Chapman University
 Chapman University Digital Commons

Mathematics, Physics, and Computer Science Science and Technology Faculty Articles and
Faculty Articles and Research
Research

On a Generalization of the Corona Problem

Graziano Gentili
University of Florence
Daniele C. Struppa
Chapman University, struppa@chapman.edu

Follow this and additional works at: http://digitalcommons.chapman.edu/scs_articles
Part of the Analysis Commons

Recommended Citation

Graziano Gentili and Daniele C. Struppa, "On a generalization of the corona problem," International Journal of Mathematics and Mathematical Sciences, vol. 9, no. 4, pp. 785-789, 1986. doi:10.1155/S0161171286000959

On a Generalization of the Corona Problem

Comments

This article was originally published in International Journal of Mathematics and Mathematical Sciences, volume 9 , number 4, in 1986. DOI: 10.1155/S0161171286000959

Copyright
International Journal of Mathematics and Mathematical Sciences

ON A GENERALIZATION OF THE CORONA PROBLEM

GRAZIANO GENTILI and DANIELE C. STRUPPA

Scuola Normale Superiore
Piazza dei Cavalieri, 7
56100 Pisa, Italy

(Received May 7, 1985)

ABSTRACT. Let $g, f_{1}, \ldots, f_{m} \in H^{\infty}(\Delta)$. We provide conditions on f_{1}, \ldots, f_{m} in order that $|g(z)| \leqslant\left|f_{1}(z)\right|+\ldots+\left|f_{m}(z)\right|$, for all z in Δ, imply that g, or g^{2}, belong to the ideal generated by f_{1}, \ldots, f_{m} in H^{∞}.

KEY WORDS AND PHRASES. Corona problem, congenial functions. 1980 AMS SUBJECT CLASSIFICATION CODE. 30D55, 30D50.

1. INTRODUCTION.

Let $H(\Delta)=H$ be the space of all holomorphic functions on $\Delta=\{z \in \mathbb{C}:|z|<1\}$, and let $H^{\infty}(\Delta)=H^{\infty}$ be the subspace of all bounded functions of $H(\Delta)$. Let f_{1}, \ldots, f_{m} be functions in H^{∞} and let $g \in H^{\infty}$ satisfy the following condition:

$$
\begin{equation*}
|g(z)| \leqslant\left|f_{1}(z)\right|+\ldots+\left|f_{m}(z)\right| \quad(\text { any } z \in \Delta) . \tag{1.1}
\end{equation*}
$$

As a generalization of the corona problem (which was first solved by Carleson [1]) it is natural to ask if (1.1) implies that g belongs to the ideal $I_{H} \infty\left(f_{1}, \ldots, f_{m}\right)$ generated in H^{∞} by f_{1}, \ldots, f_{m}, i.e. if (1.1) implies the existence of g_{1}, \ldots, g_{m} in H^{∞} such that, on Δ,

$$
\begin{equation*}
g=f_{1} g_{1}+\ldots+f_{m} g_{m} \tag{1.2}
\end{equation*}
$$

Rao, [2], has shown that the answer to this question is negative in general. On the other hand Wolff (see [3], th. 2.3) has proved that (1.1) implies that g^{3} belongs to $I_{H^{\infty}}\left(f_{1}, \ldots, f_{m}\right)$. The question whether (1.1) implies the existence of $g_{1}, \ldots g_{m}$ in H^{∞} such that

$$
\begin{equation*}
g^{2}=f_{1} g_{1}+\ldots+f_{m} g_{m} \tag{1.3}
\end{equation*}
$$

is still open, as Garnett has pointed out ([4], problem 8.20).
In this work we obtain some results on this generalized corona problem, making use of techniques which appear in the theory of A_{p} spaces, the spaces of entire functions with growth conditions introduced by Hörmander [5].

