 

99, 629-639. 

Eskelinen, A. & Harrison, S. (2014) Exotic plant invasions under enhanced rainfall are 

constrained by soil nutrients and competition. Ecology, 95, 682–692. 

Evans, J. R. (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia, 

78, 9-19. 

Everard, K., Seabloom, E. W., Harpole, W. S. & de Mazancourt, C. (2010) Plant water use 

affects competition for nitrogen: why drought favors invasive species in California. 

American Naturalist, 175, 85-97. 

Franks, S. J. (2011) Plasticity and evolution in drought avoidance and escape in the annual plant 

Brassica rapa. New Phytologist, 190, 249–257. 

Franks, S. J., Sim, S. & Weiss, A. E. (2007) Rapid evolution of flowering time by an annual 

plant in response to a climate fluctuation. Proceedings of the National Academy of 

Sciences, 104, 1278-1282. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Frenck, G., van der Linden, L., Mikkelsen, T. N., Brix, H. & Jørgensen, R. B. (2013) Response 

to multi-generational selection under elevated [CO2] in two temperature regimes suggests 

enhanced carbon assimilation and increased reproductive output in Brassica napus L. . 

Ecology and Evolution, 3, 1163-1172. 

Funk, J., Data from "Evolutionary responses of invasive grass species to variation in 

precipitation and soil nitrogen", Zenodo, DOI: 10.5281/zenodo.46049, 

http://zenodo.org/record/46049.  

Funk, J. L. (2008) Differences in plasticity between invasive and native plants from a low 

resource environment. Journal of Ecology, 96, 1162-1174. 

Gross, K. L., Mittelbach, G. G. & Reynolds, H. L. (2005) Grassland invasibility and diversity: 

responses to nutrients, seed input, and disturbance. Ecology, 86, 476-486. 

Grossman, J. D. & Rice, K. J. (2014) Contemporary evolution of an invasive grass in response to 

elevated atmospheric CO2 at a Mojave Desert FACE site. Ecology Letters, 17, 710–716. 

Heschel, M. S., Sultan, S. E., Glover, S. & Sloan, D. (2004) Population differentiation and 

plastic responses to drought stress in the generalist annual Polygonum persicaria. 

International Journal of Plant Sciences, 165, 817-824. 

Huenneke, L. F., Hamburg, S. P., Koide, R., Mooney, H. A. & Vitousek, P. M. (1990) Effects of 

soil resources on plant invasion and community structure in California serpentine 

grassland. Ecology, 71, 478-491. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Johansen-Morris, A. D. & Latta, R. G. (2006) Fitness consequences of hybridization between 

ecotypes of Avena barbata: hybrid breakdown, hybrid vigor, and transgressive 

segregation. Evolution, 60, 1585-1595. 

Keeley, J. E. & Brennan, T. J. (2012) Fire-driven alien invasion in a fire-adapted ecosystem. 

Oecologia, 169, 1043-1052. 

Keeley, J. E., Franklin, J. & D'Antonio, C. M. (2011) Fire and invasive plants on California 

landscapes. The Landscape Ecology of Fire (eds D. McKenzie, C. Miller & D. A. Falk), 

pp. 193-221. Springer Science + Business Media B.V. 

Kimball, S., Goulden, M., Suding, K. & Parker, S. (2014) Altered water and nitrogen input shifts 

succession in a Southern California coastal sage community. Ecological Applications, 24, 

1390-1404. 

Lacey, E. P. (1998) What is an adaptive environmentally induced parental effect? Maternal 

Effects as Adaptations (eds T. Mousseau & C. Fox), pp. 54-66. Oxford University Press, 

Oxford, UK. 

Larson, J. E. & Funk, J. L. (2016) Seedling root responses to soil moisture and the identification 

of a belowground trait spectrum across three growth forms. New Phytologist, doi: 

10.1111/nph.13829.  

