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Multi-player Bargaining with Endogenous Capacity1

Gabriele Camera Cemil Selcuk

Purdue University Cardiff University
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Abstract

We study equilibrium prices and trade volume in a market with several identical buyers and a

seller who commits to an inventory and then offers goods sequentially. Prices are determined by

a strategic costly bargaining process with a random sequence of proponents. A unique subgame

perfect equilibrium exists, characterized by no costly delays and heterogeneous sale prices. In

equilibrium constraining capacity is a bargaining tactic the seller uses to improve a weak bargaining

position. With capacity constraints, sale prices approach the outcome of an auction as bargaining

costs vanish. The framework provides a building block for price formation in models of equilibrium

search with multilateral matching, and offers a rationale for the adoption of single-unit auctions

with fixed reservation price.

Keywords: Commitment, Inefficiency, Peripheral players, Price heterogeneity, Noncooperative bar-

gaining

JEL: C78, D0
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1 Introduction

This paper studies equilibrium in a market where several identical buyers desire to pur-

chase one indivisible good from a seller with a fixed homogeneous inventory. The seller

chooses and commits to the inventory before sequentially serving buyers. Prices are de-

termined via costly negotiations, ex-post. Primarily, we are interested in determining

equilibrium volume of trade and sequence of sale prices. We also characterize equilibrium

in terms of the model’s parameters and study its efficiency.

The application we have in mind is trading in models with directed search or random

urn-ball matching, where capacity-constrained sellers may meet more than one buyer in

a period.2 These models have been used to study labor and product markets, monetary

economies, and, though price posting is typical, recent works limit price commitments

and introduce ex-post competition to study price dispersion and trading efficiency; see for

instance the use of auctions in [2, 17, 20, 32] and the possibility of ex-post (re)negotiations

in [9, 27]. Our work studies price formation in multilateral matches and offers a rationale

for the existence of equilibrium capacity constraints and for the use of auctions.

We develop a strategic bargaining game between a central player (seller) and n pe-

ripheral players (buyers) each of whom desires a single indivisible object (a good or a

job). The game is of complete information and is sequential, with two stages. In the

first stage the seller commits to supply at most c ≤ n homogeneous objects, a choice that
we call ‘capacity.’ Capacity is costlessly created, so holdup problems are excluded, and

production is costless. In the second stage a discrete-time alternating offers game takes

place, in the tradition of [31]. The key features are a sequential sale constraint (the seller

can offer only one good per period), there is a cost to bargaining due to discounting, and

players cannot exclude others from negotiations since proposers are randomly selected.

2 In directed search models multiple buyers can visit, at no cost, one of several capacity-constrained

sellers; e.g., see [4, 28, 30]. Because buyers’ choices are simultaneous and independent, sellers may meet

more than one buyer in a period and, with countable players, symmetric equilibrium demand is Poisson-

distributed parameterized by the buyers-sellers ratio, as it happens in urn-ball matching models; e.g., see

[5, 32].
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The main findings are as follows. For any given choice of capacity c the multi-player

bargaining game has a unique subgame perfect equilibrium, which is symmetric and sta-

tionary. Bargaining equilibrium is efficient since discounting eliminates delays.

Second, equilibrium offers are decreasing functions of capacity. Proposers are ran-

domly selected, so anyone who renounces an option to buy today must compete with

others tomorrow. It follows that if there are capacity constraints, c < n, then there is

consumption risk; the seller’s inventory may run out before the buyer can negotiate a

better price, since the seller may accept other offers in the meantime. This risk falls with

capacity, and so do equilibrium offers. This means that the seller faces a trade-off between

extensive and intensive margins of trade, which leads to a third finding.

Capacity constraints arise in equilibrium if the seller is sufficiently inept at bargain-

ing. Choosing c < n creates consumption risk, and so forces buyers to compete raising

their offers. This bargaining tactic improves the seller’s surplus share in each trade but

lowers trade volume. Hence, in equilibrium c < n only if the seller is a sufficiently weak

negotiator. Clearly, the resulting deadweight loss implies equilibrium inefficiency.

Fourth, the sequence of equilibrium sale prices is heterogeneous and generally non-

monotonic. Heterogeneity stems from discounting but it is affected by the choice c. With-

out capacity constraints prices monotonically fall in the order of sale because there is no

consumption risk. Competition among buyers falls as goods are sold and early buyers

pay a premium simply due to discounting. Instead, if c < n, then consumption risk in-

creases as items are sold. Consequently, the sale price sequence can be U-shaped or even

monotonically increasing if the capacity constraint is sufficiently tight. Clearly, because

proponents are randomly selected, equilibrium prices in a period differ depending on who

gets to make the offer, seller or buyer. Interestingly, the buyer’s equilibrium offer follows

a very simple and intuitive rule. The buyer applies a fixed (round-invariant) discount to

the seller’s offer and such a reduction depends only upon time-discounting and the seller’s

bargaining skill, but neither on the number of competitors nor the seller’s remaining stock.

Finally, as discounting vanishes equilibrium offers converge to a constant that depends

on capacity constraints and players’ negotiation skills. Absent constraints, players earn
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fixed surplus shares based on their relative bargaining skills. Otherwise, buyers earn zero

surplus because they bid their reservation value in an attempt to avoid being rationed

away. Intuitively, as bargaining becomes costless buyers participate in a scheme resembling

an auction with a fixed reservation price. Hence, our model provides a microfoundation

for the use of this type of trading mechanism in search models of multi-player matches

such as [2, 17, 20, 32]. Because these models display random equilibrium demand, we also

conduct an analysis for an economy with Poisson-distributed demand to confirm our basic

results on capacity choices. We find that if the seller anticipates meeting few buyers who

are skilled negotiators, then he will commit to serve only a fixed small number of buyers

and may even choose to sell just one good. Additionally, we show that this results holds

in an extended version of the model where multiple sellers can compete in capacity.

These findings fit into several literatures. They broaden the study of bargaining tactics

used to strengthen a player’s bargaining leverage, such as in [12, 14, 23, 29] for instance.3

We present conditions under which a seller with weak bargaining position can improve

his payoff by committing to serve only a fraction of the demand. In this case, disparities

in bargaining skills can affect allocative efficiency but not bargaining efficiency, because

equilibrium exhibits no bargaining delays. More generally, our work fits into the literature

on multi-player bargaining under complete information. To put our contribution into

perspective, recall that our analysis relies on a noncooperative sequential bargaining game

in which a central player negotiates with n ≥ 2 peripheral players over c ≤ n objects,
given randomly alternating offers and unbounded bargaining rounds. Thus, we depart

from the typical setting in the literature where negotiations are over shares of a single

“pie” (e.g., see [19]), because the seller chooses how many homogeneous pies to offer and

then negotiates over one pie at a time with multiple buyers. This implies that acceptances

affect the continuation game, due to inventory changes, though rejections neither create

costs nor impose restrictions on future offers (for a model where this is not the case,

3 In [12] taking actions that enlarge the set of settlements preferred to disagreement may hurt the

probability of disagreement; in [14] a firm may benefit by choosing high debt levels before bargaining with

workers; and in [29, 23] making initial commitments that are costly to revoke provides bargaining leverage.
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see [18]). Moreover, the framework adopted imposes neither a predetermined bargaining

order (as, for instance, happens in [35]), nor a specific queuing order following a rejection

(for examples see [6, 7]), nor an exogenous deadline by which bargaining has to end

