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HARTOG'S PHENOMENON FOR POLYREGULAR FUNCTIONSAND PROJECTIVE DIMENSION OF RELATED MODULESOVER A POLYNOMIAL RINGW.W. ADAMS, P. LOUSTAUNAU, V.P. PALAMODOV, D.C. STRUPPAAbstract. In this paper we prove that the projective dimension of Mn =R4=hAni is 2n � 1, where R is the ring of polynomials in 4n variables withcomplex coe�cients, and hAni is the module generated by the columns of a4�4n matrix which arises as the Fourier transformof the matrix of di�erentialoperators associated with the regularity condition for a function of n quater-nionic variables. As a corollary we show that the sheaf R of regular functionshas 
abby dimension 2n�1, and we prove a cohomology vanishing theorem foropen sets in the space Hn of quaternions. We also show that Extj(Mn; R) = 0;for j = 1; : : : ;2n�2 and Ext2n�1(Mn; R) 6= 0; and we use this result to showthe removability of certain singularities of the Cauchy{Fueter system.R�esum�e. Soit R l'anneau des polynomes de 4n variables. Soit An la trans-formation de Fourier de la matrice d'op�erateurs di��erentiels associ�ee �a la con-dition de r�egularit�e impos�ee �a une fonction de n variables quaterniones. Soitaussi hAni le module d�e�ni par les colonnes de An . Dans cet article nousprouvons que la dimension projective du moduleMn = R4=hAni est 2n � 1.Nous prouvons ensuite, dans un corollaire, que la dimension 
asque du fais-ceau R des fonctions r�eguli�eres est 2n � 1, et nous prouvons que certainsgroups de cohomologie sont z�ero pour les ouverts de l'espace Hn de quater-nions. Nous prouvons que Extj(Mn; R) = 0; pour j = 1; : : : ;2n � 2 et queExt2n�1(Mn; R) 6= 0, et nous utilisons ce r�esultat pour prouver que certainessingularit�es du system de Cauchy-Fueter peuvent être �elimin�ees.1. IntroductionIn a recent paper, [1], the authors have studied the Cauchy{Fueter system withthe purpose of analyzing the singularities of regular functions of several quaternionicvariables. We now recall the basic set-up of our problem. Let f = (f0; f1; f2; f3) bea vector whose components are C1 functions in 4n real variables ( �i0; �i1; �i2; �i3;Date: December 11, 1995. 1



2 W.W. ADAMS, P. LOUSTAUNAU, V.P. PALAMODOV, D.C. STRUPPAi = 1; : : : ; n). We say that f is left regular if,8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>: @f0@�i0 � @f1@�i1 � @f2@�i2 � @f3@�i3 = 0@f0@�i1 + @f1@�i0 � @f2@�i3 + @f3@�i2 = 0@f0@�i2 + @f1@�i3 + @f2@�i0 � @f3@�i1 = 0@f0@�i3 � @f1@�i2 + @f2@�i1 + @f3@�i0 = 0(1)for i = 1; : : : ; n. We can view f as a function f : Hn �! H; where H is the spaceof quaternions. If we let q = (q1; : : : ; qn) be the variable in Hn, then Condition (1)is equivalent to @f@�qi = 0; i = 1; : : : ; n:(2)By taking the Fourier transform of the matrix of di�erential operators associatedto Equation (1), one is led to consider the matrixAn = �U1 U2 � � � Un� ;where Ui = 2664 xi0 xi1 xi2 xi3�xi1 xi0 xi3 �xi2�xi2 �xi3 xi0 xi1�xi3 xi2 �xi1 xi0 3775 ;for i = 1; : : : ; n, and where the variables xij are the dual variables of the variables�ij.Let R = C[xi0; xi1; xi2; xi3 j i = 1; : : : ; n] and let }n be the maximal ideal of Rgenerated by the 4n variables. Given a matrix A, we denote by hAi the R-modulegenerated by the columns of A. In [1] we showed, among other things, thatpd(R4=hA1i) = 1; and pd(R4=hA2i) = 3;where pd(M ) denotes the projective dimension of an R-module M . In this paperwe prove that, for every n � 1,pd(R4=hAni) = 2n� 1;Extj(R4=hAni; R) = 0; 0 � j � 2n� 2; and Ext2n�1(R4=hAni; R) 6= 0:In Section 3 we show how this result has interesting and unexpected consequencesfor the theory of regular functions. In particular we prove that if R is the sheaf ofregular functions, then its 
abby dimension, 
:dim(R); is 2n� 1. In particular thisshows that if U is any open set in Hn and p � 2n � 1, then Hp(U;R) = 0. Thisresult is a quaternionic version of the famous result of Malgrange for holomorphicfunctions (see [7]) and we do not see how it could have been proved by purelyanalytic methods. We also give some results on the removability of singularities ofthe Cauchy{Fueter system.



