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Abstract

In a random-matching monetary economy, efficient and inefficient sellers choose between home or

market production. Since inefficient sellers bargain up their prices, two equilibria may exist–

with high or low market participation–depending on extent of heterogeneity and frictions. In

equilibrium, the presence of inefficient sellers on the market has two opposing effects. It raises

trading frequencies, so it lowers consumption risk, but it lowers the value of money, raising prices.

This may reduce trading efficiency. Equilibria with full and limited participation can coexist; when

average efficiency is high and agents are patient, limited participation is socially preferable.
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1 Introduction

This note contributes to some recent research concerned with the relationship between the

equilibrium value of money and the degree of market activity, in heterogeneous economies. This

research, developed within the context of models where money has a fundamental allocative role,

seems to indicate that–given a money stock–the equilibrium value of money, the endogenous

extent of market activity and welfare are all positively correlated.

Johri (1999), for example, modifies the search-theoretic monetary framework of Shi-Trejos-

Wright (1995) to show that producers’ heterogeneity can sustain equilibrium multiplicity charac-

terized by (full) acceptability of money but different degrees of market activity. The key finding is a

positive relationship between the equilibrium level of market activity and the (endogenous) value of

money. When money has high value agents consume more and more frequently than when money

has less value. In short, a high-valued currency generates positive intensive and extensive margin ef-

fects. Shevchenko and Wright’s (2004) study of an indivisible-goods heterogeneous agents matching

model has similar implications. They endogenize the acceptability of money and find equilibrium

multiplicity is possible. In equilibrium, greater acceptability raises the extent of market activity,

the value of money and ex-ante welfare (goods are indivisible so prices are unaffected).

A normative implication of these results is that the key to improve the decentralized monetary

allocation is to maximize the value of a currency (fostering low prices) because this also implies

minimum consumption risk (maximum market activity). Thus, it is natural to ask whether such a

positive link between money’s value, market activity and welfare, is a general feature of this class

of models.

Our study suggests this is not the case. The intuition is that a trade-off may exist between

consumption risk and prices. Although expanded market activity has beneficial extensive margin
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effects–it lowers consumption risk–it may also have negative intensive margin effects–it may

lower trading efficiency. For example, prices may substantially rise and trade surplus may fall

if greater market activity amounts to adding a small number of very inefficient producers to the

sellers’ pool.

To provide this intuition we consider a model similar to Johri’s, where agents are subject

to productivity shocks and choose market trading or home-production, at each date. We study

stationary allocations where traded quantities are bilaterally bargained. In equilibrium money’s

value, prices and market activity are endogenous. Two equilibria may exist, with high or low

participation. When agents are patient, money has lots of value so buyers tend to spend it only

when they find an efficient producer, who has a low marginal cost. The opposite tends to occur

when agents are impatient. Existence also hinges on the available money stock and the distribution

of shocks, as they also affect the value of money.

We find equilibrium multiplicity for moderate money supplies and discount factors. Here,

money’s value (hence traded quantities) is negatively correlated with market activity and may also

be negatively correlated with welfare. In fact, we provide examples where ex-ante welfare is higher

when market activity is the lowest and the value of money is highest. The reverse, ex-ante welfare

is higher when market activity is the highest, but the value of money is lowest, can also occur if

agents are more patient. What is the reason?

Low market activity happens when buyers trade only with efficient sellers, who produce a lot

for a dollar. Inefficient sellers stay out of the market, which raises consumption risk. These two

elements tend to boost the equilibrium value of money. Whether this improves trading efficiency

or not depends on just how much prices fall. Since prices fall substantially when agents are more

patient and money is more scarce, moderate money stocks and moderate discount factors tend to
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sustain greater trading efficiency, under low market activity. In addition, if most sellers are efficient,

consumption risk grows only slightly, under low market activity. Hence, low market activity may

be socially preferred to higher activity. This result tends to be reversed when agents are more

patient–since money’s value tends to be inefficiently high–and when the seller’s pool is mostly

inefficient–since greater participation lowers trading risk substantially.

2 Environment

The environment is a version of Shi (1995) and Trejos-Wright (1995). Time is discrete and

infinite, t = 0, 1, 2.... There is a constant unit mass of people, a divisible and perishable market

good, and a home-made good.

At the beginning of each t agents choose market trading or home-production. In the latter

case, the agent costlessly produces the home-made good, enjoying ε > 0 consumption utility. In

the former case the agent trades on the market as a seller or a buyer, depending on whether he has

money or if he can produce market goods. Sellers and buyers are randomly matched. A fraction

M ∈ (0, 1) of agents is endowed with one unit of indivisible fiat money in t = 0, while the others

can produce market goods once. Everyone can produce market goods contingent on prior market

consumption.1 However, everyone wishes to consume only the market production of someone else;

in that case q > 0 consumption generates utility u(q) = qα

α , α ∈ (0, 1). The period discount factor

is δ ∈ (0, 1).

