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ABSTRACT 1	

 2	

STUDY DESIGN: Cross sectional, laboratory study 3	

 4	

BACKGROUND: Individuals with low back pain have impaired activation of multifidus during 5	

postural adjustments and increased activity of the erector spinae musculature during walking. 6	

However, it is unclear if these alterations in muscle activity are evident during locomotion in 7	

individuals with a history of low back pain when they are between symptomatic episodes.  8	

 9	

OBJECTIVES: To compare paraspinal muscle activity in young healthy individuals and young 10	

individuals with a history of low back pain during walking turns 11	

 12	

METHODS: 14 asymptomatic individuals with a history of low back pain and 14 controls 13	

performed 90° walking turns at both self-selected and fast speed. The duration and amplitude of 14	

activity in the deep fibers of multifidus and the lumbar and thoracic longissimus were quantified 15	

using intramuscular electromyography.  16	

 17	

RESULTS: There was a significant speed by group interaction for the duration of multifidus 18	

activity (p = .013). Duration of activity increased from the self-selected to the fast locomotor 19	

speed in the controls, but decreased in the individuals with a history of low back pain (p = .003). 20	

Self-selected speed was the same in both groups (p = .719). There was a trend towards a 21	

significant association between group and the direction of change in the duration of deep 22	

multifidus activity (χ2 = .058). Duration of thoracic longissimus activity and amplitude of 23	



multifidus and thoracic longissimus activity increased similarly in both groups from the self-24	

selected to faster speed.   25	

 26	

CONCLUSION: Even between symptomatic episodes, young individuals with a history of low 27	

back pain demonstrated altered recruitment of the deep fibers of lumbar multifidus in response to 28	

changing locomotor speed during walking turns.  29	

30	

 31	

Key Words: paraspinal muscles, locomotion, walking turns, recurrent back pain 32	

33	
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Background 34	

Despite substantial research, and escalating health care costs over the past few 35	

decades, the mechanisms underlying the transition from acute to persistent LBP are still 36	

not well understood or effectively managed1,2. The majority of back pain research to date 37	

has focused on individuals who experience chronic, largely unremitting pain (chronic 38	

LBP)3-5. However, there is increasing recognition that there is a distinct sub-group of 39	

individuals with persistent LBP who experience an episodic or recurrent pattern of 40	

symptoms6. In these individuals, successive episodes of LBP become longer and more 41	

likely to require absence from work and medical intervention over time7. In the absence 42	

of clear precipitating events or significant patho-anatomical dysfunction, it is often 43	

unclear why these individuals experience recurrences of their back pain following periods 44	

of time when they are entirely symptom-free. However, persistent and maladaptive 45	

alterations in dynamic trunk postural control may contribute to this recurrence6,8-10. In 46	

order to understand the development and persistent of both recurrent and chronic LBP, 47	

and to identify appropriate interventions, it is vital to clarify if changes in trunk postural 48	

control are an adaptive response to concurrent symptoms or if they reflect a persistent and 49	

maladaptive change in motor control. This can be ascertained by investigating individuals 50	

with recurrent LBP during the periods of time when they are asymptomatic7,11. 51	

Research investigating postural adjustments in the trunk has already demonstrated 52	

altered amplitude and timing of activity in the paraspinal muscles in both persons with 53	

chronic LBP and asymptomatic individuals with a history of recurrent LBP 8,12-14. The 54	

paraspinal muscle group comprises the muscles adjacent to the spinal column. In the 55	

lumbar region the paraspinals can be subdivided into the erector spinae (iliocostalis 56	
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lumborum and longissimus thoracis pars lumborum, hereafter termed “lumbar 57	

longissimus”) and the transversospinales (of which the multifidus is the major 58	

component).15 The lumbar multifidus is commonly further subdivided into the deep 59	

portion of the muscle, with fibers that extend across only two vertebral segments, and 60	

superficial portion of the muscle, with fibers that cross up to five vertebrae16-18. Similarly, 61	

in the thoracic region the paraspinals comprise the erector spine (spinalis, iliocostalis 62	

thoracis and longissimus thoracis pars thoracis, hereafter termed “thoracic longissimus”) 63	

and the transversospinales. Changes in paraspinal control in individuals with low back 64	

pain include delayed and decreased activation in the deep fibers of the lumbar multifidus 65	

muscle8 and task- and subject-dependent modifications in the timing and amplitude of 66	

