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Abstract

We construct a monetary economy with heterogeneity in discounting and consumption risk. Agents

can insure against this risk with money and nominal government bonds, but all trades must be mon-

etary. We demonstrate that a deflationary policy à la Friedman cannot sustain the constrained-

efficient allocation as no-arbitrage imposes too stringent a bound on the return money can pay.

The constrained-efficient allocation can be sustained when bonds have positive yields and, under

certain conditions, only if they are illiquid. Illiquidity, meaning that bonds cannot be transformed

into consumption as easily as cash, is necessary to eliminate arbitrage opportunities due to dis-

parities in shadow interest rates.
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1 Introduction

A considerable segment of theoretical monetary literature underscores the social desir-

ability of setting nominal interest rates to zero, a policy known as the Friedman rule.

The basic idea is that if impatient agents must do business with cash, then allocative

efficiency is achieved by simply eliminating the opportunity cost of saving with money. In

fact, zero-interest-rate policies are unusual, and in reality agents largely save with illiquid

assets that are sold for cash as consumption needs arise. Among these assets there are

highly illiquid government securities such as the U.S. Savings Bonds, of which about $200

billion were held in 2005.2

Our study is motivated by the desire to reconcile these observations. In particular,

we focus on two issues. If agents must do business with cash, should interest rates be set

to zero, and if not, what is the reason? And if interest rates should indeed be set above

zero, are there reasons for the government to issue illiquid securities? Of course, to study

these questions we need a theoretical framework where money has an explicit role. This

in turn implies frictions must be introduced, thus generating market incompleteness. For

this reason, we present a physical environment in the tradition of Townsend [21], where

money facilitates spot exchange on spatially separated markets that preclude borrowing

and lending. Specifically, random consumption needs motivate trade but the process of

market interactions is subject to frictions. As a first fundamental friction, a meeting

process is imposed that effectively renders trade partners complete strangers and severs

any durable links among them, as in [2]. A second basic friction concerns commitment and

enforcement limitations. Essentially, agents’ actions must be compatible with individual

incentives. Thus, trade must be quid pro quo and a sudden consumption shock generates

an immediate need for cash.

Because idiosyncratic trading shocks can lead to complicated distributions of money

balances (as in [7]), we draw from the preference and sequential market formulation pro-

posed by Lagos and Wright in [13] to achieve degeneracy in asset holdings. However, two

basic features set our model apart from such a monetary framework. First, agents need

not rely exclusively on cash to insure against consumption shocks. They can also acquire

government nominal bonds that cannot be directly exchanged for goods but can be liq-

uidated for cash if need be. Second, the model accounts for the possibility of a natural

2The figures are from the U.S. Treasury Department. The illiquidity of U.S. Savings Bonds is striking.

They are non-marketable registered securities, i.e., they are owned exclusively by the person(s) named

on them, ownership is non-transferable, they cannot be used as collateral, there are purchase ceilings and

minimum holding times, and there is a penalty for early redemption.
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form of heterogeneity, as agents are assumed to differ in their rate of time preference and

in their exposure to consumption risk.

We compare stationary monetary allocations in competitive equilibrium to the constrained-

efficient allocation. The latter is stationary and corresponds to the selection of a planner

bound by the physical and informational limitations that define the economy. Two results

emerge.

First, if bonds pay no interest (equivalently, if money is the only asset available) the

constrained-efficient allocation is unattainable. The reason is that when nominal interest

rates are set to zero, agents save with cash. Equilibrium deflation is bounded by the

lowest discount rate because, as in [4], giving cash a return exceeding the lowest shadow

interest rate generates arbitrage opportunities. Hence, impatient agents under-save with

cash, which impairs trading efficiency. Yet, because money in our model is essential to

execute trades, everyone holds some cash in equilibrium, unlike [4] where the most patient

agents hold the entire stock of assets (capital).

This first result complements a theoretical monetary literature that finds zero nominal

interest rates are generally optimal unless factors such as income shocks, as in [1], redis-

tributive issues, as in [5] or [10], distortionary taxes, as in [15] or trading externalities, as

in [17] are taken into account. Our work points out that shadow interest rates dispari-

ties are sufficient to blunt the effectiveness of a zero-interest-rate policy. Since existence

of such disparities is empirically well established (e.g., see [16]) our result suggests yet

one more reason why allocative efficiency cannot be achieved by simply eliminating the

opportunity cost of holding cash.

Second, we demonstrate that positive nominal interest rates can sustain the constrained-

efficient allocation under certain conditions, but only if the government issues bonds that

are sufficiently illiquid, i.e. bonds that cannot be turned into consumption as easily as

cash. This friction takes the form of a proportional fee for early redemption. If the gov-

ernment prices bonds correctly, agents fully insure against consumption shocks by holding

bonds that are sold for cash once consumption needs arise. In short, we need a friction

(illiquidity) to cure an inefficiency.

When is illiquidity a necessary friction? In our model this occurs when the most

patient agents are also those who trade more frequently. Illiquidity acts as a tax that

lowers the bonds’ expected return according to the anticipated incidence of consumption

shocks. Thus, illiquidity affects the bonds’ expected return unequally across agent types.

By selecting bond yield and illiquidity appropriately, the policy maker can manipulate the

expected rates of return to eliminate arbitrage opportunities while allowing every agent

2



to perfectly insure against consumption risk.

This second result complements recent theoretical research that rationalizes the social

desirability of illiquid securities as tools to overcome social or individual commitment

limitations. In the non-monetary economy described in [14] agents display dynamically

inconsistent preferences and so illiquid assets help agents to beneficially constrain their

own future choices. In the monetary economy laid out in [12], instead, agents value

initial consumption differently but cannot commit to a redistributive plan. Illiquid bonds

overcome this limitation by forcing their owners to postpone consumption. Finally, the

study in [18] takes a different angle and characterizes illiquidity of bonds as an endogenous

outcome linked to government restrictions on market trades. In our work bonds are

not commitment tools that force agents to postpone consumption. Instead, they are

assets designed to provide optimum consumption insurance when disparities in discounting

and consumption risk lead to self-insurance problems that cannot be mended by simply

eliminating the opportunity cost of holding cash.

2 The model

We describe a spatially separated economy in which money has an explicit medium of

exchange function and there is no role for private credit. The model builds on [2], [11],

[13] and [21]. Time is discrete, starts with date 1 and the horizon is infinite. There is a

populationX = N of heterogeneous infinitely-lived agents who want to consume perishable
goods and discount only even to odd dates. Thus, as in [13], we work with trading cycles

indexed by t = 1, 2, ... each including an odd and an even date. As in [21] there are

infinitely many spatially separated trading groups, each of which defines a competitive

market. On each date, every market includes infinitely many anonymous agents who have

never met before. Thus, in each trading cycle each agent visits two anonymous markets,

denoted ‘one’ in the odd date and ‘two’ in the even.

2.1 Trading groups

Trading groups are formed by a matching process that repeatedly partitions the popu-

lation into disjoint sets of agents, as formalized in [2] and [3]. On each date there is a

correspondence μ : X X that creates a partition X = ws∈SXs, with S an index set.
Here μ(x) = Xs ⊂ X identifies the trading group of agent x ∈ Xs, with Xs ∩Xs� = ∅ for
s 9= s�. Since X = N, it is possible to form infinitely many groups each with countably

many agents and an identical proportion of agents types. The matching process can then

be defined as an infinite deterministic sequence (μ1,μ2, . . .), where the set μτ (x) denotes
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the trading group or market to which agent x belongs on date τ = 1, 2, ....

