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Abstract. The isothermal shocks and their stabilities in fully 
relativistic accretion wedge flows onto black holes are studied. 
The jump condition across the shock is modified by the rela
tivistic effects when the sound speed is comparable to the speed 
of light. With a new kind of instability analysis, it is found that 
only one of the two possible shocks is stable. The results are 
applied to the QPO behavior in galactic black hole candidates 
such as Cygnus X-1. 

Key words: black hole physics - relativity - shock waves -
stars: Cyg X-1 

1. Introduction 

Standing shocks are believed to form in the inner accre
tion disks. Both numerically (Hawley et al. 1984a,b) and an
alytical calculations (Chakrabarti 1989, 1990; Abramowicz 
& Chakrabarti 1990) confirm this existence. In the analyti
cal works, the governing equations are based on the pseudo
Newtonian potential model (Paczynski & Wiita 1980). In the 
present work, we follow the same outline but use the fully rel
ativistic, hydrodynamic equations to analyze the shock condi
tions and the possible shock locations in isothermal, one dimen
sional accretion onto black holes. Relativistic adiabatic shocks 
have been studied by, among others, Taub (1948), Lichnerow
icz (1967) and Thorne (1973). Chang & Ostriker (1985), on the 
other hand, investigated the shocks in accretion flows onto black 
holes by forcing heating and cooling to generate the multiple 
sonic points, which is the necessary condition for the forma
tion of shocks. Here, we focus on isothermal shocks following 
Chakrabarti (1989). 

We are undertaking the present work for the following rea
sons: (a) To make possible comparison about shocks between 
the pseudo-Newtonian model and the fully relativistic model. 
(b) To analyze the stability of the shocks in a different way from 

Send offprint requests to: M. Kafatos 
* Also Department of Physics, George Mason University 

that used by Chakrabarti (1989). (c) To apply the results in as
trophysical problems such as the QPO behavior in black hole 
candidates. 

2. Governing equations 

For the steady, inviscid, axisymmetrical flows along the equato
rial plane applicable to a thin disk, we obtain the dimensionless 
equations in the Schwarzschild metric (Kafatos & Yang 1994; 
herein referred to as Paper 1): 

du N 
dX= D' (1) 

(2) 

where the numerator N in (1) has the form 

v2 1 2B [ 2 2] N =(X - 3)- - - + - 1 - - + u 
X2 X 2 X X ' 

(3) 

and the denominator D is 

D = (1 - B)u - ~ ( 1 - ~) . (4) 

r 
The dimensionless quantities are defined as X = .:r..., u = 1L, rg c 

and v = u:r, with rg = GMbh/c2 and c as the length and 
velocity scales. Here ur and u<f> are the radial and azimuthal 
components of the four-velocity and Mbh is the mass of the 
central black hole. The parameter B = ~ ~, equals the square 
of the local sound speed. Here w is the enthalpy per unit proper 
volume, n the particle number density and p the gas pressure in 
the frame in which the fluid is at rest. In the above derivation 
(cf. Paper I), we have used the continuity equation 

nuX2 = constant. (5) 

Moreover, since we henceforth focus on isothermal flows, for 
which p = K n, B is a constant reflecting the constant temper
ature. Finally, we assume that the increase of Mbh due to the 
accretion process itself is negligible. 
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3. Solution structure and parameters 

The exact solutions to Eqs. (1) and (2) can be found analytically. 
The solutions reflect the fact that the specific angular momentum 
l is conserved, where 

(6) 

and 

(s2 + u2)(uX2)-2B 
1 - s2[2 I xz =constant. (7) 

In the above expressions s2 = 1 - 2 I X. 
Accretion flows onto black holes must be transonic 

(Chakrabarti 1990). The critical points are determined by the 
conditions D = N = 0 and the analytical solutions. The radial 
velocity in the frame of reference corotating with the fluid (Lu 
1985) is defined as 

(8) 

Therefore, when D = 0, u~ = Bs2 1(1 -B) and u~ = B, i.e., at 
the critical point, the radial velocity in the corotating frame is, as 
expected, equal to the sound speed whereas at the Schwarzschild 
radius u = 1 as expected. In other words, the critical points are 
sonic points and the flows at those points are transonic. The 
Mach number is defined as 

(9) 

