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Review

The physiology of invasive plants in low-resource 
environments
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While invasive plant species primarily occur in disturbed, high-resource environments, many species have invaded ecosys-
tems characterized by low nutrient, water, and light availability. Species adapted to low-resource systems often display traits 
associated with resource conservation, such as slow growth, high tissue longevity, and resource-use efficiency. This contrasts 
with our general understanding of invasive species physiology derived primarily from studies in high-resource environments. 
These studies suggest that invasive species succeed through high resource acquisition. This review examines physiological 
and morphological traits of native and invasive species in low-resource environments. Existing data support the idea that spe-
cies invading low-resource environments possess traits associated with resource acquisition, resource conservation or both. 
Disturbance and climate change are affecting resource availability in many ecosystems, and understanding physiological dif-
ferences between native and invasive species may suggest ways to restore invaded ecosystems.
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Introduction
Low-resource environments are defined as those where plant 
productivity is severely limited by light, water, or soil nutrient 
availability, such as forest understories, deserts, and ancient 
landscapes. In many of these ecosystems, native plants have 
evolved mechanisms to tolerate stress and to facilitate the 
extraction of limiting resources. These adaptations have 
resulted in a high degree of species richness and functional 
diversity in many low-resource ecosystems (Dallman, 1998; 
Lambers et al., 2010; Olde Venterink, 2011). Native species 
appear to have a competitive advantage over invasive species 
in low-resource systems (Alpert et al., 2000; Daehler, 2003), 
and communities become more susceptible to invasion when 
resource availability is increased (Davis et al., 2000). While 
high-resource ecosystems tend to accumulate more exotic 
species than low-resource ecosystems (e.g. Huenneke et al., 

1990; Gross et al., 2005; Stohlgren et al., 2008), many inva-
sive species do occur in low-resource ecosystems. For exam-
ple, several legumes have successfully invaded low-nitrogen 
soils in Hawaii, and many annual grasses and forbs dominate 
semi-arid grassland and shrub systems in California (Fig. 1).

It is difficult to identify a suite of general traits explaining 
invasiveness, because traits of invaders depend on characteris-
tics of the invaded habitats (Pysek et al., 1995; Alpert et al., 
2000; Daehler, 2003; Pysek and Richardson, 2007; Tecco 
et al., 2010). Specifically, the mechanisms allowing exotic spe-
cies to invade low-resource ecosystems are likely to be very 
different from those allowing species to invade high-resource 
ecosystems. One way of thinking about invasion into low-
resource environments is to focus on how plant species acquire 
and use resources. Competitive ability will be influenced by the 
ability of an individual to reduce the  availability of a resource 

 at C
hapm

an U
niversity L

ibrary on February 20, 2015
http://conphys.oxfordjournals.org/

D
ow

nloaded from
 

http://conphys.oxfordjournals.org/


Review Conservation Physiology • Volume 1 2013

(e.g. resource acquisition, competitive effect, supply pre-emp-
tion), and by the ability to tolerate low resource availability 
(e.g. resource conservation, competitive response, concentra-
tion reduction; Tilman, 1982; Aarssen, 1983; Goldberg, 1990; 
Craine et al., 2005). While there is much debate about which 
competition mechanism predominates across environments, 
research conducted over the last three decades suggests that 
plants in high-resource ecosystems succeed through high rates 
of resource acquisition, while species adapted to low-resource 
ecosystems largely display traits associated with resource con-
servation (Chapin, 1980; Craine, 2009). However, the dichot-
omy between resource acquisition and conservation is not 
clear in some low-resource ecosystems, as species can effec-
tively acquire (e.g. specialized roots, high root density) and 
conserve resources (e.g. high tissue longevity, nutrient resorp-
tion; e.g. Sack et al., 2003).

The trade-off between resource acquisition and conserva-
tion has been formalized in the leaf economics spectrum 

(LES), which shows that relationships exist among several 
key traits across a broad range of species and different cli-
mates (Reich et al., 1997; Wright et al., 2004). Plant species 
with low leaf mass per unit area (LMA), high rates of carbon 
assimilation, high leaf nitrogen (N) content, and short leaf 
lifespan occupy one end of the spectrum (fast return on 
investment), while plant species with high LMA, low rates of 
carbon assimilation, low leaf N content, and long leaf lifes-
pans occupy the other (slow return on investment). With 
respect to invasion, several researchers have suggested that 
invasive species are positioned closer to the fast-return end of 
the LES (Leishman et al., 2007; Penuelas et al., 2010; 
Ordonez and Olff, 2012; but see Funk and Vitousek, 2007; 
Dawson et al., 2011). This ‘fast-return’ strategy seems at 
odds with an ability to tolerate low-resource conditions, as 
species adapted to low-resource systems often display slow 
growth, resource-use efficiency, high LMA, high tissue con-
struction cost, and long-lived tissues (Chapin, 1980; Vitousek, 
1982; Coley et al., 1985; Craine, 2009).

Do plant species invading low-resource ecosystems suc-
ceed through resource acquisition, resource conservation, or 
both? The theory of limiting similarity (MacArthur and 
Levins, 1967) predicts that invasive species will have differ-
ent traits from native species and fill vacant niches (i.e. 
resource acquisition in the case of low-resource environ-
ments). In contrast, abiotic factors in low-resource environ-
ments are likely to constrain the range of possible traits (i.e. 
habitat filtering; Weiher et al., 1998), resulting in invasive 
species with similar resource conservation traits to native 
species. Ultimately, the specific strategy or traits of successful 
invaders will depend on the type and frequency of resource 
limitation, disturbance regimes, propagule pressure, and a 
number of other factors (Sher and Hyatt, 1999; Alpert et al., 
2000; Theoharides and Dukes, 2007; Foxcroft et al., 2011). 
Resource levels in many historically low-resource ecosystems 
around the world are increasing due to changing disturbance 
regimes. In many cases, disturbance increases resource avail-
ability, with potentially large impacts on invasibility (Alpert 
et al., 2000; Fig. 2).

In this review, I summarize our understanding of resource 
acquisition and use in native and invasive species occurring in 
low-resource ecosystems. I focus on soil nutrients, water, and 
light as limiting resources. Lastly, I discuss how we can use our 
understanding of resource acquisition and use in native and 
invasive species to restore native plant communities.

