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Strong Influence of Coadsorbate Interaction on CO Desorption Dynamics on Ru(0001)
Probed by Ultrafast X-Ray Spectroscopy and Ab Initio Simulations
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We show that coadsorbed oxygen atoms have a dramatic influence on the CO desorption dynamics
from Ru(0001). In contrast to the precursor-mediated desorption mechanism on Ru(0001), the presence
of surface oxygen modifies the electronic structure of Ru atoms such that CO desorption occurs
predominantly via the direct pathway. This phenomenon is directly observed in an ultrafast pump-probe
experiment using a soft x-ray free-electron laser to monitor the dynamic evolution of the valence
electronic structure of the surface species. This is supported with the potential of mean force along the
CO desorption path obtained from density-functional theory calculations. Charge density distribution
and frozen-orbital analysis suggest that the oxygen-induced reduction of the Pauli repulsion, and
consequent increase of the dative interaction between the CO 5σ and the charged Ru atom, is the
electronic origin of the distinct desorption dynamics. Ab initio molecular dynamics simulations of
CO desorption from Ru(0001) and oxygen-coadsorbed Ru(0001) provide further insights into the surface
bond-breaking process.

DOI: 10.1103/PhysRevLett.114.156101 PACS numbers: 82.65.+r, 68.35.Ja, 71.15.Mb, 78.70.Dm

Desorption of molecules, or their fragments, from a
surface into the gas phase represents the most fundamental
bond-breaking step in heterogeneous catalysis [1–3].
In this process, the existence of a relatively short-lived
and weakly adsorbed precursor species has long been
conjectured when interpreting measured kinetics [4–8].
Recently, this surface species has been directly observed
with a soft x-ray free-electron laser using ultrafast pump-
probe techniques [9,10]. The spectroscopic identification
of the precursor state rationalizes many phenomena
in gas-surface interactions [4–8] and underpins our
fundamental understanding of the kinetics of elementary
surface reactions. In heterogeneous catalytic processes,
many different species or promoters exist on the surface
that can influence each other through adsorbate-adsorbate
interactions [11]. Effects of the coadsorbate interaction
on desorption dynamics have, however, largely been
unexplored and their role in the correlated chemical
environment is presently still poorly understood [11–13].

In this Letter, we present experimental and theoretical
evidence of a strong influence of coadsorbed oxygen atoms
on the mechanistic aspects of CO desorption from Ru(0001).
Using femtosecond time-resolved x-ray absorption spectros-
copy (XAS) with an x-ray free-electron laser and density-
functional theory (DFT) calculations, we show that CO
desorption occurs via the direct pathway on oxygen-
coadsorbed Ru(0001) rather than the precursor-mediated
pathway found on bare Ru(0001) [9,10]. The substrate-
mediated adsorbate-adsorbate interaction, dominated by the
oxygen-induced reduction of the Pauli repulsion and con-
sequent increase of the dative interaction between the CO 5σ
and the charged Ru atom, is identified as the underlying
force that steers the desorbing molecules along the favored
pathway. Ab initio molecular dynamics (AIMD) simulations
support the proposed mechanism and provide further
insights into the surface bond-breaking process.
The experiments were performed at the Linac Coherent

Light Source (LCLS) facility that provides intense,
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coherent femtosecond x-ray pulses [14]. The Ru(0001)
single crystal was cleaned with standard sputtering-
annealing procedures and was kept at 300 K [15]. A
saturated (∼0.66 ML) CO=Ruð0001Þ adlayer was prepared
with the background CO pressure at 1.0 × 10−8 torr. To
investigate effects of coadsorbed oxygen atoms on CO
desorption, a 2O-CO=Ruð0001Þ honeycomb surface struc-
ture with 1=2 ML O and 1=4 ML CO was prepared (see
Figs. S1, S2 and S5 for modeled surface structures) [16].
Optical laser pulses initiate surface reactions, which for
CO=Ruð0001Þ lead to desorption [9,10,26–28] and for
2O-CO=Ruð0001Þ include both CO desorption and a minor
contribution from oxidation to CO2 [29–31]. The temper-
ature profile of the electron and phonon subsystems
induced by ultrafast optical lasers can be described using
the two-temperature model [16,32,33]. The absorption of
visible photons in a metal substrate first gives rise to a non-
equilibrium distribution of hot electrons which thermalizes
on a time scale of a couple of hundred fs [34] into a quasi-
equilibrium distribution with a peak temperature of several
thousand kelvin. The hot electrons then couple to phonon
modes of the substrate and surface species and thermal
equilibrium is reached within a couple of ps [32,33]. The
valence electronic structure of CO species was monitored
in real time through resonant O1s to 2π� (O K edge)
excitation with a soft x-ray pulse. The involvement of the
O1s core level makes this an atom-specific and local probe
of the electronic structure in contrast to a valence spec-
troscopy that would measure the extended band structure.
Space-charge effects are furthermore avoided through
measuring fluorescence yield.
Figure 1 shows the measured O K-edge XAS spectra of