We introduce heterogeneity by means of random variable costs of production. At the end of

each t, an agent draws a productivity shock (i.i.d across time and agents). In the next period he

can produce q market goods (i) inefficiently with probability λ ∈ (0, 1), generating disutility θq, or

(ii) efficiently with probability 1− λ, generating disutility q < θq. This is unlike Johri (1999), who
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considers random fixed costs of production.

3 Symmetric Stationary Equilibria

We study equilibria where agents adopt identical, time invariant strategies, focusing on pure

strategies (it is sufficient to make our point).

At the beginning of each t, an agent can be one of three ‘types’ k. He is a ‘buyer’ if he has

money, k = m, or he is an ‘efficient’ or ‘inefficient seller’, k = H or k = L, depending on the

shock realization. Afterward the agent chooses market trading or home-production. Let pk be the

fraction of traders of type k present on the market in some date t, so that pm + pH + pL = 1.

On the market, buyer-seller pairs are randomly formed with the matching rate proportional

to the fraction of possible partners. That is, a buyer meets a seller with probability pH + pL

and a seller meets a buyer with probability pm. This implies that although some traders may

remain unmatched, every match is single-coincidence. Since credit or barter are impossible, agents

must exchange money for goods. In a match the seller’s type is observed. Let qH and qL be the

goods traded for money by an efficient and inefficient seller, respectively, in equilibrium. Also, let

ci(qi) = θiqi where θH = 1 and θL = θ.

3.1 Prices

Define Vk(qH , qL) as the beginning-of-period lifetime utility of a type k agent (we omit the

arguments when understood). Therefore, for convenience we let

F (qL, qH) = δ[Vm − VH + λ(VH − VL)]

denote the net continuation value of someone who sells today. This is the discounted value of
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holding money at the beginning of next period, δVm, minus the discounted expected value of being

a seller, δ[(1− λ)VH + λVL]. Clearly, the buyer’s continuation value from buying is −F (qL, qH).

In a match with seller i = H,L, traders determine the amount Qi to be exchanged for a unit

of money, given (qL,qH). We assume Qi is determined according to the Nash bargaining solution,

when traders have equal bargaining power and the threat points are their respective lifetime utilities.

The match’s surplus is u(Qi) − ci(Qi), thus exchange is mutually beneficial if Qi ∈ [0, Q̂i] where

Q̂i = (θiα)
−1
1−α solves u(Q̂i) = ci(Q̂i). The seller trades only if his continuation value is larger than

his production disutility, F (qL, qH) ≥ ci(Qi) ≥ 0. Similarly, the buyer trades if u(Qi) ≥ F (qL, qH).

Since u(Q̂i) = ci(Q̂i) = θiQ̂i, then we must have θiQ̂i ≥ F (qL, qH). Symmetric Nash bargaining

implies

qi = Qi = arg max
Q∈[0,Q̂i]

[F (qL, qH)− ci(Q)]0.5 [u(Q)− F (qL, qH)]0.5

s.t. u(Q) ≥ F (qL, qH) ≥ ci(Q).
(1)

If an unconstrained solution exists it must be such that u(Qi) > F (qL, qH) > ci(Qi). Hence,

it must be such that Qi ∈ (0, Q̂i) and 0 < F (qL, qH) < θiQ̂i. Given (qL, qH), the symmetric

unconstrained Nash solution is

qi = Qi ∈ (0, Q̂i) such that Ti(qL, qH , Qi) = 0 (2)

where Ti(qL, qH , Qi) is the first order condition

Ti(qL, qH , Qi) = [F (qL, qH)− ci(Qi)]u (Qi)− [u(Qi)− F (qL, qH)] ci(Qi)

= F (qL, qH)(Q
α−1
i + θi)− 1+α

α θiQ
α
i .

(3)

Omitting the arguments qL and qH , note that Ti(Q̂i) < 0 < Ti(0), and
∂Ti(Qi)
∂Qi

< 0. Hence

TH(Q) > TL(Q) > TH(θQ) for Q ∈ (0, Q̂i). Thus, if an equilibrium exists where prices satisfy (2),

then it must be that qL < qH < θqL. This is intuitive. Given any quantity Q, inefficient sellers
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earn less surplus than efficient sellers. Since sellers’ bargaining power is type-independent, it follows

that in equilibrium the efficient sellers must offer the best prices, i.e. the largest quantities.

