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HARTOG’S PHENOMENON FOR POLYREGULAR FUNCTIONS
AND PROJECTIVE DIMENSION OF RELATED MODULES
OVER A POLYNOMIAL RING

W.W. ADAMS, P. LOUSTAUNAU, V.P. PALAMODOV, D.C. STRUPPA

ABSTRACT. In this paper we prove that the projective dimension of M,, =
R*/{Ay) is 2n — 1, where R is the ring of polynomials in 4n variables with
complex coeflicients, and (A} is the module generated by the columns of a
4 X 4n matrix which arises as the Fourier transform of the matrix of differential
operators associated with the regularity condition for a function of n quater-
nionic variables. As a corollary we show that the sheaf R of regular functions
has flabby dimension 2n— 1, and we prove a cohomology vanishing theorem for
open sets in the space H” of quaternions. We also show that Ext’ (M, R) = 0,
for j=1,...,2n—2 and Ext>"~}(M,, R) # 0, and we use this result to show
the removability of certain singularities of the Cauchy—Fueter system.

RESUME. Soit R I'anneau des polynomes de 4n variables. Soit A, la trans-
formation de Fourier de la matrice d’opérateurs différentiels associée a la con-
dition de régularité imposée 4 une fonction de n variables quaterniones. Soit
aussi (An> le module défini par les colonnes de A,,. Dans cet article nous
prouvons que la dimension projective du module My, = R*/(A4,,) est 2n — 1.
Nous prouvons ensuite, dans un corollaire, que la dimension flasque du fais-
ceau R des fonctions réguliéres est 2n — 1, et nous prouvons que certains
groups de cohomologie sont zéro pour les ouverts de ’espace H" de quater-
nions. Nous prouvons que Ext! (M, R) = 0, pour j = 1,...,2n — 2 et que
Ext?7—! (Mn, R) # 0, et nous utilisons ce résultat pour prouver que certaines
singularités du system de Cauchy-Fueter peuvent étre éliminées.

1. INTRODUCTION

In a recent paper, [1], the authors have studied the Cauchy—Fueter system with
the purpose of analyzing the singularities of regular functions of several quaternionic
variables. We now recall the basic set-up of our problem. Let f = (fo, f1, fa, f3) be
a vector whose components are C* functions in 4n real variables ( &, &1, &2, &is;
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i=1,...,n). We say that f is left reqular if,
ofo  0fr 0fr Ofs _

%_%_@_@—0
(1) gé'ol * ggf; - 552 + gé?; =0
k0 b
g&f; B gg;lz * ggz + géi =0
for i =1,...,n. We can view f as a function f : I — H, where H is the space

of quaternions. If we let ¢ = (¢1, ..., ¢n) be the variable in H”, then Condition (1)
1s equivalent to

of
(2) 3@'—0’ t1=1,...,n.

By taking the Fourier transform of the matrix of differential operators associated
to Equation (1), one is led to consider the matrix

Ay =00 Us - Uy,

where

L0 L1 L2 T3

— —Ti1 L0 T3 —xi2
i — ’

—%i2 —Ti3 Lo L1

—Li3 LTz —xq L0
for ¢ = 1,...,n, and where the variables x;; are the dual variables of the variables
&ij-

Let R = Clajo, i1, 252,243 | i = 1,...,n] and let p,, be the maximal ideal of R
generated by the 4n variables. Given a matrix A, we denote by (A) the R-module
generated by the columns of A. In [1] we showed, among other things, that

pA(R /(A1) =1, and pd(R'/(A5)) = 3,

where pd(M) denotes the projective dimension of an R-module M. In this paper
we prove that, for every n > 1,

pd(R*/(A,)) = 2n— 1,

Ext? (R*/(A,),R) = 0,0 < j < 2n—2, and Ext™ " (R*/(A,), R) # 0.

In Section 3 we show how this result has interesting and unexpected consequences
for the theory of regular functions. In particular we prove that if R is the sheaf of
regular functions, then its flabby dimension, fl.dim(R), is 2n — 1. In particular this
shows that if U is any open set in H" and p > 2n — 1, then H?(U,R) = 0. This
result is a quaternionic version of the famous result of Malgrange for holomorphic
functions (see [7]) and we do not see how it could have been proved by purely
analytic methods. We also give some results on the removability of singularities of
the Cauchy—Fueter system.
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We note that we can compute the projective dimension of R*/(A,,) forn =1,2,3
using the software CoCOA! which gives the explicit minimal free resolutions of
RY/(Ap) for n = 1,2,3. In the present paper we give an algebraic proof of the
equality pd(R*/{A,)) = 2n — 1 using techniques from commutative and computa-
tional algebra, in particular Grobner bases. For any particular n CoC0A could be
used, in principle, to compute a minimal resolution of R*/({A,), however, running
CoCoA on a Sparc 10, we were able to compute only the cases n = 1,2,3 (the
machine crashed at n = 4, and the file of the 4 matrices which define the free
resolution for n = 3 is 128kbytes!)

