
Chapman University
Chapman University Digital Commons
Mathematics, Physics, and Computer Science
Faculty Books and Book Chapters Mathematics, Physics, and Computer Science

2012

Distributed Simulated Annealing with MapReduce
Atanas Radenski
Chapman University, radenski@chapman.edu

Follow this and additional works at: http://digitalcommons.chapman.edu/scs_books

Part of the Computer Sciences Commons

This Book is brought to you for free and open access by the Mathematics, Physics, and Computer Science at Chapman University Digital Commons. It
has been accepted for inclusion in Mathematics, Physics, and Computer Science Faculty Books and Book Chapters by an authorized administrator of
Chapman University Digital Commons. For more information, please contact laughtin@chapman.edu.

Recommended Citation
Radenski A. Distributed Simulated Annealing with MapReduce. In Proceedings of the 2012 European conference on Applications of
Evolutionary Computation (EvoApplications'12), Cecilia Chio, Alexandros Agapitos, Stefano Cagnoni, Carlos Cotta, and Francisco
Fernández Vega (Eds.). Springer-Verlag, Berlin, Heidelberg, 466-476. doi: 10.1007/978-3-642-29178-4_47.

http://digitalcommons.chapman.edu?utm_source=digitalcommons.chapman.edu%2Fscs_books%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/scs_books?utm_source=digitalcommons.chapman.edu%2Fscs_books%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/scs_books?utm_source=digitalcommons.chapman.edu%2Fscs_books%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/computationalsciences?utm_source=digitalcommons.chapman.edu%2Fscs_books%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/scs_books?utm_source=digitalcommons.chapman.edu%2Fscs_books%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.chapman.edu%2Fscs_books%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laughtin@chapman.edu

1 This the author’s version of the publication. The final publication is available at
link.springer.com.

Distributed Simulated Annealing with MapReduce

Atanas Radenski
Chapman University, Orange 92865, USA

Radenski@Chapman.edu

Abstract. Simulated annealing’s high computational intensity has stimulated
researchers to experiment with various parallel and distributed simulated
annealing algorithms for shared memory, message-passing, and hybrid-parallel
platforms. MapReduce is an emerging distributed computing framework for
large-scale data processing on clusters of commodity servers; to our knowledge,
MapReduce has not been used for simulated annealing yet. In this paper, we
investigate the applicability of MapReduce to distributed simulated annealing in
general, and to the TSP in particular. We (i) design six algorithmic patterns of
distributed simulated annealing with MapReduce, (ii) instantiate the patterns
into MR implementations to solve a sample TSP problem, and (iii) evaluate the
solution quality and the speedup of the implementations on a cloud computing
platform, Amazon’s Elastic MapReduce. Some of our patterns integrate
simulated annealing with genetic algorithms. The paper can be beneficial for
those interested in the potential of MapReduce in computationally intensive
nature-inspired methods in general and simulated annealing in particular.

Keywords: simulated annealing, MapReduce, traveling salesperson (TSP)

1 Introduction

Simulated annealing is a metaheuristic that is used to find near-optimal solutions for
various hard combinatorial optimization problems; it does so by imitating the physical
process by which melted metal is cooling slowly to form a frozen structure with
minimal energy. Simulated annealing is computationally intensive and this has
stimulated the exploration of a variety of high-performance simulated annealing
algorithms based on popular paradigms: shared memory [9], message-passing [6], and
hybrid-parallel [2, 4].

MapReduce (MR) is an increasingly popular distributed computing framework for
large-scale data processing that is amenable to a variety of data intensive tasks. Users
specify serial-only computation in terms of a map method and a reduce method, and
the underlying implementation automatically parallelizes the computation, tends to
machine failures, and schedules efficient inter-machine communication [3]. MR was
first implemented as a proprietary platform by Google. Soon afterwards, Apache
offered Hadoop MR [15] as open source, and cloud computing providers offer MR
platforms on a cost-effective pay-per-use basis.