With the same aim of Berenstein and Taylor [6] in A_{p}, we introduce in H the notion of jointly invertible functions (definition 3) and prove that if f_{1}, \ldots, f_{m} are jointly invertible, condition (1.1) implies that g belongs to $I_{H}\left(f_{1}, \ldots f_{m}\right.$) (proposition 5). We also prove that if the ideal $I_{H^{\infty}}\left(f_{1}, \ldots, f_{m}\right)$ contains a weakly invertible
function having simple interpolating zeroes (see [3]), then again (1.1) implies that g belongs to $I_{H^{\infty}}\left(f_{1}, \ldots, f_{m}\right)$ (theorem 6).

Finally, in the same spirit of Kelleher and Taylor [7] we introduce the notion of congeniality for m-tuples of functions in H^{∞}, and give a partial answer to the problem posed by Garnett ([4]): we prove that if ($\left.f_{1}, \ldots, f_{m}\right) \in\left(H^{\infty}\right)^{m}$ is congenıal, then (1.1) implies $g^{2} \in I_{H^{\infty}}\left(f_{1}, \ldots, f_{m}\right)$ (theorem 8).

2. WEAK INVERTIBILITY.

We first study some conditions under which (1.1) implies that $g \in I_{H}\left(f_{1}, \ldots, f_{m}\right)$. DEFINITION 1. A function f in $H^{\infty}(\Delta)$ is called weakly invertible if there exists a Blaschke product B such that $f(z)=B(z) \tilde{f}(z)(z$ in $\Delta)$ with \tilde{f} invertible in H^{∞}.

The reason for this definition is the following simple criterion of divisibility for functions in H^{∞}.

PROPOSITION 2. Let $f \in H^{\infty}$. Then f is weakly invertible if, and only if, for all $g \in H^{\infty}$ the fact that $g / f \in H$ implies $g / f \in H^{\infty}$.

PROOF. Suppose f is weakly invertible: then there exists a Blaschke product B such that $f(z)=B(z) \tilde{f}(z)$, with \tilde{f} invertible in H^{∞}. Since g / f is holomorphic and since B contains exactly the zeroes of f, it follows that $g / B \in H$; however, since B is a Blaschke product, $g / B \in H$ implies, [8], that $g / B \in H^{\infty}$. Since $1 / \tilde{f} \in H^{\infty}$ one has $g / f=(g / B)(1 / \tilde{f})$, i.e. $g / f \in H^{\infty}$. Conversely, suppose that for all $g \in H^{\infty}$ such that $g / f \in H$, it follows $g / f \in H^{\infty}$. Write $f(z)=B(z) \tilde{f}(z)$, where B is the Blaschke product of all the zeroes of f (see [8]). Then B / f is holomorphic on Δ and therefore $1 / \tilde{f}$ must belong to H^{∞}.

An extension of the notion of weak invertibility to m-tuples of functions in H^{∞} is given by the following definition, analogous to the one given by Berenstein and Taylor for the spaces A_{p} in [6].

DEFINITION 3. The functions $f_{1}, \ldots, f_{m} \in H^{\infty}$ are called jointly invertible if the ideal generated by f_{1}, \ldots, f_{m} in H^{∞} coincides with $I_{l o c}\left(f_{1}, \ldots, f_{m}\right)=\left\{g \in H^{\infty}(\Delta)\right.$: for any $z \in \Delta$, there exists a neighborhood U of z and $\lambda_{1}, \ldots, \lambda_{m}$ in $H(U)$ such that $g=\lambda_{1} f_{1}+\ldots+\lambda_{m} f($ on $U\}$.

