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CHRONIC INFLAMMATORY RESPONSES TO MICROGEL-BASED
IMPLANT COATINGS
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E. Babensee1,2, L. Andrew Lyon1,3, and Andrés J. García1,4,*

1 Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta,
Georgia 30332-0363, USA
2 Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta,
Georgia 30332-0363, USA
3 School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
30332-0363, USA
4 Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
30332-0363, USA

Abstract
Inflammatory responses to implanted biomedical devices elicit a foreign body fibrotic reaction that
limits device integration and performance in various biomedical applications. We examined
chronic inflammatory responses to microgel conformal coatings consisting of thin films of poly(N-
isopropylacrylamide) hydrogel microparticles cross-linked with poly(ethylene glycol) diacrylate
deposited on poly(ethylene terephthalate) (PET). Unmodified and microgel-coated PET disks were
implanted subcutaneously in rats for 4 weeks and explants were analyzed by histology and
immunohistochemistry. Microgel coatings reduced chronic inflammation and resulted in a more
mature/organized fibrous capsule. Microgel-coated samples exhibited 22% thinner fibrous
capsules that contained 40% fewer cells compared to unmodified PET disks. Furthermore,
microgel-coated samples contained significantly higher levels of macrophages (40%) than
unmodified PET controls. These results demonstrate that microgel coatings reduce chronic
inflammation to implanted biomaterials.

Keywords
foreign body response; macrophage; hydrogel; polyethylene terephthalate; fibrous capsule

INTRODUCTION
Biomaterials and implantable devices elicit a host foreign body response that often impairs
wound healing and tissue remodeling.1 Implantation of these synthetic materials triggers
dynamic, multi-component responses involving protein adsorption, leukocyte recruitment,
adhesion and activation, cytokine expression/release, macrophage fusion into multi-
nucleated foreign body giant cells (FBGCs), tissue remodeling and fibrous encapsulation of
the implant.2 These inflammatory responses significantly interfere with the biological
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performance of these devices, often resulting in inadequate performance and failures that
may require secondary interventions. Examples of chronic inflammatory responses to
biomedical devices include thrombogenic responses on vascular grafts,3,4 degradation and
stress cracking of pacemaker leads,5,6 tissue fibrosis surrounding mammary prostheses,7
reactive gliosis around neural probes,8 degradation in glucose biosensor function,9 and
generation of wear debris around orthopedic joint prostheses.10

Fibrous capsule formation around the implant and the presence of macrophages and FBGCs
at the tissue-material interface are the hallmarks of a chronic inflammatory response. The
αMβ2 integrin and macrophage mannose receptor have been identified as critical
components for FBGC formation.11 Although the molecular mechanisms leading to
macrophage fusion have not been fully elucidated, soluble molecules, signal transducers,
and numerous receptors are likely involved.2 FBGCs have been implicated in
biodegradation of polymeric implants through surface oxidation and enzymatic degradation.
12,13 Multi-nucleated giant cells have been observed in chronically inflamed tissues
induced by a foreign stimulus, yet the physiological significance and precise role of FBGCs
at the tissue-material interface remains poorly understood. The cell-cell interactions of the
foreign body response are quite complex, and the overall biological response to implanted
materials is likely a composite of macrophages, fibroblasts, lymphocytes, and FBGCs.
Further elucidation of the molecular events governing inflammation will aid in the
development of implantable materials with more appropriate host responses.

Significant research efforts have focused on modifying material properties to generate
implants that appropriately integrate with the host tissue while eliciting minimal undesirable
effects. A common approach to reduce inflammatory responses is the use of non-fouling
(protein adsorption-resistant) polymeric coatings, which have been developed in various
forms including polymer brushes and thin or bulk hydrogels. Although many of these
methods have been effective when tested in vitro, these coatings usually exhibit high levels
of adherent leukocytes, persistent inflammation, and fibrous encapsulation of the implant.
14–16 Long-term tissue fibrosis is particularly limiting for interactive implants such as
biosensors, biomedical leads and electrodes, encapsulated cells, and drug delivery systems,
because it impedes analyte transport and exchange of nutrients and cellular byproducts with
the surrounding medium.9,17–21 By controlling capsule thickness, implant coatings may
have the ability to maintain an open exchange of key biomolecules and extend the in vivo
lifetime of these constructs.