3.2 Strategies and Value Functions

Given qL < qH < θqL, if buyers prefer to trade with inefficient sellers, they also trade with

efficient sellers. Thus, let βL be the probability 0 or 1 that a buyer chooses to trade his money for

qL (βL is the strategy of everyone else). In a symmetric monetary equilibrium individual optimality

and aggregate consistency require

βL = βL =

⎧⎪⎪⎨⎪⎪⎩
1 if u(qL) ≥ F (qH , qL)

0 otherwise.

(4)

Let πk denote the probability 0 or 1 that a type k agent chooses to trade on the market in a

period (πk is the probability chosen by everyone else). The buyer’s expected market payoff is

pH [u(qH)− F (qL, qH)] + pLβL [u(qL)− F (qL, qH)]

since with probability pH he trades with an efficient seller, and with probability pLβL he trades

with an inefficient seller. The surplus is u(qi) − F (qL, qH). Individual optimality and aggregate

consistency in equilibrium require

πm = πm =

⎧⎪⎪⎨⎪⎪⎩
1 if pH [u(qH)− F (qL, qH)] + pLβL [u(qL)− F (qL, qH)] ≥ ε

0 otherwise.

(5)

Of course, a monetary equilibrium requires πm = 1. Since qH > qL, then in equilibrium buyers

must be willing to trade at least with an efficient seller. This requires u(qH) > F (qL, qH), i.e.

qH < Q̂H since the seller at most produces qH = F (qL, qH). It also requires ε sufficiently small

(more later).
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For a seller of type i = H,L, individual optimality and aggregate consistency require

πH = πH =

⎧⎪⎪⎨⎪⎪⎩
1 if pm [F (qH , qL)− qH ] ≥ ε

0 otherwise

πL = πL =

⎧⎪⎪⎨⎪⎪⎩
1 if pmβL [F (qH , qL)− θqL] ≥ ε

0 otherwise

(6)

where pm [F (qH , qL)− ci(qi)] is the seller’s expected market payoff. In equilibrium F (qL, qH) >

ci(qi) and ε small are necessary or the seller would choose home production.

The implication of (4)-(6) is that in a monetary equilibrium the terms of trade must give

positive surplus to both partners, since u(qi) > F (qH , qL) and F (qH , qL) > ci(qi). There are two

consequences. First, u(qi) > ci(qi) in every trade, so that qi ∈ (0, Q̂i), i.e. the Nash solution must

be unconstrained.2 Second, since the match’s surplus u(q)−ci(q) is largest for i = H, for any q, then

if πm = 1 the efficient sellers certainly participate in the market, i.e. πH = 1. The key is whether

inefficient sellers participate. Consequently, there are two types of monetary equilibria: one in

which everyone participates in market trades, πm = πH = πL = βL = 1, and the other where there

is limited participation, as inefficient sellers choose home-production, πm = πH = 1 > πL = 0.3

Thus, in a monetary equilibrium the value function must satisfy

Vm = pLβL [u(qL)− F (qL, qH)] + pH [u(qH)− F (qL, qH)] + δVm

VH = pm [−qH + F (qL, qH)] + δ [VH − λ(VH − VL)]

VL = πLpmβL[−θqL + F (qL, qH)] + (1− πL)ε+ δ [VH − λ(VH − VL)] .

(7)

Each right hand side basically has two components: the expected payoff from market trade,

and the continuation payoff from not trading. This last component is δVm, for a buyer, and

δ [VH − λ(VH − VL)] for a seller. Inefficient sellers can always guarantee themselves ε payoff, in

equilibrium, by avoiding market participation, πL = 0. This choice does not appear in the buyer

and efficient seller’s case, because in a monetary equilibrium πm = πH = 1 is necessary.
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The monetary equilibrium distribution of market traders must satisfy

pm =
M

[πLλ+(1−λ)](1−M)+M

pH =
(1−λ)(1−M)

[πLλ+(1−λ)](1−M)+M

pL =
πLλ(1−M)

[πLλ+(1−λ)](1−M)+M .

(8)

To see why, note that a fractionM of the population has money, (1−λ)(1−M) are efficient sellers,

and λ(1−M) are inefficient sellers. Recall also that inefficient sellers may choose to avoid market

trade, setting πL = 0, in which case only money traders and efficient sellers are on the market.

Thus, we must have πLλ(1 −M) in (8). This implies it is easier to meet an efficient seller when

πL = 0, as pH |πL=0 > pH |πL=1.

An equilibrium is defined as follows

Definition. A monetary equilibrium is a time-invariant list {Vk, pk,πk,βL}k=m,H,L that satisfies

(4) through (8), where the price in a match is q−1 and satisfies (1).