2. PROJECTIVE DIMENSION oF R*/(A,)

In this section we compute the projective dimension of the R-module M, =
R*/(A,). Since nothing is changed in the proofs below until we get to Theorem
2.6 we will assume until then that R is the polynomial ring in the given variables
over any field k.

If n = 1, 1t 18 straightforward to see that the syzygy module of Ay is zero, and
so pd(My) = 1. jFrom now on we will assume that n > 1.

We will use the Auslander-Buchsbaum formula (see, for example, [4, Theorem

19.9 and Exercise 19.8])
pd(M,,) = depth(pn, R) — depth(p,, M,,).

We recall that, for an ideal I of R and an R-module M, the depth of I on M,
denoted depth(7, M), is the length of any maximal M-regular sequence in 7. The
polynomials fq,..., f; € I form an M -reqular sequence if

1. fu is a non-zerodivisor on M/{f1,..., fu_1)M, forv=1,...s;

2. M#{fr,.. ., fs)M.

See, for example, [4] for a thorough development of the notion of depth. Clearly,
depth(gpy,, R) = 4n, so we only need to compute depth(p,, My,). To do this we will
exhibit a maximal M, -regular sequence in @, .

This will be accomplished using the theory of Grobner bases (see, for example,
[2] for a detailed presentation of Grobner bases). Related ideas were used in [8, ch.
I, Section 2.4]. We first need a Grobner basis for (A4,) . We use the degree reverse
lexicographic (degrevlex) term ordering on R with

(3) Tig > Tog > - "> Tpo > T11 > > Tpl > X1z > -+ > Tps,

and the TOP (TOP stands for term over position) ordering on R* with e; > ey >
es > ey, where e; 1s the ¢th column of the 4 x 4 identity matrix. That is, for

: — %10 Ap3 _ P10 Brs
monomials X = 27°---2,53° and Y = ;" -- - z,5, we have
deg(X) = E a;; > deg(Y) = E Bi; or
i=1,...,n i=1 n
§=01,23 §=01,23

Xe, >VYe, <= ( deg(X) = deg(Y) and a;; < B;; for the index ij,
last with respect to (3), such that o;; # 8;; or
X=Y and r <s.

LCoCoA is a special purpose system for doing computations in commutative algebra. It is
the ongoing product of a research team in Computer Algebra at the University of Genova, Italy.
It is freely available, and more information can be obtained by sending an e-mail message to
cocoa@dima.unige.it.
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Lemma 2.1. The reduced Grobner basis for the R-module (A,) is given by the
columns of A, together with the columns of the (g) matrices U, Uy, —UU,. Moreover
the module generated by the leading terms of all the elements of (A,), denoted

Lt(A4,), is
Lt(An) = (wioer, Trats1€0) i=1,..n -

¢
Proof. Tt is easy to verify the statement for n = 2,3, and 4 using CoCoA. Let
n > 4. The S-polynomial of any two columns of A,, can be computed and reduced
as in the case n = 2, and so the S-polynomials generated by the columns of A,
give rise to the vectors in the columns of the matrices U, Us; — U U,.. To verify that
the columns of A, together with the columns of all distinct U,Us; — U,U, form
the reduced Grobner basis of (A4,), we need to verify that all the S-polynomials
generated by these vectors reduce to zero. An S-polynomial generated by a column
of A,, and a column of U,.U; — UsU, is computed and reduced as in the case n = 2
or 3, depending on whether the column of A, comes from U,, Uy, or neither. An
S-polynomial generated by two columns of U,.U; — U;U, 18 computed and reduced
as in the case n = 2. An S-polynomial generated by a column of U,.U; — UsU,
and a column of U, U, — U,U; 1s computed and reduced as in the case n = 3 or 4,
depending on whether one or none of the indices r, s, and ¢, u is the same.

