
Chapman University
Chapman University Digital Commons
Mathematics, Physics, and Computer Science
Faculty Articles and Research

Science and Technology Faculty Articles and
Research

1997

Module Embedding
Atanas Radenski
Chapman University, radenski@chapman.edu

Follow this and additional works at: http://digitalcommons.chapman.edu/scs_articles

Part of the Programming Languages and Compilers Commons

This Article is brought to you for free and open access by the Science and Technology Faculty Articles and Research at Chapman University Digital
Commons. It has been accepted for inclusion in Mathematics, Physics, and Computer Science Faculty Articles and Research by an authorized
administrator of Chapman University Digital Commons. For more information, please contact laughtin@chapman.edu.

Recommended Citation
Radenski, A. Module Embedding. Software - Concepts and Tools, Vol. 19, Issue 3, 1998, Springer, 122-129.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chapman University Digital Commons

https://core.ac.uk/display/215736952?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.chapman.edu?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/scs_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/scs_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/science_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/science_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/scs_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laughtin@chapman.edu


Module Embedding

Comments
This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Software - Concepts
and Tools, volume 19, issue 3, in 1998 following peer review. The final publication is available at Springer
athttp://www.springer.com/computer/swe/journal/378e.

Copyright
Springer

This article is available at Chapman University Digital Commons: http://digitalcommons.chapman.edu/scs_articles/210

http://www.springer.com/computer/swe/journal/378
http://digitalcommons.chapman.edu/scs_articles/210?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages


Module Embedding1

Atanas Radenski

Computer Science Department

UNC-WSSU, P. O. Box 19479

Winston-Salem, North Carolina 27110, USA

radenski@ga.unc.edu

Summary

This paper proposes a code reuse mechanism called module

embedding that enables the building of new modules from existing

ones through inheritance, overriding of procedures, and overriding

of types; the paper also describes an implementation scheme for

this mechanism. Module embedding is beneficial when modules and

classes are used in combination and need to be extended together,

or when modules are more appropriate medium than classes.

Keywords:

modules, object-oriented programming, inheritance, extensibility.

                    
    1 This work is partially supported by NSF grant CCR-9509223 and
NASA grant NAG3-2011.



2
1 Motivation

In modular languages, classes and modules are complimentary

constructs that satisfy different needs of programmers. A class

introduces an abstract data type that can be used to create several

objects. A module can be employed to

• encapsulate one or more classes;

• define and implement an abstract data structure, i.e., a single

entity without an associated type;

• group several related classes and procedures into a subsystem or

into a framework;

• encapsulate a library of mathematical functions;

• package a class with related global variables and procedures.

An essential difference between classes and modules is that

classes are extensible and their operations are invoked by dynamic

binding, while modules are not directly extensible and their

operations are invoked by static binding. We propose to eliminate

this difference by means of a code reuse mechanism that we call

module embedding. Module embedding enables the building of new

modules from existing ones through inheritance, overriding of

procedures, and overriding of types. Module embedding can be

beneficial when modules and classes are used in combination and

need to be extended together, or when classes are less appropriate

than modules or not applicable at all.

We illustrate the essence of module embedding and the

potential benefits of its adoption by means of an example. Consider

the problem of implementing and using simple bank accounts, such



3
that:

• each account has a certain balance;

• a client may open, transact on, or close an account;

• their total balance characterizes all open accounts.

In Figure 1, all components of the implementation are

encapsulated in a module, M0. The class of all accounts is

represented as an extensible record type (an approach first adopted

in Oberon [13, 14] and later used in Ada [10]). Procedure transact

can be used for deposits (amt > 0) or withdrawls (amt < 0); it also

updates the total balance of all accounts. As in Oberon, the ‘*’

sign is used as mark that designates exported, or public entities

[14].

module ���
���� ������	� 
 record
           �������� ����
        ����
��� 	�	���� ����

��	
����� ����� ��� �� ������	��
���� �������� �
 � ����

��	
����� 	������	����� �� ������	� ��	� �����
���� �������� �
 �������� � ��	�
  	�	�� �
 	�	�� � ��	
����

��	
����� ��������� �� ������	��
���� 	������	��� � ��������� ����

���� ����	������	��� of M0� 	�	�� �
 � ����

Figure 1. Embeddable module M0; exports are marked by ‘*’.