Notice that (4) and (6) imply that if in equilibrium buyers do not trade with inefficient sellers,

βL = 0, then these sellers prefer to stay out of the market, πL = 0. Their behavior affects the

decentralized allocation along an extensive and an intensive margin, because it changes the buyers’

matching probabilities and also the distribution of prices.

The extensive effect is negative. Since pm|πL=0 > pm|πL=1, limited participation raises the

matching probability of sellers, at the expense of buyers’. Since it is harder to find a seller, buyers

experience greater consumption risk.4 The intensive effect can be positive. If πL = 0 a buyer gets

to trade only with an efficient seller who offers better prices, qH > qL. Since these effects move in

opposite directions there is potential for equilibrium multiplicity, discussed next.
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4 Equilibria

Before proceeding with the analysis, we note that gains from trade are finite, since qi < Q̂i, and

decrease in qi beyond some q̄i ∈ (0, Q̂i), since u(q) − ci(q) is hump-shaped. As seen earlier, in a

monetary equilibrium the terms of trade must give positive surplus to both partners. From (5) and

(6) we see that a monetary equilibrium exists only if ε is small enough. How small? It necessarily

must be smaller than the gains from trade expected by buyers and (at least) efficient sellers. Since

trade opportunities arise stochastically but vanish as M → 0, 1 (see (8)) then M must be bounded

away from zero and one, given any ε > 0.5 Of course, as ε → 0 then a monetary equilibrium can

be sustained for any M ∈ (0, 1). Thus, to avoid unnecessary complications, in the remainder of the

paper we simply focus on the case where ε→ 0. Given this, we have:

Proposition. Consider ε→ 0. Two types of monetary equilibria can exist:

(i) a high-participation equilibrium, πm = πH = πL = 1, with great frequency of trade M(1−M),

and a two-point price distribution associated to the unique pair (q∗H , q
∗
L) with q

∗
L < q

∗
H ;

(ii) a low-participation equilibrium, πm = πH = 1 > πL = 0, with low frequency of trade M(1 −

M) 1−λ
(1−λ)(1−M)+M , and a degenerate price distribution associated to the unique quantity q

∗∗
H .

Specifically πm = πH = 1 and

πL =

⎧⎪⎪⎨⎪⎪⎩
0 if δ > δ0 and M ≤M0(δ)

1 if δ ≤ δ1 or if δ > δ1 and M >M1(δ)

where δ0 < δ1, M1(δ) < M0(δ) (these definitions and the proof are in the appendix).

Corollary. The two monetary equilibria coexist if δ ∈ (δ0, δ1) and M ≤ M0(δ), or if δ ≥ δ1 and

M1(δ) < M < M0(δ). In either case q∗L < q
∗
H < q

∗∗
H .
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There are several important findings. First, two monetary equilibria can exist that are distin-

guished by the extent of market activity, low or high. If every seller participates in market trade

we are in the high-participation equilibrium, otherwise we are in the low-participation equilibrium,

where every seller is efficient. Second, each equilibrium type has a unique price distribution. Under

high-participation there is price heterogeneity and the efficient sellers offer the lowest prices. The

price distribution is degenerate under low-participation. Third, these two equilibria coexist for

some parameterization of the model. In this case, the high-participation equilibrium has the least

consumption risk, since trade frequencies are high. In short, trading is easier to accomplish than

in the low-participation equilibrium.

Now, recall that in this class of models the equilibrium value of money reflects its usefulness in

facilitating spot transactions. Thus, the next finding is intuitive. Given coexistence for a certain

money stock, money has the lowest value when market activity is high. It follows that prices are

the highest–in every match–when the market is the most vibrant. The reason behind this last

result is the existence of a pricing externality. If inefficient sellers enter the market, they do not

produce much for a dollar. This lowers the equilibrium value of money. Consequently, efficient

sellers also raise their prices above those they would otherwise charge. In short, full participation

has a negative impact on traded quantities but has a positive impact on trading frequencies.

4.1 Characterization: the Role of Discounting and Money Stock

We characterize existence of monetary equilibrium based on discounting δ and initial money

stock M, since these parameters have a direct influence on the value of money.6 Precisely, money

has lots of value when δ is large; in this case sellers are willing to produce a lot in order to get

money they can only spend in the future. It is also well known that in this class of models money

has great value when it is scarce,M small, and has very little value whenM is large. To explain our
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existence result, we use this intuition, and also a numerical illustration (Figure 1, where ε = 10−8,

α = 0.5, θ = 3,λ = 0.5).