Soil nutrients
While plant growth can be limited by a number of macro- 
and micronutrients, the high mobility of N leads  
to N-limitation of plant growth in most ecosystems (Vitousek 
and Howarth, 1991). However, plant growth is often limited 
by phosphorus (P) availability in many tropical ecosystems 
with old, weathered soils. Additionally, plant species may be 
differentially limited by N and P in many  systems. For exam-
ple, plant growth in species with special  adaptations for N 

2

Figure 1.  The legume Leucaena leucocephala invades young, low-
nitrogen volcanic soils in Hawaii (top panel). Annual grasses and forbs, 
such as black mustard (Brassica nigra), aggressively invade semi-arid 
Mediterranean-climate ecosystems, such as southern California 
(bottom panel). Photo credit: Jennifer Funk.
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(e.g. fixation) or P acquisition (e.g. cluster roots) may not be 
limited by the same nutrient as are neighbouring species 
(DiTommaso and Aarssen, 1989; Koerselman and Meuleman, 
1996). Species also vary in their nutrient requirements. For 
example, grasses require lower amounts of P than forbs, pos-
sibly due to lower nucleic acid requirements associated with 
basal meristem leaf growth (Halsted and Lynch, 1996). 
Grasses with a C4 photosynthetic pathway can also operate 
at a lower N concentration due to higher photosynthetic 
nitrogen use efficiency (PNUE, i.e. carbon assimilation per 
unit of N; Sage and Pearcy, 1987).

The occurrence and degree of nutrient limitation in ecosys-
tems is notoriously difficult to determine, because it depends 
on the process (e.g. plant growth) and time scale considered 
(Güsewell, 2004). Nutrient limitation is typically demon-
strated when the addition of a nutrient increases plant growth 
(Vitousek and Howarth, 1991). As these types of experiments 
can be time consuming and labour intensive, element concen-
trations and ratios (e.g. N:P) of plant tissue have been used to 
demonstrate nutrient limitation in a variety of vegetation 
types. Across a diversity of ecosystems, N limitation is indi-
cated by vegetation N:P ratios <10, P limitation is indicated 
by N:P ratios >20, and N and P can co-limit plant growth in 
between (Güsewell, 2004). Many researchers have also pro-
posed specific N and P concentrations that characterize 
severely nutrient-limited soils. For example, N concentrations 
<13 mg g−1 and P concentrations <1 mg g−1 have been demon-
strated to be limiting to plant growth (Wassen et al., 1995; 
Güsewell and Koerselman, 2002).

Many species can invade low-nutrient soils, and the best-
studied examples are in ecosystems with young volcanic soils 
(e.g. Vitousek and Walker, 1989; Mack et al., 2001; Funk 
and Vitousek, 2007; Schoenfelder et al., 2010), grasslands 

(e.g. Drenovsky et al., 2012b; Han et al., 2012), and arid 
shrublands (James and Richards, 2006). However, very few 
invaders can invade severely nutrient-deficient soils. For 
example, there are very few invaders (e.g. Pinus) in Australia 
where soil P levels are below 200 p.p.m. Plants require a high 
activity of RNA to sustain rapid rates of protein synthesis 
(growth-rate hypothesis; Elser et al., 1996). Thus, invaders in 
P-limited systems should not be stereotypical fast-growing 
weeds. Historically, there have been fewer invasive species in 
saline- or serpentine-derived soils, which are characterized by 
low concentrations of macronutrients or high concentrations 
of salt or heavy metals (Lonsdale, 1999; Hoopes and Hall, 
2002; Williamson and Harrison, 2002).

Efficiency of nutrient use
Across species, there is a positive correlation between leaf N 
and photosynthetic rate (Fig. 3; Field and Mooney, 1986). 
Researchers working across low- and high-nutrient environ-
ments have found that native species occupy the lower left 
corner of this relationship (slow return), while invasive spe-
cies occupy the upper right (fast return; e.g. Leishman et al., 
2007; Penuelas et al., 2010; Ordonez and Olff, 2012). 
However, this pattern has not been demonstrated in all com-
munities examined. For example, this generalization holds 
for species occurring in N-limited Hawaiian rainforest 
(Fig. 3A), but the pattern does not hold for annual grasses 
and forbs occurring in serpentine soils in California (Fig. 3B). 
If the slope of the relationship between carbon assimilation 
and leaf N is similar for both native and invasive species, then 
physiological processes are similar; more leaf N leads to a 
corresponding increase in photosynthesis. However, if the 
two groups display different slopes, this means that PNUE is 
higher for one group, which implies that native and invasive 
species have different biochemical or morphological traits.

The majority of studies examining nutrient-use efficiency 
in invasive species relative to co-occurring native species have 
found higher values in invasive species (Table 1). For exam-
ple, Godoy et al. (2011) found higher PNUE in 20 
Mediterranean invaders relative to natives in both low- and 
high-N conditions. Invasive lovegrass (Eragrostis curvula) 
had a higher PNUE relative to native grasses in low-nutrient 
soils in Australia (Firn et al., 2012). Likewise, when grown in 
low-P conditions, invasive members of the genus Pinus had 
higher PNUE than non-invasive members (Matzek, 2011).  
However, a handful of studies have found no differences in 
PNUE between native and invasive species (Table 1). For 
example, Schoenfelder et al. (2010) found that an invasive 
forb (Hypochaeris radicata) growing on nutrient-poor volca-
nic soils did not have higher PNUE relative to a confamilial 
native species. Instead, the researchers proposed that H. rad-
icata invades this low-N system through superior N acquisi-
tion and by diluting tissue N in order to build more 
photosynthetic structures.

Few studies have examined the mechanisms of higher 
nutrient-use efficiency in invasive species. Plant species vary 

3

Figure 2.  Model for interactive effects of resource availability and 
disturbance on habitat invasibility. Disturbance often increases 
resource availability by removing competitors. Decreased frequency of 
disturbance (e.g. fire suppression) can prevent succession from being 
reset and favour strongly competitive invasive species. Adapted from 
Alpert et al. (2000).
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greatly in how they allocate N among photosynthetic and 
non-photosynthetic compounds in the leaf, and it is possible 
that invasive species with high PNUE allocate more N to 
photosynthetic compounds. Plants may allocate 5–32% of 
leaf N to ribulose-1,5-bisphosphate carboxylase oxygenase 
(photosynthetic) and 2–30% to cell walls (non-photosyn-
thetic), with higher amounts of cell-wall protein occurring in 
longer-lived leaves (Evans, 1989; Warren and Adams, 2001; 
Onoda et al., 2004; Takashima et al., 2004; Harrison et al., 
2009). Feng et al. (2009) found that, compared with native 
populations, invasive populations of Ageratina adenophora 
allocated more N to soluble protein at the expense of  cell-wall 

protein, which increased PNUE. A study of five native and 
five invasive woody species from Hawaii also found that 
invasive species allocate less N to cell-wall protein than 
native species (Funk et al., 2013). While soluble protein con-
tent and PNUE did not differ between native and invasive 
species groups, invasive species allocated more N to amino 
acids, which may be used for rapid growth (Funk et al., 
2013).

