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ABSTRACT

One of the key enablers of the recent unprecedented success of machine learning

is the adoption of very large models with millions of parameters (i.e., weights).

The larger-scale model tend to enable the extraction of more complex high-level

features, and therefore, lead to a significant improvement of the overall accu-

racy. On the other side, the layered deep structure and large model sizes also

demand to increase computational capability and memory requirements. In or-

der to achieve higher scalability, performance, and energy efficiency for deep

learning systems, two orthogonal research and development trends have at-

tracted enormous interests. The first trend is the acceleration while the second

is the model compression. The underlying goal of these two trends is the high

quality of the models to provides accurate predictions. In this thesis, we address

these two problems and utilize different computing paradigms to solve real-life

deep learning problems.

To explore in these two domains, this thesis first presents the cogent confab-

ulation network for sentence completion problem. We use Chinese language as

a case study to describe our exploration of the cogent confabulation based text

recognition models. The exploration and optimization of the cogent confabu-

lation based models have been conducted through various comparisons. The

optimized network offered a better accuracy performance for the sentence com-

pletion. To accelerate the sentence completion problem in a multi-processing

system, we propose a parallel framework for the confabulation recall algorithm.

The parallel implementation reduces runtime, improves the recall accuracy by

breaking the fixed evaluation order and introducing more generalization, and



maintains a balanced progress in status update among all neurons. A lexicon

scheduling algorithm is presented to further improve the model performance.

As deep neural networks have been proven effective to solve many real-

life applications, and they are deployed on low-power devices, we then in-

vestigated the acceleration for the neural network inference using a hardware

friendly computing paradigm, stochastic computing. It is an approximate com-

puting paradigm which requires small hardware footprint and achieves high

energy efficiency. Applying this stochastic computing to deep convolutional

neural networks, we design the functional hardware blocks and optimize them

jointly to minimize the accuracy loss due to the approximation. The synthesis

results show that the proposed design achieves the remarkable low hardware

cost and power/energy consumption.

Modern neural networks usually imply a huge amount of parameters which

can not be fit into embedded devices. Compression of the deep learning models

together with acceleration attracts our attention. We introduce the structured

matrices based neural network to address this problem. Circulant matrix is one

of the structured matrices, where a matrix can be represented using a single

vector, so that the matrix is compressed. We further investigate a more flexible

structure based on circulant matrix, called block-circulant matrix. It partitions

a matrix into several smaller blocks and makes each submatrix to be circulant.

The compression ratio is controllable. With the help of Fourier Transform based

equivalent computation, the inference of the deep neural network can be accel-

erated with high energy efficiency on the FPGAs. We also offer the optimization

for the training algorithm for block circulant matrices based neural networks to

obtain a high accuracy after compression.
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CHAPTER 1

INTRODUCTION

From the end of the first decade of the 21st century, neural networks have

been experiencing a phenomenal resurgence thanks to the big data and the

significant advances in processing speeds. Large-scale deep neural networks

(DNNs) have been able to deliver impressive results in many challenging prob-

lems. For instance, DNNs have led to breakthroughs in object recognition ac-

curacy on the ImageNet dataset [26], even achieving human-level performance

for face recognition [117]. Such promising results triggered the revolution of

several traditional and emerging real-world applications, such as self-driving

systems [51], automatic machine translations [22], drug discovery and toxicol-

ogy [13]. As a result, both academia and industry show the rising interests with

significant resources devoted to investigation, improvement, and promotion of

deep learning methods and systems.

In this chapter, we discuss the motivation of the study. Then we introduce

the basics of three computing paradigms for machine learning models espe-

cially deep learning models. Applications of different learning systems are in-

troduced. Finally, the contributions of the thesis are reviewed.

1.1 Motivation

Machine learning technology benefits many aspects of modern life: web

searches, e-commerce recommendations, social network content filtering, etc.

[67]. Unfortunately, the conventional machine learning techniques were re-

stricted due to the lack of ability to automatically extract high-level features.

1



These features traditionally have been extracted by well-engineered manual fea-

ture extractors. Deep learning methods have taken advantage of the architecture

of multi-level representations to learn very complex functions [67]. Here, each

representation is obtained from a slightly less abstract level through the trans-

formation based on a simple non-linear module. Deep learning significantly

enhances the machine learning capability using learning from data by these

multiple layers for different features without human involvement.

