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A CORRESPONDENCE-THEORETIC APPROACH TO
DYNAMIC OPTIMIZATIONF

C. D. ALIPRANTIS † AND G. CAMERA ‡

† Department of Economics, Krannert School of Management, Purdue University

‡ Department of Economics, Tippie School of Business, University of Iowa

Abstract. This paper introduces a method to optimization in infinite-horizon

economies based on the theory of correspondences. The proposed approach

allow us to study time-separable and non time-separable dynamic economic

models without resorting to fixed point theorems or transversality conditions.

When our technique is applied to the standard time-separable model it pro-

vides an alternative and straightforward way to deriving the common recursive

formulation of these models by means of Bellman equations.

JEL classification: E00, C61

Keywords: optimal plans, policy function, value function.

1. Introduction

This paper introduces a method to study existence of optima in infinite-horizon

representative agent economies. The proposed theory relies neither on a varia-

tional approach and the use of transversality conditions, nor on the usual dy-

namic programming techniques that employ fixed point arguments; see for in-

stance [4, 7, 8, 10]. Our focus is on infinitely-lived agents. Instead, our approach

is based on the theory of correspondences and applies two classical fundamental

theorems of mathematical analysis, Tychonoff’s Product Theorem and Berge’s

Maximum Theorem.

F This research is supported in part by the NSF Grants SES-0128039, DMS-0437210, and

ACI-0325846.
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The basic idea originates from the simple observation that in an infinite-horizon

economy the set of all feasible plans defines a correspondence. This set-valued

function maps the collection of all possible initial states of the economy into some

vector space, which is simply the collection of all time-sequences that represent

all current and future plans for consumption and savings. We name this corre-

spondence the plan correspondence, and it is the building block of the proposed

approach. Indeed, the starting point of our analysis is the study of the basic

topological properties of the plan correspondence. In particular, we establish its

continuity and compact valuedness. This allows us to prove existence of opti-

mal plans and, given bounded and continuous preferences, of a well-defined value

function. Subsequently, we demonstrate that one can easily characterize the main

features of the value function including its continuity and concavity.

The approach we propose is of general applicability and, in particular, can

accommodate various specifications of preferences, such as time non-separability.

To our knowledge the approach is novel.1 To illustrate its use, we apply our

correspondence-theoretic approach to a planning problem for a standard time-

separable infinite-horizon economy. For the particular case of geometric dis-

counting we demonstrate how the proposed correspondence-theoretic approach

provides an alternative and straightforward way to obtain a recursive represen-

tation. We offer a simple and direct proof for the fact that the value function is

the unique solution of the Bellman equation. In particular, the proof does not

invoke the Contraction Mapping Theorem, or any other fixed point argument

for that matter. The approach we propose complements the infinite dimensional

optimization literature; for example, see [2, 3, 11] who study equilibria in the

overlapping generations dynamic setting of Samuelson [9].

1After completing this draft, we have been made aware of the related work [6], which also

studies properties of value function and optimal policy correspondence by application of the

Maximum theorem. The focus in that paper is to establish a version of the Maximum theorem

with weaker continuity requirements. Such a theorem is applied to an intertemporal problem

where standard continuity requirements of objective function and feasible plan correspondence

are not satisfied.
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The paper proceeds as follows. Section 2 presents a typical discrete-time dy-

namic model economy. Section 3 specializes to a time-separable model. Section 4

presents a textbook example of the classical one-sector growth model.

2. A Typical Discrete-Time Dynamic Economy

The typical dynamic framework in economics consists of an infinite horizon

economy, where the representative agent can consume, produce, and save by ac-

cumulating some asset. We focus on a deterministic setting where time is discrete,

i.e., there are countably many periods labeled t = 0, 1, 2, . . . , and the agent is

infinitely-lived. Since we are interested in developing a method for determining

optimal paths for consumption and savings, and we are not concerned about

prices, we will concentrate on a planning problem. For our purposes, the plan-

ner corresponds to the representative consumer who faces a resource constraint,

which is defined by the assumed production technology.

In each period t the agent must make a choice from a given time-invariant

opportunity set X, the elements of which define the states of the economy.

Elements of X can be interpreted as stocks of real assets (e.g., capital) available

in a given period. In making this choice the agent faces a limitation that is

described by a nonempty-valued feasibility constraint correspondence

Γ: X→→X .

We emphasize that Γ is also assumed to be time-invariant; however, our main

results are valid if Γ varies over time. Given that the state at the beginning of

a period is x, the set Γ(x) contains all feasible states at the beginning of the

following period. For example, if f(x) is output produced today with x ≥ 0

capital, then Γ(x) = [0, f(x)]. As usual the graph of Γ is denoted by GΓ, i.e.,

GΓ = {(x, y) ∈ X ×X : y ∈ Γ(x)} .

It is assumed that the state of the economy evolves deterministically according

to the choice of the agent. Specifically, given that the state of the economy at the

beginning of period t is xt the state of the economy at the beginning of period

t+ 1 is xt+1, which is chosen by the agent in period t. Consequently, we define a
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feasible plan, or simply a plan, starting with x0 ∈ X as an infinite sequence of

states

x = (x0, x1, x2, . . .)

such that xt+1 ∈ Γ(xt) holds for each t = 0, 1, 2, . . . . It is important to recognize

that for each t ≥ 0 the tail or continuation sequence (xt, xt+1, xt+2, . . .) of a plan

x, is also a plan starting with xt ∈ X.

The collection of all feasible plans starting with x0 is denoted Π(x0). That is,

Π(x0) =
{
x = (x0, x1, x2, . . .) ∈ X{0,1,2,...} : xt+1 ∈ Γ(xt) for all t = 0, 1, 2, . . .

}
.

Since Γ is nonempty-valued, the set of all feasible plans Π(x0) is nonempty for

each x0 ∈ X.

We now impose some conditions on X and Γ that capture common assumptions

on underlying technologies of the typical economic model. Throughout this paper

we assume the following topological properties for the state space X and the

constraint correspondence Γ.

Condition C1: The state space X is a nonempty closed subset of some metrizable

topological vector space Θ.

In practice, Θ is usually a Euclidean space. We let

X = Θ{0,1,2,...} .