In view of Cartan's theorem B, it follows immediately that f_{1}, \ldots, f_{m} are jointly invertible if, and only if, $I_{H^{\infty}}\left(f_{1}, \ldots, f_{m}\right)=I_{H}\left(f_{1}, \ldots, f_{m}\right)$, the latter being the ideal generated by $f_{1} \ldots, f_{m}$ in $H(\Delta)$. As a consequence of the corona theorem, all m-tuples f_{1}, \ldots, f_{m} in H^{∞} for which there exists $\delta>0$ such that $\left|f_{1}(z)\right|+\ldots+\left|f_{m}(z)\right| \geqslant \delta$ for all z in Δ, are jointly invertible $\left(I_{H}=I_{H}{ }^{\infty}=H^{\infty}\right)$. More generally one has:

PROPOSITION 4. Let $b \in H^{\infty}$ be weakly invertible, and let $f_{1}(z)=b(z) \tilde{f}_{1}(z), \ldots, f_{m}(z)=$ $=b(z) \tilde{f}_{m}(z)$, for $\tilde{f}_{1}, \ldots, \tilde{f}_{m}$ in H^{∞} such that $\left|\tilde{f}_{1}(z)\right|+\ldots+\left|\tilde{f}_{m}(z)\right| \geqslant \delta>0$ for some δ and all z in Δ. Then f_{1}, \ldots, f_{m} are jointly invertible.

PROOF. Let $g \in H^{\infty}$ belong to $I_{H}\left(f_{1}, \ldots, f_{m}\right)$. There exist $\lambda_{1}, \ldots, \lambda_{m}$ in $H(\Delta)$ such that

$$
\begin{equation*}
\left.g(z)=\lambda_{1}(z) f_{1}(z)+\ldots \lambda_{m}(z) f_{m}(z) \quad \text { (all } z \in \Delta\right) \tag{2.1}
\end{equation*}
$$

i.e., for all z in Δ,

$$
\begin{equation*}
g(z)=b(z)\left[\lambda_{1}(z) \tilde{f}_{1}(z)+\ldots+\lambda_{m}(z) \tilde{f}_{m}(z)\right] \tag{2.2}
\end{equation*}
$$

Since b is invertible, and $g / b \in H$, it follows that $\tilde{g}=g / b=\lambda_{1} \tilde{f}_{1}+\ldots+\lambda_{m} \tilde{f}_{m} \in H^{\infty}$. By the corona theorem, then, it follows that there are h_{1}, \ldots, h_{m} in H^{∞} such that

$$
\begin{equation*}
\tilde{g}(z)=h_{1}(z) \tilde{f}_{1}(z)+\ldots+h_{m}(z) \tilde{f}_{m}(z) \tag{2.3}
\end{equation*}
$$

therefore

$$
\begin{equation*}
g(z)=\tilde{g}(z) b(z)=h_{1}(z) f_{1}(z)+\ldots+h_{m}(z) f_{m}(z) \tag{2.4}
\end{equation*}
$$

and the assertion is proved.
Let now $f_{1}, \ldots, f_{m}, g \in H^{\infty}(\Delta)$, and suppose that (1.1) holds. It is well known, [2], that in general (1.1) does not imply that $g \in I_{H}\left(f_{1}, \ldots, f_{m}\right)$. However, (1.1) certainly lmplies that $g \in I_{l o c}\left(f_{1}, \ldots, f_{m}\right)$ and hence

PROPOSITION 5. Let f_{1}, \ldots, f_{m} be jointly invertible. Then if g satisfies condition (1.1), it follows that $g \in I_{H^{\infty}}\left(f_{1}, \ldots, f_{m}\right)$.

A different situation in which (1.1) implies that $g \in I_{H^{\infty}}\left(f_{1}, \ldots, f_{m}\right)$ occurs when at least one of the $f_{j} ' s$, say f_{1}, is weakly invertible and has simple zeroes which form an interpolating sequence ([3]); this happens, for example, when f_{1} is an interpolating Blaschke product with simple zeroes ([3]). Indeed, following an analogous result proved in [7] for the space of entire functions of exponential type, one has:

THEOREM 6. Let $f_{1}, \ldots, f_{m} \in H^{\infty}$, and suppose f_{1} is weakly invertible with simple, interpolating zeroes. Then if $g \in H^{\infty}$ satisfies condition (1.1) it follows that g belongs to $I_{H^{\infty}}\left(f_{1}, \ldots, f_{m}\right)$.