1.0 
a 

1.5 
LOG(X) 

2.0 2.5 

and, as expected, Me = 1 at the critical point. The relationship :::!l 

between u and M is then 

Ms...fB 
u = -v'r.:1=_===::M=;:2""B='' 

and Eq. (7) can be rewritten as 

(1 - M2 B)B-1 s2 

(10) 

(11) 

For a given B value, the sonic points are not always unique. 
ForB< Be= 0.017548whichcorrespondstoT< 1.8x 1011 K, 

f'V 

there exists a range of angular momenta lA < l < la for which 
there are more than one critical point (Paper I). A further in
vestigation demonstrates that only two of them are physical. 
Hereafter, the critical points or sonic points examined are only 
the physical ones. We name them the outer sonic point and the 
inner sonic point, respectively, according to their radial distance 
r from the black hole. The temperature limit obtained above is 
close to the maximum virial value allowed for any flow and 
specifically for a hot, two-temperature, ion dominated disk in 
the Schwarzschild metric, Ti rv 1012K. 

Following Chakrabarti's work, the constant in Eq. (11) is 
determined by the specific energy E. When the values of tem
perature (or, equivalently, the parameter B) and angular mo
mentum l are given, the values of E completely determine the 

1.0 
b 

1.5 
LOG(X) 

2.0 2.5 

Fig. 1. Flow pattern. The energy contours in the M-X plane. The 
parameters are: B = 0.0059113;al = 3.74, and bl = 3.82,respectively 

flow. Figure 1 shows two typical energy contours as functions 
of the Mach number M and the radial coordinate X. The thicker 
solid lines passing through the saddle type sonic points ( M = 1) 
represent transonic solutions. One of them, subsonic at far field 
and supersonic near the black hole denotes the stationary accre
tion flow solution. There exists a critical angular momentum lc 
(lA < lc < la) for which the energy at the two sonic points is 
the same. Moreover, when l < lc, the energy at the outer sonic 
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point (Eo) is larger than that at the inner one (Ei) (see Fig. 1a). 
When l > lc, on the other hand, then Ei >Eo (see Fig.1b). 

4. Shocks and the associated jump conditions 

The existence of multiple sonic points is evident in Fig. 1a and 
b. Although only one of the transonic shock-free solutions is 
physical in the sense that this solution is valid in the entire ra
dial domain of accretion, from the event horizon to infinity, there 
also exists a possibility for a shock to appear between the two 
sonic points. In other words, there is a possibility that the sub
sonic flow becomes supersonic after passing through the outer 
sonic point. Then the flow may go through a stationary shock to 
become subsonic. Finally, the subsonic flow may accelerates to 
supersonic as it passes through the inner sonic point. The total 
flow field is then subsonic at infinity and supersonic near the 
black hole, a physically reasonable solution for accretion onto 
black holes. 

The jump conditions across a stationary shock in the rela
tivistic flow are discussed below. Across a stationary shock, the 
mass conservation gives 

It is worth noting that Eq. (16) which describes the relation be
tween the Mach numbers after and before the shock is indepen
dent of the actual location of the shock. This means that gravi
tational effects (the terms involving s2) do not affect the shock 
conditions. This is because the shock is a local phenomenon. 
Therefore, no matter what kind of gravitational law one chooses, 
the resultant shock condition is the same. However, as shown 
by the shock condition (Eq. (16)), special relativistic effects do 
affect the condition when the sound speed is comparable to the 
lightspeed(B"' 1). WhenB ~ 1, theconditionreducestothe 
pseudo-Newtonian result M+ = 1/ M _. 

Following Chakrabarti (1989), we define 

M + V1 - M2 B = 20 
v'1-M2B M ' 

(17) 

and because ofEq. (15), in the above equation, M can be either 
M+ or M _, that is, C is a constant across the shock. For a given 
C, we obtain the results 

2C2 + B - 1 - 2C v' C2 - 1 
M2- --------=--------

+ - (1 - B)2 + 4C2 B ' 
(18) 

[[nu]] = 0, 0 2) and 

which is the same condition as that in non-relativistic flows. 
Here, [[f]] denotes the difference f+ - f _, and "-" and "+" 
denote the values before and after the shock, respectively. The 
momentum conservation condition (Anile & Russo 1986; Lan
dau & Lifshitz 1987) is given by [[Trr]] = 0, where rrr is the 
rr component of the four energy-momentum tensor. In the prob
lem discussed here, the momentum jump condition is reduced 
to 

