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Introduction:  Medical diagnostic tests are evaluated based on measures of sensitivity (Sn), specificity (Sp),
and likelihood ratios (LR).  These procedures are limited in the event of a biased gold standard or missing
data.  Interpretations of these measures are frequently inappropriate.  Purpose:  The Rasch Measurement
Model (RMM) was examined as a method to provide evidence of diagnostic test utility in order to overcome
the limitations of Sn, Sp, and LR. Methods:  Patients suspected of a knee ligament tear (n = 825) were studied,
by evaluating four diagnostic tests.  The RMM probability estimates for each test were compared to estimates
of Sn, Sp, and LR.  Results:  The RMM provided probability estimates for the diagnosis that were comparable
to likelihood ratios.  These probability estimates correlated with the estimates of Sn, Sp, and LR.  The RMM
estimates were not affected by missing data.  Discussion: The RMM may provide an alternative means to
study the utility of medical diagnostic tests to estimate the probability of disease presence/absence.



2 CIPRIANI, ET AL.

Diagnostic Test Utility: Reliability
and Validity Evidence

Medical professionals rely on useful diag-
nostic testing procedures in order to base deci-
sions regarding interventions and treatment plan-
ning for individuals with health related
conditions. The utility of a diagnostic test is gov-
erned by the reliability and validity of the data
for making accurate inferences, that is, the psy-
chometric soundness of the test must be demon-
strated before it is applied clinically.  A useful
diagnostic test provides the clinician with the
confidence needed to make life-altering decisions
on the part of the patient.

Examining the utility of a diagnostic test can
involve a variety of different statistical and mea-
surement approaches (Bohannon, 1997).  For
instance, in order to establish reliability of a score
or outcome from a diagnostic test, researchers
typically apply classical test theory models (e.g.,
test-retest reliability, internal consistency mea-
sures, etc.), as well as generalizability theory
models (e.g. intraclass correlation coefficient) to
measure intra and inter rater reliability  (Crocker
and Algina, 1986; Marcoulides, 1999; Shavelson
and Webb, 1991).  Researchers examine reliabil-
ity of diagnostic tests in terms of the scores ob-
tained from a single rater and/or multiple raters
(i.e., inter and intra rater) when using a particu-
lar test or instrument (Portney and Watkins,
2000).

Common validity evidence for medical di-
agnostic tests include test sensitivity, specificity,
and likelihood ratios (Indrayan and
Sarmukaddam, 2001; Lilienfeld and Stolley,
1994; Rothman and Greenland, 1998; Wood-
ward, 1999).  These validity indices are used for
diagnostic test outcomes, and are based on a com-
parison with a criterion test, often referred to as
a gold standard.  This gold standard provides a
reference point for establishing validity, and re-
lies upon a presumably definitive known outcome
(Fritz and Wainner, 2001; Guggenmoos-
Holzmann and van Houwelingen, 2000; Irwig,
Glasziou, Chock, et al., 1994; Reid, Lachs, and
Feinstein, 1995).  Measures of sensitivity, speci-

ficity, and likelihood ratios are estimated using
this gold standard; further, all contribute to the
clinician’s appreciation for the utility of a diag-
nostic test (Boyko, 1994; Hawkins, Garrett, and
Stephenson, 2001; Phelps and Huston, 1995;
Sackett, 1992; Sox, 1996).

The ability of a diagnostic test to correctly
classify a person as diseased or not diseased,
healthy or sick, etc. is paramount to a useful di-
agnostic test.  Diagnostic tests are designed to
discriminate between persons of different levels
of health or disease.  In the special case in which
the diagnostic test produces the binary outcome
of positive/negative, diseased/healthy, etc., these
properties are referred to as sensitivity and speci-
ficity of the test.  Sensitivity is the probability of
a positive test result when the disease is present,
a true positive; specificity is the probability of a
negative test result when the disease is not
present, a true negative (Begg and Greenes,
1983).  Tests that accurately identify a person
with a disease/dysfunction possess sensitivity.  A
test that is 100% sensitive will correctly identify
all persons with the disease.  Tests that accurately
identify a person as healthy (i.e., disease/dysfunc-
tion free) possess specificity.  A test that is 100%
specific will correctly identify all persons with-
out the disease.

Interpretation of sensitivity (Sn) and speci-
ficity (Sp) can be problematic.  These measures
are an indication of how well the diagnostic test
works, and are not an indication of whether a
disease is in fact present or absent.  A highly sen-
sitive test, for example 95%, is a test that will
likely yield a positive outcome in the presence
of a disease or condition.  This high Sn value
would at first appear desirable.  However, if this
same test has low specificity, for instance 35%,
then this test results in a large number of false
positives.  Diagnostic tests for shoulder impinge-
ment syndrome, a common painful condition of
the shoulder, are problematic for these reasons.
For example, the Hawkins test is highly sensi-
tive (> 90%) but has low specificity (< 25%).
Yet, clinicians rely on this test to determine
whether a diagnosis of impingement is present.
This test results in a high likelihood of a false
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positive, leading to over-diagnosis of impinge-
ment syndrome (Cahs, Akgun, Birtane, et al,
2000).

In order to assist clinicians with the interpre-
tation of Sn and Sp, likelihood ratios were devel-
oped to explain the diagnostic utility of a test.
Likelihood ratios consider both the Sn and Sp of a
test in order to provide the clinician with a deci-
sion making process.  Given known values of Sn
and Sp, the clinician can calculate the likelihood
that a disease is present or absent.  Calculation of
likelihood ratios, expressed as either a positive
likelihood ratio (LR+) or a negative likelihood
ratio (LR-) are based on Sn and Sp as follows:

Positive Likelihood Ratio = sensitivity /
1– specificity
Negative Likelihood Ratio = 1 - sensitivity /
specificity
Based on this relationship, a positive likeli-

hood ratio of 1.0 indicates that the test result does
nothing to change the odds of a person actually
having the disease of interest.  Likelihood ratios
greater than 1.0 increase the odds favoring the
condition.  Negative likelihood ratios of 1.0 also
do not provide any useful information.  However,
negative likelihood ratios less than one decrease
the odds favoring the condition.  Small negative
likelihood ratios correspond to high sensitivity
values, yielding a measure that is useful for rul-
ing out a condition.  Likewise, large positive like-
lihood ratios correspond with high specificity,
indicating a measure that is useful for ruling in a
condition (Fritz and Wainner, 2001).

In order to apply likelihood ratios, clinicians
must first estimate the pre-test probability of a
particular disease or condition.  Once a pre-test
probability has been established, this probabil-
ity is converted to an odds.  Clinicians can then
apply the likelihood ratio to the pre-test prob-
ability in order to obtain an estimation of a post-
test probability for the disease.  Many clinicians
apply the nomogram proposed by Fagan (1975)
as an application of Bayes’ theorem for interpre-
tation of likelihood ratios.  A more accurate ap-
proach is the method proposed by Sacket,
Haynes, Guyatt, and Tugwell (1992).  This pro-

cess involves three simple calculations.  The first
calculation is to convert the pre-test probability
to an odds using the formula

Pre-test odds = pre-test probability / (1 – pre-
test probability).
The pre-test odds are then multiplied by the
likelihood ratio, to estimate the post-test
odds:
Post-test odds = (pre-test odds) x (likelihood
ratio).
Finally, the post-test odds are converted to a
post-test probability using
Post-test probability = post-test odds / (post-
test odds + 1)

For example a clinician might assign a pre-test
probability of 75% for a patient presenting with
symptoms (i.e., a medical and symptom history)
consistent with other patients who have a given
diagnosis.  The clinician then administers diag-
nostic tests and applies the likelihood ratio values
to this pre-test probability.  The pretest probabil-
ity of 75% has a pre-test odds of 3.0.  Assuming a
diagnostic test has a LR+ of 5.46, the post-test
odds becomes 16.38 and a post-test probability
that the diagnosis is present of 94.25%.  Thus, the
positive diagnostic test improved the clinicians
confidence from 75% to 94%.