activity of the lumbar and thoracic erector spinae12-14. Impaired dynamic trunk postural 67	

control is also evident in symptomatic individuals with LBP during locomotion. Studies 68	

of treadmill walking utilizing surface electromyography have demonstrated increased 69	

duration and amplitude of activity in the erector spinae during locomotion in persons with 70	

chronic LBP3-5,19-21. To date it is unclear if these same changes in erector spinae function 71	

during walking are evident in individuals with a history of recurrent LBP during periods 72	

of time when they are asymptomatic. It is also unclear if, there are impairments in the 73	

recruitment of the deep fibers of the lumbar multifidus during walking in individuals with 74	

LBP. 75	

 Research also suggests that the normal increase in paraspinal activity in response 76	

to increasing locomotor speed is not affected by LBP4,19. However, as existing studies 77	

investigating paraspinal activity in individuals with LBP have used surface 78	

electromyography19,4,20  they have not been able to differentiate between the muscles 79	
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comprising the paraspinal group22. Therefore it is not known if the relative contribution 80	

of the individual muscles to this increase in activity is the same, or whether individuals 81	

with LBP have altered distribution of activity across the paraspinal group. This problem 82	

can be overcome by utilizing fine-wire intramuscular EMG electrodes23,24. In the lower 83	

limbs, modulation of muscle activity in response to increasing locomotor speed 84	

encompasses both shifts in timing and changes in amplitude, and the pattern of these 85	

modulations is muscle specific25. Therefore, investigating temporal and spatial 86	

adaptations to increasing locomotor speed may help to elucidate functional differences in 87	

control of the paraspinals in individuals with a history of low back pain. Postural demand 88	

in the trunk during locomotion is also greater during functional locomotor perturbations 89	

such as walking turns, particularly in the upper trunk26,27. Thus, walking turns may 90	

provide an excellent paradigm for differentiating between activity in the lumbar and 91	

thoracic regions of the paraspinals in healthy individuals and those with a history of back 92	

pain.  93	

The primary purpose of this study was to compare postural activity in the 94	

individual muscles of the paraspinal group during walking turns made at varying speeds 95	

in healthy young individuals and asymptomatic young individuals with a history of LBP. 96	

We hypothesized that individuals with a history of LBP would demonstrate reduced 97	

activity in the deep fibers of multifidus compared with healthy controls but greater 98	

activity in the lumbar and thoracic fibers of longissimus. 99	

 100	

Methods 101	

Participants 102	
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Twenty-nine young adults between the ages of 22 and 31 years participated in the 103	

study (17 women, Table 1).  Participants were recruited via word of mouth and study 104	

flyers. Control participants (CTRL) were individually matched to participants with 105	

recurrent LBP (RLBP) by sex, age ( five years), height and weight ( 10 %), and typical 106	

activity level in metabolic equivalents (METS,  15 %; Table.1). One female participant 107	

with a history of recurrent LBP did not complete the data collection due to a transient 108	

vasovagal reaction to intramuscular EMG insertion. Therefore only the remaining 109	

fourteen participants with a history of recurrent LBP were matched to control 110	

participants. A priori power analyses of preliminary data collected in our laboratory 111	

indicated that a minimum sample size of ten per group would be adequate to determine a 112	

statistically significant difference between groups for duration of muscle activity at a 113	

power of  = 0.8 and statistical significance of  = 0.05 and an effect size of 1.06. The 114	

Institutional Review Board of the University of Southern California approved the 115	

procedures in the study. Participants gave written informed consent after a full 116	

explanation of the study procedures. 117	

Participants were eligible for inclusion in the RLBP group if they; 1) were 118	

between 18 and 40 years of age; 2) had a history of more than one year of recurrent 119	

episodes of LBP; 3) had primarily unilateral pain localized to the area between the 120	

twelfth rib and the gluteal fold; 4) reported at least two pain episodes of at least 24 hours’ 121	

duration in the preceding year6; 5) had pain episodes that were severe enough to limit 122	

function; and 6) were in symptom remission at the time of the data collection (defined as 123	

a score of less than 0.5/10 cm on a visual analogue scale for current pain at the start of the 124	

data collection). Participants were excluded if they had contraindications to intramuscular 125	
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EMG, history of low back surgery, spinal stenosis, scoliosis, malignancy, spinal 126	

