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[1] Water resources management, forecasting, and decision making require reliable
estimates of precipitation. Extreme precipitation events are of particular importance
because of their severe impact on the economy, the environment, and the society. In recent
years, the emergence of various satellite‐retrieved precipitation products with high
spatial resolutions and global coverage have resulted in new sources of uninterrupted
precipitation estimates. However, satellite‐based estimates are not well integrated into
operational and decision‐making applications because of a lack of information regarding
the associated uncertainties and reliability of these products. In this study, four satellite‐
derived precipitation products (CMORPH, PERSIANN, TMPA‐RT, and TMPA‐V6)
are evaluated with respect to their performance in capturing precipitation extremes. The
Stage IV (radar‐based, gauge‐adjusted) precipitation estimates are used as reference data.
The results show that with respect to the probability of detecting extremes and the volume
of correctly identified precipitation, CMORPH and PERSIANN data sets lead to better
estimates. However, their false alarm ratio and volume are higher than those of TMPA‐RT
and TMPA‐V6. Overall, no single precipitation product can be considered ideal for
detecting extreme events. In fact, all precipitation products tend to miss a significant
volume of rainfall. With respect to verification metrics used in this study, the performance
of all satellite products tended to worsen as the choice of extreme precipitation threshold
increased. The analyses suggest that extensive efforts are necessary to develop
algorithms that can capture extremes more reliably.

Citation: AghaKouchak, A., A. Behrangi, S. Sorooshian, K. Hsu, and E. Amitai (2011), Evaluation of satellite‐retrieved
extreme precipitation rates across the central United States, J. Geophys. Res., 116, D02115, doi:10.1029/2010JD014741.

1. Introduction

[2] Precipitation plays a significant role in weather research,
monitoring, and predictions. Improving our understanding
of weather and climate, along with the development of
reliable and uninterrupted measurements, are essential for
proper assessment of weather conditions. Currently, in situ
and radar‐based precipitation data are the major input for
streamflow forecasts, flash flood warnings, and weather
watches across the United States. While some regions have
long‐term historical in situ precipitation measurements, poor
spatial sampling makes the data inadequate to support
monitoring, detection, and forecast studies. On the other
hand, in most parts of the globe (except in a few developed
countries), radar installations for precipitation measurements

are not available. In the United States, with one of the most
sophisticated radar measurement networks in the world,
regions with extensive topographic relief (e.g., the western
and southwestern United States) suffer from poor or non-
existent radar coverage [Maddox et al., 2002]. In fact,
Maddox et al. [2002] showed that at lower levels (e.g.,
1000 m above ground level), which are closer estimates to
ground‐level precipitation, the radar coverage area is sub-
stantially smaller than at higher levels (e.g., 3000 m above
ground level).
[3] Clearly, the lack or absence of ground‐based precipi-

tation networks hampers the development and use of flood
and drought warning models, hydrological models, and
extreme weather monitoring and decision‐making systems.
Therefore, there exists the need to achieve alternative esti-
mates of precipitation with sufficient sampling density,
reliability, and accuracy to enable utilization of data for
operational applications. Satellite‐derived precipitation esti-
mates have the potential to improve precipitation observation
at a global scale. In recent years, the National Aeronautics
and Space Administration (NASA), National Oceanic and
Atmospheric Administration (NOAA), and many other inter-
national sponsored satellite missions have led to an increase
in available precipitation data. These remotely sensed data
have several advantages over in situ measurements, including
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higher spatial resolution and uninterrupted coverage. How-
ever, these data have not yet been fully integrated into
hydrologic and water resources management and decision‐
making systems, mainly because of undetermined uncer-
tainties associated with satellite data.
[4] Currently, there are several satellite‐retrieved precip-

