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Abstract

A side channel is an observable attribute of program execution other than explicit commu-

nication, e.g., power usage, execution time, or page fault patterns. A side-channel attack

occurs when a malicious adversary observes program secrets through a side channel. This

dissertation introduces Covert C++, a library which uses template metaprogramming to

superimpose a security-type system on top of C++’s existing type system. Covert C++

enforces an information-flow policy that prevents secret data from influencing program control

flow and memory access patterns, thus obviating side-channel leaks. Formally, Covert C++

can facilitate an extended definition of the classical noninterference property, broadened to

also cover the dynamic execution property of memory-trace obliviousness. This solution does

not require any modifications to the compiler, linker, or C++ standard.

To verify that these security properties can be preserved by the compiler (i.e., by compiler

optimizations), this dissertation introduces the Noninterference Verification Tool (NVT). The

NVT employs a novel dynamic analysis technique which combines input fuzzing with dynamic

memory tracing. Specifically, the NVT detects when secret data influences a program’s

memory trace, i.e., the sequence of instruction fetches and data accesses. Moreover, the

NVT signals when a program leaks secret data to a publicly-observable storage channel. The

Covert C++ library and the NVT are two components of the broader Covert C++ toolchain.

The toolchain also provides a collection of refactoring tools to interactively transform legacy

C or C++ code into Covert C++ code. Finally, the dissertation introduces libOblivious, a

library to facilitate high-performance memory-trace oblivious computation with Covert C++.
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Chapter 1

Introduction

The recent proliferation of infrastructure as a service (IaaS) has allowed big data computations

to be offloaded to the cloud. While this confers computational and cost benefits to small

companies, large companies, research organizations, and end users, it has also been plagued

by concerns over data privacy. Technologies such as the secure sockets layer (SSL) preserve

confidentiality and integrity of sensitive data as it is transferred to or from the cloud. New

hardware technologies including Intel SGX [7], AMD SME/SEV [92], and ARM TrustZone [1]

employ strategies such as encryption and process isolation to protect data while it being used

or stored in the cloud. These techniques are not sufficient to prevent an unintentional leak of

sensitive information from the protected hardware environment. Although this problem has

been studied intensely for the past several years, security findings made in 2018 have brought

public attention to the issue of data privacy in the cloud.

The recently discovered Spectre [96], Meltdown [103], and Foreshadow [48] attacks exploit

a common CPU optimization feature called speculative execution. These vulnerabilities are

so severe that numerous software products, including operating systems and web browsers,

needed to be patched immediately [42, 129, 132]. Moreover, portions of commodity CPUs

are still being redesigned with new protection schemes [166]. More recent research has even

shown that these pernicious attacks can be launched across networks [139]. One attribute

1



shared by these attacks and numerous other attacks on cloud infrastructure is that they are

all designed to circumvent hardware, software, and/or cryptographic protections, with the

intent of exposing sensitive data.

One way in which sensitive information can be exposed accidentally is through an

unprotected storage channel. Suppose that a software engineer is using a particular API

library to run aggregation algorithms over secret program data. The program will be deployed

in a protected hardware environment which provides encrypted RAM to protect the program’s

data. However, the engineer is unaware that the data aggregation API sometimes emits

logging information to an unprotected log file located somewhere else on the system. If

the data emitted to the log depends on the API inputs containing sensitive data, then that

sensitive data could leak to a malicious adversary with access to the log file.

Sensitive information can also be leaked by more subtle means. A channel is any mechanism

which signals information. A side channel is an inadvertent revelation of information by some

mechanism of an algorithm’s implementation, not attributable to some flaw in the algorithm’s

specification. When a malicious adversary is able to observe or infer sensitive information

through one or more side channels, this is called a side-channel attack1. Common side-channel

attacks include timing analysis attacks (exploiting a timing channel), power analysis attacks

(exploiting a power channel), differential fault analysis attacks, and cache-based attacks,

among others (e.g., [148, 165]). For example, Kocker et al. [95] observed that the power

current drawn from a device running the Data Encryption Standard (DES) cryptographic

algorithm could leak enough information to reveal the secret encryption key. The Spectre [96]

attack is also an example of a side-channel attack. Other examples are discussed in greater

depth in Chapter 2.

Among the most widely studied categories of side-channel attacks have been attacks which

infer information leaked through a program’s control flow structure [135]. For instance, a

conditional branch instruction might leak the value of the branch condition operand, assuming
1The original definition of side-channel attack specifically pertained to inadvertent information leakage

from a cryptographic function, i.e., to assist in cryptanalysis [94].

2



1 int memcmp(const void *s1 , const void *s2, size_t n) {
2 const uint8_t *u1 = s1, *u2 = s2;
3 while (n--) {
4 uint8_t diff = *u1++ - *u2++;
5 if (diff) // ’diff’ influences control flow
6 return diff;
7 }
8 return 0;
9 }

Listing 1.1: A simple memcmp() implementation

the adversary has some means by which to observe whether or not a jump has occurred. If

the branch is a loop termination condition, then the number of jumps to the beginning of the

loop could be inferred through a timing channel.

Example 1.1 (memcmp() Vulnerability). Listing 1.1 gives a sample implementation of the

memcmp function in C. The if condition at Line 5 makes a control flow decision depending

on whether or not two bytes at identical offsets in the input buffers match; if they do not,

memcmp returns a non-zero result. Semantically, the observable effect of any call to memcmp

is only the return value; this function has no side effects. However the control flow of the

program will vary with respect to the input buffers.

Consider the following scenario. A call to memcmp is made with two 128-byte buffers, one of

which is secret. Suppose the adversary Mary is able to provide the non-secret buffer, and she

can trigger a call to memcmp as many times as she would please. If Mary can only observe the

return value, then she will discover the value of the secret buffer after at most 2128×8 = 21024

attempts. If Mary can also observe the program’s control flow, then she can count the number

of loop iterations taken before memcmp returns. Mary proceeds by attempting all 28 possible

values for the first byte. When the loop takes one additional iteration, Mary knows she

has correctly guessed the first byte. By repeating this process, she will discover the value

of the secret buffer after at most 28 × 128 = 215 attempts, a reduction in work factor of

over 21000. 4

3



The efficacy of side-channel attacks has been well-demonstrated over the past two decades,

especially in cloud computing and the Internet of things [19, 40, 107, 116, 171]. In particular,

hardware platforms which support trusted execution environments (TEEs) [14] or isolated

execution environments (IEEs) [7] are of interest because their aim is to provide trusted

computing capabilities within in an untrusted environment. IEEs such as Intel SGX use

hardware-based dynamic DRAM encryption to provide confidentiality [112]. However, en-

cryption alone is insufficient to guarantee confidentiality when a malicious adversary may

exert bounded control over server hardware, e.g., by recording a trace of page faults triggered

by the victim application [171], or by observing timing channels, power channels, etc.

Many contemporary techniques for defeating or mitigating side-channel attacks are

deployed at a low level, for instance by modifying a compiler (e.g., [73, 105, 175]), transforming

binaries (e.g., [74, 133]), or dynamically obfuscating memory access patterns (e.g., [40,

136]). These strategies use computationally expensive program trace obfuscation techniques.

Hardware-based techniques (e.g., [108]) may introduce less overhead, but are not cross-

platform, and typically address only one kind of attack.

At a higher level, recent software-layer solutions have deployed data-oblivious computation

strategies. A program is said to be data oblivious if the adversary’s view of its data

memory accesses (i.e., reads and writes) does not reveal sensitive data which may have

determined the locations of those accesses [79, 124]. An even stronger property is memory-

trace obliviousness, which additionally covers the number and order of instruction fetches

made by a program [104, 105, 133]. This dissertation sometimes uses the truncated term

obliviousness to refer to memory-trace obliviousness.

The designation of secret versus public (non-secret) program data is often subjective. In

general, sensitive program data should be treated as secret; non-sensitive program data and

program metadata should be treated as public. Sensitive data can include anything from

credit card numbers, patient medical histories, and intellectual property, to state secrets,

etc. Sensitive data can also be compositional. For example, the median income of several
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members of a political organization may be sensitive. A program which operates on sensitive

data may propagate that data throughout process memory and CPU registers. This effect of

spreading footprints of sensitive data throughout the process state is known as label creep [135].

Informally, a program which does not leak any of its sensitive data can be considered secure.

Depending on the security parameters of the application, it may be acceptable to treat

program metadata as public. Program metadata can include, for instance, the number of

elements in a data structure, or the size of each element in the structure. Thus an oblivious

search algorithm must not leak the value of the search query or any of the values in the

dataset being searched, though it may expose the size of the dataset, or the number of queries

on the dataset. If scalar metadata describing the size of an object or dataset must be kept

secret, then the developer must identify a suitable upper bound, and fix the size to that

upper bound [56, 176].

Memory-trace obliviousness is generally considered an effective countermeasure against

control flow-based side-channel attacks [104], but it does not guarantee the absence of leaks

via storage channels. The classical security notion of noninterference does address these leaks.

A program has the property of noninterference if its secret inputs do not “interfere” with

its public outputs [76, 135]. That is, public program outputs must not vary with respect to

secret program inputs. Mirroring the broad security goals set by Liu et al. [104], but in a

more applied setting, this dissertation adopts an extended definition of noninterference to

additionally cover memory-trace obliviousness. Hence a program which has the property of

noninterference should not leak sensitive information through control flow-based side channels

(including cache-based side channels) and storage channels.

A general solution to enforce noninterference should at least have the following three

characteristics: it should (1) allow the program author to annotate or otherwise distinguish

between secret and public data, (2) provide a mechanism to track the propagation of secret

data through the program, and (3) implement constraints on secret data to prevent it from

being leaked through either a side channel or a storage channel. The first requirement hints at
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a language-based approach: the subjective assignment of security classifications to program

data is entirely motivated by the meaning of that data—which is visible to the developer

at the programming language level. Once program data has been categorized according to

sensitivity, requirements (2) and (3) could be satisfied by a variety of techniques. Both can be

accomplished at the programming language level with security-type systems (this approach

is most common, e.g., [102, 104, 106, 119, 131, 135, 143, 175]), with static analysis (e.g.,

[133, 144, 156]), or with enforcement at the computer architecture level (e.g., [27, 28, 105]).

The novel solution proposed in this dissertation uses template metaprogramming (to be de-

fined in Chapter 2) to implement a security-type system on top of C++’s existing type system.

The security-type system statically enforces an information-flow policy which constrains the

propagation and usage of secret data. The implementation utilizes C++’s Turing-complete

template type system to compute—at compile time—whether a given program conforms to

the information-flow policy. In particular, the policy enforces noninterference. Hence secret

data cannot influence program control flow or memory access patterns, nor can secret data be

written to public variables or memory, or to a public storage channel. Secret data also cannot

determine whether or not a program will terminate, or when it will terminate. This new

type system is layered on top of C++’s type system to form a new programming language:

Covert C++.

Thesis: The C++ template type system is sufficiently expressive to statically

facilitate noninterference in a program; moreover, this property can be preserved

by the compiler and linker.

The first conjunct of the thesis statement is established by Covert C++. The word

“facilitate” is significant. The Covert C++ security-type system itself cannot guarantee

noninterference because C++ is not a type-safe language. However, with some additional

assumptions about the source program, it is possible to make an informal argument that

Covert C++ enforces noninterference; an informal proof is presented in Chapter 5. A formal

proof of noninterference for a strict subset of Covert C++ is presented in Chapter 4.
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The second conjunct of the thesis is unfortunately not an immediate consequence of the

former. As observed by D’Silva et. al. [68], compiler optimizations are only guaranteed to

preserve semantics; they do not guarantee the preservation of security properties which are

not entirely characterized by semantics.

To verify that the compiled binaries of functions which type check in Covert C++ actu-

ally satisfy the noninterference property, this dissertation introduces a new Noninterference

Verification Tool (NVT). The NVT is a dynamic analysis tool which repeatedly fuzzes the

secret inputs of a given function and monitors the procedure’s memory trace for inconsis-

tencies between fuzz iterations. This is a new solution to the classical problem of verifying

noninterference for a given program and machine architecture [77].

The thesis statement above is not the only contribution made by this dissertation. In

summary, the complete list of novel ideas presented in this dissertation for computer science

and the computer industry are as follows:

• Show that the C++ template type system is sufficiently expressive to allow another

type system to be superimposed on top of it.

• Demonstrate that an unmodified C++ compiler can be used to detect a variety of

security violations, including side-channel leak vulnerabilities.

• Show how to exploit C++ overload resolution to “train” an unmodified C++ compiler

to automatically optimize program code, depending on program security parameters.

• Show how to perform memory-trace oblivious computations with the C++ Standard

Template Library (STL).

• Present an extension to the Covert C++ type system to facilitate secure multi-party

computation (SMPC).

• Introduce a novel dynamic analysis technique to test program code for adherence to

the noninterference property.

• Provide a refactoring toolchain to transform legacy C and C++ codebases into security-

typed Covert C++ programs.
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• Establish the utility of language-based security in industrial programming languages,

especially security-type systems.

The remaining chapters of this dissertation describe each of these points in greater detail.

Their collective contribution is to establish a framework for secure cloud computing, with

minimal deviation from the programming conventions, languages, and tools already being

used in industry.

The dissertation is organized as follows:

Chapter 2 introduces the preliminary information required to understand the remainder

of the dissertation. Background topics include information-flow analysis, noninterference,

security-type systems, side-channel attacks, template metaprogramming, and oblivious mem-

ory techniques.

Chapter 3 is a glossary of commonly-used definitions in the dissertation.

Chapter 4 introduces the Core Covert language. Core Covert is a simplified representation

of Covert C++ which has been formally verified to enforce a strong form of termination-

sensitive noninterference, including memory-trace obliviousness. The purpose of this chapter

is to build an intuition about the motivations for the typing rules which characterize Covert

C++.

Chapters 5 and 6 describe the solution to the problem presented in the thesis statement.

Chapter 5 provides an overview of the Covert C++ type system, and then discusses the

complex details of its implementation. The main theorem of this dissertation establishes

that the Covert C++ type system enforces noninterference, subject to several reasonable

assumptions. It concludes with a case study demonstrating the application of Covert C++

to protect a digital rights management (DRM) SGX enclave application. Chapter 6 describes

the NVT in depth, and presents noninterference analysis results for a series of Covert C++

algorithms.

Chapters 7 and 8 present two extensions to Covert C++. Chapter 7 argues that the

problem of secure multi-party computation can be reduced to a noninterference problem. The
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solution provided by Covert C++ is to generalize the security classes (secret and public) to

identify specific principals participating in a multi-party computation. If the security classes

of principals form a lattice, then the Covert C++ type system can guarantee a generalized

form of noninterference: the sensitive data contributed by principal A does not interfere with

the public output data observable by principal B, and vice-versa. This solution extends to

an arbitrary number of principals.

Chapter 8 introduces Covert C++ oblivious iterators. Oblivious iterators facilitate high-

performance algorithm design, without sacrificing noninterference. The oblivious iterators

are provided by libOblivious, an independent C/C++ library which provides primitives,

algorithms, containers, and iterators to facilitate memory-trace oblivious programming,

without relying on additional hardware support or external tools.

Chapter 9 gives an overview of the wide body of work related to Covert C++. The

breadth of the side-channel attack surface combined with the urgency of addressing data

privacy has driven intense research in this area over the past decade. This chapter reviews the

latest advances in side-channel attack defense, and compares Covert C++ against competing

solutions.

Chapter 10 concludes the dissertation. It summarizes the reasons why Covert C++

(and its broader toolchain) substantiate the thesis statement. Furthermore, the techniques

developed in this dissertation to implement Covert C++ can be extended to address other

problem domains.
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Chapter 2

Background and Preliminaries

This chapter introduces the concepts and definitions required to understand the subsequent

solution chapters. Covert C++ is designed primarily to address a variety of side-channel

attacks on the memory hierarchy. Side-channel attacks were first studied in depth in the late

1990s, in the area of applied cryptography. With the advent of cloud computing, research on

side-channel attacks has surged in recent years. Yet the mechanisms employed by Covert

C++ are rooted in the subject of information-flow analysis, which dates back to the 1970s.

The following sections survey the history of these and other topics which have influenced

the development of Covert C++. This chapter also introduces formal definitions for terms

which were mentioned in Chapter 1, and form the theoretical foundation on which the solution

chapters are rooted.

2.1 Side-Channel Attacks

Interest in side-channel attacks first arose in the area of cryptanalysis, the study of attacks

on cryptographic algorithms. Kocher [97] first observed that by measuring the amount of

time required to execute a cryptographic key exchange algorithm, a malicious adversary

could infer characteristics of the secret inputs. For example, fixed Diffie-Hellman exponents

and factorizations of RSA keys could be recovered on certain implementations, effectively
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breaking these cryptosystems. Both Diffie-Hellman [66] and RSA [134] use exponentiation to

generate cryptographic keys. The attack relies on an important property of exponentiation on

most computing devices: the amount of time required to compute an exponential scales with

the value of the exponent. Hence the adversary can guess the exponent bit-by-bit, observing

when a change in the given bit causes the implementation to run a little bit longer.

Biham and Shamir [36] demonstrated a differential fault analysis attack on cryptographic

devices such as smart cards. The authors found that an attacker with physical access

to the device could in many cases manually inject hardware faults (e.g., by altering the

device voltage). If the device is being used for encryption, then the attacker can compare a

known-good ciphertext output against several (e.g., 50-200) fault-induced ciphertext outputs.

Subsequent cryptanalysis could, for example, recover a DES key. A theoretical description of

differential fault analysis attacks on RSA was outlined in [38].

Hall et al. [84] described several reaction attacks on public-key cryptosystems. These

attacks require the adversary to observe the reaction of a victim (e.g., facial expression, body

language, etc.). While observing the victim, the adversary iteratively adjusts some decryption

parameters bit-by-bit, using the victim’s reaction to determine when the decryption succeeds

or fails. For example, this attack could recover the error correction vector used to encrypt a

message in the McEliece public-key cryptosystem [111] by constructing a ciphertext containing

one more error than the maximum which could be handled by the underlying error correction

algorithm. The attacker could then twiddle the bits containing the errors—while observing the

victim’s reactions—to precisely determine the correct values of those bits. With an error-free

ciphertext, the attacker can then apply a previously discovered cryptanalysis technique [20]

to recover the plaintext message. Several related attacks were reported in the same year by

Bellovin [33].

Kocher et al. [95] introduced simple power analysis (SPA) and differential power analysis

(DPA), techniques which can decipher cryptographic keys from power current measurements,

taken while a block cipher cryptoalgorithm is running. SPA can be used to infer information
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about a cryptographic device’s operation, including encryption key material. The attack

proceeds by measuring variations in power current consumed by the device while it is running.

A trace of the current drawn by the device can be used to identify the various stages of

block encryption. Furthermore, the variation of current drawn due to conditional branching,

comparison operations, multipliers, and exponentiators can leak information about the data

being operated on, similar to the timing attack by Kocher [97] described earlier. DPA is an

extension to SPA which requires the adversary to examine multiple power current traces to

determine whether a guess of a given key block is correct. By repeating this process for all of

the key blocks, the entire encryption key can be recovered. The authors demonstrated the

efficacy of the attack on DES.

All of these attacks fall under the broad category of side-channel attacks defined by

Kelsey et al.: “A side-channel attack occurs when an attacker is able to use some additional

information leaked from the implementation of a cryptographic function to cryptanalyze the

function”1 [94]. The key word in this definition is “implementation.” A side-channel attack on

an algorithm does not necessarily indicate a vulnerability in the algorithm itself. Rather, a

side-channel attack is made possible by some implementation detail, and/or some mechanism

of the underlying hardware which may leak information through a side channel.

The work in this dissertation addresses a specific category of side-channel attacks: attacks

which observe flows of information by exploiting information leakage in the memory hierarchy.

Hu [86] first considered the leakage of information through the CPU cache, but in the context

of covert-channel attacks [165]. Although other works (e.g., [94, 128, 159]) postulated side-

channel attacks exploiting the state of the CPU cache, Osvik et al. [127] and Bernstein [35]

were concurrently the first to demonstrate a practical approach.
1It may not be immediately clear to the reader why reaction attacks are side-channel attacks. The physical

implementation of a device such as an ATM assumes the physical presence of the user. Under this premise,
the screen of the machine and the face of the user constitute a communicate channel over which a narrow
band (e.g., a “yes”/“no” answer) of data may be transmitted. That is, both the machine output and the user’s
reactions reveal additional information from which a nearby observer could deduce more sensitive information
about the transaction. This vulnerability in cyber/human interaction systems has been considered and
addressed with creative solutions (e.g., [123, 151]).
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The Prime+Probe technique described in [127] can extract information from some

victim tenant on a multi-tenant machine, without requiring any administrator privileges. The

strategy is to first “prime” a CPU cache by loading a contiguous byte array large enough to

cover the entire cache, then wait for the victim tenant to execute for some fixed time interval,

and finally “probe” the cache by measuring the time required to access memory within the

blocks that had been primed. If a probe on a block that had been primed is slower after

the victim has run, then that block must have been evicted by the victim. If the victim is

operating on a data structure containing sensitive information, then this probe can reveal

which elements of the structure were accessed.

The Evict+Time technique is also described in [127] (a similar variant is given in [35]).

Osvik et al. apply this technique to an optimized implementation of the Advanced Encryption

Standard (AES) [70] which uses a precomputed lookup table to improve performance. The

attacker must have prior knowledge of the virtual memory addresses corresponding to the

lookup tables. The attacker first times an execution of AES over a given plaintext p, and

then uses her knowledge of virtual memory mappings to selectively evict the cache set

containing the address of some index y in the lookup table. The attacker then triggers

another encryption of p, and times the execution. The attacker will observe a slowdown if

the cache set corresponding to y was accessed by the victim during the encryption process. If

no slowdown is observed, then y definitely was not accessed.

One limitation of these two cache side-channel attacks is that they require the adversary

and the victim processes to be executing on the same core. One reason is that the victim

must remain paused while the adversary performs her measurements. Another reason is

that these attacks are much easier to perform on the L1 cache because it is smaller and

faster, and thus more likely to allow the adversary to complete the attack steps before being

preempted by the process scheduler. Since the L1 cache is local to each core, the attack must

be performed on a single core. These constraints are only partial; for instance, the adversary

can simultaneously direct an attack on the CPU scheduler [121, 158].
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An approach which can exploit cache state across CPU cores was proposed by Yarom and

Falkner [174]. The Flush+Reload side-channel attack uses the x86 clflush instruction

to selectively flush specific cache blocks being used by the victim process, which is possibly

running on a separate core from the attacker process. The key property of clflush is

that it flushes the given cache block from all levels of the cache hierarchy, and on all cores.

The attack also assumes that the attacker and victim are sharing some pages, possibly due

to content-based sharing (a.k.a. memory deduplication), an optimization feature of Linux,

Windows, and several hypervisors [174]. Content-based sharing automatically shares pages

between processes when those pages contain duplicate data, thus reducing total memory

utilization in the system [24]. The attacker uses clflush to evict some cache blocks from

the shared page(s), then waits for the victim to access those cache blocks, and finally probes

(reloads) those cache blocks to determine which were accessed by the victim.

The Evict+Time, Prime+Probe, and Flush+Reload attacks constitute the “Big 3”

cache side-channel attacks [72]. There are several other attacks which are related in part to

the Big 3 (e.g., [81, 82, 83]).

Over the past several years, the proliferation of cloud computing and concerns over data

privacy in the cloud have prompted renewed interest in side-channel attacks. Intel Software

Guard Extensions (SGX) [112] is a set of x86-64 instructions which allow a user application

(or OS) to create an isolated execution environment, called an SGX enclave. That is, the CPU

provides an encrypted region of RAM for use by the application, such that no other process

is allowed to see the plaintext contents, nor access the ciphertext contents. Other features of

SGX include data sealing, key generation and management, and remote attestation [23].

The basic usage model for SGX in the cloud is depicted in Figure 2.1. Alice, the client,

has an image of a program which she wants to run on an untrusted cloud server, controlled

by Bob. Alice encrypts the secret portions of the program (including secret data) on her own

trusted machine, then hashes the (transformed) program, and finally uploads the program to

the untrusted server. Bob may create an enclave and load the contents of Alice’s program
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Figure 2.1: Setting up an SGX enclave in the cloud

page-by-page into the enclave. Each page that is added to an enclave is also extended into

a hash digest for the enclave. After the enclave has been built and initialized, Alice can

perform an attestation check on the enclave, which will allow her to verify that the contents

of the enclave—recorded in its tamper-proof hash digest—match the hash she computed

offline. Hence Alice would be able to detect any change made by Bob to the enclave program.

Once Alice has successfully observed the integrity of her enclave, she can open an encrypted

channel between her trusted machine and the enclave application, thus circumventing the

host OS on Bob’s cloud server. Alice securely uploads the key that was used to encrypt

the enclave contents, which the enclave program then uses to decrypt its secret code and

data. The enclave application can then proceed to run in its isolated execution environment,

and Alice can communicate with it over an encyrpted channel (e.g., SSL). SGX’s memory

encryption will not allow Bob to see Alice’s secrets in plaintext. Variations on this basic usage

scheme have been used to implement secure MapReduce [138] and isolated cloud VMs [31].

However, SGX does not provide any intrinsic protections against side-channel attacks.

The Intel SGX user’s guide states that “Intel R© Software Guard Extensions is not designed

to handle side channel attacks or reverse engineering. It is up to the Intel R© SGX developers

to build enclaves that are protected against these types of attacks” [15].
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Xu et al. [171] demonstrated on an Intel SGX platform that an adversary with control

over the untrusted operating system running on that platform can observe the sequence of

pages in memory touched by an SGX enclave program. By persistently evicting the enclave

program’s pages from memory, the adversary can force each memory access attempted by the

enclave program to trigger a page fault. Thus the adversary is notified whenever the enclave

program accesses any given page. If the sequence of pages touched by the enclave program

depends on secret data (e.g., some secret data determines an index into a very large array)

then the adversary may be able to infer the value of that secret data. The adversary can also

deduce a secret when it is used to determine a branch that might cross a page boundary.

On x86 platforms the page size is 4 KB. The page resolution of this side-channel attack may

be sufficient for attacks on applications which operate on large datasets, such as images [171].

Side-channel attacks on SGX have also been demonstrated at finer resolution. Specifically,

Liu et al. [107] demonstrated that last-level cache attacks are possible on multi-tenant server

platforms. Their implementation uses the Prime+Probe technique [127] described above.

2.2 Memory-Trace Oblivious Computation

Side-channel attacks on the memory hierarchy can be prevented by obfuscating memory

accesses. Indeed, this was one of the defense strategies proposed by Osvik et al. in their

seminal paper [127] on side-channel attacks against AES. There are several popular methods

for obfuscating memory accesses, which vary in their performance overhead and protection.

This section first formalizes the notion of memory-trace obliviousness that was introduced

in Chapter 1. LetM be a model of a machine, which is controlled by the adversary. The

adversary can useM to run a program Π with secret and public inputs ISecret and IP ublic,

respectively. Non-secret inputs are visible to the adversary; secret inputs are not visible (e.g.,

they may have been encrypted). On a concrete machine, ISecret and IP ublic may correspond

to data in memory or in CPU registers, or data read from a file, stdin, etc. Execution of a
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program Π onM emits a memory trace τ , denotedM(Π, ISecret, IP ublic) τ . The trace τ

is a (possibly infinite) sequence of memory addresses of length |τ |. It records the history of

memory reads, writes, and instruction fetches made by Π.

Definition 2.1. The adversary’s observational power is characterized by a relation ∼Adv

such that for some positive integer constant n, τ ∼Adv τ
′ if:

1. |τ | = |τ ′|, and

2. each pair of corresponding addresses in τ and τ ′ is equal, with the (possible) exception

of the n least significant bits in each address.

The positive integer n is called the granularity of ∼Adv
2. 4

Definition 2.2. An adversary with observational granularity equal to 0 is said to have perfect

observational granularity. 4

Example 2.1. An adversary using the forced page fault strategy [171] to observe τ has an

observational granularity of 12 bits (the number of bits required to address 4 KB). 4

Example 2.2. An adversary using the cache block Prime+Probe strategy [107, 127] to

observe τ has an observational granularity of 6 bits. 4

Definition 2.3. If the granularity of ∼Adv is n, then a contiguous region of memory with

size and alignment equal to 2n bytes is called the mask of ∼Adv. 4

For instance, the mask of ∼Adv in Example 2.1 is a 4 KB page, and in Example 2.2 it is a

cache block. Intuitively, the mask is the smallest contiguous unit of memory within which

the adversary cannot distinguish between accesses at different memory addresses.

Definition 2.4. A program Π is memory trace oblivious if, for all IP ublic, ISecret, and I ′Secret,

M(Π, ISecret, IP ublic) τ andM(Π, I ′Secret, IP ublic) τ ′

implies τ ∼Adv τ
′. 4

2Thus τ ∼Adv τ
′ if τ = τ ′, but τ ∼Adv τ

′ does not necessarily imply τ = τ ′.
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That is, for any fixed public input, any variation in the secret input must not affect the

memory trace visible to the adversary. Hence the adversary cannot deduce anything about

the values of the secret inputs by observing the memory traces.

The definition of memory-trace obliviousness presented in this dissertation is similar

to, but more refined than the definition used in previous works. Liu et al. [104] defined

trace equivalence to mean syntactic equivalence, i.e., two memory traces are equivalent if

they recorded the same commands with the same arguments in the same order. The later

GhostRider [105] architecture takes trace equivalence to mean that the order of events (e.g.,

fetches, oblivious reads, and oblivious writes) is identical. Their definitions also do not

account for adversaries with differing observational power.

One substantial limitation of Definition 2.4 (and also of [104] and [105]) is that it is only

useful when applied to deterministic (e.g., single-threaded) programs. For example, if Π is

multi-threaded and has no secret inputs, it should intuitively be secure because there is no

secret data to leak. However, any two executions of Π over the same public inputs could

trivially yield two memory traces which are distinguishable to the adversary, and thus Π

would not be considered secure. Hence Definition 2.4 is an over-approximation of security for

this adversary model. On the other hand, a noteworthy advantage of Definition 2.4 is that it

allows for verifiable security for compiled programs, as discussed later in Chapter 6.

Theorem 2.1 (Granularity Subsumption). Let ∼Adv1 and ∼Adv2 characterize two adversaries

with observational granularities n and m, respectively. If n ≤ m, then a program Π which is

memory trace oblivious for ∼Adv1, is also memory trace oblivious for ∼Adv2.

Proof. Suppose that Π is memory trace oblivious for ∼Adv1 , and let ISecret and I ′Secret be

arbitrary secret input sequences accepted by Π, and likewise have IP ublic as an arbitrary

public input sequence accepted by Π. Hence if

M(Π, ISecret, IP ublic) τ andM(Π, I ′Secret, IP ublic) τ ′,

then τ ∼Adv1 τ
′. By Definition 2.1, |τ | = |τ ′| and all corresponding addresses in τ and τ ′ are
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equivalent, with the possible exception of their n least significant bits. Since n ≤ m, it follows

that all corresponding addresses in τ and τ ′ are also equivalent with the possible exception

of their m least significant bits. Thus τ ∼Adv2 τ
′. Because ISecret, I ′Secret, and IP ublic were

arbitrary, it follows from Definition 2.4 that Π is memory trace oblivious for ∼Adv2 .

Example 2.3. By Theorem 2.1, a program which is memory-trace oblivious against an

adversary using the cache block Prime+Probe strategy [107, 127] is also memory-trace

oblivious against an adversary using the forced page eviction strategy [171], because the x86

page size is divisible by the x86 block size. 4

Memory-trace oblivious computations must not allow secret data to influence memory

accesses in two ways: instruction fetches (via control flow) and data accesses (reads and

writes). This implies that secret data must not be used as a loop termination condition or any

other branch, such as an if/else if/else or switch. This rule also extends to branching

operators (ternary ?:) and short-circuiting operators (&& and ||) which only conditionally

evaluate some of their arguments.

These constraints may at first seem too restrictive for the developer. However, many

algorithms can be expressed in terms of ternary operators. A non-branching ternary operator

can be constructed using the cmov family of instructions on x86 [58]. This technique has

been deployed in related projects (e.g., [124, 133, 136]).

With a non-branching ternary operator (call this operation o_copy()), it becomes possible

to construct oblivious read and write operations. One such solution is given in Listing 2.1.

The read() function iterates through the entire region of memory spanning the range [I, E),

reading from every integer-aligned address. Only when the current address matches the

argument addr is the value of ret updated to the value of *I, which at that point is equal to

the value of *addr. This heuristic does not leak the value of addr because every value in

[I, E) is read exactly once. Chapter 8 describes how common algorithms can be built using

just a few oblivious primitives such as the non-branching ternary.

If the adversary model assumes a cache block mask for x86-64, the machineM does not
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1 int32_t read(const int32_t *I, const int32_t *E,
2 const int32_t *addr) {
3 int32_t ret = 0;
4 while (I++ != E) {
5 ret = o_copy(I == addr , *I, ret);
6 }
7 return ret;
8 }
9
10 int32_t write(const int32_t *I, const int32_t *E,
11 int32_t *addr , int32_t val) {
12 while (I++ != E) {
13 *I = o_copy(I == addr , *I, val);
14 }
15 }

Listing 2.1: Naïve memory-trace oblivious read and write operations

emit a memory trace at perfect (0-bit) granularity. Because the adversary can only observe

which cache block is touched on a given access, and not the specific address within the block,

the x86-64 model ofM emits a memory trace with 6-bit granularity. Thus the solution in

Listing 2.1 is naïve (it overestimates the power of the adversary) because it is not necessary

to read from every element in the array. It suffices to read only one value from each cache

block within a range of memory, rather than read every single value [41]. Listing 2.1 could

then be modified to read one integer from each cache block covered by [I, E), e.g., it could

read every 16th integer before and after addr.

An even more efficient solution is to vectorize the read. New x86-64 CPUs provide AVX2

instructions which operate on 256-bit vector registers [58]. In particular, AVX2 introduced the

vpagther instruction family. A single vpgatherdd instruction can read eight 32-bit integers

from non-contiguous addresses in memory. As shown in Figure 2.2, vpgatherdd can be used

to touch up to eight cache blocks per instruction. This vectorized oblivious read strategy has

also been deployed in related work (e.g., [124, 133]).

The weaker form of memory obfuscation is data obliviousness, which requires only that

data access patterns must not reveal sensitive data. It does not consider the number of
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Figure 2.2: Oblivious read using vpgatherdd

accesses made, or the control flow of the program. However, note that this definition does

not pose any constraints on the particular order of accesses, thus it allows for probabilistic

approaches, etc. The traditional data-oblivious memory obfuscation technique is oblivious

RAM (ORAM) [51, 78, 79], which uses probabilistic dynamic memory shuffling strategies to

achieve polylogarithmic overhead. Since the original description of ORAM by Goldreich [78],

several more ORAM algorithms with improved performance have been identified (e.g.,

[52, 80, 141, 150]). Rane et al. [133] observed that the vectorized memory scanning technique

using vpgather instructions is actually faster than Path ORAM [150] by several orders of

magnitude for an array containing up to 1 billion elements.

2.3 Information-Flow Analysis and Noninterference

Information-flow analysis is the study of the propagation of information through a program.

This is distinct from access control, which restricts the release of information from a resource.

Access control lists and capabilities, the building blocks of access control [50], are orthogonal

methods of associating resources with access rights. Once read access to a resource has been

granted to a principal (e.g., a user), neither method alone can restrict what that principal

may do with the information obtained from that resource. For example, if Alice is allowed to

download a certain file, and Bob is not allowed to download that same file, then Alice can

simply download the file and give it to Bob. Information-flow analysis provides the means to

address this problem by tracking and constraining the propagation of information.
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Information-flow analysis can be decomposed into two distinct problem areas. Information-

flow policies describe the manner by which data propagation affects data confidentiality.

Information-flow controls are the mechanisms that enforce a given information-flow policy. In

particular, the work in this dissertation is motivated by the security properties of a particular

information-flow policy: noninterference. Many information-flow policies can be enforced by

a programming language’s type system. Hence the type system becomes the information-flow

control. This is the approach used by Covert C++.

The following subsections survey the history of information-flow analysis (as it relates

to this dissertation) since its conception by Denning and Denning in 1977 [64]. A much

more comprehensive history of information-flow analysis has been chronicled by Sabelfeld

and Myers [135]. A more friendly introduction to information-flow analysis was given by

Smith [145].

2.3.1 Information-Flow Analysis

Denning and Denning [64] conceptualized the flow of information within a program in the

following manner: information flows from an object x to another object y whenever (1) some

information stored in x is transferred to y, or (2) information stored in x is used to derive or

influence the value in y. The former is called an explicit flow, denoted x⇒E y. The latter

is an implicit flow, x⇒I y. All flows are either explicit or implicit; a flow of either or both

categories can be denoted x ⇒ y. All flows are transitive, thus x ⇒ y and y ⇒ z implies

x⇒ z.

Explicit flows result from assignment operators, passing arguments to a function, invoking

a memcpy(), etc. Implicit flows result from program control flow and array accesses. For

instance, in the C program:

int y;
if (x) { y = 42; }
else { y = 12; }
printf("y:␣\%d\n", y);
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the value of x is not stored in y. However, the value of x is used to determine the value to

be stored in y. Thus an observer who is only able to see the value of y may be able to infer

the value of x, or at least infer some property of x, such as whether or not x == 0. Some

operations combine both explicit and implicit flows:

int y = arr[n];

Here, the assignment operator copies the value in arr[n] to y, hence arr[n] ⇒E y. The

value of n also influences the assignment to y: n ⇒I y. This distinction will become crucially

important in Chapter 8.

Flows on their own are interesting, but not particularly useful. They become useful

when combined with a information-flow policy, represented as 〈S,→〉, where S is a lattice of

security classes, and → is a relation on objects specifying when a flow is permitted, given

the security classes of those objects. For example, S could be the set of military security

classes L: public (P ), confidential (C), secret (S), and top secret (TS). They form a linear

priority lattice (L,≤) wherein for each pair (c, c′) ∈ {(P, C), (C, S), (S, TS)}, c ≤ c′ and

c′ � c. The information-flow policy 〈L,→〉 could define the flow relation such that x → y

only if class(x) ≤ class(y). For instance, top secret information should not be allowed to flow

into a public object. The policy 〈L,→〉 enforces the Simple Security and * (star) Properties

(“no read-up” and “no write-down,” respectively) of the Bell-LaPadula Model [32].

