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Light Detection and Ranging (LiDAR) systems can be used to estimate both vertical and horizontal forest structure. Woody 
components, the leaves of trees and the understory can be described with high precision, using geo-registered 3D-points. Based 
on this concept, the Effective Plant Area Indices (PAIe) for areas of Korean Pine (Pinus koraiensis), Japanese Larch (Larix 
leptolepis) and Oak (Quercus spp.) were estimated by calculating the ratio of intercepted and incident LIDAR laser rays for the 
canopies of the three forest types. Initially, the canopy gap fraction (GLiDAR) was generated by extracting the LiDAR data re-
flected from the canopy surface, or inner canopy area, using k-means statistics. The LiDAR-derived PAIe was then estimated 
by using GLIDAR with the Beer-Lambert law. A comparison of the LiDAR-derived and field-derived PAIe revealed the coeffi-
cients of determination for Korean Pine, Japanese Larch and Oak to be 0.82, 0.64 and 0.59, respectively. These differences be-
tween field-based and LIDAR-based PAIe for the different forest types were attributed to the amount of leaves and branches in 
the forest stands. The absence of leaves, in the case of both Larch and Oak, meant that the LiDAR pulses were only reflected 
from branches. The probability that the LiDAR pulses are reflected from bare branches is low as compared to the reflection 
from branches with a high leaf density. This is because the size of the branch is smaller than the resolution across and along the 
1 meter LIDAR laser track. Therefore, a better predictive accuracy would be expected for the model if the study would be 
repeated in late spring when the shoots and leaves of the deciduous trees begin to appear. 

leaf area index, plant area index, LiDAR, k-means clustering, gap fraction, beer-lambert law 
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The amount of leaves present in a forest canopy is generally 
expressed as the leaf area index (LAI) which is defined as 
the total one-sided area of leaf tissue per unit ground surface 
area [1]. A tree’s leaf area has direct influence upon its lev-
els of evaporation, water interception, radiation extinction 
and water-carbon gas exchange [1]. Due to such LAI effects 
upon numerous relevant ecological processes, of hydrology 
(capture, storage, and redistribution of precipitation), energy 

capture (conversion of sunlight to plant and animal matter), 
and nutrient cycling (cycle of nutrients through the physical 
and biotic components of the environment), LAI estimates 
can provide information useful for various models [2–5].  

Methods for obtaining the LAI can be classified into two 
categories: direct and indirect measurements [6]. Direct 
methods are destructive due to the need to harvest vegeta-
tion and are usually both time-consuming and labor-   
intensive. Therefore, direct methods are more suitable for 
small plots containing smaller structural vegetation types 



 Kwak Doo-Ahn, et al.   Sci China Life Sci   July (2010) Vol.53 No.7 899 

 

and are difficult to apply to large areas or to tree canopies 
[6–7]. The LAI can also be obtained using an indirect and 
non-destructive method, through estimation using transmis-  
sion and reflection characteristics of sunlight through 
vegetation areas [8–9].  

Previously, to derive such LAI estimates, remote sensing 
techniques, such as satellite imagery and aerial photography, 
have been employed. Such approaches are based on regres-
sion models [10] or radiative transfer modeling [11] using 
passive optical sensor systems. However, passive remote 
sensor systems cannot describe the 3D structure of leaf dis-
tribution with a single scene. Furthermore, they employ 
indexes of spectral characteristics, such as the Normalized 
Difference Vegetation Index (NDVI), which are derived 
from satellite imagery and aerial photography, and which 
fail to distinguish between woody components and leaves 
[12–15]. 

