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Long Term Ground Based Precipitation Data Analysis: 

Spatial and Temporal Variability
Rodriguez, L., Rakovski, C., El-Askary, H., Allali, M.

Schmid College Of Science and Technology Chapman University, 

Orange, CA
Abstract

California is an area of diverse topography and has what

many scientists call a Mediterranean climate. Various

precipitation patterns exist due to El Niño Southern Oscillation

(ENSO) which can cause abnormal precipitation or droughts. As

temperature increases mainly due to the increase of CO2 in the

atmosphere, it is rapidly changing the climate of not only

California but the world. An increase in temperature is leading to

droughts in certain areas as other areas are experiencing heavy

rainfall/flooding. Droughts in return are providing a foundation for

fires harming the ecosystem and nearby population. Various

natural hazards can be induced due to the coupling effects from

inconsistent precipitation patterns and vice versa. Using

wavelets, we were able to identify anomalies of high precipitation

and droughts within California's 7 climate divisions using NOAA's

hourly precipitation data from rain gauges and compared the

results with modeled data, SOI, and PDO. The identification of

anomalies can be used to compare and correct remote sensing

measurements of precipitation and droughts. Promising results

show a possible connection with increasing tropical moisture

activity.

Data and Study Area
Hourly precipitation data was used for the analysis from

National Climatic Data Center (NCDC) and NOAA's Forecast

Systems Laboratory (FSL) CD-ROM where there are more than

2500 active stations and 7000 total stations. The majority of the

data ranges from 1948 through 1995, however, there are some

stations that begin as early as 1900. The data extracted

concentrates on all the stations in California. The data obtained

needed a lot of corrections since there were many hours and

days missing, accumulated and deleted data. Secondly, to apply

the ARMA model, the data needs to be continuous in time.

Therefore, we average the precipitation measurements of all the

stations pertaining to a climate region (Figure 1) to get an

adequate estimate of the climate per regions of California. Then

fill in the missing data by imputing timely averages.

The second set of data is monthly modeled data provided

by NOAA. The gauge data set will be used to compare the

modeled data set to see how well the model is performing.

Methodology (continued)

where __, __, and ____ are the parameters of the ARMA model. The error to 

this model is given by the following properties:  _____________, 

____________ , and __________.      . This model can be rewritten to establish 

a maximum likelihood error:

where ________________, _____________, and __________,

which is the lag operator. Using the maximum likelihood estimator one can 

calculate the residuals __ . Approaches to fitting the ARMA models to the 

residual is based on Akaike Information Criterion (AIC) minimization. The AIC 

model is given by:

The AIC model is optimal when the forecast mean square error (FMSE) 

measure is no more than a certain threshold.

Once the autocorrelation is calculated, a derivation of 95% confidence 

band is used to detect extreme values:

where corresponds to the residual output from the ARMA model and MSE is 

the mean square error. This equation reflects the confidence intervals of 

anomalies beyond the common observations in the residual decomposition

of the data. Thus the extreme observations ___ are given by:

Where __ are time dependent observations and __are time dependent residual 

values from the maximum likelihood. This methodology was perform in El-

Askary et al. article and was used in this project to model precipitation patterns 

and extract ENSO anomalies in California.

To compare the two time series data set (modeled and gauge), we 

subtract the two time series: , where     , is the modeled time series 

and    , is the gauge time series.  We then performed a test for trend using 

Mann-Kendall Test:

If a trend is detected, one can test the subtracted time series for stationarity

using the Augmented Dickey-Fuller Unit-Root Test:

The null hypothesis          against the alternative hypothesis          contains the 

unit root test: If the time series is stationary, then one can perform 

a hypothesis testing based on the z-scores: 

This notes whether the model is correctly measuring the true data (gauge).

Figure 1-2. 7 climate divisions of California: 1 - North Coast Drainage, 2 -

Sacramento Drainage, 3 - Northeast Interior Basins, 4 - Central Coast Drainage, 5 -

San Joaquin Drainage, 6 - South Coast Drainage, 7 - Southeast Desert Basin

Results (continued)

The model and gauge data have a similar pattern in the

residuals for all divisions. The months found to have excessive

precipitation are overlapping between the two sets of data. One of

the difference noted between the plots is that the model frequency

is, at times, lower than the gauge signifying that the model is not

capturing all precipitation fluctuations. The technique of taking the

difference between the two datasets (model and gauge) is useful to

find the differences between the two. Theoretically if both the

model and gauge time series are the same it should equal zero or it

would have a zero mean at worst case scenario. The histogram

shows that the majority of the time the model underestimates the

amount of precipitation. On another note, the difference of the two

time series should diminish any traces for seasonality and trend.

One can check if there is a trend present for all climate divisions

using the Mann-Kendall Test. The results show that climate

division 5 still has a trend present. This is the second time we

noted that the model is not a good estimator of precipitation.

Furthermore, if the differenced time series is stationary, which it is

by the Augmented Dickey-Fuller Unit-Root Test, one can check if

the time series has a mean of zero. We can check this using z-

scores. The results show that for all climate divisions the time

series is not zero mean. Overall, the model must be recalibrated.