(as in [10], for instance); indeed, players in our model can respond to offers only with

a random lag and offers cannot be made to all the players simultaneously (as in [21],

for example). Finally, unlike papers in noncooperative coalitional sequential bargaining

games, players in our model neither have veto power over allocation proposals, nor can

impose one dictatorially; see the recent works in [16, 25, 26] for example.4

Our work is also related to a literature on durable goods monopolies and the Coase con-

jecture. This conjecture, put forward in [11], states that a monopolist who cannot commit

to price/quantity sequences faces a classic time-inconsistency problem that can eliminate

the monopoly distortion. Basically, buyers may postpone demand if they expect that

prices will drop sufficiently rapidly towards the marginal cost, as the seller incrementally

serves demand. So, an uncommitted monopolist will end up offering (close to) competitive

prices from the get go. The Coase conjecture is not borne out in our model for two rea-

sons. First, the seller can costlessly commit to serve only a fraction of the demand–which

creates competition for goods. Second, the seller can costlessly limit period capacity to a

minimum by serving impatient buyers sequentially–which slows down sales. Seen in this

light, our work is especially related to the recent studies in [3, 15, 24] on the impact of

commitment on monopoly distortions.5

4 In the stochastic models in [25, 26], a player is randomly chosen to propose a division of a cake, while

the other players sequentially respond by accepting/rejecting the proposal. Unanimity is necessary for the

proposal to pass. The work in [16] combines stochastic components with general agreement rules.
5 In [24] capacity can be costly augmented in each period and monopoly distortions emerge because,

due to costly adjustments, the monopolist can credibly commit to future sales restrictions, which are

key because they slow down sales. The work in [3] studies the link between commitment and strategic

demand delays with time-varying demand. If demand increases, then the monopolist quickly increases its

price (so demand is not postponed), and if demand falls, then prices slowly fall (so there is some demand

posticipation). Commitment with varying demand is also in [15], which studies demand anticipation;

consumers who expect higher future prices can pay a fixed fee to store goods. Here commitment may

lower distortions since the monopolist can adjust prices intertemporally and eliminate wasteful storage.
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In terms of applicability, the model of inventory selection and price formation that

we propose is suitable for directed search and urn-ball random matching models. This

study offers a rationale for the typical assumption of capacity-constrained markets; e.g.,

see [4, 28, 30], or [1] for a model with costly buyer search. The costly bargaining results

are relevant to studies that consider the possibility of (re)negotiation in matches between

many buyers and a seller with unit inventory, e.g., see [9, 27]. The analysis of the limiting

case of costless bargaining, instead, offers a rationale for assuming single-unit auctions,

e.g., as in [2, 17, 20, 32], when sellers face a short queue of customers who have substantial

bargaining leverage. Finally, our framework can also find applicability in a literature

devoted to study how intermediaries’ choices of inventories help mitigate trading frictions

in search and matching markets, as, for instance, in [8, 34, 36].6

We proceed as follows. Section 2 describes the model and studies the bargaining game.

Section 3 studies the choice of capacity, Section 4 considers extensions to random matching

and multiple sellers. Section 5 concludes.

2 Model and equilibrium concept

We study a game of complete information between a seller and n ≥ 1 identical buyers each
of whom desires to consume a single good. There are two stages. In the first stage the

seller costlessly chooses capacity c = 1, ..., n. This allows the seller to produce, at no cost,

up to c units of an indivisible homogeneous good. Hence, c is the seller’s inventory and

there are capacity constraints when there is excess demand, n−c > 0. In the second stage,
goods are offered for sale one at a time, and trading takes place by means of a bargaining

mechanism described below. Consumption utility is one for buyers and zero for the seller

and since utility is transferable there are gains from trade. We adopt subgame perfection

as the equilibrium concept, moving backward in our analysis. First, we study bargaining

equilibrium in the second stage of the game, given c. Then, we study the choice c.

6 [8] studies the emergence of dealers of differentiated goods as a function of cost of inventories, frictions,

and negotiation leverage; [34] studies how intermediaries’ choice of inventories impacts the frequency of

random exchange, and so does [36] in a model with directed search markets.
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2.1 The bargaining game

Consider the second stage of the game, i.e., the bargaining game. Suppose the seller has

c = 1, ..., n indivisible goods available. Every player observes c and n and then a trading

process starts, which is based on a noncooperative sequential bargaining game of complete

information, in the tradition of [31]. Negotiations take place in rounds indexed t = 1, 2, ....

In each round t players bargain over the sale of a single good as follows. First, a random

selection device chooses a buyer with equal probability among all buyers present. This

means buyers are not in a specific queue waiting their turn to negotiate with the seller.

Second, the random selection device either picks the seller or the (randomly selected)

buyer to propose an offer q ∈ [0, 1]. With probability γ ∈ (0, 1) the seller is picked–so the
responder is the buyer–and the converse occurs with probability 1−γ, in which case the

buyer is picked and the seller is the responder. So, in each round any of the players, buyers

or seller, face a random opportunity to make or respond to an offer. We will interpret the

parameter γ as capturing the seller’s negotiation skill.

Denote the elements of the responder’s action set by ‘accept’ or ‘reject.’ There is

disagreement in a round t if the responder rejects the offer q. In that case, the seller keeps

the good and all players earn zero utility for the round. If there is agreement, instead,

trade occurs so the payoff in round t is 1− q for the buyer–who then leaves the game–
and q for the seller. The remaining n− 1 buyers receive zero payoff in that round. At the
end of round t, if the seller has no more goods to offer then the game stops, otherwise it

continues. It is assumed all players discount future payoffs by β ∈ (0, 1). This means that
bargaining delays are costly to seller and buyers. Since in each round the seller makes or

responds to one buyer’s offer, as the game progresses the seller’s capacity falls at most

by one unit. Since goods are homogeneous, without loss in generality we let i = 1, ..., c

denote the good offered for sale in round t ≥ i.

2.2 Bargaining: the main result

Fix c = 1, ..., n. The main result is a full characterization of the subgame perfect equilib-

rium (SPE) offers and realized payoffs.
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Theorem 1 The bargaining game between n ≥ 1 buyers and a seller with c = 1, ..., n

goods has a unique subgame perfect equilibrium that is characterized as follows. The seller

offers good i at price qsi = qi (c, n) with

qi (c, n) = 1− β−α
n−i+1

c
j=i β

j−i
j

m=i

n−m+1
n−m+1−α (1)

and accepts any offer q ≥ αqi (c, n), where

α = βγ
βγ+1−β . (2)

Each buyer offers to buy good i at price qbi = αqi (c, n) and accepts any offer q ≤ qi (c, n).

In equilibrium there are no bargaining delays and a good is sold in each bargaining

round, until the inventory is depleted. In addition, equilibrium sale prices are hetero-

geneous; they depend on the order of the transaction in the sale sequence and on the

identity of the proposer, buyer or seller. (The limiting case of no discounting is studied

in the next section)

In what follows we prove this theorem via a sequence of lemmas, starting by conjectur-

ing the existence of a subgame perfect equilibrium that satisfies basic properties, namely,

offers are stationary and are accepted without delay. Then we will calculate such offers

and verify that they are indeed subgame perfect. Finally we show that our conjecture is

the unique SPE by demonstrating that all SPE of this game satisfy the properties above.

Consider an equilibrium characterized by two properties. There is no delay, i.e., in

equilibrium any offer is accepted in the same round in which it is made. Equilibrium offers

are stationary, i.e., players do not modify their offers for a good unsold in the previous

round. Suppose the game has reached some round t ≥ i and that the seller is offering
the ith good. Denote by Ai the set of buyers who desire to purchase the good. We have

|Ai| = n−i+1 since in previous rounds i−1 buyers have traded with the seller, consumed
and left. Given stationarity and a pair (c, n), let qbk,i (c, n) denote the equilibrium offer of

buyer k to the seller and let qsk,i (c, n) denote the equilibrium offer to buyer k ∈ Ai. (We
will omit c and n, when they are understood.)
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Given no delay in accepting offers, let πi(c, n) denote the seller’s expected earnings

from bargaining over the ith good, for a pair (c, n). It is defined as

πi(c, n) = k∈Ai
γqsk,i+(1−γ)qbk,i

n−i+1 .