Leaf longevity and nutrient recycling may influence nutri-
ent-use efficiency on longer time scales. Invasive species in 
low-nutrient systems tend to have lower LMA, but this does 
not seem to translate into shorter leaf lifespan (Table 1).  
While there are very few data on nutrient recycling, nutrient 
resorption appears to be similar among native and invasive 
species (Table 1). Similar levels of N or P resorption have 
been found between native and invasive grass and forb spe-
cies from the Intermountain West of the USA (Drenovsky 
et al., 2012b), in invasive species of Acacia from Australia 
relative to co-occurring woody native species (reviewed by 
Morris et al., 2011), and in a structurally and taxonomically 
diverse group of native and invasive species occurring in low-
nutrient soils in Hawaii (Funk and Vitousek, 2007).

Nutrient acquisition
Species occurring in N- and P-limited soils may possess mor-
phological and physiological traits that facilitate N and P 
acquisition. Plants can maximize N uptake by increasing 
total root length, increasing specific root length, increasing 
root longevity, stimulating microbial decomposers via rhi-
zodeposition, or allocating carbon to mycorrhizae. Few stud-
ies have surveyed root traits in native and invasive species 
and the existing data do not show clear differences between 
groups in root to shoot biomass ratio (R:S) or rates of nutri-
ent uptake (Table 1). A high total root length appears to be 
more important in acquiring N than P (Olde Venterink and 
Güsewell, 2010). Instead, many native plants in P-limited 
soils have cluster roots and/or high phosphatase production 
in roots (Richardson et al., 2009; Olde Venterink, 2011). It is 
unclear whether invasive species in P-limited systems share 
these strategies, although several Lupinus species have cluster 
roots and invade low-P soils in Australia (Lambers et al., 
2013).

Native species in P- and N-limited soils frequently form 
associations with mycorrhizal fungi, which help plants to 
sequester P and N and may also protect them from soil 
pathogens and drought stress (Auge, 2001; Willis et al., 
2013). A review of the limited data on mycorrhizal dynamics 
in native and invasive plant species suggested that many 
 invasive plants do not associate with mycorrhizae, are facul-
tatively mycorrhizal, or can partner with various types 
(arbuscular mycorrhizae vs. ectomycorrhizae) and species of 
fungi (Pringle et al., 2009). Patterns appear to vary by region. 
An analysis of the California flora concluded that fewer inva-
sive species than native species form mycorrhizal  associations, 
while the pattern was reversed in Great Britain (Pringle et al., 

4

Figure 3.  The relationship between mass-based photosynthetic rate 
(Amass) and leaf N content on a mass basis. Annual and perennial 
herbaceous and woody invasive species occupy the ‘high-return’ end 
of the spectrum in a rainforest in Hawaii (r = 0.59, P = 0.001; A); 
however, invasive grasses and forbs are similar to natives in a 
serpentine grassland in northern California (r = 0.47, P = 0.02; B). Data 
are from Funk and Vitousek (2007) and J. L. Funk (unpublished data).
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Table 1.  The number of studies that have observed trait differences between invasive and native or non-invasive exotic species in environments 
with (A) low soil nutrient availability, (B) low water availability and (C) low irradiance.

