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Intra-individual consistency in endocrine profiles
across successive pregnancies

Molly Fox1,2*, Curt A. Sandman2, Elysia Poggi Davis3, Laura M. Glynn4

1 Department of Pediatrics, University of California, Irvine, United States; 2 Department of Psychiatry and
Human Behavior, University of California, Irvine, United States; 3 Department of Psychology, University of
Denver, United States; 4 Department of Psychology, Chapman University, United States

Context: It is yet unknown how similar women’s hormone levels are during successive pregnancies,
and very little is known about the degree to which siblings experience similar prenatal environ-
ments. Given the importance of understanding how women’s reproductive life-histories exert
cumulative effects on health via hormone exposure, and the importance of understanding how
fetal programming via endocrine signaling affects sibling trait concordance, here we address this
important lacuna in the literature.

Objective: To investigate how consistent are women’s hormone profiles across two successive
pregnancies.

Design and Main Outcome Measures: This longitudinal, prospective study followed a cohort of 28
women across two pregnancies (PREG 1; PREG 2). Women’s circulating hormone levels were as-
sessed from blood samples at 25, 31, and 37 weeks’ gestation for adrenocorticotropic hormone
(ACTH), placental corticotropin-releasing hormone (pCRH), cortisol, estradiol, and progesterone.
ACTH and cortisol levels were assessed 3-months postpartum. Research questions include: Are
hormone levels in PREG 2 significantly different from levels in PREG 1? What proportion of variance
in PREG 2 hormone levels is attributable to variance in PREG 1 levels? Are hormone levels more
stable between PREG 1 and PREG 2 compared with postpartum phases following these pregnan-
cies? Is pCRH, which is completely placentally derived, less similar than other hormones across
successive pregnancies?

Setting: Psychobiology laboratory.

Participants: Pregnant women in California.

Results and Conclusions: Comparisons of hormone concentrations across women’s successive preg-
nancies via paired t-test revealed substantial consistency from one pregnancy to another, with only
significant differences between pregnancies for pCRH. Regressions revealed substantial predict-
ability from one pregnancy to another, with between 17%–56% of PREG 2 variances accounted for
by PREG 1 values. Women exhibited lower degrees of consistency and predictability in hormone
levels across postpartum phases compared with gestational concentrations. This is the first study
to describe maternal and placental hormone levels across successive pregnancies.

It is unknown how similar a woman’s hormone levels
during one pregnancy are to the same woman’s hor-

mone levels during a subsequent pregnancy. The extent to
which hormone concentrations during pregnancy are vari-
able within a woman’s lifespan may be influenced by ma-

ternal and fetal physiology and genetics, as well as the
mother’s environment, psychology, and behavior. Circu-
lating hormone concentrations during pregnancy are of
major interest for understanding how gestational endo-
crinology affects lifespan health and development of both
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mother and child. Previous studies have estimated cumu-
lative hormone exposures based upon reproductive life-
history patterns for the purpose of understanding how the
endocrinology of female reproductive physiology exerts
long-term effects on women’s health (1–4), but it remains
unknown whether hormone exposures from different
pregnancies across a woman’s lifespan exert equivalent
effects. Additionally, many studies compare monozygotic
twins, dizygotic twins, and sibling pairs to determine the
contributions of genetics, intrauterine environment, and
postnatal environment to phenotype (5). These compari-
sons assume highly variable intrauterine conditions in dif-
ferent pregnancies of the same mother, and yet the degree
of similarity between siblings’ prenatal environments re-
mains unknown.

The hormones of the hypothalamic-pituitary-adrenal
(HPA) and hypothalamic-pituitary-ovarian (HPO) axes
are present at the highest concentrations of the female
lifespan during the phase of pregnancy (6, 7). For this
reason, in conjunction with the observations that HPA
and HPO hormones have been broadly implicated in ma-
ternal health (1–4) and as effectors of fetal programming
(8–10), this study focuses on HPA hormones adrenocor-
ticotropic hormone (ACTH), corticotropin-releasing hor-
mone (CRH), and cortisol, and HPO hormones estradiol
and progesterone. We measure mean hormone concentra-
tions across midto-late pregnancy in two successive preg-
nancies for each woman (hereafter PREG 1 and PREG 2),
in addition to hormone concentrations at each timepoint.
Our research questions can be summarized as the follow-
ing. (1) Are hormone levels in PREG 2 significantly differ-
ent from hormone levels in PREG 1? (2) What proportion
of variance in PREG 2 hormone levels is attributable to
variance in PREG 1 hormone levels? Additionally, we ad-
dress the issue of whether pregnancy represents a phase of
particularly consistent hormone levels across the lifespan,
compared to the nonpregnant state. This brings us to an-
other research question: (3) Are hormone levels more sta-
blebetweenPREG1andPREG2comparedwith thepost-
partum phases following PREG 1 and PREG 2?
Furthermore, we predict that circulating CRH, which de-
rives from the placenta, should exhibit less predictability
in levels across successive pregnancies compared with the
other hormones, which derive at least partly from mater-
nal organs, because different fetuses are semiallogeneic to
the mother. These differences in genetics could contribute
to differences in phenotypes and adaptive strategies. This
prompts our final research question: (4) Is placental CRH
(pCRH) less similar thantheotherhormonesacrossPREG
1 and PREG 2?