Frictions exist that rule out the possibility of private credit, as in [21]. Precisely, agents

can trade only within their group (spatial separation) and can neither communicate nor

observe events in other groups (limited communication). In addition, agents ignore the

partition of the population and know neither identity, nor type, nor trading history of

others (anonymity). Finally, the matching process is such that agents neither meet the

same partners again nor meet agents with whom they have direct or indirect partners

in common. Equivalently, markets are formed by ‘complete strangers.’ This is a central

feature in several models of money, which we formalize following [11].

Denote by Gτ (x) the set of all direct and indirect partners of agent x up to date τ . It

contains all of x’s past and current partners, the past partners of x’s current partners, the

partners that x’s partners in τ−1 met prior to that date, and so on. If we let G0(x) = {x}
then for τ = 1, 2, . . . define recursively

Gτ (x) = Gτ−1(x) ∪ [∪y∈μτ (x)Gτ−1(y)].

Traders are complete strangers when (μ1,μ2, . . .) is such that for all τ and all y ∈ μτ (x) :

Gτ−1(x)∩Gτ−1(y) = ∅. (1)

A technique to construct trading groups satisfying (1) is analyzed in [2] and [3].3

2.2 Preferences and technologies

Dates differ in terms of agents’ preferences and economic activities, as in [13]. Odd dates

are characterized by idiosyncratic trading risk as an arbitrary agent either works but does

not wish to consume, or consumes but cannot work, or is idle, i.e., he neither wishes to

consume nor is able to work. Everyone can work and consume on even dates.

Agents are heterogeneous. We assume two types of agents denoted by j = H,L in

proportion ρ and 1− ρ. These agents differ in two dimensions. First, the discount factors

βj satisfy 0 < βL < βH < 1, so we refer to agents L as impatient and agents H as

patient. Second, agents draw different i.i.d. trading shocks at the start of each odd date.

Specifically, an agent of type j is idle with probability 1 − αj , where 0 < αL < αH ≤ 1.
3The procedure consists of three steps. Start by partitioning the population into countably many sets

of identical cardinality. Based on this partition, construct partitions recursively for each date. Finally,

build trading groups out of these partitions insuring that no pair of agents is ever in the same group.

Notice that the matching scheme in [21] does not satisfy (1). The same applies to [13], because the entire

population regularly meets in the centralized market. See [3] for more details.
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Those who are not idle either wish to consume or are able to produce, states that are

assumed to be equally likely and mutually exclusive. Hence, on odd dates each agent

faces idiosyncratic consumption risk, but patient agents are more active traders. On even

dates everyone can produce and consume. Thus, while only ραH + (1 − ρ)αL of the

population trades on odd dates, everyone trades on even dates and there is always an

equal number of buyers and sellers in each market.

On each date, a single perishable good can be produced. Sellers can supply any positive

amount of labor and can access a technology that transforms each unit of labor into one

unit of consumption goods. As in [13], it is assumed that preferences on even dates are

quasilinear U(qj)−xj for every agent type j. The first term denotes the utility from qj ≥ 0
consumption and the second term is disutility from supplying xj ≥ 0 labor. Odd date
preferences are as follows. A consumer of any type j derives utility u(cj) from consuming

cj ≥ 0 of someone else’s production. A producer of any type j suffers yj disutility from
supplying yj ≥ 0 labor to produce yj goods. The functions u and U satisfy the standard

Inada conditions and u (0) = U (0) = 0. Also, let c∗ be the solution to u�(c∗) = 1 and let
q∗ be the solution to U �(q∗) = 1.

As is standard in monetary models, we assume limited enforcement and limited com-

mitment. This simply means that agents have exclusive rights to their assets and endow-

ments, and their actions cannot be subject to retribution, so that trading plans must be

compatible with individual incentives. This together with the market frictions assumed

above implies an essential role for money (see [8], [11]) since on odd dates trade is quid pro

quo but consumers cannot produce. Thus, a consumption shock on odd dates corresponds

to a need for currency.

2.3 Assets and policy tools

We assume a government exists that is the sole supplier of fiat currency, of which there

is an initial stock M̄ > 0. We let the money stock evolve deterministically at gross rate

π by means of lump-sum cash transfers at the beginning of even dates. The government

also buys and sells nominal pure-discount bonds having two distinctive features similar to

U.S. Savings Bonds. First, they are non-marketable claims to currency redeemable only

by their owner.4 To formalize it, we assume bonds are intangible and non-transferable,

ownership of which is recorded by the government. The government knows neither identity,

nor type, nor trading history of agents and can credibly commit to repayment since it can

4U.S. Savings Bonds can be traded only by issuing and paying agents authorized by the U.S. Treasury.
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print currency.5

Second, bonds are illiquid in that early redemption may come at a cost and cannot

involve fractions of the asset. As we will see later, this insures agents do not make a

speculative use of bonds and use them to self-insure against consumption risk. Specifically,

bonds are issued at the end of even dates at price pA ≤ 1 and mature the following cycle
at the beginning of even dates paying off one unit of money. Unmatured bonds can be

redeemed for p� ≤ 1 money by traders at the beginning of odd dates after individual

shocks have been realized. Hence, p� naturally captures the notion of illiquidity as the

cost of immediate execution of a trade: 1− p� is lost to convert a bond into cash at the
start of a trading cycle.

3 Efficient allocations

We start by discussing the allocation selected by a benevolent planner who maximizes

the agents’ lifetime utilities treating agents identically. Because the physical environment

displays a set of obstacles to economic interactions, two cases arise that differ in the

constraints faced by the planner.

In the first case, the planner is unconstrained by the physical and informational limi-

tations assumed to be in existence. In particular, this means that the planner can observe

types and identities and commit to and enforce a consumption plan on the initial date. The

solution to this unconstrained planning problem delivers the ‘first-best’ allocation and,

because agents differ in their discount factors, implies non-stationary type-specific con-

sumption paths. Indeed, impatient agents front-load consumption, while patient agents

do the opposite (for a discussion, see [9]). It is obvious that such an allocation cannot be

decentralized, as the frictions assumed prevent borrowing and lending.

In the second case, the planner is subject to the same physical and informational con-

straints faced by the agents and therefore can observe neither types nor identities. So,

the planner can just propose a type-independent consumption plan in each trading cycle

5The government is an inanimate entity that interacts with agents in each date. Its role is to issue

and redeem bonds and to implement lump-sum monetary transfers. This typical abstraction is used to

introduce policy in monetary models with spatial separation (e.g., [21] or [12]), random matching and

divisible money (e.g., [13], [17], [18]) as well as other models (e.g., [5], [10]). Note that we do not assume

special powers for the government as it does not need to know agents’ identities to sell and redeem bonds.

Agents can select an arbitrary ID to buy bonds and use it to redeem them. The government’s record-

keeping technology can be as simple as making the agent sign his arbitrary ID on the money spent to buy

the bond. Signatures are compared at redemption and then erased. This destroys all records and ensures

the payoff can be claimed only by the agent who purchased the bond.
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without having the ability to transfer resources across agents over time. Equivalently,

the planner maximizes expected utility of the arbitrary agent on each date. The solu-

tion to such a sequence of static problems is called a constrained-efficient allocation. It

corresponds to the outcome arising in each market if traders can coordinate and commit

to a plan ex-ante, before realizing their individual shocks. Since agents have identical

preferences ex-ante, then the constrained-efficient allocation maximizes trade surplus in

each market. Precisely, since the marginal rate of transformation of labor into consump-

tion is one, then marginal consumption utility must simply equal marginal production

disutility in each market, i.e., on odd dates u�(cH) = u�(cL) = 1 and on even dates

U �(qH) = U �(qL) = 1. Thus, the constrained-efficient consumption is stationary across

trading cycles and is defined uniquely by cj = c∗ and qj = q∗ for each type j = H,L

(details in the Appendix). This allocation is the relevant benchmark for our purposes,

and we simply call it efficient, when no confusion arises. Indeed, a sensible notion of

efficiency must take into account existing physical and informational limitations.