(13) 

From the jump conditions given in (12) and (13), we can solve 
for u+ as a function of u_. One of the solutions is the trivial one 
u+ = u_ and the other is 

Bs2 
U+=-. u_ 

(14) 

When gravity is weak, s2 ~ 1, and the flow velocity is much 
smaller than thespeedoflight, then u ~ u, andEq. (14)reduces 
to u+ u_ = B which is identical to the condition M+M _ = 1 ( cf. 
Eq. (12) of Chakrabarti 1989). Therefore, the jump conditions 
given above are consistent with those obtained in the pseudo
Newtonian model in the classical limit. 

Using Eq. (10) to replace u, the above relations give 

M+ _ .J1-M'!:_B 

V1-MJ:B- M_ 
(15) 

or 

(16) 

2C2 + B- 1 + 2Cv'C2- 1 
M2 - -----=-=---=-------- - (1 - B)2 + 4C2 B . (19) 

When C = 1, MJ: = M?:.. = 1]B. Using these two relations, we 
write the two energy equations for the special energy values at 
the sonic points. Solving then the two coupled equations, we 
obtain the locations of shocks and their corresponding Mach 
numbers. For accretion onto black holes, we are interested in 
only those shocks existing between the two sonic points. 

The locations of the possible shocks are numerically in
vestigated in the same way as done by Chakrabarti (1989). 
Figure 2 shows the energy contours which pass through the 
two sonic points in the C-X plane. The intersection points 
are the possible shock locations. A detailed study yields that, 
for l < lc1 , there are two such locations. One of them is in
side the inner sonic point and the other is outside the outer 
sonic point. Therefore, in these cases, there are no physically 
allowed shocks for accretion onto black holes. When, however, 
lc1 < l < lc, there are two possible shock locations between the 
sonic points, Xs2 and Xs3 where we have followed the nomen
clature of Chakrabarti (1989). We find that our results for the 
relativistic conical flows are qualitatively the same as those 
in Chakrabarti's vertically integrated pseudo-Newtonian model 
but with some quantitative differences (Chakrabarti 1989). For 
example, when we choose the following values of the param
eters B = 0.000754987, l = 3.64, we find that there are no 
shocks between the sonic points. These conditions are equiv
alent to l = 1.82, K = 0.08689 in Chakrabarti (1989), for 
which Chakrabarti (1989) finds possible shocks between the 
sonic points. 

It should be mentioned that in Chakrabarti (1989), a 1.5 
dimensional system was used which took into account the ex
istence of vertical hydrostatic equilibrium. In this work, only a 
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2.0 

u 

0.5 1.0 
LOG(X) 

1.5 2.0 

Fig. 2. The energy contours passing sonic points in the C-X plane. 
The parameters are: B = 0.0059113; l = 3.76 

one-dimensional conical model is used. Even if the two treat
ments are identical for certain limiting conditions, the difference 
between the models may result in quantitative differences for the 
global properties such as the shock locations, as shown above. 
However, since the shock discussed here is a local phenomenon 

l.QQQQ4X1QQ 

1.00002x10° 

9.99980xlo-l 

9.99960x10-l 

0.9 1.0 
M_ 

1.1 1.2 

Fig. 3. Variation of energy ratio E- / E+ with the Mach number M
(B = 0.0059113) 

and the thickness of the disk is not expected to change across :::!1 1.2 
the isothermal shock, whether we consider vertical condition or 
not should not affect the jump conditions across the shock. As 
a consequence, any differences between the jump conditions in 
the two models must be due to the relativistic treatment adopted 
here. The following provides an example. 

The shock strength can be measured by the ratio of the en
ergy before the shock to that after the shock where we find that 

Physically, it is required that E_ IE+ > 1 for dissipative shocks. 
The difference between E_ and E+ is accounted for as loss of 
energy at the location of the shock due to dissipative effects. 
This requirement limits the range of Mach numbers for which 
isothermal shocks are possible. In non-relativistic gas dynam
ics, the condition is M_ > 1, that is, shocks only appear in 
supersonic flows. The corresponding conditions in relativistic 
flows are investigated here. 

