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Bilateral Matching with Latin SquaresF

C. D. Aliprantis a ,∗, G. Camera a, and D. Puzzello b

aDepartment of Economics, Purdue University, West Lafayette, IN 47907–2056, USA

b Departments of Economics and Mathematics, University of Kentucky, Lexington, KY 40506-0034,
USA

ABSTRACT: We develop a general procedure to construct pairwise meeting processes character-
ized by two features. First, in each period the process maximizes the number of matches in the
population. Second, over time agents meet everybody else exactly once. We call this type of
meetings “absolute strangers.” Our methodological contribution to economics is to offer a simple
procedure to construct a type of decentralized trading environments usually employed in both
theoretical and experimental economics. In particular, we demonstrate how to make use of the
mathematics of Latin Squares to enrich the modeling of matching economies.

Keywords and Phrases: Latin squares, Matching models, Spatial interactions

JEL Classification Numbers: C00, C78, D83, E00

1. Introduction

This paper offers a simple procedure that can be used to construct sequences of pairwise
meetings among players drawn from a finite population. The meeting process that we are
interested in studying has two properties. First, the sequence of meetings is exogenous
and it is such that players meet everybody else exactly once. Second, in each period the
process maximizes the number of matches in the population.

Pairwise meeting processes of this type are often used in economics to make explicit a
notion of trade frictions. For example, they are used in macroeconomics to model obstacles
to the exchange process, as in the random matching model in [6], in monetary economics to
introduce obstacles to credit transactions, as in the deterministic pairwise matching model
in [10] or the random matching model in [7], and in experimental economics to introduce
informational isolation, as in [4]. Indeed, we will borrow terminology from experimental

FThis research is supported in part by the NSF grants SES-0128039 and DMS-0437210.
∗Corresponding author.
E-mail addresses: aliprantis@mgmt.purdue.edu (C. D. Aliprantis), gcamera@mgmt.purdue.edu

(G. Camera), Daniela.Puzzello@uky.edu (D. Puzzello).
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economics (see [2] and [8]) and refer to agents matched in the manner described above as
being ‘absolute strangers.’

To develop a procedure to create the desired sequence of matches, we use a special class
of permutations called involutions, and we exploit some results from the mathematics of
Latin squares. In a nutshell, the reason for working with these mathematical objects
is the following. A matching process is a way to repeatedly partition a population X
into disjoint sets of agents (for a formalization see [1]). Therefore, since the meetings we
consider are bilateral, a matching process can be viewed as a sequence of involutions from
X to X. Indeed, an involution is simply a permutation such that the function composed
with itself is the identity function. It turns out that constructing the desired type of
bilateral matching process can be conveniently done by arraying involutions by means of
Latin squares. A Latin square is an n × n matrix filled with n different symbols arranged
in such a way that each symbol appears exactly once in every row and column.1 We
will interpret symbols as agents and then we will offer a procedure to match ‘absolute
strangers’ by demonstrating how to construct Latin squares such that all rows, but the
initial, are involutions of the first row.

To do so we take several steps. First, we explain how to create absolute strangers
meetings among agents who belong to two different but equally sized groups. Subse-
quently, we study how to create matches of this type when agents belong to an odd-sized
group, ensuring that everyone remains unmatched exactly once. Finally, we exploit the
two earlier steps to demonstrate how to obtain absolute strangers pairings on any finite
population. In particular, we prove that, given a population of size n, we can create
exactly n− 1 matching rounds among absolute strangers. Besides offering a new method
of constructing and formalizing pairwise matching economies, our procedure has practical
applications in the design of experimental matching economies. Indeed, our construction
scheme is simple, because it can be accomplished quickly with pencil and paper, and so
it allows to devise a desired pairing scheme without having to use specialized software.

The paper is organized as follows. Section 2 introduces the mathematical background.
Section 3 discusses the interpretation of Latin squares as absolute strangers bilateral
matching processes. Section 4 and Section 5 show the existence and the construction of
pairwise matches of the type desired. Section 6 provides a practical example that might
be of interest in experimental economics. Section 7 concludes with some final remarks.

2. Mathematical Background: Latin Squares

We discuss here the basic mathematical concepts that are needed to formalize our notion of
pairwise matching. The most important one is that of a Latin square.

Definition 2.1. Given n distinct symbols, a Latin square is an n× n matrix with entries from
the given symbols arranged in such a way that every symbol appears exactly once in each row and
in each column.