Weakness of Current Methods
to Examine Test Utility

Sensitivity and specificity pose interpreta-
tion problems for the clinician, as described ear-
lier.  In addition, Sn and Sp are highly dependent
on a perfect gold standard—a standard that is
equitably applied to all individuals in the popu-
lation of interest.  Unfortunately, the gold stan-
dard is likely to be biased because of missing
observations, selection bias or because only a
subset of the population of interest are exposed
to the gold standard (Bates, Margolis, and Evans,
1993; Green, Black, and Johnson, 1998; Hlatky,
Pryor, Harrell, et al., 1984; Phelps and Hutson,
1995; Valenstein, 1990).  A biased gold standard
results in biased estimates of the performance of
the criterion test (Begg and Greenes, 1983; Bates,
Margolis, and Evans, 1993).  For example, sur-
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gery is a common gold standard and generally
only those patients in which the surgeon is confi-
dent needs surgery will actually be subjected to
this gold standard.  Those who the surgeon may
not be as confident will likely not be subjected
to the gold standard.  Thus, these cases can not
be included in the analysis of sensitivity and
specificity, resulting in missing and biased data
for the diagnostic tests (de Bock, Houwing-
Duistermaat, Springer, et al., 1994; Joseph,
Gyorkos, and Coupal, 1995).  Finally, as noted
by Guggenmoos-Holzmann and van Houwelin-
gen (2000) values of sensitivity and specificity
relate more to the performance of the test rather
than to the likelihood that a disease is present or
absent—that is, these values are test centered
rather than patient centered.

The use of likelihood ratios of diagnostic
tests require that clinicians and researchers pro-
vide an estimate of the pre-test probability of a
disease.  This estimate is susceptible to subjec-
tive bias on the part of the clinician or researcher
(Fox, Landrum-McNiff, Zhong, et al., 1999; Reid,
Lane, and Feinstein, 1998; Timmermans, 1994).

The ability to determine the utility of diag-
nostic tests is limited by the problems presented
using standard sensitivity, specificity, and likeli-
hood ratios (e.g., sample/item dependence, gold
standard dependence, interpretation problems).
In summary, the problems of these procedures
include interpretation concerns, reliance on a gold
standard, an inability to analyze missing obser-
vations, an inability to make direct comparisons
between tests as to the possibility of redundancy,
and the reliance on a subjective pre-test prob-
ability estimate of disease presence

The Rasch Regression Model

A potential solution to these problems is the
Rasch Measurement Model (Rasch, 1980).  Re-
cently, the Rasch Measurement Model (RMM)
has gained popularity as an alternative means to
examine the reliability, validity, and utility of
measures in medicine and health care (Campbell,
Kolobe, Osten, Lenke, and Girolami, 1995;
Chang and Chan, 1995; Creel, Light, and
Thigpen, 2001; Fisher, 1993; Haley, McHorney,

and Ware, 1994; Heinemann, Harvey, McGuire,
et al., 1997; Lai, Fisher, Magalhaes, and Bundy;
1996; MacKnight and Rockwood, 2000; Morris,
Morris, and Iansek, 2001; Silverstein, Fisher,
Kilgore, Harley, and Harvey, 1992; Velozo,
Kielhofner, and Lai, 1998).  Originally, educa-
tional and psychology professionals used the
RMM to examine tests; health care profession-
als now use the RMM to examine health and
medical tests (Bond and Fox, 2001; Chang,
Slaughter, Cartwright, and Chan, 1997; Fisher,
1993; Fisher, Harvey, Taylor, Kilgore, and Kelly,
1995; Fox, 1999; Fox and Jones, 1998; Harada,
Chiu, Damron-Rodriguez, et al., 1995; Heine-
mann, Linacre, Wright, Hamilton, and Granger,
1993; Karabatsos, 1997; Prieto, Roset, and Badia,
2001; Rheault and Coulson, 1991; Tesio,
Granger, and Fiedler, 1997; Velozo, Magalhaes,
Pan, and Leiter, 1995).

Traditionally investigators used the RMM to
examine one test at a time (i.e., a test that contains
numerous items such as a math test or a survey
questionnaire), focusing on the interaction between
the persons/patients and each item of a test.  Re-
cently investigators have proposed applying the
RMM to examine multiple tests simultaneously,
as a means to examine the predictive ability of a
combination of tests (Wright, Perkins, and Dorsey,
2000; Beltykova, Cipriani, Yan, Ughrin, and Fox,
2000).  In fact, Wright, Perkins, and Dorsey (2000)
refer to this approach as multiple regression
through measurement.  In this case, the various
diagnostic tests are treated as individual test items
and the patients are the persons who are measured
by these items.  A person with “more” of a disease
would be more likely to respond positively to a
diagnostic test just as a person with “more” of an
ability/construct would be more likely to respond
positively to an easier item.

Wright, Perkins, and Dorsey (2000) entered
multiple predictor variables into the RMM as a
means to predict the outcome of the disease gout.
By aligning the predictor variables on a single
calibrated ruler, they were able to identify at
which points each predictor variable would likely
result in a positive outcome of gout.  The inves-
tigators created transformed scores representing



COMPARING RASCH ANALYSES PROBABILITY ESTIMATES 5

the predictor variables of urea nitrogen, uric acid,
and creatinine, all three being blood values.  Us-
ing the RMM, they were able to identify points
of each blood value that would give the most
likely outcome of gout in this sample of patients.

Beltyukova, Cipriani, Yan, et al. (2001) per-
formed a similar analysis to predict driver capa-
bility in older adults.  Based on two predictor
variables (a visual test and a clock performance
test), they were able to examine how well these
two tests could predict the dichotomous outcome
of capable or incapable of driving.  While the
predictor variables were able to create some sepa-
ration in the sample, they were not able to pre-
dict with any degree of confidence the desired
outcome.  They determined that the two tests
would not make good predictors of driving abil-
ity, as nearly 65% of the participants could not
be diagnosed with greater than 75% accuracy.

A potential advantage of using the RMM
over traditional approaches to examine diagnos-
tic test utility is that the RMM provides informa-
tion not readily available by the other procedures
previously mentioned.  These features include
individual estimates for person and test/item fit
(a measure of validity and unidimensionality),
individual estimates of person and test/item reli-
ability, an index of how well the tests separate
persons into different categories (a measure of
validity), and an indication of order validity (i.e.,
items/persons span a continuum from least to
most of a latent trait) which is often referred to
as hierarchical structure (Fox, 1999; Andrich,
1988; Karabatsos, 2001; McNamara, 1996;
Klauer, 1995; Smith, 2001; Smith, 2000).

The RMM may be able to provide informa-
tion similar to the sensitivity/specificity of di-
chotomous tests as well as the probability of dis-
ease/health in an individual (e.g., likelihood
ratios).  Because the RMM allows individuals and
items to be fit along a common ruler, it should be
possible to estimate the probability of a disease/
condition based on any individual’s position in
regards to each item of the battery of tests.  In
addition, because all items are fitted along a com-
mon ruler, this feature will allow for direct com-
parisons between two or more tests.  This com-

parison will allow the investigator to examine if
certain tests are in fact redundant, or if each test
provides additional information regarding the
likelihood of a given diagnosis.

The purpose of this study was to compare
the outcomes/interpretations of the RMM with
standard procedures (i.e., sensitivity, specificity,
likelihood ratios) on the criteria of reliability, and
validity of diagnostic tests.  The outcomes we
examined were 1) the ability of the Rasch Mea-
surement Model to provide useful interpretations
of the outcomes of diagnostic tests, 2) the ability
of the Rasch Measurement Model to identify re-
dundant testing procedures in diagnostic testing—
by making direct comparisons between each di-
agnostic test on their ability to separate persons
into distinct health categories, and 3) the ability
of the Rasch Measurement Model to overcome
the difficulty of missing observations in the gold
standard data.