Due to the deep structure, the performance of deep learning model highly

relies on the capability of hardware resources. From high performance server

clusters [25, 14] to General-Purpose Graphics Processing Units (GPGPUs) [54, 9],

parallel accelerations of deep neural networks (DNNs) are widely used in both

the academic and industry. Recently, hardware acceleration for DNNs has at-

tracted enormous research interests on Field-Programmable Gate Arrays (FPGAs)

[138, 89, 93]. Nevertheless, there is a trend of embedding DNNs into light-

weight embedded and portable systems, such as surveillance monitoring sys-

tems [52], self-driving systems [51], unmanned aerial systems [87], and robotic

systems [62]. These scenarios require very low power & energy consumptions

and small hardware footprints. Besides, cell phones [67] and wearable devices

[41] equipped with hardware-level neural network computation capability re-

quire the radical reduction in power & energy consumptions and footprints.

This thesis mainly addresses the inference acceleration and model compres-

sion for modern machine learning models. The acceleration also implies an

energy-efficient system that enables the models to run on low-power devices.

Meanwhile, effective modeling and training optimization for specific applica-

tions are proposed to maintain a good accuracy. We investigate three com-

2



puting paradigms to explore the efficient machine learning model acceleration.

The first one, Cogent Confabulation is an application oriented acceleration re-

search, which is introduced in Chapter 2 and Chapter 3. The second computing

paradigm in this thesis is Stochastic Computing, which is more general to neu-

ral networks, is described in Chapter 4. The last computing paradigm is the

structured matrices based neural network acceleration and model compression,

which is presented in Chapter 5.

1.2 Cogent Confabulation

Inspired by human cognitive process, cogent confabulation [47] mimics human

information processing including Hebbian learning, correlation of conceptual

symbols and recall action of brain. Based on the theory, the cognitive informa-

tion process consists of two steps: learning and recall. The confabulation model

represents the observation using a set of features. These features construct the

basic dimensions that describe the world of applications. Different observed at-

tributes of a feature are referred as symbols. The set of symbols used to describe

the same feature forms a lexicon and the symbols in a lexicon are exclusive to

each other. In learning process, matrices storing posterior probabilities between

neurons of two features are captured and referred as the knowledge links (KL).A

KL stores weighted directed edges from symbols in source lexicon to symbols in

target lexicon. The (i, j)th entry of a KL, quantified as the conditional probabil-

ity P(si|t j), represents the Hebbian plasticity of the synapse between ith symbol

in source lexicon s and jth symbol in target lexicon t. The knowledge links are

constructed during learning process by extracting and associating features from

the inputs and collection of all knowledge links in the model forms its knowl-

3



edge base (KB). During recall, the input is a noisy observation of the target. In

this observation, certain features are observed with great ambiguity, therefore

multiple symbols are assigned to the corresponding lexicons. The goal of the

recall process is to resolve the ambiguity and select the set of symbols for max-

imum likelihood using the statistical information obtained during the learning

process. This is achieved using a procedure similar to the integrate-and-fire

mechanism in biological neural system. Each neuron in a target lexicon receives

an excitation from neurons of other lexicons through KLs, which is the weighted

sum of its incoming excitatory synapses. Among neurons in the same lexicon,

those that are least excited will be suppressed and the rest will fire and become

excitatory input of other neurons. Their firing strengths are normalized and

proportional to their excitation levels. As neurons gradually being suppressed,

eventually only the neuron that has the highest excitation remains firing in each

lexicon and the ambiguity is thus resolved. Let l denote a lexicon, Fl denote the

set of lexicons that have knowledge links going into lexicon l, and S l denote the

set of symbols that belong to lexicon l. The excitation of a symbol t in lexicon l

is calculated by summing up all incoming knowledge links:

el(t) =
∑
k∈Fl

{∑
s∈S k

[el(s)ln(
P(s|t)

p0
)] + B

}
, t ∈ S l (1.1)

where the function el(s) is the excitation level of the source symbol s. The param-

eter p0 is the smallest meaningful value of P(si|t j). The parameter B is a positive

global constant called the bandgap. The purpose of introducing B in the func-

tion is to ensure that a symbol receiving N active knowledge links will always

have a higher excitation level than a symbol receiving (N − 1) active knowledge

links, regardless of their strength. As we can see, the excitation level of a symbol

is actually its log-likelihood given the observed attributes in other lexicons.
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1.3 Stochastic Computing

Deviated from the conventional binary computing (referred as conventional com-

puting), stochastic computing (SC) represents any number using a stream of bits.