More recently Light Detection and Ranging (LiDAR) has 
been used to extract surface information, and can acquire 
accurate object shape characteristics using geo-registered 
3-dimensional (x, y, z) mass points [16]. Therefore, the Li-
DAR system can measure both vertical and horizontal forest 
structural parameters with high precision. Such parameters 
can include tree height, sub-canopy morphology and leaf 
distribution [17]. Morsdorf et al. [18] derived the LAI using 
fractional cover, defined as the fraction of ground covered 
by vegetation over uncovered ground. Riaño et al. [19] ob-
tained the LAI using the gap fraction, referring to the prob-
ability that the LIDAR beam will have no contact with 
vegetation elements prior to reaching ground level [20]. 
Lovell et al. [21] employed a ground-based laser scanner in 
Australian forests to model the LAI using a canopy profile. 
Koetz et al. [22] applied a LiDAR waveform model to gen-
erate fractional cover and the LAI from small footprint Li-
DAR data, but only for large footprint sensors. The small 
footprint LiDAR system can record discrete returns but not 
the entire waveform. These discrete returns provide an op-
portunity to extract valuable biophysical parameters of indi-
vidual trees because of their high spatial resolution [23]. 
However, the large footprint LiDAR system cannot provide 
this information due to its larger footprint size and coarse 
spacing [24]. The use of ground based laser scanners is lim-
ited by the topographical conditions of the forest area 
(precluding inaccessible places, such as steep slopes and 
valley forest areas). Moreover, it is impossible to simulta-
neously scan a large forest area using a ground based laser 
scanner. This becomes feasible when using an airborne- 
based small footprint LiDAR system.  

A common field method for determining the LAI is to 
use an optical sensor, such an AccuPAR-80 (Linear PAR/ 
LAI Ceptometer of Decagon Devices), or a LAI-2000 (LI- 
COR Biosciences), to acquire photosynthetically active ra-
diation (PAR), or to use hemispherical photography below 
the canopy [25]. However, the values recorded by these 
instruments are not pure LAIs because they tend to clump 

the varied aspects of canopy components and lack the ca-
pacity to be adjusted to incorporate the influence of woody 
components [25]. The value recorded without the considera-  
tion of the clumping of canopy components is defined as the 
Effective LAI (LAIe) [20]. Methods that do not consider the 
difference in light interception between the leaves and 
woody components determine the so-called the Plant Area 
Index (PAI) [26]. The amount of plant matter is commonly 
quantified in terms of the PAI, expressed as square meter of 
plant area per square meter of ground area [27]. The PAI 
values measured by these instruments are likewise referred 
to as the Effective PAI (PAIe) if there are no adjustments for 
the clumping of canopy elements [15]. Therefore, the values 
measured with optical sensors in the forest areas essentially 
represent the PAIe [25]. 

In this study, a PAIe estimation was used for a forested 
area of South Korea. Chen et al. [28] reported that a PAIe 
estimation was more effective than a LAI estimation be-
cause the PAIe also represents the sunlight interception by 
woody elements. In particular, the LiDAR pulses were re-
flected on all tree components including leaves, branches 
and stems. Therefore, in this study, the PAIes of the Korean 
Pine (Pinus koraiensis), Japanese Larch (Larix leptolepis) 
and Oak (Quercus spp.) were estimated. To do this, the rate 
of in-canopy returns, as LiDAR pulses intercepted through 
the canopy, were calculated. Furthermore, an attempt was 
made to estimate the PAIe for the leaf canopy part alone by 
splitting the classification of LiDAR pulses reflected in the 
forest stands into in-canopy and below-canopy returns by 
using k-means statistics.  

1  Materials 

1.1  Study area 

There were two study areas in central South Korea (Figure 
1). The first is Mt. Yumyeong (127°28′45.76074″E, 37°35′ 
59.75109″N to 127°30′6.98627″E, 37°35′6.27425″N), and 
the second is located in the Gwangneung Experimental Forest 
of the Korea Forest Research Institute (127°7′30.72523″E, 
37°48′0.42761″N to 127°11′59.17548″E, 37°41′59.31795″N). 
Elevations ranged from 160 to 573 m above sea level and 
the study areas were dominated by steep hills with the main 
forest type being Korean Pine (Pinus koraiensis), Japanese 
Larch (Larix leptolepis) and Oak (Quercus spp.). Approxi-
mately 1,017 ha were selected for this study where the 
composition of tree species was homogeneous but the edges 
of the individual tree crowns overlapped with the neighbor-
ing trees due to the high tree density. 

1.2  LiDAR and ground data 

An Optech ALTM 3070 (a small footprint LiDAR system) 
was used to acquire the LiDAR data. The flight was per-
formed on the 3rd of April 2007 at an altitude of 1400 m 
with a sampling density of 5–10 points per square meter, 
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and a radiometric resolution, scan frequency, scan width and 
beam divergence of 12 bits, 70 Hz, ±20° and 0.31 mrad, 
respectively. 