We recently engineered a hydrogel-based coating composed of pNIPAm-co-AA microgel
particles cross-linked with PEG diacrylate tethered onto a poly(ethylene terephthalate)
(PET) substrate.22 PET was chosen as the base material because this polymer is used in
many biomedical devices including sutures, vascular grafts, sewing cuffs for heart valves,
and components for percutaneous access devices. PET elicits acute and chronic
inflammatory responses, characterized by leukocyte adhesion and fibrous encapsulation.
23,24 We have shown that these microgel coatings modulate events associated with acute
inflammation (i.e. protein adsorption and cell adhesion) and significantly reduce leukocyte
recruitment and cytokine expression in vivo at early time points.22 In the present study, we
evaluated chronic host responses to these microgel coatings. We demonstrate that these
conformal microgel coatings reduce chronic inflammation to implanted materials.

MATERIALS AND METHODS
Sample preparation

Thin sheets of poly(ethylene terephthalate) (AIN Plastics/ThyssenKrupp Materials NA,
Madison Heights, MI) were cut into disks (8 mm diameter) using a sterile biopsy punch
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(Miltex Inc., York, PA) and extensively rinsed in 70% ethanol to remove contaminants
introduced during the manufacturing process. Microgel particles were synthesized with 10
mol% acrylic acid as a co-monomer to incorporate functional groups for future modification.
pNIPAm-co-AA microgel particles (100 mM total monomer concentration) were
synthesized with 2 mol% PEG diacrylate (M.W. 575) by a free radical precipitation
polymerization method.25 Particle composition and size (hydrodynamic radius 334 ± 30
nm) were confirmed by NMR and dynamic light scattering, respectively. Microgel particles
were deposited on both sides of PET disks using a spin coating and photo-crosslinking
process as previously described.22,25 AFM and XPS analyses demonstrated uniform
conformal microgel coatings, in excellent agreement with previous analyses.22,25
Unmodified PET disks were used as controls.

After surface functionalization, all samples were rinsed in 70% ethanol on a rocker plate for
4 days, changing the solution daily to remove endotoxin contaminants, and were stored in
70% ethanol until use. Samples contained 10-fold lower levels of endotoxin than the United
States Food and Drug Administration’s recommended 0.5 EU/mL, as determined by the
LAL chromogenic assay (Cambrex, East Rutherford, NJ). Prior to use, samples were rinsed
three times in sterile phosphate buffered saline (PBS) and allowed to rehydrate in PBS for at
least 1 hour.

Subcutaneous implantation
NIH guidelines for the care and use of laboratory animals (NIH publication #85-23 Rev.
1985) have been observed. Samples (unmodified PET, microgel-coated PET; n = 8 samples/
group) were implanted subcutaneously following IACUC-approved procedures to evaluate
the chronic phase foreign body response. Male 5–6 wk old Wistar rats (Charles River
Laboratories, Wilmington, MA) were anesthetized by isofluorane. A single 1-cm incision
was made on the dorsum proximal to the spine, and a subcutaneous pocket laterally
spanning the dorsum was created. Sterile samples (two per subject, one on either side of the
spine) were implanted, and the incision was closed using sterile wound clips. After four
weeks, rats were sacrificed using a CO2 chamber and samples were explanted, rinsed in
sterile PBS, and fixed in formalin. Samples were carefully explanted with the surrounding
tissue intact to avoid disrupting the cell-material interface. Explants were bisected in order
to avoid edge effects and to standardize the sectioning location for analysis, and they were
paraffin-embedded for histological processing.

Histological staining of explants
Histological sections (5 μm thick) were stained for various markers. A Verhoeff-van Gieson
kit (Accustain® Elastic Stain kit from Sigma-Aldrich, St. Louis, MO) was used to stain
collagen (pink), elastin fibers (black), and nuclei (dark blue). Sixteen total fields per sample
(eight fields on both the muscle and skin sides of the implant) were acquired using a high
magnification 60X Plan Apo Nikon objective (1.40 NA). ImagePro software (Media
Cybernetics, Silver Spring, MD) was used to quantify fibrous capsule thickness.