Here the value of real number x in the unit interval is interpreted by the ratio

of bit-1 in the entire bit-stream, i.e., P(X = 1). For instance, the 8-bit sequence

00100101 containing three 1s denotes x = P(X = 1) = 3
8 = 0.375. Since each bit has

the same weight, number representation in stochastic computing is unary and

hence enables different interpretations for the same value. Besides this unipolar

coding format [34], bipolar coding format [34] is another popular number repre-

sentation scheme in stochastic computing. In the scenario of bipolar coding, the

relationship between x and P(X = 1) becomes P(X = 1) = x+1
2 , which enables the

stochastic representation for negative number. Notice that for either unipolar

or bipolar coding format, the represented number ranges in [0, 1] or [−1, 1]. To

represent a number beyond this range, a pre-scaling operation [135] or integer

bit-stream based representation [6] can be used to relax this constraint.

A major advantage of stochastic computing is its ultra-low hardware cost:

Many complicated arithmetic functions can now be implemented with very

simple logic circuits. For instance, as shown in Figure 1.1, the real multiplication

can be performed with an AND gate in the unipolar coding form since

c = P(C = 1)

= P(A = 1)P(B = 1)

= ab
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Figure 1.1: Stochastic multiplication using: (a) unipolar encoding (b) bipolar
encoding.

or with an XNOR gate in bipolar coding form since

c = 2P(C = 1) − 1

= 2[P(A = 1)P(B = 1) + P(A = 0)P(B = 0)] − 1

= 2[P(A = 1)P(B = 1) + (1 − P(A = 1))(1 − P(B = 1))] − 1

= (2P(A = 1) − 1)(2P(B = 1) − 1)

= ab.

Another example is regarding the adder, which can be simply implemented

with a multiplexer (see Figure 1.2) in the scenario of stochastic computing, for

c = P(C = 1)

=
1
2

(P(A = 1) +
1
2

P(B = 1)

=
1
2

(a + b).

Additionally, the addition in the bipolar form uses this multiplexer as well, since

c = 2P(C = 1) − 1

= 2[
1
2

(P(A = 1) +
1
2

P(B = 1)] − 1

=
1
2

[2P(A = 1) − 1) + (2P(B = 1) − 1)]

=
1
2

(a + b).

In general, such significant saving in hardware resource makes stochastic

computing circuits well-suited for the area-constrained applications, such as
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Figure 1.2: Scaled addition in stochastic computing.

signal sensing and processing in wearable devices. Besides, the abundant bud-

get on area offers immense design space in optimizing hardware performance

in terms of power, latency and speed via efficient trade-offs between area and

those metrics, thereby implying the potential application of stochastic comput-

ing in large-scale systems that requires massive parallelism for basic computing

units.

Another advantage of stochastic computing is its inherent error-resilience.

By nature, the redundant representation of stochastic computing translates to

the strong capability for tolerating transient error and soft error (bit-flipping)

since each bit has the same weight in bit-stream. For instance, as reported in [97,

85, 134], compared to their conventional computing counterparts, the stochastic

digital signal processing component shows much better error-resilience capa-

bility, which is attractive for the emerging noise-rich deep nanoscale CMOS era.
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1.4 Structured Matrices based Neural Networks

In general, a circulant matrix W ∈ Rn×n [94] is defined by a vector w =

(w1,w2, . . . ,wn) as the following:

W =



w1 wn . . . w3 w2

w2 w1 wn w3

... w2 w1
. . .

...

wn−1
. . .

. . . wn

wn wn−1 . . . w2 w1


. (1.2)

From equation (1.2) it is seen that an n-by-n circulant matrix only has n param-

eters because of its strong structure. Clearly, when such structure is imposed to

the weight matrices of DNNs, the required space cost for storing the weights is

immediately reduced from O(n2) to O(n).

Besides the advantage on low space cost, the use of circulant matrices as

weight matrices can also lead to low computational complexity for both infer-

ence and training, which are described as below:

Inference: The dominating computation during the forward propagation in

the inference is the matrix-vector multiplication (Wx). According to [94], when

W is a circulant matrix, Wx can be performed as below:

a = Wx = IDFT(DFT(w) ◦DFT(x)), (1.3)

where ◦ denotes the element-wise multiplication; DFT(·) denotes the Discrete

Fourier transform; and IDFT(·) denotes the inverse Discrete Fourier transform.