Consider now the problem of keeping track of the total number

of all accounts and assigning account numbers to individual

accounts. This can be achieved by embedding module M0 into a new

module, M1, which also contains an additional global variable,



4
numAccnts, as shown in Figure 2. The embedding module, M1, inherits

all exports of the embedded module M0: the type account, the global

variable total, and the procedures open, close, and transact; these

entities are re-exported by M1.

module �������
���� ���	
���  record

     �
������ ��������
    ����

��� �
��������� ��������

��	
����� 	�������� �� ���	
����
���� �	�������
  �
������� � �
������� � ��

���
���� � �
�������
����

��	
����� ��	������� �� ���	
����
���� ���	������
  �
������� � �
������� � �
����

���� �������������	� of M1�
  �
������� � �
����

Figure 2. Embedding module M0 into module M1.

Module M1 extends the definition of the inherited type account

with an additional field to represent the account number. The

extended type definition comprises two fields: balance (inherited)

and number (extended). In module M1, the extended type definition

overrides the type definition inherited from M0. In the embedding

module M1, any variable (or parameter) of type account that is

inherited from the embedded module M0 comprises both fields balance

and number. In M1, for example, the parameter a: account of

procedure open has components a.balance and a.number. As a general

rule, a record type definition from an embedded module can be

overridden by an extended definition in the embedding module.



5
������������ ��
��� �� �����
�� ��� ��
�� �� ��� ������


�����
���� ���� ��
 ����� (see Figure 2)� In M1, the overriding

body of open increments the total number of accounts and assigns

an account number to the newly created definition of the account

type; the newly defined body of close decrements the total number

of accounts. Note that the bodies of open and close inherited

from M0 are still available in M1 and can be invoked through the

designators ^open and ^close.

module client;
������ ��


���  ������� M1.������

�	
�� {client}
  M1.�������
  M1.��������� ����

  M1.��������� ����
  M1.close(a);
end.

Figure 3. Client module.

A client can import a module (see Figure 3) and use its

exported entities through qualified identifiers; however, the

client is not permitted to override them. More differences

between module import and module embedding are discussed later in

the paper.

In summary, module embedding has the following properties:

• the body of a procedure inherited from an embedded module can be

overridden in the embedding module;

• the definition of a record type inherited from an embedded

module can be overridden with an extended definition in the

embedding module.

We envision several benefits from module embedding. Module

embedding is indispensable when modules and classes are used in



6
combination, and, therefore, should be extended together (as

illustrated by the bank account example). In particular, module

embedding can be applied to:

• expand the set of global variables related to a class and extend

the class itself;

• expand the set of procedures related to a group of classes and

extend the classes themselves;

• define and implement extensible typeless entities, such as

abstract data structures or libraries of functions.

In the rest of this paper we (1) define module embedding, (2)

describe an implementation scheme for embeddable modules, and (3)

discuss related work and advantages of module embedding.

2 Embeddable Modules

Definition of Module Embedding

An embeddable module (sometimes shortly referred to as module in

this paper) is a collection of declared constants, types,

variables, and procedures/functions (Figure 4). The module can also

include a sequence of statements used for initialization. Some of

the declared entities are exported by the module and can be used by

client modules, while the non-exported entities remain private in

the module. Technically, identifiers of exported entities are

marked with a ‘*’ sign. Exported variables are write-protected in

client modules (i.e., importing modules) but can be updated in

embedding modules.



7
module M0;
  const
    ... constant declarations...
  type
    … type declarations...
  var
    exported*: typeIdent;
    private: typeIdent;
  procedure dynamic*;
  begin ... end;
  procedure static;
  begin ... end;
begin
  … module initialization ...
end.

Figure 4. Principal parts of an embeddable module.

module M1(M0);
  ... new declarations...
  var private : typeIdent;
  procedure dynamic*;
  … overrides M0.dynamic…
  begin ... end;
  procedure static;
  … new private procedure …
  begin ... end;
begin
   ... initialization  
end.