infection, or lumbar radiculopathy, or musculoskeletal injury affecting locomotion. Prior 127	

to instrumentation, all potential participants for both groups were screened by a physical 128	

therapist. This testing included a neurological screen (lower limb myotomes, dermatomes 129	

and reflexes), straight leg raise test and Thomas test, hip and spinal active range of 130	

motion in all planes and documentation of any symptoms produced or aberrant motions 131	

during these tests.  132	

Participants with a history of RLBP also completed several questionnaires to 133	

assess potential psychosocial influences on LBP and motor behavior28. Fear avoidance 134	

beliefs were quantified using the Fear Avoidance Beliefs Questionnaire (FABQ29). Self-135	

efficacy was quantified using the Low Back Activity Confidence Scale (LoBACS30). 136	

Disability due to LBP was quantified using the modified Oswestry Disability Index 137	

(ODI31). In addition, all participants completed visual analogue scales for current pain at 138	

the beginning of the data collection and for pain experienced during the walking turns at 139	

the end of the data collection (VAS)32.  140	

Instrumentation 141	

Fine-wire intramuscular electrodes were inserted into the deep fibers of the 142	

lumbar multifidus at L4, the lumbar longissimus at L4 (LES), and the thoracic 143	

longissimus at T10 (TES) using real-time ultrasound imaging (custom-made, 50 μm 144	

gauge nickel chromium alloy wires, nylon insulation, tips bent back 5mm and 3mm with 145	

the distal 2mm of wire exposed, 25 gauge hypodermic needles, 8 MHz linear transducer, 146	

Sonoline Antares™, Siemens Medical Solutions Inc, USA; Figure 1). Electrodes were 147	

inserted into the symptomatic side in participants with a history of recurrent LBP and the 148	
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same side for the matched healthy participant. Depth of insertion was subject-specific and 149	

based on ultrasound visualization of the tip of the needle in the muscle. The correct 150	

electrode placement was confirmed by observing the contraction induced by light 151	

electrical stimulation using ultrasound imaging33. We have previously demonstrated that 152	

this methodology is associated with minimal pain or change in locomotor kinematics in 153	

both healthy individuals and individuals with a history of LBP34. 154	

The electrodes were connected to wireless differential preamplifiers. Wireless 155	

force-sensitive resistor foot switches were also attached bilaterally to participants’ shoes 156	

under the lateral heel and the first metatarsophalangeal joint (TeleMyo DTS Telemetry, 157	

Noraxon USA Inc, Scottsdale, USA, baseline noise < 1µV RMS, cMR>100dB, system 158	

gain for all channels x 400). EMG and foot switch data were transmitted via a wireless 159	

transmitter, digitally sampled at 3000 Hz at 16 bit resolution and synchronized using 160	

photoelectric triggers (Qualisys Track Manager v2.6, Qualisys AB, Gothenburg, 161	

Sweden). As part of a broader study, participants were also instrumented with a full-body 162	

marker set for three-dimensional motion capture.  163	

Experimental task 164	

 Participants performed multiple laps of a walking circuit that required both 165	

straight walking and a series of 90° turns (Figure 2a). Participants walked first at a 166	

relaxed, self-selected speed (SELF), and then at a controlled average speed of at 1.5 m/s 167	

 5 % (FAST). Average locomotor speed was quantified using the total time taken to 168	

complete the circuit. In each lap of the circuit, participants performed an ipsilateral turn 169	

by stepping into an outlined area with the foot ipsilateral to the turn direction and turning 170	

briskly 90 (Figure 2b). All participants spontaneously utilized a pivot strategy to 171	
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complete the turn, with the change in direction being accomplished by a pivot on the 172	

stance foot35. For consistency, all participants turned contralateral to the side of their 173	