Invasive > Native No difference Native > Invasive References

A. Low nutrient availability

Resource conservation

    High NUE 12 7 0 1-3,7-9,11,13,16,19, 20,27,28,31-33,42,44,49

    High LMA 0 3 9 1-3,8,11,13,15,20,25,31,42,46

    High LLS 0 1 1 15,35

    High resorption 0 3 0 8,16,35

Resource acquisition

    High R:S 4 5 2 2,7,8,13,25,29,30,32,35,44,46

    High uptake per mass 0 3 0 29,32,34

    Mycorrhizae not enough data, but see 43

    Underutilized nutrient forms not enough data

    Specialized roots* not enough data

B. Low water availability

Resource conservation

    High WUE 1 5 2 4,5,8,16,17,33,48,49

    High LMA 0 3 5 2,5,8,15,17,45,48,49

    High LLS not enough data, but see 15

    Water storage not enough data

     Specialized leaf 
morphology**

not enough data

Resource acquisition

    High R:S 4 3 1 2,6,8,17,21,22,45,48

    Early phenology 3 0 0 22,26,51

    Mycorrhizae not enough data, but see 43

    Deep roots not enough data

    High SRL not enough data

    Fast tissue turnover not enough data

C. Low irradiance

Resource conservation

    High quantum yield 3 7 1 13,14,16,18-20,24,38,39,41,47

    High LMA 1 5 11 9,13-15,18-20,24,27,36, 38,41,45-47,50,52

    High LLS 3 0 2 9,12,15,23,27

    High A/Rd 4 3 1 9,20,24,27,33,36,38,41

Resource acquisition

    Low R:S 4 4 0 13,19,38,40,41,45,46,50

    High chlorophyll content 2 2 1 9,14,18,39,40

    Low CC/High PEUE 7 1 0 1,3,16,24,33,36,37,47

* Examples include nitrogen fixation and cluster roots; ** examples include low stomatal density, thick cuticle, trichomes. Abbreviations are: A/Rd, ratio of photo-
synthetic rate to dark respiration rate; CC, leaf construction cost; LMA, leaf mass per unit area; LLS, leaf lifespan; NUE, nutrient use efficiency; PEUE, photosynthetic 
energy use efficiency; R:S, root to shoot biomass ratio; SRL, specific root length; WUE, water use efficiency.
1Baruch and Goldstein 1999, 2Baruch and Jackson 2005, 3Baruch et al. 2000, 4Brock and Galen 2005, 5Cordell et al. 2002, 6DeFalco et al. 2003, 7Drenovsky et al. 2008, 
8Drenovsky et al. 2012b, 9Durand and Goldstein 2001, 10Feng et al. 2007, 11Firn et al. 2012, 12Fridley 2012, 13Funk 2008, 14Funk and McDaniel 2010, 15Funk and Throop 
2010, 16Funk and Vitousek 2007, 17Funk and Zachary 2010, 18Funk et al. 2013, 19Gleason and Ares 2004, 20Godoy et al. 2011, 21Grotkopp and Rejmanek 2007, 22Han 
et al. 2012, 23Harrington et al. 1989, 24Heberling and Fridley 2013, 25James and Drenovsky 2007, 26Kimball et al. 2011, 27Kloeppel and Abrams 1995, 28Laungani 
and Knops 2009, 29Leffler et al. 2011, 30Leishman and Thomson 2005, 31Leishman et al. 2010, 32Matzek 2011, 33McDowell 2002, 34Meisner et al. 2011, 35Morris et al. 
2011, 36Nagel and Griffin 2004, 37Osunkoya et al. 2010a, 38Osunkoya et al. 2010b, 39Pammenter et al. 1986, 40Paquette et al. 2012, 41Pattison et al. 1998, 42Pavlik 1983, 
43Pringle et al. 2009, 44Schoenfelder et al. 2010, 45Schumacher et al. 2008, 46Schumacher et al. 2009, 47Shen et al. 2011, 48Steers et al. 2011, 49Stratton and Goldstein 
2001, 50van Kleunen et al. 2011, 51Wolkovich and Cleland 2011, 52Yamashita et al. 2000.
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2009). There are examples of obligate mycorrhizal invasive 
species that use novel species of mycorrhizal fungi in the 
introduced habitat to outcompete native species (e.g. 
Centaurea maculosa; Marler et al., 1999). Conversely, there 
are examples where novel mycorrhizal symbionts inhibit the 
growth of invasive species (e.g. Plantago lanceolata; Bever, 
2002). There are also  examples where an invasive species 
negatively affects neighbouring native species by disrupting 
mycorrhizal associations (e.g. Vogelsang and Bever, 2009; 
Meinhardt and Gehring, 2012). Understanding how native 
and invasive species associate with mycorrhizae is critical in 
nutrient-poor soils, and more data are needed to understand 
taxonomic and geographical patterns among species.

Many successful invaders in N-limited systems have 
 symbiotic associations with N-fixing bacteria. For example, 
Myrica faya, Leucaena leucocephala, and other nitrogen- 
fixing species have invaded young, N-limited volcanic soils in 
Hawaii, filling an empty niche, because no native nitrogen-
fixing  species occur during primary succession on these soils 
(Fig. 1; Vitousek and Walker, 1989). Another example is 
Australian Acacia spp. that invade low-nutrient coastal dunes 
in Portugal (Rodríguez-Echeverría et al., 2009) and low-
nutrient fynbos in South Africa (e.g. Witkowski, 1991; 
Yelenik et al., 2004). While nitrogen fixation may facilitate 
the invasion of these species into low-N ecosystems, nitro-
gen-fixing species may possess other traits that increase access 
to below-ground resources. For example, invasive Australian 
acacias allocate more biomass below ground (higher root 
mass ratio and root depth) compared with co-occurring 
native species, allowing them greater access to water and 
nutrients (Witkowski, 1991; Morris et al., 2011). There is 
also evidence that some invasive species may nodulate more 
readily and fix greater amounts of N than co-occurring 
N-fixing species (Rodríguez-Echeverría et al., 2009), although 
it is not known whether greater nodulation arises through a 
plant’s ability to form associations with multiple bacterial 
partners (e.g. greater symbiotic promiscuity) and nodulate 
with low bacterial population sizes, or through differences in 
the bacteria themselves. Bacteria genera and strains vary in 
growth rate and the efficiency of N-fixation (e.g. Simms et al., 
2006). For example, invasive Australian acacias mainly asso-
ciate with slow-growing Bradyrhizobium, but have been 
found occasionally to associate with fast-growing Rhizobium 
(Rodríguez-Echeverría et al., 2011). Very little is known 
about how native and invasive species associate with differ-
ent strains of N-fixing bacteria, and this is an interesting area 
for future research.

Lastly, invasive species may access forms of nutrients that 
neighbouring species are not using, including amino acids 
(Lipson and Näsholm, 2001). Very few studies have exam-
ined how native and invasive species compete for HN4

+, 
NO3

−, and organic N. Aanderud and Bledsoe (2009) con-
cluded that invasive grass species used HN4

+, the dominant 
form of N, forcing subordinate native species to use NO3

− 
and amino acids. Leffler et al. (2011) found that an invasive 
annual grass (Bromus tectorum) had a high mass-specific 

absorption rate and a high rate of whole-plant N uptake, 
implying that this species could access NO3

− that other spe-
cies (including one exotic invasive and three native species) 
could not use. The potential for invasive species to use differ-
ent forms of N is another exciting area for research, although 
organic N uptake may be restricted to cold, wet environ-
ments with low rates of N mineralization (Craine, 2009).

Water availability
Arid environments (e.g. deserts, tundra, xeric shrubland) are 
characterized by < 250 mm of annual precipitation, while 
semi-arid environments (e.g. grassland, savanna, 
Mediterranean shrubland, seasonally dry tropical forests) 
receive 250–500 mm of annual precipitation (Holdridge, 
1967). The degree to which water and N co-limit plant 
growth in arid systems has been investigated by several 
researchers (DeFalco et al., 2003; James and Richards, 2005, 
2006; Barker et al., 2006), and results suggest that water 
availability most strongly limits plant growth in normal pre-
cipitation years, while N availability limits plant growth in 
wet years. Plants cope with water limitation by integrating 
biochemical, physiological, and morphological processes 
across multiple levels of organization (i.e. cell, organ, plant). 
As I discuss below, there is evidence that some invasive spe-
cies possess drought-tolerant traits, while others do not.