Figure 5. Module embedding.

Modules are embeddable, i.e., one or more existing modules can

be embedded in a newly declared module. For example, module M0 from

Figure 4 is embedded in module M1 in Figure 5. The embedding module

M1 inherits all components of its embedded module M0. Only

identifiers that are exported by M0 are visible in the embedding

module M1; such identifiers are re-exported by M1. Besides, the

embedding module may declare new identifiers in addition to those

inherited from its embedded modules. Newly declared identifiers

must be different from identifiers that are exported by embedded



8
modules but can be the same as their private identifiers.

A procedure identifier exported by an embedded module M0 can

be re-declared in its embedding module M1, provided that the

procedure heading in M1 is the same as in M0. The newly declared

procedure body overrides the procedure body inherited from the

embedded module. For example, both module M0 and module M1 contain

private static procedures that do not interfere, while the public

dynamic procedure declared in M1 overrides the public dynamic

procedure declared in M0.  Any call of procedure dynamic, including

calls from within the embedded module M0, will invoke the procedure

body declared in M1.

module M0;
  type class* = record
     a*: integer;
  end;
  var object*: class;
begin
  object.a := 0;
end.

module M1(M0);
type class* = record
     b*: integer;
  end;
begin
  object.b := 0;
end.

Figure 6.  An object of an extensible type.

Furthermore, a record type identifier exported by an

embedded module M0 can be re-declared in its embedding module M1.

A record type definition in M1 extends the definition inherited

from M0; the extended definition comprises all fields originally

specified in M0 and, in addition, the fields specified in M1. The

extended type definition overrides the type definition inherited

from M0. Consider, for example, a class declared in M0 and

extended in M1, and an object exported by M0 (Figure 6). Although

the object is originally declared in M0, when inherited by M1 it

contains all fields that belong to the extended class.



9
A newly declared module can embed one, two, three, or more

existing modules (provided the exported name spaces of the embedded

modules are disjoint). In other words, embedding is a form of

multiple inheritance that applies to modules. Such form of multiple

inheritance can be implemented in a relatively straightforward

manner because modules, in contrast to classes, are typeless single

instances that do not require run-time dispatch tables. As far as

record type extension is concerned, we prefer to limit it to single

record types, i.e., to single inheritance, for the sake of

conceptual simplicity and efficient implementation.

Module Compilation, Execution, and Import

Embeddable modules are separate compilation units and separate

execution units. The implementation converts a correct module 1)

into a symbol file that represents the module's interface and 2)

into an object file. At run time, the implementation executes a

module by loading its object file and then executing the module

body. For example, module M0 (Figure 4) can be compiled and then

executed. A module can be directly executed for either testing the

module, or because that module is intended to be used as a main

module, or main program in traditional terms. This approach

eliminates the need for a special linguistic construct for main

programs. A major benefit is that a main module (i.e., a main

program) is as extensible and adaptable as any other module.

A client module specifies a list of imported modules, as for

example module C0; import M0; ... end. The client, C0, can refer to



10
exported entities only through qualified identifiers, such as

M0.exported and M0.dynamic. At run time, the implementation

executes imported modules before the execution of the client. By

definition, imported modules are shared between client modules. At

run time, the implementation loads only one instance of each

imported module and this copy is shared by all of its clients.

The execution of a module body is preceded by the execution of

the bodies of its base modules, if any. This rule ensures proper

module initialization.

Comparison of Module Import and Module Embedding

The principal difference between module import and module embedding

is that module import implements shares-a relationship between

modules while module embedding implements contains-a relationship.

Consider for example an application in which modules M1 and M2

(Figure 7) import M0. The imported module M0 is shared between

modules M1 and M2. Any change of M0 by, say, M1 is visible for M2

as well.

Alternatively, if module M0 is embedded into modules M1

and M2, each of these modules will have M0 as its proper part

(Figure 8). Now, M1 and M2 incorporate separate instances of M0.