Specifically, this study examined the ability
of the Rasch Measurement Model to overcome
the limitations of current methods to examine the
utility of diagnostic tests such as sensitivity, speci-
ficity, and likelihood ratios.

Methods

Procedure

This investigation used a retrospective chart
review to generate a case-control design.  Patient
files were obtained from an outpatient ortho-
paedic surgery clinic.  The diagnosis for cases
was a tear of the anterior cruciate ligament of the
knee, a very common diagnosis in this particular
setting. Cases included individuals with a con-
firmed tear of the anterior cruciate ligament of
the knee.  Controls included individuals with a
suspected knee injury and the absence of a tear
to the anterior cruciate ligament.  The “gold stan-
dard” test was the outcome following arthro-
scopic investigation and/or surgery of the knee
(Kirkley, 1997; DeHaven, 1983). The diagnostic
tests included the Lachman’s test, Pivot Shift Test,
history of an audible pop (“pop”), a Magnetic
Resonance Imagery (MRI), and a mechanical
ligamentous examination (Mech.Exam).  These
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tests are useful for the screening of a knee with a
potential tear to the ACL (Solomon, Simel, Bates,
Katz, and Schaffer, 2001; Neeb, Aufdemkampe,
Wagener, and Mastenbroek, 1997).

Sample

The file review included 825 patient charts
from individuals who underwent at least the
Lachman’s test as part of a normal knee exami-
nation as well as arthroscopic exploration and/or
surgery of the knee.  In this way, even patients
without a tear to the ACL were included in the
sample.  Thus, a true diagnosis was available for
these patients.  A subset of patients’ records were
examined for analysis.  This subset consisted of
patients without a known diagnosis for their knee
injury (n = 52).  These patients underwent the
standard physical examination, however, they did
not undergo exploratory or reconstructive
arthroscopic surgery.  These cases were used to
demonstrate the application of the RMM for miss-
ing data.

Age, gender, and time since injury (i.e., the
time in weeks between the actual injury and the
time of the examination) were recorded as de-
mographic data.   These data were used to com-
pare the sample of this study with the literature.

Variables

The following diagnostic tests served as the
predictor variables: Lachman’s test, Pivot shift
test, report of a “pop” sensation at time of injury,
Magnetic Resonance Imaging (MRI) result, me-
chanical knee ligament examination (e.g., the
knee signature system, the KT-1000/2000) result.
Positive and negative outcomes of a test were
based on the clinician’s interpretation of each test,
based on the definitions provided by the litera-
ture (Losee, 1983; Jakob, Staubli, and Deland,
1987; Neeb, Aufdemkampe, Wagener, and
Mastenbroek, 1997; Malcom, Daniel, Stone, and
Sachs, 1985; Forster, Warren-Smith, and Tew,
1989; Tomberlin and Saunders, 1999).  The me-
chanical knee exam (Mech.Exam) variable was
treated as a continuous variable, measured in
millimeters of difference between the healthy and
involved knee.  This measure was based on the

amount of anterior tibial translation relative to a
fixed femur while an anterior directed force was
applied to the tibia, mechanically.

The gold standard for this investigation was
arthroscopic examination/surgery.   The post sur-
gery diagnosis served to confirm the diagnosis
of ACL tear or no ACL tear.  Those individuals
who did not undergo arthroscopic surgery were
treated as either missing data (i.e., in terms of
the gold standard) or treated on a continuum be-
tween healthy and torn (i.e., unsure).

Data Analysis

Likelihood ratios were based on the values
of sensitivity and specificity, thus representing
the ability of a diagnostic test to identify persons
with a tear or a healthy knee. In addition, the
mechanical knee examination was treated as a
continuous variable, measured in millimeters of
difference between the healthy and involved knee.
This predictor variable was entered in a simple
logistic regression model to obtain individual
estimates for the 2x2 table.

The RMM analysis used the Partial Credit
Model (Wright and Masters, 1982) with
WINSTEPS software (Linacre and Wright, 1991).
The person ability estimate represented the health
status (i.e., ability) of a person.  Persons of poor
knee health (i.e. ACL tear) were expected to re-
spond positively to a given diagnostic test (i.e., a
positive test result).  Persons of good knee health
were expected to respond negatively to a given
diagnostic test (i.e., a negative test result).  The
item difficulty estimate represented the difficulty
(or ability to discriminate between healthy and
injured) of a diagnostic test to elicit a positive or
negative response from a person.  Thus, a person’s
overall performance on the diagnostic tests was a
function of that person’s level of health (ability)
and the discrimination ability of the test.  For clari-
fication, diagnostic tests were referred to as “items”
to represent the items of the battery of diagnostic
tests entered into the model.  Just as a traditional
questionnaire or intelligence test possesses mul-
tiple “items,” the battery of diagnostic tests con-
sisted of multiple items (i.e., Lachman’s test, pivot
shift test, MRI, etc).



COMPARING RASCH ANALYSES PROBABILITY ESTIMATES 7

For the continuous variable (KSS or
KT1000), the partial credit RMM treats each
millimeter increment as a discrete category.  Thus,
the mechanical knee examination was coded on
a scale of 0 – 9 mm of instability of the knee,
based on the millimeter difference in displace-
ment of the tibia relative to the fixed femur be-
tween the healthy knee and the injured knee; a 0
indicated no displacement and each subsequent
one mm represented additional anterior displace-
ment of the tibia of the injured knee compared to
the uninjured knee.  The greater the displacement,
the more likely the ACL is torn/injured (Neeb,
Aufdemkampe, Wagener, and Mastenbroek,
1997; Forster, Warren-Smith, and Tew, 1989).

Based on the requirements of the RMM, the
data were modeled such that the probability of a
given response (i.e., responding positively to a
given item) was conditional on the diagnostic sta-
tus of the patient (i.e., the level of diagnosis as
either positive or negative) and the discrimina-
tion ability of the item (i.e., how well it functions
to distinguish between a positive or negative pa-
tient).  This is synonymous with the probability
of successfully responding to a test question given
a person’s ability level and the difficulty level of
the test item.  Thus, persons with definite posi-
tive diagnosis for ACL tear should respond posi-
tive to a test that discriminates between those with
healthy knees and those with injured knees.  Simi-
larly, persons with healthy knees should not re-
spond positive to a test that requires a tear for
positive response.

All diagnostic items were entered into
WINSTEPS for analysis on the first step.  This
allowed for anchoring of the person and item val-
ues based on the responses of persons to each di-
agnostic item.  The actual diagnosis variable (i.e.,
outcome of surgical exploration) was then be en-
tered into the analysis as a separate dependent
variable (Wright, Perkins, and Dorsey, 2002).

The average category measures for each di-
agnostic test item represented the sample aver-
age measure for each category of each item.  Thus,
it was possible to obtain the average measure of
a positive test as well as the average measure of
a negative test for each diagnostic test item.  The

measure for the outcome variable (i.e., diagno-
sis) was then used to estimate the increase/de-
crease in probability of a tear to the ACL, given
a positive/negative result of any diagnostic test
procedure.  The difference in logit values between
the diagnosis measure and a measure of a posi-
tive or negative response on a test, was used to
estimate the probability of a tear or no tear.  Thus,
if a positive measure on a particular test was equal
to the diagnosis measure (i.e., a difference of zero
logit between the two measures), a person would
have a 50% probability of a tear to the ACL given
a positive response on that test, based on the logit
transformation

Probability = exp(logit) / 1 + exp(logit),
where exp(0) = 1 and 1 / (1 + 1) = 0.50.  Thus,
subtracting the diagnosis logit value from the
average positive logit value of a diagnostic test
provided the probability of a tear of the ACL
given a positive test result for that particular di-
agnostic procedure.  Similarly, obtaining the dif-
ference in the diagnosis logit and the average
negative logit value of a diagnostic test provided
the probability of a tear of the ACL given a nega-
tive result of that test.

