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Abstract Aerosol emissions from biomass burning are of specific interest over the globe due to their strong
radiative impacts and climate implications. The present study examines the impact of paddy crop residue
burning over northern India during the postmonsoon (October–November) season of 2012 on modification of
aerosol properties, as well as the long-range transport of smoke plumes, altitude characteristics, and affected
areas via the synergy of ground-based measurements and satellite observations. During this period, Moderate
Resolution Imaging Spectroradiometer (MODIS) images show a thick smoke/hazy aerosol layer below 2–2.5 km
in the atmosphere covering nearly the whole Indo-Gangetic Plains (IGP). The air mass trajectories originating
from the biomass-burning source region over Punjab at 500m reveal a potential aerosol transport pathway
along the Ganges valley from west to east, resulting in a strong aerosol optical depth (AOD) gradient.
Sometimes, depending upon the wind direction and meteorological conditions, the plumes also influence
central India, the Arabian Sea, and the Bay of Bengal, thus contributing to Asian pollution outflow. The increased
number of fire counts (Terra and Aqua MODIS data) is associated with severe aerosol-laden atmospheres
(AOD500nm> 1.0) over six IGP locations, high values of Ångströmexponent (>1.2), high particulatemass 2.5 (PM2.5)
concentrations (>100–150μgm�3), and enhanced Ozone Monitoring Instrument Aerosol Index gradient (~2.5)
and NO2 concentrations (~6×10

15mol/cm2), indicating the dominance of smoke aerosols from agricultural crop
residue burning. The aerosol size distribution is shifted toward the fine-mode fraction, also exhibiting an increase
in the radius of fine aerosols due to coagulation processes in a highly turbid environment. The spectral variation of
the single-scattering albedo reveals enhanced dominance of moderately absorbing aerosols, while the aerosol
properties, modification, and mixing atmospheric processes differentiate along the IGP sites depending on the
distance from the aerosol source, urban influence, and local characteristics.

1. Introduction

Biomass burning is a common source of atmospheric pollution and poor air quality that has adverse impacts
at local, regional, and global scales with direct short- and long-term climate implications and serious risk to
human health [Andreae andMerlet, 2001; Arola et al., 2007; Nastos et al., 2010]. On a global scale, the contribution
of biomass-burning aerosols to radiative forcing was found to be +0.04±0.07Wm�2 [Forster et al., 2007],
thereby reducing the amount of sunlight reaching the Earth’s surface and heating the lower and middle
troposphere. Furthermore, the radiative effect of smoke must be taken into account to predict the overall
impact of aerosols on local weather and regional climate that alters atmospheric dynamics and thermodynamics
[Turetsky et al., 2011]. On a global scale, the burning of agricultural crop residue and clearing of forests accounts
for about 90% of total wildfires [Food and Agriculture Organization, 2009; Barnaba et al., 2011] mostly occurring
in equatorial and South Africa, Amazonia, and Southeast Asia; the remaining 10% is dominated by wild forest
fires and grassland burning.

Local and regional meteorology (air temperature, wind speed, and prolonged droughts) plays a crucial role in
the ignition and spread of forest fires, while agricultural burning is commonly practiced by the farmers in
developing countries to improve the nutrition level in the soil and agricultural productivity. In Asia, three types
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of burning activities dominate, (i) forest fires (45%), (ii) agricultural crop residue burning (34%), and (iii)
grassland fires (20%), with India exhibiting the second highest crop residue burning (84 Tg/yr) [Streets and
Yarber, 2003]. It was estimated that rice residue produced in India is ~97 Tg (6 years 1999–2005 average) out of
which 22–23% is usually burned in fields as surplus, producing huge amounts of carbonaceous aerosols and
trace gases [Gadde et al., 2009; Vadrevu et al., 2011].

Aerosols over India show a mixture of anthropogenic emissions, smoke from seasonal forest fires or crop
residue burning, long-range transported or even locally produced dust, and particles of marine origin
during the summer monsoon. Every year, during the postmonsoon season (October–November), extensive
agricultural (rice) crop residue burning takes place in the Indo-Gangetic Plains (IGP), mainly in the
northwestern Indian states of Punjab, Haryana, and western Uttar Pradesh [Sarkar et al., 2013]. The
emissions from the burning locations travel thousands of kilometers downwind, covering the IGP from
west to east. Sometimes, depending on the wind speed and direction; the Arabian Sea and central south
India are also affected [Badarinath et al., 2009a, 2009b]. The mostly absorbing biomass-burning aerosols
contribute significantly to the surface radiative forcing (�57.2 to �96.9Wm�2) over the region and are
responsible for large (43.0 to 86.5Wm�2) atmospheric (lower and middle troposphere) heating [Sharma
et al., 2012]. Internal or external mixing with other anthropogenic and natural aerosols forms the
Atmospheric Brown Clouds, composed of soot, sulfates, organics, dust, etc. [Carimichael et al., 2009], that
contribute to the Asian pollution outflow and haze [Lawrence and Lelieveld, 2010], which plays an important
role in solar dimming, atmospheric heating and stability, monsoon circulation, and hydrological cycle
[Pinker et al., 2005; Ramanathan et al., 2005, 2007; Tripathi et al., 2007; Bollasina et al., 2008; Randles and
Ramaswamy, 2008]. Furthermore, Gustafsson et al. [2009] observed that black carbon (BC) aerosols and
associated dense brown clouds affect human health, cause pulmonary disease, bronchitis, and asthma.
Depending on the nature of the biomass-burning conditions, biomass-burning aerosols exhibit different
optical properties in how they absorb, reflect, and scatter solar radiation [Reid et al., 1999; Eck et al., 2003].
As a consequence, they induce an increase or reduction of cloud cover and albedo, depending on the
vertical distribution of the aerosols within or above the clouds [Feingold et al., 2005] and reduce rainfall
[Rosenfeld, 2000]. However, the interaction between biomass-burning aerosols and clouds, either over land
or the oceans, is a highly complicated and uncertain phenomenon strongly dependent on the vertical
distribution and relative height between absorbing aerosols and clouds [Koch and Del Genio, 2010]. In view
of the important role of biomass burning over the IGP, the quantitative evaluation of aerosol loading,
emission characteristics, and long-range smoke plume transport has to be examined.

Satellite remote sensing is a well-established tool for monitoring wildfires, mapping the burned areas,
and evaluating biomass-burning aerosols [Kahn et al., 2007; Kaskaoutis et al., 2011a; Barnaba et al., 2011;
Gautam et al., 2013]. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) sensor includes
a 1 km active fire product (http://rapidfire.sci.gsfc.nasa.gov/) and a burned area product at 500m resolution
[Giglio et al., 2003; Roy et al., 2005]. Furthermore, in situ campaigns (Smoke Clouds, and Radiation-Brazil,
Southern African Fire-Atmosphere Research Initiative, and Zambian International Biomass Burning
Emissions Experiment) have taken place at several areas over the globe suffering from seasonal forest
fires and biomass burning [Reid et al., 1999; Eck et al., 2001, 2003]. In recent years, several techniques
have been established for satellite monitoring of forest fires, also associated with chemical transport
models simulating smoke plumes and their impact from local-to-regional scales [Kontoes et al., 2009;
Hodnebrog et al., 2012; Reche et al., 2012].