With probability γ the seller gets to make the offer and buyer k ∈ Ai is selected to receive
it with probability 1

n−i+1 . When the offer is accepted without delay, the seller gets q
s
k,i

utility and the buyer 1− qsk,i. Similarly with probability 1−γ
n−i+1 some buyer k ∈ Ai gets to

make an offer, in which case the seller’s utility is qbk,i and the buyer is 1− qbk,i.
The seller’s payoff in the bargaining game is simply the expected utility from selling

at most c goods. When there is no delay, we denote it by π (c, n) with

π (c, n) =
c

i=1

βi−1πi.

Now consider buyer k. Let uk,i(c, n) denote his expected utility at the start of some

trading round t ≥ i in which good i is offered for sale, given initial demand n and capacity
c. When offers are immediately accepted we have

uk,i(c, n) = γ
1−qsk,i
n−i+1 + (1− γ)

1−qbk,i
n−i+1 +

n−i
n−i+1βuk,i+1(c, n).

The first two terms on the right hand side refer to the case when buyer k is selected to

receive or make an offer. The third term represents a continuation payoff. Due to random

selection, n−i
n−i+1 is the probability that the buyer is excluded from this bargaining round.

Exclusion is costly for the buyer because, even if the seller has goods left in inventory,

future payoffs are discounted by β. The notation uk,i+1 ≥ 0 denotes the expected utility
from continuing the game, with uk,c+1(c, n) = uc+1(c, n) = 0 for all k ∈ Ac (and note that
Ac = ∅ since c ≤ n). The buyer’s payoff in the bargaining game is therefore uk,1, which
can be obtained by backward iteration.

Now consider best responses. Players choose offers on [0, 1] to maximize their payoffs.

There is an incentive to quickly reach agreement. Indeed, suppose that round t = i results

in disagreement between the seller and a buyer k ∈ Ai. Given stationarity and absence of
future delays, the seller’s continuation payoff is βπi and the buyer’s is βuk,i. Therefore any
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player accepts an offer giving him utility greater than his continuation payoff, is indifferent

if the offer corresponds to his continuation payoff, and rejects it, otherwise.

Note that uk,i is linearly decreasing in qbk,i and πi is linearly increasing in qsi . So, an

offer is individually optimal only if it gives the opponent exactly his continuation payoff,

i.e. if it leaves him indifferent. Hence, for each good i and each buyer k the expressions

qbk,i = βπi and 1− qsk,i = βuk,i, (3)

identify the best responses of buyer k and of the seller.

Lemma 2 Fix a pair (c, n). Equilibrium offers must be symmetric. That is, qbk,i = qbi

and qsk,i = q
s
i for each i = 1, ..., c and all k ∈ Ai. In particular,

qbi = αqsi (4)

qsi =
n−i+1−β
n−i+1−α − β2(n−i)

n−i+1−αui+1 (5)

where α is as in (2). It follows that in equilibrium:

πi =
α
β q
s
i (6)

ui =
1−α

β
qsi

n−i+1 +
β(n−i)
n−i+1ui+1. (7)

All proofs are in Appendix A. Conjecturing no delay and stationarity, the seller makes

identical offers to any buyer k and every buyer k makes the same offer for good i. Intu-

itively, everyone is treated identically because buyers are not queued in any specific line

and are homogeneous. Interestingly, the buyer’s equilibrium offer follows a clean-cut rule.

The buyer applies a fixed discount 1 − α to the seller’s offer. The portion α is constant

across bargaining rounds, and it neither depends on i nor on the initial number of com-

petitors n; it depends only upon time-discounting and the seller’s bargaining skill, being

an increasing function of γ and β.

We can now obtain an expression for the buyer’s payoff and the equilibrium offer as

functions of parameters, so we get πi and qbi as functions of parameters, also.
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Lemma 3 Fix a pair (c, n). In equilibrium we have

ui (c, n) =
Φi(c,n)
n−i+1 (8)

and qsi (c, n) = qi(c, n) with

qi (c, n) = 1− βΦi(c,n)
n−i+1 (9)

Φi (c, n) =
β−α
β

c
j=i β

j−i
j

m=i

n−m+1
n−m+1−α (10)

for all i = 1, ..., c. In particular, qi (c, n) ∈ (0, 1) for all i.

Intuitively, Φi denotes expected future surplus for a buyer when goods j = i, . . . , c

remain. Thus the buyer’s expected utility ui is Φi divided by n − i + 1, the number of
remaining buyers, and the buyer’s (ex-ante) payoff is u(c, n) = u1(c, n), i.e., the expected

utility at the beginning of the game. At any stage i of the game the seller’s equilibrium

offer qi (c, n) leaves the buyer indifferent to purchasing good i.

Clearly there is a unique pair (qsi , q
b
i ) for each i, thus there is a unique SPE satisfying

the two properties: stationarity and no-delay. It is easy to check that the strategies

described in the Theorem are subgame perfect. The only thing left to demonstrate is that

this is also the unique SPE of this game. To do so we must show that every SPE must

satisfy stationarity and no-delay, which is a tedious but straightforward process.

Lemma 4 The subgame perfect equilibrium described in Theorem 1 is the unique subgame

perfect equilibrium of this game.

To sum up, multi-player bargaining equilibrium is stationary, symmetric and unique.

Since there are no delays, it is also efficient. If the seller makes the offer, then good i is

sold at price qi, and otherwise the sale price is lower, αqi. Thus, the sale price sequence

is generally heterogeneous not only due to the order of sale, but also because buyer and

seller’s offers differ. The section that follows characterizes equilibrium sale prices in detail.
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2.3 Characterization of equilibrium offers

We show how offers respond to changes in capacity c and demand n.

Lemma 5 Equilibrium offers are increasing functions of n− c. For each i = 1, ..., c with
c ≤ n, the sequence {qi(c̃, n)}nc̃=i is strictly decreasing, {qi (c, ñ)}∞ñ=c is strictly increasing,
and qi+j(c+ j, n+ j) = qi (c, n) for j = 1, 2, ...

Sale prices respond naturally to demand pressure, i.e., they increase with n−c. So, the
seller may wish to strategically constrain capacity to induce buyers to make and accept

higher offers. If c < n, then customers face consumption risk, which grows in n− c. Here
disagreement is costly to a buyer (apart from discounting) since it carries the risk of not

consuming at all; the seller may be sold out by the time they agree on an offer, since the

seller may get (and accept) other offers in the meantime. Clearly, the seller does not face

this type of risk. Intuitively, tighter capacity constraints make goods scarcer and induce

buyers to pay a higher price. Hence, the seller can strengthen his bargaining position or,

equivalently, raise his bargaining leverage, by restricting capacity. (In later Sections we

present conditions for existence of equilibrium capacity constraints).

Lemma 5 also tells us that what matters for price determination is the number of

goods left in inventory. Since larger capacity and greater demand have opposite effects,

good i sold by a seller that has excess demand n− c is the same as the price of good i+ j
sold by a seller whose capacity and number of customers is also increased by j. (This is

used to prove another result). Now, instead, we establish how equilibrium offers respond

to changes in β and γ, given some (c, n) pair.

Lemma 6 Fix a pair (c, n). We have ∂qi
∂γ > 0 for every i = 1, ..., c.

Every equilibrium offer increases with the probability γ, which makes sense because

this corresponds to an improvement in the strength of the seller’s bargaining position.