Materials and Methods

Cohort and procedures
Participants were women involved in a larger, prospective,

longitudinal study of gestational and postnatal psychobiology at
a large university medical center in Southern California. Women
were recruited during their first trimester of pregnancy based on
the following criteria: singleton pregnancy; over age 18; English-
speaking; nonsmoking; absence of any medical condition that
could dysregulate neuroendocrine function. The subset of the
larger cohort analyzed in this study were selected because they
enrolled in the study twice, and were included only if they at-
tended all 8 study visits relevant to our analyses, which occurred
at 24–26, 30–32, and 36–38 weeks’ gestation and 12–14 weeks
(“3-months”) postpartum, and then at the same timepoints in a
subsequent pregnancy (Table 1). A blood sample was obtained
at each study visit. Protocols were approved by institutional re-
view boards of participating institutions, and written informed
consent was obtained from all women before participation.

Endocrine measures
Blood draw occurred in the afternoon. Two 10-mL samples

were withdrawn by antecubital venipuncture into EDTA-treated
(purple top) vacutainers for plasma analysis, which were chilled
on ice immediately, and red top vacutainers for serum analysis,
which sat at room temperature until clotted (vacutainers: Becton
Dickinson and Company, Sumter, SC). Blood samples in purple
top vacutainers were decanted into polypropylene tubes, and
500-kallikrein inhibitor units/mL of aprotinin (Sigma-Aldrich
Corp, St. Louis, MO) were added. All samples were centrifuged
at 2000g for 15-minutes, and then stored at –70°C until assaying.

Plasma ACTH levels were determined by solid-phase two-site
immunoradiometric assay (IRMA) using human ACTH anti-
bodies (Nichols Institute Diagnostics, San Juan Capistrano, CA).
Plasma samples (200-�L) combined with ACTH-labeled anti-
body (100-�L) and a coated bead were incubated at room tem-
perature, and the bound radiolabeled antibody complex was
quantified using a gamma scintillation counter (Isoflex: ICN Bio-
medical, Costa Mesa, CA) following standard procedures (as
described elsewhere (11)). The assay has nonsignificant cross-
reactivity with �-endorphin and ACTH fragments. Intra-assay
and interassay coefficients of variation (CV) were 4.4% and
10.8%, respectively, with a minimum detectable level of 1.0
pg/mL.

Plasma cortisol levels were ascertained by a competitive bind-
ing solid phase enzyme-linked immunosorbent assay (ELISA)
(ELISA: IBL America). Plasma samples (25-�L) along with con-
jugated enzyme (200-�L) were added to the antibody-coated
microtiter wells, and standard procedures were followed (as de-
scribed elsewhere (11, 12)). The absorbance units were measured
at 450 nm within 10 minutes of adding stop solution. The assay
has � 9% cross-reactivity with progesterone and � 2% cross-
reactivity with five other naturally occurring steroids (testoster-
one, estradiol, estrone, estriol, aldosterone). Intra-assay and in-
terassay CV were each � 8%, with a minimum detectable level
of 0.25 �g/dL.

Plasma CRH levels were determined by radioimmunoassay
(RIA) (Bachem Peninsula Laboratories, San Carlos, CA) follow-
ing standard procedures. Plasma samples (1–2 mL) were ex-
tracted with 3 volumes of ice-cold methanol, mixed, incubated,
and centrifuged. The pellets were washed with methanol, and the
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Table 1. Cohort descriptive statistics.

Pregnancy
1

Pregnancy
2

Maternal age at delivery (mean (SD), years) 30.6 (4.5) 32.6 (4.5)
Parity (frequency (%))
0 19 (67.9) n/a
1 6 (21.4) 18 (64.3)
2 1 (3.6) 7 (25.0)
3 2 (7.1) 1 (3.6)
4 0 (0) 2 (7.1)
Number of obstetric risk factors (frequency (%))
0 22 (78.6) 19 (67.9)
1 5 (17.9) 8 (28.6)
2 1 (3.6) 1 (3.6)
Baby sex
Female 13 (46.4) 14 (50.0)
Male 15 (53.6) 14 (50.0)
Gestational age at birth (mean (SD), weeks) 39.5 (1.2) 39.2 (1.2)
Birth weight percentile by sex (mean (SD)) 51.9 (27.4) 55.1 (29.6)
Study visit 24–26 weeks gestation (mean (SD)) 25 (1.00) 26 (0.93)
Study visit 30–32 weeks gestation (mean (SD)) 31 (0.69) 31 (0.80)
Study visit 36–38 weeks gestation (mean (SD)) 37 (0.65) 37 (0.70)
Study visit 12–14 weeks postpartum (mean (SD)) 13 (1.10) 13 (1.00)
Maternal ethnicity (frequency (%))
White, European, North African, Middle Eastern 15 (53.6)
Hispanic White 7 (25.0)
Multi-ethnic 3 (10.7)
Asian 2 (7.1)
African American, Black 1 (3.6)
Maternal education (frequency (%))
Some college, vocational, or AA degree 10 (35.7)
Bachelors degree 10 (35.7)
Graduate degree 8 (28.6)
Total household income before taxes at pregnancy