PROOF. Choose $a_{i j} \in \mathbb{C}, i=2, \ldots m, j \geqslant 1$, such that for $\left\{z_{j}\right\}=\left\{z \in \Delta: f_{1}(z)=0\right\}$ it is $\left|a_{i j}\right|=1$ and $a_{i j} f_{i}\left(z_{j}\right) \geqslant 0$. Define now $b_{i j} \in \mathbb{C}(i, j$ as before) by

$$
b_{i j}=\left\{\begin{array}{l}
0 \text { if } f_{2}\left(z_{j}\right)=\ldots=f_{m}\left(z_{j}\right)=0 \\
a_{i j} g\left(z_{j}\right) /\left(\left|f_{2}\left(z_{j}\right)\right|+\ldots+\left|f_{m}\left(z_{j}\right)\right|\right) \quad \text { otherwise. }
\end{array}\right.
$$

By (1.1) it follows $\left|b_{i j}\right| \leqslant 1(a l l i, j)$, and since $\left\{z_{j}\right\}$ is interpolating, one finds h_{2}, \ldots, h_{m} in H^{∞} such that $h_{i}\left(z_{j}\right)=b_{i j}$. Therefore the function $h=g-\left(h_{2} f_{2}+\ldots+h_{m} f_{m}\right)$ belongs to H^{∞} and vanishes at each z_{j}. The simplicity of the zeroes of f, shows that $f / f_{1} \in H$, and the invertibility of f_{1} implies $h / f_{1}=h_{1} \in H^{\infty}$. The thesis now follows, since $g=f_{1} h_{1}+$ $+\ldots+f_{m} h_{m}$.

It is worthwhile noticing that the hypotheses of proposition 5 and Theorem 6 are not comparable. Consider, indeed, the following conditions on $f_{1}, \ldots, f_{m} \in H^{\infty}$:
$\left(C_{1}\right) f_{1}, \ldots, f_{m}$ are jointly invertible.
$\left(C_{2}\right)$ there exists $j(1 \leqslant j \leqslant m)$ such that f_{j} is invertible, with an interpolating sequence of zeroes, all of which are simple.
Then $\left(C_{1}\right)$ does not imply $\left(C_{2}\right)$: take $m=1$ and f_{1} weakly invertible with non-simple zeroes. On the other hand, also $\left(C_{2}\right)$ does not imply $\left(C_{1}\right)$: consider f_{1} invertible with simple interpolating zeroes $\left\{z_{n}\right\}$; let $f_{2} \in H^{\infty}$ be a function such that $f_{2}\left(z_{n}\right)=1 / n$ (such a function certainly exısts since $\left\{z_{n}\right\}$ is an interpolating sequence); now f_{1} and f_{2} have no common zeroes, and hence $1 \in I_{l o c}\left(f_{1}, f_{2}\right)$; however $1 \notin I_{H^{\infty}}\left(f_{1}, f_{2}\right)$ since if $1=\lambda_{1} f_{1}+\lambda_{2} f_{2}$, then it is $\lambda_{2}\left(z_{n}\right)=n$, i.e. $\lambda_{2} \notin H^{\infty}$. Therefore the pair $\left(f_{1}, f_{2}\right)$ satisfies (C_{2}) but not (C_{1}). 3. CONGENIALITY.

In this section we describe a class of m-tuples of functions in $H^{\infty}(\Delta)$, for which condition (1.1) implies that $g^{2} \in I_{H^{\infty}}\left(f_{1}, \ldots, f_{m}\right)$.