Therefore, M1 may change components inherited from M0, but these

changes do not affect the same components inherited by M2. Besides,

M1 and M2 can make different extensions of the same record type

inherited from M0. Likewise, M1 and M2 can have different

procedures override the same procedure inherited from M0.



11

Figure 7.  Import  implements
shares-a relationship 
(graphically represented by
arrows).

Figure 8.  Embedding
implements contains-a
relationship (graphically
represented by nesting).

Figure 9. Mixing contains-a and shares-a relationships.

������ ��	




������ ���������	

����� ��� ��� ��	

������ ��	

����� ��	

������ ��	

����� ��	

������ ���������	

����� ��� ��� ��	

������ ��	




������ ������	




������ ��	




������ ������	




������ ��	




������ ������	

����� ��	

� �� �

���� �� �	

������ ��	

��� �� ������	

������ ��	

��� �� ������	

����� �������

���� ����� ��



12
Note that module import and embedding can be mixed, if

necessary in order to implement shares-a and contains-a

relationships. For example, a module M1 can import module M0 and,

at the same, embed module M0 (Figure 9). In this case, M1 embeds a

separate instance of module M0 and also refers to the shared

instance of the imported module M0. Note that the qualified

identifier M0.x stands for an imported component, while the

identifier x always stands for a component that is inherited from

an embedded module.

3 Implementation Issues

A Language with Modules Embedding and its Implementation

We have incorporated embeddable modules in an experimental object-

parallel language. Our embeddable modules allow gluing together

sequential domain-specific code with ready-to-use generic parallel

algorithms, in order to effectively build parallel applications.

Technically, a generic parallel algorithm is specified as an

embeddable module which implements a common synchronization and

communications structure, such as a pipeline, a grid, a master-

server structure, etc. This module can be embedded into domain-

specific modules that contain only sequential code. Thus, a

concrete parallel application is derived from the paradigm by

embedding the paradigm module into a module with domain-specific

sequential code.

Generic parallel algorithms, also called parallel paradigms,

were introduced and studied by Brinch Hansen [5] in terms of the



13
structured language SuperPascal [4]. This type-safe parallel

language is based on some widely accepted parallel programming

means, such as send, receive, for-all, and parallel statements, and

channel types. In SuperPascal, a paradigm can only be implemented

as a concrete main program using concrete constants, types, and

procedures. In order to mix a paradigm with user supplied

sequential code, the user must have the source code for the

paradigm and make textual modifications, such as adding new program

components and modifying existing ones. The Paradigm/SP language

that we have developed enhances the parallel-programming features

of SuperPascal with embeddable parameterized modules. We have

studied known parallel paradigms and developed new ones, and our

conclusion is that embeddable modules provide easy to use support

for parallel paradigms, while traditional classes may lead to

representations that are unnecessarily complex. Furthermore, module

embedding, and procedure and type overriding make it possible for a

general 'paradigm' module to be easily mixed with sequential

problem-specific code, i.e., adapted to a specific application.

We have developed a prototype implementation of the

Paradigm/SP language. The prototype implementation consists of (1)

a compiler that generates abstract code and (2) a loader and an

interpreter for this abstract code. The implementation is an

enhancement of the SuperPascal compiler [5] and its predecessor [3]

with separate compilation, dynamic binding for methods and classes,

and dynamic loading. The implementation reuses some algorithms from

the Oberon compiler [15]. The compiler incorporates two independent

components, the parser and the assembler. The parser performs



14
traditional recursive descent syntax and semantic checks, outputs a

symbol file, and generates intermediate code. This intermediate

code is then processed by the assembler, which performs

optimization and generates an abstract object file. Finally,

abstract object files are dynamically loaded and then executed by

the interpreter. A working version of the prototype implementation

is available in [18].

The abstract code of a module consists of two parts,

initialization code and proper code. The proper code is a direct

compilation from the module statements. The initialization code is

executed by the dynamic loader and is used to set-up several types

of descriptors associated with each loaded module. The import

descriptor associates module numbers with the effective base

addresses of imported and base modules. The procedure descriptors

and the type descriptors are discussed in the next two sections.

