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TIME-DEPENDENT IONIZATION EQUILIBRIUM AND LINE 
RADIATION UNDER FLARELIKE CONDITIONS 
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AND 
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American Science and Engineering, Cambridge, Massachusetts 
Received 1972 February 11 

ABSTRACT 

The results of calculations of time-dependent ionization equilibrium and line emission are presented 
and compared with the values obtained under the assumption that steady-state conditions prevail. 
In the models considered, it is assumed that the electron density is constant ( = 109 cm-3) and that the 
temperature increases by a factor of 10 from 3 X 106 o K on timescales ranging from 100 to 300 s and 
decays back to 3 X 106 o K on a timescale ranging from 600 to 1400 s. Ions of oxygen and silicon are con
sidered, and it is found that the spectrum is softer during the rise and harder during the fall than pre
dicted by the steady-state approximation. 

I. INTRODUCTION 

In recent years observations of X-ray line emission have provided a wealth of informa
tion about the excitation conditions in solar flares. However, almost all the model 
calculations against which these observations can be compared are based on the assump
tion that the ionization balance depends only on the temperature at a given instant, 
so that the steady-state approximation is valid (Tucker and Koren 1971; Jordan 1969; 
Cox and Tucker 1969 and references cited therein). In this paper, we present the results 
of some model calculations where the time dependence of the ionization equilibrium 
was taken in to account. 

The characteristics of the ionization equilibrium can be understood qualitatively by 
comparing the timescales for changes in the temperature, ionization, and recombination. 
Consider a typical flare consisting of three phases. In phase I the plasma is in the steady
state preflare condition with a temperature ,....,3 X 106 ° K and a density N,...., 109 

cm-3• In phase II the plasma is heated suddenly to a temperature T,...., 107 ° K in a 
time tH ,...., 100 s. In phase III the plasma cools on a timescale tc ,...., 700 s. 

The ionization time for a hydrogenic ion of nuclear charge Z is (Cox and Tucker 
1970) 

tr ,...._, 50T7- 112N9- 1(Z/10) 4 exp [1.6(Z/10)2/T7] seconds 

(T1 = T/107 o K, N9 = N/109 cm-3). 

Thus for Z :=:; 10, the ionization time is less than the heating time and the steady-state 
calculations should apply for phase II. For Z > 10, t1 > tH, and the ionization will be 
less than in the steady-state models. ~ ~ 

The recombination time is 

fR,...., 1000T7112/ N9(Z/10) . 

The situation here is just opposite to that of phase II. For those elements with 
Z ;;::: 10, tR < lc and the steady-state calculations apply, whereas for those with Z :=:; 
10, fR ;G fc and the ionization will be greater than in a steady-state model. 
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Therefore, for a given temperature, the spectrum will be softer than in the steady 
state during the rise and harder during the decay of a flare, and temperature estimates 
based on the overall spectral shape may be significantly in error. On the other hand, 
if the temperature can be determined by the ratio of two lines of the same ion, then 
observation of the overall spectrum could yield information about the departure from 
steady-state conditions. The amount of the departure depends on the heating and cooling 
times, the temperature, and the density. If ln, lc, andT can be determined, one could 
set limits on the density of the plasma. Note that low densities produce the largest 
effects. The intensities of the ratio of the intercombination to forbidden lines in helium
like ions yield upper limits to the density (Gabriel and Jordan 1970; Blumenthal, 
Drake, and Tucker 1972). Thus, the two effects are complementary and serve to set 
lower and upper limits on the density in flare plasmas. On the other hand, if the density 
is known, the departures from steady-state conditions would help to establish the heating 
and cooling laws for the plasma. 

In § II we discuss the basic equations and the method used in the calculations. The 
results are presented in § III; their significance is discussed in § IV. 