Notice that since the computational complexity of n-point DFT/IDFT is only

O(n log n), the computational complexity of DNN inference can achieve order-

of-magnitude reduction (from O(n2) to O(n log n)).
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Training: For backward propagation in the training, recall that its key pro-

cedure is to perform the chain rule-based calculation for the gradient of loss

function L with respect to the weight vector w as below:

∂L
∂w

=
∂L
∂a

∂a
∂w

, (1.4)

where ∂L
∂a is the gradient back-propagated from the subsequent layer. Notice

that in the scenario that W is a square circulant matrix, as indicated in [18], ∂a
∂w

is a circulant matrix defined by the vector x′ = (x1, xn, xn−1, . . . , x2). Therefore,

according to [94], equation (1.4) can be simplified as below:

∂L
∂w

= IDFT(DFT(
∂L
∂a

) ◦DFT(x′)), (1.5)

where 1 is a column vector full of ones. In addition, the gradient of input x

which is back-propagated to the previous layer, should be calculated as:

∂L
∂x

=
∂L
∂a

∂a
∂x
. (1.6)

Notice that here ∂a
∂x is also a circulant matrix that is defined as w′ =

(w1,wn,wn−1, . . . ,w2) . Hence equation (1.6) can also be simplified as below:

∂L
∂x

= IDFT(DFT(
∂L
∂a

) ◦DFT(w′)). (1.7)

From equation (1.5) and (1.7) it is seen that, when W is a circulant matrix, the

updating scheme for the gradients of w and x, as the key part of DNN training,

can also be calculated using DFT/IDFT, thereby rendering order-of-magnitude

reduction in computational cost for training (from O(n2) to O(n log n)).

1.5 Applications

We applied the above three computing paradigms on three applications as be-

low. To be specific, cogent confabulation is applied on the module for the In-
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telligent Text Recognition System (ITRS); Stochastic Computing is applied on the

deep convolutional neural networks (DCNNs) and structured matrices based neu-

ral network is used to train the Recurrent Neural Networks (RNNs) for automatic

speech recognition (ASR).

1.5.1 Intelligent Text Recognition System

In a recent development, the cogent confabulation model was used for sen-

tence completion [47, 101]. Trained using a large amount of literature, the

confabulation algorithm has demonstrated the capability of completing a sen-

tence (given a few starting words) based on conditional probabilities among

the words and phrases. We refer these algorithms as the “association” models.

The brain inspired signal processing flow could be applied to many applica-

tions. A proof-of-concept prototype of context-aware Intelligence Text Recogni-

tion system (ITRS) is developed on high performance computing cluster [100].

As shown in Figure 1.3, the lower layer of the ITRS performs pattern matching

of the input image using a simple non-linear auto-associative neural network

model called Brain-State-in-a-Box (BSB) [4]. It matches the input image with the

stored alphabet. A race model is introduced that gives fuzzy results of pattern

matching. Multiple matching patterns will be found for one input character

image, which is referred as ambiguity. The upper layer of the ITRS performs

information association using the cogent confabulation model [47]. It enhances

those BSB outputs that have strong correlations in the context of word and sen-

tence and suppresses those BSB outputs that are weakly related. In this way, it

selects characters that form the most meaningful words and sentences.
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Figure 1.3: Overall architecture of the ITRS models and algorithmic flow.

1.5.2 Deep Convolutional Neural Network

Deep Convolutional Neural Networks (DCNN) are biologically inspired vari-

ants of multi-layer perceptrons (MLPs) by mimicking the animal visual mecha-

nism [50]. Thus, a DCNN has special sets of neurons only connected to a small

receptive field of its previous layer rather than fully connected. Besides an in-

put layer and an output layer, a general DCNN architecture consists of a stack

of convolutional layers, pooling layers, and fully connected layers shown in Figure

1.4. Please note that some special layers like normalization or regularization are

not the focus in this thesis.

1) A convolutional layer is associated with a set of learnable filters (or ker-

nels) [68], which are activated when specific types of features are found at some

spatial positions in the inputs. Filter-sized moving windows are applied to the

inputs to obtain a set of feature maps by calculating the convolution of the filter

and inputs in the moving window. Each convolutional neuron, representing one
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Figure 1.4: General DCNN architecture.

pixel in a feature map, takes a set of inputs and corresponding filter weights to

calculate their inner-products.