HARTOG'S PHENOMENON AND PROJECTIVE DIMENSION OF RELATED MODULES 3We note that we can compute the projective dimension of R4=hAni for n = 1; 2; 3using the software CoCoA1 which gives the explicit minimal free resolutions ofR4=hAni for n = 1; 2; 3. In the present paper we give an algebraic proof of theequality pd(R4=hAni) = 2n � 1 using techniques from commutative and computa-tional algebra, in particular Gr�obner bases. For any particular n CoCoA could beused, in principle, to compute a minimal resolution of R4=hAni, however, runningCoCoA on a Sparc 10, we were able to compute only the cases n = 1; 2; 3 (themachine crashed at n = 4, and the �le of the 4 matrices which de�ne the freeresolution for n = 3 is 128kbytes!)2. Projective Dimension of R4=hAniIn this section we compute the projective dimension of the R-module Mn =R4=hAni. Since nothing is changed in the proofs below until we get to Theorem2.6 we will assume until then that R is the polynomial ring in the given variablesover any �eld k.If n = 1, it is straightforward to see that the syzygy module of A1 is zero, andso pd(M1) = 1. >From now on we will assume that n > 1.We will use the Auslander-Buchsbaum formula (see, for example, [4, Theorem19.9 and Exercise 19.8])pd(Mn) = depth(}n; R)� depth(}n;Mn):We recall that, for an ideal I of R and an R-module M , the depth of I on M ,denoted depth(I;M ), is the length of any maximal M -regular sequence in I. Thepolynomials f1; : : : ; fs 2 I form an M -regular sequence if1. f� is a non-zerodivisor on M=hf1; : : : ; f��1iM; for � = 1; : : : ; s;2. M 6= hf1; : : : ; fsiM .See, for example, [4] for a thorough development of the notion of depth. Clearly,depth(}n; R) = 4n, so we only need to compute depth(}n;Mn): To do this we willexhibit a maximalMn-regular sequence in }n.This will be accomplished using the theory of Gr�obner bases (see, for example,[2] for a detailed presentation of Gr�obner bases). Related ideas were used in [8, ch.II, Section 2.4]. We �rst need a Gr�obner basis for hAni . We use the degree reverselexicographic (degrevlex) term ordering on R withx10 > x20 > � � � > xn0 > x11 > � � � > xn1 > x12 > � � � > xn3;(3)and the TOP (TOP stands for term over position) ordering on R4 with e1 > e2 >e3 > e4; where ei is the ith column of the 4 � 4 identity matrix. That is, formonomials X = x�1010 � � �x�n3n3 and Y = x�1010 � � �x�n3n3 , we haveXer > Y es ()8>>>>>><>>>>>>:deg(X) = Xi=1;:::;nj=0;1;2;3�ij > deg(Y ) = Xi=1;:::;nj=0;1;2;3�ij ordeg(X) = deg(Y ) and �ij < �ij for the index ij;last with respect to (3), such that �ij 6= �ij orX = Y and r < s:1CoCoA is a special purpose system for doing computations in commutative algebra. It isthe ongoing product of a research team in Computer Algebra at the University of Genova, Italy.It is freely available, and more information can be obtained by sending an e-mail message tococoa@dima.unige.it.



4 W.W. ADAMS, P. LOUSTAUNAU, V.P. PALAMODOV, D.C. STRUPPALemma 2.1. The reduced Gr�obner basis for the R-module hAni is given by thecolumns of An together with the columns of the �n2� matrices UrUs�UsUr . Moreoverthe module generated by the leading terms of all the elements of hAni, denotedLt(An), is Lt(An) = hxi0e`; xr2xs1e`i i=1;:::;n1�r<s�n`=1;2;3;4 :Proof. It is easy to verify the statement for n = 2; 3; and 4 using CoCoA. Letn > 4. The S-polynomial of any two columns of An can be computed and reducedas in the case n = 2, and so the S-polynomials generated by the columns of Angive rise to the vectors in the columns of the matrices UrUs �UsUr : To verify thatthe columns of An together with the columns of all distinct UrUs � UsUr formthe reduced Gr�obner basis of hAni, we need to verify that all the S-polynomialsgenerated by these vectors reduce to zero. An S-polynomial generated by a columnof An and a column of UrUs �UsUr is computed and reduced as in the case n = 2or 3, depending on whether the column of An comes from Ur , Us, or