itation products available in near real time [e.g., CMORPH,
Joyce et al., 2004; TRMM 3B42, Huffman et al., 2007;
PERSIANN, Sorooshian et al., 2000]. A complete review of
satellite rainfall estimation algorithms is beyond the scope of
this document. For comprehensive reviews and product
comparisons, the interested reader is referred to Tian et al.
[2009], Adler et al. [2001], Levizzani and Amorati [2002],
Tian et al. [2007], and Kidd [2001]. Verification of different
satellite products is essential for future rainfall retrieval
algorithm development, scientific advancements, and inte-
gration of data into practical applications. So far, a myriad
of studies have been devoted to validation and verification
of satellite‐based data with respect to ground‐based obser-
vations (e.g., Ebert et al. [2007], Turk et al. [2008], Tuttle
et al. [2008], Tian et al. [2009], Stisen and Sandholt
[2010], Amitai et al. [2009], Durga Rao et al. [2009], Zhou
et al. [2008], Gochis et al. [2009], Yilmaz et al. [2005],
Shen et al. [2010], Zeweldi and Gebremichael [2009], Feidas
et al. [2009], Dinku et al. [2008], Liu et al. [2009], Sapiano
and Arkin [2009]). This study aims to evaluate different
satellite products with respect to extremes over a vast area
across the southern Great Plains (SGP). Four satellite‐
retrieved products are investigated with respect to the Stage
IV multisensor ground radar‐based, gauge‐adjusted data.
For different extreme value thresholds, quantitative statis-
tics, including probability of detection, false alarm ratio,
volumetric probabilities, and areal bias, among others, are
computed and used as measures of comparison. Further-
more, the mean error maps with respect to Stage IV data are
provided for the satellite precipitation products.
[5] The paper is organized into four sections. After the

introduction, the study area and data resources are briefly
introduced. The third section is devoted to methodology

and evaluation of satellite precipitation products. Section 4
summarizes the results and offers some concluding remarks.

2. Study Area and Data Resources

[6] The study area encompasses most of the SGP. Figure 1
displays the boundaries of the study area, which partly
includes the states of Texas, Oklahoma, Kansas, Nebraska,
Iowa, Missouri, Arkansas, and Louisiana. The climate con-
dition ranges from humid continental and subhumid sub-
tropical to semiarid steppe climate from east to west. The
Great Plains climate is characterized by a strong east‐west
precipitation gradient [National Assessment Synthesis Team,
2001]. The annual precipitation ranges from more than
1300 mm in the southeast to around 450 mm on the western
edge of the study area. Extreme precipitation, hail storms,
blizzards, floods, droughts, and tornadoes, among other events,
are relatively common in the study area.
[7] In this work, the Stage IV radar‐based multisensor

precipitation estimates (MPE) available from the National
Center for Environmental Prediction (NCEP) are used as
reference data. The Stage IV (hereafter STIV) data are gen-
erated in near real time by aggregating the radar‐based pre-
cipitation data from the National Weather Service (NWS)
River Forecast Centers (RFC) collected over the entire con-
tinental United States. The STIV data are available with a
temporal resolution of hourly spatial resolution of about 4km
on the Hydrologic Rainfall Analysis Project (HRAP) national
grid system. The data include rain rates from merged oper-
ational radar estimates and rain gauge measurements. It is
well known that radar‐based precipitation estimates are
associated with several types of uncertainties that arise from
various factors such as partial beam filling, anomalous
propagation, beam overshooting, instrumental errors, non-
uniformity in vertical profiles of reflectivity (VPR), inap-
propriate Z − R relationship, spatial sampling pattern,
hardware calibration, and random sampling error [Seed and
Srikanthan, 1999; Krajewski and Smith, 2002]. Addition-
ally, the weather condition may also affect radar rainfall
observations [Steiner and Smith, 2000]. So far, a great deal of

Figure 1. The study area (partly includes states of Texas, Oklahoma, Kansas, Nebraska, Iowa, Missouri,
Arkansas, and Louisiana).
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effort has been made to quantify and/or adjust or describe the
associated uncertainties [Seo, 1999; AghaKouchak et al.,
2010a; Ciach et al., 2007; AghaKouchak et al., 2010b].
The STIV data are calibrated and adjusted for different
biases using automated rain gauge measurements following
various quality control measures to improve the quality [Lin
and Mitchell, 2005]. The STIV are used as reference data,
since the data are routinely quality controlled and are cur-
rently being used for forecasts and operational applications.
[8] The satellite‐retrieved data used in verification anal-

yses include the following products:
[9] 1. The Tropical Rainfall Measuring Mission (TRMM)

Multisatellite Precipitation Analysis (TMPA) real time (here-
after TMPA‐RT) and TMPA Version 6 (hereafter TMPA‐V6)
products. The TMPA algorithm collects microwave‐based
estimates of rainfall from low orbiter satellites and fills the
remaining gaps in brackets of 3 hours by infrared (IR)‐based
rain estimates [Huffman et al., 2007]. Unlike TMPA‐RT,
TMPA‐V6 is an adjusted product which combines precipi-
tation estimates from multiple satellites and gauge analyses
[Huffman et al., 2007]. In this algorithm, all precipitation
estimates are summed over a calendar month. The bias is then
removed using monthly climatological data as described
previously [Huffman et al., 2007].
[10] 2. CMORPH (CPC MORPHing technique, Joyce et al.

