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ON A GENERALIZATION OF THE CORONA PROBLEM

GRAZIANO GENTILI and DANIELE C. STRUPPA

Scuola Normale Superiore
Piazza dei Cavalieri, 7

56100 Pisa, Italy

(Received May 7, 1985)

ABSTRACT. Let g, fl’’’’’ fm EH (A). We provide conditions on fl,...,fm in order that

Ig(z) lIfi(z)l+...+If (z)I, for all z in 4, imply that g, or , belong to the ideal
m

generated by fl’’’’’fm in H.
KEY WORDS AND PHRASES. Corona problem, congenial functions.
1980 AMS SUBJECT CLASSIFICATION OODE. 30D55, 30D50.

i. INTRODUCTION.

Let H(A)=H be the space of all holomorphic functions on A={zE: zl<l}, and let

tt’(A)=H be the subspace of all bounded functions of H(A). Let fl,...,f be functions

in H and let gH satisfy the following condition:

Ig(z) l,<If l(z) l+’’’+Ifm (z) (any zEA). (l.I)

As a generalization of the corona problem (which was first solved by Carleson [I ]) it

is natural to ask if (1 1) implies that g belongs to the ideal IH(f ..,f genera-

ted in H by fl,...,fm, i.e. if (I.I) implies the existence of gl,...,gm in H such

that, on A,

g flgl+...+fmgm. (1.2)

Rao, 2], has shown that the answer to this question is negative in general. On the

other hand Wolff (see [3], th. 2.3) has proved that (i.I) implies that g3 belongs to

IH(f I, f ). The question whether (i.i) implies the existence of gl,...gm in H
m

such that
2

g flg1+...+frogm (I. 3)

is still open, as Garnett has pointed out ([4], problem 8.20)

In this work we obtain some results on this generalized corona problem, making

use of techniques which appear in the theory of A
D

spaces, the spaces of entire func-

tions with growth conditions introduced by H6rmander 5].

With the same aim of Berenstein and Taylor [6] in A we introduce in H the no-
P

tion of jointly invertible functions (definition 3) and prove that if fl,...,f are
m

jointly invertible, condition (i.I) implies that g belongs to IH(f f (proposi-
m

tion 5). We also prove that if the ideal Ii(fl,...,f contains a weikly invertiblem
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function having simple interpolating zeroes (see [3]), then again (i.i) implies that g

belongs to IH (fl fm (theorem 6)

Finally, in the same spirit of Kelleher and Taylor [7] we introduce the notion

of congeniality for m-tuples of functions in H and give a partial answer to the pro-

blem posed by Garnett ([4]): we prove that if (fl’’’’’fm)6(H)m is congenlal, then

(i.i) implies g2IH(f fm) (theorem 8).

2. WE/K INVERTIBILITY.

We first study some conditions under which (i.i) implies that g61H(f fm)"
DEFINITION i. A function f in H(A) is called weakly invertible if there exists

a Blaschke product B such that f (z) =B (z) (z) (z in A) with invertible in H.
The reason for this definition is the following simple criterion of divisibility

for functions in H

PROPOSITION 2. Let fH. Then f is weakly invertible if, and only if, for all

gH the fact that g/fEH implies g/fEH.
-PROOF. Suppose f is weakly invertible: then there exists a Blaschke product B

such that f (z) =B (z) (z) with invertible in H. Since g/f is holomorphic and since

B contains exactly the zeroes of f, it follows that g/BEH; however, since B is a

Blaschke product, g/BH implies, [8], that g/BH. Since I/{6H one has g/f=(g/B)(i/),
i.e. g/fH. Conversely, suppose that for all g6H such that g/fH, it follows g/fH.
Write f(z)=B(z)(z), where B is the Blaschke product of all the zeroes of f (see [8]).
Then B/f is holomorphic on A and therefore I/ must belong to H.

An extension of the notion of weak invertibility to m-tuples of functions in H

is given by the following definition, analogous to the one given by Berenstein and

Taylor for the spaces A in 6].
P

DEFINITION 3. The functions fl’""" ’f 6H are called jointly invertible if the ide-
m

al generated by fl’ f in H coincides with Iloc(f ,f )={gH(A): for any zA,
m m

there exists a neighborhood U of z and Ii,...,I in H(U) such that g=l f +. +I f on U}
m mm

In view of Cartan’s theorem B it follows immediately that fl f are jointly
m

invertible if, and only if, IH(f l,...,fm)=IH(fl,...,fm), the latter being the ideal

generated by f1’ f in H(A). As a consequence of the corona theorem, all m-tuples
m

fl f in H for which there exists 6>0 such that If l(z) I+ +If (z)I>6 for all z
m m

in A, are jointly invertible (IH=IH=H). More generally one has:

PROPOSITION 4. Let b6H be weakly invertible, and let fl (z)=b(z)I (z) fm(Z)=
=b(z) (z) for in H such that I l(z) l+...+lm(Z)I>6>0 for some 6 and all

m 1’’’’’ m
z in A. Then fl ’fm are jointly invertible.

PROOF. Let g&H belong to IH(fl’’’’’fm)" There exist I ’%m in H(A) such that

g(z) 1(z)fl (z)+’’’m(z)fm(z) (all zA) (2.1)

i.e., for all z in A,

g(z) b(z) ll(z) (z)+...+l (z)f (z)] (2.2)
m m

Since b is invertible, and g/bH, it follows that =g/b=%ll+...+% 6H. By the coro-
m m

na theorem, then, it follows that there are h I, ,h in H such that
m

(z) hl(z) l(z)+...+h (z) (z) (2 3)
m m

therefore

g(z) (z)b(z) h l(z)f l(z)+...+h (z)f (z)
m m

(2.4)
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and the assertion is proved.

