View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by Chapman University Digital Commons

Chapman University
Chapman University Digital Commons

Mathematics, Physics, and Computer Science Science and Technology Faculty Articles and
Faculty Articles and Research Research
1997

Module Embedding

Atanas Radenski

Chapman University, radenski@chapman.edu

Follow this and additional works at: http://digitalcommons.chapman.edu/scs_articles

b Part of the Programming Languages and Compilers Commons

Recommended Citation
Radenski, A. Module Embedding. Software - Concepts and Tools, Vol. 19, Issue 3, 1998, Springer, 122-129.

This Article is brought to you for free and open access by the Science and Technology Faculty Articles and Research at Chapman University Digital
Commons. It has been accepted for inclusion in Mathematics, Physics, and Computer Science Faculty Articles and Research by an authorized

administrator of Chapman University Digital Commons. For more information, please contact laughtin@chapman.edu.

https://core.ac.uk/display/215736952?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.chapman.edu?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/scs_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/scs_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/science_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/science_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/scs_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laughtin@chapman.edu

Module Embedding

Comments

This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Software - Concepts
and Tools, volume 19, issue 3, in 1998 following peer review. The final publication is available at Springer
athttp://www.springer.com/computer/swe/journal/378e.

Copyright
Springer

This article is available at Chapman University Digital Commons: http://digitalcommons.chapman.edu/scs_articles/210

http://www.springer.com/computer/swe/journal/378
http://digitalcommons.chapman.edu/scs_articles/210?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages

Modul e Enbeddi ng’

At anas Radensk
Conmput er Sci ence Depart nment
UNC-WSSU, P. O Box 19479
Wnston-Salem North Carolina 27110, USA

radenski @a. unc. edu

Sunmary

Thi s paper proposes a code reuse nechani smcal |l ed nodul e
enbeddi ng that enabl es the building of new nodul es from existing
ones through inheritance, overriding of procedures, and overriding
of types; the paper also describes an inplenentation schene for
this nechanism Mdul e enbeddi ng i s beneficial when nodul es and
cl asses are used in conbination and need to be extended together,

or when nodul es are nore appropriate nedi umthan cl asses.

Keywor ds:

nodul es, object-oriented progranm ng, inheritance, extensibility.

' This work is partially supported by NSF grant CCR- 9509223 and
NASA grant NAG3-2011.

1 Motivation

I n nmodul ar | anguages, cl asses and nodul es are conplinentary
constructs that satisfy different needs of programmers. A class
i ntroduces an abstract data type that can be used to create several
obj ects. A nodul e can be enployed to
* encapsul ate one or nore cl asses;
» define and inplenent an abstract data structure, i.e., a single
entity without an associ ated type;
e group several related classes and procedures into a subsystem or
into a framework;

e encapsulate a library of mathematical functions;
« package a class with related gl obal variables and procedures.

An essential difference between classes and nodul es is that
cl asses are extensible and their operations are invoked by dynamc
bi ndi ng, while nodules are not directly extensible and their
operations are invoked by static binding. W propose to elimnate
this difference by neans of a code reuse nechanismthat we call
nmodul e enbeddi ng. Modul e enbeddi ng enabl es the buil ding of new
nodul es from exi sting ones through inheritance, overriding of
procedures, and overriding of types. Mdul e enbeddi ng can be
beneficial when nodul es and cl asses are used in conbi nati on and
need to be extended together, or when classes are | ess appropriate
t han nodul es or not applicable at all.

VW illustrate the essence of nodul e enbeddi ng and the
potential benefits of its adoption by neans of an exanpl e. Consi der

t he problemof inplenmenting and using sinple bank accounts, such

t hat:

» each account has a certain bal ance;

e aclient may open, transact on, or close an account;

e their total bal ance characterizes all open accounts.