4 Stationary monetary allocations

Now, we investigate if the constrained-efficient allocation can be decentralized by means

of monetary exchange on competitive markets. Thus, we focus on stationary monetary

outcomes such that consumption is unaffected by the trading cycle and nominal prices

evolve so that the money stock has constant real value.6

Due to stationarity, we simplify notation omitting t subscripts and use a prime su-

perscript to identify next-cycle variables, when necessary. Accordingly, we let p1 and p2
denote the nominal price of goods on odd and even dates of an arbitrary trading cycle

t. In addition, we find it convenient to work with real variables normalizing all nominal

variables by p2, so that market one trades occur at real price p =
p1
p2
. In this manner, the

timing of events during cycle t for an agent of type j can be discussed as follows.

The arbitrary agent of type j enters cycle t with portfolio ωj = (mj , aj) listing real

holdings of money mj ≥ 0 and bonds aj ≥ 0, carried over from the preceding cycle. Then,
the idiosyncratic trading shock is realized and the agent can choose to liquidate bonds.

Subsequently, trade occurs and after market one closes the agent enters market two on

the even date with portfolio ωj,k = (mj,k, aj,k) where k = n, s, b denotes the trading shock

6Any monetary outcome that is non-stationary must be constrained inefficient. Indeed, suppose it is

not. Then, someone should be able to consume more or work less, on some date, without affecting anyone.

But this is impossible since the constrained-efficient allocation satisfies aggregate feasibility constraints

with equality. Thus, every non-stationary monetary allocation must be constrained inefficient.
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experienced in market one. Here, n identifies an agent who was idle, while b and s identify

a buyer and a seller, respectively.

To clarify how portfolios ωj,k evolve, notice that aj,k ∈ {0, aj} since by assumption
early liquidation must involve the entire stock of bonds, where aj,k = 0 corresponds to

liquidation. We work under the conjecture that early liquidation occurs only if cash is

needed to buy consumption, i.e., aj,s = aj,n = aj (the proof is provided later). Thus, if we

let cj denote consumption and yj production of type j on an odd date, money holdings

evolve within the cycle as follows:

mj,b = mj + p�(aj − aj,b)− pcj
mj,s = mj + pyj

mj,n = mj .

(2)

That is, buyers deplete balances by pcj while sellers increase them by pyj . Cash left over

is used to trade in market two, when the real price is one, qj is consumption bought and

xj,k is production sold by an agent who experienced shock k (the notation qj is without

loss in generality, as we later show). In market two, agents also choose their savings. Let

m�j ≥ 0 and a�j ≥ 0 denote the real values of the agent’s money and bond holdings at the
start of next trading cycle (multiply by p�2 or

p�2
p2
to get the current nominal or real values).

In a stationary economy real asset holdings must be constant, i.e., (m�j , a
�
j) = (mj , aj).

If M is cash at the start of a cycle and M � = πM is cash available in market two, then

p�2
p2
=
M �

M
= π, (3)

i.e., in a stationary economy aggregate real balances are constant so the inflation rate

equals the rate of growth of money. This rate is controlled by means of per capita lump-

sum transfers τ in market two, so the government budget constraint is

τ + ρaH + (1− ρ)aL = (1− p�)[ραH(aH−aH,b)
2 + (1− ρ)

αL(aL−aL,b)
2 ]

+pAπ[ρaH + (1− ρ)aL] + [ρmH + (1− ρ)mL](π − 1).
(4)

The left hand side collects outflows of real balances due to transfers and bonds’ redemp-

tion. The right hand side accounts for inflows due to early redemption fees and bond sales

(spend pAπ today to have one real bond in the next trading cycle).

Stationarity also implies that in each trading cycle

Mπ
p2
= τ + ρ[mH + aH − αH

2 (1− p�)(aH − aH,b)]
+(1− ρ)[mL + aL − αL

2 (1− p�)(aL − aL,b)],
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i.e., real balances available in market two must equal transfers τ , plus initial money

holdings mj , plus net money inflows from redemption of bonds aj − αj
2 (1− p�)(aj − aj,b).

4.1 Even dates

Given the recursive nature of the problem, we use a dynamic programming approach to

describe the problem faced by the representative agent of type j at any date. We let

Vj(ωj) be the expected lifetime utility of this agent when he starts the trading cycle with

ωj , before trading shocks are realized. We also letWj(ωj,k) be the expected lifetime utility

from entering an even date with ωj,k.7

The agent’s problem at the start of an even date is:

Wj(ωj,k) = max
qj ,xj,k,ω

�
j≥0

[U(qj)− xj,k + βjVj(ω
�
j)]

s.t. xj,k = qj + π(m�j + pAa
�
j)− (mj,k + aj,k + τ)

(5)

The resources available to the agent in market two partly depend on the realization

of the trading shock k, as he has mj,k real balances carried over from market one and

aj,k receipts from matured bonds. Other resources are xj,k receipts from current sales

of goods and the lump-sum real balances transfer τ .8 These resources can be used to

finance current consumption qj , to buy πa�j bonds at price pA, or simply to carry πm�j
real money balances into tomorrow’s markets (short-selling is not allowed). The factor

π =
p�2
p2
multiplies a�j and m

�
j because the budget constraint lists current real values.

Notice that the composition of savings depends on expected rates of return on cash

and bonds since agents can save only with money or bonds and cannot lend to each other.

In particular, the most patient cannot lend to the less patient because the structure of

the environment severs all future direct and indirect links among current trade partners.

Substituting xj,k from the real resource constraint, (5) is rearranged as:

Wj(ωj,k) = max
qj ,ω�j≥0

{U(qj)− qj − π(m�j + pAa
�
j) +mj,k + aj,k + τ + βjVj(ω

�
j)} (6)

It follows that in a stationary monetary economy

∂Wj(ωj,k)

∂mj,k
=

∂Wj(ωj,k)

∂aj,k
= 1 for j = H,L. (7)

The result hinges on the linearity of production disutility and the use of competitive

pricing, linear in the quantity sold. It follows that the marginal value of any asset must
7 It can be proved that these value functions exist and are unique using Banach’s fixed point theorem.
8Notice that xj,k ≥ 0 so we must verify that this is true for all k in equilibrium.

9



simply reflect the price of real balances, which is one. The economic implication is the

marginal valuations of real balances and bonds in market two are identical and do not

hinge on the agent’s type j, wealth ωj,k or trade shock k.

The model allows us to disentangle the agents’ portfolio choices from their trading

histories since

Wj(ωj,k) = Wj(0) +mj,k + aj,k, (8)

i.e., the agent’s expected value from having portfolio ωj,k at the start of an even date is

the expected value from having no wealth Wj(0), letting ωj = (0, 0) ≡ 0, plus the current
real value of wealthmj,k+aj,k. This implies agents of identical type exit an even date with

identical portfolios ω�j , independent of their trading histories, much as in [13]. However,
different types might choose different portfolios, as we demonstrate next.