Let now fl f gH (A) and suppose that (i. i) holds. It is well known, 2 ],
[]

that in general (i.I) does not imply that gIH=(f f ). However, (i i) certainly
[]

implies that gIloc (fl f and hence
[]

PROPOSITION 5. Let f l’""" ’f be jointly invertible. Then if g satisfies condition
[]

(i.i), it follows that g6IH(fl,...,f ).
[]

A different situation in which (1.1) implies that g6IH=(fl,...,f occurs when at
[]

least one of the f. ’s, say f is weakly invertible and has simple zeroes which for[]I’
an interpolating sequence ([3]); this happens, for example, when fl is an interpolating

Blaschke product with simple zeroes ([3]). Indeed, following an analogous result proved

in [7] for the space of entire functions of exponential type, one has:

THEOREM 6. Let f1’""" ’fm6H’ and suppose fl is weakly invertible with si[]ple, in-

terpolating zeroes. Then if g6H satisfies condition (I.1) it follows that g belongs

to IH(fl fm)"
PROOF. Choose aij6 i=2 m, j,>1, such that for {z.}={zEA:f3 (z)=0} it is laijl=l

and a..f. (z.)0. Define now b..E (i,j as before) by

bij=I0 if f2(zj)=...=fm(Zj)=0

[aijg(zj)/(I f2 (z j) I+...+ fm(Z I) otherwise.

By (1.1) it follows Ibijl<l (all i,j), and since {z.} is interpolating, one finds h
2

H...,h in such that h (z)=b Therefore the function h=g-(h2f2+. .+h f belongs[] i ij mm
to H and vanishes at each z.. The simplicity of the zeroes of fl shows that f/f16H
and the invertibility of fl implies h/f1=hl6H=. The thesis now follows, since g=flhl +
+...+f h

m []

It is worthwhile noticing that the hypotheses of Proposition 5 and Theorem 6 are

not comparable. Consider, indeed, the following conditions on f1’ f H=:
[]

(CI) f1’’’’’ f are jointly invertible.
[]

(C2) there exists (l<j<[]) such that f. is invertible, with an interpolating sequence

of zeroes, all of which are simple.

Then (C I) does not imply (C2) take m=l and weakly invertible with non-simple zeroes.

On the other hand, also (C2) does not imply (CI): consider fl invertible with simple

interpolating zeroes {z }; let f2#H be a function such that f2(z )=i/n (such a func-n n
tion certainly exists since {Zn} is an interpolating sequence); now fl and f2 have no

common zeroes, and hence 16Iloc(fl,f2) however lIH(fl,f2) since if 1=llf1+2f2, then

it is 12(Zn)=n, i.e. 12H. Therefore the pair (fl,f2) satisfies (C2) but not (CI).
3. CONGENIALITY.

In this section we describe a class of []-tuples of functions in H=(A) for which

condition (i.I) implies that g2IH=(f f ).
m

DEFINITION 7. An []-tuple (f1’’’" ’f of functions in H is called congenial if[]

for all i,j=1 []

(fif_fjf)/ f2f, belongs to L=(),

where f(z) 2 Ifl(z) 12+ .+If (z) 2 2 2+. 2
f=m IIf’ (z)ll =If{ (z) .+If’ (z) and f /z

[] 1 i
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Notice that the class of congenial m-tuples is not empty. Indeed, one might consi-

der pairs fl,f2 in H which, at their common zeroes, satisfy some simple conditions on

their vanishing order easily deducible from Definition 7. For example, one can ask that

fl(z0)=f2(z0 )=0’ f(z0)0’ f;(z0)=0" As a partial answer to problem 8.20 in [4], we

prove the following

THEOREM 8. Let fl,...,fm,g6H(A), and suppose (fl,..,f) be congenial. If g sati-
m

sfies (I.i), then g26IH(fl fm)’ i.e. there are gl’’’’’gm in H such that (on A)

2
g (z) fl(z)g1(z)+’’’+fm(Z)gm(Z) (3. I)

PROOF. We mainly follow the proof due to Wolff, [3], of the fact that (1.1) implies

that g36IH.. We can assume fj-<l, g.-<l, and fj,gH() (j=l m). Put j=gj/If 2

(j is bounded and C on ) and consider the differential equation

abj,k/ ja k/9 g2Gj,k (l<,j,k<n) (3.2)

for

If solutions_ bj,k(L exist, then clearly gJ=gJ+ kT"(bj’k-bk’j)fkEH and (3. I) holds

(indeed gj=0 and gj is bounded on A). In order to prove that (3.2) admits a solution
2

in ’." it is enough to show that Ig2Gj, kl21g(I/Izl)dxdy and (g Gj,k)/z are Carleson

measures for l-<j,km.

As far as
2 121og(I/Izl)dxdy is concerned, notice that by the congeniality ofg Gj,k

(fl fm) it is

g-%, - <- IglIAa 12 I[f_(f.f-fkf.). l/Ifl m -< cl’l -.
On the other hand,

(g2Gj,k)/z 2gg’Gj,k+gGj,k/Z;
again by the congeniality of (f1’’’" ’f )’ one has

m

Igg’=a,I <-Igllg’llIIl fff-ff.I/Ifl 6

-< c{l’ Im/i(l+lf’12/l:l,
and

< c(Ig’ 12+llf’l12)/Ifl -<

le2aG3,/azl 112"111 7zql’l. z(z-&/ll 8
+

<- c l}.12/lzl.
This concludes the proof.
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