For the statement about Lt(A,), we first note that, for 1 <r < s < n, U,U; —
U U, =

0 —Lp3L52 + Tp2Ts3  —Tp3Ts1 + Tr1Ts3  Tp2Zs1 — Lp1ls2
Lr3ls2 — Lr2L53 0 Lroalsl — Lr1ds2 Lr3lsl — Lr1ds3
—Zp3L51 + Tr1%s3 Lralsl — Lr1ds2 0 Lr3ls2 — Lr2L53
Lralsl — Lr1ds2 Lr3ls1 — Lr1ds3 —ZTp3L52 + Tp2Zs3 0

The result then follows immediately from the definition of the term ordering. [

This result allows us to start an M, -regular sequence in @, .

Corollary 2.2. The variables x11, xpo, 53,0 = 1,...,n form an M,-reqular se-
quence of length n + 2.

Proof. We note that the variables 11, 2,2, 23,2 = 1,... ,n are precisely the vari-
ables which do not appear in any of the leading terms of the elements of the reduced
Grobner basis of (A,) given in Lemma 2.1. In general, if D is a submodule of R*
and a variable z;; does not appear in any of the leading terms in a Grobner basis for
D, then x;; is a non-zero divisor on R*/D. This is because if 0 # g € R* and g is
reduced with respect to the Grobner basis of D and #;;g is in D then z;;1t(g) must
be divisible by the leading term of one of the elements of the given Grobner basis
and so then lt(g) must also be divisible by the same leading term, contradicting
the fact that g is reduced. O

To enlarge this regular sequence, we consider the module

M = My [(e11, 802, 8i3,0 = 1,... ,m)M,,
= R4/<An + {(x11, Tno, iz, 0 = 1,. .. ,n>R4>
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Let B =(U;,UUs — UsU,, x11€4, £po€y, iz€r) i=1,..n . We note that the columns
1<r<s<n
(=1,2,34

of U.Us — UsU, can be reduced, using z,se,, and z,3e;, { = 1,2,3,4, to the matrix

0 0 0 Lr2Ls] — Lr1ds2
0 0 Lp2Ls] — Lp1Ls2 0
0 Lp2Ls] — Lp1Ls2 0 0
Lr2Ls] — Lp1ds2 0 0 0
So we have
(4) B = (U, (xr251 — Tr1%52)€¢, T11€0, Ln2€y, L33€4) i=1,...n -
1<r<s<n
(=123 4

We note that the generators of B given in (4) form a Grobuner basis for B. To see
this, note that the only S-polynomials we need to consider are those computed using
a column of U; and one of (xp0251 — #r1252)€¢, T11€4, Tnaey, Or Zizey. The leading
terms of the columns of U; are x;9e; which are relatively prime to z11€e¢, #,2€¢, and
z;3€¢, and 1t is easy to verify that the corresponding S-polynomials reduce to zero.
The leading term of (#y2251 — Zr1252)€¢ 1S Zraxs1€, and so it is relatively prime
to @;p. Again, it is easy to verify that the corresponding S-polynomials reduce to
zero.

Proposition 2.3. The polynomials x21 + x12, 231 + %22, ..., Tn1 + Tn_1,2 form a
' N .
mazimal M -reqular sequence in (.

Proof. In order to show that the polynomials x21 + %12, 231 + T22, ..., Tn1 + Tp—1,2
form a M} -regular sequence in g, , we need to show that the polynomial z, 41 142,92
is a non-zero divisor on R*/B,_; (forv =1,2,... ,n—1), where B,_; = (B, (z21+
z12)epr, (231 + zas)er, ..., (21 + Ty_1,2)€0)e=1,234 (and By = B). Then to show
that the sequence is maximal we will show that every element of g, is a zero divisor
on R*/B,_1.

In order to do this we first find a Grobner basis for B,_; for 1 < v < n. This
basis will consist of the following vectors:

The columns of U; for 1 <:<n

T19%s_12€ for 2 <s <v

xiowsieg forv+1<s<n

Tpotniegp for 1 <r < n

(poks_19 — Tp_102s2)e for 2<r <s<wv
(Bros1 + 2r_1 220)e for 2<r<v<s<n
(Traws1 — Xp1as0)eg forv<r<s<n

ri11€y

a

oo T

@

=T
N NP AN PN PN N

1) Tpoer
J) wizep for 1 <i<n
k) (2y1 +2r_12)es for 1 <r <v,

where ¢ = 1,2,3,4. These vectors are obtained from the vectors in the generating
set for B given in Equation (4) by substituting 0 for #;; and 2,9, and —z,_1 » for
zy1. Thus the given vectors do form a generating set for the module B,_;. That
this set of vectors forms a Grobner basis with respect to the given order can be
verified by checking that all the corresponding S-polynomials in fact reduce to 0.
Note that all of the vectors above are written with their leading term first. Also