The present study mainly focuses on investigating the effects of extensive crop residue burning during the
postmonsoon season of 2012 on the modification of aerosol properties over northern India and studying
the altitude variation of smoke plumes and the regions that are mostly affected. In this respect, a
synergy of ground-based (Sun photometer measurements at six locations over the IGP) and satellite
observations (MODIS, Ozone Monitoring Instrument (OMI), and CALIPSO) was utilized. Initially, temporal
and spatial evolution of the fire counts and associated aerosol emissions via MODIS and OMI sensors is
studied over the IGP during October–November 2012. In the second part, analysis of the trajectory
altitudes and the downwind-affected areas takes place. Furthermore, Sun photometer (Microtops-II and
CIMEL) measurements of several aerosol properties over six IGP sites are utilized to study the effects of
agricultural biomass burning.
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2. Material and Methods
2.1. Study Region

The state of Punjab in northwestern India produces about two thirds of the country’s food grains and is known
as the country’s “bread basket” [Sharma et al., 2010]. This region, as well as the nearby states of Haryana and
Uttar Pradesh, is dominated by annual wheat-rice crop rotation, and the harvesting leaves large quantities of
straw in the fields. The wheat residue is usually used for animal feed, but the paddy residue is burnt (~17×106 t
each year) in the fields, emitting large amounts of submicron aerosols and trace gases (CO2, CO, CH4, N2O, SO2,
NOx, and nonmethane hydrocarbons) [Sahai et al., 2007]. During the postmonsoon season (October–November),
weather over the IGP is fairly dry with average daytime relative humidity in the range of 40–70%, moderate
temperatures of 20–30°C and light winds (1–2ms�1) from the northwest, favoring the accumulation of aerosols
and their slow transport along the Ganges valley [Mishra and Shibata, 2012]. The postmonsoon seasons of 2006
and 2007 have already been analyzed [Badarinath et al., 2009a, 2009b; Sharma et al., 2010], as well as the severe
aerosol-laden atmospheres in 2008 [Kharol et al., 2012; Sharma et al., 2012]. Furthermore, Mishra and Shibata
[2012] performed a comprehensive analysis of aerosol optical properties and vertical profiles over the IGP
during postmonsoon 2009. The present study emphasizes the intense biomass-burning season of postmonsoon
2012, when thick smoke plumes covered the whole IGP region for many days.

2.2. Data Set

Multiple ground-based and satellite observations of various aerosol properties have been carried out over
the IGP during the postmonsoon 2012. The season is divided into four subperiods based on the number of
fire counts, the intensity of the agricultural burning, the associated emissions and aerosol loading, i.e., (i)
preburning (1–15 October 2012), (ii) early burning (15–30 October 2012), (iii) late burning (1–17 November
2012), and (iv) postburning (18–30 November 2012).
2.2.1. Microtops-II Sun Photometer
Table 1 summarizes the ground-based data set used in the present study corresponding mostly to Sun
photometer measurements over six IGP sites, from northwest (Patiala) to southeast (Gandhi College) (Figure 1). At
four locations (Patiala, Delhi, Greater Noida, and Varanasi), the spectral aerosol optical depth (AOD) measurements
were taken by means of Microtops-II (MT) Sun photometer at various wavelength channels, while in Kanpur and
Gandhi College, the data set consists of AERONET (Aerosol Robotic Network) recordings. MT Sun photometers
have been extensively used for aerosol studies over Patiala [Kharol et al., 2012; Sharma et al., 2012], Delhi [Singh
et al., 2010; Lodhi et al., 2013], Greater Noida [Sharma et al., 2014], and Varanasi [Kumar et al., 2012; Tiwari et al.,
2013] and have been well calibrated for accuracy in their retrievals. The field of view of the MT is 2.5°, while the full
width at half maximum bandwidth at each of the AOD channels is 2.4±0.4nm. Typical errors in AOD
measurements fromMTare in the range of 0.02–0.03 [Morys et al., 2001], and the aerosol retrievals were performed
from the instantaneous solar flux measurements using the instrument’s internal calibration. Furthermore, for
minimizing any error in spectral aerosol measurements and the computed parameters, the procedure described
by Sharma et al. [2014] was considered in each MT data set. At each location, three sets of spectral scans were
taken at each time under cloudless skies, from which the one that best coincides with the Ångström’s formula
(AODλ=βλ

�α) and the second-order polynomial fit in the lnAOD versus lnλ was used for the analysis [Kaskaoutis

Table 1. Locations, Instruments, and Availability of Data in the Indo-Gangetic Plains Used in the Current Study During the Postmonsoon (October–November)
Season of 2012

Location Instruments Availability of Measurements

Patiala (30.33°N, 76.40°E, 249m) Microtops-II Sun photometer; six channels
(380, 440, 500, 675, 800, and 870 nm)/GRIMM

44days, 700 scans/PM10, PM2.5,
and PM1.0 (daily: 09:00–16:00 LT)

Delhi (28.38°N, 77.08°E, 238m) Microtops-II Sun photometer; four channels
(340, 500, 870, and 1020nm)

27 days, 254 scans

Greater Noida (28.28°N, 77.28°E, 248m) Microtops-II Sun photometer; five channels
(440, 500, 675, 870, and 936 nm)

32 days, 64 scans

Kanpur (26.51°N, 80.23°E, 123m) AERONET CIMEL 318; seven channels
(340, 380, 440, 500, 675, 870, and 1020nm)

51 days, 1779 scans

Varanasi (25.27°N, 82.99°E, 83m) Microtops-II Sun photometer; five channels
(380, 440, 500, 675, and 870 nm)

53 days, 813 scans

Gandhi College (25.87°N, 84.12°E, 60m) AERONET CIMEL 318; seven channels
(340, 380, 440, 500, 675, 870, and 1020 nm)

57 days, 1567 scans
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et al., 2011b; Sharma et al., 2014]. Cases in which the polynomial fit expresses R2 value below 0.97 were excluded,
as well as cases with AOD or Ångström exponent (α) above the daily mean ±2 standard deviation. The latter was
taken in order to exclude some few data contaminated by thin (undetectable with the naked eye) cirrus clouds
that result in high AOD and low values of α. The Ångström wavelength exponent (α) was obtained from the
spectral AODs at each location using the least squares fittingmethod for the broad spectrum and the Volzmethod
for the narrow bands at shorter and longer wavelengths (see results in Table 2).