CO=Ruð0001Þ before and 12 ps after the 400 nm optical
laser pump at absorbed fluence 140 J=m2 with 170 fs
duration (experimental details and intermediate time steps
are given in the Supplemental Material of Ref. [9]). The O
K-edge XAS probes the distribution of unoccupied CO 2~π�
states where the tilde is used to denote the modified
adsorbate electronic structure compared to the gas phase.
The spectrum at negative delay, which corresponds to the
static configuration before the optical laser pump, has the
characteristic CO 2~π� peak at 533.5 eV. At 12 ps probe
delay, when electron and phonon subsystems are thermally
equilibrated at 1500–2000 K (see Fig. S3), a blueshift of
the CO 2~π� peak towards the gas phase and an enhancement
in its intensity were observed. The nature of this peak is
consistent with a substantial population (∼30%) of a weakly
adsorbed precursor species prior to desorption [9,10].
For 2O-CO=Ruð0001Þ before the optical laser pump, the
CO 2~π� peak is found at 533.3 eV. At 13 ps probe delay, on a
similar time scale as for the CO=Ruð0001Þ case above, this
peak instead broadens and shifts slightly down in energy.
This is a signature of hot CO molecules migrating from atop
towards bridge or hollow sites, consistent with measure-
ments of CO=Ruð0001Þ at short (< 1 ps) probe delays when

adsorbed CO is not yet pumped into the precursor state
[9,10]. The time evolution of this species has been related to
the formation of transition-state species as the molecules that
do not desorb undergo repeated attempts to form CO2 [35].
The unanticipated observation is that the precursor state
for CO desorption, which exists on Ru(0001) [9,10] and
many other transition-metal surfaces [6–8], vanishes on
2O-CO=Ruð0001Þ. This is not due to oxidation of CO to
CO2 since ∼90% of the products desorbing from the surface
are CO molecules [29,30]. This instead suggests that CO
desorption from 2O-CO=Ruð0001Þ occurs via the direct
rather than the precursor-mediated pathway.
To understand the observed dynamics of CO desorption,

density-functional theory calculations with the BEEF-vdW
[36] exchange-correlation functional were used to probe the
energetics of CO along the desorption path above Ru(0001)
[16]. Figure 2 shows the free energy surface of CO
desorption from CO=Ruð0001Þ and 2O-CO=Ruð0001Þ at
0 K and 2000 K. The reaction path is defined as the distance
from the center-of-mass of CO to the Ru surface plane. The
free energy, GðsÞ, along the reaction coordinate, s, was
calculated using the potential of mean force approach [4,5]
that defines GðsÞ as

GðsÞ ¼ V0ðsÞ − kBT
X

q⊥s

ln
Z

exp½−Vðq; sÞ=kBT�dq; ð1Þ

where kB is Boltzmann’s constant, T is the temperature, q
represents all degrees of freedom of CO that are orthogonal
to s. V0ðsÞ is the minimum potential energy path and
Vðq; sÞ is the interaction potential for mode q relative to
V0ðsÞ. This approach essentially takes into account the
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FIG. 1 (color online). O K-edge XAS spectra showing the 2π�
resonance of CO=Ruð0001Þ and 2O-CO=Ruð0001Þ measured
before and ∼10 ps after the optical laser pump.
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entropic contributions from all thermally accessible
modes of adsorbed CO including frustrated translations
and rotations [16]; at elevated temperatures the anharmo-
nicity of the potential energy surface leads to significant
contributions to the partition function and thus to the
entropy [37].
The minimum of the potential well at 0 K represents the