Sections were also stained using immunohistochemical methods to determine the
inflammatory cellular profile at the cell-material interface. Following proteolytic antigen
retrieval with pronase (1 mg/mL solution for 10 min), sections were incubated in a mouse
monoclonal antibody against the CD68 antigen of macrophages (clone ED1, AbD Serotec,
Raleigh, NC), a biotinylated secondary antibody, and an avidin-linked alkaline phosphatase-
based developing reagent (Vectastain® ABC-AP Kit, Vector Labs, Burlingame, CA), and
counterstained with hematoxylin. Control sections (secondary antibody-only controls and
tissue-specific controls) confirmed specificity of the primary antibody for this marker.
Sixteen total fields per sample (eight fields on both the muscle and skin sides of the implant)
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were acquired using a high magnification 60X Plan Apo Nikon objective (1.40 NA). Images
were blindly scored for total nuclei, CD68+ cells with one nucleus (macrophages), and
CD68+ multi-nucleated cells (foreign body giant cells).

Statistical analysis
Data are presented as mean ± standard error. Statistical analysis (t-tests, 95% confidence
level considered significant) was performed by ANOVA using Systat 11.0 (Systat Software
Inc., San Jose, CA).

RESULTS
Fibrous capsule formation surrounding implants

PET disks were functionalized with p(NIPAM-co-AAc-co-PEGDA) microgel particles via a
spin coating and photo-crosslinking method to generate uniform, conformal coatings. XPS
and AFM analyses confirmed the chemical composition and the uniformity of microgel
coating, in excellent agreement with previous studies.22 Tissue responses to these materials
were evaluated using an established subcutaneous rat model to determine the extent of
chronic inflammation.1 Unmodified PET and microgel-coated PET disks were implanted for
4 weeks. Explants were processed histologically, and sections were analyzed for fibrous
capsule development using a Verhoeff van Gieson kit to stain collagen and elastin fibers; all
nuclei were counterstained for reference (Figure 1). The capsule was defined as the dense
tissue adjacent to the implant, and image analysis of high magnification images was used to
measure capsule thickness as the perpendicular distance starting at the capsule-implant
interface and moving outward. Measurement of fibrous capsule thickness following
subcutaneous implantation is a standard measure of chronic inflammation to synthetic
materials.1

Unmodified PET controls exhibited a tissue reaction characteristic of chronic inflammation
with a thick collagenous capsule containing high numbers of cells (Figure 1a). Microgel-
coated samples exhibited thinner and more compact capsules with more organized collagen
fibrils (Figure 1b). Image analysis demonstrated significantly thinner capsules (22%) for
microgel-coated PET compared to unmodified PET controls (p < 0.04, Figure 1c). The
average capsule thickness was 112.3 ± 5.1 and 87.3 ± 2.9 μm for PET controls and
microgel-coated samples, respectively.

The density of total cells present in the tissue capsules was scored using counterstained
nuclei, and sections were quantified in 100 μm increments along the implant interface
(Figure 1d). Microgel-coated samples contained approximately 40% fewer capsule-
associated cells than their unmodified PET control counterparts (p < 0.01). The average cell
density was 51.2 ± 2.2 and 31.1 ± 1.2 cells per 100 μm length of implant for PET controls
and microgel-coated samples, respectively. These results demonstrate that microgel coatings
reduce the thickness and cell density of tissue capsules surrounding implanted biomaterials.

Inflammatory cell profile at the implant interface
Explant sections were processed to evaluate the composition of cells at the implant-tissue
interface (Figure 2). Immunohistochemistry was used stain for the CD68 antigen, a marker
of monocytes and tissue macrophages, and all nuclei were counterstained for reference.
Images were scored for total CD68+ cells containing one nucleus (macrophages) and
CD68+ cells fused to form multi-nucleated FBGCs.