Figure 1. Terra MODIS observations over India during certain days in postmonsoon season 2012 showing thick smoke plumes over IGP and central India.
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2.2.2. AERONET
The AERONET retrievals in Kanpur and Gandhi College correspond to cloud-screened and quality-assured
(Level 2.0) data following the uncertainties described elsewhere [Holben et al., 1998; Eck et al., 1999; Dubovik
et al., 2000; Smirnov et al., 2000; Singh et al., 2004; Giles et al., 2011]. In addition to spectral AOD and Ångström
exponent values via direct Sun measurements from CIMEL Sun/sky radiometers (340–1020 nm), the
almucantar retrievals (440–870 nm) via the angular distribution and magnitude of sky radiances as well as
the measured AOD from direct Sun measurements [Dubovik et al., 2002, 2006] have been also used for the
spectral single-scattering albedo (SSA), asymmetry parameter (g), and volume size distribution. Common
aerosol studies and comparison of the optical and physical properties between Kanpur and Gandhi College
can be found elsewhere [Srivastava et al., 2011, 2012; Kumar et al., 2012; Ramachandran and Kedia, 2012].
These studies also provide details about the topography, meteorological and atmospheric conditions, aerosol
properties, types, and long-range transport.
2.2.3. PM Concentrations
Particulate mass (PM) concentrations were also measured at Patiala University using a GRIMM Aerosol
Spectrometer (optical particle counter; Model 1.108; 15 channels) that allows continuous measurements of
the size distribution and concentration of airborne particles. Its measuring principle is based on the light
scattered by individual particles, incident from a semiconductor laser in a measuring cell. The scattered light
pulse from every single particle is counted and the intensity of scattered light signal classified to certain
particle size. Scattering induced by particles of various sizes is measured by a photodiode detector, amplified,
and finally binned to give the distribution of PM in 15 different grain size classes from 0.3 to 20μm diameter.
The instrument is capable of counting particles from 1 particle l�1 of air to 2 x 106 particles l�1, and the
lower detectable mass is 0.1μgm�3 [Kharol and Badarinath, 2006]. The particulate mass concentrations

Table 2. Aerosol Optical Properties (AOD500 nm, Ångström Exponent at Different Spectral Bands and Reff ) Over IGP Sites
During the Different Phases of the Burning Period in Postmonsoon 2012a

IGP Sites Aerosol Optical Properties

Patiala AOD500 nm α440–870 α380–500 α675–870
Preburning (277) 0.55 ± 0.13 0.77 ± 0.17 0.95 ± 0.08 0.62 ± 0.26
Early burning (246) 0.66 ± 0.36 1.07 ± 0.27 1.07 ± 0.15 1.00 ± 0.38
Late burning (100) 0.90 ± 0.39 1.03 ± 0.25 0.93 ± 0.21 0.91 ± 0.39
Postburning (77) 0.51 ± 0.24 0.91 ± 0.18 0.95 ± 0.11 0.66 ± 0.41
Delhi AOD500 nm α340–1020 α340–500 α870–1020
Preburning (115) 0.60 ± 0.24 0.84 ± 0.17 0.81 ± 0.22 0.98 ± 0.29
Early burning (78) 0.76 ± 0.26 0.97 ± 0.27 0.87 ± 0.17 0.90 ± 0.35
Late burning (4) 0.84 ± 0.07 0.97 ± 0.03 0.57 ± 0.03 1.19 ± 0.04
Postburning (57) 0.59 ± 0.18 0.94 ± 0.11 0.77 ± 0.11 0.79 ± 0.25
Greater Noida AOD500 nm α440–870 α380–500 α675–870
Preburning (21) 0.64 ± 0.22 1.02 ± 0.18 0.91 ± 0.17 1.12 ± 0.20
Early burning (16) 1.28 ± 0.61 1.25 ± 0.22 1.04 ± 0.13 1.38 ± 0.31
Late burning (17) 1.47 ± 0.47 1.21 ± 0.14 0.83 ± 0.14 1.49 ± 0.17
Postburning (64) 0.84 ± 0.24 1.19 ± 0.17 0.48 ± 0.29 1.37 ± 0.23
Kanpur AOD500 nm α440–870 α380–500 α675–870 Reff f (μm) Reff c (μm)
Preburning (126/19) 0.34 ± 0.06 0.92 ± 0.19 0.61 ± 0.31 0.80 ± 0.25 0.148 2.168
Early burning (559/80) 0.87 ± 0.37 1.32 ± 0.15 1.06 ± 0.10 1.31 ± 0.25 0.154 2.277
Late burning (608/81) 1.04 ± 0.39 1.21 ± 0.10 0.80 ± 0.16 1.31 ± 0.16 0.176 2.596
Postburning (486/84) 0.75 ± 0.15 1.19 ± 0.04 0.94 ± 0.09 1.19 ± 0.04 0.155 2.574
Varanasi AOD500 nm α440–870 α380–500 α675–870
Preburning (106) 0.83 ± 0.32 0.81 ± 0.23 1.46 ± 0.22 0.97 ± 0.29
Early burning (130) 0.82 ± 0.32 0.85 ± 0.19 1.43 ± 0.16 1.29 ± 0.29
Late burning (270) 1.17 ± 0.31 1.14 ± 0.15 0.92 ± 0.19 1.25 ± 0.29
Postburning (207) 0.78 ± 0.37 1.17 ± 0.11 1.01 ± 0.19 1.29 ± 0.19
Gandhi College AOD500 nm α440–870 α380–500 α675–870 Reff f (μm) Reff c (μm)
Preburning (353/46) 0.90 ± 0.32 1.40 ± 0.08 1.01 ± 0.15 1.53 ± 0.15 0.168 2.510
Early burning (626/65) 0.61 ± 0.20 1.41 ± 0.06 1.11 ± 0.05 1.47 ± 0.11 0.156 2.397
Late burning (324/25) 1.16 ± 0.57 1.35 ± 0.07 0.82 ± 0.14 1.60 ± 0.05 0.183 2.812
Postburning (264/38) 0.81 ± 0.15 1.37 ± 0.06 0.99 ± 0.12 1.50 ± 0.06 0.163 2.695

aThe total number of spectral scans used for the analysis is shown in parenthesis for each site and burning period.
The data for the Reff at the AERONET sites Kanpur and Gandhi College are given after “/.”
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(PM10, PM2.5, and PM1) were calculated from the particle size distributions using the density factor of 2.8 g cm�3

into the instrument’s hardware. The PM measurements were taken on a daily basis from 09:00 to 16:00 local
standard time (LST) and are integrated for every 5min before we derive the hourly and daily averaged values.
2.2.4. MODIS Retrievals
Collection 5 (C005) Level 3 (1° × 1°) Terra and Aqua MODIS AOD550 values were used over the IGP (22–31°N,
68–89°E) following the dark target approach with lack of data over the arid and desert regions [Levy et al.,
2010] in order to reveal the aerosol hot spot areas and spatial gradients during the postmonsoon season of
2012. Several studies [Tripathi et al., 2005; Jethva et al., 2007; Prasad and Singh, 2007; Giles et al., 2011; Shi et al.,
2011] have shown a satisfactory agreement between MODIS and Kanpur AERONETAODs, since about 72% of
the retrievals fall within the expected uncertainty of ±0.05 ± 0.15 ×AOD over land [Levy et al., 2010]. MODIS
AOD550 nm data were obtained via the Giovanni Online Visualization and Analysis system (http://disc.sci.gsfc.
nasa.gov/giovanni). In addition, the MODIS (Terra and Aqua data sets) Fire Mapper product (collection 5,
spatial resolution 1 × 1 km) provided by the Fire Information for Resource Management System through the
MODIS Adaptive Processing System (https://firms.modaps.eosdis.nasa.gov/firemap/) was used for fire
detection over the IGP [Davies et al., 2009]. The detection of fire spots is achieved by a contextual algorithm
based on the strong signal of fires in the brightness temperature at infrared (4 and 11μm) channels [Giglio
et al., 2003]. Details about the MODIS fire products are given by Justice et al. [2006].
2.2.5. OMI Retrievals
In addition to MODIS, Aura OMI daily aerosol products of Aerosol Index (AI) and NO2 tropospheric amount
in mol/cm�2 were used over the IGP during postmonsoon 2012. The data set is Level-2G, Version 003,
generated by binning the original pixels from the Level-2 (15 orbits per day, 13 × 24 km spatial resolution)
into a 0.25° × 0.25° grid. The OMI algorithm for aerosol detection has been validated via comparisons with
ground-based measurements [Curier et al., 2008; Shaiganfar et al., 2011], while comparisons with surface NO2