A program Π adheres to its information-flow policy if no possible execution of Π results in

a flow x⇒ y where x→ y is not allowed by the information-flow policy. Unfortunately, this

general formulation of information-flow security is difficult to apply because it is undecidable,

i.e., it reduces to the halting problem [61]. Suppose that the given information-flow policy

does allow x → y, and consider:

while (true) {} // loops forever
y = x;

Clearly, this short program does adhere to the information-flow policy. However, a solution

to the halting problem would be required to make this kind of decision, in general. Denning
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and Denning formulated a more restrictive definition of information-flow security, which is

decidable:

“x⇒ y is specified by Π only if x→ y” [64]. (2.1)

Note that this formulation offers less precision in program certification; it would reject the

program with the infinite loop. The crucial improvement is that it applies to a program’s

specification, rather than its execution. This hints at a solution which can be enforced

statically, for example at compile time. Indeed, a compiler modification to enforce “certification

semantics” guaranteeing (2.1) was proposed by Denning and Denning [64].

The final consideration is how to apply an information-flow policy when the value of one

object is influenced by flows from several other objects. Recall the scenario when reading from

an array: int y = arr[n]. Suppose that this program uses the lattice of military security

labels (L,≤), and that class(y) = TS, class(arr[n]) = P , and class(n) = S. Instead of

certifying arr[n] ⇒ y and n ⇒ y separately, the certification check can compute the least

upper bound (denoted t) of the labels class(arr[n]) and class(n): P t S = S. The check

can then determine whether the flow from some temporary rvalue object t with class(t) = S

is allowed to flow t⇒ y. This is allowed by 〈L,→〉 because class(y) = TS, and S ≤ TS.

2.3.2 Noninterference

The notion of noninterference was first introduced by Goguen and Meseguer in 1982 [76], and

later refined in [77]. From their original paper:

“one group of users, using a certain set of commands, is noninterfering with

another group of users if what the first group does with those commands has no

effect on what the second group of users can see” [76].

A common special case of this description is when the “second group of users” consists solely

of the adversary, and the “first group” is the victim. Hence the goal is to shield the victim’s

computation and data from the adversary’s view.
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Goguen and Meseguer described an unwinding technique [77] for verifying noninterference:

for all system states and output commands, demonstrate that the output visible to the

adversary does not depend on any state transition command invoked by the victim. For a

formal description of a programming language or a set of system commands, this definition

is easy to apply. An induction proof over the semantic description of the language will

suffice. McLean [115] suggested an alternative verification approach using trace semantics,

i.e., sequences of procedure calls.

Unwinding is less useful when attempting to verify noninterference for a language without

a formal description, or for a given program written in a language not intended to enforce

noninterference. In this case, it is better to retrospectively consider Cohen’s work on strong

dependency [54, 55], an early solution to the confinement problem [99].

Definition 2.5. Given a program Π, an object b strongly depends on the value of an object

a, denoted a 8

4 Π
b, when there exist initial program states σ1 and σ2 such that

σ1 =a σ2 and Π(σ1).b 6= Π(σ2).b,

where σ1 =a σ2 represents two states that are equal for all of their objects except for a. 4

Intuitively, a 8
4 Π

b when some execution of Π causes a to affect b. If I is the set of all inputs

to Π provided by a group of users G1, and O is the set of all outputs from Π visible to another

group of users G2, then noninterference can be equivalently characterized as the absence of

strong dependency by any element of O on any element of I, i.e.,

∀i ∈ I, o ∈ O. i 8

4 Π
o −→ ⊥.

Volpano and Smith [160] later argued that noninterference should also consider termination

channels, which can leak a surprisingly large amount of information [25]. A termination

channel leaks information when a program either converges or diverges, or terminates early

due to an exception. Informally, termination-sensitive noninterference guarantees that secret

inputs do not determine whether or when a program terminates. The Goguen-Meseguer

model [76, 77] is a form of termination-insensitive noninterference.
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The definition of noninterference used in this dissertation is an extension to memory-trace

obliviousness (Definition 2.4) which additionally guarantees the absence of public outputs

that strongly depend on secret inputs. In addition to emitting a memory trace τ , a program

Π executing onM may also emit an output trace ω consisting of a sequence of outputs to

any number of storage channels, denotedM(Π, ISecret, IP ublic) → ω. The output sequence

ω is a (possibly infinite) sequence of values of length |ω|. A storage channel is an overt

communication channel “maintained by the supervisor which can be written by the service and

read by an unconfined program, either shortly after it is written or at some later time” [99].

An output to a storage channel on UNIX-like systems typically entails writing to a file

descriptor. Henceforth, the term trace simply refers to the combined memory trace and

output trace emitted by a program Π executing onM for a given set of inputs.

Let =Adv be a relation characterizing the adversary’s view of the program outputs. For

example, a program may emit both secret and public information, but the secret information

is always encrypted. So if the adversary is assumed not to be able to read encrypted data,

=Adv will only cover the public outputs. It is always assumed that the adversary can observe

the number of outputs in ω, and the size of each output.

Definition 2.6. The combined observational power of the adversary 'Adv is given by

M(Π, ISecret, IP ublic) 'Adv M(Π, I ′Secret, IP ublic)

if and only if

1. M(Π, ISecret, IP ublic) τ andM(Π, I ′Secret, IP ublic) τ ′ implies τ ∼Adv τ
′, and

2. M(Π, ISecret, IP ublic)→ ω andM(Π, I ′Secret, IP ublic)→ ω′ implies ω =Adv ω
′

for all programs Π and input sequences IP ublic, ISecret, and I ′Secret, 4

Definition 2.7. A program Π has the property of noninterference if

M(Π, ISecret, IP ublic) 'Adv M(Π, I ′Secret, IP ublic)

for all IP ublic, ISecret, and I ′Secret
3. 4

3A pedantic note on terminology: To the best of the author’s knowledge, this is the first time that
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Theorem 2.2 (Noninterference implies Memory-Trace Obliviousness). If a program Π has

the property of noninterference, then Π is also memory trace oblivious.

Proof. Follows directly from unfolding Definitions 2.4, 2.6, and 2.7.

Informally, noninterference guarantees that from the perspective of a malicious adversary,

(1) public outputs do not depend on secret inputs, (2) the program’s memory trace is not

affected by secret inputs, and (3) secret inputs cannot determine whether or not a program

will terminate. Property (1) corresponds to the absence of strong dependency [135] and

property (2) corresponds to memory-trace obliviousness. Property (2) actually implies

property (3), because when a program diverges, its trace has length equal to |N|. When a

program converges, its trace has length strictly less than |N|. Similarly, a program which exits

early due to an exception will have a shorter trace than a program which runs to completion,

assuming both programs had made all of the same branch decisions before the exception

had occurred in the first process. Hence Definition 2.7 is a form of termination-sensitive

noninterference.

Note that because Definition 2.7 encompasses memory-trace obliviousness, this definition

of noninterference also assumes that Π is deterministic. Yet noninterference does not always

need to be held to this constraint. In fact there is a large body of theoretical work on

nondeterministic noninterference [135].

For instance, Wittbold and Johnson [170] describe possibilistic and probabilistic noninter-

ference. Possibilistic noninterference requires that secret inputs must not influence the set of

noninterference has been defined in precisely this manner. The closest comparison is the definition of memory-
trace obliviousness given by Liu et al. [104], who conversely define memory-trace obliviousness as an extension
to noninterference. Specifically, they define memory-trace obliviousness to mean that (1) low-equivalent initial
memories imply low-equivalent output memories, and (2) memory traces are indistinguishable to the attacker.
The term “memory trace oblivious” is sensible because both properties apply only to observable characteristics
of memories. The key difference between Liu et al.’s work and the work presented in this dissertation is
that they use a semantic model of execution akin to Volpano et al. [163], and Covert C++ uses a machine
model of execution which consumes inputs and produces outputs, similar to the original Goguen-Meseguer
model [76]. The machine model was selected for this dissertation because it easily incorporates storage
channels. If memory accesses and instruction fetches are treated as outputs (which they are, from the
adversary’s perspective), then Definition 2.7 fits naturally into the Goguen-Meseguer model. Storage channels
are not easily represented by the memory trace or state of program memory, hence the more general term
“noninterference” was preferred.
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1 { // thread 1
2 leak = secret;
3 }

1 { // thread 2
2 leak = random (100);
3 }

Figure 2.3: A multi-threaded program which has possibilistic noninterference, but not

probabilistic noninterference

possible public outputs. However, for most practical scenarios this condition is insufficient to

guarantee security. Consider the example in Figure 2.3 from McLean [113], consisting of two

threads running concurrently.

Assume that secret is some number between 1 and 100, and that random(100) also

returns some number between 1 and 100, with uniform probability. If the program outputs

the value of leak upon termination, then the program will satisfy the definition of possibilistic

noninterference because the value of secret does not affect the set of possible values for

leak. However, suppose that the thread scheduler selects between threads 1 and 2 with

equal probability. Then the program output will be the value of secret with probability 101
200 ,

and each other possible value with probability 1
200 . Thus by running the program multiple

times, the adversary could certainly deduce the value of secret by observing the frequency

distribution of output values. Probabilistic noninterference addresses this issue by requiring

that secret inputs not affect the joint probability distribution of public outputs [170].

The discussion on nondeterministic noninterference so far applies only to classical nonin-

terference, i.e., the relationship between secret inputs and public outputs. When additionally

considering side channels, a useful definition of nondeterministic noninterference becomes

more elusive—especially when the memory trace is an observable side channel.

Generalized noninterference, originally proposed by McCullough [110] and later refined by

McLean [114], does provide a solution when the sequence of memory accesses and instruction

fetches is treated as a part of the trace of low outputs. However, it is not immediately clear

how to apply generalized noninterference to certify security on an actual platform, where the

space of program traces is prohibitively large. For instance, given a program which uses t
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threads and n as an upper bound on the number of instructions which can be executed by

any of the t threads before the program terminates, there are O(tn) possible permutations of

interleaved thread instructions that would constitute the program trace.

The purpose of the thesis is not only to construct a practical programming language

to enforce noninterference, but also to demonstrate that the noninterference property can

be preserved by an optimizing compiler. To this end, the strength of the noninterference

requirement must be sufficient to allow compiled binaries to be verifiably secure. This is

the topic of Chapter 6. Contemporary work on memory-trace obliviousness also does not

consider nondeterminism [104, 105].

2.3.3 Language-Based Information Flow

As mentioned in the prior section, Denning and Denning [64] observed that the problem of

certifying information-flow security for a program becomes decidable when the information-

flow policy is embedded in the specification of the program. Their certification method—

the information-flow control—was a compiler check on the certification semantics of the

program [64].

Volpano et al. [163] simplified this concept by embedding an information-flow policy in a

type system, thus creating a security-type system. In a security-type system, types additionally

assign security intent to program data. A security-typed language is a programming language

with a security-type system. The type checking tool for a security-typed language (possibly a

part of the compiler) constitutes the information-flow control.

The soundness of the security-type system in [163] establishes noninterference over a

lattice of security classes. Though the original formulation was somewhat involved, a simple,

yet equivalent security-type system was later described by Sabelfeld and Myers [135], and

is shown in Figure 2.4. This model is not designed to address side-channel attacks. It

simply enforces the classical notion of noninterference: no low variable in the output state

strongly depends on any high variable(s) in the input state. For simplicity, this language only
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[E1–2] ` exp : high h /∈ V ars(exp)
` exp : low

[C1–3] [pc] ` skip [pc] ` h :=exp
` exp : low

[low] ` l :=exp

[C4–5] [pc] ` C1 [pc] ` C2

[pc] ` C1;C2

` exp : pc [pc] ` C
[pc] ` while exp do C

[C6–7] ` exp : pc [pc] ` C1 [pc] ` C2

[pc] ` if exp then C1 else C2

[high] ` C
[low] ` C

Figure 2.4: A simple security-type system [135]

considers two variables: a low variable l, and a high variable h (low and high are types). The

judgment [pc] ` C means that the command C is valid in the program context pc. Similarly,

the judgment [pc] ` exp means that the expression exp is typable in pc. The purpose of

pc is to track implicit flows. It can be thought of as assigning a security type class to the

CPU’s program counter. Note that this type system only guarantees termination-insensitive

noninterference because a high while loop could potentially loop forever.

Rules E1-2 state that unless a given expression does not contain h, it must have type high.

Rules C2-3 assert that l can only assume the value of a low expression, and in a low program

context. Specifically, rule C3 prevents any explicit or implicit flow that would violate the

security requirement. Rule C4 simply states that the program context is preserved across

compound commands. Rules C5-6 govern implicit flows to the program context. Whenever a

branch decision is to be made, the program context assumes the type of the branch condition.

Hence any assignment made within that branch will be high if the branch condition was

high. Rule C7 is a subsumption rule, allowing the program context to be reset to low after

exiting a high conditional or loop.

Volpano and Smith later examined the effect of nondeterminism on the security-type system

described above. They found that additional typing restrictions on control-flow commands

(e.g., loops) were required to preserve noninterference for multi-threaded programs [146, 161].
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Another of their works [162] postulated a language extension with first-order functions,

polymorphically parameterized by security classes. One important contribution of this work

was to formalize the notion of type inference for a security-typed language. In a programming

language, type inference refers to automatic deduction (usually by the compiler) of types. For

a security-typed language, type inference allows the compiler to automatically deduce the

security class of an unlabeled expression or variable, given the context in which the expression

or variable is being evaluated/declared.

In 1999, Myers [119] described the first practical security-typed language, based on Java.

JFlow is a security-typed language which assigns to each variable both a primitive type

(e.g., int) and a security label. The security label can either indicate the sensitivity of

the variable, or the principal to which the data belongs. This latter category of labels is

a realization of Myers and Liskov’s earlier work [118, 120] on the decentralized label model,

which allows principals to attach information-flow policies to certain pieces of data, and

also to delegate capabilities on data to other principals. JFlow uses a mix of static and

dynamic enforcement to track both explicit and implicit information flows. The security goal

is to prevent information leaks through storage channels. Several contemporary examples of

security-typed languages are summarized later in Chapter 9.

Henceforth, the term classical noninterference refers to the definition of noninterference

given in Volpano et al. [163], i.e., secret inputs do not influence public outputs. The term

noninterference strictly refers to Definition 2.7.

2.4 Secure Multi-Party Computation

The secure multi-party computation (SMPC) problem can be stated in generality as follows.

Principals P0, P1, . . . , Pn−1, each have input data x0, x1, . . . , xn−1, respectively. They wish to

mutually compute the output value of a function f(x0, x1, . . . , xn−1), subject to the following

constraints:
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• Confidentiality: For all i, j such that i 6= j, Pi must not be able to infer xj from any

observable aspect of the computation, except for the final output of f(x0, x1, . . . , xn−1).

• Integrity: The final output of f(x0, x1, . . . , xn−1) must be correct, possibly within an

acceptable margin of error [91]. Or the final output may be incorrect, but each Pi must

be able to determine whether or not the final output is correct.

The computation of f may proceed on any one of the principal’s machines, or any combination

of them, or on an external third party’s machine. The first accepted solution to this problem

was the garbled circuit construction proposed by Yao [173]. Later solutions employed

homomorphic encryption [34].

Cloud computing and IaaS have sparked a flurry of new research on SMPC platforms.

SMPC has real and prospective applications in genomics (e.g., [56]), Internet of things and

crypto banking (e.g., [177]), and even in sugar beet auctions [37]. One of the principle

drawbacks to wider adoption has been the relatively limited scalability of garbled circuits and

homomorphic encryptions over large data sets [56]. With the advent of IEEs such as Intel

SGX, end users now have access to cloud-based platforms with built-in cryptographically

protected execution environments. SGX not only has proved apt at shielding applications and

data belonging to a single principal [31, 138], it has recently been examined as a candidate

platform for SMPC [29, 124].

2.5 The C++ Template Type System

C++ first introduced templates in 1990, when the ANSI C++ committee was founded [6].

The purpose of templates was to introduce parameterized types that would be both expressive

and efficient [153]. The motivating factor at the time was a need for a standard library that

could provide polymorphic containers, such as vectors and maps.

C++ templates are instantiated by substituting types and/or constant values for the

template parameters. For instance, the C++ Standard Template Library (STL) provides a
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1 template <unsigned N> struct factorial {
2 static const unsigned value =
3 N * factorial <N - 1>:: value;
4 };
5 template <> struct factorial <0> {
6 static const unsigned value = 1;
7 };

Listing 2.2: A factorial metafunction

linked list template std::list which is parameterized on the type of the container element.

So std::list<int> is a type for a list of integers, and likewise std::list<std::string> is

a type for a list of strings, etc.

The C++ template system exceeded its original goals, empirically achieving “better

than hand-coding performance,” primarily because it facilitates inlining optimization [155].

Moreover, it is Turing-complete [98]. Listing 2.2 illustrates this phenomenon.

The factorial structure is defined twice, once for an arbitrary template argument N, and

once for the specialized case where the template argument is 0. When a new factorial<T>

is instantiated, the compiler will prefer the most specialized definition, according to the

partial ordering rules for template specializations [90]. The second definition of factorial

will only be selected when the template argument is 0. When a template class is instantiated,

its static immutable members are evaluated—using constant folding if necessary. If other

template expressions are involved in the constant expression being evaluated, these must be

evaluated as well. In the first factorial definition, this behavior is exploited to recursively

evaluate the factorial function on sequentially decreasing values of N. When the compiler

must evaluate factorial<0>, the definition of the static member is the constant 1, and the

recursion halts. For example, given the statement factorial<5>::value, the C++ compiler

will recursively fold the value member of factorial<5> into the constant 120.

A metafunction is a compile-time function which accepts types and/or constants as

parameters, and returns a type or constant as a result. The technique of compile-time

computation using metafunctions is known as template metaprogramming [98].
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Chapter 3

Definitions

This chapter serves as a glossary for terms that are frequently used throughout the dissertation.

Some terms will be formally introduced in later chapters. An exhaustive list of terms used in

this dissertation can be found in the Index.

application programming interface (API) Clearly-defined methods to facilitate com-

munications between components in a system, for example between a program and a

software library.

basic block A contiguous unit of execution, i.e., a sequence of instructions with a single

entry point and a single exit point.

canonical type An unlabeled type, or a type of the form SE<T, S1,...,SN> where T is a

labeled type with type depth equal to N.

channel Any mechanism which signals information, either implictly or explicitly.

classical noninterference A program has the property of classical noninterference when

its public outputs do not strongly depend on its sensitive (secret) inputs.

cover An object in memory covers one or more masks when any portion of the object’s

contiguous memory lies within those masks.
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covert type A type that is either malformed or canonical.

decentralized label model Assigns labels to data according to its ownership, and allows

for the specification of policies that dictate how data can be created and declassified,

and how capabilities on data can be delegated, etc.

enclave A protected region of memory that is dynamically encrypted, and can only be

accessed by a process running in enclave mode.

flow A transfer of information from an object x to an object y. A flow is explicit if information

is copied from x to y. A flow is implicit if information stored in x is used to derive or

determine a value to be stored in y.

generalized label model Allows any object in a program to be assigned a security label.

These labels must form a bounded join-semilattice.

granularity The number of least significant bits that the adversary is not able to observe in

a memory trace. If this number is 0, the granularity is perfect. See Definitions 2.1 and

2.2.

information-flow control The mechanisms by which an information-flow policy is enforced.

information-flow policy Describes the manner in which data is allowed to propagate

through a program.

inner type The data type in a covert type. For example, the inner type SE<int, H> is int.

input fuzzing Repeatedly invoking a program or function with one or more of its inputs

adjusted before each invocation.

labeled type A type with non-zero type depth.

lattice An algebraic structure in which each pair of elements has a least upper bound and

a greatest lower bound. A semilattice has either a least upper bound or a greatest
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lower bound for every pair. A lattice is bounded above if there exists an element that is

greater than or equal to every element in the lattice, and similarly for bounded below.

least upper bound For two elements x and y in a lattice, the least upper bound of x and

y (denoted x t y) is the least element z such that x ≤ z and y ≤ z.

malformed type A type that is either SE or points to some SE type, but is not canonical.

mask The smallest contiguous unit of memory within which the adversary cannot distinguish

between accesses at different memory addresses. See Definition 2.3.

memory trace The sequence of memory accesses τ made by a program during execution,

including instruction fetches and data accesses (reads and writes).

memory trace oblivious A program has the property of memory-trace obliviousness if its

memory trace does not strongly depend on any of its sensitive (secret) inputs. See

Definition 2.4.

metadata Data used to describe or summarize other data, e.g., the size of an array.

metafunction A compile-time function which accepts types and/or constants as parameters,

and returns a type or constant as a result.

noninterference A program has the property of noninterference if it has classical noninter-

ference and it is memory-trace oblivious. See Definition 2.7. Moreover, noninterference

is termination sensitive if secret inputs cannot affect whether or not a program will

terminate (diverge); otherwise it is termination insensitive.

oblivious Short for memory-trace oblivious.

oblivious iterator An iterator whose memory access semantics (e.g., *, [] operators) are

such that the memory trace does not reveal the address being accessed.
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oblivious type A type with pointer-like semantics (e.g., a pointer or iterator) and security

typing. Oblivious types are covert types..

output trace The sequence of outputs ω emitted by a program during execution, e.g., to

stdout or to a file on disk.

primitive type A type belonging to any of the following categories: arithmetic (int, char,

etc.), enum, non-function pointer, or pointer to any non-SE type, at any level.

pure Covert C++ Covert C++ without the libOblivious extensions described in Chapter 8.

secure multi-party computation (SMPC) A computation using input data from multi-

ple principals, the goal of which is to produce an accurate result, without each principal

learning any sensitive aspect of any other principal’s data. See Section 2.4.

security label A representation of a security class in a Covert C++ program.

security-type system A type system in which types additionally assign security intent

to program data. Moreover, the type system defines an information-flow policy to

constrain the flow of program data, depending on its security type.

security-typed language A programming language with a security-type system, and

wherein the type checking mechanism serves as the information-flow control.

security-upgrade aliasing A kind of pointer aliasing which allows, for instance, a covert

pointer to a high object to alias a covert pointer to a low object (of the same type).

SGX An architectural extension to x86-64 that allows for the creation of protected regions

of memory called enclaves.

side channel An inadvertent revelation of information by some mechanism of an algorithm’s

implementation, not attributable to some flaw in the algorithm’s specification.
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side-channel attack Occurs when a malicious adversary is able to infer sensitive data

through a side channel. Can either be active (the adversary must do some additional

work, such as evicting pages from an enclave) or passive (the adversary can simply

observe the side channel).

storage channel A channel that can be written to by a service and read from by a supervisor,

e.g., files on disk, network packets, stdout, etc.

strong dependency An object or output b strongly depends on an object or input a if the

value of a can affect the value of b, for some initial program state. See Definition 2.5.

template metaprogramming The use of C++ templates to perform a computation at

compile time. See Section 2.5.

termination channel A termination channel leaks information when a program either

converges or diverges, or terminates early due to an exception.

test application A test module, together with any other libraries or modules it uses.

test module A shared object or DLL that exports NVT tests.

trace Combination of memory trace and output trace (τ, ω).

Turing complete Able to simulate a Turing machine. By the Turing-Church thesis [57],

a Turing-complete system can perform any computation that can be performed by a

human being following an algorithm.

type depth The number of security labels assigned to a given type.

type inference Automatic deduction of types, usually by the compiler.

unlabeled type A non-SE type with non-zero type depth.
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Chapter 4

Core Covert

This chapter serves as an introduction to the motivation for the Covert C++ language, which

is described in the next chapter. Core Covert is an imperative programming language with

security typing over a lattice of security classes—specifically, a bounded join-semilattice1. It

enforces an information-flow policy with classical noninterference similar to that of the original

work by Volpano et al. [163] which was described in Chapter 2. Moreover, Core Covert places

rigid constraints on the typing for statements and expressions which access memory and

influence program control flow. These constraints enforce memory-trace obliviousness. Hence

the information-flow policy establishes the property of noninterference given in Definition 2.7.

Core Covert forms the blueprint on which Covert C++ is based.

Section 4.1 gives a formal description of the Core Covert language, along with an informal

discussion about the purpose of the typing constraints, such as how they satisfy nonin-

terference. In particular, Theorem 4.1 establishes a fundamental confidentiality property.

Section 4.2 formulates and proves a series of properties about Core Covert. The main result

is Theorem 4.7, which establishes that a Core Covert program which is typable enforces

termination-sensitive noninterference. Section 4.3 revisits the memcmp() leak example from

Chapter 1, and demonstrates how Core Covert’s security-type system can detect the leak.
1A bounded join-semilattice is a pair (L,≤) such that for every x, y ∈ L, x and y have a join (a.k.a. least

upper bound) in L, and there exist some ⊥,> ∈ L such that ⊥ ≤ z and z ≤ > for all z ∈ L.

39



4.1 The Core Covert Language

The grammar of Core Covert is listed in Figure 4.1. A Core Covert program Π has an

abstract syntax tree (AST) which consists of nested statements, expressions, and locations.

The program context comprises a store Σ and a sequence of (immutable) inputs λ. Program

execution, denoted ⇓Π, emits a trace of memory accesses and a sequence of outputs, τ and ω,

respectively. That is, ⇓Π: Σ⇒ λ⇒ Π⇒ τ × ω.

The trace of memory accesses τ is represented as a sequence of addresses touched by

the program. Program control flow decisions, memory reads, and memory writes are all

recorded in τ . The one-to-one polymorphic “address-of” function α determines the address

of a given expression, statement, or location. For example, the trace α(s) . α(a+ 4) . α(e1)

describes a program execution which branched to s, then touched array a at offset 4, and

finally branched to expression e1. The . operator indicates the concatenation of two traces,

and is left associative. Two memory traces are equivalent, written τ ≡ τ ′, when each trace

records the same addresses, and in the same order. The judgments to determine memory

trace equivalence are given in Figure 4.2.

The trace of outputs ω is simply the sequence of integers emitted by the program during

execution, i.e., whenever an output() expression is evaluated. The judgments to determine

output trace equivalence, denoted ω .= ω′, are also shown in Figure 4.2.

The input context λ[i 7→ n] is a finite function mapping argument indices i to values n.

The program store Σ[a + n 7→ n], a representation of DRAM, consists of a finite number

of arrays of unbounded size. This description of the store implies that Core Covert is

categorically memory safe; it is not possible to make an out-of-bounds access on an array.

Arrays can be accessed through locations `, each of which evaluates to a specific position

within a given array. Locations are evaluated via the function ⇓`: Σ⇒ λ⇒ `⇒ (a+n)×τ×ω.

Intuitively, a location is like a pointer in C or C++. Formally, an (evaluated) location is a

pair consisting of an array’s base aand an offset n, denoted a+ n. The pair a+ n is called a

point. Two points a1 +n1 and a2 +n2 are equivalent when their bases are judgmentally equal
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Locations ` ::= a+ e

Expressions e ::= n
| i
| read(`)
| e1 � e2
| e1 ? e2 ◦ e3
| output(e)

Statements s ::= ` := e
| s1; s2
| skip
| select e {s1, . . . , sm}
| iterate e s

Programs Π ::= main { s }

Store Σ ::= Σ[a+ n 7→ n]
| ·

Store typing Ψ ::= Ψ[` : γ]
| ·

Input λ ::= λ[i 7→ n]
| ·

Input typing φ ::= φ[i : γ]
| ·

Output trace ω ::= n
| ω1 . ω2

Memory trace τ ::= α(a+ n)
| α(e)
| α(s)
| τ1 . τ2

Figure 4.1: Core Covert grammar

OUT-REFL
ω
.= ω

OUT-VALUE
n
.= n

OUT-CONCAT
ω1

.= ω2 ω′1
.= ω′2

ω1 . ω
′
1
.= ω2 . ω

′
2

MEM-REFL τ ≡ τ

MEM-ADDR
a1 + n1 = a2 + n2

α(a1 + n1) ≡ α(a2 + n2)

MEM-EXPR
α(e) ≡ α(e)

MEM-STMT
α(s) ≡ α(s)

MEM-CONCAT
τ1 ≡ τ2 τ ′1 ≡ τ ′2
τ1 . τ

′
1 ≡ τ2 . τ

′
2

Figure 4.2: Core Covert trace judgments
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(they refer to the same array), and their offsets are equal. The notation Σ[a+ n/n′] indicates

that the memory at point a+ n in store Σ has been updated, and now contains the value n′.

A statement srepresents a transformation of the store, and statement evaluation ⇓s may

also emit outputs and/or a memory trace. Hence ⇓s: Σ ⇒ λ ⇒ s ⇒ Σ × τ × ω. Notably,

statements are the only sources of program divergence (non-termination) in Core Covert.

An expression e computes an integer value n, and expression evaluation may emit outputs

and/or a memory trace. That is, ⇓e: Σ⇒ λ⇒ e⇒ n× τ × ω. Addresses and integers are

the only two data types in Core Covert. Interestingly, their separation is enforced by the

syntax of the language, rather than the type system.

Types in Core Covert are security classes which form a lattice under ≤. Every lattice

must have a bottom, denoted ⊥. In the context of Core Covert and Covert C++, ⊥ is the

type assigned to data that is public (i.e., non-secret). Any data that is typed as ⊥ may be

disclosed to the adversary, and any data that is not ⊥ must not be disclosed. Each Core

Covert program has associated typing contexts Ψ[` : γ] and φ[i : γ] for locations and inputs,

respectively. Ψ is inductively defined over unevaluated locations:

Ψ(a+ e) := Φ(a),

where Φ assigns a type to each array. Hence every location within an array has the same

type, i.e., the type of the array as dictated by Φ.

The typing rules for locations, expressions, statements, and programs are given in Fig-

ure 4.3. For example, typing judgments for expressions have the form Ψ, φ ` e : γ, meaning

that e can be assigned type γ in the typing context Ψ, φ. Inference rules are of the form

hypothesis1
...

hypothesisn

conclusion

such that conclusion is valid only when all hypotheses have been satisfied. Hence the

ADDRESS-T typing rule states that the typing judgment Ψ, φ ` a+ e : γ is valid only when

the judgment Ψ, φ ` e : γ′ is satisfied, where γ′ ≤ γ.
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A typing judgment for a location or expression assigns to it a security class. On the other

hand, a typing judgment for a program or statement only determines whether that program

or statement is well-formed. That is, a program or statement is valid whenever all of its

nested sub-locations and sub-expressions are typable, and all of its nested sub-statements are

valid. These typing judgments are also given in Figure 4.3.

Figure 4.4 gives the inference rules for semantic judgments on the evaluation of locations,

expressions, statements, and programs. For example, the judgment

Σ, λ ` a+ e ⇓` (a+ n, τ, ω)

can be interpreted as, “the location a+ e evaluates to the address a+ n and emits traces τ

and ω in the execution context Σ, λ.”

4.1.1 Design Considerations

The primary objective of Core Covert is to capture the essence of Covert C++, while omitting

all of the pedantic details of C++ which make formal verification intractable. To that end,

only the features of C++ which can potentially violate termination-sensitive noninterference

were considered, and only the features of the Covert C++ type system which are required to

enforce termination-sensitive noninterference were included in Core Covert.

The machine model for noninterference described in Chapter 2 is a reasonable approxima-

tion of execution for a compiled C++ program running on a conventional platform, such as

x86 or ARM. Assuming that the adversary cannot observe the plaintext contents of program

state (i.e., the memory and registers), the visible channels would include program outputs

and aspects of the memory trace. Rather than model file descriptors, system calls, etc. in

Core Covert, all storage channels have been reduced to a simple output(e) command, which

emits an integer that is recorded in the output trace. Similarly, the treatment of all memory

reads and writes has been reduced to two operations: read(`), which reads the integer stored

in the given location in memory, and assignment ` := e, which stores a computed integer into
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ADDRESS-T

Ψ, φ ` e : γ′
γ′ ≤ γ

Ψ, φ ` a+ e : γ

VALUE-T Ψ, φ ` n : ⊥ INPUT-T

φ(i) = γ′

γ′ ≤ γ

Ψ, φ ` i : γ

ARITH-T

Ψ, φ ` e1 : γ1
Ψ, φ ` e2 : γ2
γ1 t γ2 ≤ γ

Ψ, φ ` e1 � e2 : γ TERNARY-T

Ψ, φ ` e1 : ⊥
Ψ, φ ` e2 : γ2
Ψ, φ ` e3 : γ3
γ2 t γ3 ≤ γ

Ψ, φ ` e1 ? e2 ◦ e3 : γ

READ-T

Ψ, φ ` ` : ⊥
Ψ(`) = γ′

γ′ ≤ γ

Ψ, φ ` read(`) : γ OUTPUT-T
Ψ, φ ` e : ⊥

Ψ, φ ` output(e) : ⊥

SKIP-T Ψ, φ ` skip valid ASSIGN-T

Ψ, φ ` ` : ⊥
Ψ, φ ` e : γ
Ψ(`) = γ′

γ ≤ γ′

Ψ, φ ` ` := e valid

SEQUENCE-T

Ψ, φ ` s1 valid
Ψ, φ ` s2 valid

Ψ, φ ` s1; s2 valid ITERATE-T

Ψ, φ ` e : ⊥
Ψ, φ ` s valid

Ψ, φ ` iterate e s valid

SELECT-T

Ψ, φ ` e : ⊥
Ψ, φ ` s1 valid · · · Ψ, φ ` sm valid

Ψ, φ ` select e {s1, . . . , sm} valid

PROGRAM-T
Ψ, φ ` s valid

Ψ, φ ` main { s } valid

Figure 4.3: Core Covert type inference rules
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ADDRESS
Σ, λ ` e ⇓e (n, τ, ω)

Σ, λ ` a+ e ⇓` (a+ n, τ, ω)

VALUE Σ, λ ` n ⇓e (n, ·, ·) INPUT Σ, λ ` i ⇓e (λ(i), ·, ·)

READ
Σ, λ ` ` ⇓` (a+ n, τ, ω)

Σ, λ ` read(`) ⇓e (Σ(a+ n), τ . α(a+ n), ω)

ARITH
Σ, λ ` e1 ⇓e (n1, τ, ω) Σ, λ ` e2 ⇓e (n2, τ

′, ω′)
Σ, λ ` e1 � e2 ⇓e (n1 � n2, τ . τ

′, ω . ω′)

TERNARY (1)
Σ, λ ` e1 ⇓e (n1, τ, ω) Σ, λ ` e2 ⇓e (n2, τ

′, ω′) n1 6= 0
Σ, λ ` e1 ? e2 ◦ e3 ⇓e (n2, τ . α(e2) . τ ′, ω . ω′)

TERNARY (2)
Σ, λ ` e1 ⇓e (n1, τ, ω) Σ, λ ` e3 ⇓e (n3, τ

′, ω′) n1 = 0
Σ, λ ` e1 ? e2 ◦ e3 ⇓e (n3, τ . α(e3) . τ ′, ω . ω′)

OUTPUT
Σ, λ ` e ⇓e (n, τ, ω)

Σ, λ ` output(e) ⇓e (0, τ, ω . n) SKIP Σ, λ ` skip ⇓s (Σ, ·, ·)

ASSIGN
Σ, λ ` ` ⇓` (a+ n, τ, ω) Σ, λ ` e ⇓e (n′, τ ′, ω′)

Σ, λ ` ` := e ⇓s (Σ[a+ n/n′], τ . τ ′ . α(a+ n), ω . ω′)

SEQUENCE
Σ, λ ` s1 ⇓s (Σ′′, τ, ω) Σ′′, λ ` s2 ⇓s (Σ′, τ ′, ω′)

Σ, λ ` s1; s2 ⇓s (Σ′, τ . τ ′, ω . ω′)

ITERATE (1)
Σ, λ ` e ⇓e (n, τ, ω) n = 0
Σ, λ ` iterate e s ⇓s (Σ, τ, ω)

ITERATE (2)

Σ, λ ` e ⇓e (n, τ, ω) n 6= 0
Σ, λ ` s ⇓s (Σ′′, τ ′, ω′)

Σ′′, λ ` iterate e s ⇓s (Σ′, τ ′′, ω′′)
Σ, λ ` iterate e s ⇓s (Σ′, τ . α(s) . τ ′ . τ ′′, ω . ω′ . ω′′)

SELECT

Σ, λ ` e ⇓e (n, τ, ω)
n ∈ {1, . . . ,m}

Σ, λ ` sn ⇓s (Σ′, τ ′, ω′)
Σ, λ ` select e {s1, . . . , sm} ⇓s (Σ′, τ . α(sn) . τ ′, ω . ω′)

PROGRAM
Σ, λ ` s ⇓s (Σ′, τ, ω)

Σ, λ ` main { s } ⇓Π (τ, ω)

Figure 4.4: Core Covert semantics
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a given memory location. These accesses are all recorded into the memory trace.

The treatment of program control flow is more nuanced. C++ has several constructs which

determine control flow, and these cannot all be easily grouped into a single representative

command, although some of them can. The C++ standard [90] partitions the syntax-directed

control statements if/else if/else, for, while, do while, and switch into one of two

categories: selection statements or iteration statements. Selection statements “choose one

of several flows of control” [90], whereas iteration statements “specify looping” [90] for a

given statement, subject to a termination condition. The if/else if/else and switch are

selection statements, and for, while, and do while are iteration statements. The SELECT

and ITERATE (1,2) rules generalize the behavior of these control flow statements. Moreover,

they encode the control flow logic in the memory trace. For example, the address of the

statement sn chosen by a select statement is concatenated to the memory trace after sn is

chosen, but before sn is executed.

Control flow in C++ can also be introduced by more subtle means. For instance, the

binary logical operators && and || have a short-circuiting behavior which elides evaluation of

the right-hand side if the result of evaluating the left-hand side determines the value of the

expression. If the operands are sufficiently simple (e.g., each operand is an int already stored

in a register), then the compiled expression may not involve a branch. If the right-hand side

is more complex (e.g., it makes a function call), then the logical operator must make a branch

decision. The ternary operator ?: has similar behavior. If the first operand evaluates to true,

then only the second operand is evaluated. Otherwise, only the third operand is evaluated.

For brevity, only the ternary operator is modeled in Core Covert, by the TERNARY (1,2) rules.

Similar to the selection and iteration statements, when a ternary is computed, the chosen

expression is recorded into the memory trace after it is chosen, but before it is evaluated.

One control-flow feature of C++ which is not modeled in Core Covert is dynamic dispatch,

the process of looking up a procedure call in a virtual function table at runtime. This feature

is somewhat complex, and as argued later in Chapter 5, Covert C++ typing rules for pointers
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are sufficient to prevent a dynamic dispatch that would reveal sensitive information through

the memory trace.

The construction of memory traces arising from control flow may seem overly simplified.

An alternative formulation could have included every statement and expression in the memory

trace. This is unnecessary. In Core Covert, given any memory trace sequence of the form

α(r) . α(a1 + n1) . · · · . α(am + nm) . α(r′),

where r ::= e | s, the subsequence

α(r) . α(a1 + n1) . · · · . α(am + nm),

corresponds to a compiler basic block, and α(r′) is the beginning of the next basic block.