Start by observing that by (6) we have

qj = q
∗ for j = H,L. (9)

That is, everyone consumes the same amount q∗ independent of his asset holdings. The
reason is agents in market two can produce any amount at constant marginal cost. Thus

goods market clearing on even dates requires

q∗ = (1− ρ)[αL2 (xL,s + xL,b) + (1− αL)xL,n]

+ρ[αH2 (xH,s + xH,b) + (1− αH)xH,n].
(10)

Given (9) we write

Wj(ωj,k) = U(q
∗)− q∗ +mj,k + aj,k + τ+ max

ω�j≥0
[−π(m�j + pAa�j) + βjVj(ω

�
j)].

The central implication is the agents’ lifetime utility and the efficiency of the decentralized

monetary solution will hinge on the trades that take place in market one. Since these

depend on the availability and the liquidity of financial resources, then we expect that

efficiency will impinge on the agents’ portfolio decisions ω�j . This is studied next.
Let λaj ≥ 0 and λmj ≥ 0 denote the Kuhn-Tucker multipliers on the non-negativity

constraint on bonds and money holdings. The first order conditions from the optimal

portfolio choice are

π = βj
∂Vj(ω�j)
∂m�j

+ λmj

pAπ = βj
∂Vj(ω�j)
∂a�j

+ λaj

⇒
⇒

1 ≥ βj
π ×

∂Vj(ω�j)
∂m�j

pA ≥ βj
π ×

∂Vj(ω�j)
∂a�j

(= if m�j > 0)

(= if a�j > 0).
(11)
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Recalling that one unit of real balances buys one unit of consumption, the left hand sides

of the expressions simply define the marginal cost of assets. The right hand sides define

the expected marginal benefit from holding the asset, either money or bonds, discounted

according to time preferences and inflation. The weak inequalities reflect the optimality

requirement that the expected benefit from buying an asset cannot surpass its current

cost. It is important to realize that the benefit from holding an asset in this model hinges

not only on the asset’s yield but also on its illiquidity, i.e., the loss from converting it into

immediate cash. Indeed, since agents differ in their frequency of consumption shocks, it

follows that the expected benefit of holding any asset will generally differ across types j.

To see how, we must study trades on odd dates.

4.2 Odd dates

The problem faced by an arbitrary agent of type j who starts a trading cycle with ωj is:

Vj(ωj) =
αj
2 max
cj ,aj,b

[u(cj) +Wj(ωj,b)] +
αj
2 max
yj ,aj,s

[Wj(ωj,s)− yj ]

+(1− αj) max
aj,n

Wj(ωj,n)

s.t. pcj ≤ mj + p�(aj − aj,b) and aj,k ∈ {0, aj}

(12)

The agent maximizes his expected lifetime utility by choosing consumption cj ≥ 0 as
a buyer and production yj ≥ 0 as a seller. Agents can also choose to liquidate their bonds
early by solving a discrete choice problem. Note that such a choice is relevant only for

buyers becauseWj(ωj,k)|aj,k=0 ≤Wj(ωj,k)|aj,k=aj for all k since p� ≤ 1 (see (8)). It follows
that it is optimal to set:

aj,s = aj,n = aj (13)

From (12) we see that consumption cj hinges on the available cash mj , the liquidation

value p�aj of bonds, and the relative price p. We start by discussing the latter. To do so,

consider a seller’s problem:

max[
yj

Wj(ωj,s)− yj ]

Given (2), (8), and (13), the seller’s problem is linear in yj since

Wj(ωj,s) =Wj(0) +mj + pyj + aj .

Hence, the optimal choice yj is a correspondence. Precisely, positive and finite work effort

can arise only if prices in market one and two are identical, i.e.,

p = 1. (14)

11



The reason is that sellers have unit marginal disutility from production in any market.

Income raised in market one at price p1 can be spent in market two at price p2. Thus,

market one sellers work infinite amounts if p1p2 > 1, or not at all if
p1
p2
< 1. When p = 1

sellers are indifferent to supplying any amount. Thus, in a stationary monetary economy

(14) must hold in which case, without loss in generality, we work under the conjecture that

sellers serve an equal share of aggregate demand. Goods market clearing then implies:

yj = y =
ραHcH+(1−ρ)αLcL

ραH+(1−ρ)αL for j = H,L (15)

Now we determine cj . Given some choice aj,b, a buyer’s problem is:

max
cj≥0

u(cj) +Wj(ωj,b)

s.t. cj ≤ mj + p�(aj − aj,b)

Let λj ≥ 0 be the Kuhn-Tucker multiplier on the resource constraint. Since u�(0) =∞ we

have cj > 0. Recall from (2) that mj,b depends on cj . Hence, the first-order condition is

u�(cj) +
∂Wj(ωj,b)
∂mj,b

∂mj,b

∂cj
− λj = 0.

Using (7), ∂mj,b

∂cj
= −p from (2), and (14), we have u�(cj) = 1 + λj .

If λj = 0, then cj = c∗ since u�(cj) = 1. Otherwise, cj < c∗. Thus we have:

cj = min(mj + p�(aj − aj,b), c∗) (16)

If we definem∗ = c∗, then liquidating bonds before maturity makes sense only ifmj < m∗.
Hence, we say that a buyer of type j is cash constrained if mj+p�(aj−aj,b) < m∗. As for
the liquidation choice, in what follows we focus on outcomes where aj,b = 0 is optimal. To

better understand when early liquidation is optimal for a buyer, we need to study savings

decisions.

4.3 Savings decisions

To find the optimal portfolio of an agent we must calculate the expected marginal values

of each asset, ∂Vj(ωj)
∂mj

and ∂Vj(ωj)
∂aj

. To do so, use (2) and (8) in Vj(ωj). Given a liquidation

choice aj,b ∈ {0, aj}, we have

Vj(ωj) = mj + aj +
αj
2 [u(cj)− cj − (aj − aj,b)(1− p�)] +Wj(0), (17)

where cj satisfies (16) and mj satisfies (2).

12



Expression (17) tells us that the expected lifetime utility at the start of an arbitrary

trading cycle depends on the agent’s real wealth mj + aj and two additional elements.

First, the expected utility from trade in market one. With probability αj
2 the agent spends

cj of his wealth on consumption and gets net utility u(cj)−cj . If a buyer liquidates bonds,
we have aj,b = 0 and must account for the capital loss aj(1 − p�). Second, there is the
continuation payoff Wj(0). Hence, we have

∂Vj(ωj)
∂mj

= 1 +
αj
2 [u

�(cj)− 1] ∂cj∂mj
,

where ∂cj
∂mj

= 1 if the agent is cash constrained and zero otherwise, from (16). It follows

that:
∂Vj(ωj)
∂mj

=

+
1 +

αj
2 [u

�(cj)− 1] if mj + p�(aj − aj,b) < m∗
1 otherwise.

(18)

Furthermore,

∂Vj(ωj)
∂aj

= 1 +
αj
2 [u

�(cj)− 1] ∂cj∂aj
− αj

2 (1− p�)(1−
∂aj,b
∂aj

),

so the bond’s marginal value depends on its intended use. If the agent uses bonds to

finance market one consumption, then ∂cj
∂aj

= p�(1 − ∂aj,b
∂aj

)̇,
∂aj,b
∂aj

= 0 and ∂cj
∂aj

= p�.

Instead, if bonds are never liquidated, i.e., aj,b = aj , then we have
∂aj,b
∂aj

= 1 and ∂cj
∂aj

= 0.