show satisfactory agreement suggesting a bias of ±20% [Irie et al., 2008]. AI is suitably used for the detection
of soot aerosols and smoke plumes because of their absorbing nature in the UV range, but the main
disadvantage is the dependence of its values in the smoke plume altitude [Eck et al., 2001].
2.2.6. CALIPSO Observations
The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) flies at an altitude of 705 km
with a 98° inclination orbit providing new insight in atmospheric monitoring by observing the vertical profiles
of aerosols and clouds [Omar et al., 2009]. The CALIPSO satellite is comprised of three instruments, (i) the
Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), (ii) the Imaging Infrared Radiometer, and (iii) the
Wide Field Camera. The CALIOP Level 1 (version 3.01) attenuated backscatter coefficient at 532 nm (http://
www-calipso.larc.nasa.gov/products/) was used in the present study (vertical resolution of 30m) to reveal
the vertical distribution of smoke plumes over northern India during postmonsoon 2012. The CALIPSO
calibration and uncertainty as well as the CALIOP data products are discussed in detail by Powell et al. [2009]
and Rogers et al. [2011].

3. Results
3.1. Satellite Monitoring of Crop Residue Burning and Smoke Plumes

Figure 1 presents Terra MODIS true color imagery over northern India on specific days during October–
November 2012 revealing a dense smoke/haze cloud that covers the greater part of the IGP. The terrain is
nearly obscured below the dense thick plumes, which are shown to be spread from west to central east IGP
due to the prevailing northwesterly winds during postmonsoon [Mishra and Shibata, 2012]. At times, the
dense smoke follows an anticyclonic circulation depending upon the meteorological conditions and affects
central India and the northern Arabian Sea [Badarinath et al., 2009a, 2009b]. Satellite images clearly show the
smoke cloud along the Indus and Ganges Basins and not so much over the Himalayan foothills and the
Tibetan Plateau. However, ground-based measurements [Bonasoni et al., 2010; Marinoni et al., 2010] have
shown black carbon (BC) influence over the Himalayas due to transported plumes from the IGP and biomass-
burning smoke from Punjab during October and November [Dumka et al., 2010]. Despite the fact that by the
end of November the number of fire counts is reduced significantly (see Figure 2a), MODIS observations show
high aerosol accumulation over the central eastern IGP, which needs days or weeks to be diluted due to
stagnation of air masses, calm winds, and absence of precipitation that do not favor atmospheric ventilation
after the termination of the burning season.
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The analysis of MODIS (Terra and Aqua) active fire counts helps in understanding the possible source regions
and their spatiotemporal distribution over the IGP (Punjab, Haryana, and Uttar Pradesh states) during
postmonsoon 2012 (Figure 2a). The results show an increase (more than 7 times) in fire counts over Punjab
(> 600 on certain days during 28 October to 8 November) compared to other states indicating that paddy
crop residue burning is much more common in this region. Fire counts exhibit similar temporal evolution
during postmonsoon 2009 [Mishra and Shibata, 2012].

The temporal evolution of the spatially averaged MODIS AOD550nm over IGP (Figure 2b) provides evidence
that fire-related aerosols play an important role since, in general, higher AODs coincide reasonably well with
the fire pixels. The correlation coefficient between the daily values of AOD and fire counts reaches to 0.49 for
Terra MODIS and 0.32 for Aqua MODIS. It should be noted that the Aqua MODIS fire pixels in Punjab (11,339)
are about 10 times higher than those of Terra (1169), while the AOD values over the IGP are also influenced by
other sources (urban/industrial aerosols, power plants, and natural particles). On the other hand, the larger
number of fire counts does not necessarily mean higher aerosol emissions, since they strongly depend on the
severity and the duration of fires as well as the meteorological conditions, dilution, mixing processes, and
boundary layer dynamics. Considering the max AOD550 nm values over the IGP, usually detected over the
western parts, the correlation between them and fire pixels gives a coefficient of 0.63 (for Terra) suggesting a
significant dependence on biomass burning. Nevertheless, during the preburning period the moderate-to-
high AOD (about 0.4 on average) has a significant contribution from dust especially over the western IGP. On
the other hand, there is a time lag in the temporal evolution of AOD compared to that of the fire counts, since
the aerosol loading remains high during the postburning period; moreover, the highest mean AODs during
~5–12 November seem to be a direct consequence of the peak in fire counts during ~28 October to 8 November.
Similar to our results, Vadrevu et al. [2011] have observed that the burning activities are well associated with
AOD variations over the northwest IGP. The max MODIS AODs are similar in magnitude to those reported over
Patiala in October and November 2008 (2.65 and 1.71, respectively) [Sharma et al., 2012], while AODs from
agricultural fires above 2.0 were found over Zambia [Eck et al., 2001, 2003], Northeast China and Korea [Kim
et al., 2005], and Djougou, Benin [Pelon et al., 2008]. Eck et al. [2009] reported AOD values of 0.70–0.98 during the
peak biomass-burning season in the boreal forests, while MODIS AODs at the levels of 0.5–0.8 were retrieved
over the Mediterranean due to severe Greek wildfires in August 2007 [Kaskaoutis et al., 2011a].

