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Atmospheric variability of methyl chloride during the last 300 years

from an Antarctic ice core and firn air

M. Aydin,1 E. S. Saltzman,' W. J. De Bruyn,2 S.A. Montzka,3 J.H. Butler,3 and M. Battle*
Received 1 October 2003; revised 11 November 2003; accepted 18 December 2003; published 22 January 2004.

[1] Measurements of methyl chloride (CH3Cl) in
Antarctic polar ice and firn air are used to describe the
variability of atmospheric CH3Cl during the past 300 years.
Firn air results from South Pole and Siple Dome suggest
that the atmospheric abundance of CH;Cl increased by
about 10% in the 50 years prior to 1990. Ice core
measurements from Siple Dome provide evidence for a
cyclic natural variability on the order of 10%, with a period
of about 110 years in phase with the 20th century rise
inferred from firn air. Thus, the CH5CI increase measured
in firn air may largely be a result of natural processes,
which may continue to affect the atmospheric CH;Cl
burden during the 21st century.  INDEX TERMS: 0312
Atmospheric Composition and Structure: Air/sea constituent
fluxes (3339, 4504); 0322 Atmospheric Composition and
Structure: Constituent sources and sinks; 0365 Atmospheric
Composition and Structure: Troposphere—composition and
chemistry; 1610 Global Change: Atmosphere (0315, 0325).
Citation: Aydin, M., E. S. Saltzman, W. J. De Bruyn, S. A.
Montzka, J. H. Butler, and M. Battle (2004), Atmospheric
variability of methyl chloride during the last 300 years from an
Antarctic ice core and firn air, Geophys. Res. Lett., 31, L02109,
doi:10.1029/2003GL018750.

1. Introduction

[2] Methyl chloride (CH5Cl) is the most abundant halo-
carbon in the atmosphere with a global mixing ratio of about
550 pmol mol~". This gas accounts for more than 10% of the
ozone-depleting halogen delivered to the stratosphere and its
sources are primarily natural. Little is known about the
variability or the climate sensitivity of atmospheric CH;Cl,
and there is little basis on which to predict future changes in
its abundance. The best estimate for the lifetime of atmo-
spheric CH;Cl is 1.3 years and the current mixing ratio of
CH;Cl over Antarctica is about 530 pmol mol~' [S. A.
Montzka, NOAA/CMDL unpublished data, 2003], slightly
lower than the global mean value. The current understanding
of the atmospheric CH3ClI budget is summarized in the recent
review by Montzka and Fraser [2003] and references therein.

[3] In this study, we used CH;Cl measurements in ice core
and firn air samples from Antarctica to describe the variabil-
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ity of atmospheric CH;Cl. The interstitial air in polar firn and
ice contains a record of past atmospheric composition. The
composition of firn air is altered relative to that of the
overlying atmosphere primarily by diffusion, and to a lesser
extent by gravitational settling and other processes. Below
the firn-ice transition zone, the interstitial air is isolated and
locked within the ice as bubbles. The firn column acts as a
low-pass filter, smoothing variations in the atmospheric
composition of a gas over decadal time scales comparable
to the diffusive transport time through the firn [Schwander et
al., 1993; Battle et al., 1996; Trudinger et al., 1997].

[4] The ice core samples were obtained from the Siple
Dome C core, drilled in December 1995 at Siple Dome,
West Antarctica (81.65°S, 148.81°W) as part of the West
Antarctic Ice Sheet Program (WAISCORES). Size of the ice
core samples used for gas analysis ranged from 400—700 g.
Air was extracted from the ice core samples using a dry
extraction technique [Etheridge et al., 1988; Sowers and
Jubenville, 2000]. The samples yielded 20—40 ml STP of
air, which was analyzed for trace gases with a gas chro-
matograph with quadrupole mass spectrometer detection at
the University of California, Irvine. The details of the
analytical and ice core extraction methods, and a discussion
of how the precision of the ice core data are calculated
based on calibration and blank uncertainties can be found in
Aydin et al. [2002].