Now we characterize the price sequence.
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Lemma 7 Fix a pair (c, n). The sequence {qi(c, n)}ci=1 is: (i) monotonically decreasing
if cn is sufficiently close to one, (ii) monotonically increasing if

c
n is sufficiently close to

zero, and (iii) U-shaped, otherwise.

Whether early buyers pay less or more than late buyers depends on the severity of

capacity constraints, i.e., cn . The price sequence can be non-monotonic, falling and then

rising when few items are left for sale. Intuitively, two opposing effects influence the

shape of the price sequence. One the one hand, with β < 1 buyers wish to buy as soon as

possible even if there is no shortage of goods. However, when good i is offered for sale, the

probability of being selected to trade is 1
n−i+1 and it increases with i since buyers leave

after purchasing. So, competition for goods falls as goods are sold. On the other hand,

when c < n some buyers will not consume at all and this consumption risk increases with

i. So, competition for goods increases as goods are sold.7 The strengths of these opposing

effects varies with i, and the second dominates if capacity constraints are sufficiently tight.

An illustration. Figure 1 plots equilibrium sale prices in three economies with different

capacity levels, c = 5, 14, 15, against the order of sale i = 1, 2, ..c. The parameters are

n = 15, β = 0.9 and γ = 0.1.

Figure 1 approximately here

There is no consumption risk for c = 15 but only a cost due to discounting. So, the

sequence of equilibrium sale prices is monotonically decreasing in i. For small excess

demand, c = 14, consumption risk is initially small. So, prices first fall and start to rise

after the tenth item is sold. When capacity constraints are very tight, c = 5, the sequence

of prices rises monotonically because consumption risk is always dominant.

We conclude the analysis of bargaining equilibrium by discussing the case of costless

negotiations, β → 1. We think of this as a situation in which the time interval between

7Suppose i− 1 goods have been sold.
c

j=i

n−j
n−j+1 =

n−c
n−i+1 is the probability a buyer is unable to trade

before the inventory runs out; n−j
n−j+1 is the probability that some other buyer is selected to trade over

good j = i, .., c. Clearly n−c
n−i+1 increases with i.
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offers shrinks to zero, i.e., every buyer gets to make an offer to the seller so the seller is

not committed to deal with one buyer at a time.

Theorem 8 Fix a pair (c, n); limβ→1 qsi (c, n) = q
b
i (c, n) = q(c, n) for all i = 1, . . . , c with

q(c, n) =

⎧⎨⎩ γ if c = n,

1 if c < n.

As β → 1, the outcome of the bargaining procedure we have proposed is comparable

to the outcome of an auction with fixed reservation price γ. Intuitively, when players do

not discount future payoffs each equilibrium sale price converges to a constant q(c, n) the

value of which depends on whether capacity constraints exist or not. Without capacity

constraints every player earns a surplus share corresponding to the probability of making

the offer, γ for the seller and 1 − γ for each buyer. Instead, with capacity constraints

buyers behave as if they were participating in an auction, bidding their reservation value

(one) in order to effectively compete with other buyers for scarce goods. This finding

is interesting because it offers a microfoundation for the use of single-unit auctions with

fixed reservation values in search models of multilateral matching; e.g., see [2, 17, 20, 32]

among others. We will develop this link further in Section 4, where we present a condition

ensuring that c = 1 is a seller’s optimal choice when demand n is random, and β → 1.

3 Endogenous Capacity

The previous section has established that bargaining equilibrium is efficient since there are

no wasteful delays. We now endogenize the choice of c and present a condition sufficient

for the existence of equilibrium capacity constraints given a known demand n.

Consider the first stage of the game. The seller chooses c ∈ {1, ..., n} to maximize
π (c, n) given that offers are selected optimally in the second stage of the game, i.e., offers

satisfy Theorem 1. We have the following.

Theorem 9 Let c (n) denote the set of maximizers of π(c, n), i.e.,

c (n) = {c : c ∈ {1, ..., n} and π (c, n) ≥ π (x, n) for all x = 1, ..., n} ,

13



and let c ∈ {2, ..., n− 1} denote a generic interior capacity choice. We have that

c (n) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{1} if β
β−α < ϕ (2, n)

{c− 1, c} if β
β−α = ϕ (c, n)

{c} if β
β−α ∈ (ϕ (c, n) ,ϕ (c+ 1, n))

{n} if β
β−α > ϕ (n, n)

(11)

with

ϕ (c, n) =
c

m=1

n−m+1
n−m+1−α . (12)

Corollary 10 If β
β−α ≤ ϕ (n, n), then the equilibrium outcome is inefficient.

The theorem characterizes the set of optimal capacities c (n) in terms of the parameters

of the model. This allows us to establish that the seller generally selects a unique capacity,

although knife edge cases exist in which he might be indifferent between two adjacent

choices. Intuitively, the seller is a monopolist who faces a set number of consumers. So

he can trade off extensive margin losses against intensive margin gains (as demonstrated

in Lemma 7) to maximize his payoff. This suggests that (i) multiplicity can arise due to

the discreteness of the choice set and (ii) full capacity c = n is not generally optimal. The

seller will constrain capacity only if his bargaining position is sufficiently weak. To see

this, recall that γ captures the seller’s relative bargaining strength and equilibrium offers

grow in γ (Lemma 6). If γ is sufficiently low, then the seller can set c < n to increase

his bargaining leverage. Of course, the seller suffers a loss from n − c unrealized trades.
One can show that parameters exist such that β

β−α < ϕ (n, n) for γ close to zero, i.e., the

intensive margin effect is dominant. Here, inefficiency is a straightforward consequence

of the deadweight loss. Since this inefficiency depends on the distribution of bargaining

skills, a planner would grant the seller enough bargaining power to ensure that c = n is

selected. The theorem is proved in two steps.

Lemma 11 Given n ≥ 2 and prices as in Theorem 1, the seller’s equilibrium payoff

satisfies

π (c, n) = c
j=1 β

j−1 −Φ1 (c, n) , (13)

14



or, equivalently,

π (c, n) = π (c− 1, n) + βc−1[1− β−α
β ϕ (c, n)]. (14)

The buyer’s equilibrium payoff satisfies

u (c, n) = Φ1(c,n)
n . (15)

The Lemma derives the seller’s and buyers’ equilibrium payoffs, π(c, n) and u(c, n),

in terms of the model’s parameters. This also allows us to establish a measure of ex-ante

welfare, i.e., the sum of players’ equilibrium payoffs, which we denote by W (c, n), where

W (c, n) = π(c, n) + nu(c, n) = c
j=1 β

j−1. (16)

The last equality has been obtained using (13) and (15). Clearly, because players are

risk-neutral and divide one unit of surplus any time they trade, ex-ante equilibrium wel-

fare is simply the present discounted sum of the value created by trading c goods in an

uninterrupted sequence of c periods.

Lemma 11 also establishes that the seller’s payoff is a step function on {1, ..., n}. So,
now we characterize the seller’s payoff change from a unit increment in capacity.

Lemma 12 Define ∆ (c, n) = π (c, n)− π (c− 1, n) . We have

∆ (c, n) = βc−1[1− β−α
β ϕ (c, n)], for c = 1, ..., n. (17)

Therefore, for all c = 1, .., n− 1 we have

∆ (c, n) ≥ 0 ⇔ β
β−α ≥ ϕ (c, n) , (18)

with

∆ (c, n) > ∆ (c+ 1, n) . (19)

For every n ≥ 2 the change in payoff strictly falls with each step and due to (18), the
expression (11) defines the set of maximizer of π(c, n).
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An illustration. Figure 2 plots the choice of capacity c (n) for n = 2 as β and γ vary.