chemisorption energy of CO at the atop site of Ru(0001)
that was calculated to be −1.52 eV versus the experimental
value of −1.6 eV [13]. The bonding at the equilibrium
geometry is characterized by the formation of a π bond
enabled by mixing CO 1π and 2π� to partially break the
internal π bond while the σ interaction is repulsive [38,39].
Coadsorption of atomic oxygen (1=2ML) on Ru(0001) has
a small effect on the calculated equilibrium bond strength
[40] confirmed by only a minor (∼0.2 eV) destabilization
observed experimentally [41]. At longer distances
(dCO-Ru > 3.5 Å), the interaction of CO with the Ru
(0001) surface becomes very weak. We define this region
as the precursor region where the CO molecule might
get trapped prior to desorption from Ru(0001) [9,10].
Interestingly, as atomic oxygen is coadsorbed on the
surface, the CO-Ru interaction becomes much more
attractive within this region. For example, at 3.75 Å above
the surface, the CO-Ru bond on 2O-CO=Ruð0001Þ is
0.3 eV (a factor of 3) stronger than that on CO=Ruð0001Þ.
At elevated temperatures (see Fig. 2 and Fig. S4), a

temperature-induced entropic barrier for desorption appears
at 3.25 Å above the surface separating the chemisorbed
state and the gas phase. This is due to the reduced entropy
of chemisorbed species compared to that of CO molecules
far away from the surface. For CO=Ruð0001Þ, a shallow
free energy well with a minimum ∼ − 0.1 eV emerges
within the precursor region that accommodates precursor

CO molecules prior to desorption or adsorption. At 2000 K,
the chemisorbed and physisorbed states both have com-
parable free energies (within ∼2kBT). This is consistent
with the measurement shown in Fig. 1 where a substantial
amount of desorbing CO molecules is pumped into
the precursor state within 10 ps [9,10]. In contrast, there
is no local minimum in the precursor region for CO
desorption from 2O-CO=Ruð0001Þ. The CO molecules
on 2O-CO=Ruð0001Þ that cross the barrier would ener-
getically go into the gas phase without being transiently
trapped; i.e., CO most likely desorbs through the direct
pathway. This is fully consistent with the interpretation of
the spectra and the subsequent dynamics of CO desorp-
tion shown in Fig. 1.
This raises the apparent question regarding the under-

lying cause of the dramatic difference in the free energy
surface that governs CO desorption dynamics. To tackle
this question, we show in the inset of Fig. 2 the potential
energy of CO in perpendicular and parallel configuration
on Ru(0001) and 2O-CO=Ruð0001Þ. For CO=Ruð0001Þ,
these two configurations have nearly identical energies
within the precursor region, suggesting that an adsorbed
CO molecule has very soft rotational modes similar to CO
molecules far away from the surface. Increasing the system
temperature will not change the free energy of adsorbed CO
in the precursor region relative to gas phase; thus, it leads to
a second minimum above the surface with an entropic
barrier separating it from the chemisorbed state. As oxygen
atoms are coadsorbed on the surface, the perpendicular
mode becomes more energetically favorable than the
parallel configuration in this region (∼0.2 eV more exo-
thermic at 3.75 Å above the surface). This indicates that the
rotational mode of CO molecules within the precursor
region on 2O-CO=Ruð0001Þ is significantly more con-
strained compared to that of CO molecules far away from
the surface. As a consequence, the relative free energy of
CO molecules above the 2O-CO=Ruð0001Þ surface shifts
up at elevated temperatures, leaving no local minimum
within the precursor region; this conclusion holds also for
disordered O adsorption [16]. The fundamental question
that remains is, what is the electronic origin of the distinct
energy profiles that result in the observed difference in the
CO desorption dynamics?
To answer this question, the CO-induced charge density

difference (CDD) is shown in Figs. 3(a) and 3(b) for CO
within the precursor region (3.75 Å above the surface as an
example). The CDD is calculated by subtracting the charge
density of CO and the system without CO from the
combined system at fixed atomic positions. Here we focus
on the region between CO and Ru along the axis where
clearly there is additional charge accumulation between
the C and the Ru atom for CO interacting with O=Ru
[Fig. 3(b)] in comparison to bare Ru [Fig. 3(a)]. Based on
symmetry arguments this indicates substantial changes in
the σ interaction. Although it has been shown that the CO σ
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FIG. 2 (color online). The free energy surface for CO desorp-
tion from CO=Ruð0001Þ and 2O-CO=Ruð0001Þ at 0 K and
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molecule in perpendicular and parallel configuration on
Ru(0001) and 2O-CO=Ruð0001Þ.
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orbitals have a repulsive interaction with the Ru surface at
the equilibrium distance [3,12,39,42], the picture could be
different at the longer distances in the precursor region. The
additional charge accumulation between the C and the Ru
atom results from an attractive electrostatic interaction with
CO 5σ density via a dative interaction that becomes more
prominent on 2O-CO=Ruð0001Þ [Fig. 3(b)]. The pulling of
electron density away from the Ru site by coadsorbed
oxygen makes Ru positively charged (see Fig. S6), leading
to weaker Pauli repulsion and a stronger electrostatic
attraction with the CO 5σ density. This mechanism is
illustrated in Fig. 3(d).
To further quantify the energetics in the interaction, we