“A basic block is a linear sequence of program instructions having one entry point (the first

instruction executed) and one exit point (the last instruction executed)” [22]. Hence the

additional statements or expressions within the basic block do not reveal anything about the

control flow of the program; they are invariably executed in the exact same sequence. The

noninterference verification tool introduced in Chapter 6 makes a similar simplification, but

for dynamic basic blocks.

Just as in a programming language like C++, all expressions and locations (pointers) are

typed. In Core Covert, the type assigned to an expression or location establishes an upper

bound on the security class of the data “flowing” from the expression or location when it is

resolved to an integer or point during program execution. Ideally, no source of information in

an expression (e.g., an input) should have a security class which exceeds the security class of

the expression. The following theorem establishes this property for Core Covert.

Theorem 4.1 (Simple Security).

1. If Ψ, φ ` ` : γ, then for every `′ and i in `, Ψ(`′) ≤ γ and φ(i) ≤ γ.

2. If Ψ, φ ` e : γ, then for every ` and i in e, Ψ(`) ≤ γ and φ(i) ≤ γ.

Proof. By mutual induction on the structure of e and `. The cases for i and n are trivial.
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a+ e Suppose that Ψ, φ ` a+ e : γ by rule ADDRESS-T. Then Ψ, φ ` e : γ′, and by

induction Ψ(`) ≤ γ′ and φ(i) ≤ γ′ for every ` and i in e. Since γ′ ≤ γ and ≤ is transitive, it

follows that Ψ(`) ≤ γ and φ(i) ≤ γ for every ` and i in a+ e.

e1 � e2 Suppose that Ψ, φ ` e1 � e2 : γ by rule ARITH-T. Then Ψ, φ ` e1 : γ1 and

Ψ, φ ` e2 : γ2. Hence by induction Ψ(`) ≤ γ1 and φ(i) ≤ γ1 for every ` and i in e1, and

similarly Ψ(`) ≤ γ2 and φ(i) ≤ γ2 for every ` and i in e2. Since γ1 t γ2 ≤ γ, by the transitive

property Ψ(`) ≤ γ and φ(i) ≤ γ for every ` and i in e1 � e2.

e1 ? e2 ◦ e3 Suppose that Ψ, φ ` e1 ? e2 ◦ e3 : γ by rule TERNARY-T. Then Ψ, φ ` e1 : ⊥,

Ψ, φ ` e2 : γ2, and Ψ, φ ` e3 : γ3. By induction Ψ(`) ≤ ⊥ and φ(i) ≤ ⊥ for every ` and i in

e1, Ψ(`) ≤ γ2 and φ(i) ≤ γ2 for every ` and i in e2, and similarly for e3. Since ⊥ ≤ γ and

γ2 t γ3 ≤ γ, by the transitive property Ψ(`) ≤ γ and φ(i) ≤ γ for every ` and i in e1 � e2.

read(`) Suppose that Ψ, φ ` read(`) : γ by READ-T. Then Ψ(`) = γ′ with γ′ ≤ γ, and

Ψ, φ ` ` : ⊥. By induction Ψ(`′) ≤ ⊥ and φ(i) ≤ ⊥ for every `′ and i in `. Thus Ψ(`′) ≤ γ

and φ(i) ≤ γ for every `′ and i in read(`), including ` itself.

output(e) Finally, suppose that Ψ, φ ` output(e) : ⊥ by OUTPUT-T. Then Ψ(e) = ⊥, and

by induction Ψ(`) ≤ ⊥ and φ(i) ≤ ⊥ for every ` and i in e. Thus Ψ(`) ≤ ⊥ and φ(i) ≤ ⊥ for

every ` and i in output(e).

Now, to quote from Chapter 1 of this dissertation, “A general solution to enforce noninter-

ference should at least have the following three characteristics: it should (1) allow the program

author to annotate or otherwise distinguish between secret and public data, (2) provide a

mechanism to track the propagation of secret data through the program, and (3) implement

constraints on secret data to prevent it from being leaked through either a side channel or

a storage channel.” Condition (1) is satisfied by Core Covert’s security-type system, which

requires that all inputs and arrays must be typed according to security class, i.e., all points

and inputs referenced by a given program must be typed by Ψ and φ, respectively. Although
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Core Covert does not model type inference (this is complicated, see [162]), Theorem 4.1

does place an upper bound on the security class that can be propagated from an evaluated

expression, e.g., to memory or an output. Thus (2) is satisfied.

The final ingredient is the information-flow policy, the rules which describe the security

requirement. There are essentially three means by which noninterference can be violated:

a leak of sensitive information through a program control-flow decision (including non-

termination), a memory access, or an output to a publicly-observable channel. First consider

control flow. The only procedures in Core Covert which make control-flow decisions are the

ternary expression, select, and iterate. For each of these, the expression which determines

the branch is required to have type ⊥. Hence, with Theorem 4.1, non-⊥ information cannot

influence the branch decision. This constraint is encoded in the typing rules TERNARY-T,

SELECT-T, and ITERATE-T.

Next, consider memory accesses. The only procedures which allow memory accesses are

the read(`) expression and the ` := e (assignment) statement. By typing rules READ-T and

ASSIGN-T, ` must have type ⊥. Thus for the same reasons as before, sensitive data cannot

influence a memory access location. The final case is program outputs. Only one expression

can write to the output trace: output(e). Again, typing rule OUTPUT-T requires that e have

type ⊥. Hence the type inference rules in Figure 4.3 are sufficient to enforce noninterference.

The following section formalizes this argument.

4.2 Core Covert Enforces Noninterference

This section presents a formal proof that Core Covert statically enforces a form of termination-

sensitive noninterference. That is, non-⊥ program inputs noninterfere with⊥ program outputs,

including the memory trace. Moreover, non-⊥ inputs do not affect whether or not a Core

Covert program terminates. The first lemma establishes that a computed integer value or

address of type γ is entirely determined by value(s) of type ≤ γ.
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Lemma 4.2 (Simple Evaluation). Let dom(Σ) = dom(Σ′) = dom(λ) = dom(λ′) = dom(Ψ) =

dom(φ), with (I) λ(i) = λ′(i) for all i such that φ(i) ≤ γ. Furthermore, suppose that (II)

Σ(a+ n) = Σ′(a+ n) for all a+ n such that Ψ(a+ n) ≤ γ.

1. Suppose

(a) Ψ, φ ` ` : γ′,

(b) γ′ ≤ γ,

(c) Σ, λ ` ` ⇓` (a+ n, τ, ω), and

(d) Σ′, λ′ ` ` ⇓` (a′ + n′, τ ′, ω′).

Then a+ n = a′ + n′.

2. Suppose

(a) Ψ, φ ` e : γ′,

(b) γ′ ≤ γ,

(c) Σ, λ ` e ⇓e (n, τ, ω), and

(d) Σ′, λ′ ` e ⇓e (n′, τ ′, ω′).

Then n = n′.

Proof. By mutual induction on the structure of e and `. The cases for n and output(`) are

trivial.

i Suppose that Σ, λ ` i ⇓e (λ(i), ·, ·) and Σ′, λ′ ` i ⇓e (λ′(i), ·, ·) by rule INPUT.

By hypothesis 2(a) and rule INPUT-T, there exists some γ′′ such that φ(i) = γ′′ and γ′′ ≤ γ′.

Since ≤ is transitive, φ(i) ≤ γ using hypothesis 2(b). By hypothesis (I), λ(i) = λ′(i).

a+ e Suppose that Σ, λ ` a+e ⇓e (a+n, τ, ω) and Σ,′ λ′ ` a+e ⇓e (a+n′, τ ′, ω′) by

rule ADDRESS, where Σ, λ ` e ⇓e (n, τ, ω) and Σ,′ λ′ ` e ⇓e (n′, τ ′, ω′). By hypothesis 2(a)

and rule ADDRESS-T, there exists some γ′′ such that Ψ, φ ` e : γ′′ and γ′′ ≤ γ′. By the

transitive property of ≤ and hypothesis 2(b), γ′′ ≤ γ, and by induction n = n′. Thus

a+ n = a+ n′.

e1 � e2 This case follows similarly to a+ e, except that induction is applied once for
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each of e1 and e2.

e1 ? e2 ◦ e3 By hypothesis 2(a) and rule TERNARY-T, Ψ, φ ` e1 : ⊥. There are two cases

to consider:

1. Σ, λ ` e1 ? e2 ◦e3 ⇓e (n2, τ1 .α(e2).τ2, ω1 .ω2) by rule TERNARY (1) on hypothesis 2(c).

Then TERNARY (1) must also apply to hypothesis 2(d) because, by induction, Σ, λ `

e1 ⇓e (n1, τ, ω) and Σ′, λ′ ` e1 ⇓e (n′1, τ ′, ω′) implies that n1 = n′1. Hence Σ′, λ′ `

e1 ? e2 ◦e3 ⇓e (n′2, τ ′1 .α(e2).τ ′2, ω′1 .ω′2). Moreover, by hypothesis 2(a) and TERNARY-T,

there exists some γ2 such that Ψ, φ ` e2 : γ2 and γ2 ≤ γ′. By hypothesis 2(b), γ2 ≤ γ.

Thus by another use of induction on e2, n2 = n′2.

2. Σ, λ ` e1 ? e2 ◦e3 ⇓e (n3, τ1 .α(e2).τ3, ω1 .ω3) by rule TERNARY (2) on hypothesis 2(c).

This case follows similarly.

read(`) Suppose that Σ, λ ` read(`) ⇓e (Σ(a + n), τ . α(a + n), ω) and Σ′, λ′ `

read(`) ⇓e (Σ′(a′ + n′), τ ′ . α(a′ + n′), ω′) by rule READ, where Σ, λ ` ` ⇓` (a+ n, τ, ω) and

Σ′, λ′ ` ` ⇓` (a′ + n′, τ ′, ω′). By hypothesis 1(a) and rule READ-T, there exists some γ′′

such that Ψ(`) = γ′′ and γ′′ ≤ γ′, and Ψ, φ ` ` : ⊥. Hence by induction, a + n = a′ + n′.

By the transitive property and hypothesis 1(b), Ψ(`) ≤ γ, thus Σ(a + n) = Σ′(a′ + n′) by

hypothesis (II).

The next lemma establishes that memory and output traces emitted during the evaluation

of an expression are entirely determined by ⊥ inputs.

Lemma 4.3 (Expression Noninterference). Let dom(Σ) = dom(Σ′) = dom(λ) = dom(λ′) =

dom(Ψ) = dom(φ), with (I) λ(i) = λ′(i) for all i such that φ(i) = ⊥. Furthermore, suppose

that (II) Σ(a+ n) = Σ′(a+ n) for all a+ n such that Ψ(a+ n) = ⊥.

1. Suppose

(a) Ψ, φ ` ` : γ (` is typable in Ψ and φ),

(b) Σ, λ ` ` ⇓` (a+ n, τ, ω), and

(c) Σ′, λ′ ` ` ⇓` (a′ + n′, τ ′, ω′).
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Then τ ≡ τ ′ and ω .= ω′.

2. Suppose

(a) Ψ, φ ` e : γ (e is typable in Ψ and φ),

(b) Σ, λ ` e ⇓e (n, τ, ω), and

(c) Σ′, λ′ ` e ⇓e (n′, τ ′, ω′).

Then τ ≡ τ ′ and ω .= ω′.

Proof. By mutual induction on the structure of e and `. The cases for i and n are trivial.

a+ e Suppose that Σ, λ ` a+ e ⇓` (a+ n, τ, ω) and Σ′, λ′ ` a+ e ⇓` (a+ n′, τ ′, ω′)

by rule ADDRESS, where Σ, λ ` e ⇓` (n, τ, ω) and Σ′, λ′ ` e ⇓` (n′, τ ′, ω′). Thus τ ≡ τ ′ and

ω
.= ω′ by induction.

e1 � e2 Suppose that Σ, λ ` e1� e2 ⇓e (n1�n2, τ1 . τ2, ω1 .ω2) and Σ′, λ′ ` e1� e2 ⇓e

(n′1 � n′2, τ
′
1 . τ

′
2, ω

′
1 . ω

′
2) by rule ARITH. By two applications of induction, τ1 ≡ τ ′1 and

τ2 ≡ τ ′2, hence τ1 . τ2 ≡ τ ′1 . τ
′
2 by MEM-CONCAT. ω1 . ω2

.= ω′1 . ω
′
2 follows similarly with

OUT-CONCAT.

e1 ? e2 ◦ e3 By hypothesis 2(a) and rule TERNARY-T, Ψ, φ ` e1 : ⊥. There are two cases

to consider:

1. Σ, λ ` e1 ? e2 ◦e3 ⇓e (n2, τ1 .α(e2).τ2, ω1 .ω2) by rule TERNARY (1) on hypothesis 2(b).

Then TERNARY (1) must also apply to hypothesis 2(d) because, by Lemma 4.2 with

hypotheses (I) and (II), Σ, λ ` e1 ⇓e (n1, τ, ω) and Σ′, λ′ ` e1 ⇓e (n′1, τ ′, ω′) implies

n1 = n′1, so n′1 6= 0. Hence Σ′, λ′ ` e1 ? e2 ◦ e3 ⇓e (n′2, τ ′1 . α(e2) . τ ′2, ω′1 . ω′2). By two

applications of induction, τ1 ≡ τ ′1 and τ2 ≡ τ ′2, hence τ1 . α(e2) . τ2 ≡ τ ′1 . α(e2) . τ ′2 by

MEM-CONCAT and MEM-EXPR. ω1 . ω2
.= ω′1 . ω

′
2 follows similarly with OUT-CONCAT.

2. Σ, λ ` e1 ? e2 ◦e3 ⇓e (n3, τ1 .α(e2).τ3, ω1 .ω3) by rule TERNARY (2) on hypothesis 2(b).

This case follows similarly.

read(`) Suppose that Σ, λ ` read(`) ⇓e (n, τ . α(a + n′), ω) and Σ, λ′ ` read(`) ⇓e

(n′, τ ′ . α(a′ + n′′), ω′) by rule READ, where Σ, λ ` ` ⇓e (a + n′, τ, ω) and Σ′, λ′ ` ` ⇓e
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(a′ + n′′, τ ′, ω′). By rule READ-T, Ψ, φ ` ` : ⊥. Hence a + n′ = a′ + n′′ by Lemma 4.2

with hypotheses (I) and (II). By an application of induction, τ ≡ τ ′ and ω
.= ω′, thus

τ . α(a+ n′) ≡ τ ′ . α(a′ + n′′) by MEM-CONCAT and MEM-ADDR.

output(e) Suppose that Σ, λ ` output(e) ⇓e (0, τ, ω . n) and Σ, λ′ ` output(e) ⇓e

(0, τ,′ ω′ . n′) by rule OUTPUT, where Σ, λ ` e ⇓e (n, τ, ω) and Σ′, λ′ ` e ⇓e (n′, τ ′, ω′). By

rule READ-T, Ψ, φ ` e : ⊥, thus n = n′ by Lemma 4.2 and hypotheses (I) and (II). By an

application of induction, τ ≡ τ ′ and ω . n .= ω′ . n′ by OUT-CONCAT and OUT-VALUE.

Recall that statements in Core Covert transform the program store Σ. The Memory

Confidentiality lemma proves a strict confidentiality property for program state transfor-

mations. In effect, arrays of type γ cannot be tainted by information of a security class

greater than γ. This is essentially the Bell LaPadula “no read up, no write down” model of

confidentiality [32].

Lemma 4.4 (Memory Confidentiality). Let dom(Σ) = dom(Σ′) = dom(λ) = dom(λ′) =

dom(Ψ) = dom(φ), with (I) λ(i) = λ′(i) for all i such that φ(i) ≤ γ. Suppose further that

(II) Σ(a+ n) = Σ′(a+ n) for all a+ n such that Ψ(a+ n) ≤ γ. If

1. Ψ, φ ` s valid,

2. Σ, λ ` s ⇓s (Σ′′, τ, ω), and

3. Σ′, λ′ ` s ⇓s (Σ′′′, τ ′, ω′),

then Σ′′(a+ n) = Σ′′′(a+ n) for all a+ n such that Ψ(a+ n) ≤ γ.

Proof. By induction on the structure of the derivation of Σ, λ ` s ⇓s (Σ′, τ, ω). The case for

skip is trivial.

` := e Suppose the evaluation under Σ and λ ends with

Σ, λ ` ` ⇓` (a1 + n1, τ1, ω1) Σ, λ ` e ⇓e (n′1 τ ′1, ω′1)
Σ, λ ` ` := e ⇓s (Σ[a1 + n1/n

′
1], τ1 . τ

′
1 . α(a1 + n1), ω1 . ω

′
1)

and the evaluation under Σ′ and λ′ ends with

Σ′, λ′ ` ` ⇓` (a2 + n2, τ2, ω2) Σ′, λ′ ` e ⇓e (n′2 τ ′2, ω′2)
Σ′, λ′ ` ` := e ⇓s (Σ′[a2 + n2/n

′
2], τ2 . τ

′
2 . α(a2 + n2), ω2 . ω

′
2)
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and typing ends with an application of ASSIGN-T:

Ψ, φ ` ` : ⊥
Ψ, φ ` e : γ′
Ψ(`) = γ′′

γ′ ≤ γ′′

Ψ, φ ` ` := e valid

First, note that since Ψ, φ ` ` : ⊥, by Lemma 4.2 and hypotheses (I) and (II), a1+n1 = a2+n2.

Next, there are two cases to consider:

1. γ′′ � γ: Therefore Ψ(a1 + n1) � γ and Ψ(a2 + n2) � γ, so the assignment does

not update a location ≤ γ in memory. That is, for all a + n such that Ψ(a + n) ≤ γ,

Σ(a+n) = Σ[a1 +n1/n
′
1](a+n) and Σ′(a+n) = Σ′[a2 +n2/n

′
2](a+n). Moreover, because

Σ(a+ n) = Σ′(a+ n) by hypothesis (II), Σ[a1 + n1/n
′
1](a+ n) = Σ′[a2 + n2/n

′
2](a+ n).

2. γ′′ ≤ γ: By ASSIGN-T and transitivity, γ′ ≤ γ. Furthermore, by Lemma 4.2 and

hypotheses (I) and (II), n′1 = n′2. So in either evaluation, the same address is updated

with the same value. That is, for all a+n such that Ψ(a+n) = ⊥, Σ[a1 +n1/n
′
1](a+n) =

Σ′[a2 + n2/n
′
2](a+ n) using hypothesis (II).

s1; s2 Trivial, by two applications of induction on a derivation ending with the

SEQUENCE rule.

iterate e s Suppose that the typing ends with an application of the rule ITERATE-T:

Ψ, φ ` e : ⊥
Ψ, φ ` s valid

Ψ, φ ` iterate e s valid

Since Ψ, φ ` e : ⊥, evaluation of e under Σ and λ must produce the same value as evaluation

under Σ′ and λ′. That is, Σ, λ ` e ⇓e (n, τ, ω) and Σ′, λ′ ` e ⇓e (n′, τ ′, ω′) implies that

n = n′ by Lemma 4.2 with hypotheses (I) and (II). Hence there are two cases to consider:

1. n = 0. Then the evaluations under Σ and λ, and Σ′ and λ′ each end with an application

of rule ITERATE (1). The conclusion for this case is trivial, because ITERATE (1) does

not transform the store.

2. n 6= 0: Suppose that the evaluation under Σ and λ ends with an application of rule
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ITERATE (2):

Σ, λ ` e ⇓e (n1, τ1, ω1) n1 6= 0
Σ, λ ` s ⇓s (Σ1, τ

′
1, ω

′
1)

Σ1, λ ` iterate e s ⇓s (Σ′′, τ ′′1 , ω′′1)
Σ, λ ` iterate e s ⇓s (Σ′′, τ1 . α(s) . τ ′1 . τ ′′1 , ω1 . ω

′
1 . ω

′′
1)

and the evaluation under Σ′ and λ′ also ends with an application of ITERATE (2):

Σ′, λ′ ` e ⇓e (n2, τ2, ω2) n2 6= 0
Σ′, λ′ ` s ⇓s (Σ2, τ

′
2, ω

′
2)

Σ2, λ
′ ` iterate e s ⇓s (Σ′′′, τ ′′2 , ω′′2)

Σ′, λ′ ` iterate e s ⇓s (Σ′′′, τ2 . α(s) . τ ′2 . τ ′′2 , ω2 . ω
′
2 . ω

′′
2)

By induction, Σ1(a+ n) = Σ2(a+ n) for all a+ n such that Ψ(a+ n) ≤ γ. By another

application of induction, Σ′′(a+ n) = Σ′′′(a+ n) for all a+ n such that Ψ(a+ n) ≤ γ.

select e {s1, . . . , sm} Suppose that the evaluation under Σ and λ ends with

Σ, λ ` e ⇓e (n1, τ1, ω1)
n1 ∈ {1, . . . ,m}

Σ, λ ` sn1 ⇓s (Σ′′, τ ′1, ω′1)
Σ′, λ′ ` select e {s1, . . . , sm} ⇓s (Σ′′, τ1 . α(sn1) . τ ′1, ω1 . ω

′
1)

and the evaluation under Σ′ and λ′ ends with

Σ′, λ′ ` e ⇓e (n2, τ2, ω2)
n2 ∈ {1, . . . ,m}

Σ′, λ′ ` sn2 ⇓s (Σ′′′, τ ′2, ω′2)
Σ′, λ′ ` select e {s1, . . . , sm} ⇓s (Σ′′′, τ2 . α(sn2) . τ ′2, ω2 . ω

′
2)

and the typing ends with an application of the rule SELECT-T:

Ψ, φ ` e : ⊥
Ψ, φ ` s1 valid · · · Ψ, φ ` sm valid

Ψ, φ ` select e {s1, . . . , sm} valid

By Lemma 4.2 with hypotheses (I) and (II) applied to the evaluation of e, n1 = n2. Then by

an application of induction on the evaluation of sn1 and sn2 over Σ, λ and Σ′, λ′, respectively,

Σ′′(a+ n) = Σ′′′(a+ n) for all a+ n such that Ψ(a+ n) ≤ γ.

The next lemma establishes that memory and output traces emitted during the evaluation

of a statement are entirely determined by ⊥ inputs.
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Lemma 4.5 (Statement Noninterference). Let dom(Σ) = dom(Σ′) = dom(λ) = dom(λ′) =

dom(Ψ) = dom(φ), with (I) λ(i) = λ′(i) for all i such that φ(i) = ⊥. Suppose further that

(II) Σ(a+ n) = Σ′(a+ n) for all a+ n such that Ψ(a+ n) = ⊥. If

1. Ψ, φ ` s valid,

2. Σ, λ ` s ⇓s (Σ′′, τ, ω), and

3. Σ′, λ′ ` s ⇓s (Σ′′′, τ ′, ω′),

then τ ≡ τ ′ and ω .= ω′.

Proof. By induction on the structure of the derivation of Σ, λ ` s ⇓s (Σ′, τ, ω). The case for

skip is trivial.

` := e Suppose the evaluation under Σ and λ ends with

Σ, λ ` ` ⇓` (a1 + n1, τ1, ω1) Σ, λ ` e ⇓e (n′1 τ ′1, ω′1)
Σ, λ ` ` := e ⇓s (Σ[a1 + n1/n

′
1], τ1 . τ

′
1 . α(a1 + n1), ω1 . ω

′
1)

and the evaluation under Σ′ and λ′ ends with

Σ′, λ′ ` ` ⇓` (a2 + n2, τ2, ω2) Σ′, λ′ ` e ⇓e (n′2 τ ′2, ω′2)
Σ′, λ′ ` ` := e ⇓s (Σ′[a2 + n2/n

′
2], τ2 . τ

′
2 . α(a2 + n2), ω2 . ω

′
2)

and typing ends with an application of ASSIGN-T:

Ψ, φ ` ` : ⊥
Ψ, φ ` e : γ
Ψ(`) = γ′

γ ≤ γ′

Ψ, φ ` ` := e valid

First, note that since Ψ, φ ` ` : ⊥, a1 + n1 = a2 + n2 by Lemma 4.2 and hypotheses (I)

and (II). By Lemma 4.3, τ1 ≡ τ2 and ω1
.= ω2, and similarly τ ′1 ≡ τ ′2 and ω′1

.= ω′2. Hence

τ1 .τ
′
1 .α(a1 +n1) ≡ τ ′` .τ

′
e .α(a2 +n2) by MEM-ADDR and two applications of MEM-CONCAT,

and ω1 . ω
′
1
.= ω2 . ω

′
2 by OUT-CONCAT.

s1; s2 Suppose the evaluation under Σ and λ ends with

Σ, λ ` s1 ⇓s (Σ1, τ1, ω1) Σ1, λ ` s2 ⇓s (Σ′′, τ ′1, ω′1)
Σ, λ ` s1; s2 ⇓s (Σ′′, τ1 . τ

′
1, ω1 . ω

′
1)

and the evaluation under Σ′ and λ′ ends with
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Σ′, λ ` s1 ⇓s (Σ2, τ2, ω2) Σ2, λ ` s2 ⇓s (Σ′′′, τ ′2, ω′2)
Σ′, λ ` s1; s2 ⇓s (Σ′′′, τ2 . τ

′
2, ω2 . ω

′
2)

and typing ends with an application of SEQUENCE-T:

Ψ, φ ` s1 valid
Ψ, φ ` s2 valid

Ψ, φ ` s1; s2 valid

By induction on the evaluation of s1 under Σ, λ and Σ′, λ′, τ1 ≡ τ2 and ω1
.= ω2. By Lemma 4.4

with hypotheses (I) and (II), Σ1(a+ n) = Σ2(a+ n) for all a such that Ψ(a+ n) = ⊥. Hence

by another application of induction to s2, τ ′1 ≡ τ ′2 and ω′1
.= ω′2. Thus τ1 . τ

′
1 ≡ τ2 . τ

′
2 by

MEM-CONCAT and ω1 . ω
′
1
.= ω2 . ω

′
2 by OUT-CONCAT.

iterate e s Suppose that the typing ends with an application of the rule ITERATE-T:

Ψ, φ ` e : ⊥
Ψ, φ ` s valid

Ψ, φ ` iterate e s valid

Since Ψ, φ ` e : ⊥, evaluation of e under Σ and λ must produce the same value as evaluation

under Σ′ and λ′. That is, Σ, λ ` e ⇓e (n1, τ1, ω1) and Σ′, λ′ ` e ⇓e (n2, τ2, ω2) implies that

n1 = n2 by Lemma 4.2 with hypotheses (I) and (II). Moreover, by Lemma 4.3 τ1 ≡ τ2 and

ω1
.= ω2. There are two cases to consider:

1. n = 0. Then the evaluation under Σ and λ ends with an application of rule ITERATE (1):

Σ, λ ` e ⇓e (n1, τ1, ω1) n1 = 0
Σ, λ ` iterate e s ⇓s (Σ, τ1, ω1)

and likewise for Σ′ and λ′:

Σ′, λ′ ` e ⇓e (n2, τ2, ω2) n2 = 0
Σ′, λ′ ` iterate e s ⇓s (Σ′, τ2, ω2)

It has already been established that τ1 ≡ τ2 and ω1
.= ω2.

2. n 6= 0: Then the evaluation under Σ and λ ends with an application of rule ITERATE (2):

Σ, λ ` e ⇓e (n1, τ1, ω1) n1 6= 0
Σ, λ ` s ⇓s (Σ1, τ

′
1, ω

′
1)

Σ1, λ ` iterate e s ⇓s (Σ′′, τ ′′1 , ω′′1)
Σ, λ ` iterate e s ⇓s (Σ′′, τ1 . α(s) . τ ′1 . τ ′′1 , ω1 . ω

′
1 . ω

′′
1)

and the evaluation under Σ′ and λ′ also ends with an application of ITERATE (2):
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Σ′, λ′ ` e ⇓e (n2, τ2, ω2) n2 6= 0
Σ′, λ′ ` s ⇓s (Σ2, τ

′
2, ω

′
2)

Σ2, λ
′ ` iterate e s ⇓s (Σ′′′, τ ′′2 , ω′′2)

Σ′, λ′ ` iterate e s ⇓s (Σ′′′, τ2 . α(s) . τ ′2 . τ ′′2 , ω2 . ω
′
2 . ω

′′
2)

By Lemma 4.3 with hypotheses (I) and (II), τ1 ≡ τ2 and ω1
.= ω2. Then by induction

on the evaluation of s, τ ′1 ≡ τ ′2 and ω′1
.= ω′2. By Lemma 4.4 with hypotheses (I) and

(II), Σ1(a + n) = Σ2(a + n) for all a such that Ψ(a + n) = ⊥. Hence by induction on

the evaluation of iterate e s over Σ1, λ and Σ2, λ
′, it holds that τ ′′1 ≡ τ ′′2 and ω′′1

.= ω′′2 .

Finally, τ1 . α(s) . τ ′1 . τ ′′1 ≡ τ2 . α(s) . τ ′2 . τ ′′2 by repeated application of MEM-CONCAT,

and likewise ω1 . ω
′
1 . ω

′′
1
.= ω2 . ω

′
2 . ω

′′
2 with OUT-CONCAT.

select e {s1, . . . , sm} Suppose that the evaluation under Σ and λ ends with

Σ, λ ` e ⇓e (n1, τ1, ω1)
n1 ∈ {1, . . . ,m}

Σ, λ ` sn1 ⇓s (Σ′′, τ ′1, ω′1)
Σ, λ ` select e {s1, . . . , sm} ⇓s (Σ′′, τ1 . α(sn1) . τ ′1, ω1 . ω

′
1)

and the evaluation under Σ′ and λ′ ends with

Σ′, λ′ ` e ⇓e (n2, τ2, ω2)
n2 ∈ {1, . . . ,m}

Σ′, λ′ ` sn2 ⇓s (Σ′′′, τ ′2, ω′2)
Σ′, λ′ ` select e {s1, . . . , sm} ⇓s (Σ′′′, τ2 . α(sn2) . τ ′2, ω2 . ω

′
2)

and the typing ends with an application of the rule SELECT-T:

Ψ, φ ` e : ⊥
Ψ, φ ` s1 valid · · · Ψ, φ ` sm valid

Ψ, φ ` select e {s1, . . . , sm} valid

By Lemma 4.3 with hypotheses (I) and (II) applied to the evaluation of e, τ1 ≡ τ2 and

ω1
.= ω2. By Lemma 4.2 with hypotheses (I) and (II) applied to the evaluation of e, n1 = n2.

Hence by induction applied to the evaluation of sn1 and sn2 over Σ, λ and Σ′, λ′, respectively,

τ ′1 ≡ τ ′2 and ω′1
.= ω′2. Thus τ1.α(sn1).τ ′1 ≡ τ2.α(sn2).τ ′2 by MEM-STMT and MEM-CONCAT.

Similarly, ω1 . ω
′
1
.= ω2 . ω

′
2 by rule OUT-CONCAT.

The last lemma establishes that non-⊥ inputs do not affect whether or not a program

terminates.
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Lemma 4.6 (Termination). Let dom(Σ) = dom(Σ′) = dom(λ) = dom(λ′) = dom(Ψ) =

dom(φ), with λ(i) = λ′(i) for all i such that φ(i) = ⊥, and Σ(a+n) = Σ′(a+n) for all a+n

such that Ψ(a+ n) = ⊥. Given a statement s such that

1. Ψ, φ ` s valid, and

2. Σ, λ ` s ⇓s (Σ′′, τ, ω),

there exist Σ′′′, τ ′, and ω′ such that Σ′, λ′ ` s ⇓s (Σ′′′, τ ′, ω′).

Proof. By induction on the structure of the derivation of Σ, λ ` s ⇓s (Σ′, τ, ω). The only

interesting cases are iterate and select.

iterate e s Suppose that the typing ends with an application of the rule ITERATE-T:

Ψ, φ ` e : ⊥
Ψ, φ ` s valid

Ψ, φ ` iterate e s valid

There are two cases to consider:

1. The evaluation under Σ and λ ends with an application of rule ITERATE (1):

Σ, λ ` e ⇓e (n, τ, ω) n = 0
Σ, λ ` iterate e s ⇓s (Σ, τ, ω)

Since Ψ, φ ` e : ⊥, evaluation of e under Σ′ and λ′ must produce the same value as

evaluation under Σ and λ by Lemma 4.2. That is, Σ′, λ′ ` e ⇓e (n, τ ′, ω′) where n = 0.

Hence by rule ITERATE (1), Σ′, λ′ ` iterate e s ⇓s (Σ′, τ ′, ω′).

2. The evaluation under Σ and λ ends with an application of rule ITERATE (2):

Σ, λ ` e ⇓e (n, τ1, ω1) n 6= 0
Σ, λ ` s ⇓s (Σ1, τ

′
1, ω

′
1)

Σ1, λ ` iterate e s ⇓s (Σ′′, τ ′′1 , ω′′1)
Σ, λ ` iterate e s ⇓s (Σ′′, τ1 . α(s) . τ ′1 . τ ′′1 , ω1 . ω

′
1 . ω

′′
1)

Since Ψ, φ ` e : ⊥, evaluation of e under Σ′ and λ′ must produce the same value as

evaluation under Σ and λ by Lemma 4.2. That is, Σ′, λ′ ` e ⇓e (n, τ2, ω2) for some τ2

and ω2. Then by induction, there exist Σ2, τ ′2, and ω′2 such that Σ′, λ′ ` s ⇓s (Σ2, τ
′
2, ω

′
2).

By another application of induction, there exist Σ′′′, τ ′′2 , and ω′′2 such that Σ2, λ
′ `
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iterate e s ⇓s (Σ′′′, τ ′′2 , ω′′2). Thus by rule ITERATE (2),

Σ′, λ′ ` iterate e s ⇓s (Σ′′′, τ2 . α(s) . τ ′2 . τ ′′2 , ω2 . ω
′
2 . ω

′′
2).

select e {s1, . . . , sm} Suppose that the evaluation under Σ and λ ends with

Σ, λ ` e ⇓e (n, τ1, ω1)
n ∈ {1, . . . ,m}

Σ, λ ` sn ⇓s (Σ′′, τ ′1, ω′1)
Σ, λ ` select e {s1, . . . , sm} ⇓s (Σ′′, τ1 . α(sn) . τ ′1, ω1 . ω

′
1)

and the typing ends with an application of the rule SELECT-T:

Ψ, φ ` e : ⊥
Ψ, φ ` s1 valid · · · Ψ, φ ` sm valid

Ψ, φ ` select e {s1, . . . , sm} valid

Since Ψ, φ ` e : ⊥, evaluation of e under Σ′ and λ′ must produce the same value as evaluation

under Σ and λ by Lemma 4.2. That is, Σ′, λ′ ` e ⇓e (n, τ2, ω2) for some τ2 and ω2. Then

by induction, there exist Σ′′′, τ ′2, and ω′2 such that Σ′, λ′ ` sn ⇓s (Σ′′′, τ ′2, ω′2). Thus by rule

SELECT,

Σ′, λ′ ` select e {s1, . . . , sm} ⇓s (Σ′′′, τ2 . α(sn2) . τ ′2, ω2 . ω
′
2).

Theorem 4.7 (Termination-Sensitive Noninterference). Let dom(Σ) = dom(Σ′) = dom(λ) =

dom(λ′) = dom(Ψ) = dom(φ), with λ(i) = λ′(i) for all i such that φ(i) = ⊥, and Σ(a+ n) =

Σ′(a+ n) for all a+ n such that Ψ(a+ n) = ⊥. Given a Core Covert program Π such that

Ψ, φ ` Π valid,

1. if Σ, λ ` Π ⇓Π (τ, ω) and Σ′, λ′ ` Π ⇓Π (τ ′, ω′), then τ ≡ τ ′ and ω .= ω′ (non-⊥ inputs

noninterfere with memory traces and outputs), and

2. Σ, λ ` Π ⇓Π (τ, ω) if and only if Σ′, λ′ ` Π ⇓Π (τ ′, ω′) (Core Covert is termination-

sensitive).

Proof. By Lemma 4.5 and Lemma 4.6, respectively.
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1 main {
2 ares + 0 := 0;
3 asz + 0 := i1;
4 iterate (read(asz + 0)) (
5 asz + 0 := read(asz + 0)− 1;
6 select (read(a1 + read(asz + 0)) 6= read(a2 + read(asz + 0))) {
7 ares + 0 := 1; asz := 0,
8 skip
9 }
10 )
11 }

Listing 4.1: A Core Covert implementation of memcmp() which does not type check

4.3 Example: Typing memcmp()

The standard C/C++ implementation of memcmp() leaks information through its control flow

(Recall Example 1.1). Listing 4.1 shows the corresponding implementation in Core Covert.

Additional parentheses have been added to clarify the syntax structure. Suppose that there

are two security classes, ⊥ and >, such that ⊥ ≤ > and > � ⊥. The two buffers are located

in arrays a1 and a2. There are also two variables, i.e., arrays of length one: asz stores the

size of the two buffers (the sizes are assumed equal), and ares records the result. The result

is 0 if the buffers are identical, and 1 otherwise. The buffer size is read from a program input

i1, and the buffer contents are assumed to be present in memory when the program begins.

Each loop iteration decrements the value stored in asz, which also determines the index

for the next pair of read operations. On a given iteration, if the two integers read from

corresponding indices in the buffers differ, then ares + 0 is set to 1, and the index asz + 0

is set to 0, thus terminating the loop immediately. Otherwise, the loop continues to iterate

until a difference is found, or the beginning of both buffers is reached.

It is assumed that Φ(ares) = >, Φ(asz) = ⊥, Φ(a1) = >, and Φ(a2) = >, and that

φ(i1) = ⊥. Does this program type check? Fortunately, it is not necessary to build the entire

type derivation tree. Note that a1 + read(asz + 0) and a2 + read(asz + 0) trivially have type

> because Φ(a1) = Φ(a2) = >. Hence by the Simple Security Theorem (Theorem 4.1), the
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1 main {
2 ares + 0 := 0;
3 asz + 0 := i1;
4 iterate (read(asz + 0)) (
5 asz + 0 := read(asz + 0)− 1;
6 ares + 0 := (read(a1 + read(asz + 0)) 6= read(a2 + read(asz + 0))) | read(ares + 0)
7 )
8 }

Listing 4.2: A Core Covert implementation of memcmp() which type checks

condition expression for the select statement must have type >. By rule SELECT-T (the only

rule which can type select), the program in Listing 4.1 cannot type check.