Given the sets of symbols {1, 2, 3, 4} and {F,z,♠,♣}, the matrices

1When Leonhard Euler started to study Latin squares in 1782, he used Latin characters as symbols; and
hence the origin of the name. Latin squares have been used especially to design agricultural experiments
and to construct tournaments; see [9].
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
1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

 and


F z ♠ ♣
♠ ♣ F z
z ♠ ♣ F
♣ F z ♠

 ,

are two examples of Latin squares. Of course, for a given set of n symbols we generally have many
different Latin squares. Indeed, the number of distinct Latin squares grows so rapidly with n that,
although Latin squares have been studied extensively in mathematics (see, for instance [5, 9]), the
number of distinct Latin squares has been calculated only for up to n = 10.

Our purpose here is to identify three basic types of Latin squares that will be the building blocks
for our matching processes. Given a population set X = {1, . . . , n} with n agents, in what follows
we introduce three Latin square constructions each of which generates a specific n× n matrix.

Latin Square Construction # 1

This Latin square is denoted L− and its first row is the vector (1, 2, . . . , n). The other rows of
L− are generated recursively by shifting by one position to the right the previous row in a cyclical
manner. Thus, the second row is obtained by shifting by one position to the right the first row,
i.e., the second row is the vector (2, 3, . . . , n, 1) and the third row is the vector (3, 4, . . . , n, 1, 2),
etc. Specifically, L− is the following n× n Latin square:

L− =



1 2 · · · n− 2 n− 1 n
2 3 · · · n− 1 n 1
3 4 · · · n 1 2
...

...
. . .

...
...

...
n− 1 n · · · n− 4 n− 3 n− 2

n 1 · · · n− 3 n− 2 n− 1


If we use the standard notation L− = [aij ] to denote this Latin square, then it is easy to see

that its entries aij are given by the formula

aij = i + j − 1− nχ
Y
(i + j − 1)

=


j if i = 1 and 1 ≤ j ≤ n

i + j − 1 if i ≥ 2 and 1 ≤ j ≤ n− i + 1
j − (n− i)− 1 if i ≥ 2 and n− i + 2 ≤ j ≤ n ,

where χ
Y

: N → {0, 1} is the characteristic function of the set

Y = {n + 1, n + 2, . . .} ,

defined as usual by χ
Y
(k) = 1 if k ∈ Y and χ

Y
(k) = 0 if k /∈ Y .

For instance, when n = 4 this construction yields the Latin square
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L− =


1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

 .

Latin Square Construction # 2

We denote this Latin square by L+ = [aij ]. It has first row the vector (1, 2, . . . , n) and its
construction is done recursively exactly as in the Latin square of Construction # 1 with the only
difference that this time we shift to the left. This means that the second row of L+ is obtained
by shifting by one position to the left the first row in a cyclical manner, i.e., the second row is
(n, 1, . . . , n − 2, n − 1), and the third row is the vector (n − 1, n, 1, . . . , n − 2), etc. The complete
Latin square L+ is the following:

L+ =



1 2 · · · n− 2 n− 1 n
n 1 · · · n− 3 n− 2 n− 1

n− 1 n · · · n− 4 n− 3 n− 2
...

...
. . .

...
...

...
3 4 · · · n 1 2
2 3 · · · n− 1 n 1


An easy verification shows that the entries aij of L+ are given by the formula

aij = n + 1 + j − i− nχ
Y
(n + 1 + j − i)

=


j if i = 1 and 1 ≤ j ≤ n

(n− i) + j + 1 if i ≥ 2 and 1 ≤ j ≤ i− 1
j − i + 1 if i ≥ 2 and i ≤ j ≤ n .

When n = 4 we have:

L+ =


1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1


Latin Square Construction # 3

This is the Latin square L = [aij ] when the first row is the vector (n, n− 1, . . . , 1) and the other
rows of L are constructed by following the recursive procedure of the Construction # 1. That is,
the second row is obtained by shifting by one position to the right the first row, i.e., the second
row is (n− 1, n− 2, . . . , 1, n). Repeating this shifting process n− 1 times recursively we obtain the
following n× n Latin square:



5

L =



n n− 1 · · · 2 1
n− 1 n− 2 · · · 1 n

...
...

. . .
...

...
n− i + 1 n− i · · · n− i + 3 n− i + 2

...
...

. . .
...