Figure 3 shows the mean spatial distribution of the AI (left) and NO2 (right) OMI retrievals during the four
subperiods over the IGP. The results suggest a larger impact of agricultural burning on both parameters
during the late burning period, consistent with MODIS AODs and fire counts (Figure 2). However, AI strongly
depends on the smoke plume height with increased values for elevated smoke plumes [Kahn et al., 2008].
Using a combination of AI and CALIOP profiles, Guan et al. [2010] found extreme AI> 9 for smoke plumes
above 5 km, rendering AI as a surrogate measure for identifying the height of the smoke plumes. In our case,

Figure 2. (a) Temporal variation of theMODIS-derived total fire pixels over Punjab, Haryana, and Uttar Pradesh states in the IGP
region during the postmonsoon season 2012 and (b) daily variation of the Terra and Aqua MODIS AOD550nm (area-averaged
and maximum values) over IGP during the same period. The area that has been used for the averages is 22.5°–31.5°N,
74.5°–88.5°E, excluding the pixels over Himalayan range and Tibetan Plateau. The vertical bars express one standard
deviation of the area-averaged value on each day.
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the max AI values approach 2.5, with some extremes of 3–5, suggesting, in general, lower smoke plume
altitude. This is also justified via CALIOP profiles (see Figure 5) and is mainly attributed to the lesser potential
height of injection that the lower-intensity agricultural fires have compared to the crown forest fires [Guan
et al., 2010]. The AI values are similar to those reported for savanna biomass burning in Zambia [Eck et al.,
2001, 2003], while AI less than 2.0 was reported over the Himalayas during the peak (April–May) burning
season [Kumar et al., 2011; Vadrevu et al., 2012], which was found to correspond to a height of ~2.8 km and to
fresh smoke from agricultural fires. It should be noted that AI also depends on the age of the smoke, having

Figure 3. Spatial distribution of (left) Aura OMI-AI and (right) tropospheric NO2 concentrations over IGP during the four subperiods of the postmonsoon season 2012.
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higher values for fresh smoke aerosols. All of these factors affect AI, which is higher over the western IGP due
to a larger abundance of fresh smoke particles, suggesting a strong longitudinal gradient. It is characteristic
that by the end of the burning period, the highest AI is detected over eastern IGP indicating accumulation of
smoke and anthropogenic aerosols [Kar et al., 2010]. Despite the fact that extra care was taken in excluding AI
values at the edges of each orbit path that result in unrealistic high AI (see the stripes), such stripes (mostly
raw anomalies) are obvious in the AI spatial distribution; so we avoided any qualitative analysis of the AI.

The impact of the agricultural burning is also evident in the regional air quality and enhanced NO2 concentrations,
which exhibit remarkable spatiotemporal variability, with high values over standard locations associated with
urban/industrial centers and/or power plants. Besides this, during the late burning period themoderate-to-high
NO2 values (3–4×1015mol cm�2) cover a more extended area over the IGP as a direct consequence of the
biomass-burning emissions. The NO2 levels during late burning increased about 34–40% on average over the
figure’s domain compared to the preburning period, reaching up to 8–9×1015mol cm�2 over rural areas in the
western IGP, an amount that is able to attenuate 3–9% the UV300–380nm radiation [Chubarova et al., 2012].

3.2. Plume Characteristics, Long-Range Transport, and Affected Areas

Here we discuss the smoke plume characteristics and the altitude of its main transport from the hot spot
areas in Punjab to the whole Indian subcontinent and adjoining oceanic regions. The biomass-burning
emissions are mainly at the fine and accumulation mode size and can be transported over long distances
leading to enhanced aerosol loadings over areas that are mostly clear of aerosols [Barnaba et al., 2011;
Mielonen et al., 2013]. Figure 4 shows the longitudinal variation of the latitude-averaged Terra MODIS
AOD550 nm along the IGP during the four subperiods revealing the transport of aerosols and quantifying
the west-to-east AOD gradient. The analysis shows higher AOD over the western IGP, especially during the
early and late burning periods, which is significantly reduced toward eastern parts, suggesting attenuation of
the thickness of the smoke plumes along transport. The high AODs at western pixels (75°–78°E) during 20–23
October and 28 October to 6 November are detected at eastern longitudes (beyond 82°E) after 3–5 days,
suggesting that for an average distance of 800 km the smoke plume travels about 4 days. The longitudinal
decrease of AOD was satisfactorily simulated by a linear regression and was found to be 98% (86%) on
average during the early burning period for Terra (Aqua) and 54% (39%) for Terra (Aqua) during the late
burning period. This highlights the strong contribution of agricultural burning in the excess of aerosols over
the western IGP during postmonsoon. In contrast, in the postburning period the aerosol loading seems to
be higher over the eastern IGP due to accumulation and trapping of aerosols. Although the west-to-east
gradients of AOD correspond only to postmonsoon 2012, they are in general agreement with the long-term
(2000–2009) gradients observed by Kaskaoutis et al. [2011c].

Figure 5 shows the Terra MODIS imagery superimposed with CALIPSO track and CALIOP retrievals
during the nighttime of 5 November 2012. The profile of the backscatter coefficient shows large values
(2.5-4.5 10�3 km�1 sr�1) from the surface up to 2.5 km and very low above, since the smoke plumes from
agricultural burning are usually trapped within the lower stable boundary layer and are strongly influenced

Figure 4. Longitudinal variation of the AOD550 nm via Terra MODIS observations over IGP region during the four subperiods of the postmonsoon season 2012.
The line expresses the averaged longitudinal variation during each period. The vertical bars express one standard deviation from the mean latitudinal-averaged
value at each longitude. The area that has been used for the analysis is 22.5°–31.5°N, 74.5°–88.5°E, excluding the pixels over Himalayan range and Tibetan Plateau.
White pixels correspond to lack of data.
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by the static stability of the atmosphere [Kahn et al., 2007]. Similar altitude profiles of the backscatter coefficient
were found on other days during the study period, indicating low-level transport of aerosols along the IGP.
This is in line with the CALIOP profiles during the postmonsoon 2009 [Mishra and Shibata, 2012], when the
maximum aerosol loading was found below 1 km, with larger values over the western IGP progressively
decreasing toward eastern parts. Modern Era Retrospective-analysis for Research and Applications 2-D data set
[Badarinath et al., 2010] over the IGP (0.5° × 0.75° spatial resolution) shows that the boundary layer height varies
between ~300 and ~800m during postmonsoon 2012, suggesting the possibility of smoke plume transport
above the boundary layer. The aerosol subtype information [Omar et al., 2009] (inset image) shows strong
contribution of smoke aerosols (black), along with continental pollution and dust pollution over the IGP. A
similar scenario dominated during the whole burning period, suggesting mixing of biomass burning with dust
and anthropogenic emissions over the whole region [Dey and Tripathi, 2008]. Comparisons of the CALIOP
aerosol subtypes with those reported by AERONET have shown a satisfactory agreement of 70%, with higher
accuracy for the coarse particles [Mielonen et al., 2009].

Figure 6 provides insight into the air mass trajectory pathways and traveling heights originating from the
biomass-burning hot spot region. In this respect, 5 day forward trajectories were obtained via the HYSPLIT
(Hybrid Single-Particle Lagrangian Integrated Trajectory) model [Draxler and Rolph, 2003] originating at
the matrix (29.5–31.5°N, 74–76°E) located over Punjab. The initial trajectory altitude was fixed at 500m,
since the aerosols are more abundant below 1 km, and the smoke plumes are mostly transported within
the lower troposphere (CALIOP profiles). Therefore, the air masses originating from Punjab at this altitude
are expected to be heavy smoke laden, since they strongly interact with the planetary boundary layer and
the aerosol source. However, this does not prevent aloft air masses from also carrying smoke particles
over large distances. The National Center for Environmental Prediction/National Center for Atmospheric
Research meteorological field (2.5° × 2.5°) and the vertical wind provided by the model were used for
derivation of the forward trajectories, which are plotted against their traveling altitude (colored scale)
for each subperiod. The height of the smoke injection and the level of the traveling plume are key
parameters in aerosol transport models as they mostly determine the distance and the downwind-
affected areas [Kahn et al., 2008].