In Figure 1, all conponents of the inplenentation are
encapsul ated in a nodule, MJ). The class of all accounts is
represented as an extensi ble record type (an approach first adopted
in beron [13, 14] and later used in Ada [10]). Procedure transact
can be used for deposits (ant > 0) or withdraws (ant < 0); it also
updates the total balance of all accounts. As in Coheron, the **’
sign is used as mark that designates exported, or public entities
[14] .

nmodul e MO,

type account* = record

balance*: real;
end;

var total*: real;

procedure open*(var a: account);
begin a.balance := 0 end,

procedure transact*(var a: account,; amt: real);

begin a.balance := a.balance + amt;
total := total + amt
end,

procedure close* (var a: account);
begin transact(a, - a.balance) end,

begin {initialization Oof M)} total := 0 end.

Figure 1. Enbeddabl e nodul e M); exports are nmarked by ‘*’.

Consi der now t he probl em of keeping track of the total nunber
of all accounts and assigning account nunbers to individual
accounts. This can be achi eved by enbeddi ng nodule M) into a new

nodul e, M, which also contains an additional global variable,

4
numAccnts, as shown in Figure 2. The enbeddi ng nmodul e, ML, inherits

all exports of the enbedded nodule MD: the type account, the gl obal
variable total, and the procedures open, close, and transact; these
entities are re-exported by M.

nmodul e M1 (MO) ;
type account* = record
number*: integer;
end;
var numAccnts*: integer;

procedure open*(var a: account);
begin “open(a);

numAccnts := numAccnts + 1;
a.number := numAccnts
end;,

procedure close* (var a: account);
begin “close(a);
numAccnts := numAccnts - 1
end,
begin {initialization of ML}
numAccnts := 0
end.

Figure 2. Enbeddi ng nodule M) into nodule M.

Modul e ML extends the definition of the inherited type account
with an additional field to represent the account nunber. The
extended type definition conprises two fields: balance (inherited)
and nunber (extended). In nodule M, the extended type definition
overrides the type definition inherited from M. |In the enbeddi ng
nodul e ML, any variable (or paranmeter) of type account that is
i nherited fromthe enbedded nodul e M) conprises both fields bal ance
and number. In M, for exanple, the parameter a: account of
procedure open has conponents a. bal ance and a. nunber. As a gener al
rule, a record type definition froman enbedded nodul e can be

overridden by an extended definition in the enbeddi ng nodul e.

5
Furthermore, module MI overrides the bodies of the inherited

procedures open and close (see Figure 2). In ML, the overriding
body of open increnents the total nunber of accounts and assigns
an account nunber to the newy created definition of the account
type; the newy defined body of cl/ose decrenents the total nunber
of accounts. Note that the bodies of open and close inherited
fromM are still available in Ml and can be invoked through the
desi gnators “open and “cl ose.

nmodul e client;

import MI,

var account: M. account;

begin {client}

ML. open(a); M. transact(a, 100);
ML. transact (a, -50); ML.close(a);

end.

Figure 3. dient nodule.

A client can inport a nodule (see Figure 3) and use its
exported entities through qualified identifiers; however, the
client is not permtted to override them More differences
bet ween nodul e i nport and nodul e enbeddi ng are di scussed later in
t he paper.

I n summary, nodul e enbeddi ng has the foll ow ng properties:

* the body of a procedure inherited froman enbedded nodul e can be

overridden in the enbeddi ng nodul e;

e the definition of a record type inherited froman enbedded
nmodul e can be overridden with an extended definition in the
enbeddi ng nodul e.

VW envision several benefits from nodul e enbeddi ng. Mdul e

enbeddi ng i s indi spensabl e when nodul es and cl asses are used in

conbi nation, and, therefore, should be extended together (as
illustrated by the bank account exanple). In particular, nodule
enbeddi ng can be applied to:
» expand the set of global variables related to a class and extend
the class itself;
e expand the set of procedures related to a group of classes and
extend the cl asses thensel ves;
« define and inplenent extensible typeless entities, such as
abstract data structures or libraries of functions.
In the rest of this paper we (1) define nodul e enbeddi ng, (2)
descri be an i nplenentation schene for enbeddabl e nodul es, and (3)

di scuss rel ated work and advant ages of nodul e enbeddi ng.