The field survey was performed from the 1st to the 4th of 
April, 2008. The number of sample plots was 45 (15 plots 
for each forest type: Korean Pine, Japanese Larch and Oak). 
There were also 45 test plots. The stand height, diameter at 
breast height (DBH), crown base height, crown width and 
tree density were measured (Table 1). 

Each plot was 20 m×20 m (400 m2) in size, and the PAIe 
of the plots was measured indirectly using the gap fraction 
method with two LAI-2000 instruments that recorded the 
diffuse radiation intensity above and below the canopy. One 
LAI-2000, used to measure the diffuse sunlight above the 
canopy, was covered with a 180° view cap and placed on 
the flux tower located in the forest. The other LAI-2000, 
also covered with a 180° view cap, was used to measure the 
diffused sunlight below the canopy of the sample plots. The 
estimation below the canopy was performed at breast height 
on the midpoints of the four edge lines as well as on the 
four corners of the plots. In addition, the PAIes were meas-
ured in four directions (East, West, South, and North) from 
the centre of each plot (Figure 2). The PAIes for the four 
corners were also obtained in the 180° range. These were 
then converted into corresponding values in the 90° range 
using the LAI-2000 File Viewer Program to exclude the 
values outside of the sample plot. The coordinates of the 
plots were acquired at breast height at the centre of each 
plot using a GPS Pathfinder Pro XR (Trimble Corporation). 
As only a single GPS receiver was used for positioning, 
positional errors in the plots were avoided by, processing 
the GPS data in reference to the signal from a continuous 
GPS signal station near the study area. Differential correc-

tions could be performed using the error-correction infor-
mation received from the station to acquire precise position 
and error correction information every 30 seconds [29]. The 
final positions of the correctly geo-referenced plots were 
obtained with a positional accuracy of within 1 m. 

2  Method 

2.1  Potential of LiDAR remote sensing for PAIe esti-
mation 

The laser pulses emitted from the LiDAR system act in a 
similar manner to sunlight in that they are reflected from or 
transmitted through the canopy of the forested area. The 
measurement is suitable for representing the PAIe rather 
than the LAI because the LiDAR pulses are reflected from 
all tree elements, including leaves, branches and stems. If 
the forest stands have abundant leaves and branches, the 
LiDAR pulses are reflected mainly by the canopy. Other-
wise, in bare-branched forest stands, the LiDAR pulses are 
almost all transmitted to the ground with the exception of 
those reflected from the woody elements.  

The Beer-Lambert Law has been used to estimate the 
PAIe in many studies [25]: 

0ln( / ) /e sunPAI I I k= − ,             (1) 
where I and I0 are the incident radiation and below-canopy 
radiation, respectively, and ksun is the extinction coefficient 
for solar radiation. In equation 1, I/I0 denotes the gap frac-
tion (Gsun), which is defined as the probability of an incident 
light ray passing through the canopy without colliding with 
any canopy or woody element [30]. The Gsun of solar radia-
tion can be replaced with the ratio of the number of LiDAR 
returns transmitted through the canopy to the total number 

 

Figure 1  Digital aerial photographs of the study area acquired on the 3rd of April 2007. A, Mt. Yumyeong; B, Gwangneung experimental forest. 

Table 1  Descriptive statistics of the field measurements 

Tree height (m) Crown base height (m) DBH (cm) Crown width (m) 
 

Mean Std. Mean Std. Mean Std. Mean Std. 
Tree density 

(N ha−1) 

Korean Pine 20.7 3.9 14.4 3.1 32.7 5.5 5.3 1.1 375 

Japanese Larch 27.8 2.3 16.1 2.0 28.7 4.6 6.5 1.3 300 

Oaks 20.0 2.7 11.1 1.6 28.3 8.9 7.8 2.4 200 
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Figure 2  Schematic diagram of the method for estimating effective plant area indices in a plot. Each arrow represents the direction. In all cases sensors 
were restricted with a 180° view cap. 

of LiDAR returns emitted from the aircraft (GLiDAR). ksun in 
equation 1 can be calculated using equation 2 [31]. 