[2004]) offers precipitation data derived from available
microwave observations (low orbiter satellite) whose features
are advected in space and time using IR images from geo-
stationary satellites. In fact, this algorithm utilizes IR data to
transport the observed microwave‐based precipitation esti-
mates when microwave data are not available. Using a time‐
weighting interpolation between microwave scans, the inten-
sity and shape of the precipitation estimates are computed in
the intervening half‐hour periods. The algorithm propagates
precipitation features forward and backward in time from the
previous and following microwave scans. In this algorithm,
any precipitation data from any low orbiter satellite source can
be incorporated in retrieving precipitation.
[11] 3. Precipitation Estimation From Remotely Sensed

Information Using Artificial Neural Networks (PERSIANN,

Sorooshian et al. [2000]), which uses grid IR images of the
global geosynchronous satellites provided by Climate Predic-
tion Center (CPC), NOAA [Janowiak et al., 2001], as themain
source of information. Precipitation estimation from IR data
relies on statistical relationships between IR estimates of
cloud‐top brightness temperature and mean precipitation rate.
However, such statistical relationships are associatedwith high
uncertainties because of variability in many factors, including
cloud properties (e.g., type, height, thickness) and atmospheric
conditions. In this algorithm, using a neural network classifi-
cation and/or approximation procedures, IR‐based estimates
are calibrated and adjusted on the basis ofmicrowave data from
low‐orbital satellites (e.g., TRMM Microwave Imager (TMI)
aboard TRMM, Special SensorMicrowave Imager (SSM/I) on
DefenseMeteorological Satellite Program (DMSP), Advanced
Microwave Scanning Radiometer‐Earth observing system
(AMSR‐E) on Aqua spacecraft, and the AdvancedMicrowave
SoundingUnit‐B (AMSU‐B) aboard theNational Oceanic and
Atmospheric Administration (NOAA) satellite series). An
adaptive training technique [Hsu et al., 1997] updates the
neural network parameters whenever microwave data are
available (approximately every 3 hours).
[12] The above satellite products are all available with a

common spatial resolution of 0.25° and a temporal resolution
of 3‐hourly. The STIV data are aggregated in space and time
into 0.25° spatial grids and 3‐hourly accumulations to syn-
chronize STIV data with satellite estimates. The aggregation is
performed by averaging precipitation rates from the STIV
pixels within each satellite pixel across the area of the satellite
pixel and temporally over a window of 3 hours. Four years of
3‐hourly data (units in mm/h) from January 2005 to December
2008 are processed and used for the analysis. Figure 2 plots
the empirical cumulative distribution functions (CDF) of the
data, whereas Table 1 lists summary statistics of precipitation
accumulations for the entire study area during the period
January 2005–December 2008. The mean and standard
deviations are derived on the basis of rainfall rates equal to or
greater than 1 mm/h. In this table, the bias is defined as the
ratio of total satellite over total reference measurements
(STIV). Unlike TMPA‐V6, the other products (CMORPH,
PERSIANN, and TMPA‐RT) are unadjusted to gauge data
and exhibit larger bias with respect to STIV (see last column in
Table 1). Furthermore, Table 1 indicates that for larger
quantiles, the discrepancies between satellite products and
STIV data become more significant (compare Q5, Q10, Q25,
and Q50 with Q75, Q90, and Q95 in Table 1, Q: quantile).

3. Analysis and Results

[13] As mentioned above, the focus of this study is on
verification of satellite products with respect to extremes.

Figure 2. The empirical cumulative distribution functions
of the data.

Table 1. Summary Statistics of Rainfall Accumulations (mm/h)
for the Entire Study Areaa

Product Mean SD Q10 Q25 Q50 Q75 Q90 Q95 Bias

Stage IV 3.0 2.4 1.2 1.4 2.2 3.7 5.9 7.7 ‐
CMORPH 3.8 3.6 1.2 1.5 2.5 4.5 8.1 11.1 1.50
PERSIANN 3.2 2.7 1.1 1.4 2.2 4.0 7.0 9.2 1.43
TMPA‐RT 4.2 4.6 1.2 1.6 2.7 5.0 8.9 13.0 1.56
TMPA‐V6 3.5 3.1 1.2 1.5 2.4 4.3 7.3 9.7 1.02

aQ, quantile; SD, standard deviation.
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Various statistical and graphical methods are used to assess
extremes of precipitation observed for different products.