That is, X consists of all sequences with entries in Θ. The vector space X will be

assumed equipped with the product topology under which it is also a metrizable

topological vector space; see [1, Theorems 3.36 and 5.2]. The product topology

is also known as the topology of pointwise convergence on X since an arbitrary se-

quence {xn} in X, where xn = (xn0 , x
n
1 , x

n
2 , . . .), satisfies xn → x = (x0, x1, x2, . . .)

in X if and only if xnt −−−→n→∞ xt holds in Θ for each t = 0, 1, 2, . . . .

A second condition deals with desirable properties of the constraint correspon-

dence.
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Condition C2: The constraint correspondence Γ: X→→X has

(a) nonempty and compact values, and

(b) is continuous.

A consequence of Conditions C1 and C2 involves a nice property of the

graph GΓ.

Lemma 2.1. Under Conditions C1 and C2, the feasibility constraint correspon-

dence Γ has a closed graph, i.e., GΓ is a closed subset of X ×X.

Proof. A compact-valued correspondence with Hausdorff range that is upper

hemicontinuous has a closed graph; see [1, Theorem 17.10, p. 561].

Lemma 2.1 will be important in proving certain desirable properties of the

collections of all feasible plans which is the basic building block of our approach

to dynamic optimization.

2.1. The plan correspondence. As mentioned in the introduction, the central

idea in our approach to dynamic optimization is the use of the theory of corre-

spondences. This idea originates from the simple observation that the set of all

feasible plans starting with x0 defines automatically a correspondence

Π: X→→X .

That is, Π maps the set of all possible initial states x0 into the space of all

possible sequences. We call the correspondence Π the plan correspondence.

Since the constraint correspondence Γ is nonempty-valued, it follows immediately

that Π is likewise nonempty-valued.

The rest of the discussion in this subsection is devoted to investigating the

fundamental topological properties of the plan correspondence Π. As we will

see, Tychonoff’ classical Product Theorem (see for instance [1, Theorem 2.61,

p. 52]) will play a key role in establishing the properties of Π. For example, since

Π is in essence a constraint on the plans, it is desirable to establish that Π is

compact-valued and continuous. Tychonoff’s Theorem is handy in this respect

since it states that an arbitrary product of compact topological spaces with the

product topology is itself a compact topological space.
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Theorem 2.2. Under Conditions C1 and C2, the nonempty-valued plan corre-

spondence

(1) has closed graph, i.e., GΠ is a closed subset of X × X, and

(2) is compact-valued.

Proof. To see that GΠ is a closed subset of X × X assume that a sequence

{(xn0 ,xn)} inGΠ satisfies (xn0 ,x
n)→ (x0,x) inX×X, where xn = (xn0 , x

n
1 , x

n
2 , . . .).

Thus, xnt −−→n→∞ xt holds in Θ for each t ≥ 0. Since X is closed, we get xt ∈ X
for each t ≥ 0.

Now fix t ≥ 0. From xnt+1 ∈ Γ(xnt ), we obtain (xnt , x
n
t+1) ∈ GΓ for each n. Since

(xnt , x
n
t+1)→ (xt, xt+1) in X × X and the graph of Γ is closed (see Lemma 2.1),

we get (xt, xt+1) ∈ GΓ or xt+1 ∈ Γ(xt) for all t ≥ 0. Thus, (x0,x) ∈ GΠ and so

GΠ is a closed subset of X × X.

Next, we prove that Π is compact-valued. So, fix x0 ∈ X. Since Π has a closed

graph, it should be clear that Π(x0) is a closed subset of X. To prove that Π(x0)

is a compact subset of X, it suffices to show that Π(x0) is included in a compact

subset of X.

To this end, we start by noticing that since Γ is compact-valued and upper

hemicontinuous, it carries compact subsets of X to compact subsets of X. That

is, if A is a compact subset of X, then Γ(A) :=
⋃
a∈A Γ(a) is also a compact

subset of X; see [1, Theorem 17.8, p. 560]. Now recursively define the sets

A0 = {x0} and At+1 = Γ(At) for t = 0, 1, 2, . . . .

Using an easy inductive argument, we see that each At is a compact subset of X

(and so a compact subset of Θ). By Tychonoff’s Product Theorem, the set

A = A0 × A1 × A2 × · · ·

is a compact subset of X. To complete the proof, notice that Π(x0) ⊆ A.

We emphasize that a pair (x0,x) belongs to the graph of Π if and only if

x ∈ Π(x0), which is also equivalent to saying that the initial state of x is x0. This

characterization will be used throughout the discussion that follows.
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Theorem 2.3. Under Conditions C1 and C2, the plan correspondence Π is

continuous.

Proof. We first prove that Π is upper hemicontinuous. To this end, assume that

xn0 → x0 holds in X and xn ∈ Π(xn0 ) for each n. It suffices to show that there

exists a subsequence {yn} of {xn} that converges to some point in Π(x0); see [1,

Theorem 17.20, p. 565].

Let A0 = {x0, x
1
0, x

2
0, x

3
0, . . .} and note that A0 is a compact subset of X and, of

course, of Θ; see [1, Theorem 2.38, p. 42]. Now, as in the last part of the proof of

Theorem 2.2, recursively define the sequence {At} of compact subsets of X by

At+1 = Γ(At) , t = 0, 1, 2, . . . .

If we let A = A0 × A1 × A2 × · · · , then A is (by Tychonoff’s Product Theorem)

a compact subset of X and clearly Π(xn0 ) ⊆ A holds for each n = 1, 2, . . . . But

then {xn}, as a sequence in A, has a convergent subsequence. Let {yn} be a

subsequence of {xn} satisfying yn → y in X. Now notice that the sequence

{(yn0 ,yn)} ⊆ GΠ satisfies (yn0 ,y
n) → (x0,y) in X × X. Since Π has a closed

graph, we get (x0,y) ∈ GΠ or y ∈ Π(x0), as desired.

Next, we establish the lower hemicontinuity of Π. To this end, fix x0 ∈ X and

assume that some open subset O of X = Θ{0,1,2,...} satisfies Π(x0) ∩ O 6= 6©. We

must show that there exists a neighborhood N of x0 in Θ such that Π(z0)∩O 6= 6©
for each z0 ∈ N ∩X.