neither. AnS-polynomial generated by two columns of UrUs � UsUr is computed and reducedas in the case n = 2. An S-polynomial generated by a column of UrUs � UsUrand a column of UtUu � UuUt is computed and reduced as in the case n = 3 or 4,depending on whether one or none of the indices r; s; and t; u is the same.For the statement about Lt(An), we �rst note that, for 1 � r < s � n, UrUs �UsUr =2664 0 �xr3xs2 + xr2xs3 �xr3xs1 + xr1xs3 xr2xs1 � xr1xs2xr3xs2 � xr2xs3 0 xr2xs1 � xr1xs2 xr3xs1 � xr1xs3�xr3xs1 + xr1xs3 xr2xs1 � xr1xs2 0 xr3xs2 � xr2xs3xr2xs1 � xr1xs2 xr3xs1 � xr1xs3 �xr3xs2 + xr2xs3 0 3775 :The result then follows immediately from the de�nition of the term ordering.This result allows us to start an Mn-regular sequence in }n.Corollary 2.2. The variables x11; xn2; xi3; i = 1; : : : ; n form an Mn-regular se-quence of length n+ 2.Proof. We note that the variables x11; xn2; xi3; i = 1; : : : ; n are precisely the vari-ables which do not appear in any of the leading terms of the elements of the reducedGr�obner basis of hAni given in Lemma 2.1. In general, if D is a submodule of R4and a variable xij does not appear in any of the leading terms in a Gr�obner basis forD, then xij is a non-zero divisor on R4=D. This is because if 0 6= g 2 R4 and g isreduced with respect to the Gr�obner basis of D and xijg is in D then xijlt(g) mustbe divisible by the leading term of one of the elements of the given Gr�obner basisand so then lt(g) must also be divisible by the same leading term, contradictingthe fact that g is reduced.To enlarge this regular sequence, we consider the moduleM�n =Mn=hx11; xn2; xi3; i = 1; : : : ; niMn' R4=hAn + hx11; xn2; xi3; i = 1; : : : ; niR4i= R4=hUi; UrUs � UsUr ; x11e`; xn2e`; xi3e`i i=1;:::;n1�r<s�n`=1;2;3;4 :



HARTOG'S PHENOMENON AND PROJECTIVE DIMENSION OF RELATED MODULES 5Let B = hUi; UrUs � UsUr ; x11e`; xn2e`; xi3e`i i=1;:::;n1�r<s�n`=1;2;3;4 . We note that the columnsof UrUs�UsUr can be reduced, using xr3e`; and xs3e`, ` = 1; 2; 3; 4; to the matrix2664 0 0 0 xr2xs1 � xr1xs20 0 xr2xs1 � xr1xs2 00 xr2xs1 � xr1xs2 0 0xr2xs1 � xr1xs2 0 0 0 3775 :So we have B = hUi; (xr2xs1 � xr1xs2)e`; x11e`; xn2e`; xi3e`i i=1;:::;n1�r<s�n`=1;2;3;4 :(4)We note that the generators of B given in (4) form a Gr�obner basis for B. To seethis, note that the only S-polynomials we need to consider are those computed usinga column of Ui and one of (xr2xs1� xr1xs2)e`, x11e`; xn2e`; or xi3e`. The leadingterms of the columns of Ui are xi0e` which are relatively prime to x11e`; xn2e`; andxi3e`, and it is easy to verify that the corresponding S-polynomials reduce to zero.The leading term of (xr2xs1 � xr1xs2)e` is xr2xs1e`, and so it is relatively primeto xi0. Again, it is easy to verify that the corresponding S-polynomials reduce tozero.Proposition 2.3. The polynomials x21 + x12; x31 + x22; : : : ; xn1 + xn�1;2 form amaximal M�n-regular sequence in }n.Proof. In order to show that the polynomials x21+x12; x31+x22; : : : ; xn1+xn�1;2form aM�n-regular sequence in }n, we need to show that the polynomialx�+1;1+x�2is a non-zero divisor on R4=B��1 (for � = 1; 2; : : : ; n�1), where B��1 = hB; (x21+x12)e`; (x31 + x22)e`; : : : ; (x�1 + x��1;2)e`i`=1;2;3;4 (and B0 = B). Then to showthat the sequence is maximal we will show that every element of }n is a zero divisoron R4=Bn�1.In order to do this we �rst �nd a Gr�obner basis for B��1 for 1 � � � n. Thisbasis will consist of the following vectors:a) The columns of Ui for 1 � i � nb) x12xs�1;2e` for 2 � s � �c) x12xs1e` for � + 1 � s � nd) xr2xn1e` for 1 � r < ne) (xr2xs�1;2 � xr�1;2xs2)e` for 2 � r < s � �f) (xr2xs1 + xr�1;2xs2)e` for 2 � r � � < s < ng) (xr2xs1 � xr1xs2)e` for � < r < s < nh) x11e`i) xn2e`j) xi3e` for 1 � i � nk) (xr1 + xr�1;2)e` for 1 < r � �;where ` = 1; 2; 3; 4: These vectors are obtained from the vectors in the generatingset for B given in Equation (4) by substituting 0 for x11 and xn2, and �xr�1;2 forxr1. Thus the given vectors do form a generating set for the module B��1. Thatthis set of vectors forms a Gr�obner basis with respect to the given order can beveri�ed by checking that all the corresponding S-polynomials in fact reduce to 0.Note that all of the vectors above are written with their leading term �rst. Also