Figure 5. Total attenuated backscatter (km�1 sr�1) at 532 nm from nighttime CALIPSO observations on 5 November 2012
(20:31–20:44 UTC, +5:30 LST). The background image corresponds to Terra MODIS on 5 November 2012. The CALIPSO
trajectory over India is shown in the inset image, aswell as the aerosol subtype (1: cleanmarine, 2: dust, 3: polluted continental,
4: clean continental, 5: polluted dust, and 6: smoke).
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In general, the synoptic meteorology field over the Indian subcontinent during the postmonsoon season is
mostly favorable to easterly transport along the IGP [Kaskaoutis et al., 2014], while in some cases it favors the air
mass shifting toward thewest-southwest affecting central south India [Badarinath et al., 2009a] and the Arabian
Sea [Badarinath et al., 2009b]. The analysis shows that in the vast majority of the cases, and above the most
affected areas, the traveling height of the air masses is below 500–800m, which is well within the boundary
layer, whereas in some cases, especially during the preburning and early burning periods, the air masses over
the IGP may travel above the boundary layer. Smoke-laden air masses originating from Punjab usually travel at
higher altitudes (2–2.5 km) over central India, justifying previous results that found elevated smoke-aerosol
layers up to 3 km on certain days of October and November [Badarinath et al., 2009a] depending upon the
meteorological conditions. The air mass trajectories exhibit some differences proportional to the subperiod,
revealing a higher possibility for transported aerosols over the Bay of Bengal during the postburning period.
Smoke-laden air masses over the sea regions may affect cloud albedo, microphysical properties, and radiative
forcing of marine stratocumulus clouds as earlier observed [Brioude et al., 2009]. On the other hand, the
Himalayan-Karakoram-Hindu Kush mountain range is almost not affected by the low-level smoke air masses.

The trajectory-density plot and analysis (Figures 7 and 8) show that the region that is mostly affected by the
Punjab-originated smoke air masses is the western IGP, especially during the period 16 October to 17
November, which is the most aerosol-laden (Figures 2 and 3). The eastern IGP is much lesser but also
significantly affected, while central India receives smoke air masses mostly during the preburning and late
burning periods. The Bay of Bengal and the Arabian Sea are affected the least; however, the influence over
the Arabian Sea is higher, justifying the pollution-haze outflow during postmonsoon [Dey and di Girolamo,
2010] and the enhanced CO levels [Badarinath et al., 2009b].

Figure 6. Altitudinal variation of the 5day forward air mass trajectories starting from Punjab state (matrix: 29.5–31.5°N, 74–76°E, red square) during the four subperiods
of the postmonsoon season 2012.
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3.3. Aerosol Properties Over Indo-Gangetic Plains

In this section, we have analyzed PM concentrations at Patiala and the optical properties and modification
processes of aerosols over six locations in the IGP during the biomass-burning period. Figures 9a–9c show the

daytime (09–16 h) variations in PM10, PM2.5,
and PM1.0 concentrations, respectively,
measured at Patiala, very close to the
aerosol hot spot region. It is shown that
the diurnal variability is similar for all of
the particle sizes, being more pronounced
(morning and afternoon peaks) during the
late burning periodwhen the biomass burning
is at its highest intensity. Similar diurnal
variability, but with lower concentrations, is
observed during the early burning period,
while during preburning and postburning
periods a progressively decreasing diurnal
pattern is observed. The diurnal cycle may
be explained by the preferable time of
agricultural burning, i.e., morning or early
afternoon, and by the atmospheric dynamics

Figure 7. Density plots of the 5 day forward air mass trajectories for each subperiod during the postmonsoon season 2012.
(Region 1 (24–31°N, 74–80°E): west IGP, Region 2 (22–27°N, 81–88°E): east IGP, Region 3 (15–23°N, 74–80°E): central India,
Region 4 (12–21°N, 81–92°E): east coast and Bay of Bengal, and Region 5 (14–23°N, 66–73°E): west coast and Arabian Sea.)
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forming a deeper boundary layer for aerosol
dispersion during noontime. The agricultural burning
is very random once the crop is harvested, but
normally the farmers avoid the days with high winds.
Moreover, it should be noted that the diurnal
variation of PM concentrations during the intense
burning period is similar to that found for BC aerosols
over Patiala [Sharma et al., 2012; Kharol et al., 2012].
Very high PM10 concentrations (> 300μgm�3, on
average, and above 600μgm�3 on some days) and
large fractions of PM2.5 and PM1.0 (~65% and ~55%
of the PM10, respectively) were found during the
morning hours of the late burning period, strongly
contributing to the formation of haze and limitation
of visibility (Figure 10). The daily variation of PM
concentrations and their ratios (Figure 10) highlights
the large increase in the near-surface aerosol
concentrations associated with concurrent
enhancement in the fraction of accumulation and
fine aerosols during the peak burning period. Awasthi
et al. [2011] found that PM2.5 accounts for ~55%–64%
of PM10, while the aerosol load in PM2.5 increased
by ~80% during the rice crop residue burning
compared to the wheat crop residue burning.
Furthermore, Sharma et al. [2012] found much larger
(150–300μgm�3) concentrations of PM2.5 compared
to the coarse (>PM10) nonrespirable (50–180μgm

�3)
at Patiala during October–November 2008.

Figure 11 provides the temporal AOD and Ångström
α variations at six IGP sites, which can be well
explained by the fire counts (Figure 2a) and
trajectory analysis (Figures 7 and 8), suggesting
intensity of biomass burning and smoke coverage
over whole IGP during the 15 October to 15
November period (average increase of 47% and
19% in AOD and α, respectively, compared to the
preburning period). The AOD500 nm over the IGP
sites was found to be in the range of ~0.4–~2.4,
while in 63% of the cases it was above 0.8.
Comparable values for AOD500 nm (0.81 ± 0.41 and
0.64 ± 0.25) were observed over Patiala in the
postmonsoon seasons of 2008 and 2009, respectively