1, 15 weeks gestation (mean (SD), US$)
57 679.0 (30 738.9)

Time between pregnancy 1 delivery and
pregnancy 2 conception (mean (SD), days)

475.2 (198.9)

Are there any parous events between pregnancies
1 and 2? (frequency (%))

No 27 (96.4)
Yes 1 (3.6)
Are there any gravid events between pregnancies

1 and 2? (frequency (%))
No 22 (78.6)
Yes 6 (21.4)
Baby sex concordance (frequency (%))
female, female 8 (28.6)
female, male 7 (25.0)
male, female 6 (21.4)
male, male 7 (25.0)
Breastfeeding 3-months postpartum (frequency

(%))
Pregnancy 1 22 (79.0)
Pregnancy 2 22 (79.0)
Both pregnancies 17 (61.0)
Menstruation recommencement 3-months

postpartum (frequency (%))
Pregnancy 1 20 (71.0)
Pregnancy 2 15 (54.0)
Both pregnancies 13 (46)
Hormone contraceptives 3-months postpartum

(frequency (%))
Pregnancy 1 7 (25.0)
Pregnancy 2 3 (11.0)
Both pregnancies 3 (11.0)
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combined supernatants were dried down in a concentrator
(SpeedVac: Savant Instruments, Holbrook, NY). Labeled and
unlabeled CRH samples were collected by immunoprecipitation
with goat antirabbit IgG serum and normal rabbit serum, and
centrifuged again. The aspirated pellets were quantified with a
gamma scintillation counter. For further methodologic details
see (11). The assay has undetectable cross-reactivity for human
ACTH. Intra-assay and interassay CV were 5% and 15%, re-
spectively, with a minimum detectable level of 2.04 pg/mL.

Serum 17�-estradiol levels were ascertained by microtiter
well competitive binding enzyme immunoassay (EIA) (ELISA:
IBL America) following standard procedures (as described else-
where (12)). Diluted samples (25-�L) were incubated with con-
jugated enzyme (200-�L) in each well, and substrate reagent
(100-�l) was added and incubated. Enzymatic reaction was
halted with stop reagent (50-�l), and within 10-minutes, absor-
bance readings were taken at 450 nm. The assay has less than
0.2% cross-reactivity with estriol and estrone, and nondetect-
able cross-reactivity with 17�-estradiol and 25 other naturally
occurring steroids. Interassay and intra-assay CV are � 10% and
7%, respectively, with a minimum detectable level of 9.7 pg/mL.

Serum progesterone levels were determined by microtiter well
competitive binding EIA (ELISA: IBL America) following stan-
dard procedures. Diluted samples (25-�l) were incubated with
conjugated enzyme (200-�L) in each well, and substrate reagent
(200-�l) was added and incubated. Within 10-minutes of adding
stop solution (50-�l), absorbance readings were taken at 450
nm. The assay has 1.1% cross-reactivity with 11-desoxycorti-
costerone, �0.4% cross-reactivity with pregnenolone, 17�-OH
progesterone, and � 0.1% cross-reactivity with corticosterone,
estriol, 17�-estradiol, cortisol, and three other naturally occur-
ring steroids. Interand intra-assay coefficients of variance are �
10% and � 7%, respectively, with a minimum detectable level
of 0.045 ng/mL.

Data analysis plan
The timepoints of 25, 31, and 37 weeks’ gestation were se-

lected to capture the window when hormone levels are highest.
In addition to each individual timepoint, the means of the three
timepoints were also investigated, in order to minimize bias from
the timing of any individual study visit and eliminate variability
based on acute fluctuations. Thereby, this method optimized
accuracy in reflecting hormone levels across the course of midto-
late pregnancy.

(1) Are hormone levels in PREG 2 significantly
different from hormone levels in PREG 1?

For mean values and for each timepoint individually, we eval-
uated the significance of the difference in PREG 1 and PREG 2
hormone levels by paired t test, and we assessed the magnitude
of change in hormone concentrations by computing PREG 2
levels as a function of PREG 1 levels.

(2) What proportion of variance in PREG 2
hormone levels is attributable to variance in PREG
1 hormone levels?