Start by observing that (according to the definition of the product topology),

we can suppose without loss of generality that O is of the form

O = O0 ×O1 ×O2 × · · · ×Ok ×Θ×Θ×Θ× · · · , (2.1)

where k ≥ 0 and Oi is a nonempty open subset of Θ for each i = 0, 1, . . . , k. The

proof of the existence of the desired neighborhood N will be done by induction

on k.

So, consider first the case k = 0. If

O = O0 ×Θ×Θ×Θ× · · · ,
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then for all z0 ∈ O0∩X we have Π(z0) ⊆ O. This implies Π(z0)∩O = Π(z0) 6= 6©
for each z0 ∈ O0 ∩X. Since O0 is a neighborhood of x0 in Θ, our conclusion is

trivially true for k = 0.

For the inductive step, assume that for some k ≥ 0 the following is true. If

an open set of the form (2.1) satisfies Π(x0) ∩ O 6= 6©, then there exists some

neighborhood N of x0 in Θ such that Π(z0) ∩O 6= 6© for each z0 ∈ N ∩X. Now

suppose that an open set of X of the form

O = O0 ×O1 ×O2 × · · · ×Ok ×Ok+1 ×Θ×Θ×Θ× · · ·

satisfies Π(x0) ∩ O 6= 6©. To complete the inductive proof, we must demonstrate

the existence of a neighborhood N of x0 in Θ such that z0 ∈ N ∩ X implies

Π(z0) ∩ O 6= 6©.

To this end, start by picking some plan x = (x0, x1, x2, . . .) ∈ Π(x0) ∩ O. In

particular, note that xk+1 ∈ Γ(xk) ∩ Ok+1. Since xk ∈ Ok, the lower hemicon-

tinuity of Γ: X→→X at xk guarantees the existence of an open neighborhood

O′k ⊆ Ok of xk such that z ∈ O′k ∩X implies Γ(z)∩Ok+1 6= 6©.2 Now consider the

open set

O′ = O0 ×O1 ×O2 × · · · ×Ok−1 ×O′k ×Θ×Θ×Θ× · · · ,

and note that x ∈ Π(x0)∩O′. But then by our induction hypothesis there exists

a neighborhood N of x0 in Θ such that z0 ∈ N ∩X implies Π(z0) ∩ O′ 6= 6©.

To complete the proof, we must show that this neighborhood N of x0 in Θ

satisfies the desired property. To see this, fix z0 ∈ N ∩X and then choose

z = (z0, z1, z2, . . . , zk, zk+1, . . .) ∈ Π(z0) ∩ O′ .

Clearly, zk ∈ O′k ∩ X and consequently, by the choice of O′k, there exists some

z′k+1 ∈ Γ(zk) ∩Ok+1. Now if we choose states z′k+2, z
′
k+3, . . . in X such that

z′t+1 ∈ Γ(z′t) for all t = k + 1, k + 2, . . . ,

then the plan z′ = (z0, z1, . . . , zk, z
′
k+1, z

′
k+2, . . .) satisfies z′ ∈ Π(z0) ∩ O. Thus,

z0 ∈ N ∩X implies Π(z0) ∩ O 6= 6©, and the proof is finished.

2 Notice that here is the only place we use the lower hemicontinuity of Γ.
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The preceding result is important since, as we will see, it allows us to employ

Berge’s Maximum Theorem to study optima. As a consequence, we can char-

acterize the set of optima and derive the fundamental properties of the value

function in a direct and very simple manner. However, before doing so, we need

to take one more step. Namely, we need to establish the convexity of the plan

correspondence Π.

For convenience denote by P the collection of all feasible plans for all possible

initial states in X. That is,

P =
⊔
x∈X

Π(x) .

As usual, the symbol A =
⊔
Ai∈I means A =

⋃
Ai∈I and Ai∩Aj = 6© if i 6= j. In

this case, note that if x 6= x′ then any plan x starting with x, i.e., x ∈ Π(x), cannot

lie in Π(x′) because the first coordinate of x is not x′. That is, Π(x)∩Π(x′) = 6©.

To study convexity properties of the plan correspondence, we need one more

assumption.

Condition C3: The state space X is a convex subset of Θ and the constraint

correspondence Γ: X→→X has a convex graph.

This condition guarantees the convexity of the graph of the plan correspon-

dence. As we will see, this is fundamental in establishing the concavity of the

value function.

Theorem 2.4. Under Condition C3, the plan correspondence Π has a convex

graph, and so Π is also convex-valued.

Proof. Let (x0,x), (y0,y) ∈ GΠ and 0 ≤ α ≤ 1. Notice that xt+1 ∈ Γ(xt) and

yt+1 ∈ Γ(yt) imply (xt, xt+1), (yt, yt+1) ∈ GΓ for all t ≥ 0. Since Γ has a convex

graph, it follows that for each t ≥ 0 the convex combination of (xt, xt+1) and

(yt, yt+1) satisfies

(
αxt + (1− α)yt, αxt+1 + (1− α)yt+1

)
= [α(xt, xt+1) + (1− α)(yt, yt+1) ] ∈ GΓ .
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In other words, [αxt+1 + (1−α)yt+1] ∈ Γ(αxt+ (1−α)yt) holds true for all t ≥ 0.

This implies [αx + (1− α)y] ∈ Π(αx0 + (1− α)y0) or

α(x0,x) + (1− α)(y0,y) = (αx0 + (1− α)y0, αx + (1− α)y) ∈ GΠ .

So, the graph of the correspondence Π is a convex set, i.e., a convex subset of

X × X.

Now that we have discussed the basic properties of the plan correspondence,

we are ready to introduce a notion of preferences

2.2. The lifetime utility function. We take the preferences of the representa-

tive agent over plans as a primitive notion. As usual, we refer to these preferences

as the “lifetime utility” of the representative agent. We also assume the agent is

infinitely-lived. However, we will depart from the usual way of defining prefer-

ences for a given initial state. As a matter of fact, since we are working with the

plan correspondence, it is useful to define preferences over all possible plans for

any initial state. That is, we work with preferences defined on the graph of the

plan correspondence.

Condition C4: The lifetime utility function is a continuous function

Û : GΠ → R .

Given the lifetime utility function Û , we associate a new function U : P → R
defined for each x ∈ Π(x) by

U(x) = Û(x,x) .