...
2 1 · · · 4 3
1 n · · · 3 2


As before, an easy verification shows that the entries aij of L+ are given by the formula

aij = n + 1− (i + j − 1) + nχ
Y
(i + j − 1)

=


n + 1− j if i = 1 and 1 ≤ j ≤ n

n + 2− i− j if i ≥ 2 and 1 ≤ j ≤ n− i + 1
2n− i + 2− j if i ≥ 2 and n− i + 2 ≤ j ≤ n .

When n = 4 the Latin square L is the following:

L =


4 3 2 1
3 2 1 4
2 1 4 3
1 4 3 2


3. Matching Matrices and Latin Squares

The three types of Latin squares that we have presented above are useful to model the desired
type of bilateral matchings among agents in a finite population. A bilateral matching on a
population X is simply a function φ : X → X satisfying φ2(x) = x for all x ∈ X, that is φ is a
special type of permutation called an involution.2 We interpret agent φ(x) to be the partner of agent
x and so a sequence of meetings (or bilateral matchings) is simply a sequence of bilateral matchings.
Of course, every bilateral matching φ automatically provides a partition of the population X into
pairs—this is the partition ({x, φ(x)})x∈X .

In this section we are interested in a particular type of matching process. Specifically, we wish
to match everyone in the population to someone else, whenever this is feasible, but we also want
to ensure that agents meet everybody else in the population exactly once. These requirements
immediately imply that, if we have a population of n agents, the desired matching process cannot
last more than n−1 periods, since each agent can be matched at most to n−1 different individuals.
To formalize such a matching process, we need to introduce a special type of matrix.

Definition 3.1. Let X = {1, . . . , n} be a population. An m × n matrix M = [πij ] with entries
from the population is called a matching matrix if:

(1) Its first row is the vector (1, 2, . . . , n).

2For further details see [1].
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(2) Each other row is an involution of the first row.
(3) If n is even every column has distinct entries.
(4) If n is odd, then in each column j the agent j appears at most twice and the remaining

entries in the column are all distinct (and hence they are precisely the agents X \ {j}).

An m× n matching matrix M is called maximal if:

(a) When n is even M has n rows, i.e., m = n.
(b) When n is odd M has n + 1 rows, i.e., m = n + 1.3

Given a population X = {1, . . . , n} we will see that several distinct maximal matching matrices
can be constructed. For a population X of size n we denote an arbitrary maximal matching matrix
by Mn(X), omitting the argument X when it is understood. To emphasize the link between
maximal matching matrices and meeting processes, we introduce the following terminology.

Definition 3.2. An absolute strangers matching process for a population is a maximal matching
matrix.

To see why a maximal matching matrix represents a sequence of partitions of the population
into the type of pairwise matches that we desire, consider populations with n = 3 and n = 4 . Two
corresponding maximal matching matrices are:

M3 =


1 2 3
3 2 1
2 1 3
1 3 2

 and M4 =


1 2 3 4
2 1 4 3
4 3 2 1
3 4 1 2


The first row simply lists all agents of the population X, which we order from 1, 2, . . . , n. Clearly,

each subsequent row defines a partition of the population into pairs, in some period. To see how
this is done, let t = 1, . . . , n− 1 denote a matching period, and t = 0 denote an initial stage where
no one is matched. So, each row i pinpoints a distinct matching period t = i− 1. The partition in
period t is thus identified by associating to each element in column j of the first row, the element
present in the same column of row t + 1. That is, we read the matches vertically.

For instance, the matching matrix M4 above describes the following sequence of three pairwise
meetings on the population X = {1, 2, 3, 4}:

t
1
2
3


1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1


Consider the second row, i.e., period t = 1. Agent 1 is matched to agent 2, and column two

confirms that agent 2 is matched to agent 1. The other two columns tell us that agent 3 is matched
to agent 4 in period t = 1. Subsequent periods are interpreted similarly.

3In each column j the agent j appears exactly twice and the remaining m− 2 entries are all distinct.
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The (maximal) matching matrixMn conveniently describes pairwise encounters among n agents
such that no one meets the same partner again, which is a feature of several matching frameworks
in economics.4

It is important to recognize that for n even any matrix Mn is a Latin square that satisfies the
additional restriction that every row is an involution of the first. This is a special case, since not
all Latin squares possess this property. For instance, in the Latin square below

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

 ,

while each number appears exactly once in each column and each row, the Latin square does not
represent a matching for the population X = {1, 2, 3, 4}. Notice that the second row is not an
involution of the first since in period t = 1 agent 1 appears to be matched to agent 2 (first column)
but agent 2 is matched to agent 3 (second column).