First, we used regression models to investigate the following
relationships in order to evaluate whether potential covariates

should be included in models: maternal age; gestational age; time
of day at sample collection (“time of collection”). Time of col-
lection was significantly related to cortisol concentrations at 25
and 31 weeks’ gestation (Supplemental Table 1). Consequently,
we residualized all cortisol values by time of collection, and used
these residuals in all subsequent analyses. There were no other
significant associations with covariates.

For regression models for each hormone, the independent
(PREG 1) and dependent (PREG 2) variables used were hormone
concentrations at each of three timepoints, as well as the mean
across the three timepoints. Additionally, we investigate whether
the changes in hormone levels from 25 to 37 weeks’ gestation
were consistent between PREG 1 and PREG 2. Each variable was
transformed to improve distribution when necessary. Gaussian
distribution was assessed by visual inspection of histograms and
Shapiro-Wilk p-values � 0.10 (Supplemental Table 2). For each
hormone, cases with missing data at any timepoint for either
pregnancy were excluded from all models for that hormone,
resulting in sample sizes of 19 to 21 women (Table 2).

Using visual inspection of curves fitted by locally weighted
scatterplot smoothing (LOESS) and ANOVA comparisons, it
was determined that linear models were the best fit for the data.
Linear regression models measured the statistical reliance of
PREG 2 hormone concentrations upon PREG 1 hormone con-
centrations. We investigated the following covariates as inter-
action terms in models for all hormones: parity, gravidity, time
between pregnancies (days between PREG 1 delivery and PREG
2 conception), and child sex concordance for the two pregnan-
cies. No interaction terms contributed significant effects for any
model. To optimize accuracy of models, we omitted a small num-
ber of cases that had excessive leverage, influence, or outlier
values, according to conventional criteria (13) (Supplemental
Table 3). Plots of residuals vs fitted values revealed no indication
of heteroscedasticity or nonlinearity.

(3) Are hormone levels more stable between PREG
1 and PREG 2 compared with the postpartum
phases following PREG 1 and PREG 2?

We assessed how alike women’s hormone concentrations
were in the same cohort of women 3-months after PREG 1 and
PREG 2 deliveries. We only investigated ACTH and cortisol
because CRH is not detectable in circulation in nonpregnant
women, and estradiol and progesterone would only have been
relevant to measure in women who were not using hormonal
contraception, leaving an insufficient sample size (N�9). Firstly,
we determined by linear regression that time of collection was
significantly related to postpartum cortisol for both PREG 1 and
PREG 2, and unrelated to ACTH (Supplemental Table 1). Con-
sequently, we used residualized postpartum cortisol values in all
subsequent models. Next, we determined that neither postpar-
tum ACTH nor cortisol concentrations were related to number
of days since delivery. Final linear regression models adjusted for
breastfeeding, hormonal contraception, and whether menstrual
cycling had recommenced (Table 1). Lastly, we optimized the
accuracy of our models by excluding women whose hormone
concentrations had excessive leverage, influence, or outlier val-
ues (Supplemental Table 3). These exclusions did not change
statistical significance of models.

Demographic and obstetric description of cohort (n � 28).
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Research question 4 is based on a comparison of regression
and t test results of pCRH to the other hormones. This question
does not require further statistical analyses, so it is addressed in
the Discussion section. All analyses were conducted using the R
programming language and RStudio (Version 0.98.1091) envi-
ronment for statistical computing.

Results

Cohort descriptives
The cohort included 28 women, mean age 30.6 years at

PREG 1 delivery and 32.6 years at PREG 2 delivery, with
a mean of 1.3 years between PREG 1 delivery and PREG
2 conception (Table 1). Data include 27 participants for
whom PREG 2 was the directly subsequent delivery after
PREG 1, and one case in which there was an interim de-
livery not included in the study. Also, five participants
experienced a miscarriage between PREG 1 and PREG 2.
At PREG 1, 68% of women were primiparous. Demo-
graphic information is presented in Table 1.

Research question 1: Are hormone levels in PREG 2
significantly different from hormone levels in
PREG 1?

Hormone levels in PREG 1 and PREG 2 are described
in Table 2. Comparisons of group mean hormone con-

centrations in PREG 1 and PREG 2 via paired t test re-
vealed that the only significant (P � .10) difference was for
pCRH (Table 3). Comparisons of each hormone’s con-
centration at each individual timepoint via paired t test
revealed that the only significant (P � .10) differences
were pCRH at 31 weeks’ gestation (mean of differences �
120.23 pg/mL, t (1, 18)�2.38, P � .03) and ACTH at 37
weeks’ gestation (mean of differences � 17.71 pg/mL, t (1,
20)�2.95, P � .01).

Also, we explored the stability of interpregnancy hor-
mone levels by calculating PREG 2 levels as a percentage
of PREG 1 levels for each hormone. Examining the means
of these proportions, we found stable patterns for each
hormone, reflecting the mostly-nonsignificance of inter-
pregnancy differences. PREG 2 ACTH level was on aver-
age 4.0% lower than PREG 1 level. PREG 2 pCRH level
was on average 8.1% lower than PREG 1 level. Cortisol
was on average 7.2% higher in PREG 2 compared to
PREG 1. Estradiol and progesterone were the most stable,
�2% higher in PREG 2 than PREG 1 on average (Table 3).