EMG instrumentation (contralateral to the symptomatic side in the RLBP group and to 174	

the matched side in the CTRL group). Therefore, the stance phase of the turn occurred on 175	

the limb contralateral to the side of the electrodes. Although preliminary data indicated 176	

minimal differences in EMG variables between turn directions, turns contralateral to the 177	

instrumentation were selected in order to maximize erector spinae activity at initial 178	

contact. Prior to data collection, participants practiced the walking circuit until they were 179	

consistently able to turn with the correct foot in the correct area without altering stride 180	

length or changing cadence.  181	

Data processing 182	

15 trials were analyzed for each participant at each speed. The first 15 clean trials 183	

were selected for analysis for all individuals. Trials were excluded if the participant 184	

performed the turn incorrectly. Timing of locomotor events was determined using the 185	

foot switches and all data were analyzed across the stride cycle of the turn, from the 186	

initial contact of the limb ipsilateral to the turning direction to the next initial contact of 187	

the same limb.  EMG data were processed in MATLAB® (MathWorks, MA, USA). After 188	

removal of the DC offset, the EMG signals were band-pass filtered (40 Hz – 1500 Hz, 189	

digital zero-phase Butterworth filter) and full-wave rectified.  190	

Data analysis 191	

The onset and offset of muscle activity during each turn was calculated using the 192	

integrated profile or iEMG method36,37. This technique has been validated in 193	

experimental data for the trunk musculature and in signals with artificially simulated 194	
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noise36. It results in fewer errors than standard threshold detection protocols when 195	

determining postural trunk muscle activity as it is not dependent upon baseline activity or 196	

the rate of signal increase36.  197	

The amplitude of each signal was first continuously integrated across the stride 198	

cycle and normalized so that the final value was 1. The time of the stride cycle for each 199	

individual trial was also normalized to 1. The integrated signal was then subtracted from 200	

a reference line with a slope of 1, that reflects the hypothetical condition where the 201	

muscle activity remains constant across the time-series of the trial37. The local maxima 202	

and minima of the deviations of the actual integrated signal from the reference line was 203	

then used to determine the timing of onset or offset38. The algorithm was implemented 204	

with a visual check of the detected onset and offset events superimposed over the 205	

rectified/band-passed signal to ensure appropriate determination36,39,40. The duration of 206	

the muscle burst occurring between each onset and offset event was calculated, and the 207	

sum of the duration of all bursts across each stride cycle, stance phase and swing phase 208	

was calculated and expressed as a percentage of the total duration of the stride cycle, 209	

stance phase and swing phase for that trial. The average amplitude of activity in each 210	

muscle was also calculated across the stride cycle and within the stance and swing phases 211	

individually for each turn at each speed. The stance phase and swing phase values were 212	

then amplitude normalized for each participant to the average value across the stride 213	

cycle during turns performed at the self-selected speed.  214	

The within-day standard error of the measurement (SEM) of the EMG variables 215	

was also calculated. The SEM is an index of measurement error, expressed in the 216	

measurement units. Changes in any variable that exceed the SEM can be interpreted as 217	
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being larger than the measurement error.41 Four healthy individuals performed two blocks 218	

of 15 turning trials at the faster speed. The two blocks of trials were separated by a period 219	

of approximately 15 minutes during which they performed a different sub-maximal motor 220	

task. Intra-class correlation coefficients (ICC [3,15]) were calculated for duration of 221	

activity and amplitude of activity between the two blocks of trials and the SEM was 222	

calculated using the following equation, where s is the standard deviation: 223	

SEM = 1√ݏ െ 	224 42 ܥܥܫ

Statistical analysis 225	

Self-selected average locomotor speed and VAS for pain during the walking turns 226	

were compared between groups using paired t-tests. Parametric analysis is appropriate for 227	

VAS pain data as the VAS for pain has been demonstrated to have the properties of a 228	

ratio scale. 43 Individual mixed-design ANOVA was conducted to assess the main effect 229	

of speed (within-subjects factor, SELF and FAST speeds) and group (between subjects 230	

factor, CTRL and RLBP groups) and the interaction effect between speed and group for 231	

the average duration of the turn stride cycle, and the duration and average amplitude of 232	

muscle activity across the stride cycle of the turn and within the stance and swing phases 233	

for each muscle. Similarly, mixed-design ANOVA was conducted to assess the main 234	

effect of speed and group and the interaction effect between speed and group for the 235	

average normalized amplitude of muscle activity within the stance and swing phases for 236	

each muscle. Post-hoc comparisons were made using t-tests with a Bonferroni correction 237	

(adjusted level of significance = .01). Effect sizes for post-hoc comparisons were 238	

calculated using Cohen’s d, with .8 indicating a large effect size, .5 a medium effect size 239	

and .2 a small effect size. Chi square analysis was used to investigate the association 240	
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between group and the frequency of increase or decrease in each variable. All statistical 241	

analyses were performed using PASW Statistics (Version 18, IBM Corp., Armonk, NY). 242	