It follows that:

∂Vj(ωj)

∂aj
=

⎧⎪⎪⎨⎪⎪⎩
1 +

αj
2 [p�u

�(cj)− 1] if aj,b = 0 and mj + p�aj < m
∗

1 +
αj
2 (p� − 1) if aj,b = 0 and mj + p�aj ≥ m∗

1 if aj,b = aj

(19)

The bond’s marginal value always reflects the price of real balances, which is equal to

one. If bonds are liquidated to finance consumption (first line) this value is adjusted by
αj
2 [p�u

�(cj) − 1], i.e., the expected value from having p� additional cash ready to spend.

This term is likely to be positive when cash constraints are severe since there is a large

marginal benefit from buying extra consumption. Of course, if the agent is not cash

constrained (second line), the early cashing of bonds generates a capital loss 1 − p� and
no benefit. This loss is absent if bonds are not liquidated (third line).

The central observation is that illiquid bonds are valued dissimilarly in the economy.

Indeed, the heterogeneity in consumption risk, governed by αj , induces heterogeneity in

expected rates of return. To see why, observe that the gross nominal yield for money is

equal to one and for bonds is

1 + i =
1

pA
.

13



Now, consider nominal rates of return. The return on money is always the yield but

the return on illiquid bonds is the yield only if they are held until maturity. Indeed,

early redemption implies a capital loss and so the expected nominal rate of return is type

dependent, as for a type j we have

1

pA
[1− αj

2
(1− p�)].

In short, 1−p� acts as a proportional tax on liquidation and so it affects expected returns
dissimilarly across agents who have unequal consumption frequencies.

Of course, if assets finance consumption in market one we must also account for mar-

ginal consumption utility. Using (3), (11) and (18)-(19), the agents’ optimal portfolio

choices must satisfy:

1 ≥ βj
π

�
1 +

αj
2 [u

�(cj)− 1]
�

(= if mj > 0)

1 ≥ βj
πpA

�
1 +

αj
2 [p�u

�(cj)− 1]
�

(= if aj > 0 and aj,b = 0)

1 ≥ βj
πpA

(= if aj > 0 and aj,b = aj)

(20)

i.e., the marginal cost must be no less than the discounted expected marginal benefit.

The expressions in (20) indicate that the composition of portfolios depends on the real

interest rate and on the bonds’ illiquidity. For instance, bonds are not superior to money

if i = 0. What is crucial, however, is that the policy parameters i and π affect everyone’s

returns identically, but the bonds’ illiquidity does not. To see why this is the case, we

look in detail at the different expressions in (20).

The first line refers to the choice of real balances, the second and the third lines

refer to the choice of bonds under early liquidation or not. The first line tells us that in

choosing real balances the agent evaluates three components. The first and the second

are standard: the discount factor βj and the real yield on cash
1
π . The third component,

which is non-standard, is αj
2 [u

�(cj) − 1], a non-negative value since u�(cj) ≥ 1 from (16).

This can be interpreted as the expected liquidity premium from having cash available in

market one and it arises because money is needed to trade in that market. This premium

grows with the severity of the cash constraint and the likelihood of a consumption shock.

A similar interpretation applies to the choice of bonds, with two key differences. First,

bonds have a possibly higher real yield 1
πpA

. Second, if illiquid bonds are used to buy

consumption (second line) they have a smaller liquidity premium αj
2 [p�u

�(cj)− 1] relative
to cash. Agents consider this trade-off between bonds’ illiquidity and superior return in

choosing their portfolios. The third line in (20) instead must be considered when buyers
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hold bonds until maturity, which is relevant only ifmj > 0. Indeed, ifmj = 0, then setting

aj,b = aj violates the first line in (20) because cj = 0 implies u�(0) = ∞. In any event,
in what follows we concentrate on outcomes where aj,b = 0, which can be optimal only if

the agent is cash constrained.9

To conclude this section, we discuss money market clearing in a stationary outcome.

Note that, unlike some models of money, our agents are not forced to insure against

consumption shocks solely with money as they can also use bonds. Indeed, (5) indicates

that real savings of type j are π(m�j + pAa�j) with (m�j , a�j) = (mj , aj) in a stationary

outcome. Thus, the money market clears if at the end of each trading cycle aggregate real

savings equal the real money stock Mπ
p2
, i.e.,

Mπ

p2
= ρπ(mH + pAaH) + (1− ρ)π(mL + pAaL). (21)

We can now provide a definition of equilibrium.

Definition 1 Given an initial money stock M̄ > 0 and a government policy as specified

by (π, τ , pA, p�), a competitive stationary monetary equilibrium is a constant list of real

quantities (cj , yj , qj , xj,k,mj , aj , aj,k) and cycle-dependent prices (p1,t, p2,t) that solve the

agents’ problems (5) and (12), satisfy (14), the government budget constraint (4) and

market clearing (10), (15), (21).

Summing up, policy shapes economic outcomes in our model by affecting the expected

returns of the different assets, which in turn influence agents’ portfolio choices. These

choices determine the cash available to each agent type in market one. Ultimately, this

affects the agent’s ability to consume and therefore the efficiency of the allocation.

5 The failure of the Friedman rule

A natural question, at this point, is whether the constrained optimum can be achieved

simply by eliminating the opportunity cost of holding money. Indeed, as noted in the

introduction, a common result in monetary theory is that setting i = 0, known as the

9 If mj > 0, use (17) to note that a constrained buyer’s liquidation problem is maxaj,b∈{0,aj}[u(cj) −
cj − (aj − aj,b)(1− p�)]. Thus, aj,b = 0 is optimal if u(mj + p�aj)− u(mj) > aj . It should be now clear

why not permitting liquidation of fractions of bond holdings is important to achieve efficiency. If buyers

can liquidate a fraction θ of bonds then in the problem above aj,b = (1 − θ)aj and so θ < 1 is optimal.

Intuitively, keeping some bonds and buying slightly below c∗ generates a loss in consumption utility that

is smaller than the gain from avoiding liquidation fees, u�(c∗) ≤ 1
p
. Prohibiting partial liquidation implies

that in the optimum bonds are held to insure against consumption risk and not for speculative purposes.
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Friedman rule, allows to achieve efficiency. To answer this question we move in steps and

start by determining the highest return on money that is consistent with equilibrium.

Lemma 2 In any stationary monetary equilibrium we must have π ≥ βH .

Proof. By way of contradiction, suppose a monetary equilibrium exists with π < βH .

Consider j = H in the first line of (20). We need π ≥ βH+βH
αH
2 [u

� (cH)−1] ≥ βH . This

is in contradiction with π < βH .

The lesson here is that the rate of return on money 1
π cannot be excessive in a stationary

monetary equilibrium. Precisely, the upper bound for the return on money corresponds

to the lowest pure rate of time preference 1
βH
, i.e., the shadow interest rate. Intuitively,

if 1π >
1
βH

then cash pays such a good return that a patient agent would want to keep

accumulating money, which cannot be a stationary equilibrium.10

The implication is policy makers are constrained in their ability to give cash a return

that is sufficiently attractive for everyone. Thus, inefficiencies are to be expected when

saving can only take the form of cash. To formalize this intuition we remove the incentives

to save with bonds by setting i = 0, running the Friedman rule.11 Thus, we now ask the

question: is there any π ≥ βH that sustains the constrained-efficient allocation when

i = 0?

Lemma 3 Consider i = 0 and π > βH . A unique stationary monetary equilibrium exists

and money holdings are heterogeneous, 0 < mL < mH < m∗. As π → βH we have

cH → c∗ but cL < c∗. The allocation is inefficient for all π ≥ βH .