Research question 2: What proportion of variance
in PREG 2 hormone levels is attributable to
variance in PREG 1 hormone levels?

Analyzing data as mean hormone concentrations
across gestation as well as individual timepoints, we find

Table 2. Descriptive statistics of hormone concentrations.

Hormone Statistic Pregnancy 1 Pregnancy 2
Postpartum pregnancy

1 (n � 24)
Postpartum pregnancy

2 (n � 24)

ACTH pg/mL Mean 44.09 36.57 22.68 16.01
n � 21 Range 21.19 � 129.15 18.93 � 77.3 6.94 � 59.42 4.06 � 31.90

SE. mean 5.36 3.89 2.50 1.61
CI mean 95% 11.17 8.10 5.17 3.33
SD 24.55 17.80 12.24 7.88

Cortisol �g/mL Mean 20.85 21.75 6.39 7.07
n � 19 Range 14.54 � 39.25 16.57 � 30.34 1.98 � 15.70 3.13 � 22.26

SE. mean 1.23 0.84 0.66 0.91
CI mean 95% 2.59 1.77 1.37 1.89
SD 5.38 3.68 3.25 4.46

pCRH pg/mL Mean 387.97 314.31
n � 19 Range 115.37 � 657.83 84.07 � 587.97

SE. mean 37.76 35.52
CI mean 95% 79.33 74.63
SD 164.58 154.83

Estradiol pg/
mL

Mean 4930.30 4927.02

n � 19 Range 3230.37 � 6054.08 3403.98 � 7039.38
SE. mean 181.85 244.54
CI mean 95% 382.06 513.76
SD 792.67 1065.92

Progesterone
ng/mL

Mean 88.27 85.76

n � 20 Range 43.18 � 189.77 42.18 � 131.96
SE. mean 7.34 5.24
CI mean 95% 15.36 10.98
SD 32.83 23.46

Each hormone refers to the mean of hormone level measurements at 25, 31, 37 weeks’ gestation for PREG 1 and PREG 2. Postpartum values refer
to hormone levels measured at one time point for each pregnancy 3-months delivery. Total cohort size was n � 28. ACTH is adrenocorticotropic
hormone; pCRH is placental corticotropin-releasing hormone; SE. is standard error; CI is confidence interval; SD is standard deviation.
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that ACTH and progesterone exhibit the most consistency
across pregnancies, estradiol and cortisol are intermedi-
ate, and pCRH exhibits the least consistency. Figure 1
shows scatterplots with regression lines for PREG 1 x
PREG 2 mean hormone levels. For mean hormone con-
centrations, ACTH exhibited the strongest effect magni-
tude, with 55.8% of variance in PREG 2 accounted for by
values in PREG 1. For progesterone, 47.4% of variance in
PREG 2 was accounted for by values in PREG 1. For cor-
tisol it was 33.3% and for estradiol 26.0%. The weakest
association was exhibited by pCRH with 16.8% of vari-
ance in PREG 2 accounted for by values in PREG 1 (Table
4). We also report the linear regression results for each
individual timepoint across the two pregnancies (Table 5),
which follow a similar pattern to the mean hormone level
results. ACTH and progesterone show a significant cor-

relation between PREG 1 and PREG 2 levels for all three
timepoints. Cortisol and estradiol show a significant cor-
relation between PREG 1 and PREG 2 levels for two of the
three timepoints. PCRH showed a significant correlation
between PREG 1 and PREG 2 levels for only one time-
point, 37 weeks’ gestation.

Additionally, we used linear regression to investigate
whether the changes in hormone levels from 25 to 37
weeks’ gestation were consistent between PREG 1 and
PREG 2. Only pCRH exhibited significant consistency in
change in concentration during gestation between PREG
1 and PREG 2 (F (1, 15)�4.6, adjusted R2�0.18, P � .05),
while ACTH, cortisol (both unresidualized and residual-
ized for time of collection), estradiol, and progesterone
exhibited no significant consistency in change during ges-
tation between PREG 1 and PREG 2 (P � .10).