Clearly, for n odd a maximal matching matrix is not a Latin square because m = n + 1, so it is
not a square matrix. However, notice that every element j appears in the first row of column j, and
exactly once more below, in that same column. This implies that if n is odd, then by eliminating
the first row from the matrix Mn we obtain a Latin square, something that will come in handy to
construct matchings on any population.

For example, when n = 3, we can see that the matrix to the right below, obtained by eliminating
the first row from M3 is a Latin square.

M3 =


1 2 3
3 2 1
2 1 3
1 3 2


 3 2 1

2 1 3
1 3 2



4. Maximal Matching Matrices

In this section we show existence of maximal matching matrices for any finite population. We
start by pairing agents across two groups of equal size. Suppose we have a population composed
of two groups, denoted A and B, of n individuals each. For practical purposes, we interpret each
group as being composed by a homogenous type of agents, such as buyers or sellers. Our objective
is to pair exactly once each agent from A to someone from B, so that everyone in a group is always
matched to someone else in the other group. That is, we want to pair agents across groups in an
absolute strangers fashion.

It is immediate that this matching protocol can generate at most n periods of matching since
each agent can meet at most n agents from the other group. The key questions are whether we

4For instance, it reflects the meeting restrictions assumed in the pairwise random matching model of
Kiyotaki and Wright [7], the spatial separation requisite described in the multilateral matching model in [3],
the ‘anonymity’ requisites studied in [1], and the informational isolation in the experimental study in [4].
Indeed, the name we use to describe the meeting process reflects a description of a matching protocol found
in a popular experimental software platform [8], which further restricts the interactions possible under the
‘strangers’ matching protocol (see [2]).
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can sustain n matching periods and, if we can, if there is a systematic way5 to match agents as
absolute strangers.

The following result achieves two goals. On one hand, it establishes that we can pair agents
as absolute strangers at most n times. And on the other hand, it offers a basic procedure for
constructing the desired matching protocol on any population. Note that the notation X = AtB,
means X = A ∪B and A ∩B = ∅, i.e., X is the disjoint union of A and B.

Lemma 4.1. Let A = {1, . . . , n} and B = {n + 1, . . . , 2n}. Then the (n + 1)× 2n matrix

M(A,B) =


1 2 · · · n− 1 n

n + 1 n + 2 · · · 2n− 1 2n
n + 2 n + 3 · · · 2n n + 1

...
...

. . .
...

...
2n n + 1 · · · 2n− 2 2n− 1

n + 1 n + 2 · · · 2n− 1 2n
1 2 · · · n− 1 n
n 1 · · · n− 2 n− 1
...

...
. . .

...
...

2 3 · · · n 1


is a matching matrix for the population X = AtB such that every agent in A is pairwise matched
to every agent in B.

The proof of this lemma is straightforward. Start by noticing that the notation M(A,B) indicates
that we are matching agents from set A to set B, without matching them within sets. Therefore, it
is easy to see that the matrix M(A,B) is a desired matching matrix for the population X = AtB.
Also, let L−(B) be the n × n Latin square with symbols from B = {n + 1, . . . , 2n} (constructed
using procedure #1 in Section 2). Similarly, L+(A) denotes the n× n Latin square with symbols
from A = {1, . . . , n} (constructed using procedure #2 in Section 2). Then we can rewrite M(A,B)
as follows

M(A,B) =
[

1 · · · n n + 1 · · · 2n
L−(B) L+(A)

]
.

The reader should observe that a matching matrix obtained by the construction provided in
Lemma 4.1 is not maximal, since it provides matches across the groups A and B, but not within
each group. An example follows.

Let X = {1, . . . , 8} with A = {1, 2, 3, 4} and B = {5, 6, 7, 8}. Then, it is easy to see that the
procedure above gives the following 5× 8 matching matrix

M(A,B) =


1 2 3 4
5 6 7 8
6 7 8 5
7 8 5 6
8 5 6 7

5 6 7 8
1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1

 .

We are now ready to state and prove the main result of this paper.

Theorem 4.2. Every finite population admits a maximal matching matrix.

5By a “systematic way” we mean, as usual, the development of an algorithm that can be executed by
a computer.
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Proof. The proof consists of two parts. In the first part we construct a maximal matching matrix
for odd populations, while the second part shows existence of maximal matching matrices for any
even population.