[FIGURE 1 APPROXIMATELY HERE]

Trace a vertical line through the figure, and start at the bottom of it. When agents are very

impatient, sellers do not produce much at all. Hence, if sellers’ productivities are not extremely

different, a buyer will prefer to spend his money as soon as he gets to meet any seller, even if the

price is unattractive. Searching for a better price tomorrow is not a good idea because the buyer

is impatient to consume. Thus, every match leads to a trade and the market is very active, i.e.

πL = 1 is the unique equilibrium. This is independent of the money stock.

As we increase the discount factor above δ0(M)–and the stock of money is not out of hand–

the value of money grows enough that buyers prefer to spend their money only in high-value

matches, when prices are low. This, however, implies higher consumption risk; if buyers refuse

high-price trades then the inefficient sellers prefer to stay out of the market, so that in equilibrium

it is harder to buy. Thus, buyers face a trade-off; trade more frequently at higher prices or trade

less frequently at lower prices. Since agents make independent and uncoordinated choices–and

since buyers cannot spend fractions of their cash holdings–a strategic complementarity exists that

generates equilibrium multiplicity, with high or low market activity (πL = 0, 1). As discounting

grows beyond δ1(M), the value of money is so large that spending it to buy just a fistful of goods

is never a good idea, i.e. πL = 0 is the unique equilibrium.

Why does the money stock matter? Due to random matching, buyers’ willingness to pay a high

price, rather than waiting to meet a more efficient (and cheaper) seller, depends on the matching

frictions, governed byM. Money’s value tends to zero asM → 1 because money crowds-out buying
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opportunities. Thus, the initial money stock cannot be too high, M < M1(δ), if πL = 0 is an

equilibrium. The opposite, M > M0(δ), must hold for πL = 1 to be an equilibrium, since money

has great value when M is small.

5 Market Participation, the Value of Money and Welfare

Since equilibrium multiplicity can arise, a natural question is which equilibrium is socially

preferred. Thus, consider ex-ante welfare for πL = 0, 1:

W (πL) =MVm(πL) + (1−M) [λVL(πL) + (1− λ)VH(πL)] .

The basic result, here, is that welfare in the high-participation equilibrium compares more or

less favorably to the low participation equilibrium, depending on the parameters. We provide the

relevant intuition with the aid of numerical illustrations, without delving into the less informative

mathematical derivations of a formal proof.

To start, pick any initial money stock that sustains equilibrium multiplicity. Now, note that

welfare is maximized along two dimensions, trading frequency—or the extensive margin—and trading

efficiency—or the intensive margin. We have proved that high-participation generates the highest

trading frequency, i.e. it has positive extensive margin effects. We have also proved that money

tends to buy a lot in the low participation equilibrium. This affects trade efficiency positively or

negatively, depending on how low prices are. Money’s indivisibility implies over-production can be

as inefficient as under-production. Hence, welfare comparisons hinge on possible trade-offs between

intensive and extensive effects of market participation.

High participation is welfare inferior if it slightly improves trading frequencies, but raises prices

so much that trades are inefficiently low. The opposite occurs if there are large extensive margin
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effects; substantially higher trading frequencies may well justify a moderate increase in prices. We

provide an illustration via the numerical examples in Figures 2 and 3.

Figure 2 has the parameters of Figure 1 and δ = 0.9. Multiplicities arise for M ∈ (0.221, 0.322)

and the left panel shows ex-ante welfare is uniformly higher under low-participation.

[FIGURE 2 APPROXIMATELY HERE]

The right panel explains why. The trade frequency is not much smaller, compared to high

participation. However, average traded quantities are higher and less inefficient than under high

participation. The figure reports average surpluses conditional on a match

E[S|πL = 1] = λ[u(q∗L)− θq∗L] + (1− λ)[u(q∗H)− q∗H ] and E[S|πL = 0] = u(q∗∗H )− q∗∗H .

Clearly, average surplus is much higher under low participation, so there is a large positive intensive

margin effect. Thus, the ‘best’ equilibrium has the lowest prices–the highest value of money–but

also the lowest market activity.

If we increase δ to 0.99 and λ to 0.95 we get Figure 3.

[FIGURE 3 APPROXIMATELY HERE]

Multiplicities arise for M ∈ (0.248, 0.402). Since agents are more patient, production under

low participation is larger but ex-ante welfare can be smaller for some M (left panel). For those

money supplies, trades are most efficient under low-participation, E[S|πL = 0] > E[S|πL = 1], but

trading frequencies are extremely low (right panel). The reason is this economy has many inefficient

sellers, so their absence from the market causes a severe increase in consumption risk. Thus, high-

participation creates large positive extensive margin effects: although trades are smaller, agents get
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to consume much more frequently. Thus, the best equilibrium has the highest prices–the lowest

value of money–but the highest market activity.