[s] The firn air samples were obtained during three
different Antarctic field expeditions: to South Pole in 1995
(SPO-95), to South Pole in 2001 (SPO-01), and to Siple
Dome in 1996 (SDM-96) [Butler et al., 1999], using estab-
lished methods [Schwander et al., 1993; Bender et al., 1994;
Battle et al., 1996; Butler et al., 1999]. Measurements of
CH;Cl in the SPO-95 and SDM-96 firn samples were
published previously by Butler et al. [1999], but are updated
here to account for revised and updated calibration scales.
SPO-01 firn air was collected from two boreholes drilled to
the firn-ice transition at 89.98°S, 118.73°W and 89.98°S,
118.93°W. Glass and steel flasks were filled and analyzed
using GC-MS techniques at NOAA-CMDL. Standardization
of measurements at the UCI and NOAA/CMDL laboratories
is based on high-pressure gas cylinders prepared and main-
tained independently. An intercalibration effort in 2002
yielded agreement to within +3% and no adjustments were
made to measurements from either laboratory for this study.

2. Methods

[6] We used a 1-dimensional forward model of a firn air
column to simulate how a specified atmospheric history of
CH;Cl is incorporated into the air in firn or ice [Schwander
et al., 1988]. The model simulates gas phase diffusion and
gravitational separation based on specified depth profiles of
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Figure 1. (a) Firn air measurements of CO, (solid
triangles) from SPO-01 compared with model simulations
(solid line). (b) Firn air measurements of CFC-12 from
SPO-01 (solid triangles) compared with model simulations
(solid line).

diffusivity for a constant accumulation rate. The distribution
of open porosity with depth was obtained using measured
density profiles and a density-open porosity relationship.
Open porosity is assumed to vanish at the deepest sampling
depth for each firn hole. For Siple Dome, the model runs
were initiated with an accumulation rate of 100 kgm >y~
(60 kg m™? y~' for South Pole) and a mean annual
temperature of —25°C (—50°C for South Pole). Molecular
diffusion coefficients for CO,, CFC-12, and CH;Cl in air
for annual-mean temperature and pressure were calculated
as 1.3 x 107°,0.8 x 10>, and 1.1 x 10> m* s~ for Siple
Dome, and 1.4 x 107>,0.8 x 107>, and 1.2 x 10> m*s™!
for South Pole [Wilke and Lee, 1955].

[7] The model was initiated using a CO, atmospheric
history for the last 170 years determined from Law Dome
ice core measurements [Etheridge et al., 1996] and NOAA/
CMDL flask data through 2001 [7ans et al., 2001]. The
relationship between open porosity and diffusivity in the
model was “tuned” to obtain agreement with the CO, firn
air measurements at each location (Figure la). The tuning
process is a trial and error procedure, in which the non-
linear relationship between diffusivity and depth is manu-
ally adjusted to achieve agreement between the model
results and the firn data. Following the CO, simulation,
we tested the robustness of the derived diffusivity-depth
relationship by simulating a CFC-12 depth profile with the
atmospheric history of Walker et al. [2000], and observed
good agreement with the data (Figure 1b). Based on
the successful reproduction of firn profiles for CO, and
CFC-12, we suggest that the “tuned” model simulates
realistic firn profiles given a known atmospheric history,
regardless of any possible inaccuracies in the prescribed
diffusion and the accumulation rate. In the following sec-
tions, the firn model is used to explore the atmospheric
evolution of CH;Cl and to develop atmospheric histories that
are consistent with the observations in firn and ice core air.

3. The Firn Air Record

[8] An atmospheric history for CH5Cl was constructed
based on the SPO-01 data, assuming that; (1) the atmospheric
mixing ratio of CH;3Cl increased monotonically from an
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unknown, constant value; (2) the atmospheric mixing ratio
of CH;Cl leveled off at the present day Antarctic mixing ratio
of 530 pmol mol™'; and (3) the changes in the atmosphere
occurred in a smooth, continuous manner (Figure 2). The
timing and the amplitude of the increase during the mid-
1900°s, the rate of this increase, and the timing of the rollover
to modern values were varied manually to better simulate the
SPO-01 firn measurements (Figure 3a). We considered only
the SPO-01 data because, they are of higher quality than
SPO-95, and SDM-96 data do not reach as far back in time.
The resulting atmospheric history is hereafter referred to as
the “firn air only” history (Figure 2).