1
2 2 2

0.733
( tan )

1.744( 1.182)
sun

sun
x

k
x x

θ
−

+
=

+ +
,          (2) 

where θsun is the zenith angle of the sun and x is the leaf 
angle distribution parameter, which is the ratio of the length 
of the horizontal to vertical axis of the spheroid, and can be 
measured as the ratio of the projected area of an average 
canopy element onto a horizontal plane to its projection 
onto a vertical plane [31]. Campbell [31] suggested that the 
assumption of an ellipsoidal angle distribution for canopy 
elements would be most useful. Using this assumption, ksun 
can then be simplified to:  

1
2cossun

sun
k

θ
= .               (3) 

In equation 3, ksun could be calculated using the solar ze-
nith angle (θsun) for the study area. However, to apply to the 
PAIe obtained from LiDAR data, the θsun in the above equa-
tion must be changed to the incidence angle of the laser 
pulses emitted from the aircraft (θLiDAR). In the plot or stand 
level estimation, the LAI or PAI cannot be represented in-
dependently from each pulse reflected within a target plot. 

All returns reflected within a plot must be collectively inte-
grated to obtain a plot-level LAI or PAI. However, each 
return has a different incidence angle because each point is 
generated by a flight line with a unique scan angle when 
emitted from a whiskbroom laser scanner. Therefore, Li-
DAR-derived PAIe was analyzed using the mean value of 
the incidence angle of all returns within a plot. 

2.2  Classification of the LiDAR data using k-means 
statistic 

To calculate GLiDAR, the transmitted laser pulses need to be 
collected and classified together as total laser returns. In 
particular, the LiDAR returns intercepted only by the can-
opy must be clustered in order to estimate the canopy PAIe 

under the same conditions as sunlight transmission through 
the canopy. Riaño et al. [19] tested a variety of clustering 
methods to classify their LiDAR data. These included a 3 m 
fixed limit, Minimum Euclidean Distance clustering, 
k-means clustering and Expectation Maximization cluster-
ing. In this study, the k-means algorithm was used because it 
was the fastest method that consistently worked well at the 
plot level for splitting the classification of the LiDAR re-
turns into those of in-canopy and below-canopy [19]. For 
classification, the criterion height dividing in-canopy and 
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below-canopy can be determined to be the crown base 
height at the plot level. This is because the crown represents 
the branching, leaf-bearing portion of a tree occurring above 
the crown base height [32]. 

The k-means statistic is an algorithm used to classify or 
group attributes or features into k numbers of groups. It em-
ploys an iterative algorithm that minimizes the sum of the 
distances (SOD) from each object (n) to its cluster centroid 
(i) over all clusters (Equation 4). 

... ...  [ ] 
j

i j i j
i

SOD Centroid Object n= −∑ .     (4) 

This algorithm moves objects between clusters until the 
sum cannot be decreased further. This results in a set of 
clusters that are as compact and separated as possible [33]. 
The LiDAR returns reflected within a plot were classified 
into five Z values (height values). These were the ground, 
understory height, crown base height, half crown height and 
tree height groups. The mean height of the points (Mean LH 
and Mean LiDAR Height) in the crown base height group 
was used to represent the crown base height of a plot (Fig-
ure 3).  

In general, the initial points of each cluster can be se-
lected by the user when the k-means algorithm is performed 
[33]. In this study, the initial point values for the clusters 
were derived from the field inventory. The arithmetic proc-
ess was performed with 100 iterations. The cluster was 
treated as being undefined if it was too small. An example 
would be where the percentage of laser pulses of a group 
had<1/(total number of clusters)2 [19]. The extracted crown 
base height was used as the criterion to partition the 
in-canopy and below-canopy returns within a plot. 

2.3  Generation of LiDAR-derived gap fraction 

Barilotti et al. [34] suggested the use of the laser penetration 
index (LPI), which is the ratio of the ground and vegetation 
returns in the sample plots. All the LiDAR points were di-
vided into two classes of vegetation returns: high (height≥1 
m above ground) and low (height<1 m above ground). 
However, in the case of multiple understories, the LPI was 
inflexible because the value used to distinguish between the 
ground and high vegetation returns was fixed at a height of 
1m above the ground regardless of the characteristics of the 
forest stand. However, this study determined the threshold 
value (mean laser height of the crown base height group) 
using a statistical criterion by k-means clustering. The mean 
crown base height of a plot could be extracted using the 
threshold value and then the below-canopy and in-canopy 
returns were classified. The LiDAR-derived gap fraction 
was generated from: 

 

   

below canopy returns
LiDAR

all returns

N
G

N
−= ,          (5) 

where Nbelow-canopy returns is the number of LiDAR returns re-

flected below the canopy and Nall returns is the whole number 
of LiDAR returns reflected in a sample plot. 