6 Robustness

In this section we briefly discuss alternative price formation mechanisms. In particular, our

main concern is whether equilibrium multiplicities would still arise when traders have different

degrees of flexibility in making offers. This is an interesting exercise since we have demonstrated

that different participation rates affect outcomes via their effect on trading frequencies and on the

terms of trade. In particular, we have seen that low participation occurs because money is just too

valuable so buyers avoid trading with inefficient sellers. For this reason we consider two cases that

can be thought of as belonging to the two opposite ends of an imaginary price-flexibility spectrum.

First, we look at an economy without price formation at all; agents simply swap indivisible

commodities for indivisible money. Then, we move on to the other extreme when goods and

monetary offers are fully ex-ante flexible; we do so following Berentsen, Molico and Wright (2002)

who allow for contracts with random components in the tradition of Prescott and Townsend (1984).

We start by omitting the possibility of price formation. For instance, suppose sellers H and L

produce indivisible goods of different sizes (large or small) or different observable qualities (good

and mediocre) so that either way u(qL) < u(qH). In this environment the buyer’s surplus depends

on the fixed quantity qi and the continuation value F (qL, qH). When money is very valuable

and qi is small, the buyer cannot bargain a better price; his only option is to go home hungry,

hoping for better luck in the future. Consequently, our earlier intuition applies. We can have

u(qL) < F (qL, qH) when πL = 0 while u(qL) > F (qL, qH) if πL = 1, as low participation may raise

F (qL, qH). In short, we still expect multiplicity. In fact, since prices cannot adjust at all, mixed

trading strategies can also arise if u(qi) = F (qL, qH). Thus, the model with fixed terms of trade
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should generate an even greater richness of monetary equilibria, characterized not only by different

participation rates but also by different degrees of acceptability of money.

Now move to the opposite end of the spectrum, when traders bargain not only on output but

also on the probability of transferring money. This increases the flexibility in pricing as it convexifies

the space of feasible ex-ante price offers as if money were divisible.7 To see why, note that if money

is really valuable–and the seller cannot produce much for a dollar–then the buyer can simply

pay with small probability. In short, the buyer can lower his average expenditure in inefficient

trades. Since the probability of spending the dollar can be arbitrarily small, a buyer will never

pass onto a consumption opportunity, no matter how valuable is the dollar. In other words, the

traders can always find a mutually beneficial agreement (in an ex-ante sense). This simple intuition

suggests that with randomized monetary transfers we would still observe price heterogeneity but

multiplicities due to market participation should disappear. In particular, participation should

always be high in the limit as ε→ 0.8

More formally, let τ i ∈ [0, 1] denote the probability that the buyer transfers money to seller i

in exchange for qi goods. Here traders bargain over τ i and Q ∈ [0, Q̂i], solving

max [τ iF (qL, qH)− ci(Q)]0.5 [u(Q)− τ iF (qL, qH)]
0.5 s.t. τ i ≤ 1.

In an unconstrained (τ i ≤ 1) symmetric equilibrium the first order conditions imply:

τ i =
u(qi)+ci(qi)
2F (qL,qH)

and qi =
1
θi

1
1−α

. (9)

Of course τ i ≤ 1 only if F (qL, qH) ≥ u(qi)+ci(qi)
2 , i.e. money must be sufficiently valuable, otherwise it

would be spent with certainty. Observe from (9) that qi maximizes the match’s surplus u(qi)−ci(qi),

while τ i is chosen such that traders share the match’s surplus equally, ex-ante:

u(qi)− τ iF (qL, qH) = τ iF (qL, qH)− ci(qi) = u(qi)− ci(qi)
2

.
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In short, greater flexibility in the buyer’s spending strategy makes both traders better off ex-

ante, so it never makes sense to avoid a trade with an inefficient seller. The buyer can always limit his

‘capital loss’ by spending the money infrequently, so that u(qi) > τ iF (qL, qH). In addition, welfare

will generally be higher than in the case without lotteries. The reason is that by using lotteries

traders can maximize the match’s surplus and can also increase the incidence of consumption by

trading a little something even if the seller is inefficient.

7 Concluding Remarks

We have studied a search-theoretic model of money with heterogeneous sellers and endogenous

market participation and shown these features can lead to equilibrium multiplicity, with high or low

market activity. Prices and market activity tend to be positively correlated, and the best equilib-

rium may be the one with low prices but also low economic activity. Money in this case facilitates

trades that take place only with the most efficient sellers. However, we suspect equilibrium mul-

tiplicities should vanish in models with degenerate distributions of divisible money. In that case,

buyers would benefit by spending a little something–instead of their entire money holdings–even

in matches with inefficient sellers.