II. CALCULATIONS 

The X-ray line emissivities were calculated from the formula 

P(Z, zT) = 1.86 X 10-19T6- 112N.Nz,z(fl(Z, z))(E(Z, z)/IH)e-E(Z,z)lkT ergs cm-3 s-1 , 

where T 6 is the electron temperature in millions of degrees, N e is the electron number 
density, and Nz,z is the number density of ion species Z, z. (fl(Z, z)) is an average value 
of the collision strength which is approximately equal to its value at incident electron 
energies = 1.5 E(Z, z), where E(Z, z) is the excitation energy of the first excited state. 
IH is the ionization potential of hydrogen. Values of (fl(Z, z)) and E(Z, z) were taken 
from the compilation of Tucker and Koren (1971). The line emission from hydrogenic 
and helium-like ions of oxygen and silicon were considered. The line emission due to the 
radiative de-excitation of excited states formed by recombination was also considered. 
It was found to be negligible except during the very late stages which are not of interest 
for the present investigation. The abundances relative to hydrogen were assumed to be 
N(O)/N(H) = 3 X w-4 and N(Si)/N(H) = 5 X 10-6• 

To calculate the ionization equilibrium, we solved the coupled ionization balance 
equations with an assumed heating and cooling equation: 

dNz/dt = Ne(az+lNz+l- azNz + Cz-lN z-1- CzNz), ..• , dT/dt = j(t). 

Here az denotes the total recombination coefficient (dielectronic and radiative) for the 
process z ~ z - 1, and Cz denotes the collisional ionization coefficient for the process 
z ~ z + 1. Other sources of ionization (fast particles, photons) were assumed to be 
negligible. The dielectronic recombination coefficients were calculated from the formula 
given by Burgess (1965) multiplied by a correction factor as given by Shore (1969). 
The necessary energy levels and oscillator strengths were taken from Wiese, Smith, and 
Glennon (1966). The formula given by Seaton (1959) was used to calculate the radiative 
recombination coefficients. The collisional ionization coefficients were calculated as in 
Cox and Tucker (1969). If the timescale IT for significant changes in the temperature is 
long compared to the timescales for recombination IR and ionization tr, then for lR or 
tr « t and IT, the ions will have had time to reach a quasi-steady state in which dN z/ 
dt = 0, and Nz+l/Nz = Cz/az+l· In this limit the ionization equilibrium is independent 
of the electron density and depends only on the instantaneous temperature. When the 
above inequalities are not satisfied, the equations do not decouple, and the ionization 
equilibrium depends on the electron density and the history of the system. 

The equations were solved by a Runge-Kutta routine. The electron density was 
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assumed to be constant and equal to 109 cm- 3• The models were therefore determined 
by the assumed temperature dependence. Three cases are reported on here: 

(1) T6 = 3(1 + t/10), t < 100 s; T 6 = 30 e-<t-Ioo)/600 + 3, t > 100 s ; 

(2) Ts = 3(1 + t/30), t < 300 s; T 6 = 30 e-<t- 300l 1400 + 3, t > 300 s; 

(3) T6 = 3(1 + t/10), t < 100 s; T 6 = 30(1 + t/2)-215 + 3, t > 100 s. 

III. RESULTS 

The results of the calculations are presented in figures 1-4. In these figures we have 
plotted the temperature, ionization equilibrium, line intensities of the strongest lines 
from the hydrogenic and helium-like ions, and the ratio of the line intensities as a func
tion of time. The solid curves refer to the time-dependent values; the dashed curves, to 
the steady-state values. 
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FIG. 1 FIG. 2 

FIG. 1.-Results for silicon, Model 1. The solid curves refer to time-dependent calculations; the 
dashed curves, to steady-state ones: (a) temperature as a function of time, (b) ionization equilibrium 
as a function of time, (c) line intensities from strongest lines from hydrogenic and helium-like ions as a 
function of time, (d) the ratio of the intensities of these lines as a function of time. 