Mattingly, W. B. & Reynolds, H. L. (2014) Soil fertility alters the nature of plant–resource 

interactions in invaded grassland communities. Biological Invasions, 16, 2465–2478. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Melillo, J. M., Richmond, T. C. & Yohe, G. W. (2014) Climate Change Impacts in the United 

States: The Third National Climate Assessment. pp. 841. U.S. Global Change Research 

Program, doi:10.7930/J0Z31WJ2. 

Moran, E. V. & Alexander, J. M. (2014) Evolutionary responses to global change: lessons from 

invasive species. Ecology Letters, 17, 637-649. 

Moran, M. D. (2003) Arguments for rejecting the sequential Bonferroni in ecological studies. 

Oikos, 100, 403-405. 

Nicotra, A. B., Babicka, N. & Westoby, M. (2002) Seedling root anatomy and morphology: an 

examination of ecological differentiation with rainfall using phylogenetically independent 

contrasts. Oecologia, 130, 136-145. 

Ostertag, R. & Verville, J. H. (2002) Fertilization with nitrogen and phosphorus increases 

abundance of non-native species in Hawaiian montane forests. Plant Ecology, 162, 77-

90. 

Padgett, P. E. & Allen, E. B. (1999) Differential responses to nitrogen fertilization in native 

shrubs and exotic annuals common to mediterranean coastal sage scrub of California. 

Plant Ecology, 144, 93-101. 

Padilla, F. M., Miranda, J. D., Jorquera, M. J. & Pugnaire, F. I. (2009) Variability in amount and 

frequency of water supply affects roots but not growth of arid shrubs. Plant Ecology, 204, 

261-270. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Potts, D. L., Suding, K. N., Winston, G. C., Rocha, A. V. & Goulden, M. L. (2012) Ecological 

effects of experimental drought and prescribed fire in a southern California coastal 

grassland. Journal of Arid Environments, 81, 59-66. 

Pyšek, P., Jarosik, V., Hulme, P. E., Pergl, J., Hejda, M., Schaffner, U. & Vila, M. (2012) A 

global assessment of invasive plant impacts on resident species, communities and 

ecosystems: the interaction of impact measures, invading species' traits and environment. 

Global Change Biology, 18, 1725-1737. 

Ross, K. A., Ehrenfeld, J. G. & Patel, M. V. (2011) The effects of nitrogen addition on the 

growth of two exotic and two native forest understory plants. Biological Invasions, 13, 

2203-2216. 

Sherrard, M. E. & Maherali, H. (2006) The adaptive significance of drought escape in Avena 

barbata, an annual grass. Evolution, 60, 2478-2489. 

Steers, R. J., Funk, J. L. & Allen, E. B. (2011) Can resource-use traits predict native vs. exotic 

plant success in carbon amended soils? Ecological Applications, 21, 1211-1224. 

Sultan, S. E., Horgn-Kobelski, T., Nichols, L. M., Riggs, C. E. & Waples, R. K. (2013) A 

resurrection study reveals rapid adaptive evolution within populations of an invasive 

plant. Evolutionary Applications, 6, 266-278. 

Terashima, I. & Evans, J. R. (1988) Effects of light and nitrogen nutrition on the organization of 

the photosynthetic apparatus in spinach. Plant and Cell Physiology, 29, 143-155. 

Turner, K. G., Hufbauer, R. A. & Rieseberg, L. H. (2014) Rapid evolution of an invasive weed. 

New Phytologist, 202, 309-321. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Vilà, M., Basnou, C., Pysek, P., Josefsson, M., Genovesi, P., Gollasch, S., Nentwig, W., Olenin, 

S., Roques, A., Roy, D., Hulme, P. E. & partners, a. D. (2010) How well do we 

understand the impacts of alien species on ecosystem services? A pan-European, cross-

taxa assessment. Frontiers in Ecology and the Environment, 8, 135-144. 

Williams, D. G. & Black, R. A. (1994) Drought response of a native and introduced Hawaiian 

grass. Oecologia, 97, 512-519. 

Wolfe, M. D. & Tonsor, S. J. (2014) Adaptation to spring heat and drought in northeastern 

Spanish Arabidopsis thaliana. New Phytologist, 201, 323–334. 