 243	

Results 244	

Median ± interquartile range FABQ score (physical activity subscale) in the 245	

RLBP group was 12.50 ± 6.75. Median ± interquartile range LoBACS score in the RLBP 246	

group was 88 ± 12.83, which is higher than previously reported values in a LBP 247	

population3,44. Median ± interquartile range ODI score was 18.0 ± 15.0 % indicating 248	

minimal disability. At baseline, average ± standard deviation current pain was 0.12 ± 249	

0.24 cm in the participants with a history of recurrent LBP and 0 cm in all of the controls. 250	

One individual who reported pain of less than 0.5 during the subjective screening 251	

procedures completed a VAS that was measured as 0.8 at the commencement of the data 252	

collection (after the physical examination). The decision was made to include his data as 253	

this value is well below the minimal detectable change for the VAS. During the 254	

locomotor trials participants reported low levels of discomfort associated with the 255	

intramuscular EMG electrodes (RLBP 0.50± 0.70 cm, CTRL 0.45± 0.70 cm, p = .779). 256	

Reliability was excellent, with ICC values exceeding 0.85 for all variables except the 257	

duration of activity in the thoracic longissimus.  258	

Self-selected locomotor speed and locomotor events 259	

All participants were able to complete the walking turns at the self-selected and 260	

faster speeds. Self-selected locomotor speed was the same in both groups and was slower 261	

than the fast speed in all participants except one individual in the CTRL group (average 262	

SELF speed, CTRL group = 1.22 ± 0.13 m/s, RLBP = 1.23 ± 0.10 m/s, p = .719). The 263	
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speed at which the turn was executed increased at the faster speed, with a significant 264	

decrease in the duration of the stride cycle of the turn (F (1, 26) = 102.274, p  = < .0001; 265	

SELF average duration 1.16 ± 0.09 s, FAST average duration 1.02 ± 0.06 s). There was 266	

no effect of group or speed by group interaction for locomotor speed or turn duration.  267	

Overview of paraspinal activity during walking turns 268	

Exemplar EMG data and an overview of paraspinal activity are provided in Figure 269	

3.  270	

Duration of activity 271	

Total duration of activity in each muscle during stance and swing phase at each 272	

speed is shown in Figure 4a and Figure 5. There was a significant speed by group 273	

interaction for the duration of deep multifidus activity (F (1, 26) = 7.186, p = .013, Figure 274	

4a), but no main effect of speed or group (F (1,26) = .006, p = .938; F (1, 26) = .021, p = 275	

.886 respectively). Post-hoc comparisons indicated that was a trend towards a significant 276	

decrease in duration from self-selected to fast speed in the RLBP group (p = .04, Cohen’s 277	

d = 0.23) and that the average duration of activity across the stride cycle increased in the 278	

CTRL participants but decreased in the RLBP participants (average change from SELF to 279	

FAST, CTRL + 0 .84 ± 1.87 %, RLBP -0.79 ± 1.30 %, p = .003, d = 1.01). This 280	

difference exceeded the SEM (0.56 % of stride cycle). Analyses of stance and swing 281	

phase individually indicated that this interaction effect was significant during swing 282	

phase (swing phase speed by group interaction F (1, 26) = 4.861, p = .037), but not 283	

during stance (F (1,26) = 2.467, p = .128) Eight of the individuals in the CTRL group 284	

demonstrated an increase in duration of activity compared with only three individuals in 285	
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the RLBP group, resulting in a trend towards a significant association between group and 286	

change in duration of deep multifidus activity (χ2 = .058, Figure 4b).  287	

There was no main effect of speed or group, or interaction of speed by group for 288	

lumbar longissimus across the stride cycle of the turn (Figure 5). Although the duration 289	

of lumbar longissimus activity increased in both groups during the swing phase of the 290	

turn at the faster speed (main effect of speed F (1, 26) = 14.109, p = .001), the change in 291	

the duration lumbar longissimus in response to increasing speed did not exceed the SEM 292	

for that muscle (1.51 %). 293	

Duration of thoracic longissimus activity significantly increased at the faster 294	

speed in both groups (F (1, 26) = 6.09, p = .020, Figure 5) and the extent of this increase 295	

exceeded the SEM (0.75 %). Individual analyses of stance and swing phases indicated 296	

that the significant increase in duration of activity primarily occurred during swing phase 297	