Endnotes

1 Thus, as in the original search model of money, a buyer always spends his entire cash holdings.

This simplifies the distribution of money. Of course, initial money holders must be able to trade

with those who do not initially have money. A way to achieve this is to assume the latter agents

have a production opportunity and these opportunities can be acquired again only by consuming

(as in Shi, 1995, where goods are divisible or Camera, 2000, where goods are indivisible).
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2 A constrained bargaining solution, u(qi) ≥ F (qL, qH) = ci(qi), violates (6).
3 If πL = 0 we do not need to worry about βL since out of equilibrium a buyer cannot meet an

inefficient seller.

4 Notice that the number of matches between buyers and sellers,M(pL+pH), equals the number

of matches between sellers and buyers, (1−M)pm(πLλ+ 1− λ), in any equilibrium.

5 Technically, (8) implies limM→1(pH + pL) = limM→0 pm = 0. Consider an ε > 0 small and a

qi ∈ (0, Q̂i). In this case the surpluses from trade and home production are positive. However, the

expected gain from market trade is greater than the gain from home production for a buyer and an

efficient seller only if M ∈ (M(ε), M̄(ε)) ⊂ (0, 1). In this case πm = πH = 1 is individually optimal

and a monetary equilibrium can be sustained.

6 We focus on discounting and initial money stock for clarity. In the proof we make it clear

existence depends on other parameters, besides δ and M . In particular θ and λ affect the distribu-

tion of shocks and the buyers’ reservation price. Clearly, if heterogeneity is extreme, say θ is very

large, inefficient sellers charge high prices, so buyers would shun them (hence πL = 0 always). If

heterogeneity is minimal, say, θ close to one or λ close to one, prices are so similar across sellers

or there are so few efficient sellers, that buyers would likely buy from the first seller encountered

(hence πL = 1 always). Technically, δ1 and δ0 tend to 1 when λ→ 1 or θ → 1.

7 This is not equivalent to having divisible money as demonstrated in Camera (2005) since

agents are constrained to unit holdings. Even greater flexibility can be achieved when agents can

hold multiple money units and use randomized trades (see Berentsen, Camera and Waller, 2004).

For a model with heterogeneity and lotteries see Lotz, Shevchenko and Waller (2005).

8 Of course we are modifying the model in two important ways. Since ex-post someone suffers

a loss (the seller, if he gets no money and the buyer otherwise), we must assume commitment to a
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trade. We also assume market production is independent of market consumption and impose a unit

bound on money holdings. The reason is the model in Section 2 does not admit stationary equilibria

with randomized money transfers. Since market production is contingent on market consumption,

producers who do not receive money are unable to consume (hence produce) market goods and exit

the market. As more and more sellers do so pm reaches an upper bound beyond which money has

so little value that it is spent with probability one in every match.
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Appendix

Proof of Proposition. Let qi = Qi ∈ (0, Q̂i). Using (7)

F (qL, qH) = δ
A

pHq
α
H

α + (1− λ)πHpmqH +
βLpLq

α
L

α + βLλπLpmθqL − λ(1− πL)ε (10)

where A = 1 − δ [1− pH − βLpL − (1− λ)πHpm − βLλπLpm] > 0. Notice limε→0 F (qH , qL) > 0.

Thus, let ε→ 0.

Conjecture πm = πH = πL = βL = 1 is an equilibrium. Note F (qL, qH) < Q̂H and
∂F (qL,qH)

∂qi
> 0

for qi ∈ (0, Q̂i). Given qL, there is a unique q∗H ∈ (0, Q̂H) such that TH(qL, q∗H) = 0. The

reason is the first and second term in TH(qL, q∗H) cross once. The same argument implies that if

F (qL, qH) < θQ̂L, then there is also a unique q∗L ∈ (0, Q̂L) such that TL(q∗L, qH) = 0. To verify that

the pair (q∗L, q
∗
H) is unique, note it must solve TH(qL, q

∗
H) = TL(q

∗
L, qH) = 0, which jointly imply

θq∗αL
q∗α−1L + θ

=
q∗αH

q∗α−1H + 1
. (11)

A unique pair solves this equality and it is such that q∗L < q
∗
H (by continuity, these results hold for

ε > 0 small).

We now prove optimality of the conjectured equilibrium strategies. From (6), πH = 1 if πL = 1.

Thus, focus on πL = 1, which occurs if F (qL, qH) ≥ θqL+ε/pM , which is F (qL, qH) > θqLfor ε→ 0.