The seller constrains capacity if his bargaining skill is sufficiently low, γ < 3β−2
2β in the

bottom-right of the figure. The seller is indifferent between offering one or two goods

when γ = 3β−2
2β , and otherwise always offers two goods. Intuitively, fix a low value of γ

and vary β. When β is small constraining capacity does not raise prices very much since

buyers make low offers simply due to the heavy discounting. Hence, c = 2. The opposite

occurs when β is high, hence c = 1. Now fix β close to one and notice that the seller

restricts capacity only if γ (his bargaining skill) is sufficiently small.

Figure 2 approximately here

Figure 3 shows how efficiency varies with market size and distribution of bargaining

skill, for β = 0.9. Efficiency is measured as ex-ante equilibrium welfare relative to ex-ante

welfare when c = n is imposed. From (16), this ratio is 1−βc
1−βn .

Figure 3 approximately here

The horizontal axis is demand n and the seller’s bargaining skill can be either extremely

limited, γ = 0.01, or substantial, γ = 0.7. As demand increases, the ratio 1−βc
1−βn converges

to one because c(n) grows unbounded as n→∞.8 There is generally a greater efficiency
loss when the seller has less bargaining skill, which is when he chooses to constrain capacity

to improve his payoff. However, because efficiency displays an overall increasing trend in

n, the efficiency losses associated to the two γ values differ markedly only for small n. For

example, when n = 2, efficiency is 100% for γ = 0.7 but it is only about 53% for γ = 0.01.

When n > 100 there is no discernible efficiency differential.

To conclude the analysis in this section consider the case β → 1. Theorem 8 implies

that if the seller’s bargaining skill γ is sufficiently low, then c = n − 1, or else the seller
8The non-monotonic saw-tooth pattern arises because as n increases c (n) can remain constant initially,

and then rise (due to the discreteness of the seller’s choice set). For example, when γ = 0.7, we have

c (2) = 2, c (3) = 3, c (4) = 4, c (5) = 4 and c (6) = 5. So, efficiency equals 1 for n = 2, 3, 4, drops to about

0.84 for n = 5, rises to about 0.87 for n = 6, and so on. For γ small, this behavior is even more marked

because c < n even for small n, so the fluctuations in efficency die out more slowly as n grows large.
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will serve the entire demand. To see this, note that in equilibrium the seller trades in each

round i at price qi(c, n) until all goods are sold, earning a payoff π(c, n) =
c
i=1 β

i−1qi(c, n)

for c ≤ n. As β → 1, we have qi(c, n) → 1 if c < n and qi(c, n) → γ if c = n, for all i.

Hence, the seller’s payoff is c if c < n, and otherwise is γn. Clearly only c ≥ n− 1 can be
optimal–intuitively, slicing off just one unit of demand is sufficient to induce Bertrand

competition among buyers–and so c = n− 1 when γn < n− 1.

4 Extensions: stochastic demand and multiple sellers

We have seen that with costless bargaining the seller serves every customer but, at most,

one. This is in contrast to the standard unit-inventory assumption in the multilateral

matching literature where there is no ex-ante commitment to prices and demand is ran-

dom; e.g., see [2, 9, 17, 20, 27, 32]. Would unit-capacity be chosen in equilibrium if we

augmented our model with random demand?

To provide an answer, let c be chosen before a random value n ∈ N = {0, 1, . . .} is
observed. Let n be distributed as a Poisson with parameter λ ∈ R+, i.e., mn :=

e−λλn
n!

is the probability that the seller is matched to n buyers, so λ = ∞
n=1mnn is expected

demand. This is the typical distribution function in symmetric directed search equilibrium

and in urn-ball matching with countable players. Given equilibrium bargained prices and

costless bargaining, β → 1, the payoff (expected profit) to a seller who picks c ∈ N is

π(c) = γλ+ ∞
n=c+1mn(c− nγ), (20)

i.e., in any trade the seller always gets the reservation price γ from at most c buyers,

and grabs the remaining surplus from exactly c buyers only if he realizes excess demand.9

Letting c =∞ denote the case of no capacity constraints, we have the following.

Lemma 13 Let demand be randomly distributed as a Poisson(λ) and let β → 1. If

γλ <
1−m0−m1
1−m0

, (21)

then c <∞ is optimal. In addition, if λ ≤ 1 and γ = 0, then c = 1 is optimal.
9We have π(c) = c

n=1mnπ(n, n) +
∞
n=c+1mnπ(c, n) = γ c

n=1mnn + c ∞
n=c+1mn, because

π(c, n) = c for c < n and γn otherwise, as β → 1. Use the definition of λ to get (20).
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The Lemma presents sufficient conditions for two results. Condition (21) tells us

that the seller will constrain capacity whenever the payoff from committing to serve any

demand, γλ, is smaller than the payoff from offering just one good, γλm0+(1−m0−m1).
This holds when a seller of weak bargaining skill does not anticipate high demand, i.e.,

γλ is small. By restricting capacity the seller improves his bargaining position but only

if extensive margin losses are unlikely, i.e., λ is not large. This leads to the second result,

γ = 0 and λ ≤ 1 is sufficient for c = 1 to be optimal. By continuity, this holds for some
γ > 0 and λ > 1 (and for even larger sets of parameters, if capacity were not costless).

For instance, fixing γ = 0.01, we find that the values λ = 1.5, 2.5, 3.5 are associated to

optimal capacities c = 1, 2, 5, respectively.

Intuitively, when buyers make take-it-or-leave-it offers, a seller who anticipates meeting

at most one buyer will simply store one good, hoping to get all surplus in case of multiple

visits. This second finding is especially interesting because some directed search literature

assumes sellers auction a single good at a reservation price equal to the price posted in a

pre-matching stage (which is zero in large markets, see [2, 20]). Hence, the analysis offers

a rationale for adopting single-unit auctions with a fixed reservation price when sellers

compete in posted prices but not in capacity .

What if sellers could compete in capacities? To explore this scenario consider a directed

search model with two buyers and two sellers, and three stages. Sellers simultaneously

announce and commit to a capacity, then buyers see capacities, simultaneously visit a

seller, and finally bargaining occurs.10 Consider symmetric subgame perfect equilibria,

when seller s = 1, 2 chooses cs = c ∈ {1, 2} and indifferent buyers identically randomize.
Fix c =(c1, c2). In the third stage, (13) and (15) define the payoffs u (cs, n) and π(cs, n)

when seller s offers cs goods to n buyers.11 In the second stage, let Us be expected utility

10Related work is the directed search models in [13], which studies how asymmetric information about

sellers’ initial inventory decisions affects price competition among sellers, and in [22], where firms compete

for workers by choosing to advertise up to two vacancies before workers move.
11Earlier payoffs are for c ≤ n but now we can have c > n. Excess capacity does not affect payoffs in a

match because buyers desire only one good. So we have u(c, n) = u(n, n) and π(c, n) = π (n, n) for c ≥ n.
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to a buyer who meets seller s, when the other buyer visits seller 1 with probability v. So

U1=(1− v)u (c1, 1) + vu (c1, 2)
U2= vu(c2, 1) + (1− v)u(c2, 2).

Consider U1. With probability 1 − v the buyer is alone with seller 1 and gets u (c1, 1);
else, he is not alone and he gets u (c1, 2) (U2 is similarly interpreted).

Under symmetry, indifferent buyers visits seller 1 with probability v = v(c), where

v (1, 2) = (1− β)v(2, 1) < v(1, 1) = v(2, 2) = 1
2 < v(2, 1) =

1
2−β . (22)

If capacities are identical, then buyers simply flip a coin, or else are less likely to visit the

low-capacity seller (the probability is zero only if β → 1). Indeed, the high-capacity seller

can serve all buyers but one must always wait in line, which implies a loss if β < 1.12

Consider stage one. Given c2 and v = v(c), the payoff to seller 1 from setting c1 is

W (c) = 2v (1− v)π (c1, 1) + v2π (c1, 2) . (23)

He earns π (c1, 1) with probability 2v(1− v) (when one buyer arrives), and earns π (c1, 2)
otherwise. The payoff to seller 2 is symmetric, so we have the following.