(F (1, 26) = 12.542, p = .002). However, there was no main effect of group or group by 298	

speed interaction.  299	

Amplitude of activity 300	

The normalized amplitude of activity in the deep fibers of multifidus increased 301	

significantly from the self-selected to the fast speed. This change was evident during the 302	

stance phase (F (1, 26) = 9.67, p = .005) and within the swing phase (F (1, 26) = 16.36, p 303	

< .0001), but was not significantly different between groups (Figure 6). The extent of the 304	

increase in multifidus activity exceeded the SEM (0.001 mV). Normalized amplitude of 305	

activity in the lumbar longissimus and thoracic longissimus also significantly increased 306	

during stance and swing phases (LES stance F (1, 26) = 8.317, p = .008, swing F (1, 26) = 307	

21.035, p =<.001;TES stance F (1,26) = 10.567, p = .003, swing F (1, 26) = 21.358, p 308	
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=<.000,Figure 6), but this change did not exceed the SEM in either case (LES = .27mV; 309	

TES = .09 mV). 310	

 311	

Discussion  312	

This research demonstrates altered activation of the deep fibers of multifidus 313	

during a locomotor task in people with recurrent LBP. In contrast with healthy 314	

individuals, a majority of participants with a history of recurrent LBP responded to 315	

increasing mechanical demand by reducing the duration of activity of the deep fibers of 316	

multifidus. Impaired timing of the anticipatory activity of the deep multifidus muscle and 317	

reduced amplitude of deep multifidus activity has previously been demonstrated in 318	

asymptomatic individuals with recurrent LBP during standing postural perturbations and 319	

voluntary trunk flexion8,45. Taken together, the results from the present and previous 320	

studies suggest that changes in recruitment of the deep fibers of multifidus persist 321	

between painful episodes in individuals with a history of LBP. The differences between 322	

groups in this present study were small. However, it is striking that they were still evident 323	

in a majority of young, asymptomatic individuals with a history of LBP, who had 324	

minimal disability, low levels of fear avoidance and high self-efficacy. Additionally, it is 325	

important to note that walking turns are a sub-maximal task for the paraspinal 326	

musculature, with levels of muscle activity less than 20 % of maximum voluntary 327	

contraction  (Armour Smith & Kulig, unpublished data) and that walking is rarely a pain-328	

producing activity in individuals with LBP3,46,47. Therefore, it is likely that these 329	

differences would be more pronounced during more demanding tasks. As there are 330	

changes in the morphology and fatigability of the deep multifidus muscle in persons with 331	
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LBP33,48,490 further research is needed to determine if this altered strategy is adaptive to 332	

compensate for altered morphology in the multifidus muscle or if it is a maladaptive 333	

consequence of pain. However, as changes in multifidus recruitment during anticipatory 334	

postural adjustments occur in response to anticipated experimental pain in healthy 335	

individuals, in the absence of any injury or muscle impairment, we propose that they 336	

represent a maladaptive postural control response.  337	

This study did not find significant differences in the duration or amplitude of 338	

activity in the lumbar or thoracic longissimus in asymptomatic persons with a history of 339	

recurrent LBP in comparison with controls. This is in contrast to studies demonstrating 340	

increased erector spinae muscle activity in symptomatic individuals with chronic LBP4,5. 341	

Investigations of acute experimental LBP have also indicated increased amplitude of 342	

erector spinae activity during walking20,50. Taken together, the results from this present 343	

study and earlier work suggest that changes in postural trunk control during walking may 344	

form a continuum. Significant adaptations in superficial paraspinal muscle activity may 345	

be evident both acutely and persistently in response to concurrent pain but may not 346	

persist between symptomatic episodes during sub-maximal locomotor tasks. Clinically, 347	

this study adds valuable information regarding the timing of the development of the 348	

control changes that occur in association with LBP and how these changes are associated 349	

with symptoms. This is important to assist in effective sub-grouping of individuals with 350	

low back pain for the purposes of treatment and research and for determining when 351	

interventions targeting these impairments may be warranted.   352	

All individuals in this study were able to complete the walking circuit at the 353	

faster, controlled speed. Interestingly, the asymptomatic individuals with a history of 354	
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recurrent LBP in this study did not have significantly different self-selected locomotor 355	

speed than the healthy individuals. This is in contrast with studies investigating steady-356	