Let us start with a population X = {1, . . . , n}, where n is odd. Recall that L is the Latin Square
constructed using procedure #3 in Section 2. Now, notice that the (n + 1)× n matrix

Mn =



1 2 3 · · · n− 2 n− 1 n
n n− 1 n− 2 · · · 3 2 1

n− 1 n− 2 n− 3 · · · 2 1 n
n− 2 n− 3 n− 4 · · · 1 n n− 1

...
...

...
. . .

...
...

...
2 1 n · · · 5 4 3
1 n n− 1 · · · 4 3 2


=

[
1 · · · n

L

]

is a maximal matching matrix for the population X.
In the second part let X = {1, . . . , 2n}. Write 2n = 2kp, where p, k are natural numbers with p

odd. We need to consider two cases.

Case 1: p = 1.
In this case we have 2n = 2k. The existence of a maximal matching matrix will be established

by induction on k. For k = 1, the 2× 2 matrix M2 =
[

1 2
2 1

]
is a maximal matching matrix.

Now assume that a maximal matching matrix exists for a population 2n = 2k, where k ≥ 1.
We need to show that a maximal matching matrix exists for 2n = 2k+1. To this end, let X =
{1, . . . , 2k+1} = A tB, where A = {1, . . . , 2k} and B = {2k + 1, . . . , 2k+1}.

For the induction step, we know that there exists a 2k × 2k maximal matching matrix for the
population A, say M2k(A). Similarly, there exists a 2k × 2k maximal matching matrix for the
population B, say M2k(B).

It is not difficult to check that the 2k+1 × 2k+1 matrix

M2k+1 =
[
M2k(A) M2k(B)
M2k(B) M2k(A)

]
is a maximal matching matrix for the population X. (For another construction of a maximal

matching matrix for X see also Lemma 5.1 below.)

Case 2: p > 1.
In this case we have 2n = 2kp, and we can still use induction on k. Let p be fixed. For k = 1,

2n = 2p and so X = {1, . . . , 2p}. Let X = A t B where A = {1, . . . , p} and B = {p + 1, . . . , 2p},
i.e., A and B have p agents each. Let L−(B)−1 and L+(A)−1 denote the (p− 1)× p Latin squares
obtained by deleting the first row of L−(B) and L+(A).
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Next, notice that p is odd and so we can use the first part to construct the maximal matching
matrices Mp(A) and Mp(B). Let M′

p(A) and M′
p(B) denote (p + 1)× p matrices obtained from

Mp(A) and Mp(B) as follows.
By construction all the rows of Mp(A) and Mp(B) (other than the first) have exactly one fixed

point. Let
[

p
2

]
denote p

2 rounded to the next integer, and note that 2×
[

p
2

]
= p + 1.

The following table summarizes the fixed points for each row j (other than the first) of Mp(A)
and Mp(B).

Row Range of k Mp(A) Mp(B)
j = 2k 1, . . . ,

[
p
2

] [
p
2

]
− (k − 1)

(
p +

[
p
2

])
− (k − 1)

j = 2k + 1 1, . . . ,
[

p
2

]
− 1 p− (k − 1) 2p− (k − 1)

Then M′
p(A) and M′

p(B) are obtained by exchanging the fixed points of Mp(A) and Mp(B)
row by row. For example, agent 1, which appears in entry (p + 1, 1) of Mp(A) remains unmatched
in the last row of Mp(A) and agent p + 1 which occupies entry (p + 1, 1) of Mp(B) remains
unmatched in the last row of Mp(B). Then, the last row of M′

p(A) is obtained by replacing agent
1 in the last row of Mp(A) by agent p + 1. Analogously, the last row of M′

p(B) is obtained by
substituting agent p + 1 in the last row of Mp(B) by agent 1. A similar procedure is conducted to
obtain the other rows of M′

p(A) and M′
p(B).

Now, with the help of Lemma 4.1, the reader can verify that the 2p× 2p matrix

M2p =

 M′
p(A) M′

p(B)

L−(B)−1 L+(A)−1


is a maximal matching matrix for the population X = {1, . . . , 2p}.

Next, suppose that a maximal matching matrix exists for a population 2n = 2kp, where k ≥ 1.
A procedure analogous to the one illustrated in Case 1 shows that a maximal matching matrix
exists for 2n = 2k+1p.