Finally, the RMM was used to generate reli-
ability estimates of the measures for persons and
items.  In addition, the separation index was
generated and examined in order to assess the
ability of the diagnostic tests to discriminate be-
tween persons with healthy and unhealthy ACLs.

The RMM and Missing Data
in the Response Variable

In order to test the RMM as a method to
analyze diagnostic tests in the absence of a per-
fect gold standard (i.e., missing observations),
data from patients who did not undergo knee
surgery were included in this analysis.  This
analysis consisted of comparing the average
measures for a positive and negative outcome
on the diagnostic tests, between a set of data
with all known diagnoses (n = 825) and a set of
data with missing diagnoses (n = 877).  In the
data set of missing diagnoses, 52 patients did
not undergo knee surgery and were therefore
without a known diagnosis.



8 CIPRIANI, ET AL.

Results

Description of File Review

This investigator examined 825 patient files
of individuals who had undergone arthroscopic
surgery between the dates of January 2001 and
January 2003.  Of these files, 52.8% consisted of
patients with no tear to the ACL (n = 436 con-
trols) and 47.2% consisted of patients with a con-
firmed tear to the ACL (n = 389 cases).  The gen-
der distribution of these patients was 59.0% males
(n = 487) and 41.0% females (n = 338).  The
proportion of males and females with a confirmed
tear of the ACL was 48.3% and 45.6% respec-
tively, and these proportions were not signifi-
cantly different (c2 [1] = 0.580, p > .05).  Table 1
contains these frequencies.  The data of these 825
patients were then used to compare the outcomes
of the RMM with standard tests of sensitivity,
specificity, and likelihood ratios.

A second file review was completed to pro-
duce cases of patients who had undergone knee
examination for suspected injury to the ACL, but

no surgical report was available.  These cases
were used to include missing cases.  In all cases,
patients had chosen not to undergo surgical ex-
ploration and/or repair.  Fifty-two (52) cases were
reviewed.  The gender distribution was 61.5%
males (n = 32) and 38.5% females (n = 20).

Sensitivity, Specificity, Likelihood Ratios
for all Data

In order to compare the interpretations of
standard approaches to examine the utility of di-
agnostic tests with the RMM, this investigation
first compared test sensitivity, specificity, and
likelihood ratios to the logit (and probability)
estimates of the RMM, using the entire set of
available data.

Table 2 provides sensitivity, specificity, and
likelihood ratio values for each of the diagnostic
tests.  The mechanical knee examination was the
most useful for making a positive or negative di-
agnosis (Sn = 99.3%, Sp = 99.6%, LR+ = 228.4,
LR- = 139.9, respectively), whereas the history of
a pop sensation at the time of injury proved to be
the least useful of the tests (Sn = 72.5%, Sp = 76.1%,
LR+ = 3.0, LR- = 2.8, respectively).  Table 3 pro-
vides the Rasch Model logit estimates and prob-
ability estimates for each of the diagnostic tests.
Once again, the mechanical knee examination
proved to be the most useful (logit positive = 3.2,
logit negative = -3.5, probability of positive = 96%,
probability of negative = 97%) of the diagnostic
tests; the history of a pop proved to be the least
useful (logit positive = 1.7, logit negative = -1.4,
probability of positive = 85%, probability of
negative = 81%) of the diagnostic tests.

Table 1
Frequency of patients in each category of di-
agnosis and gender

% of All Data Sets
Combined(n = 825)

Diagnosed with tear 47.2%
Diagnosed no tear 52.8%
Male 59.0%
Female 41.0%
Male with tear 48.3%
Female with tear 45.6%

Table 2
Standard Diagnostic Test Values for the Diagnosis of an ACL Tear of the Knee
Test Sn (SE) Sp (SE) LR+ (SE) LR- (SE)
Hx of Popa 72.49 (.02) 76.15 (.02) 3.04 (1.10) 2.77 (1.09)
Lachman 92.03 (.01) 91.97 (.01) 11.46 (1.18) 11.54 (1.19)
Pivot Shift 76.72 (.02) 99.63 (.01) 208.68 (2.71) 4.28 (1.11)
Mech.Examb 99.29 (.01) 99.57 (.01) 228.36 (2.71) 139.89 (2.02)
MRI 92.55 (.01) 83.05 (.02) 5.46 (1.14) 11.15 (1.24)
Note: Sn (Sensitivity), Sp (Specificity), LR+ (Positive Likelihood Ratio), LR- (Negative Likelihood Ratio).
aHistory of “pop” sensation at time of injury
bMechanical Knee Examination
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The interpretations derived from the standard
procedures and the RMM appear to be similar.
Both procedures identify the mechanical knee
exam as the test yielding the highest probability
of a tear or no tear, given a positive or negative
result, compared with the other diagnostic tests.
Both procedures identify the history of “pop” as
the least useful test, with lower likelihood values
and probability values compared with the other
tests.  Further, the pivot shift test, which has a
high specificity but low sensitivity, is interpreted
as more appropriate to correctly identify a tear
to the ACL compared with correctly identifying
a healthy knee. In other words, given a positive
pivot shift, the likelihood of a tear (LR+ = 208.7)
is much greater than the likelihood of no tear (LR-
= 4.3) given a negative pivot shift.  Similarly, the
probability of a tear (92.5%), based on the RMM
estimate, is higher than the probability of no tear
(79.9%) based on the RMM estimate.

Testing for a formal correlation between the
standard procedures and the RMM estimates
demonstrated significant correlations between
standard approaches and RMM estimates (p <
.05).  A significant correlation was found between
sensitivity values and RMM estimates of prob-
abilities of a negative diagnosis (r = .89, p < .05)
and a significant correlation was found between

specificity values and RMM estimates of prob-
abilities of a positive diagnosis (r = .75,  p < .05).
Table 4 provides this correlation matrix.

Further, positive likelihood ratios were sig-
nificantly correlated with the probability values
of a positive diagnosis from the RMM (r = .78, p
< .05).  Negative likelihood ratios were corre-
lated with the probability values of a negative (r
= .88, p < .05) and positive (r = .94, p < .05)
diagnosis from the RMM.  Table 5 contains this
correlation matrix.

RMM Analysis in the Presence of Missing Data
in the Response Variable

The estimated measures of a positive and
negative outcome for each of the predictor vari-
ables (i.e., Lachman’s test, pivot shift,
mech.exam, and MRI) were calculated for two
sets of related data.  These data sets included a
set (n = 825) of all patients with a known diagno-
sis and a set (n = 877) of  the original 825 pa-
tients including an additional 52 patients with no
known diagnosis (missing gold standard).  The
estimated category averages, in logit values, are
presented in Table 6 for each diagnostic test, for
each data set.  There was no difference between
the three sets of estimated measures for the data
sets (p > .05).  Thus, regardless of the data set,

Table 3
Estimated Logit Values and Probabilities Associated with Definite Positive and Definite Negative
Decisions of Diagnostic Tests using the Rasch Model

Logit Value Probability Logit Value Probability
for Positive for Positive for Negative for Negative

Test  (SE) (SE) (SE) (SE)
Hx of Pop 1.74 (.08) 85.07 (.02) -1.44 (.08) 80.84 (.02)
Lachman 2.32 (.05) 91.05 (.02) -1.77 (.07) 85.44 (.02)
Pivot Shift 2.51 (.07) 92.48 (.01) -1.38 (.09) 79.89 (.03)
Mech. Exam 3.17 (.12) 95.97 (.02) -3.46 (.17) 96.95 (.01)
MRI 2.21 (.08) 90.11 (.02) -2.07 (.09) 88.79 (.02)

Table 4
Correlation Matrix of Sensitivity and Specificity with the Rasch Estimated Probabilities of a
Positive or Negative Torn ACL

Rasch Probability of Positive Rasch Probability of Negative
Sensitivity 0.71  0.89a

Specificity  0.75a 0.33
asignificant at p < .05
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the RMM provided similar estimates for the cat-
egory averages of a positive tear or a negative
tear, for each of the diagnostic tests and the ac-
tual diagnosis.