By design, MR supports fault-tolerance, load-balancing, and scalability. This is in
contrast to well understood but lower level high-performance frameworks, such as
MPI and OpenMP, in which users - rather than the frameworks - need to tend to

machine failures and scheduling. Such advantages of MR to more traditional
frameworks have motivated us to explore its suitability for high-performance
simulated annealing and to our knowledge, this is the first study of its kind. MR is
known to work well on large datasets. MR’s applicability to computationally
intensive problem domains with smaller datasets - such as simulated annealing and
TSP - poses challenges, primarily because of the lack of direct control over tasks and
data allocation. This paper makes contributions towards better understanding of MR’s
potential in computationally intensive problem domains with smaller datasets in
general, and simulated annealing and TSP in particular.

The remainder of the paper is organized as follows. Section 2 introduces MR and
then specifies algorithmic patterns for simulated annealing with MR. Section 3
describes a conversion of the patterns into MR implementations for the TSP; it also
evaluates the solution quality and performance (execution time and speedup) in the
Amazon cloud. Section 4 reviews related work and Section 5 offers conclusions.

2 Placing Simulated Annealing on MapReduce

The MapReduce Framework. Excellent general introductions of the MR framework
[3, 8] and its implementation within the Hadoop platform [15] are available to the
interested reader. In this paper, we offer only a brief description of MR features
needed for the understanding of our simulated annealing algorithm design.

Fig. 1. A simplified representation of an MR job. The size of the output dataset can be

different from the size of the input data set. An MR cluster consists of a number of tasks nodes
and a single main node that controls tasks nodes. All mappers and reducers run on task nodes.

The MR framework consists of a programming model and runtime behavior. In the

programming model, users specify serial map and reduce methods (one of each kind)
that transform key-value records into new key-value records. The run-time
environment transforms an input set of records into an output set in two principal
stages. First, a user-defined map method is applied over all records from the input
dataset - in parallel, in a number of separate map tasks, or simply mappers – to

input dataset

output dataset

reducer

mapper mapper mapper task nodes

output dataset output dataset

task nodes

intermediate dataset
partitioned onto reducers

reducer reducer

produce intermediate outputs from all map methods. All intermediate records are then
shuffled, sorted, and submitted for final processing by a user-defined reduce method.
In general, the reduce method can be executed in parallel in several reducer tasks, or
simply reducers, to produce several output sets of records. MR uses intermediate
records’ keys to partition records between reducers. In that, all intermediate records
with the same key are always assigned to the same reducer; yet the same reducer may
possibly handle a number of different keys. The MR framework assigns records to
mappers and reducers, guided by record keys and without direct user participation.

The map and reduce stages form a single MR job (Fig. 1). It is possible to pipeline
several MR jobs so that the output from one job is used as the input for the next one
(Fig. 2). Input and output data sets for MR jobs are stored in a distributed file system.

Fig. 2. An MR job pipeline. The output of job k becomes the input of job k+1. In some MR
implementations, such pipelines are referred to as job flows.

We use the following notation for MR pipelines in this paper:
 A1 + A2 +… + Am is the pipeline of jobs A1, A2,… Am
 mA is an abbreviation for a pipeline A + A +… + A of length m

In addition to the primary map and reduce methods, the MR framework includes
two methods that can be optionally used to initialize and finalize mappers and/or
reducers. Initialization can create objects that persist during map (reduce) invocations
within the same mapper (reducer); these objects are also available in finalization.

Pure and Hybrid Annealing Patterns. The rest of this section introduces two MR
algorithmic patterns for pure simulated annealing and four algorithmic patterns for
hybrid simulated annealing. Hybrid simulated annealing patterns use genetic
operations, such as crossover, to enhance the annealing process, as opposed to pure
patterns which employ simulated annealing alone. For readability, we present all
patterns in Python-like pseudo code, instead of our actual Java implementations.

Data Representation and MR Tasks. Recall that logically, MR input and output
datasets are collections of records. In the general case, an MR record is a key-value
pair: record = <key, value>. Empty keys can be used to make records equivalent to
values; this option is employed in our simulated annealing algorithmic patterns. Each
value represents, in textual form, a possible solution to a problem (such as a TSP
route, for example). An input/output dataset defines a population of candidate-
solutions. Our simulated annealing patterns transform input populations of candidate-
solutions into output populations of possibly better candidate solutions.