2 Enbeddabl e Modul es

Definition of Mddul e Enbeddi ng

An enbeddabl e nodul e (sonetinmes shortly referred to as nodule in
this paper) is a collection of declared constants, types,

vari abl es, and procedures/functions (Figure 4). The nodul e can al so
i nclude a sequence of statenents used for initialization. Sone of
the declared entities are exported by the nodul e and can be used by
client nodul es, while the non-exported entities remain private in
the nodule. Technically, identifiers of exported entities are
marked with a ‘*’ sign. Exported variables are wite-protected in
client nodules (i.e., inporting nodul es) but can be updated in

enbeddi ng nodul es.

nodul e MD;
const
... constant decl arations..
type
...type decl arations. .
var
exported*: typeldent;
private: typeldent;
procedure dynam c*;

begin ... end;

procedure static;

begin ... end;
begi n

...nodule initialization ..
end.

Figure 4. Principal parts of an enbeddabl e nodul e.

nodul e ML(MD);
new decl arations. ..
var private : typeldent;
procedure dynam c*;
...overrides M. dynanic...
begin ... end;
procedure static;
...hew private procedure ...
begin ... end;
begi n
initialization
end.

Figure 5. Mdul e enbeddi ng.

Modul es are enbeddabl e, i.e., one or nore existing nodul es can
be enbedded in a newy decl ared nodul e. For exanple, nodule M from
Figure 4 is enbedded in nodule ML in Figure 5. The enbeddi ng nodul e
ML i nherits all conponents of its enbedded nodule M). Only
identifiers that are exported by M are visible in the enbeddi ng
nmodul e MI; such identifiers are re-exported by M. Besides, the
enbeddi ng nodul e nmay declare new identifiers in addition to those
inherited fromits enbedded nodul es. New y declared identifiers

nmust be different fromidentifiers that are exported by enbedded

nodul es but can be the sane as their private identifiers.

A procedure identifier exported by an enbedded nodul e M) can
be re-declared in its enbeddi ng nodul e ML, provided that the
procedure heading in ML is the sane as in M). The new y decl ared
procedure body overrides the procedure body inherited fromthe
enbedded nodul e. For exanple, both nodule M) and nodule ML contain
private static procedures that do not interfere, while the public
dynam c¢ procedure declared in Ml overrides the public dynam c
procedure declared in M). Any call of procedure dynam c, including
calls fromw thin the enbedded nodule M), will invoke the procedure

body declared in M.

nodul e M); nodul e ML(MD);

type class* = record type class* = record
a*: integer; b*: integer;

end; end;
var object*: class, begi n

begi n object.b := 0,
object.a := 0, end.

end.

Figure 6. An object of an extensible type.

Furthernore, a record type identifier exported by an
enbedded nodul e MD can be re-declared in its enbeddi ng nodul e M.
A record type definition in ML extends the definition inherited
from MD; the extended definition conprises all fields originally
specified in M) and, in addition, the fields specified in M. The
extended type definition overrides the type definition inherited
from MD. Consider, for exanple, a class declared in M) and
extended in ML, and an object exported by M) (Figure 6). Although
the object is originally declared in M), when inherited by M it

contains all fields that belong to the extended c/ ass.

A newl y decl ared nodul e can enbed one, two, three, or nore
exi sting nodul es (provided the exported nane spaces of the enbedded
nodul es are disjoint). In other words, enbedding is a form of
mul tiple inheritance that applies to nodules. Such formof nmultiple
i nheritance can be inplenented in a relatively straightforward
manner because nodules, in contrast to classes, are typeless single
i nstances that do not require run-tine dispatch tables. As far as
record type extension is concerned, we prefer tolimt it to single
record types, i.e., to single inheritance, for the sake of

conceptual sinplicity and efficient inplenentation.

Modul e Conpi | ati on, Execution, and | nport

Enbeddabl e nodul es are separate conpil ation units and separate
execution units. The inplenmentation converts a correct nodule 1)
into a synbol file that represents the nodule's interface and 2)
into an object file. At run tine, the inplenentation executes a
nodul e by loading its object file and then executing the nodul e
body. For exanple, nodule M) (Figure 4) can be conpiled and then
executed. A nodule can be directly executed for either testing the
nmodul e, or because that nodule is intended to be used as a nain
nmodul e, or main programin traditional terns. This approach
elimnates the need for a special linguistic construct for main
prograns. A major benefit is that a main nodule (i.e., a main
progran) is as extensible and adaptabl e as any ot her nodul e.