Lemma 14 For the game above, there are two pure strategy symmetric SPE where

c1 = c2 =

⎧⎨⎩ 2 for all γ ∈ [0, 1],
1 if γ < γ̄ ∈ (0, 1).

If γ < γ̄, then W (1, 1) > W (2, 2) and a mixed strategy equilibrium also exists.

To understand the result consider two extremes. Sellers who make take-it-or-leave it

offers (γ = 1) have no desire to limit capacity, as this cannot improve their bargaining

position. Hence, their dominant strategy is to fully exploit extensive margin gains and set

maximum capacity. Instead, when buyers make take-it-or-leave it offers (γ = 0), restrict-

ing capacity is strategically meaningful, so low-capacity equilibria also arise. Because the

12Symmetry and buyers’ indifference requires U1 = U2. From (15) we have u (2, 1) = u (1, 1) = β−α
β(1−α) ,

u (1, 2) = β−α
β(2−α) , and u (2, 2) = u (1, 2)

1−α+β
(1−α) , which we use to get (22).
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desire to limit capacity grows as γ falls, this equilibrium appears if γ is sufficiently small.

In this case, we have equilibrium multiplicity because the seller who deviates from high

capacity raises his expected price but loses demand to his competitor; for this game, such

an extensive-margin loss always dominates the intensive-margin gain. The low-capacity

outcome yields the highest payoff to sellers because expected demand is invariant to any

symmetric capacity choice c, but the price is higher when capacity is restricted. Numerical

experiments suggest that the basic findings hold in larger games.

5 Conclusion

We have studied equilibrium prices and trade volume in a market where n identical buyers

bargain with a seller who offers goods sequentially after choosing an inventory. Prices

emerge from a strategic process of multilateral bargaining that involves random alternating

offers. Bargaining equilibrium is unique, symmetric, stationary and efficient. However,

since the choice of capacity affects offers, equilibrium inefficiency may result because the

seller may choose to restrict capacity to obtain more favorable terms of trade. Hence,

disparities in bargaining leverage that penalize the seller give rise to a deadweight loss.

With infinitely quick bargaining rounds the equilibrium bargained prices converge to the

outcome of an auction with fixed reservation value γ. Hence, our model can be seen as

providing a tractable microfoundation for the use of auctions with fixed reservation values

in the equilibrium search literature of multilateral matches.
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Appendix A

Proof of Lemma 2. Consider bargaining over good i = 1, ..., c. The right hand side

of (3) is not a function of k and so qbk,i = q
b
i for all k ∈ Ai. This result jointly with the

definition of uk,i and (3) imply:

qsk,i = 1− β(1−γ)(1−qbi )
n−i+1−βγ − β2(n−i)

n−i+1−βγuk,i+1 (24)

Use backward induction on i. Start with i = c in which case uk,c+1 = uc+1 = 0 by

definition. Thus, we have qsk,c = q
s
c = 1 − β(1−γ)(1−qbc)

n−c+1−βγ for all k. For the induction step,

suppose qsk,i+1 = q
s
i+1 for some i < c− 1. Then, (3) implies uk,i+1 = ui+1 for all k ∈ Ai+1.

Therefore, using (24) we have qsi,k = q
s
i for all k ∈ Ai.

Having established that offers are symmetric, we have πi = γqsi + (1− γ)qbi . Thus, we

can use (3) to obtain (4) and (2). From (4) and symmetry, expression (24) gives us (5).

Finally, use (4)-(5) and the definitions of πi and uk,i to obtain (6)-(7).

Proof of Lemma 3. Start by defining

Φi (c, n) =
c
j=i β

j−i 1− α
β q
s
j (25)

Clearly, we have

Φi(c, n) = 1− α
β q
s
i + β c

j=i+1 β
j−(i+1) 1− α

β q
s
j

= 1− α
β q
s
i + βΦi+1(c, n).

(26)

We will omit the arguments, when understood.

From (6) recall that α
β q
s
j is the seller’s equilibrium expected surplus in round j > i of

bargaining. Thus 1− α
β q
s
i is the expected surplus to the buyer of good i and Φi+1 is the

expected future surplus to buyers, from the sales of goods i+ 1 through c.

To get (8) use backward induction on i. Let i = c. From (7) and uc+1 = 0 we have

uc =
1−α

β
qc

n−c+1 =
Φc

n−c+1 .
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For the induction step suppose ui+1 =
Φi+1
n−i holds for some i < c− 1. Inserting ui+1 into

(7), we obtain

ui =
1−α

β
qsi+βΦi+1

n−i+1 = Φi
n−i+1

because of (26). This gives us (8).

To find an expression of Φi (c, n) in terms of the parameters, we use backward induction

on i. Let i = c. Then, (25)

Φc(c, n) = 1− α
β q
s
c =

β−α
β

n−c+1
n−c+1−α ,

where we have substituted (5) with uc+1 = 0 for qsc . For the inductive step suppose that

for some i < c− 1 we have

Φi+1(c, n) =
β−α
β

c
j=i+1 β

j−(i+1)
j

m=i+1

n−m+1
n−m+1−α , (27)

where we notice that (β − α) ∈ (0, 1). From (26) we get

Φi(c, n) = 1− α
β q
s
i + βΦi+1(c, n)

= 1− α
β [
n−i+1−β
n−i+1−α − β2(n−i)

n−i+1−αui+1] + βΦi+1(c, n)

= 1− α(n−i+1−β)
β(n−i+1−α) +

αβΦi+1
n−i+1−α + βΦi+1(c, n)

= n−i+1
n−i+1−α [

β−α
β + βΦi+1(c, n)].

(28)

where in the second line we have used (5) and in the third we used (8). Inserting Φi+1

from (27) we obtain

Φi(c, n) =
β−α
β [ n−i+1

n−i+1−α +
n−i+1
n−i+1−αβ

c
j=i+1 β

j−(i+1)
j

m=i+1

n−m+1
n−m+1−α ],

which gives us (10).

To get qsi in terms of the parameters, plug (8) into (3), under symmetry. Note that
βΦi
n−i+1 ∈ (0, 1) for each i, since 0 < β − α < 1. Rearranging (9) and (10) we obtain (1).

Proof of Lemma 4

To prove uniqueness one should demonstrate that all SPE of this game must satisfy

stationarity and no-delay. This involves three steps following the method by [33], i.e.,
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showing that the supremum and infimum of the set of SPE payoffs coincide. Since the

proof is straightforward, but it is lengthy, it is included in a separate additional appendix.

Proof of Lemma 5. Consider (10). For all i ≤ c < c ≤ n we have

Φi (c , n) = β−α
β

c
j=i β

j−i
j

m=i

n−m+1
n−m+1−α

= β−α
β

c
j=i β

j−i
j

m=i

n−m+1
n−m+1−α +

β−α
β

c
j=c+1 β

j−i
j

m=i

n−m+1
n−m+1−α

> Φi (c, n)

In the second line we have used the definition of Φi (c, n). From (9) we have qi (c, n) =

1− βΦi(c,n)
n−i+1 . This implies that qi (c, n) > qi (c , n) for all i ≤ c < c ≤ n.
Now consider the effect of n. Let n > n ≥ c, then n −i+1

n −i+1−α < n−i+1
n−i+1−α for each

i ≤ c. Thus (10) implies Φi (c, n ) < Φi (c, n). From (9) we have qi (c, n ) > qi (c, n) for all

i = 1, ..., c.