FIG. 2.-Same as fig. 1 for Model2. 
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FIG. 3.-Same as fig. 1 for Model3. 
FIG. 4.-Results for oxygen, Model3. 
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Figure 1 shows the results for silicon for a model in which the temperature rises 
linearly from 3 X 106 0 to 3.3 X 107 ° K in 100 s and drops exponentially with a time 
constant of 600 s until it returns to 3 X 106 o (model 1). Initially almost all the silicon 
is in the + 12 form. As the temperature rises, the ionization shifts to a higher stage but 
because of the long ionization times the shift is not so fast as in the steady-state case. 
After about 100 s the ionization begins to take its toll and the abundance begins to 
drop. By this time the temperature is dropping, so the steady-state abundance of Si+12 

is increasing; because of the lag in ionization the abundances of the time-dependent and 
steady-state cases are changing in opposite directions during this time. Finally after 
about 500 s, ions begin to recombine, and the calculations start the approach to the 
steady-state conditions which is essentially complete at t = 3000 s (fig. 1b). The be
havior of the abundances of Si+l2 is reflected in the intensity of the Si+12 line at 6.65 A 
(fig. 1c). For the first few hundred seconds it is more intense than in the steady state 
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and afterwards is less intense. The course of Si+I3 with time is a little more complicated 
because in the steady state the abundance of Si+13 peaks around 107 0 • Thus as the tem
perature rises to 3.3 X 107 0 and then decays back to 3 X 106 0 , the abundance will 
show two maxima since the temperature of maximum abundance was traversed twice. 
However, in the time-dependent calculations these maxima are completely smeared out 
because of the lag in the ionization during the rise and the recombination during the 
decay. The general behavior of the system is conveniently summarized by the ratio of the 
intensities of the 6.65 and 6.18 A lines of Si+I2 and Si+13, respectively (fig. 1d). 1(6.65)/ 
1(6.18) is greater than in the steady state for the first few hundred seconds (long ioniza
tion time), crosses the steady-state value around t = 400 s, and is less thereafter (long 
recombination time). 

Figure 2 shows the results for the case where the temperature rises linearly from 
3 X 106 0 to 3.3 X 107 o Kin 300 sand drops exponentially thereafter with a time con
stant of 1400 s until it levels off around 3 X 106 0 again (Model 2). The behavior is 
qualitatively the same as for Model 1; quantitatively the departures from the steady
state calculations are less because of the longer time constants involved. 

In figure 3 the results for a different kind of cooling law are shown (Model3). In this 
case the temperature rises to a maximum in 100 s as in Model 1, but decreases after 
the maximum according to the law T o:: (1 + t/2)-2' 5, in a manner roughly similar to 
what one might expect if conduction losses were important in the cooling of the plasma 
(Culhane, Vesecky, and Phillips 1970). This law is characterized by a faster rate of 
decrease in the temperature than for Models 1 and 2 immediately after maximum, and 
by a slower rate later on. The departures from the steady-state results are again large 
during the rise, but are not too great during the decay. The primary difference from the 
results of Model 1 is that the intensity of the Si+13 line is weaker during the decay, 
since the temperature is not above 107 0 for very long. 

Figure 4 shows the results of calculations for oxygen for Model3 temperature depen
dence. The departures from steady state during the rise are less pronounced than for 
silicon. During the decay the calculations always remain fairly close to the steady-state 
value, even though the recombination time is longer than the decay time. 

As mentioned above, a constant electron density N. = 109 cm-3 has been assumed 
in all the results discussed here. These results can be scaled to other densities simply 
by scaling the time constants inversely as the electron density. Thus, for example, 
Modell can equally well describe a case where the density is 1010 cm- 3, the temperature 
rises in 10 sand falls in 60s. We have done additional calculations for N. = 108 cm- 3 

and N e = 1010 cm-3, with the expected result that the departures from steady-state 
conditions are less when the density is greater and vice versa. 

We acknowledge useful discussions with G. R. Blumenthal. This work was supported 
in part by the Air Force Office of Scientific Research contract F44620-71-C-0019 (W. T.) 
and in part by NSF grant GP-11453 (M. K.). 
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