From Eq. (14), it is possible to find that when u+ = u_ = 
..fli s, M+ = M _ = 1 I v'f+li which results in E_ IE+ = 1. 
This is similar to M _ = M+ = 1 in the non-relativistic case. 
However, since 11v'1 + B < 1, it follows that the minimum 
value of the Mach number which equals unity for the presence 
of shocks in a relativistic flow is not appropriate. To find the real 

B 

Fig. 4. Variation of the critical Mach number ML with parameter B 

condition, we plot E_ IE+ as a function of M _ for a given value 
of B as shown in Fig. 3. It is clear from this figure that at M _ = 
1lv'f+B < 1,E-IE+ = l.Nevertheless,inthevicinityofthis 
value, E-1 E+ is a decreasing function of M_, and therefore, 
M_ = 1lv'1 + B isnotthelowerlimitof M_ for shocks to exist. 
Also from the Fig. 3, we find that E_ IE+ reaches a minimum 
value ( < 1) and then increases with M _ . M L denotes the point 
at which E_IE+ = 1 again, and E_IE+ > 1 forM_ > M£. 
Thus, this value of ML (> 1 and "' 1.1 in the case shown) 
is the physically lower limit of the Mach number above which 
shocks become possible in a flow. Figure 4 shows the variation 
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of ML with the parameter B. When B---+ 0, ML---+ 1, i.e., the 
relativistic condition in that limit reduces to the situation of non
relativistic flows. In addition, it should be pointed out that M+ 
is a monotonically decreasing function of M_ (see Eq. (16)). 
Because M+ = 11v1 + B when M_ = 1lv1 + B, it follows 
thatM+ < 11Vf+'B < 1 whenM_ > M£.Inotherwords,as 
in the non-relativistic case, we still obtain the result that across 
the shock, the flow changes from supersonic to subsonic. 

The existence of ML in relativistic isothermal shock con
ditions can be considered as a significant departure from the 
classical results. The value of ML depends on the value of B 
and approaches unity as B ---+ 0. Since the value Be = O.Oi 7548, 
is small, the difference due to special relativistic effects is 
not very large as shown by Fig. 4, but nevertheless, there is 
a qualitative difference. This qualitative difference can also 
be illustrated by using the Mach number relation at the crit
ical point. At that point, M_ = 1, and Eq. (16) gives M+ = 
...;r=Iilv1- B 2 + B -:f 1. This is totally different from the 
classical shock condition for which M _ = 1 leads to M+ = 1. 

It should be pointed out that an isothermal relativistic shock 
may start from strength arbitrary close to unity measured by the 
ratios of pressure or particle density after and before the shock. 
But for the accretion onto a black hole, it is required that the 
flow after a shock passes through the inner sonic point. This 
condition and the energy loss condition (energy cannot increase 
across a shock) make the shock first appear in a location where 
M=M£. 

1.0 1.5 
LOG(X) 

2.0 2.5 

Fig. 5. Shock locations and their stabilities. Curves are the energy con
tours passing sonic points in M-X plane. Two solid straight lines are 
the possible stationary shock locations. Dashed line denotes the shock 
location after a small perturbation on the location of the stationary 
shock at Xs3· The parameters are: B = 0.0059113; l = 3.74 

5. Stability of shocks 

Instead of following Chakrabarti's (1989) stability analysis in 
the present fully relativistic case, we investigate this problem in 
a direct, physical way rooted from corrugation stability (Anile 
& Russo 1986; Whitham 1974; see also Chakrabarti & Molteni 
1993). However, we need 2-D (in the r-¢ plane) unsteady gov
erning equations to fully explore the corrugation stability. Our 
corrugation analysis is, therefore, also limited. Let us consider 
a shock as shown in Fig. 5 at X = x .. Across the shock, the 
momentum flux F = n( u2 I B + 1 - 21 X) (a constant factor is 
eliminated in defining F) is conserved. That is, the amounts of 
the momentum flowing in and out of the shock are the same, and 
the shock is stationary. If due to some perturbation, the shock 
is moved to Xs + !:l.X, a new location, the momentum flux may 
not be in balance. Defining 

f:l.F=F+-F = -I+ --I !:l.X =f:l..f:l.X, ( dF dF ) 
- dX dX- -

we may discuss the stability according to the sign of the value !:1. 
If !:1 > 0, when !:l.X > 0, there is more momentum flux flowing 
out of the shock than the momentum flux flowing in, and the 
shock should move to the right; when !:l.X < 0, the imbalance 
of the momentum flux would cause the shock to move to the 
left. In short, when !:1 > 0, the change of the momentum flux 
due to !:l.X results in a further increase of !:l.X. Therefore, the 
shock is unstable. On the contrary, when !:1 < 0, the change due 
to !:l.X results in the further decrease of !:l.X, and the shock is 
stable. 