Validity and Reliability Estimates of the RMM

The function of the diagnostic tests to cor-
rectly identify persons with a tear or no tear to
the ACL was supported using the RMM separa-
tion index (Gp).  The analysis of 825 observa-
tions and the five predictor variables resulted in
a separation index of Gp = 1.82.  This index re-
sulted in at least two statistically distinct strata
based on the strata estimation of Hp = (4Gp + 1) /
3 = 2.76.  Thus, the four diagnostic tests suffi-
ciently separated the sample into at least two dis-
tinct categories, a positive diagnosis of a tear and
a negative diagnosis of no tear to the ACL.

The reliability of the patient measure estimates
and the diagnostic test measure estimates were both
high.  The patient reliability Rp = .77 and the diag-
nostic test item reliability Ri = .98.  The higher
test reliability compared with the patient reliabil-
ity is a reflection of the large sample size (n = 825)
to estimate the tests compared with the small num-
ber of tests (n = 4) to estimate the persons.

Discussion

Utility of the Diagnostic Tests: Comparing
the RMM with Standard Procedures

The RMM probability estimates function in
a similar fashion to sensitivity and specificity.
The RMM produces estimates of a person’s health
and estimates of a test’s function along a com-
mon linear scale.  In other words, a person’s health

Table 6
Estimated measures comparing a RMM with a known diagnosis (n = 825), a missing missing
gold standard (n = 877), and an ordinal outcome gold standard (n = 877).

     Estimated Logits (SE)
Known Diagnosis Missing Gold Standard

+ Lachman 2.09 (.11) 2.03 (.08)
- Lachman -3.78 (.11) -3.65 (.10)
+ Pivotshift 2.43 (.11) 2.38 (.11)
- Pivotshift -3.16 (.15) -3.02 (.13)
+ MRI 2.09 (.12) 2.04 (.11)
- MRI -4.26 (.15) -4.09 (.14)
+ Mech.Exam 4.62 (.21) 4.63 (.20)
- Mech.Exam -7.48 (.10) -7.01 (.09)
+ Diagnosis 1.74 (.07) 1.71 (.07)
- Diagnosis -3.87 (.10) -3.73 (.09)
Note: “+” indicates a positive outcome and “-“ indicates a negative outcome on each diagnosistic test and
the actual diagnosis.

Table 5
Correlation Matrix of Likelihood Ratios and Odds Ratios with the Rasch Estimated Probabilities
of a Positive or Negative Torn ACL

Probability Probability
Yesa Nob

LR+c .78f .33
LR-d .94e .88e

aRasch Estimate for the probability of a positive diagnosis, given a positive test
bRasch Estimate for the probability of a negative diagnosis, given a negative test
cPositive likelihood ratio
dNegative likelihood ratio
esignificant correlation at p < .05
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is estimated in logit values as is the function of
the diagnostic test.  In this way, a person with a
high likelihood of having a particular diagnosis
will be assigned a relatively high logit value.  A
diagnostic test score that is most difficult to at-
tain (i.e., a positive response vs. a negative re-
sponse) will also be assigned a relatively high
logit value.  Positive and negative responses to a
diagnostic test are aligned at the two ends of the
logit scale, with positive responses on the high
end of the scale (e.g., positive logit values) and
negative response on the low end of the scale
(e.g., negative logit values).  In this way, the func-
tion of the test can be analyzed in terms of its
ability to correctly classify persons as either
healthy or injured (i.e., diagnosed with the con-
dition).  The larger the absolute logit value for a
test category, the greater the probability of the
outcome (i.e., healthy or unhealthy).

To demonstrate the relationship between sen-
sitivity, specificity, and RMM probability esti-
mates, consider the pivot shift test.  The sensitiv-
ity of the pivot shift test was relatively low
(76.72%), making it a poor test to rule out a di-
agnosis.  This test likely results in a large num-
ber of false negative classifications because it
incorrectly identifies nearly 25% of the persons
as negative, when in fact these persons are actu-
ally positive.  The RMM probability estimate of
a negative diagnosis based on the pivot shift test
was 75.00%.  The interpretation of this value is
that there is a 75% probability that the ACL is
not torn, given a negative pivot shift test.  Thus,
there remains a 25% chance that the ACL is in
fact torn, even in the presence of a negative pivot
shift test.  This test does not function well to rule
out a diagnosis.  On the other hand, the specific-
ity of the pivot shift test was 99.63%, which is
very high.  This test should function well to rule
in a diagnosis.  It does not appear to yield many
false positives; it correctly classifies persons with-
out the condition as negative.  According to the
RMM probability estimate, a positive pivot shift
results in a 96.62% probability that the ACL is
torn.  Thus, this test is useful to rule in a diagno-
sis.  Based on the RMM, there is less than a 5%
chance that the person is incorrectly diagnosed
with a tear to the ACL.

Positive/Negative Likelihood Ratios,
and RMM Probability Estimates

Positive likelihood ratios significantly cor-
related with RMM probabilities of a positive tear
to the ACL (r = .78, p < .05; r = .97, p < .05,
respectively).  Similarly, negative likelihood ra-
tios significantly correlated with the RMM prob-
abilities of a negative diagnosis (r = .88, p < .05).
These relationships were expected given the simi-
larity of interpretations of these values.  Positive
likelihood ratios reflect the expected probability
that a person has a diagnosis, given a positive
test result.  Thus, a high positive likelihood ratio
suggests that a person has a high probability of a
positive diagnosis.  For example, the mechanical
knee exam yielded the highest positive likelihood
ratios of all the tests (LR+ = 228).  Similarly, the
RMM estimates for the probability of a positive
diagnosis were also highest with the mechanical
knee exam (95.97%) compared with the other
diagnostic tests.  Thus, a high value on the me-
chanical knee exam results in the highest likeli-
hood/probability of a positive diagnosis.  Simi-
larly, a high measure on the mechanical exam
based on the RMM yields a high probability of a
positive diagnosis.

Negative likelihood ratios also correlated
with RMM estimates, namely the probability of
no tear to the ACL.  For instance, the report of an
absence of a  pop sensation at the time of the
injury had the lowest negative likelihood ratio
(2.77) of all the diagnostic tests.  It also yielded
the lowest RMM probability estimate that the
ACL was not torn, in the event of a negative re-
sponse on this test. In other words, even though
an individual reported no pop sensation, the
RMM probability estimate that the ACL was not
torn was only 80.84%.  Thus, there was still nearly
a 20% chance of a tear to the ACL, even in the
absence of a pop sensation.  The negative likeli-
hood ratio of 2.77 offers little change in the pre-
test probability that the knee is healthy.  In other
words, before administering the test, the clini-
cian forms a pre-test probability estimate as to
the presence/absence of the diagnosis.  Follow-
ing the test, the probability will either increase
or decrease, depending on the result of the test.
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In the case of a history of a pop, a negative re-
sponse only decreases the pre-test probability
minimally, with a likelihood ratio of 2.77.  This
is in stark contrast to a negative likelihood ratio
of 139.89 based on the mechanical knee exami-
nation.