According to Equation 5, the vegetation is dense if the 
GLiDAR value is close to 0 but sparse if the value is close to 1. 
Thus, the PAIe can be estimated artificially by substituting 

 

Figure 3  Classification of the LiDAR returns into five clusters by k-  
means clustering. A, Pinus koraiensis; B, Larix leptolepis; C, Quercus spp. 
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Gsun and ksun by GLiDAR and kLiDAR, respectively:  
2cos lne LiDAR LiDARPAI Gθ= − .          (6) 

3  Results 

3.1  Classification of the LiDAR data  

The LiDAR returns were classified using k-means cluster-
ing. Returns by forest type were classified into two clusters 
according to the LiDAR-derived crown base heights (Figure 
4). Results show the typical distribution of the LiDAR re-
turns according to the forest type. 

The plots of Korean Pine displayed an abundant mono- 
layer canopy. LiDAR returns for the pines were therefore 
clustered clearly into two groups. However, some of the 
LiDAR pulses in the plots for Japanese Larch and Oak 
suggested in-between layers due to the presence of various 
understories. The results of k-means clustering were ac-
ceptable because the LiDAR-derived crown base heights, 
extracted from the mean LH, were similar to the actual 
field-derived crown base heights. These k-means clustering 
results were used to estimate the LiDAR-derived PAIe using 
GLiDAR (Table 2). 

Linear regression analysis was carried out to determine 
the relationship between the LiDAR-derived and field-   

derived crown base heights. The coefficient of determina-
tion (R2) and root mean square error (RMSE) were calcu-
lated to assess the accuracy of regression analysis (Table 3). 

3.2  Estimation of effective plant area index using Li-
DAR gap fraction 

Using the GLiDAR and θLiDAR values, the LiDAR-derived PAIe 
was estimated for the different forest types. The PAIe values 
for the Korean Pine were higher than those for the Japanese 
Larch and Oak because the Korean Pine is an evergreen 
needle-leaved tree having dense leaves. On the other hand, 
the PAIe values of Japanese Larch and Oak were relatively 
low because they had very few leaves present on their 
branches at the time the field survey was carried out, (1st to 
4th of April). However, the PAIe values of Japanese Larch 
were somewhat higher than those of Oak due to the emitted 
LiDAR pulses being more reflected from the denser 
branches of Japanese Larch than from the less dense 
branching of the Oaks (Figure 5B). 

Linear regression analysis was carried out to determine 
the relationship between the LiDAR-derived and field-  
derived PAIe. The coefficient of determination and root 
mean square errors were calculated to determine the accu-
racy of regression analysis (Table 3). 

The correlation for Korean Pine (R2=0.66) was the high- 

 
Figure 4  Distribution of the LiDAR returns of the three forest types and classification into two clusters for each (in-canopy and below-canopy returns). A, 

Korea pine; B, Japanese larch; C, oaks.  
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Table 2  Results of LiDAR-derived estimators and comparison of field- and LiDAR-derived estimations for each sample plot  