Proof. Let pA = 1 so i = 0. From (20) we get:

π ≥ βj
�
1 +

αj
2 [u

�(cj)− 1]
�

(= if mj > 0)

π ≥ βj
�
1 +

αj
2 [u

�(cj)p� − 1]
�

(= if aj > 0 and aj,b = 0)
(22)

Bonds and money are equivalent assets only if p� = 1, and bonds are inferior otherwise.

Thus, suppose p� = 1 and simply consider money.

10This is in line with the finding in [4] where heterogeneous agents trade a fixed stock of capital, but

there is no money. There, too, the steady-state equilibrium rate of return on capital cannot exceed the

lowest rate of time preference.
11 In a representative agent model setting i = 0 requires a deflation equal to the real interest rate, i.e.

the unique discount factor. In our model we have more than one discount factor, but we have established

that π cannot fall below βH .
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Note that π ≥ βH is necessary from Lemma 2. From (22), if mH > 0 then

π = βH
�
1 + αH

2 [u
� (cH)− 1]

�
.

If π > βH then cH < c∗ and mH < m∗. As π →+ βH then cH → c∗ and mH → m∗.
Thus, suppose π = βH . Now, mL > 0 implies

π = βL
�
1 + αL

2 [u
� (cL)− 1]

�
= βH .

Since βL < βH , it follows that cL < c∗ and mL < m∗. Hence, if i = 0 then a unique

stationary monetary equilibrium exists in which 0 < mL < mH < m∗ and 0 < cL <

cH < c
∗. In equilibrium limπ→+βH

mH = m
∗, so limπ→+βH

cH = c
∗; also, ∂cL

∂π < 0. Thus,

the Friedman rule cannot achieve the efficient allocation. Existence easily follows from

inspection of the individual optimality and market clearing conditions.

What is the intuition? When i = 0 effectively we have a model where agents insure

against consumption shocks only with money. Due to discounting disparities, equilibrium

returns must obey the optimality condition π ≥ βH , so the more impatient tend to under-

insure. This leaves them cash constrained in market one, which creates an inefficiency. Of

course, letting π → βH allows the more patient agents to perfectly insure, sincemH → m∗

and cH → c∗.
This result seems quite robust. The Friedman rule should fail to sustain perfect

consumption insurance when money has an explicit transactions role and agents price

future consumption unequally. In fact, lowering the return on bonds to that of money by

setting i = 0 seems to be the source of the problem. It eliminates the opportunity cost

of holding money, which is good, but it fails to provide adequate incentives for everyone

to save enough, which is bad, since π ≥ βH > βL. Thus, we next consider a policy where

i > 0. Before doing so, several remarks are in order.

First, we emphasize that the Friedman rule does not fail to sustain the constrained-

efficient allocation just because bonds are illiquid. Setting p� = 1 and i = 0 simply makes

money and bonds indistinguishable financial instruments. Second, the result does not

hinge on the mere existence of some arbitrary heterogeneity element that gives different

agents incentives to hold unequal money balances. In fact, the Friedman rule can be quite

effective in eliminating equilibrium heterogeneity in real balances when agents differ in

aspects other than time preferences.

To see why, consider for example an economy in which βH = βL = β. However, retain

the assumption of disparities in trade shocks, αH > αL. Now, set i = 0 so from Lemma
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3 a unique monetary equilibrium exists for π > β. Specifically, we have

π = β
�
1 + αH

2 [u
� (cH)− 1]

�
= β

�
1 + αL

2 [u
� (cL)− 1]

�
.

Here, balances and consumption are heterogeneous, cL < cH < c∗ and mL < mH < m
∗.

Types L under-insure as they do not need cash as frequently as types H. The opposite

occurs if αH < αL. However, as π →+ β all real balances converge to m∗ because
agents become indifferent between having a dollar today or one tomorrow.12 In this case,

trade-frequency considerations do not enter saving decisions (see also [6]).

6 Using bonds to finance consumption

We now want to demonstrate that the efficient allocation can be sustained when the

bonds’ yield is positive. To simplify our task, we start by proving that such an allocation

is inconsistent with agents holding money in their portfolios.

Lemma 4 Consider a stationary monetary equilibrium in which i > 0. If mj > 0 and

aj > 0, then cj < c∗.

Proof. Let pA < 1 so i > 0. We want to show that an agent who holds bonds and

money in equilibrium must be cash constrained, i.e., cj < c∗. By means of contradiction,
suppose mj > 0 and aj > 0 but cj = c∗. There are two cases to consider: mj ≥ m∗ and
0 < mj < m

∗.
Suppose mj ≥ m∗. Here bonds are not liquidated since the agent is not cash con-

strained. From (20), we have π = βj , since mj > 0. This implies π <
βj
pA
. But this is

inconsistent with equilibrium (see the third line in (20)).

Now suppose mj ∈ (0,m∗). Using (20) and our hypothesis cj = c∗, we must have the
following in equilibrium:

π

⎧⎪⎪⎨⎪⎪⎩
= βj

≥ βj
pA

�
1− αj

2 (1− p�
�

≥ βj
pA

(23)

The first line in (23) follows from mj > 0. We readily derive a contradiction since

π = βj <
βj
pA

(24)

12For π = β a continuum of monetary equilibria exists. The reason is price indeterminacy, as any

sequence of nominal prices which is consistent with π = β is a monetary equilibrium.
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whenever i > 0. This violates the third line in (23). The reason is that, given the return

on money 1
βj
, the agent would prefer to shift some money into bonds. That is, the agent

would definitely prefer to consume slightly less than c∗ in market one and hold some bonds
until maturity. The trade-off is favorable since the bonds’ yield is greater than one (that

of money), while decreasing consumption marginally in market one has a small (second

order) effect as the marginal utility is one at c∗. We conclude that if mj > 0 and aj > 0

in a stationary monetary equilibrium with i > 0, then cj < c∗. This is true independent
of whether bonds are held until maturity or not.

When the yield on bonds is positive, agents who hold both money and bonds must be

cash constrained. Again, this is an arbitrage argument. In fact, suppose the agent is not

cash constrained in market one but is holding both money and bonds. Then, since bonds

pay positive interest, the agent could achieve the same consumption level and accumulate

wealth by holding more bonds.

This result suggests that perhaps the optimal policy should encourage agents to save

only with bonds and not with money. The government could make cash an unattractive

asset for saving purposes by selecting a sufficiently high π. Then, agents would possibly

fully insure against consumption shocks using bonds and liquidate them when needed. In

the words of Tobin, “Why not hold transactions balances in assets with higher yields than

cash, shifting into cash only at the time an outlay must be made?” ([19], p. 241).

The problem is this might induce the most patient agents to buy infinite amounts of

bonds. To see why, consider for a moment an economy in which i > 0 and agents save

only with bonds. Suppose also that cj = c∗. Then, from (20) we have that mj = 0 for all

j if π > βH and aj > aj,b = 0 if:

π = 1
pA
βj
�
1− αj

2 (1− p�)
�

As p� → 1 we have that if π = 1
pA
βL > βH then π < 1

pA
βH . That is, the patient

agents would want to buy infinite amounts of bonds, which is not an equilibrium. Our

next objective is to prove that, in certain economies, such arbitrage opportunities can be

avoided in a simple way: by making bonds sufficiently illiquid.

6.1 The optimal illiquidity of bonds

We start by presenting a condition that we need in proving that the constrained-efficient

allocation can be sustained as an equilibrium:

βL
βH

>
2− αH
2− αL

(25)
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Since αH > αL then
2−αH
2−αL < 1. Thus (25) simply limits the extent of disparities in

individual discount factors. We now proceed to demonstrate that, under this condition,

the efficient allocation can be achieved if bonds are sufficiently illiquid.