High magnification images of unmodified PET controls (Figure 2a) and microgel-coated
disks (Figure 2b) revealed that CD68 staining was localized to the capsule, primarily along
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the capsule-implant interface. All implanted samples, regardless of coating, contained
similar levels of CD68+ cells as quantified in Figure 2c (no differences between groups).
The average number was 19.5 ± 1.8 and 20.4 ± 1.1 CD68+ cells per 100 μm of implant
length for PET controls and microgel-coated samples, respectively. CD68+ cell counts were
then normalized to total cells in the fibrous capsule (as quantified in Figure 1d) to determine
the relative numbers of macrophages in the capsule. Microgel-coated samples contained
significantly higher relative levels of macrophages than unmodified PET controls (Figure
2d, p < 0.02). The average values were 37.8 ± 10.4 and 68.1 ± 5.8 % CD68+ cells for PET
controls and microgel-coated samples, respectively. We note that this antibody can
potentially stain CD68 antigens in both adipose tissue26 and fibroblasts,27 the latter of
which are also localized in the fibrous capsule and participate in collagen deposition.

Sections were also scored for multi-nucleated FBGC, designated by black arrows (Figure 2).
Few samples contained extensive development of multi-nucleated FBGC. The average
values were 4.1 ± 1.3 and 5.9 ± 0.8 FBGCs per mm of implant length for PET controls and
microgel-coated samples, respectively. Numbers of FBGC per sample ranged from 1.4–11.1
and 3.0–11.8 cells/mm implant length for PET controls and microgel-coated disks,
respectively. No statistical differences were found between groups.

DISCUSSION
We have engineered a hydrogel-based polymeric coating composed of PEG-crosslinked
pNIPAm-co-AA microparticles, which are applied to PET substrates using a spin coating
and photo-crosslinking method to generate a conformal monolayer.25 This coating strategy
offers many advantages over traditional surface modification methods, including precise
control over particle synthesis, the ability to generate complex architectures including
“mosaic” coatings containing variations in particle composition or spatial arrangement, and
deposition onto biomedically-relevant materials. We previously demonstrated these coatings
reduce protein adsorption and cell adhesion.25,28 In addition, these microgel coatings
reduce leukocyte adhesion and activation, as well as expression of pro-inflammatory
cytokines, to biomedical polymer implants in vivo at acute time points.22 The results of the
present study demonstrate that the microgel coatings also modulate chronic inflammatory
events, such as reductions in fibrous capsule thickness and cell density within the capsule.

Microgel coatings reduced chronic inflammation compared to uncoated PET controls as
determined by the organization and thickness of the tissue capsule. The more compact and
organized structure of the fibrous capsule associated with microgel-coated samples suggests
that these coatings lead to faster resolution of the tissue reaction and more mature and
thinner capsules. This reduced chronic inflammation is likely related to the reduced
monocyte/macrophage adhesion and pro-inflammatory cytokine expression observed at
acute time points.22 Furthermore, tissue associated with microgel-coated samples contained
less total cells but proportionately more macrophages than unmodified PET controls. The
reduction in total number of cells is consistent with a reduced chronic inflammatory
response for microgel-coated samples. The relevance of the relative increase in monocytes/
macrophages for the microgel-coated implants compared to the PET controls is not clear at
this point. An intriguing possibility is that microgel coatings modulate macrophage profiles
towards an “alternatively activated”/anti-inflammatory phenotype29 that results in reduced
chronic inflammation and a faster resolution of the tissue response. Further studies are
necessary to characterize macrophage phenotypes and cytokines associated with these
biomaterials. Moreover, it will be important to conduct more extensive studies in order to
determine inflammatory responses at longer, clinically-relevant implantation times as well
as the in vivo stability of these coatings.
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Previous efforts have focused on hydrogel coatings that exhibit in vitro resistance to protein
adsorption and leukocyte adhesion to reduce biomaterial-mediated related inflammation.
14,15,30–35 Although these coatings reduce biofouling in vitro, some of these materials still
exhibit high levels of adherent leukocytes and continued inflammation in vivo with
significant fibrous encapsulation of the implant. For instance, in vitro protein adsorption was
significantly suppressed by photochemically immobilized polymer coatings on silicone
rubber substrates and by polyethylene oxide-like tetraglyme coatings, yet neither treatment
significantly reduced fibrous capsule thickness when implanted subcutaneously.14,34 In
contrast, other coatings, such as dihydroxypropyl methacrylate, PEG, and
phosphorylcholine-based polymers, have shown reductions in fibrous encapsulation
compared to the base substrates.30–33,35 The reductions in fibrous capsule thickness
elicited by these coatings are comparable to those observed in the present study. Taken
together, these studies do not reveal a clear correlation between in vitro fouling behavior and
in vivo leukocyte adhesion and tissue response. However, it is possible that differences in
the surface density, composition, and structure of the non-fouling polymer, material
stability, and implantation time point, site and species complicate this relationship.