[Sharma et al., 2012], while monthly mean values of 0.57 (October 2009) and 0.74 (November 2009) were
reported over Kanpur [Mishra and Shibata, 2012]. Increased AOD500nm of 0.97± 0.56 and 0.76± 0.45 was also
found over Patiala during the burning seasons of October 2007 and October 2006, respectively [Sharma et al.,
2010]. High values (up to 1.2) of AOD550nmwere observed over Finland due to transported smoke aerosols from
Russian agricultural fires [Arola et al., 2007], while Chubarova et al. [2012] found extreme maximum AOD500nm

values of ~6 at west Russian AERONET sites due to severe 2010 wildfires. The temporal variation of α reveals the
dominance of the fine aerosols (values above 1.2 during the peak burning), which are comparable to those
found for biomass burning in Amazonia and African Savannas [Reid et al., 1999, 2005]. Comparable values
(1.31± 0.31, October 2007, and 1.10± 0.26, October 2006) of α were reported over Patiala during the biomass-
burning seasons of previous years [Sharma et al., 2010]. The analysis shows an increase in AOD500nm during late
burning, followed by early burning and associated with concurrent increase in α (Table 2). The values of α are
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Figure 9. Mean semidiurnal (09:00–16:00 LST) variation of the
(a) PM10, (b) PM2.5, and (c) PM1.0 concentrations at Patiala
during the four subperiods of the postmonsoon 2012. The
vertical bars correspond to 1 standard deviation of the mean.
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found to be slightly lower during the late
burning period compared to early burning,
since the possible coagulation of smoke
aerosols and the aging processes lead to
formation of larger particles. Moreover,
in general, the values of α at longer
wavelengths are higher than those at
shorter wavelengths during early and late
burning periods, leading to a concave type
of curve in the lnAOD versus lnλ, indicative
of biomass burning [Eck et al., 2001, 2003].
The aerosol properties may differentiate
significantly from site to site (Figure 11 and
Table 2) since, except smoke, local sources
of anthropogenic pollution and soil particles
may have a significant contribution to both
AOD and α providing a mixing state of

aerosols [Dey and Tripathi, 2008] which is more pronounced at the western sites (Patiala, Delhi, and Greater
Noida) due to higher dust contribution (closer to the Thar desert).

The Ångström exponent depends on several parameters, such as the refractive index, aerosol size distribution,
effective radius, fine-to-coarse-mode fraction, and the wavelength range used for its determination [Eck et al.,
1999; Reid et al., 1999]. Figure 12 shows the correlation between AOD500 nm and α at the six IGP locations,
suggesting atmospheric characteristics of regions strongly affected by biomass-burning aerosols. Similar
scatterplots were observed in South Africa and Amazonia during the dry burning season [Reid et al., 1999; Eck
et al., 2003]. The large (>1.0) values of AOD are mostly associated with additional aerosol loading due to
agricultural crop residue burning (α> 1.2). The atmospheric aerosol mixing/modification processes, such as
gas-to-particle conversion, growth by aging and humidification, and coagulation and long-range transport,
alter the aerosol properties along the IGP sites. A long tail of decreased α values at lower AODs is shown for
the western IGP locations (Patiala, Delhi, and Greater Noida), suggesting more heterogeneous atmospheric
conditions and various sources of aerosols, also affected by the arid regions and the Thar desert [Lodhi et al.,
2013; Sharma et al., 2014]. In contrast, the easternmost location (Gandhi College) exhibits negligible variability
in α values with increasing AOD suggesting homogeneity in sources and a well-mixed atmosphere in which

anthropogenic pollution and biomass
burning dominate [Srivastava et al., 2012].

Changes in AOD and α values correspond
to modification in the aerosol size
distribution [dV(r)/dlnr, μm3/μm2], shown
in Figures 13a and 13b for Kanpur and
Gandhi College AERONETsites, respectively.
In all cases, the aerosol size distribution
shows a bimodal pattern in which the fine-
mode possesses a significant or even
dominant fraction, characteristic of sites
affected by biomass burning, although the
Kanpur cases correspond mostly to the
urban aerosol type, with significant fraction
of coarse mode [Dubovik et al., 2002].
However, during the late burning period, a
pronounced increase in fine mode along
with a shift of fine Reff toward larger
values (Table 2) is observed at both sites.
This corresponds to an overall increase in
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α440–870 values; however, the increase in
fine-mode radius during the late burning
period leads to decrease in α380–500 at both
sites (Table 2). This is due to coagulation
processes that enhance the fine-mode
size which are most effective under very
turbid environments [Reid et al., 1999].
Similar findings were observed during the
severe Russian fires in 2010, where an
approximately linear correlation between
fine-mode radii and AOD was found but
without noticeable changes in the coarse
mode [Chubarova et al., 2012]. The influence
of crop residue burning seems to be much
more intense in the rural environment
of Gandhi College (more pronounced
increase in fine mode during the late

burning period), compared to urban Kanpur, where local activities and traffic resuspend dust enhance
the coarse-mode fraction.

Figures 14a and 14b show the spectral variations of SSA and asymmetry parameter (g), respectively, over
Kanpur and Gandhi College AERONET sites as mean values for each burning period. The SSA spectral values
vary from as low as 0.80 to as high as 0.96 between the burning periods and sites, suggesting a strong
dependence onmany factors, like the type of the biomass, the phase of the burning, aging of emitted smoke,
mixing with other aerosol types, OC/EC (organic to elemental carbon) ratios, and meteorological conditions
[Bond and Bergstrom, 2006; Eck et al., 2003]. SSA values are lower in Kanpur and decrease with wavelength,
suggesting more absorbing type of aerosols during early burning, late burning, and postburning periods as
this site is closer to the aerosol source, e.g., coal-based power plant, and during burning period strong aerosol
mixing is expected [Prasad et al., 2006]. In contrast, the high SSA and spectrally independent values in Kanpur
during preburning period are characteristic of well-mixed dust with anthropogenic pollution. Biomass
burning enriches the BC concentrations, K+, and OC/EC ratio [Kirpa Ram et al., 2010], corresponding to
enhanced aerosol absorption and AOD. However, the observed SSA values are larger than those reported
for fresh smoke from flaming scrub forest fires [Reid et al., 2005] due to mixing and aging processes over
IGP. On the other hand, the SSA values over the IGP are similar or slightly lower than those for boreal forest
fires, suggesting a significant amount of smoldering combustion resulting in relatively low BC mass fraction
[Eck et al., 2009; Giles et al., 2012].

The asymmetry parameter (g) defines the angular distribution of scattering and exhibits lower values
decreasing with wavelength for smaller and more spherical particles, like soot and carbonaceous aerosols
[Andrews et al., 2006]. Both sites exhibit a decreasing tendency of g with wavelength with small differences

Figure 13. Columnar volume size distribution (μm3/μm2) of aerosols over (a) Kanpur and (b) Gandhi College during the
different phases of the burning period in postmonsoon 2012.
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over different locations in IGP region during October–November 2012.
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between the burning periods. Its magnitude of 0.63–0.66 (670 nm) is characteristic for biomass-burning
aerosols mixed with anthropogenic and natural particles, while the slight increase in the near-IR region in
Kanpur during the preburning period suggests an increased contribution of dust aerosols [Dubovik et al.,
2002]. Recently, Kaskaoutis et al. [2013] showed that the aerosol episodes (AOD500 nm> 0.928) over Kanpur
during the postmonsoon season are the most frequent over the year associated with enhanced presence of
biomass-burning aerosols. These modify the aerosol optical and physical properties, increase the radiative
forcing, and alter the atmospheric heating rates in a manner that is similar to that observed for the
modification in size distribution, spectral SSA, and g.