Before we analyze the stability of the shocks for the fully rel
ativistic condition, we first apply the method described above to 
pseudo-Newtonian flows. In this case, using the same notations 
as those in Chakrabarti (1989), we find that F = (K2 + u2)E, 
where K is the sound speed, u the radial velocity and E the 
surface density. At the shock location, it is found that 

du+ 
= dX - dX' 

du_ 
(21) 

and !:1 is reduced to 

(22) 

where fJ, denotes the accretion rate. Since the real function x + 
1 I x > 2 for all x -:f 1, we have M'!:_ + ~~ - 2 > 0 and 

sign(!:l.) = sign(~~). From this we can conclude that when 

~~ > 0, the shock is unstable; when ~~ < 0, it is stable. 
In this sense, the shock at Xsz is unstable and the shock at Xs3 

is stable, i.e., a unique shock location is obtained. In a similar 
analysis, Chakrabarti & Molteni (1993) find that the shock at Xs3 
is stable but their analysis does not give a definitive conclusion 
about the shock at X 8z. 

Going back to our fully relativistic case, we get 

!:1 = 2;; ( ;:2 -1) + n-;- ( :~ -~~) 
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(23) 

Because of relativistic effects, a relation similar to Eq. (21) can-
tb .c d . ~ ..J. du_ 1'1, th d'ti' ~- du_ no e ~oun , 1.e., dX 1 - "iiX un Jl\.e e con 1 on dX - - dX 

in the pseudo-Newtonian model. Consequently, it is difficult to 
estimate the actual sign of .6.. We, therefore, have evaluated .6. 
through numerical calculations. 

One significant difference between the fully relativistic re
sult of the present work and the pseudo-Newtonian one is that 
since u_ > Bs2 when~= ~~ = 0, .6. > 0. Therefore, near 
that point, the shock in the relativistic situation is unstable. Even 
so, the numerical evaluation demonstrates that the effect from 
the first term of RHS of Eq. (23) is very weak and the stabilities 
of the shocks behave in the same way as those in the pseudo
Newtonian model. In other words, the shock at X 82 is unstable, 
but the shock at Xs3 is stable except when Xs3 is very close to 
the point at which ~~ = 0. 

Now, we can choose the angular momentum l as a parame
ter in our problem to discuss the transonic flows in black hole 
accretion with B < Be. There are some special values of an
gular momentum, lA, lc1 , lc and lB as defined above, separat
ing the different regions (cf. Paper 1). When l < lA, the sonic 
point is unique, and the resultant transonic flow is an unique 
shock-free solution to equations (1) and (2). Also the accretion 
rate, as expected, decreases with increasing angular momen
tum. When lA < l < lB, there are two physically acceptable 
sonic points. But the shock-free solution can pass through only 
the outer sonic point when l < lc. Inversely, when l > lc. the 
shock-free solution can only pass through only the inner one. 
Actually, the accretion is limited to a certain angular m?mentum 
range 0 :::; l < lo with lo generally being much smaller than lB 
(Paper 1). 

Although the governing Eqs. (1) and (2) admit shock-free 
stationarysolutionsfortheentirerangeofO:::; l <ln. stationary 
solutions with shocks are also possible. For accretion onto black 
holes, dissipative shocks may appear only when lc1 < l < lc. 
When l > lc, if we use the isothermal shock conditions, we 
then find that E_ / E+ < 1. It is impossible for this to happen 
for any physical shock unless there were other mechanisms to 
generate the extra energy needed at the shock. Shocks could 
exist in wind flows in this case, but wind solutions are generally 
not physically allowable for black holes due to the existence of 
the inner boundary condition where near the black hole itself 
u --t 1 (unless other local physics could initiate such wind flows, 
e.g., evaporation from a corona). 