3.1. Monthly Quantile Bias

[14] The monthly quantile bias (MQB) is defined as the
monthly ratio of satellite‐based precipitation accumulations
over reference precipitation accumulations above a given
threshold:

MQB ¼
Pn

i¼1 PsatjPsat � tð ÞPn
i¼1 Pref jPref � tð Þ ð1Þ

where Psat are satellite estimates, Pref are reference mea-
surements (e.g., STIV data), t is extreme threshold (i.e., 75,
90, and 95 percentiles of rain rates), and n is number of
exceedances.
[15] Notice that throughout this paper, the index i is not

shown for Psat and Psat to simplify the equations (Psat = Psati
and Pref = Prefi). The MQB value of 1 corresponds to no bias
in the estimated data. The MQB values are computed for the
introduced precipitation products with respect to Q75, Q90,

and Q95 of STIV data. Figure 3a shows the monthly
quantile bias values when the entire data are included in
analysis. As shown, CMORPH, PERSIANN, and TMPA‐
RT exhibit overestimation (MQB > 1) over warm months
(i.e., May, June, July, and August), while their bias values
are around 1 during the rest of the year. The TMPA‐V6 data,
on the other hand, show no bias throughout the year owing
to adjustment applied to the data. As the threshold increases,
the MQB values consistently increase over warm months,
even up to two to three times (compare Figures 3a and 3d).
Throughout fall and winter, the bias of CMORPH and
PERSIANN either increases or reduces with an increase in
the threshold. It is noted that for higher thresholds, the bias
values of TMPA‐V6 do not change considerably over warm
months (i.e., May, June, July, and August), while they
significantly increase during fall and winter. In Figure 3, the
thresholds are constant values based on the quantiles of the
STIV data.
[16] In recent years, many adjustment techniques have

been utilized to improve satellite products (e.g., adjusting
the probability distribution, removing overall bias; see Yilmaz

Figure 3. Monthly bias with respect to (a) all data and (b) Q75, (c) Q90, and (d) Q95 thresholds of
STIV data (Q, quantile).
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et al. [2005] and Huffman et al. [2007] for examples).
Therefore, one may be interested in evaluating the perfor-
mance of the precipitation products independent of their
marginals. In the following, all precipitation data are made
uniform and the analyses, mentioned above, are repeated.
The MQB values are then back‐transformed to the original
marginals. This means that values above a certain quantile
of a satellite product are evaluated with respect to values
above a certain threshold of STIV as opposed to comparing
values above a fixed threshold of STIV. Figure 4 displays
the MQB values with respect to relative quantiles of the
precipitation products (e.g., Q90 of STIV versus Q90 of
CMORPH). One can see that bias values independent of
data marginals exhibit similar behavior to that of Figure 3
with less variability in magnitudes of bias (compare
Figures 3d and 4d). Both Figures 3 and 4 indicate that sat-
ellite estimates significantly overestimate the volumes of
extreme precipitation with respect to ground reference data,
particularly during warm months. In subsequent analysis,
the results are shown with respect to quantiles of STIV data.

3.2. Mean Quantile Error

[17] The mean quantile error (MQE) is defined as the
mean of differences in precipitation estimates above a given
threshold:

MQE ¼
Xn

i¼1
PsatjPsat � tð Þ � Pref jPref � tð Þð Þ=n; ð2Þ

where Psat, Pref, t, and n are as defined in equation (1).
The values of mean error for CMORPH, PERSIANN,
TMPA‐RT, and TMPA‐V6 with respect to Q75, Q90,
and Q95 of STIV data are presented in Figures 5a–5c,
5d–5f, 5g–5i, and 5j–5l, respectively. One can see that
as the threshold increases, CMORPH and TMPA‐RT tend
toward more considerable overestimation of extremes, while
PERSIANN and TMPA‐V6 data show both overestima-
tion and underestimation across the study area (compare
Figures 5a–5c with Figures 5d–5f). For the same extreme
thresholds, Figure 6 displays monthly MQE values. Figure 6
confirms the findings of Figure 3 and provides mean
values of error throughout the year. Figure 6 indicates that

Figure 4. Monthly bias with respect to (a) all data and (b) Q75, (c) Q90, and (d) Q95 thresholds (quan-
tiles are estimated for each product separately).
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TMPA‐RT and PERSIANN exhibit the highest and lowest
mean errors, respectively.