At the file system level, MR datasets are collections of one or more files. The MR
framework uses the number and size of files in the input dataset to determine the
number of spawned mappers, without direct user control. In general, each file from a
multi-file dataset will be assigned to at least one mapper, with larger files being split
by MR and assigned to multiple mappers for the same large file. In particular, a
relatively small single-file dataset (such as an input population of candidate solutions

map0
reduce0

dataset0 dataset1
map1

reduce1
… datasetn

for the TSP for example) will be assigned to a single mapper, regardless of the
number of available task nodes in the MR cluster; other nodes will remain idle. In
contrast to mappers, the number of reducers can be explicitly defined by the user. In
particular, it is possible to define a MR job with zero reducers, in which case the
output dataset is produced by the mappers alone. Without user specification, a default
number of reducers are spawned uniformly on each task node.

Single-Job Simulated Annealing Patterns: SA0 & SA. In practice, it is often
difficult to assess the accuracy obtained with a single simulated annealing run. In
order to find a better solution, a frequently used strategy is to run simulated annealing
a number of times and select the best solution from the independent runs [16, 6]. We
have adopted this idea in two single-job MR patterns: a special simulated annealing
pattern, SA0, and a general-purpose simulated annealing pattern, SA.

With the special pattern, SA0, annealing runs are performed by distributed
mappers in a single MR job with zero reducers, in which mappers simply invoke an
annealing algorithm over their assigned candidate-solutions (Fig. 3). The SA0 pattern
is termed special because it works well only in the special case of single-record input
files. Recall that the number of mappers is implicitly determined by MR as a function
of the number and sizes of input files. For good SA0 performance, each candidate-
solution must be preloaded in its own file; in this case, each candidate-solution will be
assigned by MR to a dedicated mapper. Grouping all candidate-solution in a single
file would be detrimental to SA0’s performance because all solutions will most likely
be assigned by MR to a single mapper and in fact annealed serially.

class Mapper:

 method map(key, value):
 solution = parse(value)
 annealer.anneal(solution)
 emit(empty, solution)

Fig. 3. Mapper for the SA0 algorithmic pattern. MR splits the input set of candidate-solutions
between mappers and feeds candidate-solutions as “values” into map method invocations. Each
map invocation anneals its assigned candidate-solutions then emits the annealed solution with
an empty key in the output population. The number of mappers – and the level of parallelism –
is determined by MR based on the number and the sizes of input files with candidate-solutions.

With the general-purpose pattern, SA, annealing runs are simultaneously
performed on distributed reducers rather than on mappers (Fig. 4). The mappers
themselves are only used to replace default input keys with new uniformly distributed
random keys; even a single mapper can be efficient enough in this process. The
updated records are then further submitted by MR to available reducers. Note that the
initial default MR key for each record is simply the position in the record in its
corresponding file. Such default keys may cause MR to partition records onto a small
number of reducers and therefore result in non-uniform reducer workloads. By using
uniformly distributed random keys, SA provides uniform distribution of records onto
mappers. This approach provides good performance regardless of the physical
representation of the input set of candidate-solution - either as a single file or as a
collection of multiple files.

class Mapper:

 method map(key, value):
 randomKey = random();
 emit(randomKey, value)

class Reducer:
 method reduce(key, values):
 for value in values:
 solution = parse(value)
 annealer.anneal(solution)
 emit(empty, solution)

Fig. 4. Mapper and reducer for the SA algorithmic pattern. MR splits mappers’ output onto
reducers based on keys emitted by mappers; in this pattern mappers emit random keys to
provide uniform distribution onto available reducers and more balanced reducer load. Each
reduce invocation anneals all candidate-solutions with the same random key and emits possibly
improved solutions in the output population.