DEFINITION 7. An m-tuple (f_{1}, \ldots, f_{m}) of functions in H^{∞} is called congenial if, for all $i, j=1, \ldots, m$,

$$
\left(f_{i} f_{j}^{\prime}-f_{j} f_{i}^{\prime}\right) /\|f\|^{2}\left\|f^{\prime}\right\| \text { belongs to } L^{\infty}(\Delta)
$$

where $|f(z)|^{2}=\left|f_{1}(z)\right|^{2}+\ldots+\left|f_{m}(z)\right|^{2},\left\|f^{\prime}(z)\right\|^{2}=\left|f_{i}^{\prime}(z)\right|^{2}+\ldots+\left|f_{m}^{\prime}(z)\right|^{2}$, and $f_{i}^{\prime}=\partial f_{i} / \partial z$.

Notice that the class of congenial m-tuples is not empty. Indeed, one might consider pairs f_{1}, f_{2} in H^{∞} which, at their common zeroes, satisfy some simple conditions on their vanishing order easily deducible from Definition 7. For example, one can ask that $f_{1}\left(z_{0}\right)=f_{2}\left(z_{0}\right)=0, f_{2}^{\prime}\left(z_{0}\right) \neq 0, f_{1}^{\prime}\left(z_{0}\right)=0$. As a partial answer to problem 8.20 in [4], we prove the following

THEOREM 8. Let $f_{1}, \ldots, f_{m} g \in H^{\infty}(\Delta)$, and suppose (f_{1}, \ldots, f_{m}) be congenial. If g satisfies (1.1), then $g^{2} \in I_{H^{\infty}}\left(f_{1}, \ldots, f_{m}\right)$, i.e. there are g_{1}, \ldots, g_{m} in H^{∞} such that (on Δ)

$$
\begin{equation*}
g^{2}(z)=f_{1}(z) g_{1}(z)+\ldots+f_{m}(z) g_{m}(z) \tag{3.1}
\end{equation*}
$$

PROOF. We mainly follow the proof due to Wolff, [3], of the fact that (1.1) implies that $g^{3} \in I_{H^{\infty}}$. We can assume $\left\|f_{j}\right\|_{\infty} \leqslant 1, \mid g \|_{\infty} \leqslant 1$, and $f_{j}, g \in H(\bar{\Delta}) \quad(j=1, \ldots, m)$. Put $\psi_{j}=g \bar{f}_{j} / \mid f \|^{2}$ (ψ_{j} is bounded and C^{∞} on $\bar{\Delta}$) and consider the differential equation

$$
\begin{equation*}
\partial b_{j, k} / \partial \bar{z}=\psi_{j} \partial \psi_{k} \partial \bar{z}=g^{2} G_{j, k} \quad(1 \leqslant j, k \leqslant m) \tag{3.2}
\end{equation*}
$$

for

$$
G_{j, k}=\bar{f}_{j} \sum_{\ell} f_{\ell}\left(\overline{f_{\ell} f_{k}^{\prime}-f_{k} f_{\ell}^{\prime}}\right) /\|f\|^{6}
$$

If solutions $b_{j, k} \in L^{\infty}$ exist, then clearly $g_{j}=g \psi_{j}+\sum_{k}\left(b_{j, k}-b_{k, j}\right) f_{k} \in H^{\infty}$ and (3.1) holds (indeed $\bar{\partial} g_{j}=0$ and g_{j} is bounded on Δ). In order to prove that (3.2) admits a solution in L^{∞} it is enough to show that $\left|g^{2} G_{j, k}\right|^{2} \log (1 /|z|) d x d y$ and $\partial\left(g^{2} G_{j, k}\right) / \partial$ are carleson measures for $1 \leqslant j, k \leqslant m$.
As far as $\left|g^{2} G_{j, k}\right|^{2} \log (1 /|z|) d x d y$ is concerned, notice that, by the congeniality of $\left(f_{1}, \ldots, f_{m}\right)$, it is

$$
\left|g^{2}{ }_{j, k}\right|^{2} \leqslant|g|^{4}\left|\bar{f}_{j}\right|^{2}\left|\sum_{\ell} f_{\ell}\left(\overline{f_{\ell} f_{k}^{\prime}-f_{k} f_{\ell}^{\prime}}\right)\right|^{2} /|f|^{12} \leqslant c\left|f^{\prime}\right|^{2}
$$