6 W.W. ADAMS, P. LOUSTAUNAU, V.P. PALAMODOV, D.C. STRUPPA

note that in the extreme cases for v, 1.e. v =1 and v = n — 1, the ranges in many
of the above contain no r or s. We denote this Grobner basis of B,_1 by G, _1.

We now verify that for v = 1,2,...,n — 1, z,411,1 + .2 15 a non-zero divisor
on R4/Bl,_1. The verification will be made in the case where all of the vectors in
the above list appear. The extreme cases of ¥ = 1 and v = n — 1 are the same
but avoid some of the complications of the following. So assume that we have a
vector g in R* — B, _; such that (Zy411 + 202)g € B,_1. We may assume that g
is reduced with respect to (G,_1. In particular this means that g can only contain
the variables @,; for v+ 1 < r < n and 3 for 1 < s < n —1 (that the variables
211, Tna, i3 (1 < ¢ < n), and 2,1 (1 < 7 < v) do not appear follows immediately
from the vectors in h), i), j), and k) in the above list for the Grobner basis for B, _1;
that the variables x;o for 1 <7 < n do not appear follows from the fact that in the
matrices U; for 1 < ¢ < n there is a leading term of the form z;pe, for 1 <: < n
and £ =1,2,3,4 and no z;p in any other coordinate of that vector in U;.

We, of course, have that (2,411 + #,2)g reduces to zero by G,_1. Ounly the
vectors in b), ¢), d), e), f), and g) in the list for the Grobner basis G, _1 above can
ever be used to reduce (2,411 +2,2)g. Now g must have a non-zero coordinate, say
gey (for some £ = 1,2,3,4). Then, due to the nature of the vectors in the Grobner
basis (G,,_1 that can be use to reduce (z,41,1 + £,2)g, we see that (2,411 + 2u2)g
must reduce to zero using the polynomials in the list below:

b) ziozs_1 o for2 <s<w

¢) z1aw forv+1<s<n

d) zpoxpy for 1 <r<n

e) Zpoks_1,9— Lro1 a8 for2<r<s <y
f) oz + 210z for 2<r<v<s<n
)

Tpols] — Lp1Tso for v < r < 5 < n.

g
Denote this list of polynomials by H,_;. Note that ¢ is reduced with respect to
H,,_1 and only involves the variables x,1 for v+1 < r < nand zss for1 < s <n-—1.
Thus one of the leading power products in H,_; must divide Ip((2,11 1 + 2,2)9) =
2,41 11p(g) and cannot divide Ip(g). These polynomials come from the polynomials
in ¢) and f) in the list for H,_; above, and so we see that x,o must divide Ip(g)
for one of ¥ = 1,...,v. Since g is reduced with respect to H,_1 we see, using the
polynomialsin ¢), d), and f) in the list for 7,1, that no #,; can divide Ip(g). Thus

— Q1,02 Gp—1
g = X595 L, 9+ h,

where all of the terms in h are smaller than Ip(g) = =734 - ~xi"__1172. Moreover one of

the a,, for 1 < r < v is non-zero. Then
(l‘u+1,1 + x0)g =

l’u+1,11’(11§ e wi"_‘f,z +x75 'l’gy—_ll,zl’gflxg:-?z e 'l’gn—_ll,z + (Tvt1,1 + Tu2)h.
If a1 > 1 then using the monomial in ¢) in the list for H,,_; we have that (z,411+
z,2)g reduces to s - ~x$"__1172x3‘2’+1x3‘_’|_?2 . ~J:Z"__1172 + (zoq11 + 22)h. If a1 = 0,
then one of as, ..., a, is greater than zero, say a; > 1 (2 < j < v), and so using
the polynomial .41 122 + #;_1 28,412 in f) in the list for H,_; we have that
(2411 + Tv2)g reduces to

a1 aj—2 aj—1 aj_1+1 ay Gyt1+1l apqo ()
Ty g aliy X o Xy ol Lpgaat Tpo12

ay Ay—1 _a,+1 _ av41 Ap—1
RS SR R R R M (Tv1,1 + zu2)h.
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We see that the second term in this last expression is larger than the first term in