Theorem 4.2 shows the existence of maximal matching matrices for any finite population and
in some cases provides algorithms of constructing maximal matching matrices. We illustrate this
in the examples below.

Example 4.3. We start with the construction of a maximal matching matrix for an odd population
with n = 3. Using the Latin square construction # 3 we obtain

M3 =


1 2 3
3 2 1
2 1 3
1 3 2

 .

Notice that this construction does not work with even populations. Indeed, the number n would
appear in the last column of both the first and the third row, which is not a matching matrix for
even populations.

Example 4.4. Consider now an even population X = {1, 2, 3, 4, 5, 6}, i.e., we have k = 1 and
p = 3. Let A = {1, 2, 3} and B = {4, 5, 6}. Then
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M′
3(A) =


1 2 3
3 5 1
2 1 6
4 3 2

 and M′
3(B) =


4 5 6
6 2 4
5 4 3
1 6 5

 .

Also, notice that given the definitions of L+(A) and L−(B), we obtain the matrices

L+(A)−1 =
[

3 1 2
2 3 1

]
and L−(B)−1 =

[
5 6 4
6 4 5

]
.

Thus, the 6× 6 matrix

M6 =

 M′
3(A) M′

3(B)

L−(B)−1 L+(A)−1

 =


1 2 3 4 5 6
3 5 1 6 2 4
2 1 6 5 4 3
4 3 2 1 6 5
5 6 4 3 1 2
6 4 5 2 3 1


is a maximal matching matrix for the population X.

When the population is of size n = 2k there are other useful ways of constructing maximal
matching matrices. Indeed, we can always use the construction in the proof of Lemma 4.1 repeat-
edly or we can use another method that is described next.

5. Pairing agents in a population of size 2k

In this section we consider a population X whose cardinality is a power of two, that is, X =
{1, 2, . . . , 2k} for some k. Again, we want to find out for how many periods we can pair every
agent in X to everyone else exactly once, ensuring that all agents are paired in every period.
This type of matching is of interest to experimental economists, where subjects should be handled
parsimoniously. Clearly, there cannot be more than 2k − 1 rounds of matching since each agent
x ∈ X can meet at most 2k − 1 other agents. Therefore, let t = 1, . . . , 2k − 1 denote the number of
matching periods. In Theorem 4.2 we showed that an absolute strangers matching protocol exists
for this case. In what follows we will additionally show how to construct it. Our construction is
recursive and takes k steps to be completed. We denote the arbitrary step of this construction by
s.

In each step s we construct 2k−s matching matrices of size 2s × 2s labelled as

M1
s,M

2
s, . . . ,M

2k−s

s .

Each matrix Mi
s is a 2s × 2s maximal matching matrix with the following 2s symbols

{2s(i− 1) + 1, . . . , 2si} .

For s = 0, we start by letting the matrices M1
0,M

2
0, . . . ,M

2k

0 be the 1× 1 matrices:

M1
0 = 1,M2

0 = 2, . . . ,M2k

0 = 2k.
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Now for the inductive procedure, if for some s ≥ 1 the matching matrices

M1
s−1,M

2
s−1, . . . ,M

2k−s+1

s−1

have been constructed, then for each 1 ≤ i ≤ 2k−s we let

Mi
s =

 M2i−1
s−1 M2i

s−1

M2i
s−1 M2i−1

s−1


Note that the second row of each Mi

s is obtained by shifting the matrices M2i−1
s−1 and M2i

s−1 in the
first row, by one position to the left. That is, each Mi

s is a partitioned matrix whose blocks are
the submatrices M2i−1

s−1 and M2i
s−1.

Each matrix Mi
s is a matching matrix as we establish in the following.

Lemma 5.1. If the population is of the form X = {1, . . . , 2k}, then for each s = 1, . . . , k and i =
1, . . . , 2k−s the matrix Mi

s is a 2s×2s maximal matching matrix with symbols {(i− 1)2s + 1, . . . , i2s}.
In particular, the recursively constructed matrix M1

k = M2k is a maximal matching matrix for
the population X.

Proof. In order to show that M1
k identifies an absolute strangers matching protocol for the whole

population X, we need to show that Mi
s is a matching matrix for each s = 1, . . . , k and each

i = 1, . . . , 2k−s.
The proof proceeds by induction on s. Consider s = 1 and observe that for each i = 1, ..., 2k−1,

the matrix Mi
1 is a matching matrix by construction since:

Mi
1 =

 M2i−1
0 M2i

0

M2i
0 M2i−1

0

 =
[

2i− 1 2i
2i 2i− 1

]
In particular, for all i = 1, . . . , 2k−1, each matrix Mi

1 is a maximal matching matrix with symbols
{(i− 1)2 + 1, . . . , i2}.