Conclusions
Forecasting atmospheric hazards using historical

precipitation data is what scientist/researchers are attempting to do

well enough to be able to avoid catastrophic events. However, the

usage is different from researcher and location. Therefore, this

study focuses on historical hourly precipitation data to model

extreme precipitation (mainly related to ENSO) to have a proper

input for other models (climate, hydrological, crop, etcetera) to

ensure the public with food, water, and shelter. The data consisted

of 47 years of hourly observation at various regions in California.

The data provided insight to the tropical storm patterns traveling

west to east during the summer. Our results show that high

precipitation, which may be caused by various components (i.e. El

Niño, La Niña, etc. ), may cause increase in precipitation as well as

an increase in droughts and heat waves. The usage of 95%

confidence interval bands were used to isolate the times that

extreme precipitation and droughts were present. This method was

consistent in portraying high precipitation from thunderstorms and

heat waves related to the ENSO effects. This method allows a

good detection to forecast high precipitation that may be a possible

catalyst to tropical storms, which will allow authorities and civilians

to properly prepare for safety and evacuation if needed in terms of

flooding.

Future Research
The next step is to continue to map the ENSO patterns with

the usage of weekly, daily and hourly dataset. Also see what and

how one can improve the modeled data from NOAA .
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Results

Methodology
The monthly precipitation was calculated over a period of 

47 years (1948 - 1995) and was implemented in a time series 

decomposition to remove seasonal and trend components. This 

work used local linear regression (loess) to remove such trends 

into a composition of seasonal, trend, and residual components 

(STL decomposition). It is given by: 

which decomposes the time series (   ) into three distinct 

components. The seasonal and trend components are of no 

interest to this study, but the residual (   ) is due to its fluctuation 

of anomalies. Moreover, an implementation for analysis of the 

stationary time series autoregressive-moving average (ARMA) 

model was used to analyze the residual component. 

Autoregressive-moving average model is defined as:

Monthly Gauge Augmented Excessive Rain in North Coast Drainage, 
California (1) 

Date CI Remainder_Value Date CI
Remainder_Val
ue

Oct-50 4.067634 5.757119 Oct-81 4.067634 4.23382

Dec-52 4.067634 4.980898 Dec-82 4.067634 4.239821

Dec-55 4.067634 10.5226 Feb-83 4.067634 5.356321

Feb-58 4.067634 6.942903 Mar-83 4.067634 4.307159

Feb-60 4.067634 4.348038 Nov-83 4.067634 6.528172

Oct-62 4.067634 6.927224 Dec-83 4.067634 5.318291

Dec-64 4.067634 6.721753 Nov-84 4.067634 10.87232

Jan-66 4.067634 4.258372 Feb-86 4.067634 12.10319

Jan-67 4.067634 6.189922 Dec-87 4.067634 4.125445

Jan-70 4.067634 7.924156 Mar-89 4.067634 5.649046

Nov-70 4.067634 5.542048 May-90 4.067634 5.816245

Nov-73 4.067634 10.79694 Mar-91 4.067634 4.845202

Mar-74 4.067634 4.11226 Dec-92 4.067634 4.491649

Mar-75 4.067634 6.896264 Jan-95 4.067634 8.969987

Oct-75 4.067634 5.288991 Mar-95 4.067634 7.866046

Nov-77 4.067634 7.849707 Dec-95 4.067634 10.39994

Monthly Modeled Excessive Rain in North Coast Drainage, California (1)

Date CI Remainder_Value Date CI
Remainder_Val
ue

Jan-50 4.024495 4.196245 Nov-73 4.024495 9.755491

Oct-50 4.024495 6.839264 Feb-75 4.024495 5.138798

Dec-51 4.024495 4.298942 Mar-75 4.024495 6.180109

Dec-52 4.024495 7.498336 Oct-75 4.024495 4.623324

Jan-53 4.024495 4.323402 Nov-81 4.024495 4.491962

Jan-54 4.024495 4.9192 Dec-81 4.024495 4.150797

Dec-55 4.024495 10.17264 Feb-83 4.024495 4.414713

Jan-56 4.024495 4.561349 Mar-83 4.024495 6.765538

Feb-58 4.024495 9.390391 Nov-83 4.024495 6.929051

Feb-60 4.024495 4.080439 Dec-83 4.024495 6.838359

Feb-62 4.024495 4.074846 Nov-84 4.024495 9.648742

Oct-62 4.024495 6.713863 Feb-86 4.024495 10.59648

Apr-63 4.024495 5.073475 Dec-87 4.024495 4.839672

Nov-63 4.024495 4.577761 Nov-88 4.024495 4.458243

Dec-64 4.024495 10.21712 Mar-89 4.024495 5.825754

Dec-68 4.024495 4.045503 May-90 4.024495 5.401517

Jan-69 4.024495 5.576568 Mar-91 4.024495 7.189508

Dec-69 4.024495 5.388231 Jan-95 4.024495 11.24316

Jan-70 4.024495 9.401017 Mar-95 4.024495 7.048231

Nov-70 4.024495 6.329715 Dec-95 4.024495 6.952523
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