the degrevlex ordering, since a,41+1 > a, 41 (the degrees of the two monomials are

the same). Thus the leading power product in the reduced polynomial just obtained

from (2,411 + #u2)g is either z{3 - o 21‘”‘2""11‘?_"312 . ~J:Z"__1172 or #,4111p(R).
Claim. Let X be a term of & such that

ay a,+1 _av4a An—1
eypin X >l ox)y 2%2 R R S

Assume that xz,.1,1.X can be reduced using ,_;. Then =z, 1.X can be reduced
to a term Y, using H,_1, such that

a1 Gv—1 _a,+1 dvi1 Grn—1
Y <aiy-w, S awps T ey w,

Assuming the Claim we complete the proof that z, 41 14,2 is a non-zero divisor
on R'/B,_; as follows. We first observe that z{i .- z."3 21‘”‘2’4'11‘?_"312 . wi"__fz
cannot be reduced using H,_;. To see this we note that since only the variables
252 appear we could only possibly use the polynomials in b) or e) in the list for
H,_y; then since ¢ is reduced with respect to H,_1, #,2 would have to appear in
the polynomial used to do the reduction, but this variable does not appear in any
of the polynomials in b) and e). Thus if z{} - 2.7 21‘1,‘2’4'11‘?_"312 . ~J:Z"__1172 is the
leading term we have a contradiction. Otherwise xl,+1711p(h) is the leading term
and so must be reducible using H,_1. Letting X = It(h) in the Claim and setting

h' = h —1t(h) we reduce (2,411 + 2,2)g to
ERRNE ¥ 112%5“953:—?2 R ot Y F X + (v + wu)l.

Since Ip(g) > Ip(h) we see that the leading term of this last expression is ei-
ther z{i. .. 2" 1121‘1,‘2’-"11‘3‘;312 . ~xi"__1172 or &,411lp(h'). If it is the latter then
2,41 11p(A’') must be reducible using H,_;. Thus the argument may be repeated
until we obtain an expression which must reduce to zero using H,_; but whose
leading term is {2, 21‘1,2“1‘?_"312 - ~xi"__1172 and we have again arrived at a
contradiction.

It remains to prove the Claim. As above, we see that x,.1:X can only be
reduced using the polynomials in ¢) and f) in the list for H,_; above. Thus .5
must divide X for some r = 1,...,v. Moreover no variable z,; can divide X since
X cannot be reduced using Hl, 1. Thus X = xlzxgé xfl"__fyz. Now if we can use
the monomial #12,411 in ¢) then ®,411X reduces to 0 and the Claim is true.
Otherwise z,o divides X for some r such that 2 < r < v. For the reduction of
Zy41,1X we replace Tp2%,41,1 by —%r_1,2%,41,2. Thus we need to show that

(5) a

Zpro
under the hypotheses

ay ., Av—1 ay+1 _av41 L An—1
Tr12Tuq12 < 275w, ey ey e

dpn—1

by ay
X =3 n12<X—l’12"'l’n—1,z

and
Gy—1 _a,+1 au+1 Ap—1
v—1 2%2 Tyy12° " ¥Tp_12-

These two hypotheses guarantee that all terms present have the same degree. From
the first we choose £ such that

a
Tyqp11X > x5

bey1 = o1, .. byt = an_1,be > ay.

Then the second hypothesis guarantees that ¢ < v. but then the left side of Equa-
tion (5) X T Tr—1,20041,2, has the exponent b,41 + 1 for x, 41 > while the right side

bz,
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has the exponent a, 41 = b,41 and both sides have equal exponents for all x,» for
r > v+ 1. Thus (5) is true and this completes the proof of the Claim.