3.3. Quantile Probability of Detection

[18] Quantile probability of detection (QPOD) is defined
as the probability of detection (POD; see Wilks [2006])
above a certain threshold:

QPOD ¼
Pn

i¼1 I PsatjPsat � tPref � tð ÞPn
i¼1 I PsatjPsat � tPref � tð Þ þPn

i¼1 I Pref jPsat < tPref � tð Þ
ð3Þ

where I is the indicator function. The QPOD represents the
ratio of the number of correct identifications of precipitation
above a given threshold to the total number of precipitation
occurrences above the same threshold as indicated by the
reference. The QPOD ranges from 0 to 1, with 1 being the
perfect QPOD. Figure 7 demonstrates QPOD values over
Q75, Q90, and Q95 of STIV data. For all products, the
probability of detection reduces as the threshold increases.

Among the precipitation data sets, CMORPH shows the
least change in QPOD with respect to the choice of
threshold, while QPOD values of TMPA‐RT and TMPA‐V6
drop significantly as the threshold increases. Figure 7
indicates that the probability of detection is higher over
warm months for all precipitation products, regardless of
the choice of threshold. This is consistent with the findings
of Behrangi et al. [2011].

3.4. Quantile False Alarm Ratio

[19] Quintile false extreme alarm ratio (QFAR) is defined
as the false alarm ratio (FAR; see Wilks [2006]) above a
certain threshold:

QFAR ¼
Pn

i¼1 I PsatjPsat � tPref < tð ÞPn
i¼1 I PsatjPsat � tPref � tð Þ þPn

i¼1 I Pref jPsat � tPref < tð Þ
ð4Þ

[20] The QFAR represents the ratio of the number of false
identifications of precipitation above a given threshold to

Figure 5. Mean quantile error (MQE [mm/h]) with respect to (a, d, g, j) Q75, (b, e, h, k) Q90, and (c, f, i, l)
Q95 of STIV data (Q, quantile). Color bars are not identical.

AGHAKOUCHAK ET AL.: SATELLITE‐RETRIEVED EXTREME PRECIPITATION D02115D02115

6 of 11



the total number of correct and false occurrences over the
same threshold as indicated by the reference. The QFAR
ranges from 0 to 1, with 0 being the perfect QFAR. As
shown in Figure 8a, all products exhibit higher false alarm
during cold months (November, December, January, and
February). Overall, PERSIANN and CMORPH estimates
are subject to higher false alarm than TMPA‐RT and
TMPA‐V6. As the threshold increases, the QFAR values of
TMPA‐RT and TMPA‐V diminish, while QFAR values of
PERSIANN and CMORPH slightly increase (e.g., see
Figure 8b). Furthermore, for higher thresholds (Q75, Q90,
and Q95), the false alarm ratios are higher over warm
months than the findings given in Figure 8a (all data). This
implies that with respect to higher quantiles (extremes), the
false alarm ratios are higher over warm months.

3.5. Volumetric Hit Index

[21] In addition to probability of detection, one may be
interested in the volume of precipitation detected correctly.
The Volumetric Hit Index (VHI), defined below, indicates
the percentage of the volume of precipitation above a certain
threshold being detected correctly:

VHI ¼
Pn

i¼1 PsatjPsat � tPref � tð ÞPn
i¼1 PsatjPsat � tPref � tð Þ þPn

i¼1 Pref jPsat < tPref � tð Þ � 100:

ð5Þ

[22] The VHI ranges from 0 to 100, with 100 being the
perfect VHI. Figure 9a presents the VHI when all precipi-
tation data are included. Figures 9b, 9c, and 9d present the
VHI values for Q75, Q90, and Q95 of STIV data, respec-
tively. Figures 9b–9d indicate that considering the entire

distribution (Figure 9a), the VHI values are higher over
warm months for all precipitation products and choices of
threshold. It is also noted that the VHI values decrease as the
threshold increases. Comparing the VHI values for all pre-
cipitation products reveals that CMORPH and PERSIANN
exhibit the highest VHI.