When U is restricted to a specific upper section Π(x) of the plan correspondence

Π, then we call U : Π(x)→ R the state-contingent lifetime utility function.

In other words, U is simply the function Û restricted to the upper section of Π

at the initial state x ∈ X.

The following result should be obvious.

Lemma 2.5. For each initial state x ∈ X the function U : Π(x)→ R is contin-

uous.
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We now wish to discuss monotonicity of the lifetime utility function. In order

to do so, we need to introduce an order relation on the graph of the correspon-

dence Π. Recall first that a set A equipped with a reflexive, anti-symmetric and

transitive relation ≥ is referred to as an ordered set or a partially ordered set.3

We employ the following notation: If z = (z0, z1, z2, . . .) ∈ X, then z−0 denotes

the sequence z without its first term, i.e., z−0 = (z1, z2, z3, . . .). Now assume that

the state space X is an ordered set, ordered by ≥ . By means of this order relation

≥ we can introduce an order relation � on GΠ by defining (x0,x) � (y0,y) in

GΠ to mean:

(1) x0 ≥ y0 in X, and

(2) x−0 = y−0, i.e., xt = yt for all t ≥ 1.

Notice that � is indeed an order relation on the graph GΠ of Π, so the order �
allows us to define the monotonicity of the lifetime utility function.

Definition 2.6. If the state space X is an ordered set, then the lifetime utility

function Û is called monotone [resp. strictly monotone] if (x0,x) � (y0,y)

in GΠ implies Û(x0,x) ≥ Û(y0,y) in R [resp. Û(x0,x) > Û(y0,y)].

The monotonicity of the lifetime utility function expresses the following notion.

Whenever the initial element x0 of a plan x dominates the corresponding initial

element y0 of another plan y, and the other elements of x and y are the same,

then the lifetime utility generated by plan x must be at least as large as the

lifetime utility generated by plan y.

We are now ready to discuss optimal plans.

2.3. The value function. Given an initial state x0 ∈ X the representative

agent maximizes his state-contingent lifetime utility function. That is, he solves

the following optimization problem:

Maximize: U(x)

Subject to: x ∈ Π(x0) .

3 As usual, for an order relation on a set A, the symbol a > b in A means a ≥ b and a 6= b.

We also write interchangeably b ≤ a instead of a ≥ b and b < a for a > b.
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A glance at Lemma 2.5 guarantees that, under Conditions C1 and C2, this

optimization problem has a solution. Therefore, one defines a real-valued function

v : X → R for each x0 ∈ X by

v(x0) = sup
x∈Π(x0)

U(x) = max
x∈Π(x0)

U(x) .

The above function v is called the value function. Any feasible plan x ∈ Π(x0)

that satisfies U(x) = v(x0) is called an optimal plan. The existence of optimal

plans is a straightforward consequence of our approach to dynamic optimization.

Lemma 2.7. Under Conditions C1, C2, C3, and C4, for a given initial state

x0 ∈ X:

(a) there exists at least one optimal plan,

(b) if the lifetime utility function Û is strictly concave, then there is exactly

one optimal plan.

Proof. By Theorem 2.2 the set Π(x0) is compact for each x0 ∈ X. Now notice

that, by Lemma 2.5, U is a continuous function when restricted to any Π(x0).

For property (b) notice that strict concavity of Û implies the strict concavity

of U : Π(x0)→ R, and the uniqueness of the optimal plan follows.

In the remainder of this section, we apply our approach to dynamic optimiza-

tion to obtain in a direct manner three key properties of the value function;

continuity, monotonicity, and concavity. We start by discussing the continuity of

the value function.

Theorem 2.8. Under Conditions C1, C2, and C4 the value function v is

continuous.

Proof. We know from Theorem 2.2 that the plan correspondence Π: X→→X is

nonempty- and compact-valued. Also, according to Theorem 2.3, Π is continu-

ous. Now apply Berge’s classical Maximum Theorem (see for instance [1, Theo-

rem 17.31, p. 570]) to infer that the maximum function m : X → R, defined for

each x0 ∈ X by

m(x0) = max
x∈Π(x0)

U(x) = max
x∈Π(x0)

Û(x0,x) ,
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is a continuous function. Now notice that v coincides with m.

Now that we have established the continuity of the value function, we turn our

attention to its monotonicity. Recall that the constraint correspondence Γ is said

to be monotone if X is an ordered set, and y0 < x0 in X implies Γ(y0) ⊆ Γ(x0).

Theorem 2.9. Under Conditions C1, C2, and C4, if the state space X is an

ordered set, the constraint correspondence Γ is monotone, and the lifetime utility

function Û is monotone (resp. strictly monotone), then the value function v is

monotone (resp. strictly monotone).

Proof. Assume that Û is strictly monotone and let y0 < x0 in X. The monotonic-

ity of Γ implies Γ(y0) ⊆ Γ(x0). By Lemma 2.7 there exists a plan y ∈ Π(y0) such

that v(y0) = U(y). From Γ(y0) ⊆ Γ(x0), the sequence x = (x0, y1, y2, . . .) satis-

fies x ∈ Π(x0), i.e., (x0,x) ∈ GΠ. So, (y0,y), (x0,x) ∈ GΠ and (x0,x) � (y0,y).

Since Û is strictly monotone, we see that

v(y0) = U(y) = Û(y0,y) < Û(x0,x) = U(x) ≤ v(x0) .

Thus, v(y0) < v(x0) proving that, in this case, v is strictly monotone.

If Û is monotone, then similar arguments show v(y0) ≤ v(x0), so that the value

function v is monotone.

Our next result deals with concavity of the value function.

Theorem 2.10. Under Conditions C1, C2, C3, and C4, if the lifetime util-

ity function Û is concave (resp. strictly concave), then the value function v is

likewise concave (resp. strictly concave).

Proof. Fix two elements x0, y0 ∈ X with x0 6= y0 and let 0 < α < 1. Next,

pick plans x ∈ Π(x0) and y ∈ Π(y0) such that v(x0) = U(x) and v(y0) = U(y).