6 W.W. ADAMS, P. LOUSTAUNAU, V.P. PALAMODOV, D.C. STRUPPAnote that in the extreme cases for �, i.e. � = 1 and � = n� 1, the ranges in manyof the above contain no r or s. We denote this Gr�obner basis of B��1 by G��1.We now verify that for � = 1; 2; : : : ; n � 1, x�+1;1 + x�2 is a non-zero divisoron R4=B��1. The veri�cation will be made in the case where all of the vectors inthe above list appear. The extreme cases of � = 1 and � = n � 1 are the samebut avoid some of the complications of the following. So assume that we have avector g in R4 � B��1 such that (x�+1;1 + x�2)g 2 B��1. We may assume that gis reduced with respect to G��1. In particular this means that g can only containthe variables xr1 for � + 1 � r � n and xs2 for 1 � s � n � 1 (that the variablesx11; xn2; xi3 (1 � i � n); and xr1 (1 < r � �) do not appear follows immediatelyfrom the vectors in h), i), j), and k) in the above list for the Gr�obner basis for B��1;that the variables xi0 for 1 � i � n do not appear follows from the fact that in thematrices Ui for 1 � i � n there is a leading term of the form xi0e` for 1 � i � nand ` = 1; 2; 3; 4 and no xi0 in any other coordinate of that vector in Ui.We, of course, have that (x�+1;1 + x�2)g reduces to zero by G��1. Only thevectors in b), c), d), e), f), and g) in the list for the Gr�obner basis G��1 above canever be used to reduce (x�+1;1+x�2)g. Now g must have a non-zero coordinate, sayge` (for some ` = 1; 2; 3; 4). Then, due to the nature of the vectors in the Gr�obnerbasis G��1 that can be use to reduce (x�+1;1 + x�2)g, we see that (x�+1;1 + x�2)gmust reduce to zero using the polynomials in the list below:b) x12xs�1;2 for 2 � s � �c) x12xs1 for � + 1 � s � nd) xr2xn1 for 1 � r < ne) xr2xs�1;2 � xr�1;2xs2 for 2 � r < s � �f) xr2xs1 + xr�1;2xs2 for 2 � r � � < s < ng) xr2xs1 � xr1xs2 for � < r < s < n:Denote this list of polynomials by H��1. Note that g is reduced with respect toH��1 and only involves the variables xr1 for �+1 � r � n and xs2 for 1 � s � n�1.Thus one of the leading power products in H��1 must divide lp((x�+1;1+x�2)g) =x�+1;1lp(g) and cannot divide lp(g). These polynomials come from the polynomialsin c) and f) in the list for H��1 above, and so we see that xr2 must divide lp(g)for one of r = 1; : : : ; �. Since g is reduced with respect to H��1 we see, using thepolynomials in c), d), and f) in the list for H��1, that no xr1 can divide lp(g). Thusg = xa112xa222 � � �xan�1n�1;2+ h;where all of the terms in h are smaller than lp(g) = xa112 � � �xan�1n�1;2. Moreover one ofthe ar , for 1 � r � � is non-zero. Then(x�+1;1 + x�2)g =x�+1;1xa112 � � �xan�1n�1;2 + xa112 � � �xa��1��1;2xa�+1�2 xa�+1�+1;2 � � �xan�1n�1;2+ (x�+1;1 + x�2)h:If a1 � 1 then using the monomial in c) in the list for H��1 we have that (x�+1;1+x�2)g reduces to xa112 � � �xa��1��1;2xa�+1�2 xa�+1�+1;2 � � �xan�1n�1;2 + (x�+1;1 + x�2)h: If a1 = 0,then one of a2; : : : ; a� is greater than zero, say aj � 1 (2 � j � �), and so usingthe polynomial x�+1;1xj2 + xj�1;2x�+1;2 in f) in the list for H��1 we have that(x�+1;1 + x�2)g reduces to�xa112 � � �xaj�2j�2;2xaj�1j;2 xaj�1+1j�1;2 � � �xa��;2xa�+1+1�+1;2 xa�+2�+2;2 � � �xan�1n�1;2+xa112 � � �xa��1��1;2xa�+1�2 xa�+1�+1;2 � � �xan�1n�1;2 + (x�+1;1 + x�2)h:



HARTOG'S PHENOMENON AND PROJECTIVE DIMENSION OF RELATED MODULES 7We see that the second term in this last expression is larger than the �rst term inthe degrevlex ordering, since a�+1+1 > a�+1 (the degrees of the two monomials arethe same). Thus the leading power product in the reduced polynomial just obtainedfrom (x�+1;1 + x�2)g is either xa112 � � �xa��1��1;2xa�+1�2 xa�+1�+1;2 � � �xan�1n�1;2 or x�+1;1lp(h).Claim. Let X be a term of h such thatx�+1;1X > xa112 � � �xa��1��1;2xa�+1�2 xa�+1�+1;2 � � �xan�1n�1;2:Assume that x�+1;1X can be reduced using H��1. Then x�+1;1X can be reducedto a term Y , using H��1, such thatY < xa112 � � �xa��1��1;2xa�+1�2 xa�+1�+1;2 � � �xan�1n�1;2:Assuming the Claim we complete the proof that x�+1;1+x�2 is a non-zero divisoron R4=B��1 as follows. We �rst observe that xa112 � � �xa��1��1;2xa�+1�2 xa�+1�+1;2 � � �xan�1n�1;2cannot be reduced using H��1. To see this we note that since only the variablesxs2 appear we could only possibly use the polynomials in b) or e) in the list forH��1; then since g is reduced with respect to H��1, x�2 would have to appear inthe polynomial used to do the reduction, but this variable does not appear in anyof the polynomials in b) and e). Thus if xa112 � � �xa��1��1;2xa�+1�2 xa�+1�+1;2 � � �xan�1n�1;2 is theleading term we have a contradiction. Otherwise x�+1;1lp(h) is the leading termand so must be reducible using H��1. Letting X = lt(h) in the Claim and settingh0 = h� lt(h) we reduce (x�+1;1 + x�2)g toxa112 � � �xa��1��1;2xa�+1�2 xa�+1�+1;2 � � �xan�1n�1;2+ Y + x�2X + (x�+1;1 + x�2)h0:Since lp(g) > lp(h) we see that the leading term of this last expression is ei-ther xa112 � � �xa��1��1;2xa�+1�2 xa�+1�+1;2 � � �xan�1n�1;2 or x�+1;1lp(h0). If it is the latter thenx�+1;1lp(h0) must be reducible using H��1. Thus the argument may be repeateduntil we obtain an expression which must reduce to zero using H��1 but whoseleading term is xa112 � � �xa��1��1;2xa�+1�2 xa�+1�+1;2 � � �xan�1n�1;2 and we have again arrived at acontradiction.It remains to prove the Claim. As above, we see that x�+1;1X can only bereduced using the polynomials in c) and f) in the list for H��1 above. Thus xr2must divide X for some r = 1; : : : ; �. Moreover no variable xr1 can divide X sinceX cannot be reduced using H��1. Thus X = xb112xb222 � � �xbn�1n�1;2. Now if we can usethe monomial x12x�+1;1 in c) then x�+1;1X reduces to 0 and the Claim is true.Otherwise xr2 divides X for some r such that 2 � r � �: For the reduction ofx�+1;1X we replace xr2x�+1;1 by �xr�1;2x�+1;2. Thus we need to show thatXxr2xr�1;2x�+1;2 < xa112 � � �xa��1��1;2xa�+1�2 xa�+1�+1;2 � � �xan�1n�1;2(5)under the hypothesesX = xb112 � � �xbn�1n�1;2 < X = xa112 � � �xan�1n�1;2and x�+1;1X > xa112 � � �xa��1��1;2xa�+1�2 xa�+1�+1;2 � � �xan�1n�1;2:These two hypotheses guarantee that all terms present have the same degree. Fromthe �rst we choose ` such thatb`+1 = a`+1; : : : ; bn�1 = an�1; b` > a`:Then the second hypothesis guarantees that ` � �. but then the left side of Equa-tion (5), Xxr2xr�1;2x�+1;2; has the exponent b�+1+ 1 for x�+1;2 while the right side



8 W.W. ADAMS, P. LOUSTAUNAU, V.P. PALAMODOV, D.C. STRUPPAhas the exponent a�+1 = b�+1 and both sides have equal exponents for all xr2 forr > � + 1. Thus (5) is true and this completes the proof of the Claim.It remains to show that every element of }n is a zero divisor on R4=Bn�1. We�rst need to reduce the Gr�obner basis given above for Bn�1. First note that thisGr�obner basis is given by the following vectors:a) The columns of Ui for 1 � i � nb) x12xs�1;2e` for 2 � s � nd) xr2xn1e` for 1 � r < ne) (xr2xs�1;2 � xr�1;2xs2)e` for 2 � r < s < nh) x11e`i) xn2e`j) xi3e` for 1 � i � nk) (xr1 + xr�1;2)e` for 1 < r � n;where ` = 1; 2; 3; 4: We �rst note that we can use the vector in k) with r = n toreduce the vectors in d) to xr2xn�1;2e` for 1 � r < n. We now look at the vectorsin e). If s = n�1 then use xr�1;2xn�1;2e` to reduce (xr2xn�2;2�xr�1;2xn�1;2)e` toxr2xn�2;2e`. Then with this last vector we reduce the vector in e) with s = n� 2,(xr2xn�3;2�xr�1;2xn�2;2)e` to xr2xn�3;2e`. Continue in this fashion and we obtainthe reduced Gr�obner basis for Bn�1 consisting of the following vectors1. The columns of Ui for 1 � i � n2. xs2xr2e` for 1 � r � s � n� 1.3. x11e`4. xn2e`5. xi3e` for 1 � i � n6. (xr1 + xr�1;2)e` for 1 < r � n;where ` = 1; 2; 3; 4: Denote this