Now, assume that for all i = 1, . . . , 2k−s+1 the matrix Mi
s−1 is a 2s−1× 2s−1 maximal matching

matrix with symbols
{
(i− 1)2s−1 + 1, . . . , i2s−1

}
. We need to show that for all i = 1, . . . , 2k−s

the matrix Mi
s is a 2s× 2s maximal matching matrix with symbols {(i− 1)2s + 1, . . . , i2s}. Recall

that

Mi
s =

 M2i−1
s−1 M2i

s−1

M2i
s−1 M2i−1

s−1

 . (5.1)

By the induction hypothesis, M2i−1
s−1 is a 2s−1 × 2s−1 maximal matching matrix with symbols{

(i− 1)2s + 1, . . . , i2s − 2s−1
}

and M2i
s−1 is a 2s−1× 2s−1 maximal matching matrix with symbols{

i2s − 2s−1 + 1, . . . , i2s
}
. Also, notice that{

(i− 1)2s + 1, . . . , i2s − 2s−1
}
∩

{
i2s − 2s−1 + 1, . . . , i2s

}
= ∅,

i.e., the matrices M2i−1
s−1 and M2i

s−1 have distinct symbols. Therefore, by the construction provided
in (5.1), we have that Mi

s is a 2s×2s maximal matching matrix with symbols {(i− 1)2s + 1, . . . , i2s}.
Finally, note that the matrix obtained in the last step is a maximal matching matrix for the pop-
ulation, i.e., M1

k = M2k .



13

Since each matching matrix Mi
s is of size 2s, then it provides matches for 2s distinct agents over

the course of 2s − 1 periods. Therefore, the set
{
Mi

s : i = 1, . . . , 2k−s
}

defined for s = 1, . . . , k − 1
provides a partition of the population in bilateral matches, up to period t = 2s − 1. When s = k
we have a single 2k × 2k maximal matching matrix M1

k = M2k that gives us a matching of the
whole population for a total of 2k − 1 periods.

Furthermore, this construction can be extended to obtain absolute strangers bilateral matching
processes for countably infinite populations.6

Example 5.2. We illustrate our procedure by letting k = 3 and considering the population
X = {1, . . . , 8}. Lemma 5.1 indicates that we can bilaterally match agents as absolute strangers
for 2k − 1 = 7 periods. We proceed as follows. First, start by defininig Mi

0 = i for i = 1, . . . , 8.
Then, the first matching is given by [

M1
1 M2

1 M3
1 M4

1

]
,

i.e., we have the four Latin squares of order 2× 2

M1
1 =

[
1 2
2 1

]
, M2

1 =
[

3 4
4 3

]
, M3

1 =
[

5 6
6 5

]
, M4

1 =
[

7 8
8 7

]
.

That is, agent 1 is paired to agent 2, agent 3 to 4, and so on and so forth.
Next, note that 1 has met 2 but he did not meet 3 and 4, and similarly 5 has met 6 but he has

not met 7 and 8. When s = 2, the matching for the first three periods is given by 23−2 = 2 Latin
squares of order 22 × 22

M1
2 =


1 2
2 1

3 4
4 3

3 4
4 3

1 2
2 1

 and M2
2 =


5 6
6 5

7 8
8 7

7 8
8 7

5 6
6 5

 .

That is, agent 1 is paired with agent 2, in period 1, with agent 3 in period 2 and with agent 4 in
period 3.

Finally, when s = k = 3, we obtain a matching square of order 23×23 providing us with absolute
strangers for 23 − 1 = 7 periods

M1
3 = M8 =



1 2
2 1

3 4
4 3

3 4
4 3

1 2
2 1

5 6
6 5

7 8
8 7

7 8
8 7

5 6
6 5

5 6
6 5

7 8
8 7

7 8
8 7

5 6
6 5

1 2
2 1

3 4
4 3

3 4
4 3

1 2
2 1


.

For instance, in period t = 3, agent 4 meets agent 1 and in period t = 7 agent 4 meets agent 5.