On the other hand,

$$
\partial\left(g^{2} G_{j, k}\right) / \partial z=2 g g^{\prime} G_{j, k}+g^{2} \partial G_{j, k} / \partial z ;
$$

again by the congeniality of (f_{1}, \ldots, f_{m}), one has

$$
\begin{aligned}
& \left|g g^{\prime} G_{j, k}\right| \leqslant|g|\left|g^{\prime}\right|\left|\bar{f}_{j}\right|\left|\sum_{\ell} f_{\ell}\left(\overline{f_{\ell} f_{k}^{\prime}-f_{k} f_{\ell}^{\prime}}\right)\right| /|f|^{6} \leqslant c\left(\left|g^{\prime}\right|^{2}+\|f\|^{2}\right) /|f| \leqslant \\
\leqslant & c\left(\left|g^{\prime}\right|^{2} /|g|+\left\|\left.f^{\prime}\right|^{2} /\right\| f \|\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|g^{2} \partial G_{j, k} / \partial z\right|=|g|^{2} \cdot\left|f_{j}\right|\left|\sum_{\ell}{\overline{f_{\ell}}}_{\ell} f_{\ell}^{\prime}\right| \cdot \mid \sum_{\ell} f_{\ell}\left(\overline{f_{\ell} f_{k}^{\prime}-f_{k} f_{\ell}^{\prime}}|/| f \|^{8}+\right. \\
& +|g|^{2}\left|\bar{f}_{j}\right| / \mid f^{2} \cdot\left(\left|\sum_{\ell} f_{\ell}^{\prime}\left(\overline{f_{\ell} f_{k}^{\prime}-f_{k} f_{\ell}^{\prime}}\right)\right| /\left|f^{4}+2\right| \sum_{\ell} f_{\ell}^{\prime} \bar{f}_{\ell}| | \sum_{\ell} f_{\ell}\left(\overline{f_{\ell} f_{k}^{\prime}-f_{k} f_{\ell}^{\prime}}\right)\left|/|f|^{6}\right) \leqslant\right. \\
& \leqslant c \sum_{\ell}\left|f_{\ell}^{\prime}\right|^{2} /\left|f_{\ell}\right| .
\end{aligned}
$$

This concludes the proof.
ACKNOWLEDGRENT. Theauthors wish to thank Professor Carlos A. Berenstein for reading a preliminary version of this paper. They also gladlyacknowledge the Ministero P.I. of the Italian Government and the University of Maryland for their financial support.

REFERENCES

1. CARLESON, L. Interpolation by Bounded Analytic Functions and the Corona Problem, Ann. of Math. (2)76 (1963), 547-559.
2. RAO, K.V.R. On a Generalized Corona Problem, J. Anal. Math. 18(1967), 277-278.
3. GARNETT, J.B. Bounded Analytic Functions, Academic Press, New York, 1981.
4. BARTH, K.F., BRANNAN, D.A. AND HAYMAN, W.K. Research Problems in Complex Analysis, Bull. London Math. Soc. 16 (1984), 490-517.
5. HORMANDER, L. Generators for Some Rings of Analytic Functions, Bull. Amer. Math. Soc. 73 (1967), 943-949.
6. BERENSTEIN, C.A. and TAYLOR, B.A. Interpolation Problems in \mathbb{l}^{n} with Applications to Harmonic Analysis, J. Anal. Math. 38 (1980), 188-254.
7. KELLEHER, J.J. and TAYLOR, B.A. FInitely Generated Ideals in Rings of Analytic Functions, Math. Ann. 193 (1971), 225-237.
8. HOFFMAN, K. Banach Spaces of Analytic Functions, Prentice Hall Inc., Englewood Cliffs, 1962.