Since qL ∈ (0, Q̂L) then u(qL) > θqL so if u(qL) ≥ F (qL, qH) then F (qL, qH) > θqL. That is if βL = 1

then πL = 1.1 Thus, focus on proving that βL = 1 is individually optimal. If πH = πL = βL = 1

then (4) implies βL = 1 iff u(qL) ≥ F (qL, qH). This inequality is the most stringent for qL = Q̂L
1The intuition is as follows. In a monetary equilibrium a buyer can always buy from an efficient seller. Trade

with an inefficient seller occurs only if he can produce enough for a dollar, which can be spent in more efficient trades

otherwise. Thus, the buyer’s willingness to trade is the determining factor.
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(see (10)). Thus, βL = 1 iff u(Q̂L) = θQ̂L > F (Q̂L, Q̃H), where Q̃H is the q∗H that solves (11),

given Q̂L. Then, θQ̂L > F (qL, qH) iff

δ < δ1(M) =
Q̂α
L

λQ̂α
L+(1−λ)[(1−M)Q̃α

H+MQ̃H]

a function of the parameters. Notice ∂δ1(M)
∂λ > 0, and δ1(M) = 1 if λ = 1. Also ∂δ1(M)

∂M > 0, so

if δ ≤ δ1(0) = δ1 then θQ̂L > F (qL, qH) for all M > 0. If δ > δ1 then θQ̂L > F (Q̂L, Q̃H) for

M > M1(δ) =
Q̃α
H− 1−λδ

(1−λ)δ Q̂
α
L

Q̃α
H−αQ̃H

where M1(δ) ∈ (0, 1) for δ ∈ (δ1, 1). Thus βL = πL = πH = 1 if

δ ≤ δ1or δ > δ1andM >M1(δ).

Conjecture πm = πH = 1 > πL = βL = 0 is an equilibrium. Note F (qL, qH) = F (qH) < Q̂H

and F (qH) > 0 for qH ∈ (0, Q̂H). There is a unique q∗∗H ∈ (0, Q̂H) solving TH(q∗∗H ) = 0,since the

first and second term in TH(qH) cross once.

To prove optimality of the strategies notice from (6) that πL = 0 if F (qH) < θqL + ε/pM . For

ε → 0 this implies πL = 0 if F (qH) ≤ θqL. Since qL ∈ (0, Q̂L) implies u(qL) > θqL, then u(qL) ≤

F (qH) ⇒ F (qH) < θqL. That is if βL = 0 then πL = 0 for ε > 0 small. Thus focus on proving

βL = 0. If πH = 1 > πL = βL = 0 then (4) implies βL = 0 iff u(qL) ≤ F (qH). This inequality is the

most stringent for qL = Q̂L. Notice that qH = Q̃H solves TH(qH) = 0 for u(Q̂L) = F (qH). Thus

θQ̂L ≤ F (Q̃H) iff

δ ≥ δ0 (M) =
[1−λ(1−M)]Q̂α

L

M[(1−λ)αQ̃H+λQ̂α
L]+(1−M)(1−λ)Q̃α

H

.

Notice ∂δ0(M)
∂λ > 0, and δ0(M) = 1 if λ = 1. Since

∂δ1(M)
∂M > 0, if δ < δ0(0) = δ0 then u(Q̂L) > F (qH)

for all M > 0. Thus we need δ > δ0 for πL = βL = 0 and since δ0(1) > 1 this cannot be satisfied

for all M . Rather πL = βL = 0 for δ > δ0 and M ≤M0(δ) =
δQ̃α

H−Q̂α
L

δ[Q̃α
H−αQ̃H]+ (1−δ)λ

1−λ Q̂α
L

.

It is easily shown that δ0 < δ1, since Q̃H > Q̂L, and M0(δ) > M1(δ) for δ < 1. Thus

πm = πL = πH = 1 and πm = πH = 1 > πL = 0 coexist if δ ∈ (δ0, δ1] and M ≤M0(δ) or if δ > δ1
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and M1(δ) < M < M0(δ). Notice also that q∗L < q
∗
H < q

∗∗
H . Since θ > 1 then we have q

∗
L < q

∗∗
H from

(11). Furthermore, one can show q∗H < Q̃H ≤ q∗∗H . Also, notice q∗∗ is the largest at M = 0. In this

case T (q∗∗H ) = 0 is u(q∗∗H ) =
1+α−δ

αδ q∗∗H . Since
1+α−δ

αδ > 1 it follows q∗∗H can be larger than q∗if δ is

large and M is small. Using (8) we obtain the frequency of exchange, (1−M)pm[πLλ+ 1− λ].
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Figure 1: Existence of Equilibria

Figure 2: Ex-ante welfare, average surpluses and trading frequencies
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Figure 3: Ex-ante welfare W (πL), average surpluses E[S|πL] and trading frequencies F (πL)
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