A client nodule specifies a list of inported nodul es, as for

exanpl e nodul e CGO; inport M); ... end. The client,), can refer to

10
exported entities only through qualified identifiers, such as

MD. exported and M. dynamic. At run time, the inplenmentation
executes inported nodul es before the execution of the client. By
definition, inported nodul es are shared between client nodules. At
run time, the inplenentation | oads only one instance of each
i mported nodule and this copy is shared by all of its clients.

The execution of a nodule body is preceded by the execution of
the bodies of its base nodules, if any. This rule ensures proper

nodul e initialization

Conpari son of Mddule Inport and Mdul e Enbeddi ng

The principal difference between nodul e i nport and nodul e enbeddi ng
is that nodul e inport inplenents shares-a rel ationship between
nodul es whi |l e nodul e enbeddi ng i npl enents contai ns-a rel ati onshi p.

Consi der for exanple an application in which nodules ML and M2
(Figure 7) inport M). The inported nodule M) is shared between
nodul es Ml and M2. Any change of M) by, say, ML is visible for M
as wel | .

Alternatively, if nodule M) is enbedded into nodul es ML
and M2, each of these nodules will have M) as its proper part
(Figure 8). Now, ML and M incorporate separate instances of M
Therefore, ML may change conponents inherited from M), but these
changes do not affect the sane conponents inherited by M. Besides,
ML and M2 can neke different extensions of the sane record type
inherited from M). Likewi se, Ml and M can have different

procedures override the sane procedure inherited from M.

module MO;

module M1;
import MO;

module M2;
import MO;

module MO;

module M1(MO);

module MO;

module M2(MO0);

module MO;

module application;
import MO, M1, M2;

module application;
import MO, M1, M2;

Figure 7.

| mport

i npl enent s

Shares-a rel ationship
(graphically represented by

arrows) .

module M1(MO);

Fi gure 8.

Enmbeddi ng

i npl ements contai ns-a
relationship (graphically
represented by nesting).

import MO;

module MO;
var x: integer;
A

o !

x:=0-"
MO.x:=1;

module MO;
var x: integer;
-7

other modules
that import MO

Figure 9. Mxing contains-a and shares-a rel ationshi ps.

11

12
Note that nodul e inport and enbeddi ng can be m xed, if

necessary in order to inplenent shares-a and contains-a

rel ati onshi ps. For exanple, a nodule ML can inport nodule M and,
at the sane, enbed nodule MD (Figure 9). In this case, Ml enbeds a
separate instance of nmodule M) and also refers to the shared
instance of the inported nodule M). Note that the qualified
identifier M) x stands for an inported conponent, while the
identifier x always stands for a conponent that is inherited from

an enbedded nodul e.

3 Inplenentation | ssues

A Language with Mdul es Enbedding and its | npl enentation

V¢ have incorporated enbeddabl e nodul es in an experinental object-
paral | el | anguage. Qur enbeddabl e nodul es al | ow gl ui ng toget her
sequenti al domai n-specific code with ready-to-use generic parall el
algorithns, in order to effectively build parallel applications.
Technically, a generic parallel algorithmis specified as an
enbeddabl e nodul e whi ch inplenents a common synchroni zati on and
comuni cations structure, such as a pipeline, a grid, a naster-
server structure, etc. This nodul e can be enbedded i nto donai n-
specific nodul es that contain only sequential code. Thus, a
concrete parallel application is derived fromthe paradi gm by
enbeddi ng the paradi gmnodul e into a nodule wi th domai n-specific
sequenti al code.