The initialization code of all modules from an application is

executed prior the execution of any proper code. Besides, code of

an embedded module is executed prior code of its embedding modules;

code of an imported module is executed prior code of its clients.

Type Overriding

An extensible record type is bound at run time to a particular

record definition (i.e., to a particular set of fields). The

length of the type can be different in different applications.

Even in the same application, an extensible record type can have

different definitions with different lengths. Assume, for



15
example, that a record type T is declared in module M0 (Figure 8)

and re-defined in modules M1 and M2. In the application shown in

Figure 8, the record types M0.T, M1.T, and M2.T will be bound to

three different type definitions in modules M0, M1, and M2

correspondingly.

A dynamic type is either an extensible record type, or a

type with one or more components of a dynamic type. Objects of

dynamic types are implemented as pointers and are automatically

allocated and deallocated heap memory.

For each dynamic type, the compiler generates a type

descriptor that belongs to its declaring module and that binds

the type to a particular type definition. The type descriptor

contains the type length and references to the type descriptors

of all dynamic components of that type. For example, the

principal components of an extensible record type descriptor are:

���������	��
�����	�� � ���������	����� ������������ 
�������������
�����	�������������

The displacement of this type descriptor regarding the base address

of the declaring module is kept in the symbol file.

The initialization code of the declaring module contains

instructions that assign into the type descriptor the record length

and references to the dynamic field descriptors. When an extended

module re-defines the type, its initialization code updates the

type descriptor with the length of the extended type definition and

with references to the newly added dynamic record fields.

For each whole dynamic variable (or value parameter), the

compiler generates



16
• an instruction to allocate a memory bock for the whole variable

and of its dynamic components when the variable scope is

entered;

• an instruction to deallocate that memory when the scope of the

variable is exited.

All deallocated blocks of the same type are kept in a list of

free blocks and are re-used for next memory allocations.

A type that is local for a module is not visible in its

embedding modules; by definition, such a local type is not

extensible. However, a local type can still contain dynamic

components and is, therefore, implemented as a dynamic type.

Procedure Overriding

The implementation separates user declared procedures in two

categories. Procedures that are marked for export are external

because they can be called in client modules and can be re-defined

in embedding modules. All other procedures are local for their

declaring module.

An external procedure is bound at run time to a particular

procedure body (i.e., particular implementation). For each

originally declared procedure, the compiler generates a procedure

descriptor that belongs to the declaring module and that binds

the procedure to a particular procedure body. The procedure

descriptor contains the items that are needed for an external

procedure call, namely a reference to the procedure body and the

base address of the module containing that body:



17
������������	��
���� � ���������	� ������������������������

The initialization code of the declaring module contains an

instruction that assigns the module base and a reference to the

procedure body into the procedure descriptor. When an embedding

module redefines the procedure, its initialization code updates the

procedure descriptor with the base address of the embedding module

and a reference to the newly declared procedure body. Since an

embedded module is always loaded before its embedded modules, the

procedure descriptor refers to the very last implementation of the

procedure. A call of the procedure from any module invokes that

last version.

An external procedure call is compiled into an instruction

with two arguments. The first argument is the number of the

declaring module (i.e., the module that contains the procedure

descriptor). The second argument is the offset of the procedure's

descriptor regarding the base address of its declaring module:

�������������� � ��	�����
������� ������
��� ������������� ��	��
��������	��

At run time, the entry point of an external procedure is

calculated by fetching the base address of the declaring module

from the import descriptor and then fetching the contents of the

procedure descriptor. The procedure descriptor is then used to

establish the entry point of the procedure body and the base

address of the module that contains that body. Such an invocation

is nearly as efficient as a procedure call through a pointer:

������
������������	�������		 � ���������	��
���� � ��	�����
��  ������
���������������� !

������������	��
����������		 � ������
������������	�������		 " ��	�����
��  ��	��
��������	��

����������#�������
�� � ������������	��
����  ������������������������



18
���������	���
�������������� � �����������	������ � ���������	�

Local procedures are bound to their declaring module at

compile time. A local procedure call is compiled into an

instruction that contains the displacement of the procedure entry

address regarding the location of the calling instruction itself.