Is it possible to compose a Core Covert program which is semantically equivalent to

Listing 4.1, but which does type check? A valid solution must avoid any situation where

a branch condition expression must be assigned type >. One possible solution is given in

Listing 4.2. All of the assumptions about the initial context Σ, λ and memory layout remain

unchanged. What is different is that the loop does not short-circuit as soon as a difference

between the two buffers is detected. Rather, the assignment to ares + 0 in Line 6 simply

updates the result value to 1 when two corresponding integers differ. The “|” operator is a

bitwise OR, as in C and C++. Thus once the value at ares + 0 is updated to 1 (i.e., the 0th

bit is set), that bit cannot be unset by the bitwise OR. For brevity, the type derivation tree

for Listing 4.2 has been omitted. It is easy to verify that noninterference is never violated by

applying the Simple Security Theorem to each read() and each assignment, and the condition

for the iterate statement.

One noteworthy aspect of these two implementations is that neither emits the result

stored in ares + 0 to the output trace. Rather, this value just remains in memory when the

program terminates. This is because Ψ(ares +0) = >, and thus the expression output(ares +0)

would not be typable by rule OUTPUT-T. If it were typable, then Core Covert would not

satisfy noninterference. This topic of downgrading or disclosing the result of a computation

is addressed in the next chapter.
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Chapter 5

Covert C++

Covert C++ is a practical realization of the Core Covert language, introduced in the prior

chapter. The Covert C++ security-type system specifies an information-flow policy which

roughly enforces two categories of constraints. First, the information flow-policy prevents

explicit flows from downgrading secret data into public data. Second, it precludes implicit

flows of secret data through program control flow and memory access patterns (e.g., via pointer

subscripting). The former constraint obviates storage-channel leaks, while the latter closes

termination-channel leaks and defeats side-channel attacks against the memory hierarchy,

including page fault and cache-based attacks. The information-flow control which enforces

the policy is the type checking algorithm built into any C++17-compliant compiler, including

GCC, Clang, and the Microsoft Visual C++ compiler (MSVC).

This chapter describes the design and implementation of the Covert C++ security-type

system. In particular, a formal description of the type system is presented, along with an

informal proof that Covert C++ enforces noninterference. The chapter closes with a case

study involving an SGX enclave program whose security goal is to protect (i.e., not leak) a

digital rights management (DRM) key. For the reader who is unfamiliar with C++ (esp.

C++11 and newer), Table 5.1 provides a reference of the C++ keywords and metafunctions

used throughout the chapter (and also in later chapters).
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C++ Keyword Description
decltype( expression ) Takes an expression and returns its type. Evaluated at

compile time.
template <
parameter list
> declaration

Declares a struct, class, function or variable to be a tem-
plate, thus allowing it to be parameterized by one or more
types and/or compile-time constants.

typename name Indicates that the following identifier (name) is the name of
a type. Commonly used to declare template type parameters
(the class keyword can also be used to declare template
type parameters)

constexpr declaration Declares that a variable or function may be computed at
compile time.

operator op Used to indicate the name of an overloaded operator, e.g.,
operator+ or std::string::operator+=.

reinterpret_cast
< type >
( expression )

Treats the value of the given expression as though it has
the given type by reinterpreting the underlying bit pattern.
A compile-time cast, i.e., it does not compile to any CPU
instructions.

STL Metafunction Description
template <class T>
std::declval

Converts a type T to a reference type T &&. Can only be
used in unevaluated environments (e.g., in an argument to
decltype) to create a pseudo lvalue/rvalue object of type T.

template <class T1,
class T2>

std::is_convertible

Evaluates to true when the first template type argument is
implicitly convertible to the second template type argument.

template <class T,
T v>

std::integral_constant

Represents a compile-time constant v of type T.

template <bool b,
class T>

std::enable_if_t

Evaluates to the type T if b evaluates to true; otherwise
it is undefined. Commonly used with SFINAE to enable
conditional compilation.

Table 5.1: C++ keywords and metafunctions
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5.1 Type System Design

Covert C++ augments the C++ type system by pairing data types with security labels. A

security label is the representation of a security class (e.g., public, secret) in a Covert C++

program. These labels may constrain the behavior of sensitive data. There are two security

classes: low (public) and high (secret). In C++:

enum SLabel { L, H };

These labels form a binary priority lattice in which L is strictly less than H. A data type

can be associated with a security label by instantiating the SE template container for that

data type and security label. For example, SE<char, L> is the type of a low character, and

SE<int, H> for a high integer. The SE container does not accept references, nor does it accept

types that are cv-qualified at the top level. Hence a const lvalue reference to a low int must

be expressed as const SE<int, L> &.

Security typing for pointers is more complicated. Pointers may require multiple security

labels: one for the pointer itself, and one additional security label for each pointee. For

example, int** requires three security labels. The meaning of a security-typed pointer is

also more nuanced. A pointer p of type SE<int*, L, H> can be thought of as a low pointer

to a high integer, but this is not always the case. The typing rules introduced later in this

section allow one pointer to alias another pointer with lower security labels. Hence p could be

an alias of a pointer q of type SE<int*, L, L>. By permitting this kind of security-upgrade

aliasing, Covert C++ allows functions and algorithms to specify an upper bound on the

security classes of their parameters.

To clarify the Covert C++ security-type system, some additional terminology is required.

The number of security labels associated with a given type T is referred to as T’s type depth.

A type is primitive if it belongs to any of the following categories: arithmetic (int, char,

etc.), enum, non-function pointer, or pointer to any non-SE type, at any level. The type depth

of a primitive type is is one, plus the number of pointers in the type. The type depth of an
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Malformed

Labeled

Primitive

Canonical

Unlabeled

Figure 5.1: Covert C++ type relationships

SE type is zero, hence an SE type cannot be nested immediately inside of another SE type

(although a pointer to an SE type can be nested within an SE type). A labeled type is any

type with non-zero type depth (i.e., it may be assigned a security label). An unlabeled type

is a non-SE type with zero type depth. An unlabeled type T can become a labeled type by

specializing the type depth metafunction for T, and assigning to it an appropriate number of

security labels. A type is canonical if it is unlabeled, or it is of the form SE<T, S1,...,SN>

where T is a labeled type with type depth equal to N.

All other types are malformed. Some examples of malformed types are SE<char, H>* and

SE<SE<int, L>*, H>. Malformed types must be allowed to exist in Covert C++. Consider

the case when an array decays to a pointer. The type int[8] decays to int*. Similarly,

SE<int, H>[8] will decay to SE<int, H>*. There is no way to override or circumvent this

behavior in C++, so it must be allowed. Malformed types can also materialize when template

parameters of template classes or functions are instantiated with SE types. Types which are

either malformed or canonical, but not unlabeled, are collectively referred to as covert types.

That is, a covert type is either a (possibly malformed) SE type or a pointer to an SE type.

Figure 5.1 illustrates these type relationships.

Informally, Covert C++’s information-flow policy enforces the following rules (with several

simplifications):

1. Labeled types can be implicitly converted into low covert types, and vice-versa.

(a) Low covert types can be implicitly converted into high covert types.
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(b) High covert types cannot be implicitly converted into low covert types.

2. Operators which perform a computation over several operands (e.g., +, |, etc.) produce

a result with a security label that is the least upper bound (LUB) of the operands’

respective security labels.

3. Taking the address (&) of an lvalue of type SE<T, [...]> produces a pointer of type

SE<T*, L, [...]>.

4. High covert-typed pointers cannot be used to access memory (e.g., via pointer indirection

or subscripting). A pointer of type SE<T*, L, [...]> may be used to access memory;

if it is used to read memory, then the result has type SE<T, [...]>, or T alone if T is

an unlabeled type.

Although this summary oversimplifies Covert C++ quite a bit, these four basic rules capture

the fundamental security features of the language.

More formally, Figures 5.2 and 5.3 show the precise Covert C++ type conversion rules

and typing rules, respectively, expressed in terms of the type relationships depicted in

Figure 5.1. Types γ are tuples (T, (S1, . . . , Sn)), and there are two projection functions

projL and projR such that T = projL〈γ〉 and (S1, . . . , Sn) = projR〈γ〉. The left and right

projections are referred to as the inner type and security labels of γ, respectively. A function

with a parenthesized argument list is an ordinary function, and a function with an angle-

enclosed argument list is a metafunction—computed at compile time—defined over types.

Metafunctions in the std namespace are part of the C++ STL.

The decltype keyword was introduced in C++11 [88]. It takes an expression, and returns

the type of that expression if it were to be evaluated. The std::declval function is an

undefined function intended only for use in unevaluated contexts. std::declval<T>() has

type T &&, thus in an unevaluated context it effectively produces a reference to a pseudo

object/value of type T [88].

The SLABELS (1, 2) rules define the Covert C++ metafunction is_se_convertible,

which ensures that when a value of type γ is converted into a value of type γ′, no security
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T := A labeled type
S := A Covert C++

security label

e := An expression
γ := A canonical type
µ := A malformed type

SLABELS (1)

(S1, . . . , Sn) = projR〈γ〉
(S′1, . . . , S′m) = projR〈γ′〉

n ≤ m
∀i ∈ {1, . . . , n}. Si ≤ S′i

is_se_convertible〈γ, γ′〉
SLABELS (2)

(S1, . . . , Sn) = projR〈γ〉
(S′1, . . . , S′m) = projR〈γ′〉

n > m
∀i ∈ {1, . . . ,m}. Si ≤ S′i
∀j ∈ {m+ 1, . . . , n}. Sj = L

is_se_convertible〈γ, γ′〉

SE TO SE

T = projL〈γ〉 T ′ = projL〈γ′〉
std::is_convertible〈T, T ′〉 is_se_convertible〈γ, γ′〉

std::is_convertible〈γ, γ′〉

TO SE
T = projL〈γ〉

std::is_convertible〈T, γ〉
TO CANONICAL

γ′ = canonicalize〈µ〉
std::is_convertible〈γ′, γ〉
std::is_convertible〈µ, γ〉

FROM SE

T = projL〈γ〉
(S1, . . . , Sn) = projR〈γ〉
∀i ∈ {1, . . . , n}. Si = L

std::is_convertible〈γ, T 〉
FROM CANONICAL

γ′ = canonicalize〈µ〉
std::is_convertible〈γ, γ′〉
std::is_convertible〈γ, µ〉

Figure 5.2: Covert C++ type conversion rules.

label is downgraded from H to L. Security labels may be upgraded from L to H. Moreover,

SLABELS (2) checks that no H security label is lost when reducing the number of security

labels during a type cast. For example, it would prevent SE<int*, L, H> from being cast to

SE<uintptr_t, L>.

The std::is_convertible metafunction tests whether there exists an implicit conversion

sequence (possibly including a user-defined conversion operator) from its first argument to its

second argument. The SE TO SE rule allows γ to be implicitly converted (hence: converted)

to γ′ if their inner types are convertible and their security labels are convertible. The TO SE

rule allows any labeled type to be converted to a canonical type with any sequence of security

labels of correct length. The FROM SE rule allows any canonical type with only L security

labels to be converted to its inner type. These rules collectively define the information-flow

policy for explicit flows that arise when data is copied from one (possibly temporary) object

to another.
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The TO CANONICAL and FROM CANONICAL rules allow any malformed type to be

converted to a canonical type, and vice-versa. The canonicalize metafunction is quite

complex, and thus difficult to capture with inference rules. In essence, canonicalize performs

two distinct operations. First, it pulls outlying pointers into the SE container, assigning a L

security label to each such pointer. Thus SE<int, H>* would become SE<int*, L, H>. Second,

canonicalize flattens nested SE containers, for example transforming SE<SE<int, H>*, L>

into SE<int*, L, H>.

LABEL CAST defines the typing of the se_label_cast() function. This rule is similar to

the SE TO SE rule, except that LABEL CAST does allow security labels to be downgraded.

Also note that SE TO SE defined an implicit conversion, whereas se_label_cast() must

be called explicitly by the user, and all of the new security labels must be specified in the

template arguments. The intent is to force the developer to consciously declare which security

labels are being downgraded. Although it may seem counter-productive to have a rule which

downgrades security labels, Section 5.6 discusses some scenarios where se_label_cast() can

be necessary and helpful, when used with caution.

The C++ language defines four named cast operators: static_cast, reinterpret_cast,

const_cast, and dynamic_cast. C++ does not allow these functions to be overloaded,

therefore Covert C++ defines its own se_static_cast, and likewise for the other named

casts. The NAMED CAST inference rule for each cast is identical, and it is macro-defined for

each of the four C++ named casts. The argument to decltype is the named cast from a

pseudo value of type T to T ′. If this cast is valid in C++, then decltype will return the

type of the unevaluated expression, T ′, and the rule will resolve (assuming the security labels

are also convertible). If the [name]_cast is not valid from T to T ′, then se_[name]_cast is

not valid from γ to γ′.

The typing rules for the arithmetic and logical operators are more straightforward. The

LUB over the lattice of security levels is denoted by t, such that

S1 t S2 = L⇐⇒ S1 = L ∧ S2 = L
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opUA ::= + | - | ˜ | ++ | –
opAA ::= += | -= | *= | /= | %= | ˆ= | &= | |= | «= | »=
opBA ::= + | - | * | / | % | ˆ | & | | | « | » | < | > | == | != | <= | >=
opP A ::= + | -

LABEL CAST

e : γ T = projL〈γ〉
T ′ = projL〈γ′〉

std::is_convertible〈T, T ′〉
se_label_cast〈γ′〉(e) : γ′

NAMED CAST

e : γ is_se_convertible〈γ, γ′〉
T = projL〈γ〉 T ′ = projL〈γ′〉
T ′ = decltype([name]_cast〈T ′〉(

std::declval〈T 〉))
se_[name]_cast〈γ′〉(e) : γ′

UNARY LOGIC OP

e : γ T = projL〈γ〉 (S1, . . . , Sn) = projR〈γ〉
bool = decltype(!std::declval〈T 〉)

!e : (bool, (S1))

UNARY ARITH OP

e : γ T = projL〈γ〉 (S1, . . . , Sn) = projR〈γ〉
T ′ = decltype(opUA std::declval〈T 〉)

opUA e : (T ′, (S1, . . . , Sn))

ARITH ASSIGN

e1 : γ1 T1 = projL〈γ1〉 (S1
1 , . . . , S

1
n) = projR〈γ1〉

e2 : γ2 T2 = projL〈γ2〉 (S2
1) = projR〈γ2〉

T ′1 = decltype(std::declval〈T1〉 opAA std::declval〈T2〉) S1
1 ≥ S2

1

e1 opAA e2 : (T ′1, (S1
1 , . . . , S

1
n))

POINTER ARITH (1)

e1 : γ1 T1 = projL〈γ1〉 (S1
1 , S

1
2 , . . . , S

1
n) = projR〈γ1〉

e2 : γ2 T2 = projL〈γ2〉 (S2
1) = projR〈γ2〉 S1 = S1

1 t S2
1

T = decltype(std::declval〈T1〉 opP A std::declval〈T2〉)
e1 opP A e2 : (T, (S1, S

1
2 . . . , S

1
n))

POINTER ARITH (2)

e1 : γ1 T1 = projL〈γ1〉 (S1
1) = projR〈γ1〉 S1 = S1

1 t S2
1

e2 : γ2 T2 = projL〈γ2〉 (S2
1 , S

2
2 , . . . , S

2
m) = projR〈γ2〉

T = decltype(std::declval〈T1〉 opP A std::declval〈T2〉)
e1 opP A e2 : (T, (S1, S

2
2 . . . , S

2
n))

BINARY ARITH

e1 : γ1 T1 = projL〈γ1〉 (S1) = projR〈γ1〉
e2 : γ2 T2 = projL〈γ2〉 (S2) = projR〈γ2〉

T = decltype(std::declval〈T1〉 opBA std::declval〈T2〉) S = S1 t S2

e1 opBA e2 : (T, (S))

INDIRECTION

e : γ Tptr = projL〈γ〉
(S1, S2, . . . , Sn) = projR〈γ〉

S1 6= H
T = decltype(

*std::declval〈Tptr〉)
*e : (T, (S2, . . . , Sn))

SUBSCRIPT

e : γ e′ : γ′
Tptr = projL〈γ〉 Tidx = projL〈γ′〉
(S1, S2, . . . , Sn) = projR〈γ〉 S1 6= H

(Si) = projR〈γ〉 Si 6= H
T = decltype(std::declval〈Tptr〉

[std::declval〈Tidx〉])
e[e′] : (T, (S2, . . . , Sn))

ARROW

e : γ m : γ′
(S1, S2, . . . , Sn) = projR〈γ〉

S1 6= H

e->m : γ′
ADDRESS-OF

e : γ T = projL〈γ〉
(S1, . . . , Sn) = projR〈γ〉
&e : (T∗, (L, S1, . . . , Sn))

Figure 5.3: Covert C++ typing rules.
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Hence the POINTER ARITH (1, 2) rules and the BINARY ARITH rule dictate that operations

which combine security-typed data propagate H security labels. Note that pointer arithmetic

operations preserve the security label(s) of the pointee type.

UNARY ARITH OP uses decltype and std::declval to simulate the given unary arith-

metic operation on a pseudo member of the inner type. If that evaluation succeeds, then the

result obtains the inner type of the Covert C++ expression, and the security labels remain

unchanged.

The use of decltype allows Covert C++ to be more lazy with its inference rule definitions.

For instance, if T is a pointer type, and opUA is the unary minus (negation) operator, then the

expression argument to decltype is not well-formed in C++. This is because integer negation

is invalid when applied to an expression of pointer type. When decltype fails to resolve the

type of the given expression—perhaps because the expression is not well-typed—the type

substitution fails, and thus the typing rule cannot be applied. Hence without decltype, each

inference rule would need to explicitly list all of the acceptable types T , or T1 and T2 for

the binary operators. Not only would this be extremely inconvenient, it would also mean

that the Covert C++ typing rules would need to be updated as new C++ standard revisions

adjust the C++ typing rules.

The INDIRECTION, SUBSCRIPT, and ARROW rules define the respective typing rules for

operations which access memory by operating on pointers. All of these rules mandate that

pointers with H as their front-most security label cannot be used to access memory. Moreover,

a pointer subscript value cannot be H. The ADDRESS-OF rule simply prepends an L label to

the result of the & operation, which returns the address in memory where the given variable

resides. The variable’s address is treated as public because it does not make sense to treat

the location of a variable—whether on the stack, heap, or in static memory—as a program

secret.

These inference rules entirely characterize the Covert C++ type system. What this

dissertation does not present is an accompanying formal model of Covert C++ semantics.
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The reason is that the C++ language is extraordinarily complex—the C++17 standard

language specification [90] comprises 1,622 pages. Although other works [122, 126] have

successfully modeled various subsets of the C++ language, the amount of effort required

to build a truly accurate model of Covert C++ sufficient to capture the noninterference

property would likely exceed that of any prior work. This was the rationale behind the

simplified formulation of Core Covert presented in Chapter 4. Moreover, a formal proof that

Covert C++ enforces noninterference would not even guarantee that this property would

be preserved during compilation, a topic that is addressed later in Chapter 6. Nonetheless,

several illustrative type inference rules for control-flow statements and expressions can be

derived from the type inference rules in Figure 5.3.

C++ features a small set of control flow statements, collectively referred to as selection

and iteration statements. Section 9/4 of the language standard specifies constraints on the

branch/termination conditions for these statements:

“The value of a condition that is an initialized declaration in a statement other than

a switch statement is the value of the declared variable contextually converted to

bool . . . . If that conversion is ill-formed, the program is ill-formed. The value of

a condition that is an initialized declaration in a switch statement is the value

of the declared variable if it has integral or enumeration type, or of that variable

implicitly converted to integral or enumeration type otherwise. The value of a

condition that is an expression is the value of the expression, contextually converted

to bool for statements other than switch; if that conversion is ill-formed, the

program is ill-formed.” [90]

In brief, a selection/iteration statement is only well-formed when its branch/termination

condition is contextually convertible to bool, or an integral or enumeration type, depending

on the selection/iteration statement. By the FROM SE rule, an H value cannot be contextually

converted to a value of one of these types. Thus an H-labeled expression cannot be the

branch condition for a well-formed selection statement. This well-formedness criteria for
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selection statements can be expressed as a pair of type inference rules:

SELECT-T’
e : γ (S1, . . . , Sn) = projR〈γ〉 S1 6= H

select C { s1, . . . sm}

ITERATE-T’
e : γ (S1, . . . , Sn) = projR〈γ〉 S1 6= H

iterate e { s }

where select is one of switch or if/else if, and the si are the conditional branches. The

iterate statement is one of while, do while, or for. Notice the similarity between these

rules and their Core Covert counterparts, SELECT-T and ITERATE-T respectively, given in

Figure 4.3.

There are also three operators in C++ which have branching behaviors. Just as with the

select and iterate statements, the &&, ||, and ?: operators require a contextual conversion to

bool for their first argument, and the remaining operand(s) may or may not be evaluated,

depending on the value of the first operand. Semantic inference rules can also be derived for

these operators:

TERNARY-T’

e1 : γ T = projL〈γ〉
(S1, . . . , Sn) = projR〈γ〉 S1 6= H

γ′ = decltype(std::declval〈T 〉 ? e2 : e3)
(e1? e2 : e3) : γ′

BINARY LOGIC-T

e1 : γ1 (S1
1 , . . . , S

1
n) = projR〈γ1〉 S1

1 6= H
e2 : γ2 (S2

1 , . . . , S
2
n) = projR〈γ2〉 S2

1 6= H
T1 = projL〈γ1〉 T2 = projL〈γ2〉

bool = decltype(std::declval〈T1〉 opBL

std::declval〈T2〉)
e1 opBL e2 : bool

where opBL is one of && or ||. Note once again the similarity between TERNARY-T’ and rule

TERNARY-T from the previous chapter. The BINARY LOGIC-T rule is more restrictive than

it needs to be. Since a control flow decision is only made for e1, it should follow that the

constraint S2
1 6= H is unnecessary. However, the && and || operators are not overloaded by

Covert C++ because it is impossible to overload them while maintaining their short-circuiting
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behavior1. The C++ standard requires that both operands must be convertible to bool,

hence both S1
1 and S2

1 must not be H.

5.1.1 Relationship to Core Covert

Chapter 4 introduced the Core Covert language, which had the objective of being detailed

enough to capture the key features of Covert C++, while remaining simple enough to

be formally verifiable. Before presenting the informal proof that Covert C++ enforces

noninterference, it would be helpful to first examine the correspondence between Core Covert

and Covert C++.

The correspondence between type inference rules for select, iterate, and for ternary

expressions was noted above. Each of these constructs must make a branching decision, and

each of their type inference rules requires that the branch condition must be public, i.e., ⊥ in

Core Covert or L in Covert C++.

Pointers in Covert C++ correspond to locations in Core Covert. Just as an SE pointer

to a primitive type must have two security labels—one for the pointee, and one for the

pointer itself—each location must have two associated security classes in order to be used in

well-typed expressions and statements. For example, the Covert C++ type SE<int*, L, H>

corresponds to a location ` such that Ψ, φ ` ` : ⊥ and Ψ(`) = >, given the typing context

Ψ, φ. There is, however, no notion of a pointer to a pointer, etc. in Core Covert.

Pointer arithmetic corresponds to location arithmetic, i.e., the ADDRESS and ADDRESS-T

rules. Pointer indirection and subscripting is covered by the read(`) expression and assignment

` := e statements, together with location arithmetic. The typing rules are also analogous.

The READ-T and ASSIGN-T rules in Core Covert mandate that the location being read from

or written to must be ⊥. The INDIRECTION and SUBSCRIPT rules in Covert C++ enforce the

same constraint on pointers. There is no analog to the -> operator in Core Covert, because

there is no notion of a struct or class in Core Covert.
1The technical reason for this is that functions in C++ use call-by-value semantics, which requires that

all arguments be evaluated before the function call is made.
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5.2 Covert C++ Enforces Noninterference

With some additional requirements pertaining to safety, it is possible to formulate an

argument that Covert C++ prevents explicit flows between objects that would violate the

information-flow policy, e.g., by downgrading the security class of some information.

It is not expected that the developer will always adhere to the following requirements.

Part of the allure of C++ is that it allows experienced programmers to wander outside the

confines of the type system—at their own risk. Covert C++ keeps with this tradition.

Requirement 1 (Type/Memory Safety). Type and memory safety cannot be violated, e.g.,

by reading/writing beyond the bounds of a buffer, using a pointer after it has been freed, etc.

This first requirement is purposefully vague. Type and memory safety in a weakly-typed

language such as C++ is complicated and nuanced. A formal and complete definition of the

necessary requirements to ensure safety in C++ has been given by DeLozier et al. [63]. Any

violation of Requirement 1 can easily subvert the protections facilitated by Covert C++. For

example:

1 SE <int , H> secret = 42, arr [8];
2 SE <int , L> val;
3 arr [8] = secret;

If the procedure stack is organized such that val is located immediately above arr, then in

Line 3 the value of the high variable secret will be written to the low variable val. This

is an example of an explicit flow which circumvents the security typing provided by Covert

C++. The C++ language itself cannot prevent or detect this behavior. Another example:

1 SE <int , H> arr [8];
2 void *ptr = arr;
3 SE <int , L> val = *static_cast <int *>(ptr);

The cast in Line 2 is valid in C++. First, arr is allowed to decay to a pointer of type

SE<int, H>*. C++ allows any prvalue pointer to be implicitly cast to an identically cv-

qualified void pointer, hence this completes the cast [90].
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Requirement 2 (Safe Pointer-to-Pointer Casts). Pointer-to-pointer casts (including both

explicit and implicit casts) with a source expression of covert type must only cast between

compatible pointee types, or cast up or down a class hierarchy.

This requirement is partially covered by Requirement 1, but only for non-covert types.

Covert named casts must also follow this rule. The C99 standard states that two types are

compatible if they are identical modulo const/volatile/restricted (cvr) qualifiers and type

aliases, or if they are pointers to compatible types, or if they are array types of the same

size and with compatible elements [87]. Hence casts between compatible types can generally

be considered safe. Note that Requirement 1 additionally prevents any kind of cast from a

covert pointer type to a (possibly) covert void pointer type, because the void type is only

compatible with itself.

Requirement 3 (Restricted Built-in Casts). C++ built-in named casts must not have a

source expression of covert type.

This requirement prevents labels from being cast away by the built-in C++ named casts.

For instance, reinterpret_cast can be used to cast an lvalue of any type to a reference to

any other (non-void) object type [90]. Thus

SE <int , H> secret = 42;
int &non_secret = reinterpret_cast <int &>(secret);

is valid C++ code. Therefore any covert type could be cast directly into a reference to any

simple type. Given Requirement 1, it may be possible to omit Requirement 3. For instance,

the reinterpret cast in the example above is obviated by type safety. Yet given the informal

nature of this discussion, the complexity of the C++ named casts, and the fact that Covert

C++ provides its own named casts, it is safer to simply restrict the use of built-in casts.

This is a kind of defense-in-depth approach, which is occasionally useful when a system’s

properties cannot be fully formally verified.

Requirement 4 (Primitive Types Only). The set of labeled types must be identical to the

set of primitive types.
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Requirement 4 effectively precludes overloading of the type depth metafunction, thus

preventing non-primitive classes from being typed by Covert C++. For example, it is safe

to add the iterator type of std::array<T> to Covert C++, because this iterator behaves

(almost) identically to a pointer. However, it is not safe to add the iterator to a std::map<T>

(a kind of binary search tree), because the increment and decrement operators make control

flow decisions that depend on key values. If the key values are sensitive, then they might be

leaked.

The final requirement forbids the one kind of security class downgrade that is explicitly

provided by Covert C++.

Requirement 5 (Restricted Label Casts). The se_label_cast() function must not be

used to downgrade security labels.

Requirements 2, 4, and 5 could have been automatically enforced by the Covert C++ type

system. In many practical applications this might have been too restrictive for the developer,

hence these behaviors are allowed for Covert C++ programs. However, the refactoring

toolchain (Section 5.7) includes a Clang-based syntax checking tool which can warn the user

if any of Requirements 2–4 is violated.

With all of these requirements satisfied, Covert C++ enforces an information-flow policy

analogous to the Simple Security Theorem, which was formally proved for Core Covert

(Theorem 4.1). That is, if an expression e can be typed as L, then none of the information

which determines the value of e is typed as H. The argument is simple. Requirements 1–4

guarantee type and memory safety among both covert and non-covert types. Thus the type

inference rules in Figure 5.3 are unequivocally respected by the program. The only inference

rule which allows labels to be downgraded is LABEL CAST, but this behavior is disallowed

by Requirement 5. With this information-flow property satisfied, Covert C++ also has the

property of noninterference.
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Theorem 5.1 (Covert C++ Enforces Termination-Sensitive Noninterference). If the safety

requirements are satisfied, a well-typed Covert C++ program has the property of termination-

sensitive noninterference against adversary 'Adv with perfect observational granularity.

Proof. First, consider explicit flows to storage channels (i.e., outputs). The C and C++

languages have no built-in I/O. Instead, they rely on their own standard libraries and system

libraries to provide this functionality. All of these library functions are parameterized by

simple types (recall Figure 5.1). Covert C++ mandates that a covert type can only be

converted to a non-covert type if all of its labels are L, by rule FROM SE. Thus H data

cannot accidentally leak into one of these interfaces. The only storage channel which does

not require a function call is shared memory. If the shared memory is L, then a transfer

of H data to the shared memory would be an explicit flow leak, which has been obviated

by simple security. If the shared memory is not L, then it is, by definition, a secret storage

channel, not covered by 'Adv.

The next step is to demonstrate the absence of implicit flows arising from H data, which

leak sensitive information through the program trace. This can happen in one of two ways:

program control flow (instruction fetches), or stack/heap/static memory accesses.

Consider memory reads and writes. The only Covert C++ typing rules which regulate

memory accesses are INDIRECTION, SUBSCRIPT, and ARROW. These typing rules dictate

that H pointers and subscript values cannot be used to access memory, and thus cannot leak

the H data that determined their values.

Next, consider control flow. The derived typing rules SELECT-T’, ITERATE-T’, TERNARY-

T’, and BINARY LOGIC-T govern the type checking for flow-of-control statements and opera-

tors in Covert C++. All of them dictate that H data cannot be used to determine a branch.

Another subtle control flow feature of C++ is dynamic dispatch. When a virtual method is

invoked on a pointer to an object using the -> operator, the callee is looked up in the object’s

virtual member table (vtable). This is effectively a kind of branching operation, where the

branch ultimately depends on the value of the pointer, because the pointer determines which
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1 template <typename T> struct type_depth :
2 std:: integral_constant <int , is_primitive <T>> {};
3 template <typename T> struct type_depth <T*> :
4 std:: integral_constant <int ,
5 type_depth <std:: remove_cv_t <T>>::value + 1> {};

Listing 5.1: Type depth definition

vtable must be used, and thus which function to call. The ARROW rule prevents an H pointer

from being used for dynamic dispatch.

The argument has thus far demonstrated that Covert C++ satisfies the weaker termination-

insensitive noninterference property against 'Adv. Termination-sensitive noninterference

follows from the control flow result: because H data cannot influence program control flow,

H data cannot cause the program to diverge. That is, a program cannot get “stuck” or loop

forever.

5.3 Type System Implementation

The Covert C++ security-type system is implemented entirely in header files as an interface

library. The implementation consists of four parts: helper metafunctions, operator overloading,

the SE class definition, and explicit cast operations.

Listing 5.1 shows one Covert C++ metafunction which was mentioned earlier in Section 5.1.

This metafunction assigns to each labeled type the correct number of security labels for that

type. For a pointer, it is one plus the type depth of the pointed-to type. For a non-pointer

primitive type, the type depth is one. By default, all other types have a type depth of zero.

This behavior can be extended by specializing the type_depth template in program code:

using VecIt = std::vector <int >:: iterator;
struct type_depth <VecIt >

: std:: integral_constant <unsigned , 1> {};

This specialization declares VecIt as a labeled type with one security label. Just as with

pointers and other primitive types, VecIt can participate in overload resolution with the
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Covert C++ operators and their typing rules. For instance:

std::vector <int > v = ...;
SE <VecIt , L> I1 = v.begin();
SE <VecIt , H> I2 = v.begin();
std::cout << *I1; // Allowed by Covert C++
std::cout << *I2; // Compiler error!

To demonstrate why the first access operation is allowed while the second is not, Covert

C++’s pointer indirection implementation is given in Listing 5.2. Here, the * operator is

being overloaded for all objects of type SE<T, Ss...>. C++ allows nearly every operator to

be overloaded in this manner [90]. This implementation corresponds to the INDIRECTION

rule in Figure 5.3. Notice the similarity between the template arguments and the structure of

the inference rule. This is intentional, so as to match the implementation of the type system

to its formal specification as accurately as possible.

The _M_val is the class field containing the lone private member of type T. The

ConstructSE_t metafunction takes a labeled type U and a list of labels Ls, and produces

type SE<U, Ls...>, assuming that the number of labels is correct for U. It also correctly

handles the cases where U is a reference and/or is cv-qualified at the top level (recall that SE

cannot encapsulate these types). For instance, the result of a pointer indirection is always

an lvalue reference type R &. Hence, if RetSs is H and RetT is int &, then Ret will correctly

resolve to the type SE<int, H> &.

The STL metafunction std::enable_if_t is defined as void if the given Boolean condi-

tion evaluates to true, otherwise it is undefined. If Head<Labels> is high when this overloaded

operator is being considered, the undefinedness of std::enable_if_t does not itself cause

a compiler error because C++ has a feature called SFINAE, or “Substitution Failure Is

Not An Error” [10]. When a template function is being considered for overload resolution,

the compiler first attempts to infer its template arguments. If any of these arguments fails

to resolve to a type or a constant value, then the compiler does not immediately issue an

error. This behavior characterizes SFINAE. Instead, the compiler will continue to search for
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1 template <
2 typename Labels = LabelList <Ss...>,
3 typename = std:: enable_if_t <Head <Labels > != H>,
4 typename RetSs = Tail <Labels >,
5 typename RetT = decltype (*std::declval <T &>()),
6 typename Ret = ConstructSE_t <RetT , RetSs >>
7 inline Ret operator *() {
8 return reinterpret_cast <Ret >(* _M_val);
9 }

Listing 5.2: Covert C++ indirection implementation

a candidate function whose type will resolve correctly. An error will only be issued when

no viable function is found. When the compiler tried to resolve the typing for *I2 in the

example above, it first attempted to apply the definition in Listing 5.2. When that overload

failed, the compiler attempted to fall back on the built-in indirection operator for pointers,

which of course failed because I2 has class type, not pointer type. Thus the compiler protests

that the operation is invalid because I2 is not a pointer.

This discussion may seem pedantic because for the indirection operator, the only observable

difference with SFINAE is that the compiler emits a different error. Yet SFINAE is crucial

to other aspects of the Covert C++ implementation. Unlike the indirection operator,

Covert C++’s binary operators are not defined in a class; they are part of the global scope.

For instance, the += operator for SE types must compete with std::string::operator+=

(string append) during overload resolution. Without SFINAE, any attempt to append two

std::strings with += would fail, because at least one type substitution would fail in the

template arguments for Covert C++’s += operator, triggering a compiler error. Hence

SFINAE allows C++’s operators, as well as operators from other libraries, to coexist without

conflicts.

Covert C++ has a total of 25 definitions in the style of Listing 5.2, some of which are

macros that are expanded for similar operators or functions. These definitions yield 38

distinct overloaded operators, 7 implicit cast operators, and 7 explicit cast functions. The

implementation in total comprises roughly 1,700 lines of code (LoC). The definitions range in
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complexity from just 4-5 LoC to 31 LoC. At the upper extreme, the macro which defines

binary arithmetic operators has 17 clauses in its template argument list.

The addition of SE types and the associated casts and operator overloads substantially

bloats a program’s AST. Fortunately, this bloat does not translate to the compiled binary.

All of the template arguments—the clauses in the inference rules—are entirely evaluated at

compile time. All that remains of each overloaded operator function call after the templates

have been processed, is the operation itself. And since the functions are visible to the compiler

within each translation unit (because they are defined in header files), an optimizing compiler

such as Clang or GCC will simply inline them. Although the AST may be much larger with

the SE type wrappers, the binary should not be any larger.

To test whether or not the SE classes and operators actually bloat the compiled binaries,

several small sample programs were selected and refactored to use the SE types in place of all

primitive types. Each program was compiled by Clang at optimization level 3 (the highest

supported by Clang), with and without the SE types. After stripping the symbols from each

compiled binary, the binaries for each SE/non-SE program pair were compared. In all cases,

the binaries of the sample programs with and without Covert C++ were identical down to

the bit: their MD5 sums matched. Thus Covert C++ is truly a static analysis technique.

5.4 Validating Type System Correctness

One design goal of Covert C++ is to have the SE<T,...> types behave just like the primitive

T types, the only exception being the constraints placed on values labeled with H. This goal

is met in part with the help of the decltype keyword, as discussed in Section 5.1. C++ is

a complex language, and hence additional measures are required to ensure that the design

goals are met.

Covert C++ has been validated by a comprehensive test suite which exhaustively tests

every operator and function against both the Covert C++ specification given in Figures 5.2
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and 5.3, and the C++ standard specification [90]. The test suite was written using the LLVM

Integrated Tester (lit) [9], the test framework used to validate LLVM and the Clang compiler.

The Covert C++ language test suite comprises 72 files, each testing a specific Covert C++

definition against the Covert C++ specification and/or the C++ specification. These files

are partitioned into PASS tests and FAIL tests.

PASS test files contain tests which are expected to compile and run without errors, and

with correct computational results. For example, the indirection PASS file contains several

tests, including this one:

SE <int *, L, L> xp = &x;
TEST(SE<int , L> &rx = *xp;) // CHECK: TEST
// CHECK -NEXT: SE<int*, L, L>: operator*
// CHECK -NEXT: END TEST

TEST(com) is a macro which runs the command com, emitting “TEST” and “END TEST”

before and after the command is run. When Covert C++ is compiled with logging enabled,

each overloaded operator and function emits a logging message with the type(s) of its

argument(s) and/or the type of its return value. The “CHECK*” directives are processed

by the FileCheck tool [5], which ensures that the text specified after “CHECK*:” appears

in the program output, and in the specified order. For example, “CHECK-NEXT” asserts

that the given content appears on the very next line after the output covered by the previous

“CHECK*” directive. This particular test will fail if the given command fails to compile (e.g.,

due to a typing error), or perhaps a different * operator is resolved, in which case the logging

information would not be emitted.

FAIL tests succeed only when the given file fails to compile, and all of the correct errors

are emitted for each malformed Covert C++ statement. For example, the pointer indirection

FAIL file contains this test:

SE <int*, H, H> hp;
SE <int , H> b = *hp; // expected -error \

//{{ indirection requires pointer operand }}
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This particular test will succeed only if the statement *hp fails to type check, and with

the specified error from the compiler referring to this specific line in the source code. For

consistency, the Clang compiler is used for all of the tests.