Ceneric parallel algorithns, also called parallel paradigns,

were introduced and studied by Brinch Hansen [5] in terns of the

13
structured | anguage SuperPascal [4]. This type-safe parallel

| anguage i s based on sone w dely accepted parallel programm ng
neans, such as send, receive, for-all, and parallel statenments, and
channel types. |In SuperPascal, a paradigmcan only be inplenented
as a concrete main program using concrete constants, types, and
procedures. In order to mx a paradigmw th user supplied
sequential code, the user nust have the source code for the
par adi gm and nake textual nodifications, such as addi ng new program
conponents and nodi fyi ng exi sting ones. The Paradi gni SP | anguage
that we have devel oped enhances the parallel-programm ng features
of SuperPascal w th enbeddabl e paraneterized nodul es. W have
studi ed known parall el paradi gns and devel oped new ones, and our
conclusion is that enbeddabl e nodul es provide easy to use support
for parallel paradigns, while traditional classes may |l ead to
representations that are unnecessarily conpl ex. Furthernore, nodul e
enbeddi ng, and procedure and type overriding make it possible for a
general 'paradigm nodule to be easily mxed with sequenti al
probl em specific code, i.e., adapted to a specific application.

W have devel oped a prototype inplenentation of the
Par adi gn’ SP | anguage. The prototype inpl enmentati on consists of (1)
a conpiler that generates abstract code and (2) a | oader and an
interpreter for this abstract code. The inplenentation is an
enhancenent of the SuperPascal conpiler [5] and its predecessor [3]
with separate conpilation, dynamc binding for nmethods and cl asses,
and dynam ¢ | oading. The inplenentation reuses sone algorithns from
the Coberon conpiler [15]. The conpiler incorporates two i ndependent

conponents, the parser and the assenbler. The parser perforns

14
traditional recursive descent syntax and semanti c checks, outputs a

synbol file, and generates internediate code. This internedi ate
code is then processed by the assenbl er, which perforns
optimzation and generates an abstract object file. Finally,
abstract object files are dynamcally | oaded and t hen executed by
the interpreter. A working version of the prototype inplenentation
is available in [18].

The abstract code of a nodul e consists of two parts,
initialization code and proper code. The proper code is a direct
conpi lation fromthe nodule statenents. The initialization code is
executed by the dynamc | oader and is used to set-up several types
of descriptors associated with each | oaded nodul e. The i nport
descri ptor associates nodul e nunbers wth the effective base
addresses of inported and base nodul es. The procedure descriptors
and the type descriptors are discussed in the next two sections.

The initialization code of all nodules froman application is
executed prior the execution of any proper code. Besides, code of
an enbedded nodul e i s executed prior code of its enbeddi ng nodul es;

code of an inported nodule is executed prior code of its clients.

Type Overriding

An extensible record type is bound at run tine to a particular
record definition (i.e., to a particular set of fields). The

| ength of the type can be different in different applications.
Even in the sane application, an extensible record type can have

different definitions with different |engths. Assune, for

exanple, that a record type T is
and re-defined in nodules M and
Figure 8, the record types M. T,
three different type definitions
correspondi ngl y.

A dynamic type is either an
type with one or nore conponents

dynam c types are inplenented as

15
declared in nodule M) (Figure 8)
M2. In the application shown in
M. T, and M2. T will be bound to

in nmodul es M), ML, and M2
extensi bl e record type, or a
of a dynam c type. Qbjects of

pointers and are automatically

al |l ocated and deal | ocat ed heap nenory.

For each dynam c type,

the conpiler generates a type

descriptor that belongs to its declaring nodul e and that binds

the type to a particular type definition

The type descri ptor

contains the type length and references to the type descriptors

of all dynam c conponents of that type.
pri nci pal
Record-Type-Descriptor =

For exanple, the

conponents of an extensible record type descriptor are:

Record-Type-Tag Record-Length Dynamic-Field-Descriptor-References

The di spl acenent of this type descriptor regarding the base address

of the declaring nodule is kept

in the synbol

file.

The initialization code of the declaring nodul e contains

instructions that assign into the type descriptor the record | ength

and references to the dynamc field descriptors.

nodul e re-defines the type,

When an ext ended

its initialization code updates the

type descriptor with the length of the extended type definition and

with references to the newly added dynam c record fields.