It remains to show that every element of g, is a zero divisor on R4/Bn_1. We
first need to reduce the Grobner basis given above for B,_;. First note that this
Grobner basis is given by the following vectors:

a) The columns of U; for 1 <i<n

b) ziom,_10e, for 2 <s<n

d) zpoxnieg for 1 <r<n

e) (rals_12 — Tr_128s0)eg for 2<r <s<n
h) r11€yp

i; Tno€y

J) wizep for 1 <i<n
k) (zy1 +2r—12)es for 1 <r <n,

where £ = 1,2,3,4. We first note that we can use the vector in k) with r = n to
reduce the vectors in d) to z,92,-1 2€, for 1 < r < n. We now look at the vectors
ine). If s = n—1 then use 2,_1 22,_1 2€; to reduce (2,22, 2— 2,1 22n_12)es to
Zpo&n_22€¢. Then with this last vector we reduce the vector in e) with s = n — 2,
(Zro®n_32—Lr_1,28n_22)€s tO TpaZ,_32e,. Continue in this fashion and we obtain
the reduced Grobner basis for B,,_1 consisting of the following vectors

1. The columns of U; for 1 <:<n
2. xgowpey for 1 <r<s<n-—1.
3. r11€yp

4. zp0ep

5.

xizep for 1 <i<n

6. (21 + &y_12)ee for 1< r<mn,
where £ = 1,2,3,4. Denote this Grobner basis by G.

So let f € @, be non-zero. If fe; € B,_; then f(e; + B,—1) = 0 and so
e ¢ B,_1 implies that f is a zero divisor. So assume that fe; ¢ B,_1. Then
f(fei + Bn_1) = f?e1 + Bn_1, and so it suffices to show that for any f € p,,
f?e; € B,,_1; that is, show that f?e; reduces to zero using G. Since f € g, every
term in f2 is of degree 2 or higher. Then, using the columns of the U;’s, we can
reduce fZe; to a vector f; with no variables x;o (1 < i < n) in it and with all terms
of degree 2 or higher. Then, using the last four types of vectors itemized in GG above,
we can reduce f, to a vector f, containing only the variables 2,5 (1 <r <n—1)
and with all terms of degree 2 or higher. Finally, using the vectors in 2) above, we
see f, reduces to zero. O

We can now obtain the formula for the projective dimension of M,,.
Theorem 2.4.
pd(M,) =2n — 1.
Proof. By the Auslander-Buchsbaum formula we have
pd(M,,) = depth(pn, R) — depth(pn, My) = 4n — depth(p,, My).
By Corollary 2.2 and Proposition 2.3 we have
depth(p,, My,) =2n + 1.
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Remark 2.5. We now have a free resolution of R*/(A,)
(6) 0 — Rron-r Sy Rron—2 By o s Ry R R RY(A,) — 0

(by the well-known Quillen-Suslin Theorem, we know that every projective R-
module is free, see [9]). By taking the dual of Resolution (6) we obtain a complex

(7) 0— R* — R™ 3 R —y .. — Rz S graw-i 40,

whose homology groups are, by definition, Exti(/\/ln, R). We see that the last ho-
mology, Ext*” "1 (M,,, R), in (7) is not zero. Indeed, if the map R"2n-2 — R'2n-1
is onto, then we obtain a matrix D with D' defining a map R"2»—1 — R"2"-2 such
that C*D' = I, the identity. So we get that DC = I as well and the map C in
Resolution (6) splits, R™-2 = imC & kerD. Since kerD is free and B restricted
to kerD is one to one we have obtained a shorter free resolution for R*/(A,) than
(7), which violates Theorem 2.4.

It is actually possible to say more than this.

Theorem 2.6. Sequence (7) is exact except at the last spot, i.e.
Ext!(M,,R) =0, forall j =0,...,2n—2

and

Ext®" (M, R) # 0.

Proof. We will prove in the next Proposition that the characteristic variety V(M)
of My, (which can be defined, in view of [8, Proposition 2, p. 139], as the set of
points where the rank of A, is strictly less than 4) has dimension 2n + 1. But
then, by [8, Corollary 1, p. 377], we have immediately that Ext! (M,, R) = 0 for
j < 2n—1and Ext® "' (M,, R) #0. O

Proposition 2.7. The characteristic variety V(M) of My, has dimension 2n+1.

Proof. As observed above, the characteristic variety V,, = V(M,,) is the subset of
points ¢ € C*" where the rank of the matrix A, () is strictly less than 4. We show
that the algebraic set V;, has dimension 2n 4 1 in a neighborhood of an arbitrary
point % £ 0 in V,.

We write ( = ((1,...,(n) € Vi, where (1,...,¢(, € C*. We may assume that
¢ # 0. Finally we write {; = (&0, &i1, &2, &i3), where &; € C, for i =1,... n.