Efficiency of water use
Many leaf-level traits, including thick cuticles and trichomes, 
function to reduce the amount of water lost from leaves 
(Sandquist and Ehleringer, 1998). Additionally, plants in arid 
environments tend to have high LMA. Across taxonomically 
diverse plant species, high LMA leads to lower leaf-level car-
bon assimilation rates, representing one of the key trade-offs 
of the LES (Reich et al., 1997; Wright et al., 2004). However, 
high LMA in arid systems has been linked to larger amounts 
of mesophyll tissue (which contains the photosynthetic 
machinery) rather than higher amounts of structural tissue 
(Wright and Westoby, 2002). Thus, plants can increase their 
water-use efficiency (WUE) by investing more resources in 
photosynthetic enzymes and pigments to draw down intercel-
lular CO2 concentrations and reduce transpiration loss 
(Westoby et al., 2002). Given that photosynthetic enzymes 
require N, plants adapted to arid regions generally have high 
leaf N content, presumably to increase WUE (Wright and 
Westoby, 2002). Thus, LMA and photosynthetic rate are not 
necessarily negatively correlated in arid and semi-arid sys-
tems (e.g. Steers et al., 2011).

The existing data suggest that LMA is lower in invasive 
species than in native species occurring in arid environments 
(Table 1). For example, in the Mojave desert, two annual 
exotic grasses (Bromus madritensis and Schismus barbatus) 
and one annual exotic forb (Erodium cicutarium) produce 
many thin (low LMA) leaves (Steers et al., 2011). Thin leaves 
generally have low quantities of structural carbohydrates, 
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which results in low energetic or construction cost of the leaf 
(Griffin, 1994). Low construction cost is often associated 
with higher plant growth rates (Nagel and Griffin, 2004), 
because resources are available to produce more photosyn-
thetic tissue, which maximizes plant-level carbon assimila-
tion. However, while cheap structures may provide an initial 
growth advantage, more leaf area leads to higher plant-level 
transpiration rates, and this may render these exotic species 
more prone to water stress in low-precipitation years. 
Nevertheless, many annual species (particularly invasive 
annuals) may employ this strategy, where the production of 
cheap structures facilitates a rapid response to unpredictable 
precipitation events (Angert et al., 2007; Huxman et al., 
2008). This mechanism may explain why exotic species can 
spread in wet years and remain in the seed bank during dry 
years (e.g. Pennisetum setaceum in Hawaii; Cordell et al., 
2002).

Cavaleri and Sack (2010) conducted a meta-analysis of 40 
studies examining water use in native and invasive plants 
worldwide and found similar values for leaf-level WUE 
expressed on an instantaneous basis (photosynthetic rate/
transpiration rate) and integrated over leaf lifespan (δ13C). 
This same pattern emerges when the analysis is restricted to 
arid and semi-arid systems (Table 1). Cavaleri and Sack 
(2010) also found that invasive species had lower pre-dawn 
water potential (ψpd) than native species, particularly in 
regions with low mean annual precipitation. They suggest 
that invasive species may favour drier microsites within habi-
tats, deplete soil moisture levels more than natives, or have 
higher nocturnal transpiration (e.g. Dawson, 1993).

Water acquisition and drought tolerance
Root depth, root to shoot biomass ratio (R:S), and mycor-
rhizal associations strongly influence water uptake. The influ-
ence of rooting depth on plant performance depends on the 
magnitude and frequency of precipitation; more frequent 
large precipitation events increase the productivity of deep-
rooted shrubs, while more frequent small events increase the 
productivity of shallow-rooted species (Weltzin and 
McPherson, 1997; Gebauer and Ehleringer, 2000; Loik, 
2007). I am not aware of any study that has quantified root 
depth for native and invasive species in an arid system. 
Several studies have demonstrated enhanced water acquisi-
tion in species invading arid and semi-arid systems through 
higher R:S (Table 1). For example, a study of 12 phylogeneti-
cally controlled pairs of native and invasive woody species in 
California found that invasive species allocated more bio-
mass to roots, which may help them tolerate summer drought 
(Grotkopp and Rejmanek, 2007). Additionally, in a study of 
annual species from the Mojave Desert, DeFalco et al. (2003) 
found that Bromus madritensis uses more water, takes up 
water at a faster rate, and draws down soil water content to 
a lower level than neighbouring native forb and grass species 
due to greater biomass allocation below ground and greater 
root surface area. These same traits also confer an advantage 
in N acquisition; B.  madritensis had a higher N content and 

N uptake rates in some treatment conditions (DeFalco et al., 
2003). Given that species adapted to arid and semi-arid envi-
ronments must maintain a high N status to achieve high 
WUE (Wright and Westoby, 2002), the ability to take up N 
during precipitation events may strongly impact plant N sta-
tus and, consequently, plant fitness.

Understanding species responses to short-term changes in 
water availability is important because global climate models 
project intensified intra-annual variation in precipitation in 
many arid environments, resulting in larger precipitation 
events with longer intervening dry periods (Diffenbaugh 
et al., 2005; Knapp et al., 2008). Han et al. (2012) found a 
higher R:S in invasive species relative to native species in vari-
able irrigation conditions, suggesting that invasive species 
may demonstrate enhanced physiological plasticity to chang-
ing environments. In contrast, a study of native and invasive 
shrubs in southern California found no clear differences in 
how  water-stressed individuals of these groups responded to 
precipitation events (Funk and Zachary, 2010). One native 
(Salvia mellifera) and one invasive species (Ricinus commu-
nis) displayed rapid photosynthetic recovery following 
drought, but this was attributable to enhanced leaf-level 
function (WUE) rather than new root growth.

Much of the work on water acquisition in native and inva-
sive species has focused on root traits rather than differences 
in water conductance through the xylem. Across taxonomic 
groups, there appears to be a trade-off between water con-
ductance and vulnerability to cavitation (Hacke et al., 2001; 
Preston and Ackerly, 2003). While reinforcement of water-
conducting vessels and tracheids prevents xylem cavitation at 
low water potential, transport efficiency is reduced by 
increased wall thickness in reinforced cells. Woody species 
adapted to arid and semi-arid environments may reduce 
water conduction in order to prevent cavitation, and it is 
unknown whether woody species invading these environ-
ments are similar to native species in this way. Caplan and 
Yeakley (2010) found that an invasive blackberry (Rubus 
armeniacus) maintained higher stomatal conductance and 
lower hydraulic resistance throughout the year relative to 
two native congeners. Greater rates of water transport were 
probably driven by access to deeper water sources and shoot 
water storage, although species differences in stomata anat-
omy and xylem embolism were not examined.