Clearly, [αx + (1 − α)y] ∈ Π(αx0 + (1 − α)y0). Now taking into account that
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(x0,x) 6= (y0,y), the strict concavity of Û yields

v(αx0 + (1− α)y0) = max
z∈Π(αx0+(1−α)y0)

U(z)

≥ U(αx + (1− α)y)

= Û(α(x0,x) + (1− α)(y0,y))

> αÛ(x0,x) + (1− α)Û(y0,y)

= αU(x) + (1− α)U(y)

= αv(x0) + (1− α)v(y0) .

Hence, v(αx0 + (1 − α)y0) > αv(x0) + (1 − α)v(y0), proving that v is strictly

concave.

Of course, if the lifetime utility function Û is not strictly concave, then for

a given initial state x0 we can have a multiplicity of optimal plans, say π(x0).4

That is, we obtain a correspondence π : X→→X, defined by

π(x0) =
{
x ∈ Π(x0) : U(x) = v(x0) = max

y∈Π(x0)
Û(x0,y)

}
.

We call π the optimal plan correspondence, which satisfies the following

properties.

Theorem 2.11. If Conditions C1, C2 and C4 are true, then the optimal plan

correspondence π is nonempty- and compact-valued, and upper hemicontinuous.

Moreover, when Condition C3 is also true, we have the following additional

properties:

(a) If the lifetime utility function Û is concave, then π is convex-valued.

(b) If the lifetime utility function Û is strictly concave, then π is a continuous

function.

4This means there is indeterminacy because several distinct plans are optimal. Of course,

outside of a planning problem such as the one we consider, there can be other reasons for

indeterminacy, even with quite standard preferences and technologies. For example see the

discussion of externalities in [5].
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Proof. The optimal plan correspondence coincides with the “argmax” correspon-

dence

π(x0) =
{
x ∈ Π(x0) : Û(x0,x) = max

y∈Π(x0)
Û(x0,y)

}
.

By Berge’s Maximum Theorem, π is nonempty- and compact-valued and upper

hemicontinuous.

For (a) note that Π(x0) is a convex and compact subset of X. Since the function

U : Π(x0)→ R is continuous and concave, it follows that the nonempty set π(x0)

of maximizers of U over Π(x0) is convex.

For (b), observe that under Conditions C1, C2, C3, and C4 and strict concav-

ity of Û , it follows from Lemma 2.7 that for each initial state x0 ∈ X there exists

exactly one optimal plan in Π(x0). That is, in this case, π is a function. Since

π as a correspondence is upper hemicontinuous, it is automatically a continuous

function.

In the following sections we apply our optimization technique to a standard

dynamic model from the macroeconomic literature.

3. A Time-Separable Model

An important class of dynamic models in economics are the ones characterized

by time-separable lifetime utility functions. Under certain conditions, this type

of preferences gives rise to recursive formulations for the value functions in terms

of the Bellman equation; see [10]. In this section, we apply our framework to

establish the existence of optima and derive the basic properties of the value

functions in these models. To do so, throughout this section, we assume that

Conditions C1, C2 are valid.

We will say that the lifetime utility function Û is time-separable, if there exists

a bounded continuous function F : GΓ → R (commonly referred to as the return

function or as the period utility function) such that for each point (x0,x) ∈ GΠ

or, equivalently, x = (x0, x1, x2, . . .) ∈ Π(x0), we have

Û(x0,x) = U(x) =
∞∑
t=0

β(t)F (xt, xt+1) . (3.1)
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Here β(t) > 0 is interpreted as the discount factor at period t ≥ 0 and it is

assumed that
∑∞

t=0 β(t) < ∞. Clearly, the boundedness of F coupled with the

condition on discounting, guarantees that Û as given by (3.1) is a real-valued

function.5 We refer to any dynamic model with preferences given by (3.1) as a

time-separable model.

We start by establishing the continuity of time-separable preferences.

Lemma 3.1. Any time-separable utility function Û : GΠ → R is continuous, i.e.,

it satisfies Condition C4.

Proof. Assume that (xn0 ,x
n)→ (x0,x) in GΠ. That is, xn0 → x0 in X and

xn = (xn0 , x
n
1 , x

n
2 , . . .) −→ x = (x0, x1, x2, . . .)

in X. In other words, for each t ≥ 0 we have xnt −−→n→∞ xt in X. We must establish

that Û(xn0 ,x
n)→ Û(x0,x) holds true in R.

To this end, fix ε > 0. Start by choosing some M > 0 such that |F (x, y)| ≤M

holds for all (x, y) ∈ GΓ and then pick some τ > 0 such that 2M
∑∞

t=τ+1 β(t) < ε
2
.

Using the continuity of F , we see that there exists some n0 such that n ≥ n0

implies
∣∣∑τ

t=0 β(t)
[
F (xnt , x

n
t+1)− F (xt, xt+1)

]∣∣ < ε
2
. But then for each n ≥ n0 we

have∣∣Û(xn0 ,x
n)− Û(x0,x)

∣∣ =
∣∣U(xn)− U(x)

∣∣
≤
∣∣∣ τ∑
t=0

β(t)
[
F (xnt , x

n
t+1)−F (xt, xt+1)

]∣∣∣+∣∣∣ ∞∑
t=τ+1

β(t)
[
F (xnt , x

n
t+1)−F (xt, xt+1)

]∣∣∣
< ε

2
+ 2M

∞∑
t=τ+1

β(t) < ε
2

+ ε
2

= ε .

This shows that Û(xn0 ,x
n)→ Û(x0,x) holds in R, as desired.

We now proceed to establish the monotonicity property of Û , i.e., of the life-

time utility defined on the graph of the plan correspondence. Recall that if the

state space X is an ordered set, then the return function F : GΓ → R is said to

5 Of course, the most common formulation assumes β(t) = βt for all t ≥ 0, where 0 < β < 1.
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be monotone (resp. strictly monotone) in x whenever (x0, y), (y0, y) ∈ GΓ with

x0 > y0 implies F (x0, y) ≥ F (y0, y) (resp. F (x0, y) > F (y0, y)) in R.

Theorem 3.2. Under Conditions C1 and C2, if the state space X is ordered

and the period utility function F is monotone (resp. strictly monotone) in x,

then the lifetime utility function Û is monotone (resp. strictly monotone).

Proof. Assume (x0,x) � (y0,y) in GΠ. That is, x0 > y0 in X and x−0 = y−0.