Table 3. Comparisons of hormone concentrations in PREG 1 and PREG 2

Comparison of means Proportion

Calculation Paired t test of PREG 1
and PREG 2 means

Mean
of (PREG 2
� PREG 1)
� 100

Pregnancy ACTH t (20) � 1.6, P � 0.13 96.02%
pCRH t (18) � 1.8, P � 0.08 91.92%
Cortisol t (18) � -0.91, P � 0.37 107.22%a

Estradiol t (18) � 0.01, P � 0.98 101.89%
Progesterone t (19) � 0.45, P � 0.66 101.63%

Post-partum ACTH t (23) � 14, P � 7.8e-13 49.96%
Cortisol t (23) � -16, P � 5.2e-14 59.28%a

“Comparison of means” column lists results of paired t-tests in which mean hormone levels in PREG 1 and PREG 2 were compared. P-values
reflect whether hormone levels in PREG 1 were significantly distinct from hormone levels in PREG 2. There are no statistically significant
differences, besides pCRH (t(18) � 1.8, P � 0.08; mean (M) of differences � 73.67 pg/mL; M of the absolute value of differences � 142.77 pg/
mL). The “Proportion” column lists the means of PREG 2 hormone levels as a function of PREG 1 levels. ACTH is adrenocorticotropic hormone, and
pCRH is placental corticotropin-releasing hormone. Cortisol data were residualized by time of day at collection unless otherwise indicated.
a Calculated using unresidualized cortisol values.

Table 4. Stability of mean hormone concentrations across subsequent pregnancies

N F-statistic DF
Adjusted
R-squared p-value

Pregnancy ACTH 19 23.75 1,17 0.558 0.00 ***
pCRH 18 4.43 1,16 0.168 0.05 .
Cortisol 16 8.50 1,14 0.333 0.01 *
Estradiol 18 6.97 1,16 0.260 0.02 *
Progesterone 18 16.34 1,16 0.474 0.00 ***

Post-partum ACTH 20 0.67 4,15 �0.075 0.41 (ns)
Cortisol 22 0.68 4,14 �0.077 0.29 (ns)

Regression analyses measure the proportion of variance in PREG 2 hormone levels that is attributable to variance in PREG 1 hormone levels.
Cortisol data were residualized by time of day at collection. Postpartum models control for breastfeeding, resumption of menses, and hormonal
contraceptive use. For the null postpartum models, the negative adjusted R-squared values are interpretable as zero. ACTH is adrenocorticotropic
hormone; pCRH is placental corticotropin-releasing hormone; ns is not significant; DF is degrees of freedom. P-values � 0.10 are in bold. See
Supplemental Tables 2 and 3 for model details.

. P � 0.10

* P � 0.05

** P � 0.01

*** P � 0.001.
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Research question 3: Are hormone levels more
stable between PREG 1 and PREG 2 compared with
the postpartum phases following PREG 1 and
PREG 2?

Comparisons of group mean hormone concentrations
at 3-months postpartum via paired t test revealed signif-
icant differences in both ACTH and cortisol between

PREG 1 and PREG 2 (Table 3). The
changes in ACTH and cortisol levels
from the postpartum phase of PREG
1 to the postpartum phase of PREG
2 were of substantially greater mag-
nitude than the changes that oc-
curred across the pregnancy phases.
Hormone level during the PREG 2
postpartum phase as a percentage of
level during the PREG 1 postpartum
phase was a mean of 50.0% for
ACTH and 59.3% for cortisol (Ta-
ble 3). Altogether, these results re-
veal a low degree of stability in hor-
mone levels across the postpartum
phases of successive pregnancies.

Neither ACTH nor cortisol ex-
hibited any significant correlation
between PREG 1 postpartum and
PREG 2 postpartum concentrations
(Table 4). We repeated the postpar-
tum ACTH and cortisol analyses re-
stricting the cohort to those partici-
pants included in the pregnancy
analyses, and the results remained
null (ACTH: F (4, 10)�2.87, P �
.14; cortisol: F (4, 7)�0.39, P � .40).
These results reveal a low degree of
predictability in hormone levels
across the postpartum phases of suc-
cessive pregnancies.

Discussion

Results suggest that hormones in
maternal circulation during preg-
nancy are relatively stable from one
pregnancy to another within a wom-
an’s life-history. Hormones during
two nonpregnant states equally sep-
arated by time appear to be far less
stable by comparison. These results
have important implications for ges-
tational biology, maternal health, fe-
tal development, and child health.

Stability of pregnancy physiology across the
lifespan

Concentrations of HPA and HPO hormones during
pregnancy are substantially greater than during the non-
pregnant state. Conceivably, factors that cause fluctua-
tions in hormone concentrations during nonpregnant

Figure 1. Correlations between PREG 1 and PREG 2 hormone levels. Scatterplots with
regression lines use untransformed data to display the relationship between means of hormone
concentrations at 25, 31, 37 weeks’ gestation in PREG 1 and PREG 2. Regression results written
in the corner of each plot use data transformations described in Supplemental Table 2. All
cortisol values were residualized by time of day at collection (Supplemental Table 1). ACTH is
adrenocorticotropic hormone; pCRH is placental corticotropin-releasing hormone. Panels: (a)
ACTH, (b) cortisol, (c) pCRH, (d) estradiol, (e) progesterone.
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phases may exert less influence during pregnancy for two
reasons. Firstly, endocrine systems may be less responsive
to these factors because hormone levels are held close to
their physiological maximum by gestational homeostatic
systems (14, 15). The physiological demands of pregnancy
can act as a challenge to the somatic system, enlisting all
available, relevant, maternal resources towards meeting
the demands of the developing fetus (16). Circulating con-
centrations of hormones may be relatively stable from one
pregnancy to the next because pregnancy may reveal en-
docrine ceiling effects, and how ceiling effects may change
across the life-history.