Forest type Plot No. Mean LH 
(m) GLiDAR Mean 

θLiDAR (°) 
Field-derived 

CBH (m) 
LiDAR-derived 

CBH (m) 
Field-derived 

PAIe 
LiDAR-derived 

PAIe 
1 19.32 0.12 12.47 16.47 18.17 3.33 4.17 

2 18.06 0.16 11.44 17.07 17.11 3.93 3.59 

3 20.14 0.22 12.06 17.87 18.86 3.33 2.96 

4 16.67 0.58 11.77 15.30 15.95 2.58 1.08 

5 16.41 0.23 12.49 15.77 15.72 3.30 2.86 

6 20.07 0.69 11.73 20.80 18.80 2.66 0.74 

7 13.25 0.31 13.66 14.03 13.07 3.38 2.25 

8 13.87 0.37 15.01 13.53 13.59 3.17 1.90 

9 10.06 0.24 9.79 10.73 10.39 3.41 2.79 

10 11.40 0.22 11.25 11.50 11.51 3.55 3.00 

11 10.06 0.21 14.88 9.20 10.39 3.86 2.97 

12 10.42 0.20 12.22 10.60 10.69 3.75 3.11 

13 15.38 0.13 11.89 15.17 14.86 3.90 4.05 

14 15.30 0.13 11.92 15.90 14.79 3.75 4.04 

Korean Pine 

15 12.96 0.06 12.28 12.80 12.83 3.90 5.66 

1 14.41 0.83 12.85 16.80 14.47 1.23 0.36 

2 17.02 0.89 12.76 16.07 16.53 1.38 0.22 

3 17.20 0.89 13.93 16.20 16.68 1.38 0.24 

4 15.63 0.74 12.89 16.83 15.44 1.63 0.57 

5 16.80 0.80 13.79 15.20 16.36 1.56 0.44 

6 18.70 0.90 13.29 17.87 17.86 1.46 0.20 

7 17.58 0.85 13.24 17.93 16.98 1.63 0.32 

8 15.90 0.85 13.83 16.43 15.65 1.51 0.32 

9 17.16 0.88 12.43 16.13 16.64 1.48 0.25 

10 14.71 0.70 11.47 15.27 14.71 1.60 0.69 

11 18.94 0.69 12.29 18.57 18.05 1.70 0.73 

12 17.70 0.83 6.13 15.53 17.07 1.46 0.38 

13 11.00 0.86 11.72 10.17 11.78 1.33 0.30 

14 15.03 0.92 14.96 14.57 14.96 1.11 0.16 

Japanese 
Larch 

15 19.41 0.68 12.64 18.03 18.42 1.77 0.74 

1 14.71 0.97 12.27 14.70 13.55 1.26 0.06 

2 8.74 0.94 9.84 9.47 9.82 1.24 0.12 

3 11.19 0.95 13.52 10.73 11.35 1.33 0.10 

4 8.58 0.94 13.12 10.77 9.73 1.29 0.11 

5 10.65 0.95 9.75 12.07 11.02 1.24 0.10 

6 12.23 0.97 13.27 11.17 12.00 1.13 0.06 

7 11.92 0.93 13.21 12.83 11.81 1.34 0.15 
8 7.20 0.98 13.48 9.77 8.86 1.25 0.05 
9 11.07 0.95 12.83 12.47 11.28 1.32 0.11 

10 12.92 0.97 13.02 12.00 12.44 1.24 0.06 
11 11.31 0.97 8.90 10.10 11.43 1.15 0.05 
12 11.34 0.98 8.84 10.60 11.45 1.2 0.05 
13 12.39 0.96 9.17 11.57 12.10 1.26 0.09 
14 8.72 0.93 6.29 9.17 9.81 1.3 0.15 

Oaks 

15 8.09 0.98 7.54 8.67 9.42 1.12 0.04 
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Table 3  Accuracy of the regression function generated for the crown base height and effective plant area index 

Forest type Equation R2 RMSE Coefficient Estimate t-statistics P-value 

CBH=α1 · Mean LH + β1 0.91 0.81 α1 0.8405 11.5846 3.1850×10−8 
   β1 1.9315 1.7358 0.1062 

PAIe=α2 · cosθLiDAR · ln GLiDAR + β2 0.66 1.00 α2 −0.5544 −5.2717 0.0001 

Korean Pine 

   β 2 2.6615 14.6842 1.7943×10−9 

CBH=α1 · Mean LH + β1 0.70 1.12 a1 0.7893 5.5650 9.1497×10−5 

   β1 3.0998 1.3186 0.2100 

PAIe=α2 · cosθLiDAR · ln GLiDAR + β2 0.58 1.12 α2 −1.3736 −4.2097 0.0010 

Japanese Larch 

   β 2 1.2103 17.2439 2.4447×10−10 

CBH=α1 · Mean LH + β1 0.66 0.79 α1 0.6249 5.0476 0.0002 

   β 1 4.3622 3.2413 0.0064 

PAIe=α2 · cosθLiDAR · ln GLiDAR + β2 0.51 1.34 α2 −2.6978 −3.4931 0.0040 

Oaks 

   β 2 1.1272 32.7731 6.9800×10−14 

 
Figure 5  Structure of the stands surveyed according to the forest types (Korean Pines had dense leaves and Japanese Larches had abundant vertical 
branches. The Oaks had no leaves and fewer branches and therefore the surface of the forest area was exposed. By contrast the branches for the Japanese  