Now note that the monotonicity of F in x implies F (y0, x1) ≤ F (x0, x1) (with

strict inequality if F is strictly monotone). But then in view of xt = yt for all

t ≥ 1, we have

Û(y0,y) = U(y) = β(0)F (y0, y1) +
∞∑
t=1

β(t)F (yt, yt+1)

≤ β(0)F (x0, y1) +
∞∑
t=1

β(t)F (yt, yt+1)

= β(0)F (x0, x1) +
∞∑
t=1

β(t)F (xt, xt+1)

= U(x) = Û(x0,x) .

Therefore, Û(y0,y) ≤ Û(x0,x) so that Û is monotone. Strict monotonicity of Û

follows by observing that the weak inequality in the displayed formula above is

strict.

Now that we have established continuity and monotonicity of the lifetime utility

function, we are ready to study some basic properties of the value function. The

next result indicates that the value function is continuous.

Theorem 3.3. Under Conditions C1 and C2, the value function v of a time-

separable model is bounded and continuous.

Proof. The continuity of v is a simple consequence of Theorem 2.8. To see that

v is bounded, assume that |F (x, y)| ≤ M holds for each (x, y) ∈ GΓ. Now if
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x ∈ Π(x0) satisfies v(x0) = U(x), then we have

|v(x0)| = |U(x)| =
∣∣∣ ∞∑
t=0

β(t)F (xt, xt+1)
∣∣∣ ≤ ∞∑

t=0

β(t)|F (xt, xt+1)| ≤M
∞∑
t=0

β(t) <∞ .

Since x0 ∈ X is arbitrary, we see that that v is a bounded function.

The next result deals with monotonicity properties of the value function.

Theorem 3.4. Assume that Conditions C1, C2, and C3 are valid, the state

space X is an ordered set, the constraint correspondence Γ is monotone, and

the return function is monotone (resp. strictly monotone) in x. Then the value

function v is monotone (resp. strictly monotone).

Proof. This follows immediately from Theorems 3.2 and 2.9.

Next, we discuss the concavity of the value function v.

Lemma 3.5. Under Conditions C1, C2, and C3, if F is concave (resp. strictly

concave), then the lifetime utility function Û is concave (resp. strictly concave).

Proof. We assume that F is strictly concave on the convex set GΓ, and we prove

that Û is strictly concave on the convex set GΠ. (Concavity can be proved in a

similar manner.)

To this end, let (x0,x), (y0,y) ∈ GΠ satisfy (x0,x) 6= (y0,y). This means that

for some k ≥ 0 we have xk 6= yk. Now fix 0 < α < 1. The strict concavity of F

yields

F (α(xt, xt+1) + (1− α)(yt, yt+1)) ≥ αF (xt, xt+1) + (1− α)F (yt, yt+1) ∀ t 6= k,

F (α(xk, xk+1) + (1− α)(yk, yk+1)) > αF (xk, xk+1) + (1− α)F (yk, yk+1) .
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Consequently, we have

Û
(
α(x0,x)+(1−α)(y0,y)

)
= U(αx + (1− α)y)

=
∑
t6=k

β(t)F (α(xt, xt+1) + (1− α)(yt, yt+1))

+ β(k)F (α(xk, xk+1) + (1− α)(yk, yk+1))

>
∑
t6=k

β(t)
[
αF (xt, xt+1) + (1− α)F (yt, yt+1)

]
+ β(k)

[
αF (xk, xk+1) + (1− α)F (yk, yk+1)

]

= α
∞∑
t=0

β(t)F (xt, xt+1)+(1−α)
∞∑
t=0

β(t)F (yt, yt+1)

= αU(x) + (1− α)U(y)

= αÛ(x0,x) + (1− α)Û(y0,y) .

Thus Û(α(x0,x) + (1 − α)(y0,y)) > αÛ(x0,x) + (1 − α)Û(y0,y), so that Û is a

strictly concave function.

Strict concavity is a common assumption in economic models since it guarantees

the uniqueness of optimal plans.

Corollary 3.6. If F is strictly concave, then for each initial state x0 ∈ X there

exists exactly one optimal plan, i.e., there exists a unique plan x ∈ Π(x0) such

that v(x0) = U(x).

We now show that our optimization method can be used to derive very easily

the recursive properties of the value function in the typical case of geometric

discounting.

3.1. Geometric discounting and the Bellman equation. We now consider

the most common time-separable model, where β(t) = βt and 0 < β < 1 is

a fixed discount factor. In this case, one can establish that the value function
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has an additional important property. Namely, it satisfies the classical Bellman

equation, i.e., one can describe the dynamic model in a recursive manner.

Theorem 3.7. Under Conditions C1 and C2, the value function v : X → R is

the one and only bounded function that satisfies the Bellman functional equation,

i.e., for each x0 ∈ X we have

v(x0) = sup
y∈Γ(x0)

[
F (x0, y) + βv(y)

]
.

Proof. We verify first that v satisfies the Bellman equation. So, fix x0 ∈ X and

let

m = sup
y∈Γ(x0)

[
F (x0, y) + βv(y)

]
. (3.2)

Since F (x0, ·) and v are both continuous functions on the set Γ(x0), the function

F (x0, ·) + v(·) is likewise continuous on Γ(x0). Taking into account that Γ(x0)

is a compact set, we see that the supremum over Γ(x0) in (3.2) is attained. So,

there is some y0 ∈ Γ(x0) such that m = F (x0, y0) + βv(y0). Now, according to

Lemma 2.7, there exists an optimal plan y = (y0, y1, y2, . . .) ∈ Π(y0) such that

v(y0) = U(y). Clearly, x = (x0, y0, y1, y2, . . .) is a plan in Π(x0). This implies

m = F (x0, y0) + βv(y0) = F (x0, y0) + βU(y) = U(x) ≤ v(x0) . (3.3)

Use once more Lemma 2.7 to select an optimal plan z = (x0, z1, z2, . . .) ∈ Π(x0)

such that v(x0) = U(z). Clearly, z−0 = (z1, z2, . . .) ∈ Π(z1), and from this and

z1 ∈ Γ(x0) we see that

v(x0) = U(z) = F (x0, z1) + βU(z−0) ≤ F (x0, z1) + βv(z1) ≤ m. (3.4)

From (3.3) and (3.4), we infer that v(x0) = m, as desired.