Phenology
Plants growing in arid and semi-arid systems display a broad 
range of phenological patterns that limit the severity of water 
stress (Williams et al., 1997; Sandquist and Ehleringer, 1998). 
Annual species are common in arid systems, because this 
strategy enables them to complete a short life-cycle during the 
favourable wet season. Many perennial species are drought 
deciduous, which allows them to be dormant during the hot, 
dry summer months (Nilsen and Muller, 1981; Comstock and 
Ehleringer, 1986). However, drought  deciduousness is more 
economically feasible in nutrient-rich environments, where 

7

 at C
hapm

an U
niversity L

ibrary on February 20, 2015
http://conphys.oxfordjournals.org/

D
ow

nloaded from
 

http://conphys.oxfordjournals.org/


Review Conservation Physiology • Volume 1 2013

the costly loss of nutrients in shed leaves does not adversely 
affect plant fitness (reviewed by Morris et al., 2011).

Plant species may cope with fluctuations in the timing and 
magnitude of water availability by altering their phenology. 
An analysis of several US plant databases found that exotic 
species generally develop leaves earlier in the year than 
natives, which may allow them to pre-empt resources by 
being active earlier (Table 1; Wolkovich and Cleland, 2011). 
For example, African lovegrass (Eragrostis curvula), which 
occupies nutrient- and water-depleted sites in Australia, ger-
minates and grows faster than functionally similar native 
grass species (Han et al., 2012), potentially enhancing its 
competitive ability. Phenological patterns also correlate with 
plant function. In the Sonoran Desert, Kimball et al. (2011) 
found that annual species with high WUE, including the inva-
sive forb Erodium cicutarium, germinate earlier in the 
 growing season and reproduce for a longer time period. 
Species with low WUE germinate later, following several 
rainfall events, but the plants experience higher risk of mor-
tality associated with warmer temperatures later in the grow-
ing season.

With respect to phenology, evergreen species may be more 
constrained in their ability to respond morphologically to 
precipitation events than deciduous perennials or annual spe-
cies (Grime et al., 1986). However, retaining long-lived leaves 
may provide evergreen species with an advantage over those 
that must produce new leaves following a precipitation event. 
For example, Eragrostis lehmanniana, an invasive grass in 
the southwest USA, can up-regulate photosynthesis quickly 
following summer precipitation events, while a co-occurring 
native bunchgrass, Heteropogon contortus, lags behind as it 
grows new leaves (Ignace et al., 2007). In contrast, species 
with short-lived or inexpensive tissues can track the limiting 
resource over time and invest in tissues that are more appro-
priate for the new environment. While this has primarily 
been demonstrated for variation in light availability (Ackerly 
and Bazzaz, 1995), there is some evidence of a stress-tracking 
ability in response to drought as well. Two exotic species 
(Ricinus communis and Nicotiana glauca) in a semi-arid 
coastal sage scrub community in southern California 
responded to drought-induced high-light stress with new 
growth and large decreases in the function of existing leaves 
(photosynthetic rate, light harvesting), suggesting that 
these species respond to stress by turnover of existing tissue 
rather than acclimatization of existing tissue (Funk and 
Zachary, 2010).

Light availability
Plant species occurring in low-light environments demon-
strate a trade-off between shade tolerance and growth rate 
(Bazzaz, 1979; Valladares and Niinemets, 2008). Shade-
intolerant species grow rapidly in order to reach higher light 
levels at the top of the canopy and display high photosyn-
thetic rates, early reproduction, and short lifespan. Some 
shade-intolerant exotic species can take advantage of 

 disturbances that create high-light gaps. The exotic tree spe-
cies Ailanthus altissima is shade intolerant (Martin et al., 
2010) but succeeds in low-light forests because it requires 
only a small gap to initiate rapid growth to reach the canopy 
(Knapp and Canham, 2000). Higher leaf area ratios and low 
R:S, characteristics of many species invading forests (Table 
1; Pattison et al., 1998; Standish et al., 2001; Reinhart et al., 
2006; Schumacher et al., 2009; Paquette et al., 2012), sug-
gest that these species are able to take advantage of high-
light conditions and grow rapidly in response to natural or 
human-induced canopy gaps. For example, Leicht and 
Silander (2006) found that an invasive liana (Celastrus 
orbiculatus) grew taller than a congeneric native (Celastrus 
scandens), which allows it to forage more efficiently for can-
opy gaps. Once established, some shade-intolerant species 
change the structure of the forest, promoting high-light con-
ditions that favour exotic species. For example, understory 
species in forests can create an environment suitable for 
them by suppressing recruitment of native canopy species 
(Standish et al., 2001; Funk and McDaniel, 2010). However, 
most species invading forests are shade tolerant (Martin 
et al., 2009), and therefore shade tolerance is the focus of the 
following  section.

Shade tolerance
Researchers have characterized the traits associated with 
shade tolerance, although the focus has been on leaf traits as 
opposed to shoot and root traits (Mooney, 1972; Bjorkman, 
1981; Chazdon, 1988; Givnish, 1988). Species adapted to 
low-light environments possess a suite of physiological traits 
to maximize light capture, such as high quantum yield (car-
bon assimilated per photon absorbed), high chlorophyll con-
tent, low respiratory rates, low light compensation points, 
and allocation of nitrogen to proteins associated with light-
harvesting functions at the expense of carbon-assimilation 
functions (Bjorkman, 1981; Evans and Poorter, 2001; Givnish 
et al., 2004; Craine, 2009; but see Walters and Reich, 2000; 
Janse-ten Klooster et al., 2007; Wyka et al., 2007). Shade-
tolerant species typically possess leaves with large amounts of 
structural tissue, which helps protect them against physical 
stresses and herbivory (Lusk and Warton, 2007). This 
increases LMA, leaf longevity and the lifetime carbon assimi-
lation of the leaf (Reich et al., 1997; Westoby et al., 2002), 
which is advantageous in low-light habitats on long time 
scales.