Genetic Annealing Pattern: GA+SA. It has been recognized that enhanced initial
candidate-solutions for simulated annealing can improve both the quality of the final
solution and also the annealing execution time [12]. Such enhanced solutions can be
obtained by first applying a genetic algorithm, GA (Fig. 5) on a randomly generated
initial population of candidate-solutions and then applying simulated annealing, SA
(Fig. 4) on the genetically evolved population.

class Mapper [or Reducer]:

 method initialize: subpopulation = 
 method map [or reduce] (key, value):
 subpopulation.add(parse(value))

 method finalize():
 genetic.evolve(subpopulation)
 for solution in subpopulation:
 emit(empty, solution)

Fig. 5. Mapper and reducer for GA, the genetic algorithmic pattern incorporated in the GA+SA
algorithmic pattern. The GA’s mapper and reducer are nearly the same. The initial population
of candidate-solutions is split by MR in sub-populations among distributed mappers. Each
mapper runs a genetic algorithm on its own subpopulation. All evolved subpopulations are then
merged by MR onto a single reducer (in contrast to mappers, the number of reducers can be
explicitly controlled programmatically). The reducer then runs the same genetic algorithm to
further evolve the entire population. The map/reduce method invocations simply accumulate
sub-populations, while the actual genetic computation occurs during finalization.

Thus, GA+ SA is a two-job MR pipeline (Fig. 2) in which the first job, GA is a basic
multi-population genetic algorithm [1]. The second job in GA+SA is the general
purpose simulated annealing, SA (Fig. 4). Note that SA0, the special purpose
simulated annealing (Fig. 3) must not be used after GA because GA uses a single
reducer and produces a single-file output dataset; recall that SA0 degrades to serial
execution for a single-file input dataset.

Genetic Annealing Pipeline Pattern: m(GA+SA). After a genetic algorithm is
trapped in a local minimum, the application of simulated annealing can generate
uphill jumps to higher costs solutions thus avoiding premature convergence to a local
minimum [5]. This computation can be defined as an MR job pipeline m(GA+SA) of
2m jobs, which consecutive applies GA+SA over the dataset produced by the previous
application. Again, all intermediate datasets are available, together with the final
dataset for the selection of the best solution.

Annealing Genetic Pattern: SA+GA. A genetic algorithm can be used to recombine
and possibly improve solutions produced by individual simulated annealing processes
[11]. With MR, such computation can be defined in the MR framework as a two-job
pipeline in which the first job, SA is simulated annealing (Fig. 4) and the second job,
GA is multi-population genetic evolution (Fig. 5).

Annealing Genetic Pipeline Pattern: m(SA+GA). Genetic recombination can
enhance the annealing process by running “simulated annealing followed by genetic
recombination” a number of times to gradually obtain a better solution [16]. Such
iterative computation can be defined as an MR job pipeline similar to the previously
discussed m(GA+SA) pipeline, but with SA executing before GA.

Pipelines in MR. Job pipelines cannot be expressed in the pure MR model proper;
such pipelines are often implemented as applications that schedule and run sequences
of individual MR jobs. Section 3 contains details on our implementation of pipelines.

3 Implementation and Experimental Evaluation

Annealing the TSP on Amazon’s Elastic MapReduce Cloud. The simulated
annealing pure and hybrid algorithmic patterns defined in Section 2 can be
instantiated to solve specific problems. To instantiate the algorithmic patterns, it
suffices to develop serial-only domain-specific annealing and genetic algorithms,
with no direct involvement of the MR API.

We illustrate this instantiation process with the traveling salesperson problem. We
chose TSP because (i) it is known to be computationally intensive for larger problem
sizes and because (ii) it is arguably the most popular combinatorial optimization
problem that is well studied and well-applied to various specific tasks.

We developed TSP annealing implementations for the Amazon’s Elastic MR cloud
- a member of Amazon Web Services (AWS). We chose AWS because (i) it is a large
and versatile cloud computing platform and because (ii) Amazon supports research
through special grants, within its cost-effective pay-per-use business model.

The principal Elastic MR API is for Java. The goal of our proof-of-concept
implementation was more to illustrate and evaluate our generic MR algorithmic
patterns (Section 2) rather than develop new TSP algorithms. This is why we adopted
some features of known serial TSP algorithms to fit the MR Java API.

The TSP aims to find the shortest way to visit each of n points once and return to
the initial point. A candidate-solution is an array of different points, referred to as a
tour. The length of a tour is the sum of the Euclidean distances between its points. In
the special case of a square city grids of n = s2 points, where s is even, an optimal
tour of length n is known to exist [6]. This special case of the TSP problem offers an
opportunity to directly assess the solution quality of annealing algorithms.