state locomotor speed in symptomatic individuals with chronic LBP that have 357	

consistently reported slower locomotion in the affected group3,19,51. This may be due to a 358	

number of factors. Unlike previous studies, the individuals with LBP in the present study 359	

were asymptomatic at the time of the data collection. Additionally, participants in this 360	

study were in their mid-twenties, whereas those in existing studies are at least a decade 361	

older3,51. However, they actually reported a longer duration of symptoms than either of 362	

the previously cited studies, suggesting that deficits in locomotor speed may be more 363	

related to current pain intensity than duration of symptoms. 364	

On the whole, the activity of the paraspinal muscles during walking turns is 365	

consistent with previous studies investigating steady-state treadmill locomotion in 366	

healthy individuals52,53. Paraspinal activity during locomotion occurs at initial contact and 367	

during the double support phases of the locomotor cycle4,54-58 and controls spinal flexion 368	

and side bending54-58. To our knowledge, the only study previously investigating trunk 369	

muscle activity during turning reported continuous activity of the erector spinae during 370	

180° turns. The authors hypothesized that this activity helped to decelerate forward 371	

momentum and balance the trunk over the limb during the turn49. The more phasic 372	

activity evident in this present research is likely due to the turns in this study being both 373	

anticipated and of smaller amplitude. Observing the modulation in the activity in each 374	

muscle in response to increasing speed highlighted functional differentiation within the 375	

paraspinal group. The deep fibers of lumbar multifidus exhibited the most pronounced 376	

changes in response to greater mechanical demand, with an increase in both duration and 377	
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amplitude of activity at the faster speed. This is likely a reflection of the unique 378	

functional role of these fibers. The very small moment arm of the deepest fascicles of 379	

multifidus relative to the segmental axis of rotation in the sagittal plane suggests that the 380	

primary function of this portion of multifidus is control of spinal segmental motion via 381	

inter-segmental compression, rather than generation of torque59,60. As locomotor speed 382	

increases, ground reaction forces and, therefore, segmental shear forces increase57. The 383	

deep fibers of multifidus are ideally suited to control these segmental forces without 384	

generating large multi-segmental torques. In contrast, activity in lumbar longissimus was 385	

relatively unaffected by speed, while thoracic longissimus exhibited increased duration of 386	

activity only. More prolonged thoracic activity may be necessary to decelerate motion of 387	

the trunk on the pelvis at initial contact at the faster speed55.  388	

It is important to note that further research is necessary to clarify the relationship 389	

between altered paraspinal muscle activation in individuals with LBP and altered 390	

kinematic postural control strategies, in order to determine the mechanical consequences 391	

of changes in muscle activation. Additionally, although the integrated profile method of 392	

EMG activity onset/offset detection is the most appropriate analysis technique for 393	

postural trunk muscle data, like all EMG detection methods it is subject to the 394	

characteristics of the EMG signal and the task and must be utilized with careful visual 395	

checking to avoid anomalous results.   396	

In both groups, increases in walking speed were associated with significant 397	

increases in duration of activity in the thoracic longissimus and amplitude of activity in 398	

the deep multifidus. However, this study demonstrated for the first time that even 399	

between symptomatic episodes, some young individuals with a history of recurrent LBP 400	
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demonstrate selectively altered modulation of the duration of deep multifidus activity in 401	

response to changing locomotor demands.  402	

 403	

Key Points 404	
405	

Findings: 406	

In comparison with healthy adults, young asymptomatic individuals with a history of 407	

recurrent low back pain demonstrated altered patterns of recruitment of the deep fibers of 408	

the lumbar multifidus muscle when increasing speed during walking turns. 409	

 410	

Implications: 411	

This study provides evidence of persistent alteration in the recruitment of lumbar 412	

multifidus muscle, even between symptomatic episodes of low back pain, and may help 413	

with the further development of targeted treatment approaches for individuals with low 414	

back pain.  415	

 416	

Caution: 417	

The individuals with a history of low back pain in this study were young and minimally 418	

disabled. The results may be different in an older or more disabled subject pool. 419	

Additionally, causality in the relationship between altered multifidus recruitment and 420	

recurrent low back pain cannot be determined by this study.  421	

422	
423	
424	
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TABLE 1. Participant demographics (median ± inter-quartile range) 588	