Other than testing the specific typing rules given in Figure 5.3, the overloaded operators

and casting functions are rigorously tested against the C++ standard. For instance, the

C++17 standard [90] lists 11 clauses describing the behavior of reinterpret_cast. In

general, one PASS test is constructed for each clause which describes conversions between

types which SE can encapsulate. When a clause specifically disallows certain behavior, an

appropriate FAIL test is constructed for that clause. In total, the core Covert C++ language

test suite contains 170 individual PASS tests and 94 individual FAIL tests. It also contains

102 assertion tests to evaluate the metafunctions, such as is_se_convertible, etc.

5.5 Limitations

The most striking drawback of Covert C++ is that it unequivocally forbids the use of high

pointers for anything other than pointer arithmetic. However, this is only a restriction for

pure Covert C++: the typing rules described in Figure 5.3. Chapter 8 addresses this problem

by introducing oblivious types which can be used to access memory, regardless of whether

the oblivious types itself is high or low.

The other noteworthy limitations of Covert C++ are the consequences of limitations

inherited from C++. It was mentioned in Chapter 2 that C++’s template system was not

designed with the explicit intent of supporting Turing-complete computation. Admittedly, the

C++ template system certainly was not designed to have another type system superimposed

on top of it, as with Covert C++. Therefore it is not surprising that there are several features

of C++ that Covert C++’s security-type system cannot accommodate.

The SE template cannot wrap bit fields because a bit field type cannot be a template

argument. This is disappointing because there could be many scenarios where some values in
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a bit field should be kept secret, and others need not be secret. One workaround is to have

something like

struct {
SE <int ,L> low_bits;
SE <int ,H> high_bits;

};

and use macros with bitwise operators to simulate distinct bit field accesses within low_bits

and high_bits, but this is obviously an inconvenience to the developer.

Additionally, the SE template wrappers can confuse a C++ compiler’s overload resolution

algorithm. Function overload resolution in C++ is complicated. The algorithm description

runs over 20 pages in the C++ standard specification [90]. Consider the following example

which requires overload resolution:

void foo(const char*);
void foo(bool);
char *str;
int main() { foo(str); }

Resolution for the call to foo() is non-trivial, since neither prototype is an exact match. A

pointer to some T can be implicitly converted to adopt const/volatile qualifiers. It can also

be implicitly converted to a bool. According to the C++17 standard, clause 16.3.3.2(4.1),

“A conversion that does not convert a pointer, a pointer to member, or std::nullptr_t

to bool is better than one that does” [90]. Hence the first foo should be selected. This

clause from the C++17 specification is one of several which describe how viable functions for

overload resolution should be ranked. Now consider what happens when the argument types

are wrapped by the SE template:

void foo(SE <const char*, L, L>);
void foo(SE <bool , L>);
SE <char*, L, L> str;

int main() {
foo(str);

}
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The call to foo() with str cannot be compiled because the overload is ambiguous. Covert

C++ allows both of the implicit conversions SE<char*, L, L> → SE<const char*, L, L>

and SE<char*, L, L> → SE<bool, L>. However, the C++ overload viable function ranking

algorithm assigns the same rank to both overloads of foo. Specifically, there is no clause to

distinguish between conversions to instantiations of the same template, and which differ only

in their template arguments. Thus the compiler cannot decide which foo() should be called.

Spectre-Style Attacks. Covert C++ unfortunately does not offer any solution for the

recently discovered Spectre-style attacks on speculative execution side channels [96]. As

discussed earlier in Section 5.2, Covert C++ only guarantees noninterference if certain

assumptions have been satisfied, one of which is memory safety. Spectre attacks exploit the

fact that even if a program satisfies this assumption, speculative execution may still allow an

out-of-bounds read or write to occur. Covert C++ does, however, offer protection against

the more recently documented NetSpectre AVX-based covert channel attack [139], which

exploits conditional execution of AVX2 instructions. Because Covert C++ prevents secret

data from influencing control flow, a decision to execute an AVX2 instruction cannot depend

on secret data.

5.6 Usage Model

This section demonstrates how Covert C++ can be used in practice, and how it can interface

with legacy libraries and APIs that are not security-typed.

5.6.1 Example: Secure memcmp()

Once again, recall the memcmp() example from Chapter 1. An equivalent Covert C++

implementation of the standard library memcmp() is shown at the beginning of Listing 5.3.

This implementation is nearly identical to that from Listing 1.1, except that all of the
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1 SE <int , L> memcmp(SE<const uint8_t*, L, L> s1,
2 SE <const uint8_t*, L, L> s2,
3 SE <std::size_t , L> n) {
4 while (n--) { // optimized implementation
5 SE <int , L> diff = *s1++ - *s2++;
6 if (diff) return diff;
7 }
8 return 0;
9 }
10
11 SE <int , H> memcmp(SE<const uint8_t*, L, H> s1,
12 SE <const uint8_t*, L, H> s2,
13 SE <std::size_t , L> n) {
14 SE <int , H> res = 0;
15 while (n--) { // secure implementation
16 SE <int , H> diff = *s1++ - *s2++;
17 res = covert :: ternary(
18 diff != 0 & res == 0, diff , res);
19 }
20 return res;
21 }

Listing 5.3: Optimized and secure implementations of memcmp() in Covert C++

primitive types have been replaced by low canonical types2. If the arguments s1 and s2

had instead been pointers to high data, then by the rules UNARY ARITH OP, INDIRECTION,

and BINARY ARITH, diff on Line 5 would require an H security label. Hence the contextual

conversion to bool in Line 6 would fail, and the compiler would issue an error.

To construct a memcmp() implementation which can accept buffers containing H data,

a different strategy must be adopted when writing the loop. Recall the second memory

comparison program from the Core Covert chapter, given in Listing 4.2. That program

achieved noninterference by fixing the number of loop iterations, and updating the result

value during each iteration.
2The other difference is that the first two arguments are const uint8_t* instead of const void*. This is

because void pointers point to a memory location containing a value whose type is unknown to the compiler.
Since the type of the pointee is unknown, it is unclear how many labels should be assigned to it. Hence in
Covert C++, void pointers are labeled such that only the pointer itself receives a label. So although void
pointers are allowed in Covert C++, they are not necessarily as useful as they are in regular C++.
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The second memcmp() implementation in Listing 5.3 follows the same strategy. This

allows it to accept high buffers and still type check. The secure memcmp() does not break the

while loop when a difference between the two buffers is discovered. Rather, the value ret

is assigned a new non-zero value when a non-zero difference is found for the first time. A

custom non-branching ternary function performs the update to res obliviously.

The covert::ternary() function allows the ternary condition to be high. If the condition

is high, then the return value will also be high. The non-branching behavior is achieved

using the cmovz x86 assembly instruction, whose behavior was discussed in Chapter 2. By

employing these non-branching heuristics, the secure memcmp() implementation exhibits

precisely the same semantic behavior as an ordinary memcmp(), except that this version is

typable in Covert C++, and thus respects noninterference for its high inputs.

The Covert C++ implementation of memcmp() overloads the memcmp name with two

definitions: one optimized, the other secure. This overloading is invisible to the developer.

The compiler will automatically select the best implementation, depending on the types

of the arguments. For instance, if both s1 and s2 point to low data, then the optimized

memcmp() will be an exact match, hence the compiler will select this version. Otherwise, the

FROM SE rule will not allow the argument labels to be downgraded, so the secure memcmp()

will be the only valid candidate for overload resolution. If one buffer argument is high and the

other is low, then the low argument can be implicitly upgraded via the SE TO SE rule. This

overloading scheme offers the best of both worlds: security when it is needed, and performance

when it is not; and the developer is not required to consciously make this decision.

Even though the return value from a call to the secure memcmp is high, it can still be used

as a branch condition. For instance:

if (se_label_cast <int , L>( memcmp(x, y, 128)) {
...

}

If either x or y points to high data, then the secure memcmp() will be called. By declassifying

the result of this memcmp and using it to branch, the result may be leaked. However, the
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details of that computation will not leak. Depending on the security requirements of the

particular application, it may be acceptable for an adversary to know whether or not the

memcmp() operation succeeded, so long as she cannot infer the input values. This decision

must be made by the developer, and must always be made explicit with an se_label_cast().

Although all secret data is high, it is not necessarily true that all high data should be kept

secret.

5.6.2 STL compatibility

Unlike in libc, most of the C++ STL classes and definitions are entirely implemented in C++

header files. This is necessary because templatized functions cannot be compiled without

knowledge of the template arguments. These functions are compiled on-the-fly when their

template arguments are instantiated with new types. Hence it is not difficult to use STL

templates with the SE type container:

std:: forward_list <SE<int , H>> fl = {1, 2, 3};
fl.push_front (0);
fl.reverse ();

Notice that all of the above operations should be secure, because none of them must make a

control-flow or memory-access decision, based on a high value in one of the containers. When

an attempt is made to perform a non-secure operation on high data, such as an equality test

on forwardly-linked lists, the compiler emits an appropriate error message:

/include/c++/v1/forward_list:1696:13: error:
no viable conversion from ’SE<bool, H>’ to ’bool’

if (!(*__ix == *__iy))
^~~~~~~~~~~~~~~~~

test.cpp:4:11: note: in instantiation of function
template specialization ’std::__1::operator==’ requested here

eq = fl == fl2;
^

The C++ compiler has indicated that the == operator for forward lists is non-secure (vulner-

able), moreover it reveals the precise location in the STL header <forward_list> where the
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leak would have occurred, had the code compiled successfully.

The Covert C++ toolchain also has a lit test suite for STL functions. The tests check

whether the C++ compiler correctly signals which functions are secure and which are

vulnerable, in a manner similar to that which was described in Section 5.4. The Clang

compiler has so far been used to test 120 C++ STL functions. Clang identified 104 secure

functions and 16 vulnerable functions. One false positive was noted. An STL function was

implemented as follows:

template <...> bool fun (...) {
...
return (E1 != E2);

}

With E1 and E2 instantiated as SE<T, H> types for some labeled type T, E1 != E2 evaluates

to a value with SE<bool, H> type, which cannot be converted to the bool return type. Even

though this function is secure, the compiler rejected it.

When an STL function is not secure, the alternative is to either refrain from using it, or to

write an alternative implementation which employs heuristics similar to those deployed in the

memcmp example. With recent editions of C++ the STL has become quite large. Therefore

it would be an unrealistic goal to reimplement every vulnerable STL function in Covert

C++. However, Covert C++ implementations of the generic algorithms found in the STL

algorithms library are under development. 20 of these algorithms have been implemented.

5.6.3 Legacy Code Compatibility

It is unrealistic to expect that an entire program will be written in Covert C++. Modern

application programs usually consist of a relatively small body of original code, with numerous

calls to external library functions, including standard library functions. Even though these

functions will not explicitly accept SE arguments, many can still be used by Covert C++ code.

If the library functions are themselves templates, then they may be instantiated with SE

types, as with the STL functions discussed in the previous section. Otherwise, the developer
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Figure 5.4: The Covert C++ refactoring pipeline

can use the NVT (Chapter 6) to determine whether or not a given library function is secure.

5.7 Refactoring Toolchain

Although it is not required to use Covert C++, the Covert C++ toolchain includes several

tools which can be deployed to interactively refactor legacy codebases from C/C++ into Covert

C++. The toolchain components are depicted in Figure 5.4. Optionally, the refactoring

pipeline begins by expanding preprocessor macros, because it is notoriously difficult to

perfectly refactor code containing or within macros. Also, C code must be converted into

C++ code, because C is not a perfect subset of C++ [152]. Finally, an interactive tool based

on Clang-Tidy [3] converts the C++ code into Covert C++ code. This tool can also warn the

user of any potentially dangerous casts which may violate Covert C++’s safety requirements

for noninterference, as described earlier in Section 5.2.

The refactoring pipeline has thus far been used to successfully refactor Amazon’s imple-

mentation of TLS/SSL [137] (written in C, approx. 6,000 LoC) and the TinyXML2 [157]

XML parsing tool (written in C++, approx. 2,000 LoC) into Covert C++.

5.8 Case Study 1: DRM on SGX

This brief case study demonstrates how to use the Covert C++ toolchain to refactor existing

C++ codebases into Covert C++. The Intel SGX SDK [11, 15] includes some sample enclave

applications, including an application for digital rights management (DRM). One typical
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1 typedef struct _replay_protected_pay_load
2 {
3 sgx_mc_uuid_t mc;
4 uint32_t mc_value;
5 uint8_t secret[REPLAY_PROTECTED_SECRET_SIZE ];
6 activity_log log;
7 }replay_protected_pay_load;

Listing 5.4: A structure containing an SGX enclave secret

use of DRM is to encrypt intellectual property, such as music and movies, so that it can

only be used under certain circumstances. For instance, a DRM policy may specify that

only a particular user application can open a certain file, or that a movie rental should

expire after 72 hours. Intel SGX is an ideal platform for DRM because it provides an area of

shielded execution where a cryptographic key can be stored and used in isolation. Even on

an untrusted platform with a potentially malicious adversary, the adversary will not be able

to view the contents of the key in plaintext.

However, SGX does little to protect enclave applications from storage channel and side

channel leaks. This fact is admitted in the SGX User’s Guide [15]. The noninterference

guarantee provided by Covert C++ can close this security gap.

Listing 5.4 shows the definition of the structure which wraps the secret key. Specifically,

the key is held in the array member secret in Line 5. Hence this member should be treated

by the Covert C++ security-type system as a program secret (i.e., with a high security label).

The developer does not need to manually refactor this code. He only needs to add a SECRET

annotation to each declaration of a variable or member which should be treated as a program

secret:

uint8_t secret[REPLAY_PROTECTED_SECRET_SIZE] SECRET;

When the refactoring tool sees any declaration with the SECRET annotation, it assigns an H

label to it. Otherwise it assigns an L label. The refactoring tool can be run as follows:

$ cpp2covert -checks=* -p . DRM_enclave/DRM_enclave.cpp
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The -checks=* flag enables all refactoring checks. The -p flag instructs the refactoring tool

to look for a JSON compilation database [8], which contains all of the information—flags,

include directories, preprocessor definitions—used to compile the given source file. This

allows the refactoring tool to be as precise as the compiler when parsing the given source(s).

Unfortunately, the output is a mess:

include/tlibc/string.h:108:22: warning: ’strncasecmp’ declared with
primitive type ’int’

int _TLIBC_CDECL_ strncasecmp(const char *, const char *, size_t);
~~~ ^
SE<int, L>
include/tlibc/string.h:108:46: warning: Parameter declared with

primitive type ’const char *’
int _TLIBC_CDECL_ strncasecmp(const char *, const char *, size_t);

~~~~~~~~~~~~^
SE<const char *, L, L>

include/tlibc/string.h:108:60: warning: Parameter declared with
primitive type ’const char *’

int _TLIBC_CDECL_ strncasecmp(const char *, const char *, size_t);
~~~~~~~~~~~~^
SE<const char *, L, L>

include/tlibc/string.h:108:68: warning: Parameter declared with
primitive type ’size_t’ (aka ’unsigned long’)

int _TLIBC_CDECL_ strncasecmp(const char *, const char *, size_t);
~~~~~~^
SE<size_t, L>

The refactoring tool found several hundred declarations which are not in canonical form

(because they are raw primitive types). Many of these declarations are in header files, and

basically unrelated to the task of securing the DRM key.

When writing a Covert C++ program from scratch, it is considered good practice to label

all of the primitive types either high or low. When dealing with legacy code, this principle

can become too tedious. For larger programs, the refactoring tool provides a -secret-only

flag, which causes the tool to only rewrite declarations that are annotated as SECRET:
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$ cpp2covert -checks=* -p . -secret-only -fix DRM_enclave/DRM_enclave.cpp
DRM_enclave/DRM_enclave.cpp:54:13: warning: ’secret’ declared with