To instantiate MR algorithmic patterns into TSP implementations, we adapted in
Java a proven serial annealing method, originally described by Hansen in SuperPascal
[6]. We developed an Annealer class with an anneal method (Fig. 6) which we
plugged into our SA0 and SA map and reduce methods (Fig. 3 and Fig. 4).

class Annealer:

 method anneal(tour):
 temp = tempMax
 for k = 1, 2, …, reductions:
 search(tour, temp)
 temp = alpha * temp

method search(tour, temp):
 na = 0; nc = 0
 while (na < attempts && nc < changes):
 tour1 = swap2RandomPoints(tour)
 if tour1.length() – tour.length < temp:
 tour = tour1

Fig. 6. Simulated annealing for the TSP problem. Annealing is implemented by swapping two
randomly chosen tour points, p and q and reversing the tour path between p and q. The search
method uses a simple deterministic tour acceptance criterion that has been proven to work just
as well as the standard stochastic criterion [10].

For our hybrid annealing TSP implementations, we developed in Java a genetic
algorithm with a proven serial crossover method, originally described by Sengoku and
Yoshihara [13]. We developed a Genetic class with an evolve method (Fig. 7) which
we plugged into the GA’s genetic map/reduce methods (Fig. 5).

class Genetic:

 method evolve(population):
 for k = 1, 2, …, generations:
 select(population, m)
 mutate(population, mutatProb)
 cross(population, m)

method cross(population, m):
 parents = roulette(population, m)
 for i = 1, 3, 5, …, m:
 tour1 = crossover(population, i, i+1)
 population.add(tour1)

Fig. 7. Basic genetic algorithm for the TSP problem. Proof-of-concept evolutionary
computation involves deleting m tours from the current population, applying mutation
stochastically on the remaining tours, selecting 2*m parents to crossover, producing a single
offspring form every pair of parents, and adding the offspring to the population. The crossover
method is based on the longest sub-tour crossover operator [13]. Our mutate method swaps two
random tour points like in simulated annealing.

Pipeline Implementation. AWS’s Elastic MR cloud permits the direct
implementation of MR job pipelines (Fig. 2) in the form of the so called job flows. At
present, to define a job flow in Elastic MR the user must employ Amazon’s
proprietary lower-level API. We preferred to follow a platform-independent approach,
for which we implemented MR job pipelines in Java proper, using reflection: we
developed a Java MR utility that reads all classes to be pipelined as command-line
arguments then uses a loop to configure and run MR jobs accordingly. In addition,
another Java MR utility of ours extracts and sorts all intermediate and final solutions
produced by a pipeline and identifies the best solution.

Experimental Evaluation of Solution Quality. We tested experimentally the
solution quality of our TSP implementations by means a serial model program;
submission and evaluation of Elastic MR jobs is time-consuming and the use of a
serial model program helped simplify the evaluation. (We did, however, measure
execution times/performance by actually running programs on the Amazon’s Elastic
MR cloud, as discussed later in this section.) For simulated annealing, we used the
same control parameters as in [6]. For genetic computations, we performed

25*sqrt(tour-size) generations with crossover probability of 50% and mutation
probability of 20%. The population size for these experiments was 16.

Table 1 Pure simulated annealing SA/SA0 solution quality

Tour Size 100 400 900 1600
Solution 100 405.30 918.72 1648.48
Error 0% 1.33% 2.08% 3.03%
Min error 0% 0.82% 1.84% 2.80%
Max error 0% 1.66% 2.30% 3.31

We tested TSP solution quality with pure simulated annealing, SA over square city

grids of n points with known optimal tour length of n [6]. Table 1 shows averages of
all best solutions obtained in 10 trials over tours of various sizes. The solution quality
of SA0 is the same as the solution quality of SA because the two methods differ only
in the way they distribute the same annealing process between mappers and reducers.
The highest average solution error is about 3% for larger tours.