Next, we prove that v is the only bounded function that satisfies the Bellman

equation. To see this, let w : X → R be a bounded function that satisfies the

Bellman equation, i.e., for each x ∈ X we have

w(x) = sup
y∈Γ(x)

[
F (x, y) + βw(y)

]
. (3.5)
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Fix x0 ∈ X. Now let ε > 0. We claim that there exists a plan x ∈ Π(x0) such

that

w(xt) < F (xt, xt+1) + βw(xt+1) + ε

holds for all t ≥ 0. The construction is done by induction. If the element

xt ∈ X has been selected, then we use (3.5) to select some xt+1 ∈ Γ(xt) such that

w(xt) < F (xt, xt+1) +βw(xt+1) + ε. Another easy inductive argument shows that

for each τ ≥ 0 we have

w(x0) ≤
τ∑
t=0

βtF (xt, xt+1) + βτ+1w(xτ+1) + ε
τ∑
t=0

βt . (3.6)

Taking into account that the boundedness of w implies limτ→∞ β
τ+1w(xτ+1) = 0,

by letting τ →∞ in (3.6), we get

w(x0) ≤
∞∑
t=0

βtF (xt, xt+1) + ε
1−β = U(x) + ε

1−β ≤ v(x0) + ε
1−β

for all ε > 0. This implies w(x0) ≤ v(x0).

Finally, for the reverse inequality, fix a plan x ∈ Π(x0) such that v(x0) = U(x).

An easy inductive argument shows that for each τ ≥ 0 we have

w(x0) ≥
τ∑
t=0

βtF (xt, xt+1) + βτ+1w(xτ+1) .

Letting τ → ∞ yields w(x0) ≥
∑∞

t=0 β
tF (xt, xt+1) = U(x) = v(x0). Thus,

w(x0) ≥ v(x0) is also true, so that w(x0) = v(x0) for each x0 ∈ X.

The above result, though well known, offers a new contribution to the literature

on dynamic optimization because it provides another way of proving the recursive

property of the value function for this class of models. The key contribution is that

to prove that the value function is the unique solution of the Bellman equation,

we do not invoke the Contraction Mapping Theorem or for that matter any fixed

point argument, as is commonly done. Theorem 3.7 offers a simple and direct

proof of this fact by taking advantage of the correspondence-theoretic approach

that we have developed. For instance, notice that the proof of Theorem 3.7 relies

on the continuity of the value function, which in turn is established by a simple
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application of Berge’s Maximum Theorem. The key ingredient is the introduction

of the plan correspondence concept and the demonstration of its continuity.

We conclude our study in this section by discussing the policy function for

economies with geometric discounting. To do this, assume that Conditions C1

and C2 are valid, and, of course, from Lemma 3.1 Condition C4 is true. A glance

at Theorem 3.7 shows that the value function v is continuous and that it satisfies

the Bellman equation, i.e.,

v(x) = max
y∈Γ(x)

[F (x, y) + βv(y)]

holds true for each x ∈ X.

This recursive property allows the definition of a correspondence g : X→→X

given by

g(x) = {y ∈ Γ(x) : F (x, y) + βv(y) = v(x)} .

This “argmax” correspondence is called the policy correspondence (see [10]). The

choices in g(x) are the best choices that the agent can make on any date that

starts with the state x, given the constraint imposed on the agent by Γ(x). We

emphasize that in general there can be more than one choice y ∈ Γ(x) that is

optimal. That is, in general g is a multi-valued function. When g is a function,

i.e., when the optimal choice is unique for each x ∈ X, then g is called the policy

function.

Now we can establish the following well-known result by a simple application

of the technique we have developed in the proof of Theorem 2.11.

Theorem 3.8. The policy correspondence g : X→→X is nonempty- and compact-

valued, and upper hemicontinuous. Moreover,

(a) if the function F is concave, then g is also convex-valued, and

(b) if the function F is strictly concave, then g is a continuous function.

Given that the return function F is bounded, it is not difficult to see (and is

well known) that a plan x = (x0, x1, x2, . . .) is optimal if and only if it satisfies

Bellman’s Principle of Optimality. That is, for each t ≥ 0 we have

v(xt) = F (xt, xt+1) + βv(xt+1) . (3.7)
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In other words, a plan x ∈ Π(x0) is optimal if and only if xt+1 ∈ g(xt) holds for

all t ≥ 0. This observation in connection with the preceding discussion yields the

following.

Theorem 3.9. If a time-separable model with geometric discounting satisfies

Conditions C1, C2 and C3 and has a strictly concave return function, then

for each initial state x0 ∈ X there exists a unique optimal plan x = (x0, x1, . . .)

that is given by the recursive formula

xt+1 = g(xt) = gt+1(x0) for each t = 0, 1, 2, . . . .

4. An Example: The One-Sector Growth Model

The textbook formulation of the one-sector growth model runs something like

this.There is a single commodity which is used as capital, along with labor, to

produce output. In the simplest formulation, labor is presumed to be supplied in

fixed amounts and there is a representative agent. In each period t = 0, 1, 2, . . .

a part ct of the output is consumed and a part xt+1 is saved as capital for next

period, which fully depreciates after its use. The quantities ct and xt+1 satisfy

the feasibility constraint

ct + xt+1 = f(xt) ,

where f : [0,∞) → [0,∞) is the production function and x0, the initial capital

stock, is given. The function f is assumed to satisfy the Inada conditions. In

particular, f is strictly increasing and strictly concave.

We now verify that the model satisfies the conditions necessary to apply our

approach:

(i) the metrizable topological vector space is Θ = R,

(ii) the state space is the ordered, closed, and convex subset X = [0,∞) of

Θ, and

(iii) the constraint correspondence Γ: X→→X defined by Γ(x) = [0, f(x)], is

(a) nonempty- and compact-valued,

(b) monotone,
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(c) continuous (according to Theorem 5.1), and

(d) has a closed convex graph.

With each plan x ∈ Π(x0) we associate the consumption plan cx = (c0, c1, c2, . . .)

that is defined for each t = 0, 1, 2, . . . by

ct = f(xt)− xt+1 .