6Those matching matrices can be used also to construct matching processes where agents are more
than absolute strangers. For instance, we can bilaterally match agents in every period t by selecting row
j = 1 + 2t−1 of the matching matrix. This is equivalent to a strongly anonymous matching process as
formalized in [1].
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6. A Practical Application to Experimental Economics

Consider the following setting for an economic experiment. We want to collect data on a
repeated duopoly game involving two different types of subjects, say buyers and sellers. Suppose
we wish to run the experiment for 40 periods and in each period we wish to match a buyer to a
seller. Suppose also that we can only recruit 8 subjects, four of each type. Clearly, we can pair
subjects so that every buyer meets every seller exactly once7 for at most 4 periods. However, we
would like to be as close as possible to an absolute strangers matching protocol. That is, we wish
to minimize repeated interaction.8 Randomizing equally over all possible matches would not allow
us to achieve this goal, unfortunately. Indeed, the probability that agents are absolute strangers
under a random matching protocol is very low.

To see why, start by noticing that the number of all possible matchings (with repetition) is
(n!)n. That is, we must consider all matrices in which the symbols 1, . . . , n appear exactly once in
every row, but can appear more than once in a column. Thus, we have n! choices for the first row,
n! choices for the second row, and so on until n! choices for the nth row.

This implies that, if we assume that all matchings are equally likely, the probability of obtaining
an absolute strangers matching is given by

pn =
`n

(n!)n .

Here, `n is the number of Latin squares that can be created for a population of size n. For example,
if n = 3 then `3 = 18 and so the probability that agents are absolute strangers is p3 = 1

18 . For
n = 4 we have `4 = 576 and so the probability is p4 = 1

576 . For numbers that can be calculated,
greater values of n are associated to progressively smaller probabilities (e.g, p10 = 2.5212×10−29).
That is to say, if matchings are selected randomly, the probability of selecting an absolute strangers
matching becomes very small as n increases.

This suggests that knowing how to construct absolute strangers matching protocols may be
important, since it allows us to construct several distinct matching matrices, i.e., several distinct
absolute strangers matching protocols. This allows us flexibility in the design of the matching
protocol and, in particular, it allows us to decrease the chance that the same partition of the
population is repeated.

For example, given our population of size eight we will construct several Latin squares of order 4
and then randomly select matchings from them. We need more than one matching square because
using one only implies that if a match is repeated, then the partition of the entire population is
also repeated. This is comparable to having a “periodic” repeated game, which may be desirable
to avoid.

For a concrete example, suppose we want to match buyers A = {a, b, c, d} with sellers B =
{1, 2, 3, 4}. Generate several distinct Latin squares (we can generate up to 4!3!4), and use them
to form matching matrices. Note that distinct Latin squares generate distinct matching matrices.

7And nobody is unmatched.
8Strangers matching protocols are used in experimental economics to reduce the impact of repeated

game effects while allowing for learning over time.
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For example, it is easy to see that the Latin square

L1 =


1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3


gives rise to the matching matrix

M(A,B) =


a b c d
1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

1 2 3 4
a b c d
d a b c
c d a b
b c d a

 .

Similarly, the following Latin squares generate matching matrices different than M(A,B).

L2 =


2 1 4 3
3 2 1 4
4 3 2 1
1 4 3 2

 , L3 =


3 1 4 2
4 2 3 2
1 3 2 4
2 4 1 3



L4 =


4 1 2 3
1 3 4 2
2 4 3 1
3 2 1 4

 , L5 =


1 2 4 3
2 4 3 1
3 1 2 4
4 3 1 2


Next, we can select a matching matrix every four periods, randomly and independently, to

minimize repeated interaction while preserving randomness in matching as well as in partitioning
the population. If we were to use only L1 and repeat it over time, for instance, if a is matched
repeatedly to 1, then the matches (b, 2) , (c, 3) , (d, 4) are also repeated. Thus, knowing how to
construct matching matrices can allow to generate a matching process such that we disentangle
information about composition of a subject’s match (presumably observable only in the match)
from info about entire partition (presumably unobservable).

7. Conclusion

We have offered a procedure to match bilaterally agents in a finite population, so that in each
period everybody has a partner (but at most one) and meets everybody else exactly once. Our
method is simple and makes use of the mathematics of Latin squares. It can have practical
applications in the construction of decentralized trading environments that are often employed
in both theoretical and experimental economics to model trading or informational frictions. The
basic procedure to create these type of meetings is simple, can be done with pencil and paper, and
can be extended to countably infinite population by means of a straighforward recursive process.
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