3.6. Volumetric False Alarm Ratio

[23] Volumetric false alarm ratio (VFAR) represents the
percentage of the volume of precipitation above a certain
threshold being identified falsely:

VFAR ¼
Pn

i¼1 PsatjPsat � tPref < tð ÞPn
i¼1 PsatjPsat � tPref � tð Þ þPn

i¼1 Pref jPsat � tPref < tð Þ
ð6Þ

[24] The VFAR ranges from 0 to 100, with 0 being the
perfect VFAR. Figure 10 displays VFAR for the selected
products. One can see that the VFAR values increase sig-
nificantly when considering high thresholds (compare
Figures 10a and 10b). Figure 10 shows that PERSIANN and
CMORPH exhibit higher VFAR compared to TMPA‐RT
and TMPA‐V6. The same behavior was observed with
respect to VHI.

4. Discussion and Concluding Remarks

[25] Reliable management and decision making in the
field of water resources requires accurate measurements of
weather variables. Reliable estimation of precipitation is
essential for practical applications, since it is believed that
precipitation uncertainties will propagate into land surface and

Figure 6. Monthly mean quantile error (MQE (mm/h)) with respect to (a) Q75, (b) Q90, and (c) Q95
of STIV data.
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hydrologic modeling predictions [Nijssen and Lettenmaier,
2004]. Hydrologists have long relied on in situ data as the
main source of precipitation measurements. However, in situ
data yield poor spatial coverage and lack of areal repre-
sentation over land, particularly over the oceans. On the
other hand, the need for high‐resolution data in space and
time is well recognized for regional and global scale land‐
surface, hydrology, and climate prediction and forecasting
studies. The emergence of various satellite‐based precipi-
tation products with high spatial resolution and global
coverage could be considered good alternatives to in situ
measurements. However, because of lack of information
about the associated uncertainties and reliability of these
products, they are not well integrated into operational and
decision‐making applications.
[26] In this study, several satellite‐derived precipitation pro-

ducts (CMORPH, PERSIANN, TMPA‐RT, and TMPA‐V6)
are evaluated with respect to STIV (radar‐based and gauge‐
adjusted) precipitation data. On the basis of the results
of this study, the following conclusions and remarks can
be made.

[27] 1. The unadjusted precipitation products (CMORPH,
PERSIANN, and TMPA‐RT) tend to overestimate precipi-
tation estimates, particularly over warm months. For higher
thresholds of reference data (intense precipitation rates), the
overestimation of all satellite products increase significantly.
[28] 2. While the adjusted TMPA‐V6 exhibits a low bias

during warm months (even over high thresholds), it signif-
icantly overestimates high precipitation rates (above high
thresholds of Q75, Q90, and Q95) during cold months.
Analyzing bias as well as mean error of precipitation pro-
ducts independently of their marginals (uniform precipita-
tion data) shows that both bias and mean error can be
reduced if the distribution functions of products are adjusted
with respect to the reference data. It is emphasized that we
do not intend to introduce an adjustment technique in this
study, and neither do we claim that applying the distribution
function of observations is sufficient to improve the pro-
ducts with respect to their bias. Further in‐depth research on
adjustment methods and bias removal techniques is required
to improve the precipitation products.

Figure 7. Probability of detection (POD) for (a) all data
and (b) above Q75, (c) above Q90, and (d) above Q95
thresholds (QPOD, quantile probability of detection).

Figure 8. False alarm ratio (FAR) for (a) all data and
(b) above Q75, (c) above Q90, and (d) above Q95 thresh-
olds (QFAR, quantile false alarm ratio).
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[29] 3. The presented results underline the seasonal vari-
ability of precipitation algorithms’ skills in detecting pre-
cipitation rates. Figure 11 summarizes products’ skills with
respect to different metrics during warm (left) and cold
(right) months. Notice that 1 − FAR, 1 − VFAR, and 1 − VMI
are plotted instead of FAR, VFAR, and VMI, so that the best
score of all indicators is 1. Figure 11 is created by com-
puting the above‐mentioned statistics on the basis of all
warm (cold) month data in the period of analysis (2005–
2008). Figure 11 clearly highlights the performance of
algorithms in different climate conditions. Arguably, further
analysis of error sources in conjunction with more sophis-
ticated, self‐adaptive, climate‐based algorithms should be
developed to improve precipitation retrieval techniques.
[30] 4. Among the unadjusted products, PERSIANN pre-