Clearly, 0 ≤ ct ≤ f(xt) for each t = 0, 1, 2, . . . .

The objective here is to find a plan x ∈ Π(x0) that maximizes the lifetime

utility function U : Π(x0)→ X , defined by

U(x) =
∞∑
t=0

βtu(ct) =
∞∑
t=0

βtu
(
f(xt)− xt+1

)
, (4.1)

where, as usual, u : [0,∞) → [0,∞) is a bounded function satisfying the Inada

conditions (and hence u is strictly concave) and normalized so that u(0) = 0.

Since u is bounded, U is a well-defined real-valued function.

Now we define the return function F : GΓ → R by F (x, y) = u
(
f(x) − y

)
. It

is not difficult to see that the return function F is continuous, strictly increasing

in x, and strictly concave. Clearly, this model is a special case of the general

recursive dynamic model, where U(x) =
∑∞

t=0 β
tF (xt, xt+1). In particular, the

state-contingent lifetime utility function is now given for each (x,x) ∈ GΠ by

Û(x,x) = U(x).

Consequently, from the results obtained in Section 3, Conditions C1, C2, C3,

and C4 are true and Û is strictly monotone and strictly concave. Thus, we have

established the following well-known result.

Theorem 4.1. In the one-sector growth model, the value function v is:

(a) bounded,

(b) continuous,

(c) strictly concave,

(d) strictly increasing, and
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(e) the only bounded solution of the Bellman equation, i.e., v : X → R is the

only bounded function that for each x ≥ 0 satisfies

v(x) = sup
0≤y≤f(x)

[F (x, y) + βv(y)]

Also, the policy function g : R+ → R+, defined by v(x) = F (x, g(x)) + βv(g(x)),

(i) is continuous, and

(ii) for each x0 ∈ X the unique optimal plan x = (x0, x1, . . .) is given by the

recursive formula xt+1 = g(xt) = gt+1(x0) for each t = 0, 1, 2, . . . .

5. Concluding remarks

We have introduced a method to study existence of optima in dynamic economies

that relies neither on a variational approach and the use of transversality condi-

tions, nor on the usual dynamic programming techniques that employ fixed point

arguments. Instead, our approach is based on the theory of correspondences and

applies two classical fundamental theorems of mathematical analysis, Tychonoff’s

Product Theorem and Berge’s Maximum Theorem.

The basic ingredient is the study of the properties of what we call the plan

correspondence. This set-valued function maps the collection of all possible initial

states of the economy into the collection of all time-sequences representing plans

for consumption and savings. If it can be established that this correspondence is

continuous, convex- and compact-valued, then one can easily prove existence of

optimal plans given bounded and continuous preferences over plans. In addition,

once can easily characterize the main features of the associated value function,

and in particular its continuity and concavity. Our approach to proving existence

of optima can easily accommodate preferences that are not time-separable. Given

standard time-separable preferences, it also offers a straightforward way to obtain

a recursive representation by means of a Bellman equation.

APPENDIX

We state a result about correspondences, not readily available in the literature.
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Theorem 5.1. Let X be a topological space and let f, h : X → R be two contin-

uous functions. Then the correspondence Γ: X→→R, defined by letting

Γ(x) = the closed subinterval of R with endpoints f(x) and h(x) ,

is continuous.6

Proof. Replacing f by max{f, h} and h by min{f, h}, we can suppose without

loss of generality that h(x) ≤ f(x) holds true for each x ∈ X. Now fix some

x0 ∈ X.

We first show that Γ is upper hemicontinuous at x0. To this end, assume that

O is an open subset of R satisfying Γ(x0) = [h(x0), f(x0)] ⊆ O. We must show

that there exists a neighborhood N of x0 such that x ∈ N implies Γ(x) ⊆ O.

Since O is open and h(x0), f(x0) ∈ O, there exists some real number ε > 0

such that (h(x0)− ε, h(x0) + ε) ⊆ O and (f(x0)− ε, f(x0) + ε) ⊆ O. In particular,

observe that (h(x0)− ε, f(x0) + ε) ⊆ O. Next pick a neighborhood N of x0 such

that x ∈ N implies

h(x0)− ε < h(x) < h(x0) + ε and f(x0)− ε < f(x) < f(x0) + ε .

Now notice that x ∈ N implies Γ(x) = [h(x), f(x)] ⊆ (h(x0)− ε, f(x0) + ε) ⊆ O,

and so N is the desired neighborhood.

Next, we prove that Γ is lower hemicontinuous at x0. To see this, assume that

for some open subset O of R we have Γ(x0) ∩ O 6= 6© or [h(x0), f(x0)] ∩ O 6= 6©.

We must show that there exists a neighborhood N of x0 such that x ∈ N implies

Γ(x) ∩ O 6= 6©.

We start by fixing some y ∈ O such that h(x0) ≤ y ≤ f(x0). Next, we pick

some ε > 0 such that (y − ε, y + ε) ⊆ O. Now we distinguish three cases.

Case I: h(x0) = f(x0) = y.

In this case, by the continuity of h and f at x0 there exists some neighborhood

N of x0 such that x ∈ N implies h(x), f(x) ∈ (y − ε, y + ε) and so

Γ(x) = [h(x), f(x)] ⊆ (y − ε, y + ε) ⊆ O .
6 Keep in mind that, as usual, the closed interval [a, a] is simply the singleton {a}. Clearly,

the correspondence Γ is also nonempty-, convex- and compact-valued.
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Consequently, x ∈ N yields Γ(x) ⊆ O so that Γ(x)∩O = Γ(x) 6= 6©. This proves

that, in this case, N is a desired neighborhood.

Case II: h(x0) < y < f(x0).

Here, the continuity of h and f at x0 guarantees the existence of some neigh-

borhood N of x0 such that h(x) < y and y < f(x) hold for all x ∈ N . But then

x ∈ N implies y ∈ Γ(x) ∩ O proving that Γ(x) ∩ O 6= 6© for all x ∈ N .

Case III: h(x0) = y < f(x0) or h(x0) < y = f(x0).

Since (y − ε, y + ε) ⊆ O notice that in both possibilities there exists some

z ∈ (y − ε, y + ε) (and so z ∈ O) satisfying h(x0) < z < f(x0), and the desired

conclusion follows from Case II above.
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