We can consider each vector ¢; as the element ; = &io + &1l + &2) + &isk of the
complexified quaternionic algebra He = H @g C, where {1,1,],k} is the standard
basis for the C-vector space Hc. This is an associative C-algebra with involution
CF = &io — &inl— &) — &isk. Tt is easy to see that the columns of A4, (¢) correspond
to the quaternions

(1, CTL ¢, Gk, €3, 621, G5, G5k, oo G oL Gl Gk
The determinant of the first four columns of A, (¢) is easily computed to be

(C¢1)?, where (7C1 = &y + &7y + &fy + &f3. The equation (1 = 0 defines a
quadratic cone V; in C* of dimension three.
For n € He we define four complex subspaces of He as follows. Set

Ly ={nglg € Hc} and L, = {q € Hc|ng = 0},
R, = {qnlqg € Hc} and R, = {q € Hclgn = 0}.
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One of the first two spaces is the image of left multiplication in He by 5 and the
other is the kernel of this map so we have that dimc L, 4+ dimc¢ L; = 4. We also
have dim¢ R, + dimc¢ R; = 4.

For n # 0 and n € Vi, i.e. °n = 0, we see that dimc L, = 2. This follows
since the matrix of the map of left multiplication by n with respect to the basis
{1,1,j,k} is the first four columns of A, with n* substituted in and the three by
three subdeterminants of this matrix are readily computed to all be multiples of
n*n, while  # 0 easily implies that not all of the two by two subdeterminants are
zero. Moreover, since L, C L., we conclude from looking at the dimensions that
Ly = L.. We similarly get dimc R, = 2 and R, = R;..

We now show that

¢eVyifandonly if (1 € Vi and {; € R, (2 < j < n).

First assume that (; € Vi and {; € R¢, (2 < j < n). Then (; = ¢;(1, for some
q; € He. So (v € L¢; where v = 1,1, ),k and so we see that the column space of
Ap(¢) is contained in the two dimensional space L¢s and so the rank of A, (() is
2<4,and so { € V,,.

Conversely assume that ¢ € Vj,. Since dimc L¢s = 2 we may assume, by sym-
metry, that ¢ and (71 are linearly independent and so form a basis for L¢r. Fix a
J. Since the rank of A, (C) is less than 4, we have that {7, (7, 7, (1 are linearly
dependent, and so there are complex numbers a1, b1, ¢1, d1, not all zero, such that

CF (a1 + bid) = ¢ (er + dai).

Since ¢ and (71 are linearly independent we must have one of ¢1, d; non-zero. Now
if d; = 0 then {; = ¢*C; € R, where ¢ = ¢7*(ay + b1i) and we would be done. So
assume that d; # 0. Similarly we would be done unless we had complex numbers

az, bZa C2, dZ; as, b3, Cs, d3 with dz ;& 0’ d3 ;ﬁ 0 such that
(i (az + bai) = (G (c2 + daj)
and
(i (as + bsi) = ¢ (e + dsk).

Multiplying these last three displayed equations on the left by (7, recalling that
C1CT = 0, we obtain C1C;(cl + dll) = 0, Clc;(CQ + dzi) = 0, and C1C;(63 + dgk) =0.

That is, we have

c1 +dii, co + doj, e+ dsk € LEIC;.
Now (¢1¢7)(€1¢7 )" = 0 and so ¢y + dii, ca + daj, c5 + dsk linearly independent over
C mmplies (1§ = 0, since (i (7 # 0 implies dim¢ L =2 Thus we have
G EeL; =1L

We conclude that ¢ = (7q¢ for some ¢ € He and thus (; = ¢"¢1 € R, , as desired.
The dimension of V,, follows immediately:

dime V, = dime Vi 4+ (n — 1) dimec R, =34+ 2(n—1) =2n+ 1.
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3. APPLICATION TO THE THEORY OF REGULAR FUNCTIONS

Let P(D) = [P;;(D)] be the 4n x 4 matrix of differential operators defining the
Cauchy-Fueter system (1). We have that

P(D) : [& (B*)]" — [ (R*)]™

and we denote by R = £F the sheaf of C*° solutions of P, i.e. the sheaf of regular
functions (see Section 1). Note that, since P is an elliptic system (see, e.g., [5]), we
have R = &F = D’P, where D’ is the sheaf of distributions. However a fundamental
result of Bengel-Harvey-Komatsu (see [6]) shows that we also have R = BY | where
B is the sheaf of hyperfunctions. This fact immediately allows us to prove the
following

Theorem 3.1. The sheaf R has flabby dimension equal to 2n — 1.