primitive type ’uint8_t [32]’
uint8_t secret[REPLAY_PROTECTED_SECRET_SIZE] SECRET;
~~~~~~~ ^
SE<unsigned char, H>

DRM_enclave/DRM_enclave.cpp:54:5: note: FIX-IT applied suggested code
changes

uint8_t secret[REPLAY_PROTECTED_SECRET_SIZE] SECRET;
^

The -fix flag instructs the tool to automatically apply all of the suggested fixes. The secret

member has been refactored as expected:

SE <unsigned char , H> secret[REPLAY_PROTECTED_SECRET_SIZE ];

Now secret is protected by Covert C++’s security typing. This means, for instance, that

secret must be disclosed before being passed to any SGX SDK APIs:

SE <uint8_t *, L, H> secret = data2seal.secret;
ret = sgx_read_rand(

se_label_cast <uint8_t *, L, L>( data2seal.secret),
REPLAY_PROTECTED_SECRET_SIZE);

In this example, the sgx_read_rand() API is used to generate entropy bits to forge a new

encryption key.

As the developer continues to follow secret and other program secrets through the

program call graph, he will frequently encounter two kinds of problems. First, he must be

careful when disclosing secret data (as above) to non-Covert C++ APIs. In this case, it is

probably safe to trust this SGX API. For libraries which are not specially designed to prevent

side-channel leaks, etc., it is safer to avoid those libraries. Or, the developer could use the

NVT (the topic of the next chapter) to verify a questionable API call.

Second is the problem of label creep. If the developer designates too many inputs and

variables as secret, then the propagation of secret information through the program via copies

and computations could result in most of the program data becoming secret. Since the

behavior of secret data is restricted, this could make it difficult to maintain or expand the

program.
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Chapter 6

Verifying Noninterference for

Compiled Programs

Although Theorem 5.1 establishes that a program which is typable in Covert C++ has the

property of noninterference at the source code level, a compiled Covert C++ program might

not have the property of noninterference. The reason for this discrepancy is that optimizing

compilers only guarantee preservation of semantics, not preservation of execution properties

independent of semantics [68]. Consider again the secure implementation of memcmp() from

Chapter 5. Unlike the optimized implementation of memcmp(), this definition should respect

noninterference for the two buffers being compared, because the function is typable in Covert

C++. Hence the values contained in each buffer do not alter the function’s control flow or

memory trace; the while loop always iterates n times.

However, a sufficiently smart compiler may be able to infer that as soon as diff is

assigned a non-zero value, the remaining loop iterations cannot again alter the value of

diff, and thus the remaining loop iterations could not affect the return value. Hence the

compiler would short circuit the control flow because this yields faster code, without changing

its semantic behavior. This is precisely the definition of an optimization. However, this

optimization clearly invalidates the noninterference property that was established by Covert
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C++’s information-flow security typing.

This gap between compiler correctness and security has been considered by D’Silva et

al. [68]. The authors suggest several approaches for developing security-preserving compilers,

and for testing whether existing compilers may preserve security. The latter approach entails

fixing an adversary model, and developing tools which can compare an adversary’s view of

a optimized computation against her view of an unoptimized computation. The test suites

should consist of “small pieces of code that represent security intent” [68]. The Covert C++

noninterference test suite follows a similar strategy.

6.1 The Noninterference Verification Tool (NVT)

This section introduces the Noninterference Verification Tool (NVT). Whereas LLVM lit [9]

was used to validate Covert C++’s implementation against its specification (Section 5.4),

the purpose of the NVT is to verify that the noninterference property is preserved by the

compiler. The NVT operates by fuzzing all secret function inputs over many (thousands) of

iterations, and monitoring the function’s memory and output traces during execution. If any

two combinations of secret input values to a function cause that function to yield inconsistent

traces, then the NVT will report a test failure, and emit the values of those secret inputs

which revealed the inconsistency. A test failure indicates that the target test module function

is not safe to use for secret data; it does not satisfy the noninterference requirement.

In essence, the NVT’s verification mechanism is a manifestation of the strong dependency

principle (Definition 2.5): given a set of fixed low inputs, the NVT verifies that no output and

no memory access is strongly dependent on any secret input (outputs and memory accesses

are assumed to be public). If the number of possible values for the secret inputs exceeds the

number of fuzz iterations, then the NVT only approximates the strong dependency principle.

This technique of combining input fuzzing and dynamic memory-trace analysis is original to

this dissertation—it has not been considered in any prior works.
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1 for (i = 1; i <= 256; i++):
2 if (NVT_test_init[i] exists) and
3 (NVT_test_begin[i] exists):
4 for (j = 0; j < fuzz_iterations; j++):
5 reset test module heap
6 fuzz_arg <- get fuzz_arg_sz bytes
7 NVT_test_init[i](fuzz_arg , fuzz_arg_sz)
8 // begin recording memory and output traces
9 NVT_test_begin[i]()
10 // stop recording memory and output traces
11 if (memory_trace[j] != memory_trace[j-1] or
12 output_trace[j] != output_trace[j-1]):
13 exit (1); // report test failure

Listing 6.1: Pseudo-code description of the NVT

The NVT can be configured to accommodate an arbitrarily strong adversary model by

allowing the user to adjust the granularity of the memory trace. For example, if the adversary

is only allowed to use forced page eviction [171] then the granularity can be set to 12 bits, the

number of bits required to address 4 KB of memory (the size of a small x86-64 page). Thus

the NVT will record addresses with their 12 least significant bits masked away. Assuming an

adversary who is able to use the Prime+Probe attack on 64-byte cache lines, the granularity

would be set to 6 bits.

The operating procedure of the NVT is described in Listing 6.1. The NVT loads a

test module built as a shared object or DLL, and searches for exported functions called

NVT_test_init*() and NVT_test_begin*(), where * ranges from 1 to 256. For each test,

the initialization function is used to initialize program variables with the fuzzed secrets, and

the second function runs the test. The test module together with other dynamically loaded

modules (e.g., libc, libc++, etc.) called by the test module constitute the test application.

On each invocation of NVT_test_begin*, the NVT records a trace of the test application’s

execution consisting of tuples, each of which contains three pieces of information:

1. the memory address that was accessed,

2. the number of bytes that were read/written, and
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3. the type of access: r (read), w (write), or bb (dynamic basic block).

The r and w tags trace memory accesses, while the bb tags trace process control flow. A

dynamic basic block is a contiguous unit of dynamic execution, i.e., a sequence of instructions

with a single point of entry and a single exit. Thus the sequence of dynamic basic blocks

executed by a process is sufficient to characterize the control flow of the process.

When the granularity of the adversary is greater than 0—that is, when the adversary

does not have a perfect view of the memory trace—the second piece of information is omitted.

Instead, the trace records the sequence of masks that were accessed and the type of access on

each mask. For example, if the adversary’s granularity is configured to 6 bits and a process

reads 4 bytes from address 0x0000007e, then the NVT will record read accesses on masks

0x00000040 and 0x00000080 because this particular read covers those two masks.

The NVT is implemented as a client module for DynamoRIO [43, 46, 47], a framework

for building dynamic analysis tools. DynamoRIO is an event-driven system, where clients

register callbacks for selected events, such as when a new dynamic basic block is loaded, when

a system call is made, or when the target program loads a new module.

The NVT transforms and instruments application modules (including the test module,

libc, libc++, etc.) by registering dynamic basic block callbacks with DynamoRIO. When

DynamoRIO is invoked with the NVT as its client, DynamoRIO commences execution of

the target application (the DynLoader, described in Section 6.2). Each time DynamoRIO

encounters a new dynamic basic block while the target application is running, it signals

each of the NVT’s basic block callbacks. After the NVT has been allowed to inspect and

instrument each new dynamic basic block, DynamoRIO adds the (possibly) transformed

block to a cache, and resumes execution. Any subsequent jump to that same untransformed

block is then redirected to the transformed block in the cache.
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6.1.1 Input Fuzzing

DynamoRIO clients can be extended with modules from the Dr. Memory framework [44, 45].

The NVT uses the Dr. Fuzz extension to iteratively fuzz the secret inputs. When the test

module is loaded, the NVT registers all NVT_test_begin* functions with Dr. Fuzz. This

involves two callbacks: a pre-call callback which “mutates” a new fuzzed input for the target

function, and a post-call callback which decides whether to jump back to the pre-call, or

to stop fuzzing and continue with regular execution. In the NVT, the post-call also checks

whether the trace digests of the just-completed fuzz iteration match those of the previous

fuzz iteration. If the traces match, it resets both of the trace digests and triggers the next

fuzz iteration. Otherwise, the NVT reports a test failure, and dumps the secret input value

sequences which yielded differing traces.

6.1.2 Recording the Memory Trace

For each loaded module and each dynamic basic block, the NVT must first perform an

application-to-application transformation. X86 platforms commonly use the rep/repne

family of instructions, which repeat a given operation on a string—ideally until the string’s

null terminating character is found, or a counter expires [58]. From the perspective of system

software (including DynamoRIO) the rep instruction appears to execute atomically, though

it may touch millions of memory locations. The application-to-application transformation

searches the loaded module for each instance of any instruction in the rep family, and expands

it into a semantically equivalent loop. For instance, if the rep is repeating a mov for the

purpose of copying a string to another location in memory, the transformation will yield a

replacement instruction sequence in a new dynamic basic block consisting of at least one

mov, and an instruction to increment the memory address(es), and a branch with a test for

the termination condition. The transformed loop will touch precisely the same addresses

and in the same order as the rep instruction. It will also allow a dynamic analysis tool to

instrument the now-isolated mov instruction to record each individual access.
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After the application-to-application transformation is complete, the NVT traverses each

dynamic basic block encountered during test application execution. It inserts inline instru-

mentation instructions to record the sequence of memory accesses made by the dynamic basic

block into the NVT’s memory trace buffer. At the very beginning of the dynamic basic block,

the NVT inserts instrumentation to record the address of the block.

The NVT then iterates through the instructions in the dynamic basic block, looking for

any instruction with operands that access memory. For each such operand, it inserts inline

instrumentation to record the address being accessed, the number of bytes transferred, and

the type of access (read or write). Additional processing is required for VSIB-addressed

instructions [58]. Vector scaled index byte (VSIB) mode is an addressing mode for vector

instructions such as vpgather and vpscatter which can represent an array of linear ad-

dresses [58]. The Intel architectural specifications and programming guides do not specify

whether VSIB instructions access the array of addresses in serial or parallel order, or if

the access sequence is nondeterministic1. The NVT’s treatment of VSIB instructions is

conservative. It simply records the VSIB address operands into the trace in the exact order

in which they are given by the index vector.

At the end of the dynamic basic block, the NVT inserts a clean call to process the memory

trace buffer. If the granularity of the adversary model not perfect, then all addresses are

masked according to the granularity. If any particular access covers n masks where n > 1,

that entry in the trace buffer is expanded into n entries, one for each mask that was touched.

If the granularity is perfect, then no changes are made to the trace buffer. The trace buffer is

then is appended to an MD5 hash digest which characterizes the memory trace, and then the

memory trace buffer is reset.

The NVT can only record memory traces for single-threaded test application functions.

This is not a limitation posed by DynamoRIO. It is a consequence of the definition of

noninterference (Definition 2.7), from which the NVT algorithm (Listing 6.1) was derived.
1The performance analysis in Chapter 8 suggests that the vpgather instructions do not read from their

operands in parallel.
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6.1.3 Recording the Output Trace

The second requirement for noninterference is that the sequence of public outputs not vary

with respect to the secret inputs. That is, no public output can strongly depend on any

secret input. Similar to verifying memory-trace obliviousness, the strategy adopted by the

NVT is to record a trace of program outputs in an MD5 hash digest. However, the problem

of verifying classical noninterference for a compiled program is more nuanced than verifying

memory-trace obliviousness. The reason is that there are potentially many ways in which a

program can produce publicly-observable output, including but not limited to system calls,

writing data to shared memory, and I/O.

On UNIX-like systems, it is typical for programs to emit output through I/O channels

by means of a system call. On Linux the SYS_write system call writes a buffer to a file

descriptor. Despite its name, a file descriptor is simply an identifier which can refer to a pipe

to another process, a network socket, an I/O channel (e.g., stdin, stdout), or of course, a

file. Hence a SYS_write is the preferred mechanism to emit output to a variety of storage

channels.

In total, the Linux kernel supports several hundred system calls. In a sense, any of these

system calls should be treated as a kind of channel through which information might be

leaked. If sensitive information is passed as an argument to a system call, then an adversary

with privileged access to the platform could read those parameters directly. Additionally,

the mere fact that a particular system call was invoked could signal to the adversary that

some particular path of execution was taken by the program. If that path was influenced by

sensitive data, then this would violate noninterference.

To detect storage channel leaks, the NVT adopts a conservative approach. When the test

application invokes a system call, the NVT intercepts the system call and checks its number

against a whitelist. A system call is only included in the whitelist if the NVT knows how to

record its arguments to the output trace. System calls which may introduce nondeterminism

cannot be whitelisted.
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One example of a whitelisted system call is SYS_write. SYS_write takes three parameters:

(1) the file descriptor to which to write, (2) a pointer to the buffer to write, and (3) the size

of the buffer. When the test application invokes SYS_write, the NVT intercepts the call

and adds the descriptor number, buffer contents, and buffer size to the output trace digest.

The need to record the buffer into the trace should be obvious. The need to record the file

descriptor is less obvious. A call to open() a file on Linux will return a file descriptor—an

integral identifier—referring to the requested file. The value of the file descriptor is not

necessarily chosen deterministically by the Linux kernel. For instance, when a program

opens foo.txt, then closes it, and then opens it again, a different file descriptor may refer to

foo.txt the second time it is opened. In this case, the behavior of open() on account of

the operating system is benign, so perhaps the file descriptor should not be recorded into

the output trace. On the other hand, suppose that the test application is simultaneously

managing several file descriptors as values in a lookup table. If the keys of that table are

sensitive, and lookup is used to determine which descriptor should be written to, then the

value of the file descriptor might leak sensitive information about the keys.

One corollary to this example is that the system call SYS_open, which implements open(),

cannot be whitelisted because the file descriptor value is chosen nondeterministically. Hence

a test application which calls SYS_write at any point must have the file descriptor passed in

as a fixed input.

As argued earlier in Chapter 5, “outputs” to shared memory are monitored at the source

code level by the Covert C++ type system. It is the responsibility of the developer to

recognize and identify which variables, data structures, etc., are to be shared with another

process, and to annotate all of these objects as public (i.e., with an L label). Hence, the

Covert C++ type system will prevent program secrets from leaking into shared memory

through explicit flows.

The NVT does not verify the absence of flows to shared memory in the compiled binary,

for several reasons. First, the implementation would be complicated. The NVT would need
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to intercept system calls that map shared memory pages into a process, make note of which

regions of memory are shared, and record a trace of any writes to the shared region(s). This

last step would entail looking up the destination address of every write in a list of shared

regions to determine if it is a write to shared memory, and thus should be added to the output

trace. Currently, to keep the memory tracing fast, each memory access made by the test

application is instrumented by a short sequence of inline instructions to record the address

being accessed. The shared memory lookup procedure would instead require a clean call (new

stack, registers, etc.) to be inserted before each memory access, and thus would dramatically

slow down the tracing procedure, reducing the number of fuzz iterations which could feasibly

be performed per test. Shared memory also introduces a source of nondeterminism if the test

application is additionally reading from shared memory. As mentioned above, nondeterminism

can be a source of false positives for NVT tests.

6.1.4 Managing Application Heap Memory

If any test application function allocates and uses heap memory (e.g., via a new expression or

a direct call to malloc()), then there is no guarantee that libc or the operating system will

allocate memory at precisely the same location for each fuzz iteration. In fact, this is almost

never the case. Similar to the issue with open(), the various libc heap allocation routines

allocate memory nondeterministically.

The NVT addresses this issue by intercepting calls to any libc routine which allocates

memory, including malloc(), aligned_alloc(), memalign(), and posix_memalign(). Each

of these calls by the test application is instead forwarded to the NVT’s internally managed

heap allocator, which allocates memory deterministically. Before each fuzz iteration, this

heap is reset to a fixed state. Hence, if the test application makes a certain sequence of

heap memory requests during fuzz iteration i, and also makes an identical sequence of heap

memory requests during fuzz iteration j, the NVT heap allocator will guarantee that each

pair of corresponding requests is satisfied identically.
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1 #include "NVT.h"
2 NVT_TEST_MODULE;
3
4 SE <uint8_t , H> buf1[MAX_TEST_SIZE], buf2[MAX_TEST_SIZE ];
5 SE <unsigned , L> buf_size;
6 SE <bool , H> ret;
7
8 NVT_EXPORT void NVT_test_init1(unsigned char *fuzz ,
9 unsigned size) {
10 buf_size = size / 2;
11 unsigned char *src = fuzz;
12 for (int i = 0; i < buf_size; ++i) { buf1[i] = src[i]; }
13 src = fuzz + buf_size;
14 for (int i = 0; i < buf_size; ++i) { buf2[i] = src[i]; }
15 }
16
17 NVT_EXPORT void NVT_test_begin1(void) {
18 ret = memcmp(buf1 , buf2 , buf_size);
19 }

Listing 6.2: Using the NVT to verify memcmp()

6.2 Example: Verifying memcmp()

Recall the Covert C++ memcmp() example from Section 5.6.1. Listing 6.2 demonstrates how

to set up an NVT test module to verify noninterference for memcmp(). The NVT_TEST_MODULE

declaration exports a special symbol which informs the NVT that this is a test module which

exports NVT tests. Each pair of NVT_test_init* and NVT_test_begin* define a distinct

NVT test. Each test module can export up to 256 tests. The test module is loaded by a

separate executable, the DynLoader, which simply calls each test exported by the test module

in sequence.

The test module in Listing 6.2 exports one test for the secure memcmp() function defined

in Listing 5.3. Note that the secure version will be called because at least one of the buffer

arguments is secret. The test initialization function loads each input buffer with size / 2

bytes of fuzzed data. The test begin function invokes memcmp() on the two buffers. Only the

trace of the test begin function will be recorded. For 10,000 fuzz iterations, 8 bytes of fuzzed
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data per iteration (thus 4 bytes per buffer), and the strongest possible adversary model with

perfect granularity, the NVT reports a pass for this test.

If the labels of buf1 and buf2 had instead been L, then the performance-optimized

memcmp() would have been called instead. In this case the NVT reports a test failure, with

the other test parameters unchanged.

The NVT can also be directed to emit the program traces to a log file. The traces for the

secure and optimized memcmp() tests described above are given in Appendix A.

6.3 Results

As mentioned earlier in Section 5.6, the Covert C++ algorithms library currently supports

20 generic algorithms. These algorithms employ a combination of non-short-circuiting loops

and non-branching ternary functions to achieve noninterference. Each of the Covert C++

algorithms has been tested over several STL containers, including list, forward_list,

array, vector, and deque. Each test runs for 10,000 fuzz iterations. Depending on the

algorithm, the container content and/or the algorithm parameters are fuzzed. For instance,

the tests for std::find() fuzz both the container contents and the search query.

All existing Covert C++ algorithms which type check pass all NVT tests for any of the

sequential containers.
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Chapter 7

Secure Multi-Party Computation

This brief chapter generalizes the description of Covert C++ given in Chapter 5 to cover

a proper subset of the decentralized label model proposed by Myers and Liskov [118, 120].

Rather than assigning security labels to data according to its sensitivity level, the decentralized

label model assigns labels to data according to its ownership. The owner of some data is

able to control how his or her data is used: how it is created, and how it is declassified.

These owners are mutually distrusting. Owner A should not be able to observe owner B’s

data unless owner B explicitly allows this in his access control policy. The original model by

Myers and Liskov also described more expressive access controls on data, including delegation.

Those additional features are beyond the scope of this dissertation.

The problem addressed in this chapter is the secure multi-party computation (SMPC)

problem which was introduced in Section 2.4. In SMPC, some group of n principals wish to

compute a function f(x0, x1, . . . , xn1) over their respective inputs xi. Moreover, principal i

must not be able to infer the value xj for i 6= j from any observable aspect of the computation

(e.g., side channels). Some descriptions of SMPC go even further: no principal should be

able to infer any of the other principals’ inputs from f ’s output. One solution is differential

privacy [69, 109, 130], a probabilistic technique which adds noise to the computational result.

Again, this topic is beyond the scope of this dissertation.
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7.1 A Generalized Label Model for Covert C++

The solution proposed in this chapter is to generalize the security labels in Covert C++ to

accommodate an arbitrary lattice structure. The proper subset of the decentralized label

model implemented in Covert C++ is referred to in this dissertation as the generalized label

model. This model allows principals participating in a computation to be represented as

points on a lattice. When a computation joins two principals’ data (e.g., by arithmetic), the

label assigned to the result is the least upper bound of the principals’ labels on the lattice.

Hence every value in a Covert C++ SMPC program keeps a sort of record of whose data

influenced that value.

The description of Covert C++ in Chapter 5 was admittedly incomplete. Covert C++ is

not defined in terms of the binary priority lattice consisting of L and H. Instead, all Covert

C++ operators, metafunctions, and types are actually defined in terms of a generic Lattice

template. Moreover, the SE type is actually a type synonym for the more generic Covert

template:

template <typename DataT , SLabel ... Labels >
using SE = covert ::Covert <SLabel , DataT , Labels ...>;

while the SLabel type specializes the Lattice template:

template <> struct Lattice <SLabel > {
static constexpr auto bottom = L;
static constexpr bool leq(SLabel l1, SLabel l2) {

return l1 <= l2;
}
static constexpr SLabel join(SLabel l1, SLabel l2) {

return (SLabel)(l1 | l2);
}

};

The members bottom (⊥), leq() (≤), and join() (t) are required for all lattices in Covert

C++. Formally, these are the basic requirements for a bounded join-semilattice1.
1There are also other algebraic requirements for a bounded join-semilattice, such as closure under t.

However, these requirements are not possible to verify with the C++ type system. The developer must
ensure that the other lattice requirements are met.
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For example, Covert C++ consults the Lattice to determine how to label the sum of

two SE types. Consider the typing of x + y where x has type SE<int, L> and y has type

SE<int, H>. These types actually unfold to

Covert<SLabel, int, L> and Covert<SLabel, int, H>,

respectively. The Covert C++ overload for the + operator will examine the label types

to ensure that they match. Assuming that they do match, it will then use the join()

operator defined by Lattice<SLabel> to compute the label for the result. Similarly, leq()

is used to implement the type conversions. The bottom value is used to enforce security

constraints. For instance, given some label type Label, the FROM SE rule checks that every

label in the source type is equal to Lattice<Label>::bottom. All of the se_*() functions,

including se_label_cast(), se_static_cast(), etc., are also macro defined in terms of

generic covert_*() functions. The covert_label_cast() function serves as Covert C++’s

analog to declassification in the decentralized label model.

7.2 Case Study 2: Computing χ2 with Multiple Parties

This case study demonstrates the application of Covert C++ to the SMPC problem. The

problem description and dataset have been adapted from an example given in a Wikipedia

article [168] which describes the computation of a χ2 (chi-squared) statistic for a two-

dimensional dataset. The dataset compares category of employment (white collar, blue collar,

no collar) against neighborhood. A chi-squared statistic can be used to determine whether

there is a significant difference between observed frequencies and expected frequencies in

categorical data. The χ2 statistic is computed as

χ2 =
∑

i

(obsi − expi)2

expi

where the expi are the expected values for the corresponding observations obsi.

Suppose that Alice, Bob, Charlie, and Dylan live in four different neighborhoods, A, B, C,
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A B C D Total
White collar 90 60 104 95 349
Blue collar 30 50 51 20 151
No collar 30 40 45 35 150
Total 150 150 200 150 650

Table 7.1: Neighborhood population by employment category

and D, respectively. Each principal polls the residents of his or her own neighborhood and

records the results, shown in Table 7.1. The four principals would like to compute the χ2 test

statistic for the categorical data given in the table. However, Alice, Bob, Charlie and Dylan

are mutually distrusting of one another. Each principal would prefer not to share his/her

own input data with any other principal, but any principal participating in the computation

may be allowed to view the output χ2 test statistic.

To address this problem with Covert C++, a lattice must be constructed for the four

principals. For brevity, Alice is principal A, Bob is B, etc. The lattice is implemented by

assigning a bit to each individual. A is bit 0 (0b0001), B is bit 1 (0b0010), etc. The t

operation is defined as the bitwise OR of labels. Hence when A and B’s data is combined, the

result belongs to label 0b0011, a kind of pseudo principal AB representing the combination

of A and B. The ordering operator is defined so that

x ≤ y ⇐⇒ x t y = y.

The ordering relationship under ≤ for the lattice of SMPC labels is depicted in Figure 7.1.

P and E are the bottom and top labels of the lattice, respectively. Data in security class

P (public) has no restrictions placed on it. Data in security class E is influenced by every

participant, and thus is the most restricted.

Similar to SE, the MPC type is a synonym for Covert, but with the SMPC lattice in place

of the binary low/high lattice. The input data for each principal is stored in a vector which

associates its elements with the principal who owns them:

template <typename T, auto Principal >
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A B C D

AB AC AD BC BD CD

ABC ABD ACD BCD

E

Figure 7.1: A lattice of security classes for SMPC

using PVec = std::vector <MPC <T, Principal >>;

For simplicity, assume that the input data can be declared statically:

const PVec <double , A> a = {90.0 , 30.0, 30.0};
const PVec <double , B> b = {60.0 , 50.0, 40.0};
const PVec <double , C> c = {104.0 , 51.0, 45.0};
const PVec <double , D> d = {95.0 , 20.0, 35.0};

Furthermore, suppose that there is an output function templatized on the type of principal

labels, and defined so that output<P>(x) outputs the value of x to all members of P—and

only members of P.

The implementation of the Covert C++ χ2 function, chi2(), is given in Appendix B.

The chi2() function is variadic: it can accept any number of arguments (but it requires at

least two). The implementation of chi2() makes extensive use of type inference, i.e., using
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the auto keyword. Hence the return type of chi2() is entirely inferred by the compiler from

the types of the arguments. That is, the principals who contribute data to the computation.

Because the data from each participant is combined (e.g., when the rows of the matrix are

summed), the test statistic returned by chi2() will have a label equal to cumulative join of

all of the participants.

If Alice, Bob, Charlie and Dylan all participate in the computation, the setup might look

like this:

void test1() {
auto result = chi2(a, b, c, d);
output <E>( mpc_label_cast <P>( result));

}

By type inference, result must have type MPC<double, E>. Since the E label is restricted,

the result value cannot be directly passed into a storage channel. Instead, it must be

explicitly declassified. The mpc_label_cast() function is analogous to se_label_cast(),

but for the MPC types. Both label casting functions are defined using the same macro. In

test1() it is being used to downgrade the label of result to P (public), so that it can be

output to everyone.

What if Bob does not participate in the computation? Then perhaps Bob should not be

allowed to receive the output. A naïve implementation would hardcode this constraint, e.g.,

output<ACD>(...) or output<~B>(...). A more flexible approach would be to use type

inference and the covert_traits interface:

void test2() {
auto result = chi2(a, c, d);
constexpr auto ResultLabel =

covert_traits <decltype(result) >::label;
output <ResultLabel >( mpc_label_cast <P>( result));

}

The covert_traits template defines a compile-time interface to covert types, similar to

iterator_traits for iterators in the C++ STL. In test2() it is used with decltype to

obtain the MPC label of the result. By type inference, this label is ACD. Hence the statistic
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will only be output to those three principals.

Although test2() is an improvement over test1(), the output() function does not

perform any kind of validation on its input. For example, the principals might want to

require that in order for a value to be output to any principal’s channel, that principal

must have participated in the computation. The revised test3() function introduces a

guarded g_output() wrapper around output(), which accepts an additional boolean template

parameter. If the parameter is false, then the compiler’s function overloading will not consider

it as a candidate, and thus the compiler will emit an error.

template <auto Principal , bool Guard , typename T,
typename = std:: enable_if_t <Guard >>

void g_output(const T &val) {
output <Principal >( mpc_label_cast <P>(val));

}
void test3() {

auto result = chi2(a, c, d);
constexpr MPCLabel ResultLabel =

covert_traits <decltype(result) >::label;
using Ltc = Lattice <MPCLabel >;
g_output <A, Ltc::leq(A, ResultLabel)>(result);
g_output <B, Ltc::leq(B, ResultLabel)>(result); // error!
g_output <C, Ltc::leq(C, ResultLabel)>(result);
g_output <D, Ltc::leq(D, ResultLabel)>(result);

}

For each principal, the output guard ensures that he or she participated in the computation.

Thus for Bob, the guard will fail.

A Note on Security. One benefit of using Covert C++ for SMPC is that the noninterfer-

ence policy extends to the generalized label model. Although the informal noninterference

proof presented in Chapter 5 was applied to the binary priority lattice, none of the details

in that proof preclude the generalized label model. Furthermore, the lattice model for Core

Covert in Chapter 4 was already generic. With generalized labels corresponding to individual

users or groups of users, Covert C++ becomes a full realization of Goguen and Meseguer’s

original definition [76] of a noninterfering system.
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Chapter 8

Covert C++ with Fast Memory-Trace

Obliviousness

The greatest drawback of pure Covert C++, as presented in Chapter 5, is that it does not

allow high pointers to be used to access (i.e., read/write) memory. This renders high pointers

impotent; the sole purpose of pointers in C++ is to provide access to objects located in

memory.

This chapter introduces libOblivious, a C/C++ software library to facilitate data-oblivious

and memory-trace oblivious computation. In particular, libOblivious defines oblivious

iterators, which have syntax and semantics similar to that of pointers and raw C++ iterators,

except that memory accesses through oblivious iterators do not leak sensitive information.

libOblivious is a stand-alone software library. It can be linked into other C or C++ codebases

without Covert C++, though it was designed and implemented primarily for the purpose of

facilitating fast memory-trace oblivious computation with Covert C++.

Section 8.1 describes the design and implementation of libOblivious. In particular, Sections

8.1.5 and 8.1.6 discuss the aspects of libOblivious that are novel to this dissertation—they

have not been considered in prior works. Section 8.2 presents the performance evaluation for

libOblivious. Since Covert C++ iterators and algorithms thinly wrap libOblivious iterators
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and algorithms (the wrappers are optimized away at compile time), these performance results

apply equally to Covert C++. Section 8.3 demonstrates how libOblivious has been integrated

into Covert C++. The last section, Section 8.4, demonstrates how libOblivious components

can be used in concert to implement a memory-trace oblivious k-nearest neighbors algorithm

in Covert C++.

8.1 libOblivious

libOblivious is composed of four components to facilitate memory-trace oblivious programming

in C and C++: (1) oblivious primitives, such as oblivious copy and swap operations; (2)

oblivious container types, e.g., vectors, linked lists, and deque-like structures; (3) oblivious

iterators which can be used to obliviously read/write from/to the oblivious container; and

(4) oblivious algorithms. The next four subsections provide an overview of these features in

greater detail. The last two subsections describes the implementation details which make

libOblivious fast, and also adhere to the conventions of the C++ standard as closely as

possible.

8.1.1 Primitives

libOblivious provides four groups of oblivious primitives: oblivious copies, swaps, reads, and

writes. An oblivious copy moves data from one of two sources, depending on a Boolean

condition, to a single destination. The destination and sources could be any combination of

memory locations or CPU registers. Semantically, an oblivious copy is like a ternary (?:)

operator, except that the value of the Boolean condition does not leak through a side channel.

An oblivious swap, like the oblivious copy, swaps the contents of two memory locations (or

two registers) if the given Boolean condition is true, and it does not leak the value of that

condition. An oblivious read/write from/to a region of memory does not leak the address

within that region where the access was made. More complex algorithms such as those
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C Prototype Register Map Implementation
int64_t o_copy_i64(

int cond ,
int64_t left ,
int64_t right);

cond ⇒ ecx
left ⇒ rdx
right ⇒ r8

mov rax , rdx
test ecx , -1
cmovz rax , r8

void o_swap_i64(
int cond ,
int64_t *left ,
int64_t *right);

cond ⇒ ecx
left ⇒ rdx
right ⇒ r8

test ecx , -1
mov r10 , QWORD PTR [r8]
mov r9 , QWORD PTR [rdx]
mov r11 , r9
cmovnz r9 , r10
cmovnz r10 , r11
mov QWORD PTR [rdx], r9
mov QWORD PTR [r8], r10

int64_t o_read_i64(
const void *src_base ,
size_t src_size ,
const int64_t *addr ,
bool base_aligned);

— —

void o_write_i64(
void *dst_base ,
size_t dst_size ,
int64_t *addr ,
int64_t val ,
bool base_aligned);

— —

Table 8.1: 64-bit libOblivious primitives

discussed in Section 8.1.4 can be built on top of these primitives.

Table 8.1 gives a summary of the 64-bit versions of these operations. The x86-64 assembly

implementations for o_copy_i64() and o_swap_i64() are given in the table. Since this is

the implementation for Windows, it uses Windows x86-64 procedure call conventions [17] and

Microsoft macro assembler [16] (MASM) syntax (which itself uses Intel assembly syntax [13]).

These operations utilize the x86 cmov family of instructions (as described in Chapter 2) to

conditionally move data from one register to another—without requiring a branch operation.

The implementations of o_read_i64() and o_write_i64() are more complex, but both

use the vpgather instructions in a manner similar to that which was described in Chapter 2.

One difference is that 64-bit reads and writes use the vpgatherqq instruction, which reads
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four 64-bit words from four (possibly) non-contiguous addresses in memory. As demonstrated

later in Section 8.2, this modification doubles the oblivious read and write throughput.

Each oblivious write actually performs exactly one read and exactly one write per mask

because each mask in the given memory region(s) must be accessed the same number of times

(and in the same order). This is trivial for the mask that contains the actual destination

address for the write. For every other mask, a non-corrupting write must be performed.

Hence for each mask that does not contain the destination address, an arbitrary value is read,

and then written back (unmodified) to the same location. For the mask that does contain

the destination address, the old value is read, and then the new value is written in its place.

For backwards compatibility with older CPUs that do not support AVX2, libOblivious can

be configured to perform scalar oblivious reads and writes instead of the vectorized versions.

The scalar implementation is up to 2x slower than the vectorized implementation.

The oblivious copy and swap operations are available in 8, 16, 32, 64, and 256-bit versions,

along with generic o_copy() and o_swap() functions which copy or swap an arbitrary number

of bytes in a single operation. Oblivious reads and writes are available in 32 and 64-bit

versions and also have generic o_read() and o_write() functions. For non-contiguous data

structures such as linked lists and deques, libOblivious also provides o_read_list() and

o_write_list() operations which accept a list of memory regions from which to obliviously

read or write data.

When the number of bytes to be copied, swapped, read, or written is large, libOblivious

vectorizes these operations, dramatically increasing throughput without violating the property

of memory-trace obliviousness. Details on these optimizations are given in Section 8.1.6.

Of the four components of libOblivious, this is the only component which provides an

interface for C programs. Moreover, since the C language does not use name mangling,

other languages with a C foreign function interface (e.g., Python) can use these libOblivious

primitives.

When libOblivious is linked into C++ code, additional generic templatized primitives

116



are exposed: o_copy_T(), o_swap_T(), o_read_T(), o_write_T(), o_read_list_T(), and

o_write_list_T(). These are easier to use (and less error-prone) than the pure C APIs,

because they automatically deduce the correct number of bytes to copy/swap/read/write

from the types of the function arguments.

8.1.2 Containers

libOblivious defines several wrappers for C++ STL containers. The supported containers

include:

• Arrays (std::array)

• Singly linked lists (std::forward_list)

• Doubly linked lists (std::list)

• Deques (std::deque)

• Queues (std::queue)

• Stacks (std::stack)

• Vectors (std::vector)

The oblivious containers are just type aliases for the STL containers, except that they use

stateful heap allocators to maintain a record of which regions of the heap they own. More

details on the stateful heap allocators are given in Section 8.1.5.

All of the supported containers are sequential, i.e., containers that can be accessed by

sequential iteration or random access. Associative containers such as maps (e.g., red-black

trees) and unordered maps (e.g., hash tables) are not supported because these structures

use key-value lookup to access container elements in a manner which is not memory trace

oblivious.

It is still possible to simulate associative containers with sequence containers. For example,

a singly linked list can store a key-value pair in each node (e.g., using the std::pair template).

Associative lookup can be performed using the ofind_if() algorithm (see Section 8.1.4),

117
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A B C

Figure 8.1: Objects in memory covering masks

where the given predicate returns true when a node’s key matches a given query. Unlike

ordinary associative lookup in std::map and std::unordered_map, this operation has O(n)

complexity, as opposed to O(log(n)) or O(1) for the STL associative containers.

In fact, O(n) complexity is the best that can be achieved for any search algorithm over

an oblivious container, when the search criteria are secret. The following theorem establishes

this fact. Some additional notation is required: ISecret is the set of all possible sequences

of secret inputs, and likewise IP ublic for public input sequences. The image of a function

f : A→ B is defined as:

f→ = {f(x) | x ∈ A},

and similarly for any subset S ⊆ A:

f→(S) = {f(x) | x ∈ S}.

In the following theorem, function f serves as the lookup function, mapping program input to

the address of a container element. The term access in this context refers to any combination

any combination of memory reads or writes on an object. An object in memory covers one or

more masks (recall Definition 2.3) when any portion of the object’s contiguous memory lies

within those masks. For example, in Figure 8.1 object A covers masks 1, 2, and 3, B covers

masks 4 and 5, and C covers mask 7.

Theorem 8.1 (Generalized Oblivious Lookup). Let C be a container with n elements. Let

f : IP ublic → ISecret → C be a function mapping program input to locations of elements in

C. Let Π be a memory-trace oblivious program which uses f to locate and then access some

element in C. Let IP ublic ∈ IP ublic, and let fSecret = f IP ublic (i.e., fSecret : ISecret → C).

118



For all ISecret ∈ ISecret, if M(Π, ISecret, IP ublic)  τ , then τ must have recorded at least

Ω( |f→Secret| ) accesses on the masks covered by elements of C.

Proof. Let {e1, . . . , em} = f→Secret, where m = |f→Secret|. Partition ISecret into I1
Secret, . . . , Im

Secret

such that for all i from 1 to m, f→Secret(I i
Secret) = {ei}. Let ISecret, I

′
Secret ∈ ISecret be arbitrary,

and note that there exist i, j ∈ {1, . . . ,m} such that ISecret ∈ I i
Secret and I ′Secret ∈ I

j
Secret.

Suppose

M(Π, ISecret, IP ublic) τ andM(Π, I ′Secret, IP ublic) τ ′.

Since Π is memory-trace oblivious, τ ≈Adv τ
′. Let n be the granularity of ≈Adv, let s be the

size of each element in C (container elements must be of uniform size in C++). If i = j, then

τ and τ ′ both recorded accesses on at least
⌈

s
2n

⌉
masks covered by ei. If i 6= j, then τ and τ ′

both recorded accesses on at least
⌈

2·s
2n

⌉
masks covered by ei and ej.

In general, the traces emitted by Π over secret input sequences from k distinct subsets

of the partition I1
Secret, . . . , Im

Secret must record accesses on at least
⌈

k·s
2n

⌉
masks covered by

k elements of C. Since any input in any of I1
Secret, . . . , Im

Secret can be given, each trace must

record at least ⌈
m · s
2n

⌉
=
⌈
|f→Secret| · s

2n

⌉

∈ Ω( |f→Secret| )

accesses on the masks covered by elements of C.

Example 8.1. Consider the algorithm ofind(), an oblivious implementation of std::find().

The ofind() function takes as parameters two iterators into a container which define the

range over which to search, and the value to find; it returns an iterator I to the first element in

the container which matches the search query. Suppose that the search query value is secret,

and that the iterators defining the range of the search cover only the first half of a vector of

size n. If the caller then uses I to access the element that was looked up, Theorem 8.1 requires

that Ω(n/2) = Ω(n) additional elements in C must be accessed to maintain memory-trace
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obliviousness, and thus not leak the value of the secret query. 4

Example 8.2. Consider the function std::list::begin(), which returns an iterator I to

the first element of a given list. std::list::begin() is actually a degenerate lookup function

whose image is a singleton set consisting of the first element of the list. By Theorem 8.1, if a

caller uses I to access the first list element, then Ω(1) accesses must be performed. In fact,

only the one access must be performed, hence std::list::begin() is invariably memory

trace oblivious. 4

Corollary 8.2 (Oblivious Lookup). Let C be a container with n elements. Let f : ISecret → C

be a surjective function mapping program input to locations of elements in C. Let Π be a

memory-trace oblivious program which uses f to locate and then access some element in C,

and let IP ublic ∈ IP ublic. For all ISecret ∈ ISecret, if M(Π, ISecret, IP ublic)  τ , then τ must

have recorded at least Ω(n) accesses on the masks covered by elements of C.

Proof. This is simply a special case of Theorem 8.1 with f→Secret = C.

Example 8.3 (Oblivious Read). Consider the primitive subscript operation on an array, e.g.,

arr[42]. Assuming that out-of-bounds accesses are disallowed, the subscript operation is a

lookup operation which maps an integral index to an array element, returning a reference to

that element. If the array has n elements, then by Corollary 8.2 Ω(n) accesses are required

to access the returned reference, assuming the index is secret. 4

On a particular concrete machine and with a particular adversary model, the argument

in Example 8.3 can be made more precise. Recall the discussion about oblivious reads and

writes from Chapter 2. For an adversary whose observational power ∼Adv has cache block

granularity on x86-64, the strategy was to read one element (e.g., a 32-bit integer) from each

cache block to obfuscate the access at a secret address or index. Recall that the proof of

Theorem 8.1 constructed a precise lower bound on the number of accesses required for a

memory-trace oblivious lookup:
⌈

n·s
g

⌉
when the lookup function’s image is the entire container

holding n elements. Thus to defeat ∼Adv, a 32-bit oblivious read on an array of size n must
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make at least
⌈

n·4
64

⌉
=
⌈

n
16

⌉
accesses. The oblivious memory access strategy employed by

libOblivious for o_read_32() and o_write_32() performs precisely this many accesses for

any array of size n.

8.1.3 Iterators

When operating on elements in a container, C++ conventions suggest the use of iterators,

rather than pointers [154]. An iterator is typically implemented as a wrapper around a

pointer, but with semantics more appropriate for its corresponding container. For instance,

an iterator to a linked list may overload the ++ operator so that instead of incrementing the

underlying pointer, the pointer is advanced to the next link in the list.

All iterators must define the indirection (*) operator, which is used to access the container

element to which the iterator points [90]. Random access iterators, which operator over

sequential containers that support random access operations, also provide a subscript ([])

operator. Random access iterators support all of the arithmetic operations (addition, pointer

difference, etc.) that are supported by ordinary pointers.

libOblivious provides its own iterators, which are themselves wrappers around C++ STL

iterators or ordinary pointers. The O template wraps an iterator or a pointer, and endows

it with memory-trace oblivious read and write operations to the container into which the

iterator points. The O template also must wrap a reference to the container, effectively

binding each O iterator to a specific container. The reason for this design decision is discussed

later in Section 8.1.5.

Listing 8.1 shows an example which uses an O iterator to obliviously read from a linked

list element whose address was discovered by an oblivious find (ofind_if() is described in

the next section). Failure to obliviously read from the iterator i could leak the value of x

and/or the values of elements in list.

In general, O iterators conform to the C++ standard requirements for iterators, though

there are two noteworthy exceptions. First, section 27.2.5 the C++17 standard states that
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1 // return the first value less than ‘x‘ in ‘list ‘, or -1 if
2 // there is no such value
3 int find_less_than(const olist <int > &list , int x) {
4 auto finder = [x](int val) { return val < x; };
5 O i = ofind_if(list.begin (), list.end(), finder , &list);
6 if (i == list.end()) // value less than ‘x‘ not found
7 return -1;
8 else // return the value that was found
9 return *i; // performs an oblivious read
10 }

Listing 8.1: Using an O iterator to obliviously read an int

the reference type member of a forward iterator (an input iterator that can be used in

multipass algorithms) must be a reference to the value type of the corresponding container [90].

When a forward iterator is dereferenced using the * operator, the return type is reference.

The O template uses the temporary proxy idiom [12], a topic covered in greater detail in

Section 8.1.5. One feature of the temporary proxy idiom is that it uses a proxy object—rather

than a reference—to access container elements. So the * and [] operators for O iterators do

not conform to the reference type requirement for forward iterators.

Second, section 27.2.3 of the C++17 standard requires that an iterator a which satisfies

the requirements for an input iterator (an iterator that can read from the pointed-to element),

must define the a->m operation with semantics (*a).m [90]. The O template does not support

the -> operator.

8.1.4 Algorithms

The goal of the libOblivious algorithms library is to provide memory-trace oblivious imple-

mentations of all algorithms supported by the C++ STL algorithms library [4, 90]. These

algorithms are built on top of the memory-trace oblivious primitives that were introduced in

Section 8.1.1. Algorithms which use oblivious iterators (see: the O template, Section 8.1.3)

can only be applied over the libOblivious containers (Section 8.1.2). All other oblivious

algorithms can be applied to any sequential container in the C++ STL.
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1 template <class InputIt , class UnaryPredicate ,
2 class ContainerT >
3 O<InputIt , ContainerT >
4 ofind_if(InputIt first , InputIt last ,
5 UnaryPredicate p, ContainerT *container) {