Secondly, stability of hormone levels across pregnan-
cies may reflect desensitization of endocrine systems to
external perturbation. This possibility is supported by pre-
vious evidence that imposing external stressors on preg-
nant women elicits a dampened physiological response
compared to nonpregnant women, eg, blood pressure (BP)
(17); HPA-axis activation (18); psychological responses to
stress (19, 20). Whether endocrinological inflexibility or
insensitivity plays a functional role in pregnancy remains
unknown. Further research is necessary to explain the
striking degree of stability we observe in hormone levels
across successive pregnancies.

Previous studies of nonpregnant adults have shown low
intra-individual stability of hormone levels in baseline
conditions and higher stability in challenge conditions
(ACTH, cortisol, lipotropic hormone (21); cortisol (22,

23); cortisol, luteinizing hormone (LH) (24)). Our obser-
vation that postpartum (ie, baseline) ACTH and cortisol
levels were inconsistent compared to the consistency dur-
ing pregnancy (ie, challenge) is congruous with these pre-
vious observations.

Research question 4: Is pCRH less similar than the
other hormones across PREG 1 and PREG 2?

We predicted that pCRH should be less predictable
from one pregnancy to the next compared with hormones
that derive, entirely or in part, from maternal organs. Cir-
culating levels of maternal plasma CRH during pregnancy
is nearly exclusively derived from the placenta (25). In
support of our hypothesis, we observed pCRH to be the
least predictable from PREG 1 to PREG 2 of all the hor-
mones investigated here. Notably, CRH was the only hor-
mone that exhibited significant difference comparing
group means for PREG 1 and PREG 2.

By comparison, maternal plasma cortisol during preg-
nancy is exclusively derived from the maternal adrenal
glands, ACTH is nearly exclusively derived from the ma-
ternal pituitary, and estradiol and progesterone reflect
both maternal (ovarian) and placental secretion (6). The
relative stability we observed across two successive preg-
nancies for these hormones could reflect stability in the
mother’s reproductive strategy, compared with pCRH in-
stability reflecting variation in strategies of semiallogeneic
fetuses. Possibly, pCRH could be less stable across preg-

Table 5. Stability of hormone concentrations at each timepoint across subsequent pregnancies

Hormone
Gestation
timepoint N F-statistic DF

Adjusted
R2 P

ACTH 25 wks 20 3.5 1,18 0.115 0.079 .
31 wks 20 5.9 1,18 0.206 0.026 *
37 wks 19 6.4 1,17 0.231 0.022 *

pCRH 25 wks 19 0.0 1,17 �0.058 0.921
31 wks 19 1.3 1,17 0.015 0.273
37 wks 19 6.4 1,17 0.232 0.0213 *

Cortisol 25 wks 17 5.8 1,15 0.230 0.030 *
31 wks 18 9.9 1,16 0.342 0.006 **
37 wks 18 1.6 1,16 0.032 0.228

Estradiol 25 wks 19 4.5 1,17 0.164 0.048 *
31 wks 18 6.8 1,16 0.253 0.019 *
37 wks 18 0.0 1,16 �0.061 0.877

Progesterone 25 wks 19 22.6 1,17 0.546 0.000 ***
31 wks 20 5.0 1,18 0.176 0.038 *
37 wks 18 12.4 1,16 0.401 0.003 **

Regression analyses measure the proportion of variance in PREG 2 hormone levels that is attributable to variance in PREG 1 hormone levels at each
of three timepoints (25, 31, 37 weeks’ gestation). Cortisol data were residualized by time of day at collection. For null results, negative adjusted
R-squared values are interpretable as zero. ACTH is adrenocorticotropic hormone; pCRH is placental corticotropin-releasing hormone; ns is not
significant; DF is degrees of freedom. P-values � 0.10 are in bold. See Supplemental Tables 2 and 3 for model details.

. P � 0.10

* P � 0.05

** P � 0.01

*** P � 0.001.
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nancies than other hormones with partial placental con-
tribution because it is more sensitive to environmental
conditions, which vary stochastically between subsequent
pregnancies.

Previous studies
Two previous studies analyzed gestational physiology

across two successive pregnancies in cohorts of women.
The first study found that women exhibited intra-individ-
ual correlations in weight, BMI, and offspring birth weight
across the two pregnancies, and no association for mater-
nal hemoglobin (26). The second study compared various
aspects of gestational physiology in 106 women across
two pregnancies (27). For indicators of maternal sympa-
thetic activation, they found that maternal electrodermal
activity was greater during the subsequent pregnancy,
while respiratory sinus arrhythmia was greater during the
earlier pregnancy, and no trend in directionality for ma-
ternal heart rate or respiratory period. They did not ex-
plore correlations across the two pregnancies. Similar to
our results, they found no moderating effects of fetal sex
concordance. Their study began the important explora-
tion of the degree to which siblings share a prenatal envi-
ronment. Our results expand this field of inquiry as the
first investigation of intra-individual gestational endo-
crine concordance.