4 Related Work and Conclusions

Embeddable modules are useful for the implementation of typeless

structures, such as, for example, common libraries of procedures or

generic algorithms. Alternatively, classes are needed when it comes

to the implementation of multiple entities of the same abstract

type. In modular object-oriented languages, such as Oberon-2 [6],

classes are represented by means of extensible record types [13].

MODULE M0;
  TYPE class* = RECORD
    ... data fields ...
  END;
  PROCEDURE (VAR self: class) method*(…);
  BEGIN ... implementation ... END;
END.

MODULE M1;
IMPORT M0;
  TYPE subClass* = RECORD(M0.class)
    ... new data fields ...
  END;
  PROCEDURE (VAR self: subClass) method*(…);
  BEGIN ... type guards/tests ... END;
END.

Figure 10. Methods as type-bound procedures.

As illustrated in Figure 10, methods are represented as type-bound

procedures that are syntactically connected to an extensible record

type, i.e., a class [6]. Other modular languages, such as Ada-95



19
[10, 11] and Modula-3 [2], follow similar approaches to classes and

methods.

module M0;
  type class* = record
    ... data fields ...
  end;
  procedure method*(var self: class; ...);
  begin ... implementation ... end;
end.

module M1(M0);
  type class* = record
    ... new data fields ...
  end;
  procedure method*(var self: class; ... );
  begin ... end;
end.

Figure 11.  Methods as module-bound procedures.

Similarly to known modular languages, we represent classes as

extensible record types. What is different in our approach is that

record extension overrides an existing type and does not introduce

a new type. Furthermore, we represent methods as module-associated

procedures rather than type-bound ones; module-associated

procedures can be overridden similarly to type-bound procedures, as

specified earlier in this paper. Module-associated procedures can

be related to extensible record types, i.e., to classes, through

regular parameters and therefore, used as methods for those

classes. A module M0 (Figure 11) can implement a class as an

extensible record type and a method as a procedure. Furthermore, a

module M1 that embeds  M0 can extend the class and override the

inherited method. Objects that belong to the class can be passes as

parameters to the method. Such extended objects do not require type

test and guards because they are not polymorphic, in contrast to



20
extensible objects in Oberon ([8] offers a detailed discussion of

type tests and guards). A disadvantage of our proposed extensible

records is that they do not support heterogeneous data structures.

The purpose of the module system of the Cecil language [17] is

to support encapsulation and static type checking for multimethods.

Cecil supports explicit module import that obeys visibility rules

similar to those adopted in C++ subclassing. As analyzed in [17],

the standard visibility rules of module imports can make static

subchecking of multimethods impossible and force dynamic

typechecking. In order to ensure static subchecking of

multimethods, a form of module import called module extension is

proposed in [17]. In contrast to our proposed concept of module

embedding, in Cecil extended modules are shared, just like imported

modules. Furthermore, extended or imported modules in Cecil allow

standard subtyping while our embeddable modules allow type

redefinition.

It has been widely recognized [9, 7, 1, 6] both modules and

classes support necessary abstractions, which should be, used as

complementary media. What we propose is to shift power from classes

to modules by introducing a form of inheritance that applies to

modules. The object-orientation of Paradigm/SP is founded on

enhancements of traditional concepts, such as module, record type,

and procedure. In this, we agree with authors who prefer using

widespread and historically established terms with object-enhanced

syntax and semantics [12].

Embeddable modules seem to be conceptually simpler than

classes and, therefore, are easier to use. In particular, an



21
embeddable module can be a good replacement for a single-entity

class, or a singleton pattern [16]. Because of its relative

simplicity, module embedding is easier to implement than sub-

classing. For example, multiple inheritance for modules is easier

to implement efficiently than for classes because modules are not

first-class objects (there are no module types and module

references). In particular, invoking a procedure that is inherited

from one of several embedded modules is as efficient as calling a

procedure through a pointer.