Strengths of the RMM Application to Examine
the Utility of Diagnostic Tests

Interpretation Advantages.  One of the pri-
mary problems with sensitivity and specificity in-
volve the interpretations of these values.  As noted
previously by Guggenmoos-Holzmann and van
Houwelingen (2000), sensitivity and specificity are
test centered, which focuses the interpretation on
the function of the test.  While this is not necessar-
ily a problem, it does not lend well to interpreta-
tion regarding the patient’s actual status.  In other
words, sensitivity and specificity provide evidence
of how well a test might accurately diagnose a
person as healthy or not healthy, but it does not
provide information regarding the actual status of
that patient.  Yet, clinicians and textbooks rely al-
most entirely on sensitivity and specificity values
when recommending diagnostic tests (Gross, Fetto,
and Rosen, 2002; Tomberlin and Saunders, 1999;
Starkey and Ryan, 1996).

The values of sensitivity and specificity alone
do not function for interpretation.  As a guide-
line, it is recommended that a test with high sen-
sitivity should be used to “rule out” a disorder
because this test is so sensitive to a symptom that
the absence of symptoms with the test should be
viewed with confidence that a disorder does not
exist (Boyko, 1994; Fritz and Waimer, 2001).
Similarly, a test that has high specificity is most
useful to rule in a disorder.  However, an infor-
mal review of physical therapy textbooks found
that tests selected for evaluation of the shoulder
for instance were based entirely on sensitivity
values of diagnostic tests (Gross, Fetto, and
Rosen, 2002; Tomberlin and Saunders, 1999;
Starkey and Ryan, 1996; Andrews and Wilk,
1994).  The tests were recommended as a means
to rule in (i.e., confirm the presence of  the con-
dition) shoulder impingement. For example, tests
such as the Hawkins Test and Neer Test have high

sensitivity values (92% and 89% respectively),
but very poor specificity values, 25% and 31%
respectively (Calis, Birante, et al., 2000).  Thus,
while these tests are recommended to rule in a
diagnosis, they are actually more effective to rule
out a disorder.  The Hawkins test, in fact, is so
sensitive that it is frequently painful even in
healthy shoulders; it results in a high number of
false positives (Fritz and Waimer, 2001).

The RMM probability estimates appear to
provide a possible solution for this interpretation
confusion.  The RMM probability estimates for
each diagnostic test are based on the transforma-
tion of logit values to probabilities.  These logit
values provide a linear alignment of the diagnos-
tic tests along a common metric.  High positive
logit values indicate that the test is specific to a
disorder and high negative logit values indicate
the test is sensitive to a disorder.  For example,
in Figure 1, the diagnostic tests are aligned for
comparison, based on the average logit values of
the categories for each test.   Mech.Exam values
represent millimeters of difference between the
injured and healthy knee.  The top horizontal line
represents the logit values for each category; the
bottom horizontal line is the probability estimates
based on logit values greater than and lesser than
the logit value of diagnosis (-0.85 logit).

The history of a pop has the smallest posi-
tive logit value for a category of “tear” compared
with the other tests.  Thus, it has the lowest speci-
ficity and therefore is not as useful to rule in a
diagnosis of ACL tear.  In other words, the his-
tory of a pop at the time of injury provides less
than a 90% probability of a tear.  Looking at the
probabilities associated with the category of
“tear” for the other tests shows a higher prob-
ability of a tear  (> 90%) given a positive out-
come on these tests, compared with a history of a
pop.  In fact, the test with the highest specificity
of all the tests, the mechanical exam, has the po-
tential for the highest probability of a tear.  A
difference of nine millimeters results in a prob-
ability near 95% of a tear to the ACL.  Thus, to
have the greatest confidence that a patient has
sustained a tear to the ACL, the clinician would
wish to obtain a mechanical knee examination
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with values exceeding six millimeters of differ-
ence (Figure 1).

Sensitivity of tests are interpreted with the
RMM as those tests with the largest negative logit
value.  Once again, the mechanical knee exam
has the highest sensitivity, based on the potential
for the largest negative logit value, resulting in a
probability of “no tear” exceeding 95%.  The MRI
is the next most useful test with a probability of
“no tear” approximately 90% in the event of a
negative MRI.  The pivot shift (Figure 1), with
the lowest sensitivity (i.e., it is the most difficult
to obtain a  positive outcome), provides the least
confidence that the knee is healthy in the event
of a negative outcome (80% probability).

Because of the inherent difficulty with inter-
pretation of Sn and Sp, likelihood ratios are of-
ten used by clinicians to assist with decision mak-
ing. As noted by Fritz and Wainner (2001) and
Boyko (1994), likelihood ratios are the best val-
ues to illustrate the usefulness of a diagnostic test.
Likelihood ratios are interpreted as the change
in pre-test probability that a condition exists,
given a positive or negative outcome on a diag-
nostic test.  Thus, the pre-test probability (i.e.,
the probability of the diagnosis before the test is
administered) changes depending on the magni-
tude of the positive or negative likelihood ratio,
resulting in a post-test probability.  Positive like-
lihood ratios increase the probability that a dis-
ease/diagnosis is present.  The larger the value,
the greater the increase in the likelihood that the
disease is present.  Similarly, negative likelihood

ratios increase the probability that the disease/
diagnosis is not present.  Clinicians then use the
post-test probability as the guide for clinical de-
cision making (Frizt and Wainner, 2001).

The major difficulty with using likelihood
ratios is the fact that the pre-test probability must
first be estimated by the clinician.  This estimated
value is influenced by the clinician’s experience,
clinician’s research background, and the accuracy
of the patient’s history information (Fox,
Landrum-McNiff, Zhong, et al., 1999; Reid,
Lane, and Feinstein, 1998; Timmermans, 1994).
Error or variability in the pre-test probability di-
rectly influences the resultant post-test probabil-
ity.  Moreover, given that the post-test probabil-
ity is the driving force behind clinical
decision-making, this potential for bias can af-
fect the final clinical decision for a patient.

The RMM provides a solution to this prob-
lem.  The RMM probability estimates are based
on the raw data obtained from the clinical studies.
Thus, clinicians are not required to make a pre-
test probability estimate that a condition exists or
is absent.  The probability estimates generated by
the RMM provide all the information needed to
make a clinical decision.  These estimates repre-
sent the post-test probability that a condition is
present/absent, without the need of a potentially
biased pre-test probability estimate.  For example,
from Figure 1, it is apparent that a positive
Lachman’s test results in a greater post-test prob-
ability of a tear to the ACL than a positive MRI.  It
is also obvious that in order to have the greatest

                    Logit Values
-4     -3      -2      -1       0       1       2       3
|-------+-------+-------+-------+-------+-------+------|    TEST
|               -                            +         |    pivtshift
|              -                        +              |    pop
|            -                              +          |    lachman
0      1     2          3       4 5        6 7 8   9   |    mech.exam
|          -                               +           |    mri
|-------+-------+-------+-------+-------+-------+------|

  95%    90%      75%     50%    75%     90%      95%
Probability of a Tear or No Tear

Figure 1.  Alignment of Diagnostic Test Measures with the Diagnosis (50% probability represents the point at
which a person with a measure at this point would have a 50% probability of a tear to the ACL).  Note a “+”
indicates a positive test and a “-“ indicates a negative test.
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post-test probability, a clinician may wish to use
the mechanical examination, looking for values
greater than six or seven millimeters of difference
between the healthy and involved knee.

In addition, the RMM provides a simple
method to determine the post-test probability that
the knee is healthy, by examining the probabili-
ties associated with negative tests from Figure 1.
In this case, the mechanical examination again
provides the greatest degree of confidence, pro-
vided the difference between the healthy and in-
volved knee are no greater than 1 millimeter.  The
MRI provides the next best post-test probability
relative to the other tests.  The pivot shift pro-
vides the least amount of confidence that the knee
is healthy, in the event of a negative test on the
pivot shift, compared with the other tests. In all
cases, pre-test probability estimates are not re-
quired with this procedure.