For each whol e dynam c variable (or value paraneter),

conpi | er generates

t he

16
e an instruction to allocate a nenory bock for the whole variabl e

and of its dynam c conponents when the variable scope is
ent er ed;
e an instruction to deallocate that nmenory when the scope of the
variable is exited.
Al'l deal l ocated bl ocks of the sanme type are kept in a |list of
free blocks and are re-used for next nenory allocations.
A type that is local for a nodule is not visible inits
enbeddi ng nodul es; by definition, such a local type is not
extensi bl e. However, a local type can still contain dynamc

conponents and is, therefore, inplenented as a dynam c type.

Procedure Overriding

The i npl enentati on separates user declared procedures in two
categories. Procedures that are nmarked for export are external
because they can be called in client nodul es and can be re-defined
i n enbeddi ng nodul es. Al other procedures are /ocal for their

decl ari ng nodul e.

An external procedure is bound at run tinme to a particul ar
procedure body (i.e., particular inplenmentation). For each
originally declared procedure, the conpiler generates a procedure
descriptor that belongs to the declaring nodul e and that binds
the procedure to a particul ar procedure body. The procedure
descriptor contains the itens that are needed for an external
procedure call, nanely a reference to the procedure body and the

base address of the nodul e containing that body:

17
Procedure-Descriptor = Module-Base Procedure-Body-Reference

The initialization code of the declaring nodul e contains an
instruction that assigns the nodul e base and a reference to the
procedure body into the procedure descriptor. Wen an enbeddi ng
nodul e redefines the procedure, its initialization code updates the
procedure descriptor with the base address of the enbeddi ng nodul e
and a reference to the newy decl ared procedure body. Since an
enbedded nodul e is always | oaded before its enbedded nodul es, the
procedure descriptor refers to the very last inplenentation of the
procedure. A call of the procedure fromany nodul e i nvokes t hat
| ast version.

An external procedure call is conpiled into an instruction
with two argunents. The first argunent is the nunber of the
declaring nodule (i.e., the nodule that contains the procedure
descriptor). The second argunent is the offset of the procedure's
descriptor regarding the base address of its declaring nodul e:

Procedure-Call = Instruction-Code Declaring- Module-Number Descriptor-Offset

At run tinme, the entry point of an external procedure is
cal cul ated by fetching the base address of the declaring nodul e
fromthe inport descriptor and then fetching the contents of the
procedure descriptor. The procedure descriptor is then used to
establish the entry point of the procedure body and the base
address of the nodule that contains that body. Such an invocation
is nearly as efficient as a procedure call through a pointer:

Declaring-Module-Base-Address = Import-Descriptor [Instruction . Declaring-Module-Number]
Procedure-Descriptor-Address = Declaring-Module-Base-Address + Instruction . Descriptor-Offset
Procedure-Entry-Point = Procedure-Descriptor . Procedure-Body-Reference

18
Module-Base-of-Procedure-Body = Procedure-Descriptor . Module-Base

Local procedures are bound to their declaring nodul e at
conpile tine. Alocal procedure call is conpiled into an
instruction that contains the displacenent of the procedure entry

address regarding the location of the calling instruction itself.

4 Rel ated Wrk and Concl usi ons

Enbeddabl e nodul es are useful for the inplenentation of typeless
structures, such as, for exanple, common libraries of procedures or
generic algorithns. Alternatively, cl/asses are needed when it cones
to the inplenentation of nultiple entities of the sane abstract
type. In nodul ar object-oriented | anguages, such as Cberon-2 [6],

cl asses are represented by neans of extensible record types [13].

MODULE MD;
TYPE cl ass* = RECORD
... data fields ...
END;
PROCEDURE (VAR sel f: class) nethod*(.);
BEGN ... inplenentation ... END
END.

MODULE ML,
| MPORT MD;
TYPE subd ass* = RECORD(M. cl ass)
new data fields ...

END;
PROCEDURE (VAR sel f: subd ass) nethod*(..);
BEGN ... type guards/tests ... END

END.

Figure 10. Methods as type-bound procedures.