Wolkovich, E. M. & Cleland, E. E. (2011) The phenology of plant invasions: a community 

ecology perspective. Frontiers in Ecology and the Environment, 9, 287-294. 

Wright, I. J. & Westoby, M. (1999) Differences in seedling growth behaviour among species: 

trait correlations across species, and trait shifts along nutrient compared to rainfall 

gradients. Journal of Ecology, 87, 85-97. 

 

Supporting Information 

Additional Supporting Information may be found in the online version of this article:  

Figure S1. Effects of water availability on root traits. 
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Table 1. F-values calculated from one-way ANOVA for second generation (F2) plants of two 

invasive grass species with water treatment as a fixed factor and plot as a random factor.  

Numerator and denominator degrees of freedom for F-values are presented in parentheses.  

Significant effects (P < 0.05) are in boldface type. 

 

 

 Avena barbata Bromus madritensis 
 F P F P 
Aboveground traits     
   Photosynthetic rate 3.82 (2,18) 0.041 0.44 (2,40) 0.645 
   Leaf chlorophyll 5.09 (2,67) 0.009 2.64 (2,41) 0.084 
   WUE 0.18 (2,24) 0.835 5.46 (2,40) 0.008 
   Leaf N content 2.62 (2,64) 0.081 1.55 (2,41) 0.224 
   LMA 0.23 (2,66) 0.793 1.05 (2,42) 0.360 
   Canopy cover 3.32 (2,67) 0.042 1.50 (2,42) 0.235 
   Flowering date 8.04 (2,67) <0.001 11.36 (2,41) <0.001 
   Seed biomass 8.92 (2,67) <0.001 2.83 (2,42) 0.070 
Belowground traits     
   Root growth rate 0.49 (2,24) 0.617 0.55 (2,42) 0.586 
   R:S 0.30 (2,24) 0.747 1.13 (2,24) 0.339 
   Root length density 0.47 (2,24) 0.632 0.66 (2,24) 0.527 
   Fine root ratio 0.93 (2,12) 0.423 0.57 (2,24) 0.575 
   Specific root length 0.57 (2,17) 0.576 0.29 (2,24) 0.748 
   N uptake rate 0.62 (2,24) 0.545 0.55 (2,24) 0.583 

 

Abbreviations: Water-use efficiency (WUE), leaf mass per area (LMA), root to shoot biomass 
ratio (R:S) 
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Table 2. The number of individuals of A. barbata and B. madritensis sampled for each water 
treatment.  The number of different plots that maternal plants originated from is given in 
parentheses.  Because there was no significant effect of N on any trait, individuals from the two 
N treatments were grouped within their respective water treatments.  

 A. barbata B. madritensis 

Reduction 26 (7) 18 (8) 
Ambient 21 (8) 15 (5) 

Addition 20 (8) 9 (3) 
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Figure 1. Following five years of water manipulations in the field (Irvine, CA), seeds were 
collected from experimental plots and grown in a common environment over two generations.  
Physiological, morphological, and phenological traits were measured on the second generation 
grown in a common environment.  
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Figure 2. Photosynthetic rate (a), water-use efficiency (b), leaf nitrogen content (c), and leaf 
chlorophyll content (d), first flowering date (e), leaf mass per area (f), seed biomass (g), and 
canopy cover (h) for A. barbata from three watering treatments grown in a common environment 
(F2 generation).  Means and standard errors of water addition, ambient, and reduction treatments 
are shown.  Different letters denote significant differences among means as determined through 
post-hoc Tukey HSD tests.  Where applicable, significant effects of water are noted. 
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Figure 3. Photosynthetic rate (a), water-use efficiency (b), leaf nitrogen content (c), and leaf 
chlorophyll content (d), first flowering date (e), leaf mass per area (f), seed biomass (g), and 
canopy cover (h) for B. madritensis from three watering treatments grown in a common 
environment (F2 generation).  Means and standard errors of water addition, ambient, and 
reduction treatments are shown.  Different letters denote significant differences among means as 
determined through post-hoc Tukey HSD tests.  Where applicable, significant effects of water 
are noted.  
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