Finally, let i = i+ j, n = n+ j and c = c+ j with j = 0, 1, .... Note that n −i +1
n −i +1−α =

n−i+1
n−i+1−α , n − i = n− i, and Φi (c , n ) = Φi (c, n), so (9) implies qi (c , n ) = qi (c, n) .

Proof of Lemma 6. We start by demonstrating that the function qi(c, n) is strictly

increasing in γ for every i = 1, ..., c. Use backward induction on i. Consider γ ∈ (0, 1).
Let i = c and demonstrate that ∂qc(c,n)

∂γ > 0. In equilibrium we have qsi = qi(c, n) from

Lemmas 2 and 3. Hence, use (24) with uc+1 = 0 to get

qc (c, n) =
n−c+1−β
n−c+1−α .

From (2) we have ∂α
∂γ > 0, so

∂qc(c,n)
∂γ > 0. For the inductive step suppose ∂qi+1(c,n)

∂γ > 0

for some i < c, and demonstrate that ∂qi(c,n)
∂γ > 0. Using (3) and (24) we can write

qi (c, n) =
(n−i+1)(1−β)
n−i+1−α + β(n−i)qi+1(c,n)

n−i+1−α . (29)

The first term increases with α, and so with γ. Using the inductive step, we see that

the second term increases with γ as well, thus the result. Since qbi = αqsi then every

equilibrium offer increases in γ.
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Proof of Lemma 7. Let c = 2, .., n. From the proof of Lemma 5 we see that {Φi(c, n)}nc=i
is a monotonically increasing positive sequence for all i = 1, .., c. From (10) we also see

that {Φi(c, n)}ci=1 is monotonically decreasing.
Define di+1 =

βΦi+1
n−(i+1)+1 − βΦi

n−i+1 and notice that qi+1 − qi = −di+1. Using (28) in the
proof of Lemma 3 we get

di+1 = − β−α
β(n−i) +Φi(1− β + 1−α

n−i ),

noting that n ≥ c ≥ i+ 1 since c = 2.
Notice that 1

n−i
c

i=1
is increasing and {Φi}ci=1 is decreasing. Therefore {di+1}c−1i=1 is

decreasing. Thus, if di+1 < 0 then we have dj < 0 for j > i. That is to say, if qi+1 > qi

then we have qj+1 > qj for all j ≥ i.
Most importantly, if d2 < 0 then di+1 < 0 for all i = 1, ..., c − 1. It is easy to find

conditions such that d2 < 0 (i.e., that q2 > q1). Substituting for Φi from (10) we get

di+1 =
β−α
β [− 1

n−i + (1− β + 1−α
n−i )

c
j=i β

j−i
j

m=i

n−m+1
n−m+1−α ].

Recall that α ∈ (0, 1) is independent of i and c, so di+1 increases with c. Thus, consider
c = 2 in which case we obtain

d2 =
β−α
β [− 1

n−1 + (1− β + 1−α
n−1 )

n
n−α(1 +

β(n−1)
n−1−α)].

It is easy to see that limn→∞ d2 < 0 since the second term in the square brackets converges

to a positive constant, as n grows large. Therefore, if n is sufficiently large and c is

sufficiently small, we have d2 < 0 and therefore di+1 < 0 for all i = 1, ..., c − 1, because
di+1 falls with i. That is, we need c

n sufficiently close to zero.

Now, consider i+ 1 = c, which is when di+1 is the smallest, so we have

dc =
β−α
β [− 1

n−c+1 + (1− β + 1−α
n−c+1)

c
j=c−1 β

j−i
j

m=i

n−m+1
n−m+1−α ].

We have established earlier that, for each i, di+1 increases as c grows from i + 1 to n.

Therefore consider c = n, so we have

dn =
β−α
β [−1 + (2− β − α) 2

2−α(1 +
β
1−α)] =

β−α
β [1 + 2β(1−β)

(2−α)(1−α) ] > 0.
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Since {di+1}c−1i=1 is a decreasing sequence, and di+1 increases in c, it follows that di+1 > 0

for all i = 1, .., c− 1, when c is sufficiently close to n. Therefore, we must have {qi}ci=1 is
a monotonically decreasing sequence when c is sufficiently close to n. That is to say, we

need c
n sufficiently close to one.

In between these extreme cases, there is a case when d2 > 0 but, since di+1 falls with i,

dc < 0. In this case, we have qi < 0 for i small and qi > 0 for i large. Our prior discussion

indicates that this will occur when c
n is between zero and one.

Proof of Theorem 8. From (1) we have

qi (c, n) = 1− β−α
n−i+1

c
j=i β

j−i
j

m=i

n−m+1
n−m+1−α ,

where β − α = β(1−γ)(1−β)
1−β(1−γ) since α = βγ

βγ+1−β . Define

f(β) := β−α
n−i+1

c
j=i β

j−i
j

m=i

n−m+1
n−m+1−α

= (β − α) c
j=i

βj−i
n−i+1

n−i+1
n−i+1−α × n−(i+1)+1

n−(i+1)+1−α × · · · × n−j+1
n−j+1−α .

1) Fix c < n. In f(β) we have n > j for all j ≤ c since c < n by assumption, so

lim
β→1

n−m+1
n−m+1−α =

n−m+1
n−m <∞ for m = i, . . . , j.

Therefore we have

lim
β→1

c
j=i β

j−i 1
n−i+1

n−i+1
n−i+1−α × n−i

n−(i+1)+1−α × · · · × n−j+1
n−j+1−α = c

j=i
1
n−j < 1

Note that lim
β→1

(β − α) = 0. So, lim
β→1

qi (c, n) = 1− lim
β→1

f(β) = 1− 0× c
j=i

1
n−j = 1.

2) Now fix c = n. Hence, n = j when j = c. So we write

f(β) = c−1
j=i

(β−α)βj−i
n−i+1

n−i+1
n−i+1−α × n−(i+1)+1

n−(i+1)+1−α × · · · × n−j+1
n−j+1−α

+ (β−α)βc−i
n−i+1

n−i+1
n−i+1−α × n−(i+1)+1

n−(i+1)+1−α × · · · × n−c+1
n−c+1−α .

(30)

Consider the limit as β → 1 of the right hand side in (30). As demonstrated above, the

first term converges to zero since n > c− 1. The limit of the second term, instead, is
lim
β→1

β−α
1−α × limβ→1

βc−i
n−i+1

n−i+1
n−i+1−α × n−i

n−(i+1)+1−α × · · · × n−(n−1)+1
n−(c−1)+1−α × (n− c+ 1)

= lim
β→1

β−α
1−α × 1 = lim

β→1
β(1− γ) = 1− γ
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since the product of the limits

1
n−i+1 × limβ→1

n−i+1
n−i+1−α × · · · × limβ→1

n−(n−1)+1
n−(c−1)+1−α × (n− c+ 1)

telescopes to 1 (the denominator of each fraction is equal to the numerator of the following

fraction). It follows that

lim
β→1

qi (c, n) = 1− lim
β→1

β−α
1−α = γ for all i = 1, . . . , c.

Proof of Lemma 11. Using Lemma 2 and expression (6), we have

π (c, n) = α
β

c
j=1 β

j−1qj (c, n) .

Consider (25) in the proof of Lemma 3. For i = 1 we have

Φ1 (c, n) =
c
j=1 β

j−1 1− α
β qj .

Therefore, we obtain (13). Now, for c = 1, 2, ..., n, define the function

ϕ (c, n) =
c

m=1

n−m+1
n−m+1−α .