The RMM estimates, which are based on
patterns of responses, allow for individual prob-
ability estimates for each test.  Figure 1 provides
an illustration of this ability of the RMM. Con-
sider that a clinician wishes to be 90% sure that
an event (i.e., a tear of the ACL) has occurred.
The clinician can obtain this level of confidence
with a positive response with the MRI,
Lachman’s, pivot shift, or by obtaining a differ-
ence on the mechanical exam in excess of six
millimeters.  To obtain 95% confidence, the only
variable is the mechanical examination that can
provide this level of confidence.  These point
estimates are readily obtained based on the lin-
ear arrangement (i.e. logit values) of the diag-
nostic test categories with the diagnosis outcome.

Ability to Make Direct Linear Comparisons
of Diagnostic Tests.  Related to the interpreta-
tion advantage of RMM is the fact that the RMM
estimates are created based on a linear arrange-
ment of the categories for each test. In other
words, the category estimates for each test are
aligned along a continuous scale, based on logit
values.  This logit arrangement allows for direct
comparisons between the different diagnostic
tests and the categories of the diagnostic tests.

Consider Figure 1. The estimation process
used by the RMM, converting categorical data

into ratio level data allows for the alignment of
the diagnostic tests along a common ruler for
comparison.  This orientation makes the inter-
pretation obvious that the information gained with
a positive Lachman’s test is quite similar to the
information gained with a positive MRI.  A posi-
tive pivot shift is more informative than either
those two tests and a high difference on the me-
chanical examination is the most informative.

This feature is especially useful to avoid
unnecessary medical testing to possibly minimize
the costs of diagnostic testing. For example, a
study by Lee, Hooker, and Harpstrite (2001)
found that 62% of imaging (i.e., MRI procedures)
were unjustified for knee examination.  They
based this judgment on the fact that the
Lachman’s test appeared to provide similar out-
comes. Rose and Gold (1996) also found that the
physical examination was equally accurate com-
pared with the MRI to diagnose the presence of
an ACL tear.  They concluded that except under
extreme situations, the MRI is not needed in the
presence of the Lachman’s and/or pivot shift ex-
amination findings.  Considering the fact that
MRI is nearly 200 times the expense of a manual
office examination and/or mechanical examina-
tion, it is essential that clinicians have a confi-
dent and clear means to compare diagnostic test
procedures.

Examining Person Diagnosis and Test Mea-
sures on a Common Ruler.  Because the person
abilities (i.e., health status) and diagnostic test
measures (i.e., ability to make a diagnosis) are
estimated as logit values, it is possible to align and
compare person health measures and diagnostic
test utility along a common ruler.  In other words,
the additive nature of the estimates allows persons
and tests to be positioned along the same mea-
surement ruler.   Figure 2 is an example of such a
ruler.  The ruler itself is calibrated in logit values.
Persons and tests are arranged along this ruler with
persons positioned to the left of the vertical ruler
and tests to the right of the vertical ruler.

The arrangement in Figure 2 allows for di-
rect comparisons between a test’s performance
and those persons likely to obtain a positive or
negative response on that test.  Consider the pa-
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tients positioned near the 2.0 logit value.  These
patients have a high probability of being diag-
nosed with a tear to the ACL because they are
positioned far above the diagnosis measure (-.85
logits).  Thus, patients with a measure near -.85
logits have a 50% probability of a tear to the ACL.
The patients positioned near 2.0 logits (2.85 logits

from the diagnosis measure) have a 94% prob-
ability of a tear to the ACL ([P{tear = yes} =
ln(2.85) / 1 + ln(2.85)]).  In addition, these per-
sons also have a high probability (i.e., > 50%) of
having been diagnosed as positive, based on the
results of the Lachman’s test and the MRI.  How-
ever, they are less likely to obtain a positive pivot
shift test; this test is more difficult that than the
previous tests to obtain a positive result.  Patients
with a measure of approximately 2.0 logits have
approximately a 50% chance of obtaining a posi-
tive result on the pivot shift test, even though they
likely will have passed the Lachman and/or MRI
test (i.e., diagnosed as positive on the Lachman
and/or MRI).

For example, a particular patient had a mea-
sure of 1.51 logit (SE = .72).  This patient had a
positive Lachman’s test and a negative MRI, but
a high mechanical exam difference of 8 millime-
ters.  Data were not available on the pivot shift
test, which was not performed.  In light of this
data, in which the physical examination was posi-
tive yet the MRI was negative, and there was no
pivot shift data available, it is possible to esti-
mate the probability of a tear for this patient to
be approximately 91.37% (CI95 =  84.25, 98.50).
Based on this patient’s position in Figure 2, this
patient would be expected to obtain a positive
Lachman’s test but it would be more difficult for
this patient to be diagnosed with the pivot shift
test.  This patient did in fact have a confirmed
tear to the ACL.

The RMM and a Missing Gold Standard.  An
extremely important benefit of the use of the
RMM to estimate diagnostic test utility is the
ability to overcome the problem of missing data.
Missing data in medical diagnostic tests results
in several problems, including lost information
from some patients and biased estimates of test
performance (Bates, Margolis, and Evans, 1993;
Green, Black and Johnson, 1998).  Biased esti-
mates are especially troublesome in the event that
the gold standard is biased.  This bias results when
only a subset of patients is tested with the gold
standard.  This is common problem given that
the gold standard is often an invasive (e.g. sur-
gery) and/or expensive procedure.  Thus, only

 Highest Probability of a Tear to the ACL
5                +
          .####  |
                 |   mech.exam    .9
                 |
4                +
             .#  |
              .  |
                 |
3                +
                 |
             .#  |   mech.exam    .8
              .  |
2                +
            .##  |   +pivotshift
              .  |   mech.exam    .7
            .##  |
1           .##  +   +mri
              .  |   +lachman
             ##  |   mech.exam    .6
              #  |
0             .  +
              .  |   mech.exam    .5
              .  |

     DIAGNOIS 50/50
-1            .  +   mech.exam    .4
              .  |   -pivotshift
              .  |
                 |   mech.exam    .3
-2            .  +
                 |   -lachman
              .  |
            .##  |
-3               +   -mri
                 |   mech.exam    .2
                 |
                 |
-4               +
                 |
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                 |
-5         .###  +
                 |
                 |
                 |
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                 |
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                 |
-7               +   mech.exam    .1
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                 |
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-8 .############ +
Lowest Probability of a Tear to the ACL

Figure 2. Arrangement of patients ( “.” and #) and
diagnostic tests along a linear ruler calibrated in logit
values, –8.0 to 5.0 (# represents 20 patients; “.” rep-
resents 5 patients; mech.exam values represent mm.
of difference between healthy and involved knee).
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patients most in need of surgery or in need of an
absolute diagnosis are subjected to the gold stan-
dard.  The resulting estimates of sensitivity, speci-
ficity, and likelihood ratios may result in an over
or under reflection of the effectiveness of the di-
agnostic test (Begg and Greenes, 1983; Bates,
Margolis and Evans, 1993).  For example, in this
study, a subset of patients did not undergo
arthroscopic surgery because the outcomes of the
diagnostic tests (i.e. Lachman’s, pivot shift, MRI)
may not have been sufficiently conclusive to
warrant surgery, or they simply chose to not un-
dergo surgical repair of the ACL.  A true diagno-
sis was not available on these patients and their
clinical exam data could not have been used with
traditional methods of examining the diagnostic
tests. Those patients with a definitive diagnosis
based on surgery likely had sufficient evidence
from the diagnostic tests to warrant surgery.  Thus,
the sensitivity of the tests may be biased (i.e.,
inflated).