6 InputIt ret = last;
7 for (; first != last; ++first) {
8 o_copy_T(ret , p(*first) & (ret == last), first , ret);
9 }
10 return {ret , container };
11 }

Listing 8.2: ofind_if() implementation

Listing 8.2 shows the implementation of ofind_if(), one of the foundational search

algorithms of the libOblivious algorithms library. Its semantics correspond to those of

std::find_if() [90]. The interface is identical to that of std::find_if(), except that

ofind_if() also requires a reference to the container to be searched. This is necessary to

construct the oblivious iterator return value, as discussed in Section 8.1.3. o_copy_T() is

used to obliviously update the return value when the first match is found. Also noteworthy

is the use of a bitwise AND (&) instead of the logical AND (&&) in the copy condition. This

subtle distinction is important because the logical AND in C and C++ has short-circuiting

behavior which may or may not compile into a branch: the second operand will only be

evaluated if the first operand evaluates to true. Thus, if the first operand has been influenced

by secret information, that information could be leaked. Finally, notice that the for loop does

not break when a match is found. The algorithm always examines every single element in the

container exactly once. Other algorithms such as ofind() and oany_of() are implemented on

top of ofind_if(). Table 8.2 summarizes several of the algorithms exported by libOblivious.

8.1.5 Implementation

This section discusses the implementation of libOblivious in much more detail, especially the

innovations that have not been presented in prior works.
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Name Description Complexity
osort Sort a container which support random access operations. O(n2)
omax_element Find the greatest element in a container, and return an

oblivious iterator to it. If several elements are equal to
the greatest element, return an oblivious iterator to the
first such element.

O(n)

ofind_if Searches for an element in a container for which a given
predicate P is valid. Return an oblivious iterator to the
first such element found.

O(n)

ofind Searches for an element in a container which is equal to
a given element. Return an oblivious iterator to the first
such element found in the container.

O(n)

Table 8.2: Some libOblivious algorithms

The libOblivious Heap Allocators. The libOblivious primitives are adequate for fa-

cilitating memory-trace oblivious computation on their own. However, the primitive APIs

are neither elegant nor easy to use. The o_write() API, for example, has 7 parameters.

libOblivious also exports oblivious iterators to make oblivious operations more accessible to

the developer.

Many aspects of the oblivious iterator O template were non-trivial to implement, but

none more so than the following. Since an iterator is really just a pointer to a container

element, how can an oblivious iterator determine the entire range of memory covered by the

container? On any given oblivious read or write, the oblivious iterator will need to know this

range so that it can access each mask covered by the range. To make matters more difficult,

a non-contiguous container such as a linked list may cover many non-contiguous memory

regions. The oblivious iterator will somehow need to determine the base address and size of

each region covered by the non-contiguous container. The proposed solution to this problem

exploits a seldom-used feature of C++ [117]: user-defined heap allocators.

The C++ standard library has a category of containers called allocator-aware contain-

ers [90]. That is, containers which use a heap allocator to store values. Examples of

allocator-aware containers include linked lists, maps, and vectors, but not statically-allocated

or stack-allocated arrays. For any C++ STL allocator-aware container, C++ allows the
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default allocator to be substituted by a user-defined allocator, assuming the user-defined

allocator conforms to the C++ standard’s interface and behavioral requirements for a heap

allocator [90].

The strategy adopted by libOblivious is to define an allocator which maintains bookkeeping

information for all of the memory currently owned by its parent container. When an oblivious

iterator performs a read or a write on a container, it queries the oblivious container’s allocator

to determine which memory region(s) must be accessed. Due to an unfortunate historical

detail of C++, the implementation cannot be this simple.

The requirements for user-defined allocators changed substantially from C++03 to

C++11 [85, 154]. In particular, prior to C++11 all allocators were required to be stateless.

C++11 relaxed this requirement. However, the need to maintain backwards compatibility

meant that the new interface requirements for stateful user-defined allocators could not be

defined cleanly [117]. For example, allocator-aware containers have always been required to

provide a get_allocator() member function which returns a copy-constructed replica of

that container’s internal heap allocator [90]. Because copy operations are often expensive,

C++ accessor methods typically return a reference to the internal member. Since user-

defined allocators were previously required to be stateless, copy operations were free; thus

the return-by-value semantics of get_allocator() was justifiable.

Unfortunately, the get_allocator() function is the only member function exposed by

C++ STL containers which allows access to the container’s internal allocator. The return-

by-value semantics poses two problems for the design. First, the heap memory ownership

bookkeeping is maintained in a data structure which can potentially become quite large.

Copying the entire structure on each oblivious read or write would be extraordinarily inefficient.

Second, it may be possible for a container to allocate new memory after an oblivious iterator

obtains a copy of the allocator, but before the oblivious iterator uses the copy to perform an

oblivious read or write. In this scenario, the oblivious iterator would use stale information to

determine which regions it should access.
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A perfect solution to this problem could not be found. The compromise solution was to

implement the heap allocator’s internal state as a shared pointer [90, 154] (i.e., a reference-

counted pointer) to the linked list containing the bookkeeping information. Thus when the

oblivious iterator calls get_allocator() on the oblivious container to which it is bound, it

receives a copy of the shared pointer, through which it can access the (fresh) bookkeeping

information. The implementation takes care to ensure that the lifetime of the shared pointer

copy does not extend beyond the current read or write operation, so as to not prolong the

lifetime of the potentially large bookkeeping list after its parent container is destroyed.

The libOblivious heap allocator also strategically allocates memory to improve performance

of oblivious reads and writes. Suppose that the underlying libc malloc() routine on a

particular platform tends to scatter each successive heap allocation request across memory.

In the worst case, consider a linked list where each node occupies 16 bytes, and each call

to malloc() returns 16 bytes located in a mask not already occupied by any other node

allocated in this list so far. If the linked list has n nodes, then an oblivious read will need to

access all n nodes to access every mask covered by the container. However, if the nodes have

all been allocated contiguously, then only
⌈

16·n
mask size

⌉
nodes will need to be accessed. For an

adversary who has observational power at cache block granularity, this optimization reduces

the work load by as much as a factor of 4.

The libOblivious heap allocator has several implementations which are optimized for

various data structures. The characteristics of each implementation are not particularly

interesting. However, all implementations do share in common at least two attributes. First,

they try to contiguously allocate the container elements as much as possible, with minimal

internal and external fragmentation. Second, all memory regions covered by the allocators

are guaranteed to be at least mask aligned.

The O Template. The O template wraps an iterator and a reference to the container into

which the iterator points. As mentioned earlier, an oblivious iterator (an instance of the

O template) behaves similarly to the iterator which it wraps, but with several important
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exceptions. The primary purpose of the oblivious iterator is to modify the read and write

semantics of C++, thus replacing conventional memory accesses on containers with memory-

trace oblivious accesses.

If p is a pointer into an array with element type T, then the default behavior in C++ for

the indirection operation * is to return a reference to the pointed-to element (i.e., T &), and

similarly for the subscript operator []. Thus these operations behave predictably when used

in expressions. The expression T x = *p; will assign the value of the reference returned by *p

to the new variable x. Similarly, *p = x; will assign the value of the variable x to the object

referenced by *p, assuming that p is a non-const pointer: invoking the indirection operator

on a const pointer will return a const (immutable) reference.

The indirection and subscript operations can be overloaded in C++ [90, 154], which is

also how these operations were implemented for pure Covert C++. The overload will typically

behave similarly to the default operators: a dereference operation on an iterator will return a

reference to the pointed-to element in the container. However the C++ standard does not

mandate this as a requirement for all classes.

The temporary proxy idiom [12] exploits the flexibility of the indirection and subscript

overloads to allow the developer to alter the manner in which container elements are accessed

through an iterator. The basic mechanics of the idiom are as follows. Instead of returning a

reference to the pointed-to element, the indirection/subscript operator can return a proxy

object with one or both of the following operators overloaded:

operator T() { ... }
void operator =( const T &) { ... }

The first operator is the user-defined conversion operator [90, 154]. For a given class U, a

user-defined conversion operator can specify either an implicit or explicit conversion to any

other type T. Without the explicit keyword in the declaration, the conversion is assumed

to be implicit. The second operator defines assignment. For example, when an object of the

given class is assigned (via =) a value of type T, this operator will be called to perform the
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assignment.

The temporary proxy idiom uses the user-defined conversion operator to “read” from the

pointed-to element, and it likewise uses the assignment operator to “write” to the pointed-to

element. The process works as follows. Suppose that i is an iterator which points to elements

of type T, and i’s class uses the temporary proxy idiom. In the statement T x = *i;, The

indirection *i will construct and return a proxy object which, at minimum, knows the address

of the pointed-to element. The proxy object and x do not share the same type, hence the

compiler will search for a valid conversion sequence from the type of the proxy object to

T. The proxy object’s user-defined conversion operator T() satisfies this requirement, and

thus is selected to perform the conversion. The operator can simply return a copy of the

pointed-to element, or it can do something more interesting.

The process for a write is similar. The statement *i = x; will invoke the proxy object’s

assignment operator for a parameter of type T, thus allowing the user to customize the write

behavior of the iterator. Note that the lifetime of the proxy object should not extend beyond

the evaluation of the statement, which is why the idiom is called temporary proxy.

The oblivious read/write mechanism of the O template is implemented using the temporary

proxy idiom. If o is an oblivious iterator, then the statement T x = *o; is evaluated as follows:

1. The evaluation of *o returns the proxy oblivious accessor object, which essentially

wraps a reference to o.

2. Overload resolution for a conversion sequence from the type of the oblivious accessor

to T selects the oblivious accessor’s implicit conversion operator, which performs the

following sequence of operations:

(a) Call get_allocator() on o’s container reference to retrieve a shared pointer to

the container’s oblivious allocator.

(b) Call get_regions() on the oblivious allocator, which returns a list of 〈base ad-

dress, size〉 pairs of all heap memory regions covered by the container.

(c) Call o_read_list_T() to obliviously read the value of type T pointed to by o
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from the given list of regions.

3. The value returned by this last call is assigned to x.

The process is similar for an oblivious write through an oblivious iterator, except that the

assignment operator on the oblivious accessor is called, and o_write_list_T() is used in

step 2(c) above.

Unfortunately, the temporary proxy object does not always behave as expected. If a

variable is declared with the C++ auto keyword in place of a specific type, as in auto x = *o;,

then the C++ type inference rules will infer the type of x to be the type of the value being

assigned to x—in this case, the proxy object itself. Hence instead of triggering a call to the

proxy object’s conversion operator, the compiler will use the proxy object’s copy constructor

to instantiate x as a copy of the proxy object. In certain situations, this may actually be

what the developer would want. For example, the copy of the proxy object can act like a

reference to the pointed-to element in the container, allowing repeated oblivious accesses to

it, but it is more likely that the copy would be created accidentally.

One way to prevent these accidental copies would be to delete the proxy object’s copy

constructor. However, as of C++17 this fix is no longer workable due to guaranteed copy

elision [65, 90].

A similar consequence of the temporary proxy idiom arises when calling template functions.

Given a template function foo() with prototype

template <typename T> void foo(const T &arg);

the function call foo(*o); (where o is an oblivious iterator) will instantiate the template

parameter T as the type of the proxy object. In this case, the lifetime of the temporary proxy

object will be extended, and arg will be a const reference to the proxy object. Again, this is

most likely not the behavior that the user would intend or expect.

It would be inconvenient for the user if he were always required to specify the element type

when reading from an oblivious iterator. Therefore the oblivious iterator and the oblivious

accessor both expose a member type value_type, which is the type of the elements in the
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container. For instance,

typename decltype(o):: value_type x = *o;
typename decltype (*o):: value_type x = *o;

The first statement uses the oblivious iterator’s value_type. The second statement uses

the oblivious accessor’s value_type. Both statements are equivalent.

One other substantial limitation of the template proxy idiom is that it does not provide

any strategy for similarly modifying the behavior of the member access (->) operator. The

member access operator is typically used to implement wrappers around pointers, such as

iterators and smart pointers. However, it is less customizable than the dereference and

subscript operators. According to section 16.5.6 of the C++ standard, “An expression x->m

is interpreted as (x.operator->())->m for a class object x of type T if T::operator->()

exists and if the operator is selected as the best match function by the overload resolution

mechanism” [90]. Hence any overload of the -> operator must either return a raw pointer or

another object with an overloaded -> operator. There is no way to return a proxy object

without inviting an infinite recursion.

The workaround is to first obliviously read an object from a container (i.e., create a copy

of it on the stack) and then use the x.m member access to read a member.

Shallow versus Deep Copying. Most object-oriented or imperative programming

languages support some kind of mechanism to copy an object from one location in memory

to another. For instance, consider this definition of a string type in C:

struct MyString {
size_t size;
char *data;

};

If s1 is a MyString, then the statement MyString s2 = s1; copies the value of s1 to the

memory occupied by s2. Note that the string pointed to by s1.data is not actually copied

by this operation. Only the s1.size member and the s1.data pointer itself will be copied,

16 bytes in total on a 64-bit platform. Hence, after the copy s1 and s2 will share the same
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state: any modification to s1’s string will be visible through s2, and vice-versa.

In C++, this kind of copy is commonly referred to as a shallow copy [154]. Unlike C,

C++ provides support for making deep copies, which completely copy the state of the source

object. Deep copies are supported via overloading the copy constructor. For instance, a deep

copy constructor for MyString might look like:

MyString(const MyString &other)
: size(other.size), data(new char[size]) {

memcpy(data , other.data , size);
}

This example creates a copy of a MyString by first copying its size member, and then

instantiating its own data member with a pointer to an array of freshly allocated chars on

the heap. Then it copies the string state to the fresh heap memory.

libOblivious primitives are only able to make shallow copies of objects. A deep copy

requires knowledge of the meaning of an object, and what exactly constitutes its deeper state.

Only the author of the MyString structure would know that the size member should refer

to the number of characters pointed to by the data member; an algorithm cannot simply

infer this. Hence all of the libOblivious C++ primitives statically check that the types of

the arguments are all trivially copyable, meaning that they use the default copy constructor.

That is, only shallow copies of the object can be made using copy semantics [90].

It is possible to support deep copies with libOblivious, though this would require a lot of

extra work on account of the developer. One solution could be to support a static interface

for obliviously (deep) copyable objects, for instance:

template <typename T> struct ODeepCopy {
static T o_deep_copy(bool c, const T &left , const T

&right);
};

If the developer wants one of his classes to be obliviously deep copyable, he can specialize the

ODeepCopy struct for that class and define an appropriate o_deep_copy() function, recursively

invoking o_copy()s or o_deep_copy()s as needed. The libOblivious C++ primitives could
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first check whether the class is trivially copyable and, if not, check whether the class

specializes ODeepCopy. If so, the primitives would call the user-defined o_deep_copy()

instead of o_copy().

8.1.6 Optimizations

This section discusses a series of observations about the execution of libOblivious primitives,

which highlight opportunities to improve their performance. These particular optimizations

for data-oblivious or memory-trace oblivious programs have not been reported in related works.

Section 8.2 demonstrates the observed performance benefits of some of these optimizations.

The first observation pertains to the o_copy() and o_swap() primitives, both of which

move chunks of contiguous data in memory.

Observation 1. Loops which operate sequentially on pairs or tuples of data can often be

optimized into parallel vectorized operations using single instruction, multiple data (SIMD)

instructions.

The use of multimedia SIMD instructions in commercially available desktop, server, and

laptop CPUs to achieve superword level parallelism (SLP) optimizations was first postulated

by Larson and Amarisinghe [100]. This strategy has since been adopted by numerous

optimizing compilers such as GCC and Clang.

Copy and swap operations sequentially operate on tuples of data in a manner which

can be vectorized. However, since these operations are written in assembly (to prevent

the compiler from using optimizations that would violate obliviousness) this also effectively

disables all SLP optimizations. The solution is to manually vectorize the oblivious copy and

swap operations when the number of bytes to copy or swap is sufficiently large enough to

fill an AVX2 vector, specifically, 256 bytes [58]. The code which vectorizes memory-trace

oblivious copy in libOblivious for 256 contiguous bytes is given in Listing 8.3.

The implementation of o_copy_i256() uses Intel’s Streaming SIMD Extensions (SSE)

compiler intrinsics [39], which are available on popular compilers such as GCC, Clang, and
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1 void o_copy_i256(__m256i *dst , int cond ,
2 const __m256i *left , const __m256i *right ,
3 size_t offset) {
4 const __m256i mask = _mm256_set1_epi32 (!! cond - 1);
5 const __m256i ltmp = _mm256_loadu_si256(left + offset);
6 const __m256i rtmp = _mm256_loadu_si256(right + offset);
7 const __m256i result =
8 _mm256_blendv_epi8(ltmp , rtmp , mask);
9 _mm256_storeu_si256(dst + offset , result);
10 }

Listing 8.3: o_copy_i256() implementation uses vpblendvb

MSVC for supported platforms. For example, the _mm256_loadu_si256() intrinsic compiles

to an appropriately sized vmov instruction. The o_copy_i256() function unconditionally

loads 256 bytes from both the left and right pointer operands. It then uses a vector blend

operation—a kind of piece-wise ternary operation for vectors—to store either the ltmp or

rtmp vector into the result vector, which is then written to the destination dst in memory.

The generic o_copy() and o_swap operations dynamically determine the vectorization

depending on the number of bytes requested for copy or swap at runtime. The C++-only

o_copy_T() and o_swap_T() operations are able to infer the number of bytes to copy/swap

at compile time, since the number of bytes is the size of the object(s) to be copied or swapped.

Thus the vectorization can be inlined, and possibly loop-unrolled, hence achieving even better

performance without losing memory-trace obliviousness.

This optimization allows the memory-trace oblivious copy and swap operations to perform

comparatively well against the analogous primitives in C++, as demonstrated later in

Section 8.2. In fact, libstdc++ and libc++ both do not vectorize the std::swap() operation.

Hence the oblivious oswap() operation is actually faster than std::swap() for larger objects.

Observation 2. When obliviously reading or writing an amount of data greater than or

equal to the size of the mask, the read/write can be performed faster by an oblivious copy.

Section 8.1.1 described the basic approach for obliviously reading data from a memory

region. When reading 4 bytes, the vpgatherdd instruction is used, and vpgatherqq is used
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Figure 8.2: Obliviously reading n bytes from an array
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to read 8 bytes, which increases throughput. To read more (contiguous) bytes, this process is

repeated, reading 4 or 8 bytes at a time. Figure 8.2 illustrates this kind of memory striping

pattern to read data. Reads shown in red use vpgatherdd, and reads in blue use vpgatherqq.

The striped reads offer reasonable throughput because they allow data to be read oblivi-

ously, without having to read from every single address within a memory region. As soon as

the size of the read reaches the size of the mask, it becomes necessary to read from every

address—otherwise the accesses on cache blocks would not be uniformly distributed. In this

case, a more efficient strategy can be adopted.

In the last diagram in Figure 8.2, each green box indicates an oblivious copy. Thus, when

an oblivious read is requested for n bytes where n ≥ mask size, the o_read() primitive

iterates over the memory region in n-sized chunks, invoking o_copy() for n bytes on each

chunk. The condition for o_copy() is false for every chunk except for the chunk whose

beginning address matches the given addr parameter. Hence only the desired value is actually

written to the destination. This optimization causes the throughput of o_read() to scale

linearly with the size of the memory region.

Observation 3. If the memory region being read/written from/to fits entirely within a

mask, then an oblivious read/write is not necessary.

This observation may sound trivial, but it can be used to improve performance in certain

scenarios. For instance, the oblivious k-NN implementation in Section 8.4 uses an oblivious

iterator to perform oblivious accesses on a direct address table containing the tally for each

class (i.e., category for classification). If the number of classes is sufficiently small—specifically,

less than 16—then the entire data structure may fit within the mask. The oblivious containers

guarantee that this is the case, because all of the memory they allocate for data is at least

aligned to the mask.

The oblivious read and write primitives inline a check to determine whether the target

memory region is entirely contained within a mask. If so, the given address is simply

read/written from/to through the pointer. Otherwise, a call is made into the libOblivious
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Alignment Correction Required

Figure 8.3: A correction is required when the memory region is not aligned to the mask.

DLL to perform an oblivious read or write. For a single operation, this optimization may

make very little difference. In the k-NN example, where potentially many random accesses are

performed in a loop, eliding repeated calls into a DLL can achieve a noticeable performance

improvement.

The last optimization also pertains to alignment. The discussion thus far has not considered

the case where either the beginning or the beginning or the end of a memory region is not

aligned to a mask. Consider the example in Figure 8.3. The memory region from which to

obliviously read (shaded in orange) is not aligned to the mask at either boundary. To ensure

memory-trace obliviousness, these boundary masks must always be accessed.

The easiest solution is to treat the memory region as though it extends all the way to

the beginning and end of all of the masks it covers. Computationally, this is as simple as

computing the alignment correction at the beginning of the region (depicted in Figure 8.3),

subtracting the correction from the base of the region, and adding the correction to the end

of the region. The correction at the end of the region is computed in a similar fashion, and

then added to the memory region’s size.

Observation 4. If it is known at compile time that a memory region will be aligned to the

mask, then the alignment check and adjustment can be elided at run time.

All of the oblivious read and write primitives have a bool parameter called is_aligned,

which asserts that the given memory region will be aligned to the mask. The alignment

check and adjustment described above are both inlined. Hence if an API call asserts true for
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is_aligned, the check will be entirely optimized away by the compiler. This is precisely what

the O template does when it is instantiated for an oblivious container, because libOblivious

containers always allocate memory with mask alignment.

8.2 Evaluation

This section describes a series of experiments to test the performance of libOblivious’s

primitives and algorithms. The results demonstrate that the libOblivious read and write

primitives offer a substantial performance increase over the naïve solution described in

Chapter 2. Other oblivious primitives compare favorably to their C++ and C++ STL

counterparts, and in one case an oblivious primitive outperforms its STL counterpart. The

algorithms generally perform well in comparison to the C++ STL, with some exceptions.

8.2.1 Test Setup

The tests were performed on a laptop machine with an off-the-shelf dual-core Intel SkyLake

CPU, with a base frequency of 2.9 GHz. The CPU has a 32 KB L1 data cache, a 256 KB L2

cache (per core), and a 4 MB L3 cache (shared). It has 16 GB of 2133 MHz LPDDR3 RAM.

All tests were performed on the host operating system, macOS 10.13. Individual tests were

compiled by GCC version 8.1.0. All code was compiled and linked with libstdc++.

Before running each test, each region of memory required by the test is allocated and

locked (i.e., using mlock()), to preclude paging. Each test is run 100,000 times for each

value of each of the test parameter(s) (e.g., the size of the data structure being operated on).

The reported result is an average of the 100,000 iterations. One exception to this rule is the

sorting test, which is run for only 1,000 iterations. The result of the first iteration for each

test is always discarded because the instruction and data caches are not yet hot, thus the

first iteration is always slower.

For tests which require input parameter(s), such as an index from which to read or write,
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or a value to find in a container, the parameters are randomized for each test iteration.

8.2.2 Primitive Results

The four categories of libOblivious primitives are reads, writes, swaps, and ternary-like copies.

For each primitive, its performance (in terms of execution time) is compared against the size

of the data and/or the memory region over which the primitive is being applied.

Figure 8.4 shows the performance results for the libOblivious primitives. The top row of

plots shows the performance of the vpgatherdd-based oblivious read and write primitives,

o_read_i32() and o_write_i32(), respectively. Both scalar and vectorized versions of

o_read_i32() substantially outperform the naïve solution. In general, the scalar solution

offers a roughly 10-14x performance improvement. The vectorized solution performs best when

applied to data already in the CPU’s L1 and L2 caches. Beyond the L2 cache, performance

gains against the scalar solution gradually taper off. In particular, the best improvements

over the naïve solution were 32x when operating on data within the L1 cache, 21x on data

in the L2 cache, and 11x within the L3 cache. This last result is slightly faster than the

observation for the scalar oblivious read.

The best performance improvement that could have been achieved over the naïve solution

with the vector or scalar solutions would have been 16x. This is because the vector and scalar

solutions read just 4 bytes for every 64 bytes reads by the naïve solution. Yet beyond the L2

cache, the boost bottoms out at 10-11x. This discrepancy can most likely be attributed to

cache misses. When the array is larger than 256 KB, the first memory access in a cache block

is always more expensive than each subsequent access, because the first access is always an

L2 cache miss. Hence for the naïve solution, each access in a cache block after the first is

cheaper. For the scalar and vector solutions, every access should be an (expensive) L2 cache

miss. Hence the 16x improvement beyond the L2 cache is almost certainly unattainable. The

observed 10-11x improvement should be close to optimal.

The results for o_write_i32() are less favorable. As mentioned earlier in Section 8.1.5,
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Figure 8.4: Performance results for libOblivious primitives
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access to a newer Intel-based machine with AVX512 instructions was not available during

the writing of this dissertation. The AVX512 architecture introduces the vpscatter family

of instructions. These instructions could be used to drastically improve the performance of

the oblivious write primitives, in the same manner as vpgatherdd does for oblivious reads.

At best, a 12x performance improvement was observed in the L1 cache, 11x in the L2 cache,

and 7x in the L3 cache.

The second row of plots in Figure 8.4 shows the performance of the o_read()/o_write()

primitives against the number of bytes being read/written from an array of fixed size, 1 MB.

Each plot also shows the throughput (number of MB read/written per second) of the operation.

Throughput is at its worst when reading or writing only 4 bytes. In this case, o_read_i32()

and o_write_i32() are being called by o_read() and o_write(), respectively. When the

test parameter is increased to 8 bytes, o_read() instead calls o_read_i64(), and likewise for

o_write(). These 64-bit primitives, as discussed in Section 8.1.5, instead use the vpgatherqq

instruction, which gathers four 64-bit integers instead of eight 32-bit integers. The execution

time is nearly identical, and thus the throughput is doubled.

Throughput remains steady until the parameter size reaches 64 bytes: the size of a cache

block. At this point, o_read() and o_write() instead use o_copy(). The reasons for this

were discussed in Section 8.1.5. Consequently, for reads and writes exceeding 64 bytes, the

throughput increases linearly with respect to the number of bytes being read or written.

The bottom row in Figure 8.4 shows the results for the o_copy() and o_swap() primitives,

respectively. The first plot compares the performance of o_copy() against the C++ ternary

(?:) operator. As the number of bytes copied increases, the slowdown of o_swap() converges

toward 1.5x. This result is predictable. When the statement

*d = c ? *x : *y;

is compiled (and the pointee type is sufficiently large), the compiler will produce a branch

depending on c, which will invoke a memcpy() either from *x to *d or from *y to *d. If

the libc memcpy() is optimized for AVX2, then it will repeatedly invoke vectorized vmov
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instructions to load from either *x or *y, and then store in *d. The analogous libOblivious

operation would be

*d = o_copy_T(c, *x, *y);

which would similarly invoke vmov to load from both *x and *y, but then use vpblendvb to

select the correct vector depending on c, and finally write that result to *d with a third vmov.

So the oblivious copy is performing exactly three vectorized memory accesses for each two

vectorized memory accesses performed by memcpy(), which explains the 1.5x slowdown.

The performance results for o_swap() are more impressive. The oblivious swap imple-

mentation actually outperforms the C++ STL’s std::swap() implementation by up to 2.3x.

This is because std::swap() is not optimized with AVX2 to vectorize swaps on sufficiently

large parameters, at least as of libstdc++ 8.1.0. At a glance, this might seem like a surprising

oversight. However, it is conventional in C and C++ to swap values in this manner only when

the types of the values are sufficiently small, e.g., when they can fit into a general purpose

register. When the values are larger, the developer is instead expected to swap pointers to

these values, which is usually more efficient.

8.2.3 Algorithm Results

Each libOblivious algorithm was tested over one or more oblivious containers. The results

are shown in Figure 8.5. The first row of plots compare the ofind() implementation against

std::find() over a vector and over a linked list. The container is initialized with a sequence

of integers {0, . . . , n− 1}, where n is the number of elements which can fit into the container,

for the given size in bytes. Each test searches for a random element in the range [0, n). Hence,

on average the oblivious find would ideally perform twice as many memory accesses as the

standard library find (because on average, the randomly chosen element will be located at the

middle of the range). The results demonstrate a roughly 10-12x slowdown over the oblivious

vector container, and 2.7x over the oblivious forward list. The reasons for this discrepancy

are discussed in the next section.
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Figure 8.5: Performance results for libOblivious algorithms
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The oblivious sort is the worst performing algorithm, when compared to its STL counter-

part. Over an array of size 64 KB, osort() runs nearly three orders of magnitude slower,

on average. And this discrepancy only increases as the size of the container increases. This

is due to the asymptotic complexity of the oblivious sort, which is O(n2), as opposed to

O(n log(n)) for std::sort().

Of the three algorithms discussed in this section, only omax_element() actually outper-

forms its STL counterpart, improving performance by nearly a factor of two. However this

may be related to a known optimization bug in GCC1. When both omax_element() and

std::max_element() are compiled by Clang, a 3.4x slowdown is observed over a 1MB array.

Because the entire container must always be searched to find the maximum element, an

optimal result would have been no slowdown, or very little slowdown.

8.2.4 Discussion

With the exception of oblivious writes (due to lack of vector scatter support on the test ma-

chine), the oblivious primitives perform exceptionally well. However, the oblivious algorithms—

which use those same primitives—do not always perform as well.

As discussed earlier in Section 8.1.5, the oblivious copy and swap primitives needed to

be implemented in assembly so as to avoid compiler optimizations that would trigger a

branch based on the (potentially) secret copy/swap condition. An unfortunate side effect of

this approach is that the presence of inline assembly in any compiler basic block disables

many optimizations for the rest of that basic block [18]. If the basic block is encountered

infrequently, then the slowdown may be unnoticeable. If the basic block is part of a loop,

then the slowdown will be multiplicative. In the case of the oblivious sort implementation,

the inline assembly is actually nested within two loops.

This is precisely what has been observed during manual inspection of the compiled binaries

of the oblivious algorithms. For example, compared to std::find(), the compiler output for
1bug reported here: https://stackoverflow.com/questions/25622109/why-is-c-stdmax-element-

so-slow
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ofind over a vector is more complex, and unnecessarily so. The performance discrepancy for

ofind over a linked list is smaller, in part because the number of CPU cycles consumed by

each iteration of a traversal over a linked list is partially dominated by reading the address of

the next link from memory. There is still overhead attributable to the disabled optimizations,

but it is less noticeable.

One solution to close the performance gap would be to manually write the loop in assembly,

for each loop which contains an oblivious copy or swap primitive. Unfortunately it is not

possible to do this in a manner which is entirely generic for each algorithm. For instance,

std::find() is parameterized by the type of its iterator arguments. The compiler uses

this type to determine which increment operator, dereference operator, and value equality

comparison operator to use. Each of these is called within the main loop, and they are almost

always inlined by the compiler. Thus, for any two invocations of std::find() which differ

only in container type, iterator type, or value type, the compiler may produce a different

binary.

It is not possible to manually write enough inlined assembly procedures to account for all

combinations of type parameters, especially for every oblivious algorithm. It may be possible

to write assembly procedures which call the dependent operators, instead of inlining them.

However, this would likely produce code that would also perform poorly.

Of all the algorithms that were tested, only osort() demonstrated exceptionally poor

performance. The existing implementation is a simple variation on bubble sort, but with

oblivious swaps. A better solution would be to use something like Batcher’s sorting net-

work [30], which has complexity O(n log2 n). This approach has been employed in [124] for

memory-trace oblivious computation. Efficient, distributed oblivious sorting has also been

demonstrated [176] using column sort [101].
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8.3 Oblivious Iterators and Algorithms in Covert C++

Although libOblivious can be used as a stand-alone library to facilitate oblivious compu-

tation, this approach is not recommended. libOblivious can only guarantee memory-trace

obliviousness when its interfaces are used correctly. With libOblivious alone, it is possible to

• pass a secret value as an argument to a libOblivious primitive which does not guarantee

memory-trace obliviousness for that argument,

• run a non-oblivious algorithm over an oblivious container,

• run an oblivious algorithm over a non-oblivious container,

• or forget to use an oblivious iterator instead of a non-oblivious one, which could easily

happen when using the auto keyword.

All of these pitfalls could result in a leak of sensitive information through a side channel.

Moreover, libOblivious only makes security guarantees for its own components. The developer

is responsible for ensuring the security of sensitive data throughout the rest of his program.

The solution proposed in this section is to integrate libOblivious into Covert C++. This

accomplishes two security goals. First, Covert C++ augments the libOblivious interfaces with

security typing. This ensures that secret values cannot accidentally be passed to non-secure

parameters of libOblivious primitives and algorithms. Second, Covert C++ can verify that

sensitive data is not being misused throughout the rest of the program.

The first notable feature of Covert C++ with libOblivious is security typing for oblivious

iterators. Instances of the O template can be wrapped by the SE template, and thus endowed

with security typing rules that are less restrictive than the typing rules for ordinary SE

pointers. Henceforth, SE oblivious iterators (including pointers) are referred to as oblivious

types.

The typing rules for memory access operations on oblivious types are shown in Figure 8.6,

where Ω denotes an oblivious type. The SUBSCRIPT READ and SUBSCRIPT WRITE rules allow

an oblivious type to be read/written from/to, regardless of the security labels of the subscript
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T := A labeled type
S := A Covert C++

security label

e := An expression
γ := A canonical type
Ω := An oblivious type

INDIRECTION READ

e : Ω TΩ = projL〈Ω〉 SΩ = projR〈Ω〉
τ = std::iterator_traits〈Ω〉::value_type

T = projL〈τ〉 T ′ = projL〈τ ′〉
std::is_convertible〈T, T ′〉
is_se_convertible〈τ, τ ′〉

(S, . . .) = projR〈τ ′〉 SΩ ≤ S

implicit cast〈τ ′〉(*e) : τ ′

INDIRECTION WRITE

e : Ω e′ : τ ′
TΩ = projL〈Ω〉 SΩ = projR〈Ω〉

τ = std::iterator_traits〈Ω〉::value_type
T = projL〈τ〉 T ′ = projL〈τ ′〉

std::is_convertible〈T ′, T 〉
is_se_convertible〈τ ′, τ〉

(S, . . .) = projR〈τ〉 SΩ ≤ S

*e = e′ : τ

SUBSCRIPT READ

e : Ω e′ : τdiff

TΩ = projL〈Ω〉 SΩ = projR〈Ω〉
Tdiff = projL〈τdiff〉 Sdiff = projR〈τdiff〉
τ = std::iterator_traits〈Ω〉::value_type

T = projL〈τ〉 T ′ = projL〈τ ′〉
std::is_convertible〈T, T ′〉
is_se_convertible〈τ, τ ′〉

(S, . . .) = projR〈τ ′〉 SΩ t Sdiff ≤ S

implicit cast〈τ ′〉(e[e′]) : τ ′

SUBSCRIPT WRITE

e : Ω e′ : τdiff e′′ : τ ′
TΩ = projL〈Ω〉 SΩ = projR〈Ω〉

Tdiff = projL〈τdiff〉 Sdiff = projR〈τdiff〉
τ = std::iterator_traits〈Ω〉::value_type

T = projL〈τ〉 T ′ = projL〈τ ′〉
std::is_convertible〈T ′, T 〉
is_se_convertible〈τ ′, τ〉

(S, . . .) = projR〈τ〉 SΩ t Sdiff ≤ S

e[e′] = e′′ : τ

Figure 8.6: Covert C++ oblivious typing rules.
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and the oblivious type itself. The INDIRECTION READ and INDIRECTION WRITE rules are

essentially special cases of their respective subscript rules, where the subscript value is equal

to 0, and its security label is L.

Recall the discussion from Section 2.3.1 pertaining to implicit flows. The typing rules for

pure Covert C++ given in Figure 5.3 and the derived typing rules for control flow statements

did not allow any implicit flows of high data. For the first time in this dissertation, the rules

in Figure 8.6 must consider implicit flows involving high data.

Consider the following variation on an example from Section 2.3.1:

y = parr[n];

Here, n is some index and parr is some pointer into an array. There is an explicit flow from

parr[n] into y (i.e., parr[n] ⇒E y). There is also an implicit flow from the subscript value,

n ⇒I y. Since parr is pointing to some element in an array—not necessarily its base—parr

is effectively transmitting some information (its value) into y. Hence parr ⇒I y.

If parr were instead an oblivious type, then this assignment statement would be typed by

the SUBSCRIPT READ rule. To ensure that the label(s) monotonically increase from the array

element to y, the flow parr[n] ⇒E y is checked by the is_se_convertible〈τ, τ ′〉 clause. S,

SΩ, and Sdiff are the security labels of the destination object, covert type, and the subscript

value, respectively. That is, y, parr and n in the example above. The clause SΩ t Sdiff ≤ S

ensures that the two implicit flows do not downgrade secret information flowing from the

iterator and the subscript value (recall that t is the least upper bound operator).

The implementation of oblivious types is non-trivial. It entails overloading the SE pointer

operations for O with new operations that encode the additional typing clauses for implicit

flows. Moreover, recall from Section 8.1.5 that oblivious iterators use the temporary proxy

idiom to achieve the desired memory access behavior. The actual read/write from/to memory

is performed by a proxy object that is returned when an oblivious iterator is dereferenced, and

then the proxy object is either converted into the element type, or is assigned a value. Hence

this proxy object must also be wrapped by a covert oblivious accessor . It is ultimately the
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responsibility of the covert oblivious accessor to ensure that the read or write is permissible.

In more detail, the procedure for type checking a subscripted memory access on an

oblivious type is as follows:

1. (Determine the type of the covert oblivious accessor) The covert oblivious accessor

is itself a template class, parameterized by the security label that characterizes the

information that will flow through the accessor. This is the least upper bound of

the security label of the oblivious type and the subscript value (i.e., SΩ t Sdiff). If

SΩ t Sdiff = L, then there is no implicit flow of sensitive information, and an oblivious

memory access is unnecessary. In this case, the covert oblivious accessor is a wrapper

around a proxy object which performs an ordinary (non-oblivious) memory access.

2. (Determine whether the operation is a read or a write) The covert oblivious accessor

also follows the template proxy idiom. Hence if the accessor is being read from, then its

implicit conversion operator will be compiled. If it is being written to, its assignment

operator will be compiled.

3. (Perform the type check) In either case, verify that the explicit flow is permissible.

(a) If the operation is a read, verify that the label of the implicit flow, SΩ t Sdiff , is

no greater than the label of the destination type for the implicit conversion.

(b) If the operation is a write, verify that the label of the implicit flow, SΩ t Sdiff , is

no greater than the label of the container element.

Covert C++ also wraps the libOblivious algorithms. This serves two purposes. First, it

allows Covert C++’s type checking to prevent sensitive data from being used in an unsafe

manner, e.g., as an argument to an algorithm which does not guarantee security for that

particular argument. It also makes the algorithms more generic. The developer does not

need to manually choose between the oblivious algorithm and the performance-optimized

algorithm. By analyzing the types of the parameters, Covert C++ oblivious algorithms can

automatically determine the best option, as with the Covert C++ memcmp() example in

Section 5.6.
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1 template <class RandomIt , class Compare >
2 void sort(RandomIt first , RandomIt last , Compare comp) {
3 using comp_traits =
4 covert_traits <decltype(comp(*first , *first))>;
5 constexpr auto value_label = comp_traits :: label;
6 using label_type = typename comp_traits :: label_type;
7 constexpr auto bottom = Lattice <label_type >:: bottom;
8 if constexpr (value_label == bottom) {
9 std::sort(first , last , comp);
10 } else {
11 oblivious ::osort(first , last , [comp](const auto &x,
12 const auto &y) {
13 return covert_label_cast <label_type , bool , bottom >(
14 comp(x, y));
15 });
16 }
17 }

Listing 8.4: The Covert C++ sort() implementation

For example, Listing 8.4 shows the implementation of covert::sort(), whose usage is

demonstrated in the case study presented later in this chapter. The covert_traits template

was described in Chapter 7. In Line 4 it is used with decltype to deduce the traits for the

type which is the result of comparing two values in the container, given the comparison

functor comp. In Line 5 it provides the security label for the comparison result. If this

label is the bottom label for the given lattice, the optimized C++ STL sort() will be used.

Otherwise, libOblivious’ oblivious sort will be called2.

The if constexpr statement in Line 8 was introduced in C++17 [90]. It is similar to an

ordinary if/else, except that it is evaluated at compile time. Hence for each instantiation

of the covert::sort() template, only one of the two branches will be compiled.

All of the Covert C++ oblivious algorithms have been verified by the NVT in a manner

similar to that which was described in Section 6.3. The only difference in the NVT tests

for the oblivious algorithms is that the adversary’s granularity is set to 6 bits, the binary
2The label of the comparison result must be downgraded in Line 13 because the oblivious sort function

does not know how to handle high data, though it will do so securely
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1 Input: z, k, classes, d, T = {(xi, yi)}i=1,...,n

2 Find TNear = {(xi, yi)}i=1,...,k and TF ar = {(xi, yi)}i=1,...,n−k such that :
3 T = TNear ∪ TF ar and TNear ∩ TF ar = ∅ // TNear and TF ar pa r t i t i o n T
4 ∀(x, y) ∈ TNear, (x′, y′) ∈ TF ar. d(y, z) ≤ d(y′, z)
5 For c in classes :
6 Set count[c] := 0
7 For a l l (x, y) ∈ TNear :
8 Set count[x] = count[x] + 1
9 Find c ∈ classes such that ∀c′ ∈ classes. count[c′] ≤ count[c]
10 Output: c

Listing 8.5: The k-nearest neighbors (k-NN)

logarithm of the size of an x86 cache block.

8.4 Case Study 3: k-Nearest Neighbors

One popular application of cloud computing is machine learning. An example of a simple, yet

powerful classification algorithm is the k-nearest neighbors algorithm [60]. In brief, k-NN is

a non-parametric classification algorithm where the program inputs consist of a training set

and a test set. Each set has a series of data points, and each data point is characterized by a

sequence of attributes. A generic implementation of k-NN would also accept as a parameter

a measure of distance d between data points. For each data point z in the test set, k-NN

finds its k nearest “neighbors” in the training set (using d). The class c assigned to z by

k-NN is the mode of the classes of its k nearest neighbors. If the neighbors have no mode

(e.g., two classes are equally represented among the k neighbors), then k-NN must use some

heuristic (e.g., randomness) to choose the class for z.

Listing 8.5 describes the algorithm for a k-NN classifier in more detail. The k-NN classifier

uses a training set T to classify a data point z. The training set consists of pairs (xi, yi),

where each yi is a data point, and each xi is the classification (some element of classes)

assigned to yi. The algorithm proceeds in three steps. The first step is to partition T into

TNear and TF ar: the k data points nearest to z (according to d), and the remaining n−k data
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1 template <typename It>
2 It max_element(It first , It last)
3 {
4 if (first == last) return last;
5
6 It largest = first ++;
7 for (; first != last; ++first) {
8 // leaks the ordering relationship
9 // between ‘largest ‘ and ‘first ‘
10 if (* largest < *first) {
11 largest = first;
12 }
13 }
14 return largest;
15 }

Listing 8.6: A leaky max_element() implementation

points, respectively. Next, the classes of the data points in TNear are tallied. The classifier

assigns to z the class which has won the highest tally among z’s nearest neighbors.

The procedures in each of these three steps have the potential to leak data through a

side channel. Typically, the first step would be implemented by sorting the data structure

containing T and then selecting the first k elements. Common sorting algorithms such as

quick sort, merge sort, and insertion sort all have control flow patterns which depend on the

ordering relationships between container elements. If the class tallying is performed with any

kind of dictionary-like data structure, as Listing 8.5 would suggest, then each key lookup

would almost certainly leak the value of the key.

Finally, determining the class with the highest tally could leak any or all of the tallies.

Consider Listing 8.6, which defines a function to determine the maximum element in a

container. The relationship between the current element and the largest element found so

far is leaked in Line 10, where the < relation between container elements influences a branch

condition.

In general, it is difficult to write memory-trace oblivious algorithms from scratch. This is

why it is essential to provide the developer with tools to facilitate certifiable memory-trace
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oblivious programming. With libOblivious’s fast memory-trace oblivious primitives and

Covert C++’s strict information-flow policy, it becomes possible to write machine learning

algorithms that are verifiably secure. This case study demonstrates how to use Covert C++

to construct a simple k-NN implementation.

Each data point can be represented as a structure, wherein each field has a covert type:

struct KNN_Entry {
SE <int , H> category;
SE <unsigned int , L> num_attributes;
SE <double *, L, H> attributes;