Note that ϕ (c, n) increases in c and falls in n since for all n ≥ 2 and c = 2, ..., n we have

ϕ (c, n) > ϕ (c− 1, n) and ϕ (c, n) > ϕ (c, n+ 1) . (31)

The first inequality is proved by noticing that

ϕ (c, n) = ϕ (c− 1, n) n−c+1
n−c+1−α > ϕ (c− 1, n) .

The second inequality is obtained from observing that

ϕ (c, n) = ϕ (c, n+ 1) (n−c+1)(n+1−α)(n−c+1−α)(n+1) > ϕ (c, n+ 1) .

From (13) we have

π (c− 1, n) = c−1
j=1 β

j−1 −Φ1 (c− 1, n) . (32)
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Using (10) with i = 1, we have

Φ1 (c− 1, n) = β−α
β

c−1
j=1 β

j−1
j

m=1

n−m+1
n−m+1−α

= β−α
β

c
j=1 β

j−1
j

m=1

n−m+1
n−m+1−α − β−α

β βc−1
c

m=1

n−m+1
n−m+1−α

= Φ1 (c, n)− β−α
β βc−1ϕ (c, n) .

In the last step we have used (10) and ϕ (c, n) from (12). Inserting this into (32) gives

π (c− 1, n) = c
j=1 β

j−1 −Φ1 (c, n)− βc−1 + β−α
β βc−1ϕ (c, n)

= π (c, n)− βc−1 1− β−α
β ϕ (c, n)

In the second line we have used (13). This gives (14).

Recalling that u(c, n) = u1(c, n) is the payoff to a buyer, we use (8) to obtain (15).

Proof of Lemma 12. From (14) and the definition of ∆ (c, n) we obtain (17). Clearly,

∆ (1, n) = π (1, n) > 0 since π (0, n) = 0 and (18) is obvious.

To prove ∆ (c, n) is strictly decreasing in c note that βc−1 falls in c. From (31) in

the proof of Lemma 11 we have that ϕ (c, n) grows with c, thus [1− β−α
β ϕ (c, n)] falls in

c. Thus ∆ (c, n) > ∆(c + 1, n) for c = 1, ..., n − 1. We use (17)-(18) to prove that (11)
describes the set of maxima.

• First line of (11). If β
β−α < ϕ (2, n) , then ∆ (2, n) < 0 from (18). So, ∆ (c, n) <

∆ (2, n) < 0 for all c > 2, from (19). So, c = 1 is the unique maximizer of π(c, n).

• Second line of (11). If β
β−α = ϕ (c, n) for some c = 2, ..., n − 1, then ∆ (c, n) = 0

from (18). So, (19) implies that ∆ (c, n) > 0 for all c < c and ∆ (c, n) < 0 for all

c > c. Since π (c, n) = π (c− 1, n) then there are two maximizers, {c− 1, c}.

• Third line of (11). If ϕ (c, n) < β
β−α < ϕ (c+ 1, n), then ∆ (c+ 1, n) < 0 < ∆ (c, n),

from (18). Again, (19) implies that ∆ (c, n) > 0 for all c < c and ∆ (c, n) < 0 for all

c > c+ 1. Therefore, c = c is the unique maximizer of π(c, n).
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• Fourth line of (11). If β
β−α > ϕ (n, n), then ∆ (c, n) > ∆ (n, n) > 0 for all 1 ≤ c < n.

Therefore, c = n is the unique maximizer of π(c, n).

Proof of Lemma 13. The profit for an unconstrained seller is limc→∞ π(c) = γλ. This

is because c ∞
n=c+1mn <

∞
n=c+1mnn = λ− c

n=1mnn and limc→∞
∞
n=c+1mnn = 0.

So ∞
n=c+1mnc and

∞
n=c+1mnnγ vanish as c→∞.

Now, we prove that if (21) holds, then we have equilibrium capacity constraints. Let

(21) hold and, by means of contradiction, suppose the seller serves every buyer, for any

n, i.e., c =∞. From (20), this means that we must have ∞
n=c+1mn(c−nγ) ≤ 0 for all c.

To derive a contradiction let c = 1, so c ∞
n=c+1mn = 1−m0 −m1 = 1−m0(1 + λ) > 0

and γ ∞
n=c+1mnn = γ(λ −m1) = γλ(1 −m0) > 0, so that ∞

n=c+1mn(c − nγ) ≤ 0 is
rearranged as γλ ≥ 1−m0−m1

1−m0
, which gives the desired contradiction. There is a nonempty

set of γ values that satisfies (21) for all λ > 0, because 1−m0−m1
1−m0

∈ (0, 1) for all λ > 0.
To prove that c = 1 is optimal for λ ≤ 1 and γ = 0 it is sufficient to prove that

π (c+ 1) < π (c) for all c = 1, 2, . . . , given λ ≤ 1 and γ = 0. Fix γ = 0. So π (c) =

c n=c+1mn, hence π (c+ 1) < π (c) corresponds to 1
c n=c+2

mn
mc+1

< 1. Rearrange it as
∞
n=1

λn

c n
i=1(c+1+i)

< 1 and denote the LHS by A, which increases in λ and decreases in

c. So for λ ≤ 1 we have

A ≤
∞

n=1

1
c n

i=1(c+1+i)
≤

∞

n=1

1
n
i=1(2+i)

,

where in the first inequality we used λ = 1, and c = 1 in the second.

Now notice that because e = ∞
n=0

1
n! we can write

∞

n=1

1
n
i=1(2+i)

= 1
3 +

1
4·3 + . . . = 2

∞

n=3

1
n! = 2

∞

n=0

1
n! − 1

0! + 1 +
1
2 = 2e− 5 ∈ (0, 1).

Therefore, A ≤ 2e− 5 < 1, which completes the proof.

Proof of Lemma 14. For seller 1 we have π (1, 1) = π (2, 1) = α(1−β)
β(1−α) , π (1, 2) =

α(2−β)
β(2−α)

and π (2, 2) = π (2, 1) β(3−α)+2(1−α)2−α . Given (2), (22), and (23) we get

W (1, 1)= γ(2βγ−5β+6)
4(2−2β+βγ) , W (2, 2) =

γ[2βγ(1+β)+3(2+β)(1−β)]
4(2−2β+βγ) ,
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W (1, 2)= (1− β)W (2, 1) < W (2, 1) =
γ(6−7β+2βγ+β2)
(2−β)2(2−2β+βγ)

The payoff to seller 2 is symmetric. So we have the two by two game

c2 = 1 c2 = 2

c1 = 1 W (1, 1),W (1, 1) W (1, 2),W (2, 1)

c1 = 2 W (2, 1),W (1, 2) W (2, 2),W (2, 2)

We have W (1, 2) ≤ W (2, 2) for all β and γ. Hence, c1 = c2 = 2 is always a Nash

equilibrium. Also, W (1, 1) > W (2, 1) if and only if γ < γ̄, where γ̄ := 22β−5β2−16
2β(4−β)

uniquely solvesW (1, 1) =W (2, 1). Thus if γ < γ̄, then c1 = c2 = 1 is also an equilibrium,

hence two pure strategy equilibria coexist, but sellers prefer the low-capacity one because

W (1, 1) > W (2, 2) when γ < γ̄. Clearly, a mixed strategy equilibrium also exists; e.g.,

with β → 1, if η is the equilibrium probability to play c = 1, then η = γ
1
2
( 1
2
−γ) solves

ηW (1, 1)+(1−η)W (1, 2) = ηW (2, 1)+(1−η)W (2, 2). Clearly, η ∈ (0, 1) when γ < γ̄ = 1
6 .
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Figure 1 : Sale prices under different inventories 
 

 
 

Figure 2 : Optimal capacity when n=2 



 

 

 
Figure 3: Trading efficiency 
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