cipitation estimates consistently exhibit less bias, regardless
of the choice of threshold. On the other hand, TMPA‐RT
estimates show higher bias over all thresholds.
[31] 5. The reported probability of detection values indi-

cate that all satellite products are more likely to detect

precipitation occurrence over warm months. Considering
QPOD values above high thresholds, CMORPH and
PERSIANN seem to perform better in detecting precipita-
tion areas correctly throughout the year. The results show
that all products lose their skill to detect volume of precip-
itation correctly (VHI) as the threshold increases. With
respect to VHI, CMORPH and PERSIANN seem to be less
variable with the choice of threshold. It is noted that a
precipitation product may offer a high probability of
detection, but at the cost of a high false alarm ration.
Therefore, high values of POD, QPOD, and VHI should be
judged along with the corresponding false alarm ratios.
[32] 6. The estimated QPOD and VHI values imply that

for the entire distribution of precipitation, all satellite pro-
ducts miss more precipitation over cold months (note that
the total volume of precipitation consists of the volume of
hit and volume of missed precipitation). Overall, CMORPH
and PERSIANN miss the least amount of precipitation.
For intense precipitation (above higher thresholds), the

Figure 9. Volume of hit index (VHI (%)) with respect
to the observed precipitation: (a) all data and (b) above
Q75, (c) above Q90, and (d) above Q95 thresholds of
STIV data.

Figure 10. Volumetric false alarm ratio (VFAR [%])
with respect to the observed precipitation: (a) all data and
(b) above Q75, (c) above Q90, and (d) above Q95 thresholds
of STIV data.
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volume of missed precipitation significantly increases for
all precipitation products. It is worth reminding the reader
that in this study, values above a certain threshold are
considered. Therefore, low POD of a product should not
be interpreted as no rain detection. In fact, the product
may have detected precipitation, but below the selected
threshold.
[33] 7. The computed false alarm values indicate that all

satellite products tend to provide more false precipitation
over cold months. As the threshold increases, QFAR values
of TMPA‐RT and TMPA‐V6 diminish, while CMORPH
and PERSIANN consistently exhibit high false alarm ratios.
Similar behavior is observed for volumetric false alarm
magnitudes.
[34] The results suggest that none of the precipitation

products can be considered ideal for detecting extreme
events. In fact, satellite products lose their accuracy as the
choice of extreme precipitation threshold increases. This
indicates that extensive efforts are necessary to further
develop algorithms that can capture extremes more reliably.
In addition to improving current algorithms, developing
adjustment techniques to advance the application of satel-
lite‐derived precipitation in detecting extremes merits a
great deal of research. The current limitations on accurate

estimation of extremes prevent us from designing short‐term
warning systems on the basis of satellite data. Future
advancement in the detection of extremes may lead to a
quantum advancement in early warning systems and hazard
mitigation.
[35] It is emphasized that the above conclusions are based

on exploratory data analysis using available satellite‐based
and radar‐based data sets. The authors acknowledge that
spatial and temporal sampling uncertainties may exist when
comparing different satellite products with STIV data [Sieck
et al., 2007]. However, given the available data, STIV data
are the best possible approximation of the true areal average
rainfall values [AghaKouchak et al., 2010c]. This work was
intended to contribute to the ongoing research on evaluation
of satellite‐based precipitation data with respect to extremes.
Improving the current algorithms to reduce false alarm and
missed precipitation may result in a major advancement in
the utilization of satellite data in practical applications.
Efforts are underway by the authors to validate satellite‐
derived data with regard to extremes over different eleva-
tions and climate conditions. Such studies may reveal
additional information on the reliability of satellite‐based
extreme precipitation rates at regional scales. Because of
the potential significance of extremes and their spatial

Figure 11. Variability of precipitation algorithm skills in detecting precipitation during (a) warm months
(all data), (b) cold months (all data), (c) warm months (above Q90), and (d) cold months (above Q90).
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extent to current and future research, we predict that in the
near future more research efforts will focus on particular
treatments required to capture extreme precipitation events
more reliably.

[36] Acknowledgments. The financial support for this study was made
available by NOAA/NESDIS/NCDC (prime award NA09NES4400006,
NCSU CICS sub‐award 2009‐1380‐01).
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