Proof. We first note that the matrix A, is the transpose of the Fourier transform
of P(D), so from Theorem 2.4 we have the complex (7) which gives us

8 0—BF —pB PO) gin Ly gra sy granmr —y fraemt 0,

which is a resolution of the sheaf B¥. This result is essentially due to Ehrenpreis-
Malgrange-Palamodov, but in the hyperfunction setting it was actually proved by
Komatsu (see [6] for details and references). Since R = B as we noted above, and
since B is flabby, Resolution (8) proves that fl.dim(R) < 2n—1. On the other hand,
the flabby dimension cannot be strictly less than 2n — 1, since (see [6, Theorem 1.2])
this would imply the vanishing of H?"~!(H", H"\ K;R) for every compact convex
set K in H". This would imply that Ext**~*(M,,, R) = 0, which would contradict
Remark 2.5 or Theorem 2.6. We have therefore proved that fldim(R) = 2n—1. O

Remark 3.2. For n = 1,2 this result is implicitly contained in [5] and [1] even
though it was not explicitly stated.

Remark 3.3. Theorem 3.1 generalizes to the sheaf of germs of regular functions
the well-known fact that fl.dim(Q) = n, where O is the sheaf of germs of holomor-
phic functions. Such a result was probably hard to imagine before our computations

in [1].

As we have shown in [5], all open sets U in H are cohomologically trivial in the
sense that

HY(UR)=0 p>1.

In [1], on the other hand, we showed that this result fails for n > 1, since a Hartog’s
phenomenon occurs. This situation clearly mirrors what happens for the sheaf O of
holomorphic functions. In that case, the most important result, due to Malgrange
[7], states that, for any open set U C C™,

H(U,0)=0 p>n.

In our case, the analog of such a statement is an immediate corollary of Theorem

3.1
Corollary 3.4. If U is any open set in H", then
HP(UR)=0 p>2n—1
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Once again, we believe this result to be quite unexpected. We do not know of
any analytic proof for it.

Let us now explain the significance of these results for the construction of a
theory of quaternionic hyperfunctions. As it is well-known, see for example [10],
the theory of hyperfunctions is based on two key facts: one is that the flabby
dimension of O is n and the other is the fact that R” is purely n-codimensional in
C" (see [6] or [10]). These facts allowed Sato to define B as the n-th derived sheaf

%+ (O) of O restricted to R™. It is therefore clear that the present paper provides
us with the first step towards a similar construction. The difficulty will be to figure
out which subset S of H” should be chosen to restrict the derived sheaf. In [5], we
took

S=H={g=wo+ix; +jrs+ ks zg=0}CH
which is purely 1-codimensional and we were able to reconstruct the entire theory.

We conclude by pointing out other interesting byproducts of the results from
Section 2. To begin with, one can use our arguments from [1] to completely restore
the duality theorem which prompted our interest in this investigations.

Theorem 3.5. Let K be a compact conver set in H*. Then if S denotes the sheaf
of distribution solutions to the system associated to the matriz C* which appears in
(7), then

H* Y H W\ K;S) ~ [H(K,R)].

On the other hand, the vanishing of so many Ext-modules also gives more infor-
mation on removability of singularities of the Cauchy—Fueter system.

Theorem 3.6. Let Q be a convex connected open set in H® = R, and let K
be a compact subset of Q. Let X1,...,Yo,_o be closed half spaces in RY and set
Y =% U UXg,_9. Then every regular function f € Q\(K UX) extends to a
reqular function f € O\X which coincides with f in Q\(K' UX), for K' a compact
subset of €2.

Proof. This is an immediate consequence of our Theorem 2.6 and of [8, Theorem

4, p. 405). O

Theorem 3.7. Let L be a subspace of H" = R* of dimension 2n + 2. Then for
every compact K contained in L, and every connected open set §2, relatively compact
in K, every regular function defined in the neighborhood of K\ can be extended to
a reqular function defined in a neighborhood of K.

Proof. This result follows again from our Theorem 2.6 together with [8, Theorem
3, p. 403] if we can prove that none of the varieties associated to the module
Ext®~!(M,, R) is hyperbolic with respect to L. However, [8, Corollary 2, p. 377]
shows that V(Ext*~*(M,, R)) is contained in V(M,), and since M,, is elliptic,
we can conclude that every variety in V(Ext*"~*(M,,, R)) is elliptic and therefore
cannot be hyperbolic. This concludes the proof. O
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