A disadvantage of embeddable modules as compared to classes is

that modules do not introduce types and, therefore, cannot be used

to create multiple instances. Furthermore, dynamic types impose

run-time overhead on the implementation. Finally, a drawback of

module embedding is that it complicates the semantic and the syntax

of the underlying modular language. Nevertheless, we believe that

the introduction of module embedding is justified, because known

code reuse mechanisms, such as parametric polymorphism (i.e.,

generics), interfaces, procedure parameters or pointers cannot

completely achieve the effects of module embedding.

The existence of two principal object-oriented styles has been

distinguished in the recent years. The traditional and older style

is centered on classes as abstractions, and on objects as concrete

instances of such abstractions. Such a class-based object style is

supported by a number of pure or hybrid object-oriented languages,

such as Smalltalk, Simula, C++, Java, and Oberon-2. The alternative

object style is centered around concrete objects and on the

possibility to use such objects as prototypes from which other



22
objects can be derived. Such a prototype-based object style is

supported by newer languages, such as Self and NewtonScript. One of

the strengths of the Paradigm/SP language is that it supports to

some extent both class-based and pattern-based object-styles.

Indeed, embeddable modules are relevant medium for pattern-based

OOP, while extensible record types support class-based OOP.

Therefore, Paradigm/SP is a hybrid object language, which, by the

way, is a relevant tool for the traditional structured programming

style as well.

5 References

1.  G. Bracha. The Programming Language Jigsaw:  Mixins,

Modularity and Multiple Inheritance. Technical report UUCS-92-

007, University of Uta, 1992.

2.  L. Cardelli, J. Donahue, L. Glasman, M. Jordan, B. Kalsow and

G. Nelson. Modula-3 language definition. ACM SIGPLAN Notices,

27, No8, 1992, 15-42.

3.  B. Hansen. Brinch Hansen on Pascal Compilers, Prentice Hall,

1985.

4.  B. Hansen. SuperPascal - a publication language for parallel

scientific computing, Concurrency - Practice and Experience,

6, No 5, 1994, 461-483.

5.  B. Hansen. Studies in Computational Science:  Parallel

Programming Paradigms. Prentice Hall, 1995.

6.  H. Moessenboeck. Object-Oriented Programming in Oberon-2.

Springer-Verlag, 1993.



23
7.  C. Lucas and P. Steyaert. Modular inheritance of objects

through mixin-methods. In Advances in Modular Languages,

University of Ulm, 1994, 273-282.

8.  Reiser and N. Wirth. Programming in Oberon: Steps beyond

Pascal and Modula. ACM Press, 1992.

9.  C. Szyperski. Why we need both: Modules and classes, in

Proceedings of OOPSLA, 1992, 19-32.

10.  S.-T. Taft. Ada 9X: A technical summary, Communications of the

ACM, 35, No 11, 77-84.

11.  T.-S. Taft. Ada 9X: From abstraction-oriented to object-

oriented, Proceedings of OOPSLA, 1993, 127-135.

12.  J. Winkler. Objectivism: "Class" considered harmful, 

Communications of the ACM, 35, No 8, 1992, 128-130.

13.  N. Wirth. Type extensions, ACM Transactions on Programming

Languages and Systems, 10, 1987, 204-214.

14.  N. Wirth. The programming language Oberon, Software - Practice

and Experience, 18, No 7, 1988, 671-690.

15.  N. Wirth and J. Gutknecht. Project Oberon, ACM Press, 1992.

16.  E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design

Patterns, Elements of Reusable Object-Oriented Software,

Addison-Wesley Professional Computing Series, Addison-

Wesley, 1995.

17.  C. Chambers and G. Leavens. Typechecking and Modules for

Multimethods, ACM Transactions on Programming Languages and

Systems, 17, No 6, 1995, 805-843.

18.  A. Radenski (1998). Prototype Implementation of Paradigm/SP,



24
http://www.rtpnet.org/~radenski/research/language.html.


	Chapman University
	Chapman University Digital Commons
	1997

	Module Embedding
	Atanas Radenski
	Recommended Citation

	Module Embedding
	Comments
	Copyright


	Microsoft Word - ExtMod_798.d.