There have been few publications on understory invaders 
despite their presence, and they may have been overlooked 
historically because they do not spread quickly or possess 
traits more commonly ascribed to fast-growing exotic species 
(Martin et al., 2009). While some studies in low-light environ-
ments have found higher photosynthetic rate and quantum 
yield in invasive species relative to native species, the majority 
of studies found no significant differences in these traits (Table 
1). Some invasive species may achieve high rates of carbon 
assimilation at low irradiance by allocating more resources to 
the light-harvesting components of  photosynthesis, such as 
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chlorophyll (Table 1; Durand and Goldstein, 2001). However, 
increasing photosynthetic capacity can be costly. High meta-
bolic activity leads to higher respiratory costs resulting from 
higher rates of protein turnover and maintenance of solute 
gradients required for phloem loading (Lambers et al., 2008); 
thus, leaves with high photosynthetic rates typically have 
higher light compensation points associated with higher respi-
ratory costs (e.g. Givnish et al., 2004). However, several stud-
ies of photosynthetic function in native and invasive species 
found that invasive species in low-light conditions achieved 
high photosynthetic rates at a low respiratory cost (Table 1). 
As the mechanism for this pattern was not examined in these 
studies, there is a need for additional research in this area.

Invasive species in low-light environments have lower 
LMA and leaf construction costs relative to native species 
(Table 1). When coupled with higher photosynthetic rates, 
lower construction costs can increase photosynthetic 
 energy-use  efficiency (PEUE; carbon assimilated per unit of 
energy invested in leaf construction). Building cheaper leaves 
allows a plant to  produce more photosynthetic structures for 
the same energy cost, which maximizes whole-plant carbon 
gain. However, there is a trade-off between low construction 
cost and leaf lifespan, in that cheaper leaves often have lower 
leaf lifespan. Long leaf lifespan is a characteristic of shade-
tolerant species, because this allows a plant to assimilate car-
bon over a longer time period for the same initial investment 
in leaf construction. Several surveys of native and exotic spe-
cies in forests have found earlier bud break and longer leaf 
lifespans in exotic species (Harrington et al., 1989; Kloeppel 
and Abrams, 1995; Fridley, 2012; but see Durand and 
Goldstein, 2001; Funk and Throop, 2010), which seems at 
odds with the general pattern of lower leaf construction cost 
in invasive species. Nevertheless, the effect on PEUE is the 
same, in that longer leaf lifespan will increase PEUE as more 
carbon is assimilated per resource invested over time.

Measures of resource-use efficiency integrated over a leaf’s 
lifespan suggest very different scenarios for the success of 
invasive species compared with the instantaneous measures 
(PNUE, WUE, and quantum yield) that I have presented thus 
far. Instantaneous measures of resource-use efficiency may 
reflect performance on short time scales, while measures inte-
grated over leaf lifespan may more accurately reflect perfor-
mance on longer time scales (e.g. multiple seasons; Funk and 
Vitousek, 2007). The appropriate measure of resource-use 
efficiency will be context dependent, and this may partly 
explain discrepancies across studies, such as the finding that 
some invasive species in low-light environments display 
lower leaf construction costs, while  others maximize leaf 
lifespan.

Shade tolerance and rapid growth: the best 
of both worlds
Several studies have found that invasive species do not 
adhere to the growth rate–shade tolerance trade-off (see 
Table 2 of Catford et al., 2012). Norway maple (Acer 

 platanoides), one of the most common forest invaders in the 
northeastern USA and in riparian and montane forests in the 
northern Rocky Mountains in the USA, is a well-studied spe-
cies that displays both high survivorship in low-light condi-
tions (2% full sun) and high growth rates in high-light 
conditions (80% full sun; Martin et al., 2010). The depar-
ture of A. platanoides from the growth rate–shade tolerance 
trade-off probably results from a combination of plant- and 
leaf-level traits. Acer platanoides has a lower R:S than co-
occurring native species in high-light conditions (Paquette 
et al., 2012) and in deeply shaded forests (Reinhart et al., 
2006). Allocation of biomass to photosynthesizing tissues 
can result in higher plant-level assimilation and growth, 
which is advantageous when plants are competing primarily 
for light. At the leaf level, A. platanoides has high rates of 
photosynthesis and high LMA compared with the native 
congener Acer saccharum, but the denser leaves result from 
more chloroplasts in the palisade and mesophyll cells rather 
than increased structural tissue (reviewed by Kloeppel and 
Abrams, 1995). Despite the increased allocation to photo-
synthetic tissue, the two Acer species did not differ in respi-
ratory costs (Kloeppel and Abrams, 1995).

Other invasive species display both shade-tolerance traits 
and rapid growth. Durand and Goldstein (2001) found that 
an invasive tree fern (Sphaeropteris cooperi) had higher chlo-
rophyll content (shade tolerance) and larger annual height 
growth compared with native tree ferns in Hawaii. Pammenter 
et al. (1986) compared an invasive and native Agrostis species 
on a light-limited sub-Antarctic island and found that the 
invasive species had higher light-use efficiency over a wide 
temperature range. Additionally, the invasive Agrostis had 
thinner leaves and allocated relatively more carbon to photo-
synthetic tissue, presumably resulting in higher plant-level 
assimilation and growth. As discussed above, this strategy is 
shared by several exotic annual species in arid environments. 
Lastly, when compared with native species of varying succes-
sional status, Yamashita et al. (2000) found that an exotic tree 
species (Bischofia javanica) responded faster physiologically 
(increased photosynthesis of existing leaves) and morphologi-
cally (new leaf formation) to increased light levels simulating 
a canopy gap. Furthermore, following a transition from shade 
to sun, B. javanica decreased leaf chlorophyll content and 
increased PNUE, suggesting that this species reallocates N 
from light-harvesting to carboxylation components of photo-
synthesis.

Implications for restoration 
and  conservation
Given that many low-resource environments have high spe-
cies and functional diversity, it is essential to understand 
invasion dynamics in these systems in order to conserve and 
restore native biodiversity. While invasive species outperform 
native species in many communities, native species generally 
have an advantage or hold their own in low-resource envi-
ronments (Daehler, 2003), which means that opportunities 
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exist for control and restoration. Restoration techniques are 
diverse and range from methods that target specific invaders 
to those that manipulate community-level processes, such as 
disturbance, seed dispersal, and resource availability.

When native and invasive species differ in the timing or 
magnitude of resource acquisition or use, reinstating natural 
disturbance regimes or lowering resource availability may 
facilitate the restoration of native plant species (Fig. 4). For 
example, many studies have shown that adding carbon to soil 
can lower plant-available N and, consequently, reduce the 
abundance of invasive species (e.g. Blumenthal et al., 2003; 
Corbin and D’Antonio, 2004; Cherwin et al., 2009; Steers 
et al., 2011; but see James et al., 2011). Additionally, elimi-
nating disturbance that creates canopy gaps in forests can 
exclude shade-intolerant invasive species (Funk and 
McDaniel, 2010; Emer and Fonseca, 2011). Community-
level manipulations may be particularly effective if native and 
invasive species differ in the timing of resource use. Marushia 
et al. (2010) found that early season application of herbicide 
reduced exotic cover without affecting cover of native desert 
annuals. This method was effective because, as discussed 
above, many exotic species in desert systems display a rapid 
phenology and germinate before native species (Wolkovich 
and Cleland, 2011).