As illustrated in Figure 10, nmethods are represented as type-bound
procedures that are syntactically connected to an extensible record

type, i.e., aclass [6]. Qher nodul ar | anguages, such as Ada-95

19
[10, 11] and Modula-3 [2], follow simlar approaches to classes and

nmet hods.

nodul e MD;
type class* = record
data fields ...
end;
procedure net hod*(var self: class;, ...);
begin ... inplenentation ... end;
end.

nodul e ML(MD);
type class* = record
new data fields ...

end;
procedure nethod*(var self: class;, ...);
begin ... end;

end.

Figure 11. Methods as nodul e- bound procedures.

Simlarly to known nodul ar | anguages, we represent classes as
extensible record types. Wiat is different in our approach is that
record extension overrides an existing type and does not introduce
a new type. Furthernore, we represent nethods as nodul e- associ at ed
procedures rather than type-bound ones; nodul e-associ ated
procedures can be overridden simlarly to type-bound procedures, as
specified earlier in this paper. Mdul e-associ ated procedures can
be related to extensible record types, i.e., to classes, through
regul ar paraneters and therefore, used as nethods for those
classes. A nodule M) (Figure 11) can inplenent a c/ass as an
extensible record type and a nethod as a procedure. Furthernore, a
nodul e Ml that enbeds M can extend the c/ass and override the
inherited nethod. bjects that belong to the c/ass can be passes as
paraneters to the nethod. Such extended objects do not require type

test and guards because they are not pol ynorphic, in contrast to

20
extensi bl e objects in Goeron ([8] offers a detail ed discussion of

type tests and guards). A disadvantage of our proposed extensible
records is that they do not support heterogeneous data structures.

The purpose of the nodul e systemof the Cecil |anguage [17] is
to support encapsul ation and static type checking for multinethods.
Ceci|l supports explicit nodule inport that obeys visibility rules
simlar to those adopted in C++ subclassing. As analyzed in [17],
the standard visibility rules of nodule inports can nmake static
subchecki ng of nul ti met hods i npossi ble and force dynam c
typechecking. In order to ensure static subchecking of
mul timet hods, a formof nodule inport called nodule extension is
proposed in [17]. In contrast to our proposed concept of nodul e
enbeddi ng, in Cecil extended nodul es are shared, just like inported
nodul es. Furthernore, extended or inported nodules in Cecil allow
standard subtypi ng whil e our enbeddabl e nodul es all ow type
redefinition.

It has been wi dely recognized [9, 7, 1, 6] both nodul es and
cl asses support necessary abstractions, which should be, used as
conpl enentary nedia. What we propose is to shift power from classes
to nodul es by introducing a formof inheritance that applies to
nodul es. The object-orientation of ParadigniSPis founded on
enhancenents of traditional concepts, such as nodule, record type,
and procedure. In this, we agree with authors who prefer using
wi despread and historically established terns with object-enhanced
syntax and semantics [12].

Enbeddabl e nodul es seemto be conceptual |y sinpler than

cl asses and, therefore, are easier to use. In particular, an

21
enbeddabl e nodul e can be a good replacenent for a single-entity

class, or a singleton pattern [16]. Because of its relative
sinplicity, nodul e enbedding is easier to inplenent than sub-
cl assing. For exanple, nultiple inheritance for nodules is easier
to inplement efficiently than for classes because nodul es are not
first-class objects (there are no nodul e types and nodul e
references). In particular, invoking a procedure that is inherited
fromone of several enbedded nodules is as efficient as calling a
procedure through a pointer.

A di sadvant age of enbeddabl e nodul es as conpared to classes is
t hat nodul es do not introduce types and, therefore, cannot be used
to create nmultiple instances. Furthernore, dynamc types inpose
run-tine overhead on the inplenentation. Finally, a drawback of
nodul e enbedding is that it conplicates the semantic and the syntax
of the underlying nodul ar | anguage. Neverthel ess, we believe that
the introduction of nodul e enbedding is justified, because known
code reuse nechani sns, such as paranetric pol ynorphism(i.e.
generics), interfaces, procedure paraneters or pointers cannot
conpl etely achieve the effects of nodul e enbeddi ng.