};

Note that the word “category” must be substituted in place of “class” in the source code,

because class is a reserved keyword in C++. The covert types clearly delineate between

public and secret data. The function which assigns a category to a data point has the

following signature:

void classify_entry(SE <unsigned , L> k,
SE <unsigned , L> num_categories , SE <KNN_Entry*, L> entry ,
SE <const KNN_Entry*, L> training_set ,
SE <unsigned int , L> training_set_size);

Hence the only secret inputs are the category and attributes fields of the training_set

and entry (the data point to classify) parameters. The decision to designate only these two

input fields as secret is both subjective and practical. The attributes and classification for

each data point directly correspond to the raw data. Thus if the raw data must be kept secret,

these inputs must be kept secret. On the other hand, the metadata does not necessarily need

to be kept secret. In this example, the metadata includes the size of the training set and

the number of attributes in each data point. The k parameter determines the number of

nearest neighbors among the training set to poll for each member of the test set. k is neither

secret data nor metadata, thus it is up to the developer to designate k as secret or public.

For simplicity, this case study assumes that k is public. The total number of classes which

can be assigned to a data point, num_categories, is also assumed to be public.
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The body of the classify_entry() function follows the description of k-NN given in

Listing 8.5. First, the training set data points are sorted by their proximity to the given test

set data point: entry. The proximity is the Euclidean distance between two data points,

according to their corresponding attributes. That is,

d(p, q) =

√√√√n−1∑
i=0

(pi − qi)2

where pi is the ith attribute of data point p, and n is the number of attributes per data point.

The Euclidean distance can be computed in Covert C++ as follows:

auto Euclidean_distance =
[]( auto x, auto y, SE <std::size_t , L> len) {

auto distance = (x[0] - y[0]) * (x[0] - y[0]);
for (SE<std::size_t , L> i = 1; i < len; ++i) {

distance += (x[i] - y[i]) * (x[i] - y[i]);
}
return covert ::sqrt(distance);

};

This lambda function uses type inference (via the auto keyword) to declare every variable

except for i and len, which determine the loop termination condition, and therefore must

be public. Together with the typing rules in Figure 5.3, type inference guarantees that any

value returned by Euclidean_distance() will have a security label that is the least upper

bound of the pointee labels for x and y. Hence if Euclidean_distance() is invoked for the

attributes fields of two data points, then the return value will have type SE<double, H>.

The proximity between entry and each data point in the training set can then be

computed:

const auto neighbors = new pair[training_set_size ];
for (unsigned int i = 0; i < training_set_size; ++i) {

neighbors[i] =
{training_set + i,
Euclidean_distance(training_set[i].attributes ,

entry ->attributes ,
entry ->num_attributes)};

}
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where the pair type associates each data point in the test set with its distance from entry:

struct pair {
SE <const KNN_Entry *, L> entry;
SE <double , H> distance;

};

Note that if the distance field had instead been declared with type SE<double, L>, the

assignment to neighbors[i] above would have failed to type check. The reason is that the

value returned by the call to Euclidean_distance() is secret whenever one or both of its

first two arguments points to an array of secret attributes.

Since these distances are derived from the secret attributes, they must not be leaked. The

C++ STL’s std::sort() algorithm is not oblivious, hence it may leak information about the

values in the container being sorted. The Covert C++ library provides the covert::sort()

function. When the container to be sorted contains high data, covert::sort() calls the

oblivious::osort() algorithm provided by libOblivious. Otherwise, covert::sort() sim-

ply forwards the request to std::sort(). This decision is made at compile time.

auto cmp = []( const pair &p1 , const pair &p2) {
return p1.distance < p2.distance;

};
covert ::sort(neighbors , neighbors + training_set_size , cmp);

The second step in Listing 8.5 is to tally the “votes” for each class among the k nearest

neighbors. This computation can also leak information. Below, a direct address table

implemented as an oblivious vector is indexed by class; it will be used to record the tally for

each class.

using HVector = oblivious ::ovector <SE<unsigned , H>>;
using HVectorIt = typename HVector :: iterator;
HVector class_tally(num_categories);

Whenever one of the k nearest neighbors votes for its class, that class’s tally is incremented

in the table. This increment operation—a read followed by a write—could leak the address in

memory where the tally is being updated, thus potentially revealing the class of that nearest
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neighbor. The O template from libOblivious can be used to perform this update obliviously:

const SE <O<HVectorIt , HVector >, L> optr{
class_tally.begin (), &class_tally

};
for (SE<std::size_t , L> i = 0; i < k; ++i) {

auto category = neighbors[i].entry ->category;
optr[category] = optr[category] + 1;

}

A subscript access on an oblivious type will not leak the value of the subscript argument,

nor will it leak the value of the oblivious type itself. Thus the value of category, which is

secret, will not be leaked. If optr had instead been a non-oblivious covert pointer, then the

expression optr[category] would have failed to type check by rule SUBSCRIPT.

The third step in Listing 8.5 is to determine the class which received the highest tally. Just

as std::sort() was not oblivious, std::max_element() is also not memory trace oblivious.

The Covert C++ algorithms library provides a solution:

entry ->category = covert :: max_element(
class_tally.begin (), class_tally.end(), &class_tally)
- optr;

Like covert::sort(), covert::max_element() is optimized for performance when it is

applied over a container with public data. Otherwise, it calls oblivious::omax_element().

It also uses type inference to determine the appropriate label for the return value—in this

case, H.

The assignment to entry->category completes the algorithm. The implementation is

listed in full in Appendix B.
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Chapter 9

Related Work

Covert C++ is a language-based technique which simultaneously enforces classical noninter-

ference and memory-trace obliviousness. The large body of work related to Covert C++ can

be divided into one of three categories: language-based techniques, program transformation

techniques, and enforcement at the architectural level. Some works combine aspects of two

or three of these categories. The following three sections survey the related work in each

category. Several of these techniques use some kind of oblivious RAM (ORAM) to obfuscate

memory accesses. This section concludes with a brief discussion on related works on ORAM.

By far the greatest influence on the Covert C++ implementation has been Ironclad C++.

Ironclad C++ [63] is a library-augmented subset of C++ which also utilizes templates and

template metaprogramming. It places various constraints on C++ which make the language

type safe and memory safe. For instance, Ironclad C++ mandates the use of bounded arrays,

smart pointers, and bounded pointers, and restricts the use of void pointers. It also prevents

use-after-free errors for stack and heap pointers. Osera et al. [126] derived a model of typing

and semantics for Ironclad C++, and proved (by hand) that Ironclad C++ does indeed

enforce type safety and memory safety. Their approach does not consider information flows,

which is the objective of Covert C++. The name “Core Covert” is an homage to the Core

Ironclad [126] verification effort.
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The techniques used in Chapter 8 to implement memory-trace oblivious primitives are

derived from recent work [124] published by Microsoft Research, and earlier by Rane et al. [133].

Ohrimenko et al. [124] used memory-trace oblivious primitives to implement several popular

machine learning algorithms. They employed x86 instructions such as cmov and vpgatherdd

to build oblivious primitives, upon which they constructed several popular machine learning

algorithms. Their approach has two notable limitations. First, it requires the developer to

be highly skilled at manually identifying potential side channel vulnerabilities in C/C++

code, and to know when and how to use the oblivious primitives to avoid leaks. Second,

the verification of the memory-trace oblivious property is limited to an informal proof for

a pseudocode description of each algorithm. Side-channel leaks can be subtle, and thus

easily overlooked by an experienced developer. Covert C++ can catch many of these leaks

automatically, and leaks which are not caught by Covert C++ can still be exposed by

the NVT. This defense-in-depth strategy which couples two drastically different protection

mechanisms has not been presented in contemporary related works.

Overall, Covert C++ and its broader toolchain improve on existing techniques and related

works in the following ways:

• Covert C++ is the first language-based technique to implement security typing entirely

within the bounds of a commonly used programming language, i.e., without requiring

language extensions, compiler modifications, etc.

• By utilizing overload resolution and conditional compilation (a feature of template

metaprogramming), Covert C++ can automatically optimize algorithms depending on

the sensitivity of their parameters. This technique has not been considered in related

works on security-typed languages.

• The kinds of application scenarios illustrated in the case studies are typically imple-

mented using imperative industrial languages such as C and C++. Many related works

that add security typing to existing languages have focused on functional languages.

Two exceptions are JFlow [119] (for Java) and Obliv-C [175]. Yet both require additional
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preprocessing transformations, and thus do not integrate as easily with existing libraries

and frameworks (e.g., the SGX SDK [15]) as does Covert C++.

• Other works across each of the three aforementioned categories do not provide the

end-to-end noninterference guarantees on x86-64 platforms that are provided jointly

by Covert C++ and the NVT. The lone exception is SAFE [26], which uses a custom

CPU architecture and domain-specific languages.

9.1 Language-based Techniques

Li and Zdancewic [102] described an embedding of security typing into the Haskell pro-

gramming language. Similar to Covert C++, this security typing employs a customizable

security lattice, with the intent of supporting multi-user applications wherein different users

have different privileges. The information-flow policies themselves can be customized by

the application designer. The most substantial limitations of this work are that it does not

attempt to address side channels (this was not one of their stated goals), and that Haskell

is not a commonly used language in industry. A precursor to Li and Zdancewic’s work was

Pottier and Simonet’s work [131] on the Flow Caml language, an extension to Objective

Caml (OCaml) which encodes security typing. Unlike the embedding in Haskell, Flow Caml

code is not valid OCaml code, and hence cannot be processed by a standard OCaml compiler.

Another limitation is that Flow Caml does not support OCaml objects [143].

Andrew C. Myers created JFlow [119], later known as Java Information Flow (JIF), which

is the most influential precursor to Covert C++’s type system. JFlow embeds security typing

into Java in much the same way that Covert C++ does for C++. Unlike Li and Zdancewic’s

work, JFlow can track both explicit and implicit flows, though the policy mechanisms are

quite different from those of Covert C++. For instance, JFlow does not prevent sensitive data

from influencing program control flow. Rather, it employs an approach where the program

counter itself receives a security label. If this label is high, then all assignments are treated
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as high. One drawback of JFlow is that programs written in JFlow are not valid Java code;

they must first be transformed by a custom compiler into native Java code.

Liu et al. [104] contributed the foundational work in programming language theory

for constructing a programming language with the property of memory-trace obliviousness.

Furthermore, their work exceeds memory-trace obliviousness to also cover classical termination-

sensitive noninterference. Memory accesses are obfuscated using a maximal partition of

ORAM banks over all secret program data structures. Unlike Covert C++, their formulation

of a memory-trace oblivious language does allow selection statements (but not iteration

statements) to have a secret conditional guard. They achieve this result by generating

“dummy” execution sequences along the path(s) not taken by the selection statement.

ObliVM [106] is a domain-specific language for memory-trace oblivious computation, built

on the theoretical foundation established by Liu et al. described above. The ObliVM-lang is

a C++-like language with features such as structures, generics, loops, etc. Each variable in

ObliVM-lang is annotated as either “public” or “secret.” Memory-trace obliviousness with

respect to the secret values is enforced by the type system. Programs written in ObliVM-

lang are compiled into ObliVM-GC, a Java-based garbled circuit [147, 172] implementation.

This allows a computation to run on an untrusted platform, while providing confidentiality

guarantees on any platform which does not provide dynamic memory encryption, such as

SGX.

Obliv-C [175] is an extension (i.e., strict superset) to the C language which adds a category

of data called “obliv,” similar to the “secret” annotation in ObliVM and H in Covert C++.

As in ObliVM, typing in Obliv-C enforces memory-trace obliviousness for obliv-annotated

values. The implementation is simply a wrapper around GCC which performs the oblivious

type checking against a rule set. If no rules have been violated, it translates the Obliv-C code

into ordinary C code, which is then compiled by GCC.
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9.2 Program Transformation

Program transformation techniques can be used before or during the compilation process to

analyze and modify control-flow patterns and memory accesses, for the purpose of achieving

some degree of obliviousness.

Raccoon [133] is a kind of source code preprocessing tool which transforms a C or C++

program into a program that is memory-trace oblivious. Raccoon only requires the developer

to annotate secret variables in the source code. The tool performs inter-procedural taint

analysis on the secret variables to determine precisely where a secret may influence either

control flow or a memory access. When secret data is determined to influence a branch toward

one of several paths, Raccoon obfuscates the control flow. The obfuscation mechanism forces

execution on all paths, while replacing memory writes along each path with an oblivious

store operation, similar to the libOblivious o_write() primitive described in Chapter 8. The

values in memory are only updated along the correct execution path. Raccoon uses software

Path ORAM to obfuscate memory accesses which depend on program secrets.

Dr. SGX [40] is an intermediate representation (IR)-level transformation tool and library

which obfuscates heap memory accesses to make an SGX enclave program data oblivious,

at cache block granularity. Unlike Raccoon, Dr. SGX does not require any additional code

annotation by the user. It obfuscates heap memory accesses by first producing a randomized

heap memory layout, and then constantly re-randomizing this layout, subject to a configurable

time window. Dr. SGX uses an LLVM IR pass to transform the input program, replacing

ordinary heap memory accesses with calls to the Dr. SGX library. Each call consults the

current iteration of the pseudo-random memory permutation function to obtain the correct

randomized address. Although this solution requires less work on account of the developer,

it also cannot distinguish between public and secret data. Thus every access is obfuscated,

which may introduce unnecessary overhead.

SGX-Lapd [74] specifically targets the forced page eviction adversary model, which may

observe enclave memory traces at page granularity, as in [171]. However, instead of promising
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full prevention of memory-based side-channel attacks, SGX-Lapd is simply a mitigation

technique which makes it much more difficult for the adversary to infer enclave secrets from

the memory trace. Specifically, SGX-Lapd consists of two components: (1) an untrusted kernel

module which provides large (2 MB) pages to the enclave, and (2) a program transformation

tool which inserts instrumentation code into the enclave program. Whenever enclave program

control flow or data accesses cross a 4 KB-aligned boundary, the instrumentation code

dynamically checks whether a forced 4 KB page fault has occurred. If so, this would likely

indicate a malicious OS feeding 4 KB pages to the enclave and forcibly evicting them. Like

Dr. SGX, SGX-Lapd uses an LLVM IR pass to perform the enclave code transformation.

This technique increases the granularity of the adversary’s visibility by 9 bits, hence it also

increases the mask size by a factor of 29.

9.3 Architectural Approaches

SAFE [26] is an end-to-end information-flow approach, spanning from the operating system

to the computer architecture level. The SAFE machine associates a security label “tag”

with every word in the system state, including in memory, CPU registers, and the program

counter. Hence the approach uses a kind of dynamic typing, which distinguishes it from the

previously discussed works. SAFE enforces termination-insensitive noninterference between

principals (users) for programs which may simultaneously handle data that is private to each

user. The system is modeled at three layers of abstraction. The top-level “abstract” model

specifies the information-flow policy, and the bottom “concrete machine” precisely describes

the implementation. Noninterference was formally verified for the abstract model. The data

refinement technique [62] was employed to prove that noninterference is preserved by the

implementation. The total verification effort comprises around 15,000 lines of Coq script,

including formal proofs.

The GhostRider [105] project features a co-designed assembly language, compiler, and
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hardware architecture for memory-trace oblivious computation. Static analysis of the assembly

allows GhostRider to partition program data into one of three hardware RAMs depending on

its security classification and usage: (unencrypted) RAM, (encrypted) ERAM, or ORAM.

The usage scenario for GhostRider involves an untrusted host system communicating with a

GhostRider co-processor, both of which share the same RAM/ERAM/ORAM banks. The

authors simulated their design in software, and on an FPGA system.

9.4 ORAM

Oblivious RAM [78, 79, 150] (ORAM) is a technique for obfuscating memory access patterns,

and can be used to defeat side-channel attacks. This technique is appealing because it

operates “under the hood,” and thus places no additional burden on the developer. However,

it does incur a Ω(log(n)) cost for each memory access, where n is the size of the entire

program memory. Thus protecting all program secrets in a single ORAM has been has been

shown to be inefficient [71, 149, 169].

ZeroTrace [136] is an Intel SGX enclave runtime which uses an ORAM-based memory

controller to enforce data obliviousness. The ZeroTrace usage model assumes that a remote

client needs to make remote queries on a large (e.g., > 10 GB) dataset. These queries could

include reads, writes, key-value lookups, etc. Within an SGX enclave, ZeroTrace uses a

Path ORAM [150] library to look up the ORAM leaf containing the query. Within each

ORAM leaf, the lookup can be performed by an untrusted third party, hence the final request

is forwarded to a non-enclave fetch/store controller, which can execute with less overhead.

ZeroTrace has demonstrated favorable performance for queries over large datasets.

Several works have specifically targeted the design of oblivious data structures using

ORAM variations. Wang et al. [164] proposed a framework for created ORAM-based oblivious

data structures. Their work reduces access time overhead on oblivious data structures from

O(n) to O(log(n)). However, the data structure storage scheme requires O(n log(n)) storage.
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By specifically optimizing their implementation for each data structure, they are able to

achieve a 10-15x speedup over naïve ORAM for moderately sized ORAMs. Keller and

Scholl [93] also implemented optimized data structures over ORAMs. Their work specifically

considers the problem of secure multi-party computation using oblivious data structures.

Their analysis also compares the performance of data structures using Path ORAM vs. Tree

ORAM, and also against naïve scalar accesses.

ORAM itself also does not protect against timing side-channel attacks, such as an attacker

inferring a loop termination condition from the number of loop iterations. This is a problem

which is addressed by Covert C++. For relatively small (e.g., < 100 MB) data structures,

ORAM has been demonstrated to be significantly slower than the kind of memory scanning

techniques employed by libOblivious and Covert C++ [133].
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Chapter 10

Conclusion

This dissertation introduced Covert C++, a new language built on top of C++ to facilitate

static information-flow analysis and noninterference. Covert C++’s security guarantees were

verified both formally and informally, and furthermore were confirmed for compiled binaries

by applying a novel dynamic analysis technique. A series of case studies described how Covert

C++ can be harnessed to certify a variety of security-critical applications.

Section 10.1 summarizes the contributions of the dissertation, and argues that the presented

body of work satisfies the thesis statement. Section 10.2 discusses some of the areas where

Covert C++ can be extended to address other categories of security problems.

10.1 Discussion

The body of work detailed in this dissertation substantiates the thesis statement. Covert C++

uses the Turing-complete C++ template type system to implement an information-flow policy

that restricts the propagation of sensitive data. This policy certifies a comprehensive form

of noninterference which prevents sensitive information from being leaked through storage

channels, termination channels and memory-based side channels. A novel dynamic analysis

technique was designed and implemented to verify that an unmodified C++ compiler and

linker are able to preserve this noninterference property—and with all optimizations enabled.
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Due to the enormous complexity of the C++ language, it is infeasible to formally verify that

Covert C++ can guarantee noninterference for every program which type checks. Nonetheless,

formal typing rules and an informal proof were presented to argue that Covert C++ does

enforce noninterference, subject to several assumptions about memory and type safety.

The Core Covert language is a distilled formulation of Covert C++ with built-in memory

and type safety, and nearly identical security-typing rules. The goal of Core Covert is

to capture the security-relevant features of Covert C++ as accurately as possible, while

remaining simple enough to be amenable to formal verification. A formal proof was presented

to verify the claim that Core Covert has the property of termination-sensitive noninterference.

Because Core Covert’s security typing corresponds to Covert C++’s security typing, this can

be taken as further evidence that Covert C++’s typing is sound.

These are not the only novel contributions made by this dissertation. Several noteworthy

observations were made in Chapter 5 about the consequences of embedding security typing

into C++. First, the embedding effectively “trains” any ordinary C++17-compliant compiler

to perform static information-flow analysis on C++ programs. It is worth emphasizing that

the approach does not require any modifications to the compiler. Second, C++’s overload

resolution can be harnessed to automatically optimize Covert C++ programs, depending on

the security classes of function parameters. Third, because library template interfaces must

be entirely defined in header files, Covert C++ can be used to statically analyze existing

templatized code bases for side-channel vulnerabilities, including the C++ STL.

Chapter 7 demonstrated how Covert C++ can be extended to support arbitrary lattices of

security classes, and thus become a framework for composing secure multi-party computations.

Chapter 8 described the implementation of libOblivious, a software library to facilitate

memory-trace oblivious computation. Covert C++ can use libOblivious iterators to improve

performance when the adversary’s view of the memory trace is imperfect (i.e., with granularity

greater than 0).

Perhaps most significantly, this dissertation demonstrates that it is possible to superimpose
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an entirely new type system on top of the C++ language. There could be many applications

of this approach, reaching well beyond information-flow analysis.

10.2 Future Work

One of the key contributions of this dissertation is that it demonstrates how to use a

combination of operator overloading and template metaprogramming to superimpose a

security-type system on top of C++’s type system. More broadly, many different kinds of

type systems with various properties could be similarly adapted for C++, a topic which has

not yet been investigated beyond Covert C++.

10.2.1 Dynamic Data Security

The Covert C++ security-type system as described in Chapter 5 is static in nature, because

the Covert C++ information-flow control is a compile-time mechanism. As mentioned in

Section 2.5, the original intent of the C++ template system was to provide type-constrained

code generation. Hence SE types can also be used to generate runtime code, possibly to

introduce additional dynamic protections for secret data.

For example, Intel SGX provides an encrypted region of memory called an enclave,

with well-defined upper and lower bounds on the address space [59]. The access control

policy of SGX hardware does not allow a non-enclave program to copy data directly into an

SGX enclave. However, a program executing within an enclave can copy data to a region

of memory outside of the enclave [112]. If the enclave program can unintentionally copy

sensitive information in plaintext to an unencrypted location outside of the enclave, then this

is an example of a storage-channel leak.

The only defense provided by Covert C++ against storage-channel leaks is the FROM SE

rule, which prevents sensitive data from being implicitly downgraded into public data. Only

public data can be emitted through a storage channel API, such as printf() or cout.
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1 template <typename T, SLabel S>
2 struct SE {
3 T val;
4 ...
5 SE <T, S>(SE <T, S> x) { // copy constructor
6 if (!copy_guard <S>(this)) {
7 exit (1);
8 } else {
9 val = x.val;
10 }
11 }
12 ...
13 };

Listing 10.1: A guarded copy operation

However, this enforcement mechanism can be fragile. SGX enclave programs typically consist

of both enclave and non-enclave code. Calls can be made back and forth between these

two components through an interface provided by the SGX SDK [15]. Assuming that this

interface is the only means by which data is exchanged between the two components, Covert

C++ should catch any storage-channel leak when the program is type checked.

Suppose that some statically-allocated object x is labeled as H because the developer

intends to use it to store sensitive data within the enclave. However, he has misconfigured his

linker scripts, and x is actually linked into the non-enclave component. Hence each update to

x will write data outside of the enclave. The program may type check, and assuming that

only the enclave component accesses x, the SGX access controls will not trigger a memory

fault. Therefore the developer may never notice the vulnerability.

No compile-time check can detect this kind of vulnerability because linking occurs after

compilation. After compilation, many of the abstractions that were present at the source level

(such as types) are lost in translation. One practical way to preclude this kind of vulnerability

is with a runtime access control check.

To prevent sensitive information from leaking to a non-enclave component with Covert

C++, the copy semantics of SE types can be adjusted as in Listing 10.1. Here, copy_guard()
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(implementation omitted) is a template function specialized on its security label parameter,

such that if the argument is L, it vacuously returns true. If the argument is H, it checks

whether the destination address for the copy (i.e., this) is within the bounds of the enclave,

and returns false if it is out of bounds.

These basic semantics can also be overloaded to automatically sanitize memory locations

containing sensitive data after the data has either gone out of scope or been freed from the

heap. This is a new solution to the data lifetime problem proposed by Garfinkel et al. [75].

The current best-practice solution was described by Wheeler: “If your application must

handle passwords or non-public keys (such as session keys, private keys, or secret keys),

try to hide them and overwrite them immediately after using them so they have minimal

exposure” [167]. The naïve solution is to memset() the sensitive data to zero, which is

insufficient as noted in CERT Secure Coding rule MSC06-C [140]. This rule observes that an

optimizing compiler “could employ ‘dead store removal’ ” to optimize away calls to memset().

For this reason, the ISO recently introduced memset_s() into the C11 standard, as a function

which cannot be optimized away by the compiler [89]. Notably, the Intel R© SGX Developer

Guide recommends that “The enclave writer must use the memset_s() function to clear any

variable that contained secret data” [2]. Each additional burden placed on the developer is a

potential point of failure in a secure system.

C++ classes can also define destructors: functions which are automatically called when

an object of a given class goes out of scope or is freed from the heap1. The implementation

in Listing 10.1 could be augmented with the following destructor:

1 ~SE <T, S>() { // destructor
2 sanitize_if_not_low <S>(this);
3 }

The sanitize_if_not_low() function is a template function, specialized so that it does

nothing if the security label parameter is L. Otherwise, it calls memset_s() to zero out the

confidential data stored in the object.
1destructors can also be called manually, though this use of destructors is uncommon
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One problem with this approach is that it violates a crucial assumption of Covert C++:

the SE template does not define any custom constructors, copy/move constructors, copy/move

assignment operators, or destructors for SE types. In this sense, SE types are trivial [90]

in their fundamental semantics. Both of the runtime protection schemes proposed above

would render the SE types non-trivial. For some operations, this could cause problems. For

instance:

1 SE <int *, L, L> ptr = new SE <int , L >[16];
2 int *_ptr = ptr;
3 delete [] _ptr; // program crash?

Recall that the implicit cast in the second line is allowed by rule FROM SE. The problem

is that new[] and delete[] are being invoked with types whose deletion semantics differ

(because ptr has a custom destructor, and _ptr does not), and thus the behavior of delete[]

is undefined [90]. One potential solution would be to create custom new and delete operators,

but this could introduce compatibility issues.

10.2.2 Generalizing Covert C++

Attaching security labels to primitive data is hardly the only novelty of Covert C++. The

work presented in this dissertation suggests that arbitrary compile-time information can be

associated with program data, and this additional information can be used to (a) constrain

the behavior of certain data, (b) imbue operators with new semantics, and/or (c) decorate

the binary. It should not be necessary to write a new framework from scratch for each new

problem domain that can be addressed by specifications for (a-c).

The solution is to use policy-based design [21] to make Covert C++ generic. For instance,

the typing rules in Figure 5.3 could be interpreted as a special case of a more generic policy.

The generic policy would provide a pluggable template, wherein the parameters determine

what it means to combine different kinds of data through computation, and how data should

behave given this additional compile-time information. The policy interface might be:
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template <typename DataT , typename Combine , typename Cast >
struct DataPolicy { ... };

where DataT is the type of the additional compile-time information to associate with each

object, Combine is a metafunction which defines what it means to combine data (e.g., via

arithmetic), and Cast specifies the constraints on data transfers. For Covert C++, Data

would be SLabel, Combine would be the lub() (t) operation, and Cast would be the

is_se_convertible metafunction. For instance:

using CovertPolicy =
DataPolicy <SLabel , lub , is_se_convertible >;

Some other template, call it Data, would implement the policy in a manner similar to SE.

A use case might look something like this:

Data <CovertPolicy , int , List <H>> x;
Data <CovertSMPCPolicy , short , List <Alice >> y;
Data <CovertDynamicPolicy , int *, List <H, H>> z;

Here, x has Covert C++ typing, y has SMPC Covert C++ typing, and z has Covert C++

typing with the dynamic protections described in Section 10.2.1. Covert C++ could also use

generalized information-flow and dynamic mechanisms to deploy Myers’ decentralized label

model [118, 120], which was implemented in JFlow [119].

10.2.3 Adding Path Discovery to the NVT

The NVT operates by fixing public data, and fuzzing secret data. If memory access patterns

and outputs do not strongly depend on secret data, then the target function(s) satisfy

noninterference. However this analysis is insufficient when public data can also affect a

program’s control flow. Testing for noninterference against only one fixed set of low inputs

can leave some execution paths unexamined.

For example, consider Listing 10.2. Suppose that arg1 and arg2 are public and secret

is (of course) secret. If arg1 and arg2 are fixed to values which do not satisfy arg1 > arg2,

then the vulnerability will not be detected by the NVT.
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1 int foo(int arg1 , int arg2 , int secret) {
2 int res = 0;
3 if (arg1 > arg2) {
4 while (arg1 > secret) { // leak
5 res += arg1 --;
6 }
7 } else {
8 res = arg2 + secret;
9 }
10 return res;
11 }

Listing 10.2: A function which violates noninterference

One solution would entail the addition of a preliminary “discovery” phase, in which all

low inputs are fuzzed. Each time a set of low inputs exposes a new execution path, the NVT

will note those low inputs. Then the second “noninterference” phase will fuzz the high inputs

for each set of low inputs that was noted during the discovery phase.

10.2.4 Increasing the Granularity of the Adversary Model

Recent work in academia and in industry has begun to close the door on cache-based side-

channel attacks (e.g, [49, 53, 67, 108, 125, 142]). In the near future, it may be possible to

completely obviate cache-based attacks with a combination of architecture and compiler-

based techniques. If and when this day comes, libOblivious—and thus Covert C++—can be

configured to a granularity higher than 6 bits, assuming the x86 architecture.

The next layer in the memory hierarchy on x86 is RAM, where the basic unit of memory is

the 4 KB page. Hence Covert C++ could assume page granularity instead of cache granularity

to perform memory-trace oblivious computations. This change would reduce the number of

memory accesses required to access large data structures by a factor of 26. Moreover, Covert

C++ could be used in concert with SGX-Lapd [73] to take advantage of x86 large pages,

of size 2 MB. Hence the work factor for memory-trace oblivious reads and writes would be

further reduced by 29, or 215 in total over the current implementation.
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Appendix A

Sample NVT Traces

Below is the NVT’s trace of the while loop of the safe memcmp function in Listing 5.3 for an

input of size 4. The first column contains the memory address that was accessed, the second

gives the size (in bytes) of the operand, and the third is the type of access (see Chapter 6).

The loop behavior is identical for all inputs, iterating exactly 4 times.

0x7f3372309e40: 3, bb
0x7f337250b060: 1, r
0x7f337250b460: 1, r
0x7f3372309e40: 3, bb
0x7f337250b061: 1, r
0x7f337250b461: 1, r
0x7f3372309e40: 3, bb
0x7f337250b062: 1, r
0x7f337250b462: 1, r
0x7f3372309e40: 3, bb
0x7f337250b063: 1, r
0x7f337250b463: 1, r

This second example compares two complete traces of the optimized memcmp function in

Listing 5.3. With the second set of fuzzed inputs, the loop runs for one additional iteration.

Fuzz Iteration 0: Fuzz Iteration 1:
0x7f745b378c90: 1, bb 0x7f745b378c90: 1, bb
0x7ffd8a3a5a60: 8, w 0x7ffd8a3a5a60: 8, w
0x7f745b579fb8: 8, r 0x7f745b579fb8: 8, r
0x7f745b57a038: 8, r 0x7f745b57a038: 8, r
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0x7f745b579ff0: 8, r 0x7f745b579ff0: 8, r
0x7f745b57a040: 8, r 0x7f745b57a040: 8, r
0x7f745b579fd0: 8, r 0x7f745b579fd0: 8, r
0x7f745b57a860: 4, r 0x7f745b57a860: 4, r
0x7ffd8a3a5a58: 8, w 0x7ffd8a3a5a58: 8, w
0x7f745b378900: 6, bb 0x7f745b378900: 6, bb
0x7f745b57a018: 8, r 0x7f745b57a018: 8, r
0x7f745b378cd0: 3, bb 0x7f745b378cd0: 3, bb
// loop begins here // loop begins here
0x7f745b378cee: 3, bb 0x7f745b378cee: 3, bb
0x7f745b57a060: 1, r 0x7f745b57a060: 1, r
0x7f745b57a460: 1, r 0x7f745b57a460: 1, r
// loop ends here
0x7f745b378cf8: 1, bb 0x7f745b378ce0: 3, bb
0x7ffd8a3a5a58: 8, r 0x7f745b378cee: 3, bb
0x7f745b378cb3: 2, bb 0x7f745b57a061: 1, r
0x7f745b579fb0: 8, r 0x7f745b57a461: 1, r

// loop ends here
0x7f745b57a864: 1, w 0x7f745b378cf8: 1, bb
0x7ffd8a3a5a60: 8, r 0x7ffd8a3a5a58: 8, r
0x7ffd8a3a5a68: 8, r 0x7f745b378cb3: 2, bb
0x40080b: 5, bb 0x7f745b579fb0: 8, r
0x7ffd8a3a5a68: 8, w 0x7f745b57a864: 1, w

0x7ffd8a3a5a60: 8, r
0x7ffd8a3a5a68: 8, r
0x40080b: 5, bb
0x7ffd8a3a5a68: 8, w
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Appendix B

Sample Code for Case Studies
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B.1 Covert C++ χ2 Implementation

1 // square a value
2 template <typename _T> static constexpr _T square(_T val) {
3 return val * val;
4 }
5
6 template <typename _MatrixT , std:: size_t ... J>
7 auto chi2_impl(const _MatrixT &Obs , std:: size_t rows ,
8 std:: index_sequence <J...> cols) {
9 using RetT = decltype ((... + std::get <J>(Obs)[0]));
10
11 auto SumColumn = [rows](const auto &col) -> auto {
12 auto ret = col [0];
13 for (int i = 1; i < rows; ++i) {
14 ret += col[i];
15 }
16 return ret;
17 };
18 auto ColumnSums =
19 std::tuple{SumColumn(std::get <J>(Obs))...};
20 auto SumRow = [&Obs](std:: size_t i) -> auto {
21 return (... + std::get <J>(Obs)[i]);
22 };
23 std::vector <RetT > RowSums(rows);
24 for (int i = 0; i < rows; ++i) {
25 RowSums[i] = SumRow(i);
26 }
27 auto Total = (... + std::get <J>( ColumnSums));
28
29 auto ExpColumn = [&]( const auto &col , auto sum) -> auto {
30 std::vector <RetT > exp(rows);
31 for (int i = 0; i < rows; ++i) {
32 exp[i] = sum * (RowSums[i] / Total);
33 }
34 return exp;
35 };
36 auto Exp =
37 std::tuple{ExpColumn(std::get <J>(Obs),
38 std::get <J>( ColumnSums))...};
39
40 RetT ret = 0.0;
41 for (int i = 0; i < rows; ++i) {
42 ret += (... + (( square(std::get <J>(Obs)[i]
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43 - std::get <J>(Exp)[i])) /
44 std::get <J>(Exp)[i]));
45 }
46 return ret;
47 }
48
49 template <typename _ArgT , typename ... _ArgTs >
50 auto chi2(const _ArgT &arr , const _ArgTs &... arrs) {
51 std:: size_t size = arr.size();
52 assert(size > 0 && "args␣must␣be␣non -empty");
53 assert ((... && (size == arrs.size()))
54 && "args␣are␣not␣all␣the␣same␣size");
55 return chi2_impl(
56 std:: forward_as_tuple <
57 const _ArgT &, const _ArgTs &...
58 >(arr , arrs ...),
59 size ,
60 std:: make_index_sequence <1 + sizeof ...( _ArgTs) >{});
61 }
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B.2 Covert C++ k-NN Implementation

1 struct KNN_Entry {
2 SE <int , H> category;
3 SE <unsigned int , L> num_attributes;
4 SE <double *, L, H> attributes;
5 };
6
7 // Implementation of k-NN with Covert C++ and libOblivious.
8 static void classify_entry(
9 SE <unsigned , L> k,
10 SE <unsigned , L> num_categories ,
11 SE <KNN_Entry *, L> entry ,
12 SE <const KNN_Entry *, L> training_set ,
13 SE <unsigned int , L> training_set_size)
14 {
15 struct pair {
16 SE <const KNN_Entry *, L> entry;
17 SE <double , H> distance;
18 };
19
20 // lambda function to compute the Euclidean distance
21 // between two data points
22 auto Euclidean_distance =
23 []( auto x, auto y, SE <std::size_t , L> len) {
24 auto distance = (x[0] - y[0]) * (x[0] - y[0]);
25 for (SE<std::size_t , L> i = 1; i < len; ++i) {
26 distance += (x[i] - y[i]) * (x[i] - y[i]);
27 }
28 return covert ::sqrt(distance);
29 };
30
31 // compute the Euclidean distance between the given data
32 // point , and each data point in the training set
33 const auto neighbors = new pair[training_set_size ];
34 for (unsigned int i = 0; i < training_set_size; ++i) {
35 neighbors[i] =
36 {training_set + i,
37 Euclidean_distance(training_set[i].attributes ,
38 entry ->attributes ,
39 entry ->num_attributes)};
40 }
41
42 // sort the training set according to distance from the
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43 // given data point. the first k elements of the sorted
44 // vector are the k nearest neighbors
45 auto cmp = []( const pair &p1 , const pair &p2) {
46 return p1.distance < p2.distance;
47 };
48 covert ::sort(se_static_cast <pair *, L>( neighbors),
49 neighbors + training_set_size , cmp);
50
51 using HVector = oblivious ::ovector <SE<unsigned , H>>;
52 using HVectorIt = typename HVector :: iterator;
53 HVector class_tally(num_categories);
54 const SE <O<HVectorIt , HVector >, L> optr{
55 class_tally.begin (), &class_tally
56 };
57
58 // count the tally for each category among the
59 // k nearest neighbors
60 for (SE<std::size_t , L> i = 0; i < k; ++i) {
61 auto category = neighbors[i].entry ->category;
62 optr[category] = optr[category] + 1;
63 }
64
65 // determine the "winner"
66 entry ->category = covert :: max_element(
67 class_tally.begin (), class_tally.end(), &class_tally)
68 - optr;
69
70 delete [] neighbors;
71 }
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deep copy, 131–132
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exceptions, noninterference and, 27
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file descriptor, 101, 102
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examples of, 22–23
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definition of, 22
implicit, 30, 63, 78, 147–148

definition of, 22
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Flush+Reload attack, 14
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noninterference and, 112
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GhostRider, 18, 161–162
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examples of, 17
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perfect, 17, 20
subsumption theorem, 18–19
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halting problem, the, 23
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MD5, 100, 101
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heap allocator, user-defined, 124–125
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IaaS, see infrastructure as a service
IEE, see isolated execution environment
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inner type, 67, 68
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Intel SSE, 132
Internet of things

attacks on, 4
pertaining to SMPC, 32

Ironclad C++, 156
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isolated execution environment, 4, 32
iteration statement

in C++, 72–73
in Core Covert, 46, 74
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description of, 121
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input, 122
random access, 121

JFlow, 31, 157–159, 170
JIF, see JFlow
join(), 107, 108

k-NN
description of, 150–151
implementation in Covert C++, 152–155

labeled type, 66, 68
label creep, 5, 94
Lattice, 107–108
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binary priority, 107
bounded join-semilattice, 39
in Core Covert, 42
pertaining to SMPC, 107–108

t, least upper bound, 24, 67, 69, 147, 148
over a lattice of principals, 109

leq(), 107, 108
libOblivious, 9, 113, 165

and Covert C++, 145

C++ interface, 116
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heap allocator, 124–126, 128
supported containers, 117
see also oblivious

LLVM IR, 160, 161
LLVM lit, 83, 90, 96
location, in Core Covert, 40
LUB, see least upper bound

machine learning, 157
malformed type, 66, 69
malloc(), and other allocation functions, 103
MapReduce, 15
mask, 100, 133, 135, 137

cache block, 19
definition of, 17
oblivious read/write and, 116

MASM, see Microsoft macro assembler
McEliece public-key cryptosystem

attacks on, 11
Meltdown, 1
memcmp(), 86–89

implementation in Core Covert, 61–62
implementation in Covert C++, 95
NVT and, 104–105
side-channel vulnerability, 3

memory deduplication
see content-based sharing

memory safety, 75, 77, 156
in Core Covert, 40
speculative execution and, 86

memory sanitization, 168
memory trace

Core Covert, 40
digest, 100
formalization of, 17
recording with NVT, 99–100

memory trace oblivious, 4
as a countermeasure, 5
definitions in related works, 18
definition of, 17
discussion on determinism, 18
pertaining to Core Covert, 39
programming language by Liu et al., 159
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relation to noninterference, 5, 26
verifying with NVT, 99–100

memset(), memory sanitization with, 168
memset_s(), memory sanitization with, 168
metadata, 5, 152
metafunction, 67, 79
Microsoft macro assembler, 115
Microsoft Research, 157
MPC, synonym for Covert, 109

NetSpectre
Covert C++ and, 86

new, 103
nondeterminism, see determinism
noninterference, 22, 39, 164

classical, 5, 39, 101, 159
definition of, 31

compiler optimizations and, 95–96
definition by Goguen and Meseguer, 24
Covert C++ and, 112

definition of, 26
generalized, 28
generalized label model and, 112
possibilistic, 27–28
probabilistic, 27, 28
termination-insensitive, 25, 79, 161
termination-sensitive, 25, 27, 39, 43, 77–

79, 159
test suite, Covert C++, 96

Noninterference Verification Tool, see NVT
NVT, 7, 8, 47, 94, 149, 157, 158

description of, 96–103
heap allocator, 103
legacy code and, 91
limitations, 102–103
logging, 105

O template, 137, 145
description of, 121–122
implementation of, 124, 126–130
limitations of, 122

o_copy(), 116, 132, 133, 135, 140–141
o_copy_i256(), 132, 133
o_copy_i64(), 115
o_copy_T(), 117, 123, 133

o_deep_copy(), 131–132
o_read(), 116, 135, 140
o_read_i32(), 121, 138
o_write_i32(), 138
o_read_i64(), 115
o_read_list(), 116
o_read_list_T(), 117, 128
o_read_T(), 117
o_swap(), 116, 132, 133, 140–141
o_swap_i64(), 115
o_swap_T(), 117, 133
o_write(), 116, 124, 140
o_write_i32(), 121, 138
o_write_i64(), 115
o_write_list(), 116
o_write_list_T(), 117, 129
o_write_T(), 117
oany_of(), 123
Obliv-C, 157, 159
oblivious

accessor, 128, 129
covert, 147–148

algorithm, 122–123
examples of, 123

copy, 114, 132–135, 143
performance of, 140–141
vectorized, 116

iterator, 113, 121–122, 124, 126, 129, 135,
145

libOblivious algorithms and, 122
k-NN implementation, 135
lookup
associative, 118
complexity of, 118–120
performance of, 141
required number of accesses, 120–121

RAM, see ORAM
read, 114, 133–137
complexity of, 120
naïve, 20
performance of, 138–140
scalar, 20, 116
vectorized, 20, 116

sort, 149
performance of, 143

200



swap, 114, 132–133, 143
performance of, 140–141
vectorized, 116

type, 145–148
write, 114, 133–137
performance of, 138–140
scalar, 116
vectorized, 116

see also memory trace oblivious
ObliVM, 159
observational granularity, see granularity
OCaml, 158
o_copy(), 19
ofind(), 123, 141, 144

complexity of, 119–120
ofind_if(), 117

implementation of, 123
omax_element(), 143
operator

+, 108
&, 71
arithmetic, 71
=, assignment, 127–128
conversion, 127–128
*, 71, 80–81, 127
&&, 19, 46, 73–74
||, 19, 46, 73–74
->, 71, 78, 130
pointer arithmetic, 71
[], 71, 127
?:, 19, 46, 73–74, 140

operator, description of, 64
operator overloading, 108, 127
optimization, compiler

pertaining to security, 7, 95–96
ORAM, 159, 162–163

data structures, 162–163
Path, 21, 160, 162, 163
pertaining to data obliviousness, 21
Tree, 163

osort(), 143, 144
output(), 40, 43, 49, 62
output(), SMPC, 110–112
output trace

Core Covert, 40

digest, 101
formalization of, 26
recording with NVT, 101–103

overload resolution, 7, 79, 80, 157
SE and, 85–86

PASS test, 83–84
Path ORAM, 21, 160, 162, 163
policy-based design, 169
Prime+Probe attack, 13–14, 17, 19, 97
primitive type, 31, 65, 87
program context, 30
proxy object, 122, 128–129
pure Covert C++, 84

Raccoon, 160
reaction attack, 11–12
read(), 43, 49, 62, 74
refactoring toolchain, 77, 91

usage of, 91–94
refinement, 161
reinterpret_cast, 76, 84

description of, 64
relation, adversary, see adversary
rep/repne, 99
RSA cryptosystem, attacks on, 10, 11

SAFE, 158, 161
safety

memory, see memory safety
type, see type safety

sanitize_if_not_low(), 168
SE

and oblivious types, 145, 147
bit fields and, 84–85
description of, 65–66
overload resolution and, 85–86
pointer, 65, 67, 74
STL containers and, 89–90
sum of, 108
synonym for Covert, 107

se_[name]_cast, 69
se_label_cast(), 69, 77, 89
se_static_cast(), 69
secure multi-party computation

description of, 31–32
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with Covert C++, 106–107
security

pertaining to information leakage, 5
verifiable, 29

security-typed language, 29, 157
security-type system, 6, 8, 29, 63

by Sabelfeld and Myers, 29–30
in a domain-specific language, 159
in C, 159
in Haskell, 158
in Java, 158–159
in OCaml, 158

security-upgrade aliasing, 65
security class, 65
⊥, bottom, 42, 61, 74
in Core Covert, 42
military, 23
>, top, 61

security label, 31, 65–72
selection statement

in C++, 72–73
in Core Covert, 46, 74

SFINAE, 80–81
SGX, 1, 4, 92

access control, 166–167
description of, 14
enclave, 8, 14, 160, 162, 166–168
pertaining to SMPC, 32
SDK, 91–94, 167
usage model, 14–15

SGX-Lapd, 160–161, 171
shallow copy, 131
shared memory

as a storage channel, 78, 101, 102
NVT and, 102–103

shared pointer, C++, 126, 128
side-channel attack

cache-based, 2, 12–14, 17, 97
Big 3, 14

defenses against, 160–163, 171
definition of, 2
definition by Kelsey et al., 12
differential fault, 11
fault-based, 2
on SGX, 16

page fault-based, 16–17, 97, 160–161
power-based, 2, 11–12
reaction-based, 11–12
time-based, 2, 3

side channel, 106, 151
definition of, 2
see also side-channel attack

SIMD, 132
simple power analysis, 11–12
Simple Security Theorem, 47–48, 61, 62
SLP, see superword level parallelism
SMPC, see secure multi-party computation
Software Guard Extensions, see SGX
sorting network, Batcher’s, 144
SPA, see simple power analysis
Spectre, 1, 2

Covert C++ and, 86
speculative execution attacks, 1–2, 86

Foreshadow, 1
Meltdown, 1
Spectre, 1, 2

SSE, 132
Standard Template Library, 7, 32, 67

algorithm library, 122
containers, 105
allocator-aware, 124, 125
associative, 117–118
sequential, 117, 122
supported by libOblivious, 117

Covert C++ compatibility with, 89–90
iterators, 121

std::declval, 67, 71
description of, 64

std::enable_if
description of, 64

std::enable_if_t, 80–81
std::integral_constant

description of, 64
std::is_convertible, 68

description of, 64
std::swap(), 133, 141
STL, see Standard Template Library
storage channel, 2, 78

definition of, 26
leaks, 2, 5, 63, 164, 166–167
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leaks, detection of, 101
striped read, 135
strong dependency, 25–27, 96, 101

definition of, 25
pertaining to noninterference, 25, 29, 170

superword level parallelism, 132
system call

as a storage channel, 101
SYS_open, 102
SYS_write, 101–102

taint analysis, 160
TEE, see trusted execution environment
template, 32–33

specialization, 33, 79–80
see also template metaprogramming

template, description of, 64
template metaprogramming, 6, 33, 156
temporary proxy idiom, 122, 127–130
termination

due to secret data, 6, 19
pertaining to noninterference, 27, 49

test application, NVT, 97–98, 100
test module, NVT, 97, 99, 104
threads

effect on memory trace, 29
NVT and, 100

trace, definition of, 26
Tree ORAM, 163
trivially copyable, 131–132
trivial type, 169
trusted execution environment, 4
TrustZone, 1
Turing completeness, 6, 33, 84
type_depth, implementation of, 79
typename, description of, 64
type depth, 65–66, 77, 79
type inference, 31, 49, 153

examples of, 111
type inference rules

ADDRESS-OF, 71
ARROW, 71, 78, 79
BINARY LOGIC-T, 73, 78
BINARY ARITH, 71, 87
INDIRECTION, 71, 74, 78, 80, 87

INDIRECTION READ, 147
INDIRECTION WRITE, 147
ITERATE-T’, 73, 78
LABEL CAST, 69, 77
NAMED CAST, 69
POINTER ARITH (1), 71
POINTER ARITH (2), 71
SELECT-T’, 73, 78
SUBSCRIPT READ, 145, 147
SUBSCRIPT, 71, 74, 78
SUBSCRIPT WRITE, 145
TERNARY-T’, 73, 78
UNARY ARITH OP, 71, 87

type safety, 75–77
in C++, 6, 156

unlabeled type, 66
unwinding, 25

valid, in Core Covert, 43
vector scaled index byte addressing, 100
verifiably secure, 29
vmov, 133, 140–141
vpblend, 141
vpgather, 20, 21, 100, 115, 133, 140, 157
vpscatter, 140
VSIB, see vector scaled index byte addressing

ZeroTrace, 162
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