Larches showed abundant overlap). A, Korean Pine stand; B, Japanese Larch stand; C, Oaks stand. 

est of the three forest types. This was due to the higher 
probability that LiDAR pulses were reflected from the high 
density of leaves in the canopy than from below the canopy. 
A larger number of LiDAR returns reflected from the can-
opy provides a better resulting description of the canopy 
and a greater accuracy of PAIe estimation. On the other hand, 
Japanese Larch (R2=0.58) and Oak (R2=0.51) showed lower 
correlations between estimates and actual ground data. This 

was attributed to the fact that neither of these forest types 
had leaves and that, particularly in the case of the Oaks, 
only a few branches were present. In the absence of leaves 
LiDAR pulses may be reflected only from the branches. The 
probability that LiDAR pulses would be reflected on bare 
branches is very low compared to branches with dense 
leaves present. This is because the size of the branch is 
smaller than the resolution across and along the 1 meter  
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track of the laser beam. Therefore, here the LiDAR returns 
represent branches (woody components) without leaves. 
The correlation between the field-derived and LiDAR-  
derived PAIe of a bare-branched tree stand will be lower 
than for that of stands of trees with leaves. However, the 
correlation for the Japanese Larch stands was higher than 
that for the Oak stands. Hence, the probability that LiDAR 
pulses are reflected from the branches of Japanese Larches 
would be higher than that from the Oaks because the Japa-
nese Larches have more abundant branches compared to the 
Oaks. Therefore, the woody component of Japanese Larches 
can be described adequately using LiDAR data.  

3.3  Accuracy assessment 

The PAIe estimations were evaluated by regression analysis 
using the field-derived PAIes for 45 plots (15 plots for each 
forest type) which were selected for such verification. The 
correlations for Korean Pines, Japanese Larches and Oaks 
were 0.82, 0.64 and 0.59, respectively (Figure 6). 

The estimated PAIes of Korean Pines had the highest R2 
of the three forest types. This was attributed to be a forest 
environment factor in that a greater number of LiDAR re-
turns reflected from the densely leaved canopy can provide 
a better canopy description when compared to the fewer 
returns received from bare-leaved forest stands. During 
summer or early autumn, the accuracy of the regression 
function and its evaluation should therefore increase due to 
the higher probability that a larger number of laser pulses 
would be reflected from the leaves in the canopy for both 
the Japanese Larches and the Oaks at that time. The estima-
tion of PAIes of bare-leaved trees, i.e., deciduous trees in 
late autumn and early spring, may be less valid and incom-
parable to PAIes of stands where leaves are present. 
Nevertheless, results of this study may be valuable because 
monitoring the change in the amount of leaves can provide 
information on seasonal changes in forests for rates of water 
interception, radiation extinction and water-carbon gas ex-
change [35]. 

4  Discussion 

When the PAIe is calculated using LiDAR data, the kLiDAR, 

derived from the incidence angle of the LiDAR pulse 
together with the leaf angle distribution, plays an important 
role in determining the accuracy of the method. In particular, 
the leaf angle distribution parameter should be representa-
tive of that of the particular forest type. In this study, the 
leaf angle distribution parameter was assumed to have a 
value of 1, suggesting an ellipsoidal angle distribution. In 
future studies, two variables, incidence angle and leaf angle 
distribution, should be further considered and refined to 
obtain a more accurate estimate of the PAIe using LiDAR 
data. It is also essential to consider other biological vari-
ables beyond that of the angle of leaf distribution. These 
include the vertical and horizontal distribution of leaves and 
branches, and the stand density. Other factors related to in-
strument settings also require consideration and statistical 
incorporation to improve the model. These include scan 
angle, footprint size and beam divergence. With the above 
considerations, progressively more accurate estimates of 
biophysical parameters in forested areas may become possi-
ble.  