Implications for understanding maternal health
Knowing whether women experience similar concen-

trations of hormones in each of their pregnancies can im-
prove our estimation of lifetime (cumulative) exposures to
the endocrine conditions of pregnancy. Because preg-
nancy is characterized by the highest concentrations of
glucocorticoids and gonadotropins in a woman’s lifetime,
and because these hormones have been implicated in dis-
ease etiology, this topic is of major interest for women’s
health. Glucocorticoids are involved in a wide range of
immunological functions, including modulation of gene
expression, suppression of certain pathways and promo-
tion of others (28). Cumulative exposure to high concen-
trations of estrogens has been positively associated with
risk of reproductive cancers (breast (1), ovarian (3), en-
dometrial (4)), and negatively associated with risk of Alz-
heimer’s Disease (2). Our calculations of the intra-indi-
vidual stability in gestational hormone levels represent an
important step in improving our estimation of the cumu-
lative effect of reproductive life-history on later-life dis-
ease risk, via cumulative hormone exposure. Additionally,
maternal endocrine profiles during gestation have been
implicated in maternal cognitive performance (12), ma-
ternal sensitivity (29), and postpartum depression (30–
32). Our results contribute to a better understanding of

how successive pregnancies (and postpartum phases) may
influence a woman’s health across her lifespan.

Reconceptualizing the early shared environment:
Fetal programming and sibling effects

Appreciating the degree of consistency in a mother’s
hormone concentrations across pregnancies will improve
our understanding of the underlying mechanisms involved
in sibling trait concordance. Hormone exposures during
the prenatal phase of life during sensitive periods moder-
ate fetal developmental processes (8) in ways that have
lifelong, often irreversible, consequences for offspring
health and development (9, 10). This is part of the process
of fetal programming. For certain traits, prenatal hormone
exposures play a major role in shaping phenotype (9, 33–
36). For such traits, two siblings exposed to similar endo-
crine environments in utero may exhibit trait
concordance.

Until now, we did not know how similar siblings’ fetal
hormone exposures were, limiting our ability to draw ac-
curate conclusions about prenatal and postnatal environ-
mental influences on phenotypic development. Many “ex-
tended twin studies” have compared monozygotic twins,
dizygotic twins, and siblings to discern the genetic, pre-
natal, and postnatal environment influences on a wide
range of traits, eg, brain morphology (37), depression
(38), drug abuse (39), cardiovascular disease risk (40), and
diabetes risk (41). These study designs are based on the
premise that nontwin siblings have the same genetic re-
latedness as dizygotic twins but experience different in-
trauterine environments. Thus, an underlying assumption
of the study design is that within a mother, gestational
physiologies during two of her pregnancies are different
enough from one another to reveal the effects of prenatal
programming. Maternal age, environmental circum-
stances that affect maternal somatic and placental func-
tion, and fetal identity differ across pregnancies. Yet, ma-
ternal identity remains consistent, maternal-placental
genetics remain consistent, and fetal (and fetal-placental)
genetic identity is still half of maternal origin, and, in some
cases, has shared paternal genetic origin with the anteced-
ent sibling. Therefore, some aspects of gestational biology
are consistent across successive pregnancies, while other
aspects vary, predicting some (but not total) consistency in
endocrinology, as our results demonstrate. Because of the
important role of hormones as effectors of fetal program-
ming, the aspects of gestational biology that account for
endocrinologic differences across successive pregnancies
may promote divergent sibling phenotypic development,
while the aspects of gestational biology that account for
endocrinologic similarities across successive pregnancies
may promote concordant sibling phenotypic develop-
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ment. In conclusion, the way we interpret comparisons of
dizygotic twin vs sibling trait concordance needs to be
reconsidered based on a more informed understanding of
a mother’s interpregnancy physiological consistency.

Additionally, the correlation between fetal hormone
exposure and maternal circulating hormone levels is not
one-to-one and may vary (42, 43). Further studies are
needed to investigate differences in hormones not only in
maternal circulation but also in utero across successive
pregnancies.

Conclusion

We find that in this cohort, up to 56% of the variance in
hormone levels in a pregnancy can be predicted from hor-
mone levels in a previous pregnancy. This interpregnancy
consistency in hormone levels is absent during the non-
pregnant state. Future studies should further investigate
this topic in a larger cohort. Nonetheless, our results can
inform future efforts to estimate women’s cumulative hor-
mone exposures based on reproductive life-history. Ad-
ditionally, these results suggest that a substantial portion
of siblings’ shared environments may be prenatal, which
should alter how we interpret observations of sibling trait
concordance.
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