Community-level restoration approaches will be most 
effective when native and invasive species differ in the timing 
and magnitude of resource use (Emer and Fonseca, 2011; 
Steers et al., 2011). As highlighted above, many invasive 

 species have similar or higher resource-use efficiency com-
pared with neighbouring native species. In these cases, lower-
ing resource availability will not suppress the growth of 
invasive species. When confronted with resource-use-efficient 
invasive species, the best restoration options may be manual 
control of invasive species, planting or reseeding functionally 
similar native species, controlled burns, or herbicide treat-
ment (Funk et al., 2008; Fig. 4). A better understanding of 
physiological and morphological traits can help in the identi-
fication of possible restoration strategies in a given commu-
nity (Funk et al., 2008; Drenovsky et al., 2012a).

Conclusions
Invasion is a community-level process, and the traits of inva-
sive species depend on many factors, including the traits of 
native species, as well as propagule pressure, and the type and 
frequency of disturbance and resource limitation. While there 
is significant variation in results from studies of invasive spe-
cies conducted in low-resource systems, it is possible to make 
a few generalizations. With respect to resource  conservation, 
invasive species appear to use nutrients more efficiently than 
natives in low-nutrient soils. However, invasive and native spe-
cies are similarly efficient at using water and light in arid and 
light-limited systems, respectively. With respect to resource 
acquisition, invasive species tend to have higher R:S in arid 
systems and lower R:S in light-limited systems, relative to co-
occurring native species. Additionally, invasive species have 
lower leaf construction costs and higher PEUE in light-limited 
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Figure 4.  Traits associated with resource acquisition and use may suggest restoration strategies for invaded plant communities. Restoration 
approaches are separated into two categories, namely those that directly target invasive species and those that seek to alter a community-level 
process. 1When native and invasive species differ in the timing of germination or reproduction, practitioners can apply herbicide, mow, or graze 
during periods when invasive species are active or flowering. 2Original disturbance regimes should be restored when altered disturbance 
facilitates invasion, such as where canopy gaps increase light availability or fire reduces competition. 3Resource availability should be reduced 
when invasive species have higher resource requirements than native species. Examples include lowering soil nutrient availability by adding 
carbon to the soil, establishing canopy trees to reduce light, and tarping to reduce vertical or horizontal water flow. 4If native and invasive species 
are using resources in similar ways, but populations of native species are dispersal limited, practitioners can introduce native plants or seeds to 
overcome this barrier.
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systems. Earlier phenology in arid systems may also help inva-
sive species to outcompete native species for resources.

There are several gaps in our understanding of how spe-
cies invade low-resource systems. In low-nutrient systems, we 
need more information on how native and invasive species 
associate with different strains/species of N-fixing bacteria 
and mycorrhizae. Additionally, we have a limited under-
standing of how native and invasive species differ in the tim-
ing and form of nutrient use, as well as the capacity for 
recycling nutrients. Much of the research in arid and semi-
arid ecosystems has focused on morphological traits (such as 
biomass allocation and LMA) and a few physiological traits 
(e.g. WUE), and we know very little about water relations in 
native and invasive species in these environments. The few 
studies that have examined physiology in species invading 
forest systems have focused on a few species (e.g. A. platanoi-
des, A. altissima). More studies are needed to determine 
whether invasive species adhere to the shade tolerance–
growth rate trade-off and to determine the physiological 
mechanisms underlying any deviations. For example, studies 
at the cellular level are needed to understand how some inva-
sive species can increase carbon gain without a correspond-
ing increase in respiratory costs.

Propagule pressure, trait plasticity, and the type of species 
comparison confound our understanding of invasion in low-
resource systems. Firstly, invasion in low-resource ecosystems 
may be influenced by seed and vegetative dispersal. For 
example, in low-N fields, annual grasses can dominate, even 
though they are weak competitors relative to native perennial 
grasses, because native species are dispersal limited (Seabloom 
et al., 2003). Secondly, plant species may benefit from physi-
ological or morphological plasticity in low-resource environ-
ments, where resources can vary temporally or spatially (e.g. 
Poorter and Lambers, 1986; Davis et al., 2000; Valladares 
et al., 2000; Balaguer et al., 2001; Valladares et al., 2002; 
Funk, 2008). Several studies suggest that invasive species can 
be more plastic than native species in specific environmental 
conditions (for review see Davidson et al., 2011; Palacio-
López and Gianoli, 2011). Thus, caution should be used 
when interpreting trait data across environmental gradients, 
because species may differ in the plasticity of traits and, 
importantly, trait plasticity may not necessarily result in 
increased fitness or translate into increased abundance (Funk, 
2008; Osunkoya et al., 2010b; Godoy et al., 2011; van 
Kleunen et al., 2011; Dawson et al., 2012; Firn et al., 2012; 
Matzek, 2012). Lastly, most of the studies that examined 
invasive species in low-resource environments have com-
pared invasive species with co-occurring native species (but 
see Leishman and Thomson, 2005; Feng et al., 2007; Matzek, 
2011; Shen et al., 2011; van Kleunen et al., 2011). 
Comparisons of invasive and non-invasive exotic species 
answer different questions from conventional comparisons of 
native and invasive species (e.g. why some exotic species 
become invasive, while others do not; van Kleunen et al., 
2010), and our understanding of invasion in low-resource 
ecosystems could benefit from these types of comparisons.

Many low-resource environments are experiencing radical 
changes as N deposition and land-use legacies increase nutri-
ent availability in low-N and low-P systems, climate change 
alters the frequency and magnitude of precipitation in arid 
and semi-arid systems, and deforestation alters light availabil-
ity. The effects of global change factors and their interactions 
on invasive species are still largely unresolved, and more 
research is needed on this important topic. Understanding the 
physiological mechanisms by which native and invasive spe-
cies respond to current and future resource availability will 
help restoration efforts. Specifically, leaf- and plant-level traits 
can suggest ways to manipulate community-level properties 
to restore invaded ecosystems.
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