However, it is difficult to model the gap fraction bringing 
all the physical variables of the LiDAR system and all the 
biological variables of forested areas into consideration si-
multaneously. In this study a simpler attempt was made to 
test the utilization of LiDAR data for an effective evaluation 
of the plant area index using the variable of the ratio of 
ground to total returns. Even though the result might have 
been better if the other variables mentioned above had been 
considered more fully, nevertheless the number of ground 
and canopy returns in the forested area was related to the 
PAIe. These other variables will be considered step by step 
in a future study. 

The forest stands were classified into five classes. This 
included the understory layer class even in stands where 
there technically was no understory. In the case of mono-  

 

Figure 6  Assessment of the estimated PAIe according to the forest type. A, Korea Pine; B, Japanese Larch; C, Oaks. 
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layer stands, such as for the Korean Pine stands, the under 
story in a plot was classified by k-means clustering as a 
description of the fallen leaf layer at ground level. However, 
the probability was that, in such cases, the understory class 
would be mistakenly classified into the crown base height 
class causing error in the calculation of the mean crown 
base height. Therefore, when the forest stand has a 
mono-layer, it becomes essential to perform k-mean clus-
tering upon the four classes of ground, crown base height, 
half crown height and tree height class. 

In this study the difference in accuracy of regression 
functions and their assessments can be attributed to whether 
or not the forest of the study area had leaves present. If all 
three forest types had abundant leaves, the differences of 
coefficients of determination for each forest type might also 
be attributed to the leaf properties, such as leaf physical 
form and structure. In general, laser pulses would probably 
have a greater chance of passing through needle or scale- 
like leaves than through broad leaves [36]. A pulse passing 
deeper into the crown would generate multiple returns for 
each echo. If foliage is distributed densely within the crown, 
such as for the Korean Pines, laser pulses would be pri-
marily reflected from the canopy surface which is mostly 
composed of leaves. In contrast, laser pulses reflected from 
broadleaf stands have less chance of penetration into the 
canopy surface than those of needle leaf stands. Therefore, 
multiple returns passing through broad leaves might be 
generated in the mid canopy layer, rather than the canopy 
surface, as shown in Figure 7 [37].  

However, this study was performed with some stands en-
tirely devoid of leaves (Larch and Oak stands) with another 
stand having leaves present (the Pine stand). Therefore, the 
relative influence upon reflectance by leaf properties could 
not be evaluated. Therefore, the main factor affecting the 

variation of accuracies was determined to be simply the 
presence of absence of leaves on branches. In future LiDAR 
studies, the difference of reflectance between broad- and 
needle-leaves should be evaluated using data acquired in 
late spring or summer where leaves of all trees will be pre-
sent. 

5  Conclusion 

The PAIe was estimated using the characteristics of laser 
interception by the canopies of three forest types: Korean 
Pine, Japanese Larch and Oak. The coefficients of determi-
nation between the observed and predicted PAIe for these 
three types were 0.82, 0.64 and 0.59, respectively. The rela-
tively low prediction ability for the latter two species was 
attributed to the fact that these two species were devoid of 
leaves, in contrast to the former species which had abundant 
leaves. The better prediction for the Japanese Larches as 
compared to the Oaks was likely to be because the Japanese 
Larch trees had many branches while the Oaks had very few. 
This corresponded to the probability of how many branch 
reflected LiDAR pulses would be likely returned for each of 
these species. In conclusion, PAIe can be effectively esti-
mated using airborne LiDAR data. The accuracies of Li-
DAR-derived CBH and PAIe can be acceptable, especially 
when considering the time and effort required for data col-
lection in the field using manual measurements. Better ac-
curacy would be expected if the study would be performed 
in late spring when shoots and leaves begin to appear. 
Another future investigation is planned to estimate the PAIe 
in another deciduous forest type and also to analyze sea-
sonal differences in the PAIe using comparison of LiDAR 
data acquired during the leaf-on and leaf-off seasons. 

 

Figure 7  Relative LiDAR data frequency according to stand height in coniferous and deciduous stands [37]. The relative frequency reflected from the 
canopy surface is higher from the coniferous stand than from the deciduous stand. Therefore, the vertical length of the coniferous canopy described by Li- 

DAR data is shorter than that of the deciduous canopy. A, Coniferous stand; B, deciduous stand. 
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