 CTRL 

N=14* 

RLBP 

N=14* 
p 

Age (years) 24.5  ± 1.75 26.5  ± 4.75 .068 

Height (m) 1.73 ± 0.05 1.73  ± 0.09 .664 

Mass (kg) 66.68  ± 14.97 67.70  ± 23.42 .152 

PAS score (MET-time) 47.60  ± 5.00 48.20  ± 7.55 .470 
       CTRL = control group; RLBP = recurrent low back pain group; *both groups 589	

comprised 8 females, 6 males 590	

 591	

 592	

 593	

  594	
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FIGURE 1A & B. Frontal plane schematic of the deep fibers of the lumbar multifidus, 595	

lumbar longissimus and thoracic longissimus muscles; FIGURE 1C. Axial ultrasound 596	

images (transverse plane projections) showing location of electrode placements at L4 597	

(deep multifidus and lumbar longissimus) and T10 (thoracic longissimus), SP = spinous 598	

process. The locations of asterisks on figure 1 (a) and (b) correspond to the level of 599	

electrode insertions shown also as asterisks in figure 1 (c). Note that all insertions were 600	

made on the same side, but are shown here on different sides for clarity. 601	

 602	

 603	

 604	

 605	

  606	
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FIGURE 2A. Walking circuit, set up for participant instrumented on the left side, with 607	

turning area for the ipsilateral pivot turn indicated; FIGURE 2B. Stride cycle of an 608	

ipsilateral pivot turn, commencing with the initial contact of the foot ipsilateral to the turn 609	

direction. Participant instrumented on the left side and therefore turning towards the right. 610	

 611	

 612	

 613	

 614	

 615	

  616	
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FIGURE 3. Exemplar EMG signals from one representative participant demonstrating 617	

primary patterns of muscle activity (individual trial, bandpass filtered and rectified signal, 618	

Ipsi IC = initial contact of the limb ipsilateral to the turning direction, Contra IC and 619	

dashed line = initial contact of the limb contralateral to the turning direction, DM = deep 620	

fibers of multifidus, LES = lumbar longissimus, TES = thoracic longissimus). Nineteen 621	

of the 28 participants exhibited this clear primary pattern of biphasic bursts of activity in 622	

all three muscles, beginning just prior to ipsilateral and contralateral initial contact. All 623	

28 participants demonstrated this pattern of activity in the deep multifidus, and all 624	

participants except one also had activity at ipsilateral and contralateral initial contact in 625	

the lumbar longissimus. Six participants had a more unilateral pattern of TES activation, 626	

evident by a lack of activity at initial contact of the foot on the same side as the EMG 627	

instrumentation.  628	
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 629	

 630	

FIGURE 4A. Duration of multifidus activity as a percentage of stance and swing phases 631	

at the self-selected speed (SELF) and fast speed (FAST) in healthy participants (CTRL) 632	

and individuals with a history of recurrent low back pain (RLBP). Error bars indicated 633	

standard deviation. * Indicates significant interaction between speed and group. FIGURE 634	

4B. Individual change in the duration of deep multifidus activity from the self-selected to 635	

the fast walking speed across the stride cycle. The standard error of the measurement 636	

(SEM) is outlined in gray. Nine of the fourteen individuals in the back pain group had a 637	

decrease in the duration of deep multifidus activity that exceeded the SEM (the 638	

measurement error) compared with only three individuals in the control group.  639	

 640	

 641	

 642	

 643	
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 644	

FIGURE 5. Average duration of lumbar longissimus and thoracic longissimus activity 645	

during stance and swing phases at the self-selected speed (SELF) and fast speed (FAST) 646	

in healthy participants (CTRL) and individuals with a history of recurrent low back pain 647	

(RLBP). * Indicates significant main effect of speed, but magnitude of change was 648	

smaller than the SEM. ** Indicates significant main effect of speed, with an extent of 649	

change that was larger than the SEM.  650	

 651	

  652	



28	

653	

 654	

FIGURE 6 Average normalized amplitude of activity during stance and swing phases at 655	

the self-selected speed (SELF) and fast speed (FAST) in healthy participants (CTRL) and 656	

individuals with a history of recurrent low back pain (RLBP). Top - deep fibers of 657	

multifidus; middle - lumbar longissimus; bottom - thoracic longissimus. * Indicates 658	

significant main effect of speed, but magnitude of change was smaller than the SEM. ** 659	

Indicates significant main effect of speed, with an extent of change that was larger than 660	

the SEM. 661	

662	

663	

664	
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