Gr�obner basis by G.So let f 2 }n be non-zero. If fe1 2 Bn�1 then f(e1 + Bn�1) = 0 and soe1 =2 Bn�1 implies that f is a zero divisor. So assume that fe1 =2 Bn�1. Thenf(fe1 + Bn�1) = f2e1 + Bn�1, and so it su�ces to show that for any f 2 }n,f2e1 2 Bn�1; that is, show that f2e1 reduces to zero using G. Since f 2 }n everyterm in f2 is of degree 2 or higher. Then, using the columns of the Ui's, we canreduce f2e1 to a vector f1 with no variables xi0 (1 � i � n) in it and with all termsof degree 2 or higher. Then, using the last four types of vectors itemized in G above,we can reduce f1 to a vector f2 containing only the variables xr2 (1 � r � n � 1)and with all terms of degree 2 or higher. Finally, using the vectors in 2) above, wesee f2 reduces to zero.We can now obtain the formula for the projective dimension of Mn.Theorem 2.4. pd(Mn) = 2n� 1:Proof. By the Auslander-Buchsbaum formula we havepd(Mn) = depth(}n; R)� depth(}n;Mn) = 4n� depth(}n;Mn):By Corollary 2.2 and Proposition 2.3 we havedepth(}n;Mn) = 2n+ 1:



HARTOG'S PHENOMENON AND PROJECTIVE DIMENSION OF RELATED MODULES 9Remark 2.5. We now have a free resolution of R4=hAni0 �! Rr2n�1 C�! Rr2n�2 B�! � � � �! Rr2 �! R4n �! R4 �! R4=hAni �! 0(6)(by the well-known Quillen-Suslin Theorem, we know that every projective R-module is free, see [9]). By taking the dual of Resolution (6) we obtain a complex0 �! R4 �! R4n �! Rr2 �! � � � �! Rr2n�2 Ct�! Rr2n�1 �! 0;(7)whose homology groups are, by de�nition, Exti(Mn; R): We see that the last ho-mology, Ext2n�1(Mn; R), in (7) is not zero. Indeed, if the map Rr2n�2 �! Rr2n�1is onto, then we obtain a matrix D with Dt de�ning a map Rr2n�1 �! Rr2n�2 suchthat CtDt = I, the identity. So we get that DC = I as well and the map C inResolution (6) splits, Rr2n�2 = imC � kerD. Since kerD is free and B restrictedto kerD is one to one we have obtained a shorter free resolution for R4=hAni than(7), which violates Theorem 2.4.It is actually possible to say more than this.Theorem 2.6. Sequence (7) is exact except at the last spot, i.e.Extj(Mn; R) = 0; for all j = 0; : : : ; 2n� 2and Ext2n�1(Mn; R) 6= 0:Proof. We will prove in the next Proposition that the characteristic variety V (Mn)of Mn (which can be de�ned, in view of [8, Proposition 2, p. 139], as the set ofpoints where the rank of An is strictly less than 4) has dimension 2n + 1. Butthen, by [8, Corollary 1, p. 377], we have immediately that Extj(Mn; R) = 0 forj < 2n� 1 and Ext2n�1(Mn; R) 6= 0.Proposition 2.7. The characteristic variety V (Mn) of Mn has dimension 2n+1.Proof. As observed above, the characteristic variety Vn = V (Mn) is the subset ofpoints � 2 C4n where the rank of the matrix An(�) is strictly less than 4. We showthat the algebraic set Vn has dimension 2n + 1 in a neighborhood of an arbitrarypoint �0 6= 0 in Vn.We write � = (�1; : : : ; �n) 2 Vn; where �1; : : : ; �n 2 C4. We may assume that�1 6= 0. Finally we write �i = (�i0; �i1; �i2; �i3); where �ij 2 C, for i = 1; : : : ; n.We can consider each vector �i as the element �i = �i0 + �i1i�+ �i2j�+ �i3k� of thecomplexi�ed quaternionic algebra HC = H 
R C, where f1�; i�; j�; k�g is the standardbasis for the C-vector space HC. This is an associative C-algebra with involution��i = �i0 � �i1i�� �i2j�� �i3k�. It is easy to see that the columns of An(�) correspondto the quaternions��1 ; ��1 i�; ��1 j�; ��1k�; ��2 ; ��2 i�; ��2 j�; ��2k�; : : : ; ��n; ��ni�; ��nj�; ��nk�:The determinant of the �rst four columns of An(�) is easily computed to be(��1�1)2, where ��1�1 = �210 + �211 + �212 + �213. The equation ��1�1 = 0 de�nes aquadratic cone V1 in C4 of dimension three.For � 2 HC we de�ne four complex subspaces of HC as follows. SetL� = f�qjq 2 HCg and L?� = fq 2 HCj�q = 0g;R� = fq�jq 2 HCg and R?� = fq 2 HCjq� = 0g:



10 W.W. ADAMS, P. LOUSTAUNAU, V.P. PALAMODOV, D.C. STRUPPAOne of the �rst two spaces is the image of left multiplication in HC by � and theother is the kernel of this map so we have that dimC L� + dimCL?� = 4: We alsohave dimCR� + dimCR?� = 4:For � 6= 0 and � 2 V1, i.e. ��� = 0, we see that dimC L� = 2. This followssince the matrix of the map of left multiplication by � with respect to the basisf1�; i�; j�; k�g is the �rst four columns of An with �� substituted in and the three bythree subdeterminants of this matrix are readily computed to all be multiples of���, while � 6= 0 easily implies that not all of the two by two subdeterminants arezero. Moreover, since L� � L?�� , we conclude from looking at the dimensions thatL� = L?�� : We similarly get dimCR� = 2 and R� = R?�� :We now show that� 2 Vn if and only if �1 2 V1 and �j 2 R�1(2 � j � n):First assume that �1 2 V1 and �j 2 R�1(2 � j � n): Then �j = qj�1, for someqj 2 HC. So ��j � 2 L��1 where � = 1; i�; j�; k� and so we see that the column space ofAn(�) is contained in the two dimensional space L��1 and so the rank of An(�) is2 < 4, and so � 2 Vn.Conversely assume that � 2 Vn. Since dimCL��1 = 2 we may assume, by sym-metry, that ��1 and ��1 i� are linearly independent and so form a basis for L��1 . Fix aj. Since the rank of An(�) is less than 4, we have that ��1 ; ��1 i�; ��j ; ��j i� are linearlydependent, and so there are complex numbers a1; b1; c1; d1, not all zero, such that��1 (a1 + b1i�) = ��j (c1 + d1i�):Since ��1 and ��1 i� are linearly independent we must have one of c1; d1 non-zero. Nowif d1 = 0 then �j = q��1 2 R�1 where q = c�11 (a1 + b1i�) and we would be done. Soassume that d1 6= 0. Similarly we would be done unless we had complex numbersa2; b2; c2; d2; a3; b3; c3; d3 with d2 6= 0; d3 6= 0 such that��1 (a2 + b2i�) = ��j (c2 + d2j�)and ��1 (a3 + b3i�) = ��j (c3 + d3k�):Multiplying these last three displayed equations on the left by �1, recalling that�1��1 = 0, we obtain �1��j (c1 + d1i�) = 0; �1��j (c2 + d2j�) = 0; and �1��j (c3 + d3k�) = 0.That is, we have c1 + d1i�; c2 + d2j�; c3 + d3k� 2 L?�1��j :Now (�1��j )(�1��j )� = 0 and so c1 + d1i�; c2 + d2j�; c3 + d3k� linearly independent overC implies �1��j = 0, since �1��j 6= 0 implies dimC L?�1��j = 2. Thus we have��j 2 L?�1 = L��1 :We conclude that ��j = ��1q for some q 2 HC and thus �j = q��1 2 R�1 , as desired.The dimension of Vn follows immediately:dimC Vn = dimC V1 + (n � 1) dimCR�1 = 3 + 2(n� 1) = 2n+ 1:



HARTOG'S PHENOMENON AND PROJECTIVE DIMENSION OF RELATED MODULES 113. Application to the Theory of Regular FunctionsLet P (D) = [Pij(D)] be the 4n� 4 matrix of di�erential operators de�ning theCauchy{Fueter system (1). We have thatP (D) : �E �R4n��4 �! �E �R4n��4nand we denote by R = EP the sheaf of C1 solutions of P , i.e. the sheaf of regularfunctions (see Section 1). Note that, since P is an elliptic system (see, e.g., [5]), wehave R = EP = D0P , where D0 is the sheaf of distributions. However a fundamentalresult of Bengel-Harvey-Komatsu (see [6]) shows that we also have R = BP ; whereB is the sheaf of hyperfunctions. This fact immediately allows us to prove thefollowingTheorem 3.1. The sheaf R has 
abby dimension equal to 2n� 1.Proof. We �rst note that the matrix An is the transpose of the Fourier transformof P (D), so from Theorem 2.4 we have the complex (7) which gives us0 �! BP �! B4 P (D)�! B4n �! Br2 �! � � � �! Br2n�2 �! Br2n�1 �! 0;(8)which is a resolution of the sheaf BP . This result is essentially due to Ehrenpreis-Malgrange-Palamodov, but in the hyperfunction setting it was actually proved byKomatsu (see [6] for details and references). Since R = BP , as we noted above, andsince B is 
abby, Resolution (8) proves that 
:dim(R) � 2n�1. On the other hand,the 
abby dimension cannot be strictly less than 2n�1, since (see [6, Theorem 1.2])this would imply the vanishing of H2n�1(Hn;HnnK;R) for every compact convexset K in Hn. This would imply that Ext2n�1(Mn; R) = 0; which would contradictRemark 2.5 or Theorem 2.6. We have therefore proved that 