[9] Model simulations for the SPO-95 firn using the “firn
air only” history slightly underestimate the measurements
(Figure 3b), but the agreement is good between the simu-
lated and observed mixing ratios for SDM-96 (Figure 3c),
suggesting that the history is in reasonably good agreement
with all firn data. In the “firn air only” history, the
atmospheric abundance of CH;3Cl increases from about
470 pmol mol ™" in the 1940s to nearly 530 pmol mol '
in the early 1990’s. The steepest change is observed
between 1955 and 1985 when CH;Cl increases 50 pmol
mol ' in 30 years (Figure 2). If one presumes that any
change that occurred during the 20th century is due to
human activities, this record implies that roughly 10% of
the CH;Cl currently in the atmosphere is anthropogenic, in
agreement with the conclusion of Butler et al. [1999].

[10] In the most recent review of the atmospheric CH;Cl
budget [Montzka and Fraser, 2003], the sinks (4005 Ggy ')
exceed the known sources (2956 Gg y '), and the anthro-
pogenic emissions total only 165 Gg y ! or roughly 4% of
the total budget. About 60% of the anthropogenic emissions
is attributed to coal combustion [McCulloch et al., 1999;
Keene et al., 1999]. Considering the temporal pattern of
emissions from coal combustion [Keeling, 1994], it is

2,

Atmospheric CH,
S

1720 1760 1800 1840 1880 1920 1960 2000
Calendar years (C.E.)

Figure 2. Atmospheric histories for CH3Cl derived from
firn air and ice core data: “firn air only” history developed
to fit the SPO-01 CH;Cl data (dashed line) and “sinusoi-
dal” history (solid line). The “firn air only” history extends
back 170 years but it is very loosely constrained by the firn
data for the period before 1900 C.E. The “sinusoidal”
history does not represent a fit but rather a close
approximation to the amplitude and period observed in
the ice core data.
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Figure 3. Depth profiles of CH5Cl ice core data and firn
air measurements, compared with model simulations based
on the “firn only” and “sinusoidal” atmospheric histories
shown in Figure 2: (a) South Pole (SPO-01), (b) South Pole
(SPO-95), and (c) Siple Dome (ice cores, and SDM-96); the
error bars represent the uncertainty in the ice core data.
Results from the top 20 m of the firn are omitted because
they are subject to seasonal variability. Note that the general
trends in all firn data are correctly simulated with the
“sinusoidal” history.
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unlikely that anthropogenic emissions are responsible for
the increase implied by the “firn air only” history. Increased
biomass burning might explain the increase; this would
require biomass burning emissions to nearly double over
this period. Alternatively, the “firn air only” history may
point to: (1) an as yet unidentified anthropogenic source;
(2) indirect effects of human activities on natural sources
and sinks, for example those caused by changes in land use
patterns and agricultural practices; or (3) natural variability
in the flux of CH;Cl.

4. The Ice Core Record

[11] A longer atmospheric history of CH;Cl can be con-
structed from measurements of CH;Cl in air bubbles from the
Siple Dome ice core. Data from 22 ice core samples rangin%’,
in depth from 57 to 83 m have a mean 0f499 + 28 pmol mol ™
(1o0) and a range of 462 to 571 pmol mol ! (Figure 3c). A
striking feature of the data is the oscillatory behavior with two
distinct cycles. The amplitude of the variability is approxi-
mately 30 pmol mol™', or about 6% of the mean ice core
mixing ratio. The cycles in the ice core CH;CI measurements
could be closely reproduced by the model, using a sine
function of the general form Asin{2w(t — o)/P} + C as an
atmospheric history, where ¢ is time in years, and the
amplitude (4), the period (P), the vertical shift (C), and the
phase shift (o) are equal to 42, 110, 493, and —17 (Figure 2).
Initially, we determined how the diffusive filtering altered the
composition of firn air at Siple Dome from the SDM-96
simulations. Then, we applied this filter to the ““sinusoidal”
history to calculate the mixing ratio of CH;Cl in each ice core
sample, assuming that the physical properties of the firn and
the accumulation rate remained constant over the time period
the ice core samples were formed. The visual stratigraphy
[R. B. Alley, unpublished data, 2003] and density data
suggest that the accumulation rate was constant approxi-
mately at 100 kg m 2 y~' over our sampling range at the
Siple Dome ice core site.