Table 2 Solution quality of hybrid simulated annealing

Algorithm SA/SA0 GA+SA 4(GA+SA) SA+GA 4(SA+GA)
Improvement Base 0.28% 0.61% 0.06% 0.94%
Min improv. Base 0% 0% 0.01% 0.05%
Max improv. Base 1.30% 2.01% 0.15% 1.89%

We also tested TSP solution quality with hybrid simulated annealing over random

grids for which no optimal tours are known a priori. Table 2 shows average solution
improvements by each of the hybrid methods, GA+SA, 4(GA+SA), SA+GA, and
4(SA+GA), relatively to the best solution obtained by pure annealing methods,
SA/SA0. Solution improvements were measured in 10 trials over various randomly
generated tours of 900 cities and populations of size 16. The hybrid 4(SA+GA)
pipeline (Table 2) provides nearly 1% of improvement compared to pure SA/SA0 and
therefore can reduce almost in half the estimated 2% error of SA (Table 1).

Experimental Evaluation of Performance on Elastic MR. On the Elastic MR
cloud, we tested experimentally TSP solution performance with pure and hybrid
simulated annealing: SA, SA+GA, 4(SA+GA), and SA0. We did not test performance
of GA+SA and 4(GA+SA) because they are comparable performance-wise to SA+GA
and 4(SA+GA) correspondingly. Table 3 shows average execution times T(p) and
speedups S(p) on p task nodes as obtained in 3 trials over a randomly generated tour
of size 900 and populations of sizes 16 and 32. (In Table 3 population sizes are
appended in brackets to algorithm designators.) As nodes, we used AWS 32-bit small
instances with 1.7 GB memory, 1 virtual core, and moderate I/O performance.

Table 3 shows that special simulated annealing, SA0 achieves better speedup than
general purpose simulated annealing, SA. However, SA0 achieves this speedup for
special single-record input files only, as explained in Section 2. It is an advantage of
general purpose SA that it can be combined with GA to form hybrid pipelines that
achieve better quality solutions, while SA0 cannot be combined with GA.

Table 3 Elastic MR execution times (in minutes) and speedup

Algorithm SA[16] SA[32] SA0[16] SA+GA[16] 4(SA+GA)[16]
Nodes (n) T(n) S(n) T(n) S(n) T(n) S(n) T(n) S(n) T(n) S(n)
1 11.7 1.0 22.6 1.0 11.6 1.0 13.8 1.0 52.0 1.0
8 3.0 3.9 5.1 4.4 2.3 5.0 5.3 2.6 20.1 2.6
16 2.5 4.7 3.7 6.1 1.5 7.7 4.9 2.8 16.9 3.1

Despite of the use of random keys in SA’s mappers, some reducers are assigned by

MR more work than others; such imbalances result in relatively moderate speedups
when the population size is equal to the number of task nodes (16 nodes in Table 3).
Load imbalances can be reduced by using populations of size k*nodes with k ≥ 2. In
general, the scalability of standalone and pipelined SA is limited by the population
size.

4 Related Work

The serial components of our implementations are based on work from others [6, 13],
as already discussed in the preceding section. To our knowledge, we are the first to
parallelize simulated annealing with MR, but there are numerous non-MR parallel
simulated annealing algorithms, such as, for example, message passing [6], shared
memory [9], message passing combined with shared memory [4], and GPGPU-based
[2]. Others have proposed self-contained MR-based genetic algorithms [14, 7] and
MR has been used for fitness function calculation in evolutionary algorithms [17]; in
contrast, our MR genetic algorithm is not intended as standalone but to be
incorporated as a job in hybrid annealing pipelines.

5 Conclusions

In this paper, we investigate the applicability of MapReduce to distributed simulated
annealing in general, and to the TSP in particular. The specific technical contributions
of this paper are as follows: (i) we propose six MR algorithmic patterns for distributed
simulated annealing; (ii) we instantiate the MR patterns into TSP implementations;
(iii) we evaluate the MR implementations in cloud computing environment.

A significant advantage of our MR simulated annealing patterns to traditional
parallel algorithms is that these patterns provide fault-tolerant MR parallelism
without user intervention. With the use of MR, we trade some speedup for fault-
tolerance and robustness. The lack of direct user control on parallelism however can
also be a limitation when the programmer wants to explicitly declare some MR
parameters, such as the total number of mappers. A benefit from our annealing MR
patterns is that they can be instantiated into MR applications with the addition of
serial-only domain code, such as code to represent, anneal, and evolve the TSP for
example. Our hybrid annealing patters are slower than the pure annealing patterns but
are more precise. In future work, the genetic component of hybrid patterns can be

fine-tuned to make then even more precise. The Amazon’s Elastic MR cloud offers
the advantages of instant cluster provisioning and pay-per-use cost efficiency for
users who do not have access to dedicated MR clusters on the premises.