:dim(R) = 2n�1:Remark 3.2. For n = 1; 2 this result is implicitly contained in [5] and [1] eventhough it was not explicitly stated.Remark 3.3. Theorem 3.1 generalizes to the sheaf of germs of regular functionsthe well-known fact that 
:dim(O) = n, where O is the sheaf of germs of holomor-phic functions. Such a result was probably hard to imagine before our computationsin [1].As we have shown in [5], all open sets U in H are cohomologically trivial in thesense that Hp(U;R) = 0 p � 1:In [1], on the other hand, we showed that this result fails for n > 1, since a Hartog'sphenomenon occurs. This situation clearly mirrors what happens for the sheaf O ofholomorphic functions. In that case, the most important result, due to Malgrange[7], states that, for any open set U � Cn,Hp(U;O) = 0 p � n:In our case, the analog of such a statement is an immediate corollary of Theorem3.1.Corollary 3.4. If U is any open set in Hn, thenHp(U;R) = 0 p � 2n� 1:



12 W.W. ADAMS, P. LOUSTAUNAU, V.P. PALAMODOV, D.C. STRUPPAOnce again, we believe this result to be quite unexpected. We do not know ofany analytic proof for it.Let us now explain the signi�cance of these results for the construction of atheory of quaternionic hyperfunctions. As it is well-known, see for example [10],the theory of hyperfunctions is based on two key facts: one is that the 
abbydimension of O is n and the other is the fact that Rn is purely n-codimensional inCn (see [6] or [10]). These facts allowed Sato to de�ne B as the n-th derived sheafHnRn(O) of O restricted to Rn. It is therefore clear that the present paper providesus with the �rst step towards a similar construction. The di�culty will be to �gureout which subset S of Hn should be chosen to restrict the derived sheaf. In [5], wetook S = ~H = fq = x0 + ix1 + jx2 + kx3; x0 = 0g � Hwhich is purely 1-codimensional and we were able to reconstruct the entire theory.We conclude by pointing out other interesting byproducts of the results fromSection 2. To begin with, one can use our arguments from [1] to completely restorethe duality theorem which prompted our interest in this investigations.Theorem 3.5. Let K be a compact convex set in Hn. Then if S denotes the sheafof distribution solutions to the system associated to the matrix Ct which appears in(7), then H2n�1(Hn;HnnK;S) ' [H0(K;R)]0:On the other hand, the vanishing of so many Ext-modules also gives more infor-mation on removability of singularities of the Cauchy{Fueter system.Theorem 3.6. Let 
 be a convex connected open set in Hn = R4n, and let Kbe a compact subset of 
: Let �1; : : : ;�2n�2 be closed half spaces in R4n and set� = �1 [ � � � [ �2n�2: Then every regular function f 2 
n(K [ �) extends to aregular function ~f 2 
n� which coincides with f in 
n(K 0 [�); for K 0 a compactsubset of 
:Proof. This is an immediate consequence of our Theorem 2.6 and of [8, Theorem4, p. 405].Theorem 3.7. Let L be a subspace of Hn = R4n of dimension 2n + 2: Then forevery compact K contained in L, and every connected open set 
; relatively compactin K; every regular function de�ned in the neighborhood of Kn
 can be extended toa regular function de�ned in a neighborhood of K.Proof. This result follows again from our Theorem 2.6 together with [8, Theorem3, p. 403] if we can prove that none of the varieties associated to the moduleExt2n�1(Mn; R) is hyperbolic with respect to L. However, [8, Corollary 2, p. 377]shows that V (Ext2n�1(Mn; R)) is contained in V (Mn); and since Mn is elliptic,we can conclude that every variety in V (Ext2n�1(Mn; R)) is elliptic and thereforecannot be hyperbolic. This concludes the proof.References[1] W.W. Adams, C.A. Berenstein, P. Loustaunau, I. Sabadini, and D.C. Struppa,Regular Func-tions of Several Quaternionic Variables and the Cauchy{Fueter Complex, submitted to J. ofComplex Analysis[2] W.W. Adams and P. Loustaunau, An Introduction to Gr�obner Bases, Graduate Studies inMathematics, Vol. 3, American Mathematical Society, Providence, RI, 1994.
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