[12] Inthe “sinusoidal’ history, two full oscillations occur
between 1720 and 1940 C.E., with a period of 110 years and
an amplitude of 42 pmol mol ™' (Figure 2). The underlying
cause of these cycles is not clear, but they predate significant
industrial activity. This apparently natural variability may
reflect climate-driven changes in the CH3Cl budget. Given
the apparent dominance of tropical plants as a CH;Cl source
[Yokouchi et al., 2002], one can speculate that such variability
may arise from changes in tropical flora as a response to
changes in climatological conditions. It may also point to
changes in the atmospheric lifetime of CH;Cl. Oxidation of
CH;Cl1 with OH radicals, most of which occurs in the tropics,
accounts for approximately 80% of the total sinks [Khalil and
Rasmussen, 1999].

[13] Strong centennial-scale climatic oscillations during
the late Holocene have been observed in Greenland ice
cores [Appenzeller et al., 1998; Meeker and Mayewski,
2002]. These variations appear to reflect large-scale atmo-
spheric circulation changes associated with the North
Atlantic Oscillation. Hundred year periodicities are also
apparent in other climate proxy records during the last
thousand years [Overpeck et al., 1997, Mann et al., 1998;
Briffa et al., 2001]. Gleissberg [1966] suggested that
variability in solar activity may provide the forcing for
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climate change on such time scales, but as yet there is no
direct evidence for this mechanism.

[14] The “sinusoidal” history was extended through the
20th century to examine the implications of such cyclic
behavior on the interpretation of firn air data. For the period
between 1940 and 1990, this atmospheric history is similar
to the “firn air only” history (Figure 2). Consequently,
model simulations based on the “sinusoidal’ history for the
SPO-01, SPO-95, and SDM-96 closely follow the “firn air
only” simulations and generally display good agreement
with the firn observations (Figures 3a, 3b, and 3c). The
ability of the “‘sinusoidal” history to simulate the firn air
data demonstrates that the evolution of atmospheric CH;Cl
over Antarctica during the 20th century is consistent with
preindustrial variability, without invoking anthropogenic
contributions to its atmospheric budget. This surprising
result, though only correlative, argues against a significant
industrial or agricultural contribution to CH3Cl levels in the
modern atmosphere. It also argues against a large anthro-
pogenic effect on the atmospheric lifetime of CH;Cl, via
perturbations to global, or at least to tropical, OH levels.

5. Summary

[15] This study underscores the importance of assessing
the natural variability in atmospheric trace gases as part of
the effort to understand their biogeochemical cycles and to
make an assessment of the potential for future change. For
example, the halocarbon scenarios used in stratospheric
ozone assessments have assumed that, in the absence of
anthropogenic perturbation, CH3;Cl would remain constant
at the current global average mixing ratio of 550 pmol
mol ! [e.g., Montzka and Fraser, 2003]. If CH5Cl in the
atmosphere continues to oscillate as suggested in the past by
the “sinusoidal” history, the CH5Cl burden may decrease
by up to 10% over the next half century. Here, we
demonstrate that it may be possible to develop long-term
paleo records for CH3Cl from the polar ice core archives,
which would reveal atmospheric variability over a wider
range of climatic conditions. Clearly, the challenge ahead is
to verify the current ice core record with data from multiple
sites, to extend the historical record over longer periods of
time, and to seek an understanding of the underlying
mechanisms that can drive atmospheric CH;Cl variability.
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ghaus, Todd Sowers, Andy Clarke, Jay Kyne, Tony Wendricks, and Jesse
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