The RMM procedure allows for the inclu-
sion of missing data in the analysis of patient and
diagnostic test measures.  This is accomplished
by estimating probabilities based on response
patterns rather than obtaining a count of the raw
data.  In the case of this study, there was no dif-
ference in the diagnostic test measures, whether
the outcome variable (i.e., the actual diagnosis)
was known from a reliable gold standard (sur-
gery) or was occasionally unknown and treated
as missing.  Thus, the RMM was able to over-
come the problem of missing data.  For instance,
consider Figure 3, which illustrates the positions
of five patients with an unknown diagnosis.  Pa-
tient numbered u838 most likely has a tear of the
ACL whereas patient u851 most likely does not
have a tear of the ACL.  However, it is patient
numbered u859 who poses a dilemma.  Based on
the physical exam, this patient still has a 50%
chance of a tear.  Thus, in this patient’s case, a
more definitive test would be warranted.  This
patient had not been tested with the mechanical
knee examination or an MRI.  The mechanical
knee examination would be the test of choice
because it is a better predictor of knee health and
it is much less expensive than the MRI.

This advantage of the RMM will allow di-
agnosticians to examine the utility of diagnostic
tests in the absence of a perfect gold standard.
No longer will estimates of test sensitivity, speci-
ficity, and likelihood ratios require a perfect gold
standard in order to examine the utility of a diag-
nostic test or tests.  Instead, probability estimates
from the RMM can be produced to provide evi-
dence of the utility of diagnostic tests.

Reliability Estimates using the RMM.  The
last feature of the RMM that provides an addi-
tional advantage over standard procedures to
examine the utility of diagnostic tests is the reli-
ability estimates produced by the RMM.  Stan-
dard procedures typically use agreement indices

         Definitely Torn
    6          +
               |
               |  u838
               |
               |
    4          +
               |
               |
               |  u831
               |
    2          +T
               |
               |
               |S
               |  u844
    0          +
               |M
               |
               |
50% Probability of a Tear to the ACL
               +  u859
               |
               |T
               |
               |
   -2          +
               |
               |
               |
               |
   -4          +  u851
               |
               |
               |
        Definitely Not Torn

Figure 3. Linear Arrangement of Person Measures for
five patients with an unverified diagnosis.
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such as the kappa statistic, as a means to esti-
mate reliability (Fritz and Wainner, 2001; Portney
and Watkins, 2000).  This statistic provides the
measure of agreement between a two observa-
tion sessions.  For instance, researchers might
compare the observations from the Lachman’s test
on two separate occasions, using the same inves-
tigator.  This approach requires repeat testing of
the patients for reliability estimation.  In addi-
tion, for continuous data, such as that generated
by a mechanical knee examination, the reliabil-
ity estimate is in the form of the intraclass corre-
lation coefficient (Portney and Watkins, 2000).
Both procedures provide a reliability of the out-
come estimate (i.e., a function of the test), but
neither provide a reliability estimate of the per-
son measures/observations.  In other words, while
the reliability of the outcome decisions can be
estimated, these procedures do not allow for an
estimate of the reliability that a person’s response
pattern will be stable.

The RMM provides two important measures
of reliability, a reliability index and a separation
index.  The person separation index, Gp, is an
indication as to how well the persons are suffi-
ciently separated into different levels of ability
by the diagnostic tests.  Just as a math test should
be able to identify persons of more and less abil-
ity, separating the persons into ability levels, di-
agnostic tests should be able to identify those
persons most likely to have the diagnosis and
those least likely to have the diagnosis.  This sepa-
ration index should identify at least two distinct
strata.  If the sample of persons are not separable
into different levels of health (i.e., ability), the

diagnostic tests failed to identify persons with a
positive or negative diagnosis. Essentially, this
separation index is actually a measure of valid-
ity, that the tests are in fact measuring the per-
sons based on some diagnosis.

Wright and Masters (1982) provide a simple
extension of the person separation index to iden-
tify statistically significant strata (Hp).  This esti-
mate, Hp = (4Gp + 1) / 3, provides the statistically
significant number of distinct strata in a sample of
persons, as identified by the diagnostic tests.  In
the case of the sample of 825 patients of this study,
the separation index was Gp = 1.82; the statisti-
cally distinct number of strata, Hp, was 2.76, indi-
cating that the diagnostic tests were able to iden-
tify two fully distinct levels of the patients (i.e.,
those with a tear and those without a tear).  Figure
4 represents this distinct separation.  In Figure 4,
the distribution of patients is presented along the
bottom of the horizontal line, representing the dis-
tribution of patients with a tear to the ACL and
patients without a tear to the ACL.

Closely related to the separation index is the
reliability index, Rp, which is a measure of the
stability of the person measures and the ability
of the diagnostic tests to separate persons into
distinct strata of health.  This index, loosely esti-
mated as G2

p / 1 + G2
p provides the reliability es-

timate that repeat testing would yield similar out-
comes.  For instance the person reliability of this
investigation (n = 825) was Rp = .77.  In addi-
tion, the RMM provides an estimate of the test
reliability (i.e., reliability that the test measures
will remain stable over repeat applications).  In

-9    -7     -5     -3     -1      1      3      5      7
|------+------+------+------+------+------+------+------|
0                        0   :   1                      1 Diagnosis
|------+------+------+------+------+------+------+------|
                            50%
                                                          PERSONS
                               124 4464 311 2     2
                          2 3 600073324 071 6     4        + Tear
                            T    S    M   S    T
                      1
    7         6     7 6  11    1
    7         3     2 05 9785 10                           - Tear
   T       S      M      S       T

Figure 4. Distribution of patients (“+” Tear and “–“ Tear), demonstrating the separation of diagnoses identi-
fied by the diagnostic tests.
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this investigation, the test was very high, Ri = .98,
which is a reflection of the large sample size.

Thus, the RMM provides estimates that pro-
vide validity and reliability estimates for both the
sample of persons as well as the tests (items) used
to measure the persons.  The separation index is
an indication of validity of the inferences, that
the tests were able to diagnose differences in pa-
tients; the reliability index is an indication of the
stability of the measures.  Standard procedures
do not provide this level of information regard-
ing diagnostic test utility.

Conclusion

The interpretations of diagnostic test out-
comes, based on probability estimates, sensitiv-
ity, specificity, and likelihood ratios were com-
parable between the different approaches to
examine diagnostic test utility.  The RMM pro-
vided estimates of a test’s utility that were com-
parable to estimates of sensitivity, specificity, and
likelihood ratios.  In addition, the RMM estimates
did not change whether the outcome variable (i.e.,
actual diagnosis) was known, ordinal, or con-
tained missing values.

The RMM was demonstrated to provide
simple interpretations of a diagnostic test’s mean-
ing regarding a patient’s status.  These interpreta-
tions, in the form of probabilities, did not require
subjective estimation of pre-test probabilities, and
provided a direct estimate of the probability of the
presence/absence of the diagnosis.  Further, be-
cause the estimates were based on a linear align-
ment of the tests, based on logit values, direct com-
parisons could be made between diagnostic tests
to determine which test provided the most/least
information for a patient’s diagnosis.

It was shown that the RMM has the poten-
tial to overcome the limitations of a biased (i.e.,
missing) gold standard and missing data in gen-
eral.  The RMM was able to generate estimates
for patients and diagnostic tests with missing data
in the data set.

Finally, it was shown that the RMM provided
unique measures of validity and reliability evi-
dence to support that utility of diagnostic tests.

The separation index in particular was shown to
be a useful measure that the diagnostic tests func-
tioned to identify different strata of health in the
sample—that is, the tests sufficiently separated
persons into a diagnosis of a tear to the ACL or
no tear to the ACL.

Future research is warranted to examine the
use of the RMM to examine person and item fit
measures in terms of diagnostic testing.  Person
fit in particular, as estimated by the RMM, could
be potentially useful in order to identify and elimi-
nate patient data from person’s not providing a
valid test response—a condition referred to as
symptom magnification, in which a patient es-
sentially magnifies, fakes, or distorts symptoms
for some secondary gain.  Data from these indi-
viduals bias the estimated utility of a diagnostic
test.
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