In the present study, microgel coatings reduced fibrous capsule thickness by 22% compared
to unmodified control samples. Whether such a reduction in fibrous capsule thickness
translates into improved biological performance remains to be determined. Functional
testing in specific applications (e.g. glucose sensors, pacing leads, neural electrodes) is
required to evaluate the potential of these microgel coatings to ameliorate chronic
inflammatory responses to implanted devices. Fibrous capsules on the order of 85 μm thick
(as in our current study) may still pose a significant barrier to certain implanted devices or
therapeutics by blocking the exchange of nutrients or impeding signal transduction to an
external medium. For example, Moussy and colleagues recently demonstrated a correlation
between increased collagen deposition surrounding implanted glucose sensors and decreased
sensor sensitivity; natural angiogenesis failed to overcome the barrier to glucose diffusion
caused by the associated fibrous capsule.36

The present work provides the foundation for developing a microgel-based coating system
incorporating various signaling agents and bioactive therapeutics within a low-fouling
background. These biotherapeutic delivery systems offer several advantages over
approaches relying on passive non-fouling behavior, including highly controlled
presentation/release of immunomodulatory agents, control over reaction kinetics, and
versatility through hybrid designs. Biomaterial-associated inflammation/fibrosis and/or
implant integration could be further improved by using such complex coatings with
mechanisms to deliver immunomodulatory agents, such as IL-1Ra, angiostatin, or
dexamethasone, which have improved biological responses to implanted materials.15,37–40

CONCLUSION
Using a model of chronic biomaterial-mediated inflammation, we demonstrate that surface
coatings comprised of pNIPAm-co-PEG hydrogel microparticles reduce chronic
inflammation. Microgel coatings elicited thinner and more compact capsules with more
organized collagen fibrils and fewer total cells within the capsule compared to uncoated
PET. Our current results demonstrate that microgel particles can be applied as implant
coatings to modulate inflammation and achieve more desirable chronic host responses in
vivo, with the potential to extend implant performance and lifetime.
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Figure 1.
Microgel coatings reduce chronic inflammation associated with materials implanted
subcutaneously in the rat dorsum for 4 wk. Explants were evaluated for fibrous
encapsulation by staining collagen (pink), elastin (black), and nuclei (black). Representative
images for unmodified PET (a) and microgel-coated PET (b) disks, and the original implant
location is designated. Black arrows indicate capsule measurements. Microgel coatings
reduced fibrous capsule thickness by 22% compared to unmodified PET controls as
quantified in (c), * p < 0.04. The density of capsule-associated cells was also significantly
reduced in microgel-coated samples (* p < 5.6×10−3) compared to unmodified PET controls
as quantified in (d). Data is represented as the average value ± standard error of the mean
using n = 4–7 samples per treatment group. Scale bar is 50 μm.
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Figure 2.
Inflammatory cell profiles associated with biomaterials implanted subcutaneously in the rat
dorsum for 4 wk. Explant sections were stained via immunohistochemical methods for
macrophage marker CD68 (pink) and counter-stained with hematoxylin to label nuclei
(blue). Representative images for unmodified PET (a) and microgel-coated PET (b) disks,
and the original implant location is designated. Total CD68+ cells were quantified in (c), but
no statistical differences were found between treatment groups. (d) When normalized to
total capsule-associated cells (from Fig. 1d), unmodified PET controls contained
proportionately fewer CD68+ cells than microgel-coated PET (* p < 0.02). Multinucleated
CD68+ cells (FBGCs) at the cell-implant interface were also quantified (e), but no statistical
differences were found between treatment groups. FBGCs are designated by black arrows.
Data is represented as the average value ± standard error of the mean using n = 4–7 samples
per treatment group. Scale bar is 50 μm.
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