For studying the aerosol modification processes over the IGP due to the contribution of crop residue burning,
we have used a classification scheme [Gobbi et al., 2007], which combines the Ångström exponent (α440–870)
and its spectral variation (dα= α440–675–α675–870) with the radius of fine-mode particles (Rf ) and the fine-mode
fraction (η) as the grid parameters in grouped AOD. Further details about the scheme preparation, assumptions,
and applications are discussed by Gobbi et al. [2007] and Sinha et al. [2012]. In general, aging and coagulation
processes increase Rf. The increase of AOD with Rf infers the aerosol hydration, while increase in AOD with
increasing Rf and decreasing α is attributed to the aging and/or coagulation and the reverse (i.e., increase
in AOD with decreasing Rf and increasing α) corresponds to freshly emitted fine aerosols [Kaskaoutis et al.,
2011b; Sinha et al., 2012]. This scheme was applied over four IGP locations (Patiala, Kanpur, Varanasi, and
Gandhi College) (Figures 15a–15d). Pronounced differences were found between the four locations due to
heterogeneity in atmospheric composition, urban and industrial emissions, distance from the burning source,
and mixing processes during aerosol transport. However, in all cases, the data scatter reveals that the high
AODs are mostly clustering at the fine mode corresponding to large (>1.0) values of α, negative dα, and
large η> 70% values.

Patiala exhibits the largest variation in the scatter plot (α, dα, and AOD) indicating various dominant aerosol
types and a significant impact of both fine and coarse-mode particles. For the low AOD cases, the scatter is
most and these cases confine to a larger fraction of coarse-mode particles (η< 50%) during the preburning
period (see Table 2). The results reveal that for increasing AOD, the data points exhibit larger α and η values.
The increase in AOD and α is closely related to a decrease in Rf to about 0.12–0.15μm. This suggests an
enhanced presence of fine-mode aerosols, mostly freshly emitted soot particles that affect more the Rf, which
can be verified by the much higher BC concentrations over Patiala during the turbid days [Kharol et al., 2012;
Sharma et al., 2012]. Over Kanpur, the feature differentiates and is characteristic of polluted urban environments
as similar results were observed over Beijing [Wang et al., 2011]. Few data points having dα> 0 and η< 50%
indicate the influence of transported dust over the site, mainly during the preburning period. The increase in
AOD does not seem to affect the α440–870 values but enhances significantly the fine-mode fraction (80–90%)
leading to larger α675–870 (Table 2) and increases the Rf (increase in Reff and decrease in α380–500 from the early
to late burning period in Table 2). The latter corresponds to the coagulation processes discussed in the size
distribution graphs (Figure 13). The scatterplot in Varanasi is more complicated in view of the modification
processes under more turbid atmospheres and shows some similarities with specific conditions found in

Figure 14. Spectral variation of (a) SSA and (b) asymmetry parameter at Kanpur (filled circles) and Gandhi College (open
circles) AERONET stations during the four subperiods of the postmonsoon season 2012. The points for each average are
19 (46), 80 (65), 81 (25), and 84 (38) for preburning, early burning, late burning, and postburning periods, respectively, at
Kanpur (Gandhi College).
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Hyderabad during the dry premonsoon season associated with long-range transport of smoke from forest fires
in central eastern India [Sinha et al., 2012]. Some of the data points lie outside the classification scheme
associated with larger errors in α and dα estimation, but the vast majority of them form a long tail with large
variations in dα (�0.6 to 0.8), η (30–90%), and small variations (0.9–1.3) in α. Furthermore, the increase in AOD
does not reveal any favorable shift for the other variables, but a small tendency of increasing η is shown
corresponding to an enhanced contribution of fine particles. The rather complicated situation can be explained
by the high values of AOD and dominance of coarse particles (α~0.8) during the preburning period (Table 2).
Thus, the increase in AOD may correspond to either enhanced smoke or soil particles depending on the
subperiod. Finally, over Gandhi College, the scatterplot reveals the lowest variability among all locations
suggesting awell-mixed aerosol and homogeneous atmosphere. The large values of α (1.1–1.5), the large negative
dα (below�0.4), and the η=90% for the high AODs suggest dominance of fine-mode aerosols from fossil fuel
and biofuel combustion, manure burning, open fires, etc. Nearly all data points lie in the range 0.12–0.20μm
of Rf, while the concurrent shift toward larger η and higher Rf for increasing AOD corresponds to the coagulation
process under a turbid environment strongly dominated by fine-mode aerosols [Gobbi et al., 2007].

4. Conclusions

Any kind of biomass burning is a significant source of carbonaceous aerosols, which play a vital role in
atmospheric chemistry, air quality, ecosystems, and human health. Every year during the postmonsoon
season (October–November), crop residues are burnt over northwestern India (the state of Punjab). This
study examined aerosol properties, smoke plume characteristics, long-range transport, and affected areas
during October–November 2012 over the Indo-Gangetic Plains (IGP) region by the synergy of ground-based
and satellite observations. MODIS observations revealed a strong west-to-east AOD gradient over the IGP
during the peak burning period (15 October to 15 November), since the prevailing northwesterly winds

Figure 15. Ångström exponent difference dα= α(440–675)–α(675–870) as a function of the α440–870 and AOD500nm (color-sized scale) over four IGP sites during
postmonsoon 2012, for bimodal lognormal size distribution. The black lines indicate the fixed effective radius (Rf ) of the fine mode and the blue lines the fixed
fraction (η) of fine mode to the AOD.
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facilitate the spreading of smoke plumes along the IGP. CALIOP profiles revealed that the smoke plumes were
usually transported within the boundary layer and below 2–2.5 km, while the regions that were mostly
affected were the western and eastern IGP. In certain circumstances dense smoke plumes also affected
central south India and northeastern parts of the Arabian Sea, while the influence over the Bay of Bengal was
found to be much lesser. MODIS and ground-based Sun photometer measurements showed high AODs,
reaching above 1.5, that were associated with additional aerosol loading due to biomass burning leading
to increase in α values, decrease in SSA, and a shift toward larger fine-mode fraction in the aerosol size
distribution. The Ångström exponent (>1.2), aerosol size distribution, SSA (0.86–0.91), OMI-AI (>2.0), and NO2

concentrations (>5–7 × 1015mol cm�2) showed typical values for moderately absorbing smoke, also mixed
with anthropogenic and natural aerosols, especially at locations in the western IGP. The aerosol modification
processes under more turbid atmosphere were further investigated. The results over Patiala showed that
increasing in AOD affects more the α values (increasing them) and the fine-mode radii (decrease) and in a
lesser extent the fine/coarse ratio (increase). This suggests a shift of the fine-mode size distribution toward
larger volume and lower particle size, characteristic of an additional contribution of fresh soot particles. The
enhanced contribution of biomass-burning aerosols over Kanpur and Gandhi College, except for the increase
in fine-mode fraction resulted in a shift toward larger fine-mode radius due to coagulation of aerosols under a
severe turbid environment. These conditions significantly modified the atmospheric gas composition, optical
and radiative aerosol characteristics, and, as a result, aerosol radiative forcing and climate implications over
northern India. Biomass burning over densely populated and polluted areas is of particular concern since
it further contributes to the deterioration of the environment. Further elaboration on the atmospheric
processes occurring over the IGP during postmonsoon season could make use of the results presented in this
study. The knowledge of the optical properties, smoke plume characteristics, and affected areas of the
biomass-burning aerosols in this region is very important for climatic studies, taking also into account the
increasing trend of agricultural burning during the last decade.
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