have used a frozen-orbital approach [16] that only allows
orbital orthogonalization and thus provides an estimation of
the repulsive energy between interacting subunits [43].
Results in Fig. 3(c) show that there is a significant differ-
ence in the repulsive interaction of CO in the precursor
region with the bare Ru(0001) compared to that with the
2O-CO=Ruð0001Þ. The oxygen-induced reduction in
repulsive energy (for example, 0.15 eV at 3.75 Å) partially
accounts for the potential energy difference (0.3 eV at
3.75 Å) between CO=Ruð0001Þ and 2O-CO=Ruð0001Þ
within the precursor region shown in Fig. 2. So we
conclude that the energy difference of CO-Ru interaction

in perpendicular bonding configuration on CO=Ruð0001Þ
and 2O-CO=Ruð0001Þ within the precursor region is
coming from both the oxygen-induced reduction of Pauli
repulsion and a more effective resulting dative interaction
between CO 5σ and the positively charged Ru atom. This
mechanism also explains the much weaker bonding to the
surface of CO molecules in parallel configuration (shown
in the inset of Fig. 2) where both the Pauli repulsion and the
electrostatic dative attraction become negligible. This
unravels the underlying electronic origin of long-ranged
interactions of CO on 2O-CO=Ruð0001Þ and provides a
molecular orbital perspective into the dynamics of surface
bond-breaking processes.
To gain further insights into the CO desorption

dynamics, we have performed AIMD simulations at
2000 K [16]. These are used to understand the mechanism
of surface bond-breaking processes rather than to obtain
detailed statistics, which would require many trajectories.
We found that CO desorption on CO=Ruð0001Þ typically
occurs on a longer time scale than that on the
2O-CO=Ruð0001Þ surface. This is consistent with the
free energy barrier observed in Fig. 2. On both surfaces,
the process is initiated by hot substrate phonons that
collide with rotationally frustrated CO molecules, as seen
in Fig. 4. On CO=Ruð0001Þ, when CO desorbs, it can be
transiently trapped in the precursor state [Fig. 4(a)]. This
is because the rotational modes of CO in the precursor
region are very soft, such that the kinetic energy of
CO molecules can be converted into rotation reducing the
momentum in the direction of desorption. Subsequently
CO can desorb, although with a slightly higher trans-
lational energy than that from 2O-CO=Ruð0001Þ due to
prolonged coupling to hot surface phonons [28,30].
For 2O-CO=Ruð0001Þ, once CO crosses the barrier, the
free energy becomes downhill and it will desorb
directly, without being trapped as seen in Fig. 4(b).
This can be easily understood since the perpendicular
mode of CO is much more favored over the parallel
mode so that the desorbing molecule only couples
weakly to the rotational modes; i.e., it would rather
keep momentum in the direction of desorption without
being trapped.
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The dynamics of desorption processes of surface species
has many important consequences on the outcome of
catalytic reactions. For CO oxidation on Ru(0001), there
is a direct competition between CO desorption and oxida-
tion [30]. The presence of oxygen atoms makes the
desorption step more facile with a smaller free energy
barrier. Furthermore, the absence of a precursor state can be
expected to reduce the probability that an incoming CO
molecule adjusts its molecular reorientation through rota-
tions in the precursor region and then finds vacant sites for
adsorption or reacts with activated atomic oxygen to
form CO2.
In conclusion, we use ultrafast pump-probe experimental

measurements and state-of-the-art electronic structure
calculations to demonstrate a dramatic influence by the
coadsorbate interaction on the CO desorption dynamics
from Ru(0001). We show that the free energy at the
precursor region is dramatically influenced by entropy,
where CO with coadsorbed O on Ru(0001) is more con-
strained than on Ru(0001) leaving no local precursor state
prior to desorption at elevated temperatures. We found that
the oxygen-induced reduction of the Pauli repulsion
and increased electrostatic dative interaction between
the CO 5σ and the positively charged Ru atom on
2O-CO=Ruð0001Þ drive the CO desorption via the direct
desorption pathway instead of the precursor-mediated
pathway. AIMD simulations further support the experi-
mental observation and provide a microscopic view of
surface bond-breaking processes. The fundamental insights
gained here consolidate our understanding of surface
chemical bonding and underline the importance of includ-
ing coadsorbate interactions when unraveling dynamics of
surface reactions.
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