We start by reminding the reader that in such an allocation every buyer consumes c∗ in
market one, q∗ in market two, and agents save only with bonds. Precisely, everyone enters
market one with real portfolio (m,a) = (0, a∗), where a∗ = c∗

p�
. Then, buyers liquidate all

of their bonds to purchase c∗ goods, sellers produce y = c∗ goods earning m∗ = c∗ real
balances, and the inactive agents do nothing. Thus, at the start of market two buyers

have neither cash nor bonds, whereas idle agents and sellers have, respectively, a∗ and
m∗+ a∗ real balances available (as bonds mature). In market two, everyone consumes q∗,
receives the real balance transfer τ and purchases πa∗ bonds at price pA. To accomplish
this, agents who bought in market one produce xb = q∗+ pAπa∗− τ , those idle in market

one produce xn = xb− a∗, while market one sellers now produce xs = xb− (m∗+ a∗) ≥ 0.

Proposition 5 Consider economies in which (25) is satisfied. If

π > βH

p� = 1− 2(βH−βL)
αHβH−αLβL

pA =
βH
π

�
1− αH

2 (1− p�)
�
,

(26)

then cj = c∗ for all j is a stationary monetary equilibrium. Here pA, p� ∈ (0, 1).

Proof. We use a constructive proof. First we conjecture that the allocation is efficient,

and then we prove that the expressions in (26) support existence of an equilibrium in

which cj = c∗ for all j.
Conjecture cj = c∗ for some i > 0. Applying Lemma 4 we must insure that agents’

savings consist only of bonds. Thus, we need mj = 0 for all j, which requires π > βH

from (20). Thus, let π > βH . Since bonds must be liquidated to finance c
∗ consumption

we also need aj > aj,b = 0 for all j, which requires

π =
βj
pA

�
1− αj

2 (1− p�)
�
, (27)

from the second line in (20).

Consider j = H. Then (27) holds if

pA =
1
πβH

�
1− αH

2 (1− p�)
� ≡ 1

πh(p�), (28)

which defines uniquely pA as a function of π. Since we are assuming π > βH then pA <

1− αH
2 (1− p�), i.e., i > 0.
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Now consider j = L. Equation (27) holds when, using pA from (28), the following

equality is satisfied:

βH
�
1− αH

2 (1− p�)
�
= βL

�
1− αL

2 (1− p�)
� ⇒ βL

βH
= 2−αH(1−p�)

2−αL(1−p�)

This can be rewritten as

p� = 1− 2(βH − βL)

αHβH − αLβL
, (29)

which gives p� > 0 only if (25) holds. Thus assume (25). Since βH > βL and αH > αL,

then p� < 1 and p� = 1 if βH = βL. Note also that p� > pA if π is large. Thus, assuming

π > βH and (25), if p� satisfies (29) and pA satisfies (28) then (27) holds for all j.

We note that in this case (27) implies π <
βj
pA
, since p� < 1. This does not mean that

agents would buy and hold infinite amounts of bonds without liquidating them. Indeed,

fractions of bonds cannot be liquidated by assumption. Thus, since mj = 0 buying bonds

without liquidating them is not an equilibrium, as the marginal utility of consumption in

market one would be infinite. Hence, aj = a = c∗/p� for j = L,H, as indicated by (16).
Money market clearing (21) requires pAa = m̄ and stationarity a� = a. Thus, from (4)

the government sets

τ = m̄π − m̄

pA

k
1− (1− p�)

�
ρ
αH
2
+ (1− ρ)

αL
2

�l
,

i.e., τ equals real balances at the end of the cycle m̄π, minus the payments to bond holders
m̄
pA
net of liquidation fees m̄1−p�

pA

�
ραH
2 + (1− ρ)αL2

�
. Finally, it can be proved that xj,k ≥ 0

if U �(x) is sufficiently larger than u�(x) for x ∈ R+ (see the Appendix).
In short, when the most patient agents are also those who are more often in need of

liquidity because of consumption shocks, then two elements are necessary to sustain the

efficient allocation: savings with bonds must be encouraged by setting i > 0 and setting

π > βH , and bonds must be illiquid, i.e., p� < 1. What is the intuition? First, we know

that deflation cannot be too pronounced in a monetary equilibrium and therefore the

impatient agents under-insure by using cash. Consequently, we must give bonds a return

superior to cash by setting i > 0.

However, the patient agents would demand infinite quantities of bonds if they were

fully liquid. Thus, we need to lower the expected return on bonds for these agents. As

long as types H need cash more frequently than agents L, this can be done by making the

bonds illiquid setting p� < 1. When (25) holds, a unique p� ∈ (0, 1) exists that equates
the present values of returns across agent types:

βH

k
1− αH

2
(1− p�)

l
= βL

k
1− αL

2
(1− p�)

l
.
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The necessary degree of illiquidity p� falls as discounting disparities increase, which is why

heterogeneity in discounting cannot be too extreme, i.e., why (25) must hold.

Finally, once we have calculated the optimal degree of illiquidity, we back out the

nominal interest rate that sustains the efficient equilibrium by setting the bond’s price pA
equal to the deflated present value of bonds’ returns. This gives us

i = π
βH

θ − 1 where θ =
αH

βH
βL
−αL

αH−αL ≥ 1. (30)

Nominal interest rates are a function of a weighted measure θ of the agents’ discount

factors, with weights given by the frequencies of consumption shocks.

The analysis is consistent with the notion of a Fisher effect. Indeed, i fully accounts

for inflationary pressure, rising or falling, but the allocation is unaffected. So money is

superneutral when agents save only with correctly priced bonds.13 In particular, bonds

dominate cash in rate of return, which is why no one saves with cash. Bond yields also

include a liquidity premium captured by θ, since an increase in the bonds’ illiquidity

lessens their attractiveness. In environments where the efficient equilibrium is associated

to a lower p�, hence a higher θ, we see that the bonds’ yield must be higher. As discounting

disparities vanish, so does the need for illiquidity and

lim
βH ,βL→β

i =
π

β
− 1,

i.e., the real yield converges to the common rate of time preference.

6.2 Other considerations

In this section we make a few more considerations on the finding emerged from Proposition

5. First, we note that the result holds in economies in which inflation can be substantial.

To build intuition consider the case βH = βL = β, so that the first best allocation satisfies

cj = c
∗ for all j. This outcome can be sustained in two manners. A first possibility is to

induce agents to save with cash that guarantees the return 1
β . This is achieved by lowering

the yield on bonds to that of money, setting i = 0 and running a deflation at rate π = β,

since cash cannot pay interest. Here, we are at the Friedman rule and money and bonds

are perfect substitutes if p� = 1.
13Superneutrality is generally taken to mean that, in long-run equilibrium, the magnitudes of real

macroeconomic variables are unaffected by the inflation rate and therefore by the rate of growth of the

money stock ([20], p. 98-99). In our model, the money growth rate π is the inflation rate in stationary

equilibrium. There are three key real variables: real interes rate, consumption, and real asset holdings.