Acknowledgement. This work was supported by an AWS in Education 2011 research
grant award from Amazon.

References

[1] Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer, Boston (2000)
[2] Choong, A., Beidas, R., Zhu, J.: Parallelizing Simulated Annealing-Based Placement using

GPGPU. In: Field Programmable Logic and Applications, pp. 31--34, IEEE. New York
(2010)

[3] Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters.
CACM 51, No. 1, 107--113 (2008)

[4] Debudaj-Grabysz, A., Rabenseifner, R.: Nesting OpenMP in MPI to Implement a Hybrid
Communication Method of Parallel Simulated Annealing on a Cluster of SMP Nodes. In:
Recent Advances in Parallel Virtual Machine and Message Passing Interface 2005. LNCS,
vol. 3666, pp. 18--27. Springer, Heidelberg (2005)

[5] Elhaddad, Y., Sallabi, O.: A New Hybrid Genetic and Simulated Annealing Algorithm to
Solve the Traveling Salesman Problem. In: World Congress on Engineering (WCE 2010),
vol. 1, pp 11--14. International Association of Engineers, Taipei (2010)

[6] Hansen, P.-B.: Studies in Computational Science. Prentice Hall, Englewood Cliffs (1995).
[7] Huang D.-W, Lin, J.: Scaling Populations of a Genetic Algorithm for Job Shop Scheduling

Problems Using MapReduce. In: 2010 IEEE 2nd International Conference on Cloud
Computing Technology and Science, pp. 78--785. IEEE, New York (2010)

[8] Lin, J., Dyer, C.: Data-Intensive Text Processing with MapReduce. Morgan and Claypool,
San Francisco Bay Area (2010)

[9] Ma, J., Li, K., Zhang, L.: The Adaptive Parallel Simulated Annealing Algorithm Based on
TBB. In: 2nd International Conference on Advanced Computer Control, pp. 611—615.
IEEE, New York (2010)

[10] Moscato, P., Fontanari, J.: Stochastic versus Deterministic Update in Simulated Annealing.
Physics Letters A, 146, No. 4, pp. 204--208. Elsevier, Amsterdam (1990)

[11] Ohlídal M., Schwarz J.: Hybrid Parallel Simulated Annealing Using Genetic Operations.
In: Mendel 2004, 10th International Conference on Soft Computing, pp. 89--94. University
of Technology, Brno (2004)

[12] Ram, J. D., Sreenevas, T.T., Subramaniam K.G.: Parallel Simulated Annealing
Algorithms. J. Par. Distr. Computing 37, pp. 207--212 (1996)

[13] Sengoku, H., Yoshihara, I.: A Fast TSP Solver Using GA on Java. In: 3rd Int. Symp. Artif.
Life and Robot., pp.283—288. Springer Japan, Tokio (1998)

[14] Verma, A., Llorà, X., Goldberg, D. E., Campbell, R. H.: Scaling Genetic Algorithms
Using MapReduce. In: 9th International Conference on Intelligent Systems Design and
Applications, pp. 13--18. IEEE, New York (2009)

[15] White, T.: Hadoop: The Definitive Guide (2nd ed.). O'Reilly Media, Sebastopol (2009)
[16] Yao, X.: Optimization by Genetic Annealing. In: 2nd Australian Conf. Neural Networks,

pp. 94--97. Sidney University, Sidney (1991)
[17] Zhou C.: Fast Parallelization of Differential Evolution Algorithm Using MapReduce. In:

12th Annual Conference on Genetic and Evolutionary Computation, pp. 1113--1114. ACM,
New York (2010)

	Chapman University
	Chapman University Digital Commons
	2012

	Distributed Simulated Annealing with MapReduce
	Atanas Radenski
	Recommended Citation

	genetic-annealing-mapreduce