6. Discussion and conclusions 

The multiplicity of the sonic points is a necessary condition 
for the existence of shocks, but not a sufficient one. It has been 
found that for a special class of adiabatic accretion flows, namely 
fully ionized pure hydrogen gas with gas dominated pressure, no 
multiple sonic points are present no matter what the temperatilre 
of the disk is, either "hot" or "cool" (Paper 1). For isothermal 
flows, only when the temperatilre is below 1.8 x 1011 K (B < 

(e) 

1000 

(d) 

;; 
X 

100 (c) 

(a) )J 
10 

J 
3.60 3.70 3.80 3.90 4.00 

"A 
Fig. 6. Variations of the stable shock locations Xst with the angu
lar momentum under different temperatures. (a) T = 1011 K, (b) 
T = 7 x 1010 K, (c) T = 5.2 x 1010 K, (d) T = 1010 K, (e) T = 109 K 

0.017548), are shocks possible. Accordingly, one may conclude 
that even in the condition of forced heating or cooling, which 
leads to the variation of the polytropic index (Chang & Ostriker 
1985), the shock is unlikely to form if maximum temperatilres 
in hot, two-temperature disks (B "' 0.1) are achieved. 

By using the fully relativistic equations to study the shocks, 
we find that when the sound speed is comparable to the speed of 
light, the effects of special relativity become non-negligible. The 
pseudo-Newtonian model (Chakrabarti 1989) does not include 
these effects. The major difference resulting from this effect is 
the minimum Mach number for shocks. If relativity does not 
apply, the minimum value is M_ = 1. Conversely, with the 
relativistic effects, one must have M_ = ML(B) > 1, before a 
shock may form. 

The method of stability analysis adopted here is totally dif
ferent from that used by Chakrabarti (1989), but is similar to 
that by Chakrabarti & Molteni (1993). For accretion onto black 
holes, our stability analysis shows that only one of the two pos
sible shocks between the sonic points is stable. As a result, the 
location of the possible shock is unique. Figure 6 demonstrates 
the variations of the stable shock locations with the angular 
momentum for different temperatures. 

Standing shocks have been proposed by Chakrabarti & Wi
ita (1992) to modify the observed UV spectra of AGN accretion 
disks. For the quasar 2130+099, they find that T> 5 x 104K 

rv 

for r< 6rg. Our theoretical isothermal disks examined here 
rv 

would be considerably hotter, although still not as hot as the 
two-temperature disks postulated by Becker et al. (1994) to ex
plain the-y-ray emission from the blazer 3C 279 (Hartman et al. 
1992). If indeed temperatures as low as T "' 108K hold for 
3C 273 (Chang & Ostriker 1985), our theoretical disks would 
apply to this AGN. The location of the stable shock is very sen
sitive to the values of the specific angular momentum l for such 
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temperatures. For example, when l varies from 3.900 to 3.999, 
the location changes from X "' 36 to X "' 10,254. In those 
cases, and assuming the mass of the black hole Mbh "' 109M0 , 

the variability time scale based on the shock locations ranges 
from about one day to about three years. If we know the vari
ability time scale, the angular momentum could in principle be 
accurately determined from the above discussion. 

It has been found that a number of galactic black hole candi
dates including Cygnus X-1 and J 0422+ 35 show QPO behavior 
(Kouveliotou et al. 1993). Since no solid surface for the black 
hole can be found in contrast to the case for neutron stars, it is 
difficult to understand theoretically such behavior. We speculate 
that QPO behavior may be explained in transonic, isothermal 
accretion disks as acoustic waves interacting with the shock. 
One frequency would be !1(X5), the orbital frequency at the 
sonic radius; the other frequency would be !1(XsJ), the orbital 
frequency at radius X 51 where the shock is located. This gives an 

estimate on the QPO frequency vQro = 2 x 104l[1-(~ ?1/ Xi 
for stellar black holes of mass 1 OM0 . Using the values obtained 
from observations, one may determine the parameters such as 
temperature and angular momentum. For instance, if we pick 
that the time scale for the variability of Cygnus X-1 is "' 50 ms, 
we find that the corresponding temperature is To= 4.8 x 109K 
and Xs = 1, 028. Furthermore, the observed QPO frequency for 
Cygnus X-1 is vQro = 0.04Hz (Kouveliotou et al. 1993), from 
which we find that X 81 = 829.4, and the corresponding angular 
momentum l ~ 3.9736. 
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