Proposition 5 indicates that in an optimum the magnitudes of these variables are invariant to π, for

π > βH , since the nominal interest rate is fully adjusted (see (30)).
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Alternatively, if for some reason π > β must be selected, the government can sell liquid

bonds at price pA =
β
π , standing ready to redeem them costlessly. Here, agents save only

with bonds that pay real return 1
β for any given π and the allocation is efficient. The

lesson is that a deflation is unnecessary for efficiency as long as some asset exists that

offers a real yield 1
β and that can be easily transformed into consumption. If bonds are

illiquid, instead, the efficient allocation can be sustained when the interest rate is raised

by setting

pA =
β

π
[1− 1− p�

2
max(αH ,αL)],

and agents are rationed in their purchases of bonds. This is reminiscent of the market

for U.S. Savings Bonds, the purchases of which cannot exceed a fixed nominal amount

(currently $60,000 for the EE series). We note that this same rationing strategy would

sustain an efficient allocation when βH > βL but αH ≤ αL. Thus, illiquid bonds can

be useful under different assumptions on the relationship between time discounting and

trading risk.

It is also interesting to consider what happens when the model is generalized to more

than two types. To this end, relabel L = 0 and H = 1 and consider an economy in which

the set of types is [0, 1] instead of {0, 1}. That is, we have a continuum of types j each of

which is characterized by a pair (βj ,αj) ∈ (0, 1)2. We can prove the following Corollary
to Proposition 5.

Corollary 6 Consider an economy with types j indexed by [0, 1]. There exists a family

of types (βj ,αj)j∈[0,1] on (0, 1)2 increasing in j such that if (25) holds and government
policy satisfies (26), then cj = c∗ for all j is a stationary monetary equilibrium.

Proof. We want to show that, given {τ ,π, pA, p�}, the Euler equation (27) holds for all
j ∈ [0, 1] given some (βj ,αj)j∈[0,1] ⊂ (0, 1)2. That is, for each type j we have

βj
�
1− αj

2 (1− p�)
�
= pAπ.

Proceed as follows. Without loss in generality, index the agent types so that a higher

j is associated to a higher discount factor βj . To do so, fix two values β0 < β1 in (0, 1)

and then express each βj as the convex combination of β0 and β1, i.e.,

βj = β0 + j(β1 − β0) for j ∈ [0, 1].

Now define the continuous function θ : [0, 1]× (0, 1)→ R with

θ(j,α) = βj

k
1− α

2
(1− p�)

l
− pAπ.
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Fix two values of α, called α0,α1 ∈ (0, 1), that satisfy α0 < α1 and (25) with the obvious

relabeling. Therefore, pAπ is a constant. Now impose (26).

Note that θ(0,α0) = θ(1,α1) = 0, from Proposition 5. Also, θ(j,α1) < 0 < θ(j,α0)

for all j ∈ (0, 1), since βj monotonically increases in j. Finally, the partial derivatives
of θ are such that θα(j,α) < 0 < θj(j,α) for all j and α. Since θ is continuous, the

Intermediate Value Theorem guarantees there is a unique α = α(j) ∈ (α0,α1) ⊂ (0, 1)
such that θ(j,α) = 0. Let αj ≡ α(j), and notice that the implicit function theorem

assures that αj varies continuously with j and is increasing in j.

Therefore, we can define a continuous function f : [0, 1]→ (0, 1)2 from the set of types

to the sets of discount factors β and trading probabilities α, such that f(j) = (βj ,αj) is

monotonically increasing in j. The family (βj ,αj)j∈[0,1] satisfies (25) and supports the
efficient allocation when inflation and debt structure are as in (26).

The central finding is that, if we retain the government debt structure previously

considered, then the efficient allocation is sustainable even when we allow for a continuum

of types. Once again, the general parameter requirement is that those agents who are more

patient also face a greater probability of trading in market one.

7 Final remarks

Our study offers two basic lessons. First, heterogeneity in preferences over future con-

sumption blunts the effectiveness of the Friedman rule. Under zero interest rates, agents

essentially must rely on the available stock of fiat money as a means to insure against con-

sumption risk. A simple arbitrage argument indicates that cash cannot promise a return

greater than the discount factor of the most patient agents, much as it happens for the

return on capital in [4]. Hence, the more impatient will under-insure, which is detrimental

to efficiency. Under-insurance implies that in equilibrium agents hold different amounts

of the available stock of money. However, unlike [4], everyone holds some cash. These

findings should be obtained in any environment with similar heterogeneity, where money

is essential to execute trades.

A second lesson is that nominal interest rates should be positive in order to sustain the

constrained-efficient allocation. Under certain conditions, an additional friction is needed.

Specifically, bonds should be illiquid, i.e., they should be convertible into immediate con-

sumption less efficiently than cash. In the model, this necessity stems from differences in

discounting and consumption needs. Illiquidity is a friction that removes arbitrage op-

portunities if the individuals who have the lowest discount rate are also those who trade
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more frequently. Although this result is less general, it suggests one more reason as to

why illiquid government bonds might be socially desirable financial instruments.
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Appendix

The constrained-efficient allocation

When the social planner is subject to the same spatial and informational frictions of

agents, the planning problem corresponds to a sequence of static maximization problems

subject to the technological constraints.

Recall that we are assuming that the planner weighs each agent identically and that the

planner cannot recognize agents’ types. On each date agents have identical preferences

ex-ante. Also, on each date there is an identical proportion of buyers and sellers, so

consumption of each buyer must correspond to production of some seller. Thus, on each

odd date the planner maximizes expected utility of an arbitrary active agent, subject to

technological feasibility. Since on odd dates agents that are active can produce or consume

with equal probability, then the planner’s problem is:

maxc,y
1
2 [u(c)− y]

s.t. c = y

On each even date the problem to be solved is similar:

maxq,x U(q)− x
s.t. q = x

Hence, the constrained-efficient allocation is stationary across trading cycles, i.e., cj =

yj = c∗ and qj = xj = q∗ for each type j in each cycle t. Recalling that to each buyer
corresponds a seller in each market, then the constrained-efficient allocation maximizes

the trade surplus u(c)− c in market one and U(q)− q in market two.

Conditions for xj,k ≥ 0
We now want to provide conditions that guarantee xj,k ≥ 0 in the constrained-efficient

equilibrium described in Proposition 5. We know that qj = q∗ for all j. These results and
the budget constraint in (5) imply

xj,k = q
∗ + π(m�j + pAa

�
j)− (mj,k + aj,k + τ)

In the stationary constrained-efficient equilibrium agents save only with bonds, i.e.,m�j = 0
and aj = a = a� for all j. Let m̄ = M

p2
denote the real stock of money at the start of each

trading cycle. Since pAa = m̄, then:

xj,k = q
∗ + m̄π − (mj,k + aj,k + τ)
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From now on we focus on the seller’s case, since xj,b > xj,s. Since p = 1, we have

mj,s = c∗ = m̄p�
pA

and aj,s = a = m̄
pA
. Therefore, the constrained-efficient allocation

production in market two is type independent:

xs = q∗ + m̄π − c∗ − m̄
pA
− τ

= q∗ + c∗pAπ
p�
− c∗ − c∗

p�
− c∗ pAm̄p� τ

= q∗ − c∗ + c∗pAπ
p�
− c∗pA

p�
− c∗ 1−p�p�

�
ραH
2 + (1− ρ)αL2

�
since

τ = πm̄− m̄
pA
+ m̄1−p�

pA

�
ραH
2 + (1− ρ)αL2

�
.

Therefore

xs = q∗ − c∗[1 + 1−p�
p�
(ραH

2 + (1− ρ)αL2 )]. (31)

Since the term multiplying c∗ is greater than one, then q∗ must be sufficiently larger
than c∗ in order to have xs > 0. In the efficient equilibrium U �(q∗) = u�(c∗) = 1, so that
(31) implies we need preferences that satisfy U �(x) > u�(x) for any x ∈ R+.
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