The exi stence of two principal object-oriented styles has been
di stinguished in the recent years. The traditional and ol der style
is centered on classes as abstractions, and on objects as concrete
i nstances of such abstractions. Such a cl ass-based object style is
supported by a nunber of pure or hybrid object-oriented | anguages,
such as Smalltal k, Simula, C++, Java, and Oberon-2. The alternative
object style is centered around concrete objects and on the

possibility to use such objects as prototypes fromwhich other

22
obj ects can be derived. Such a prototype-based object style is

supported by newer | anguages, such as Self and NewtonScript. One of
the strengths of the Paradi gni SP | anguage is that it supports to
sone extent both class-based and pattern-based object-styles.

| ndeed, enbeddabl e nodul es are rel evant nedi um for pattern-based
OOP, while extensible record types support class-based OOP.
Therefore, ParadigniSPis a hybrid object |anguage, which, by the
way, is a relevant tool for the traditional structured programm ng

style as wel|.

5 Ref erences

1. G Bracha. The Progranm ng Language Ji gsaw. M xi ns,
Mdul arity and Miul tiple Inheritance. Technical report UUCS-92-
007, University of Ua, 1992.

2. L. Cardelli, J. Donahue, L. dasman, M Jordan, B. Kal sow and
G Nel son. Mdul a-3 | anguage definition. ACVM SI GPLAN Noti ces,
27, No8, 1992, 15-42.

3. B. Hansen. Brinch Hansen on Pascal Conpilers, Prentice Hall
1985.

4. B. Hansen. SuperPascal - a publication | anguage for parallel
scientific conmputing, Concurrency - Practice and Experience
6, No 5, 1994, 461-483.

5. B. Hansen. Studies in Conputational Science: Parallel
Progranm ng Paradi gns. Prentice Hall, 1995.

6. H. Mbessenboeck. bject-Qiented Progranmng in beron-2.

Springer-Verlag, 1993.

7.

10.

11.

12.

13.

14.

15.
16.

17.

18.

23
C. Lucas and P. Steyaert. Mdul ar inheritance of objects

t hrough m xi n-met hods. | n Advances in Mdul ar Languages,
University of Um 1994, 273-282.

Reiser and N. Wrth. Programm ng in Qberon: Steps beyond
Pascal and Mdul a. ACM Press, 1992.

C. Szyperski. Wiy we need both: Mdul es and cl asses, in
Proceedi ngs of QOPSLA 1992, 19-32.

S.-T. Taft. Ada 9X A technical summary, Conmmuni cations of the
ACM 35, No 11, 77-84.

T.-S. Taft. Ada 9X From abstraction-oriented to object-
oriented, Proceedings of QOPSLA 1993, 127-135.

J. Wnkler. (bjectivism "d ass" considered harnful,

Communi cations of the ACM 35, No 8, 1992, 128-130.

N. Wrth. Type extensions, ACM Transactions on Programm ng
Languages and Systens, 10, 1987, 204-214.

N. Wrth. The progranm ng | anguage Cberon, Software - Practice
and Experience, 18, No 7, 1988, 671-690.

N. Wrth and J. Qutknecht. Project beron, ACM Press, 1992.

E. Gamm, R Helm R Johnson, and J. Vlissides. Design
Patterns, El enents of Reusable bject-Qiented Software,
Addi son- Wesl ey Prof essional Conputing Series, Addison-

Wesl ey, 1995.

C. Chanmbers and G Leavens. Typechecki ng and Modul es for

Mul ti met hods, ACM Transacti ons on Programm ng Languages and
Systens, 17, No 6, 1995, 805-843.

A. Radenski (1998). Prototype Inplenentation of Paradi gm SP,

24
http://ww. rtpnet.org/~radenski/research/ | anguage. htm .

	Chapman University
	Chapman University Digital Commons
	1997

	Module Embedding
	Atanas Radenski
	Recommended Citation

	Module Embedding
	Comments
	Copyright

	Microsoft Word - ExtMod_798.d.