2) After extracting features using convolution, a subsampling step can be ap-

plied to aggregate statistics of these features to reduce the dimensions of data

and mitigate over-fitting issues. This subsampling operation is realized by a

pooling neuron in pooling layers, where different non-linear functions can be ap-

plied, such as max pooling, average pooling, and L2-norm pooling. Among

them, max pooling is the dominating type of pooling in state-of-the-art DC-

NNs due to the higher overall accuracy and convergence speed. The activa-

tion functions are non-linear transformation functions, such as Rectified Lin-

ear Units (ReLU) f (x) = max(0, x), hyperbolic tangent (tanh) f (x) = tanh(x) or

f (x) = |tanh(x)|, and sigmoid function f (x) = 1
1+e−x . Among them, the ReLU

function is the dominating type in the (large-scale) DCNNs due to i) the lower

complexity for software implementation; and ii) the reduced vanishing gradi-

ent problem [37]. These non-linear transformations are conducted somewhere

before the inputs of the next layer, ensuring that they are within the range of

[−1, 1]. Usually, a combination of convolutional neurons, pooling neurons and

activation functions forms a feature extraction block (FEB) to extract high-level
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Figure 1.5: An LSTM based RNN architecture.

abstraction from the input images or previous low-level features.

3) A fully connected layer is a normal neural network layer with its inputs

fully connected with its previous layer. Each fully connected neuron calculates the

inner-product of its inputs and corresponding weights.

1.5.3 Recurrent Neural Networks based Automatic Speech

Recognition

Long short-term memory (LSTM)

Modern large scale Automatic Speech Recognition (ASR) systems take advan-

tage of LSTM-based RNNs as their acoustic models. An LSTM model consists

of large matrices which is the most computational intensive part among all

the steps of the ASR procedure. We focus on a representative LSTM model

presented in [109] whose architecture is shown in Figure 1.5. An LSTM-

based RNN accepts an input vector sequence X = (x1; x2; x3; ...; xT ) (each of xt

is a vector corresponding to time t) with the output sequence from last step

YT−1 = (y0; y1; y2; ...; yT−1) (each of yt is a vector). It computes an output sequence
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Y = (y1; y2; y3; ...; yT ) by using the following equations iteratively from t = 1 to

T :

it = σ(Wixxt + Wiryt−1 + Wicct−1 + bi), (1.8a)

ft = σ(W f xxt + W f ryt−1 + W f cct−1 + b f ), (1.8b)

gt = σ(Wcxxt + Wcryt−1 + bc), (1.8c)

ct = ft � ct−1 + gt � it, (1.8d)

ot = σ(Woxxt + Woryt−1 + Wocct + bo), (1.8e)

mt = ot � h(ct), (1.8f)

yt = Wymmt, (1.8g)

where symbols i, f, o, c, m, and y are respectively the input gate, forget gate,

output gate, cell state, cell output, and projected output [109]; the � operation

denotes the point-wise multiplication, and the + operation denotes the point-

wise addition. The W terms denote weight matrices (e.g. Wix is the matrix

of weights from the input vector xt to the input gate), and the b terms denote

bias vectors. Please note Wic, W f c, and Woc are diagonal matrices for peephole

connections [36], thus they are essentially a vector. As a result, the matrix-vector

multiplication like Wicct−1 can be calculated by the � operation. σ is the logistic

activation function and h is a user defined activation function. Here we use
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hyperpolic tangent (tanh) activation function as h.

In the above equations, we have nine matrix-vector multiplications (exclud-

ing peephole connections which can be calculated by �). In one gate/cell,

W∗xxt + W∗ryt−1 can be combined/fused in one matrix-vector multiplication by

concatenating the matrix and vector as W∗(xr)[xT
t , yT

t−1]T . Furthermore, the four

gate/cell matrices can also be concatenated and calculated through one matrix-

vector multiplication as W(i f co)(xr)[xT
t ,yT

t−1]T . In this way, we can compute the

above equations with only two matrix-vector multiplications, i.e. W(i f co)(xr)

[xT
t ,yT

t−1]T and Wymmt.

Gated recurrent units (GRU)

The GRU is a variation of the LSTM as introduced in [20]. It combines the for-

get and input gates into a single “update gate”. It also merges the cell state

and hidden state, and makes some other changes. The architecture is shown in

Figure 1.6. Similarly, it follows equations iteratively from t = 1 to T :

zt = σ(Wzxxt + Wzcct−1 + bz), (1.9a)

rt = σ(Wrxxt + Wrcct−1 + br), (1.9b)

c̃t = h(Wc̃xxt + Wc̃c(rt � ct−1) + bc̃), (1.9c)

ct = (1 − zt) � ct−1 + zt � c̃t (1.9d)

where symbols z, r, c̃, c are respectively the update gate, reset gate, reset state,

and cell state; the � operation denotes the point-wise multiplication, and the +

operation denotes the point-wise addition. The W terms denote weight matrices

(e.g. Wzx is the matrix of weights from the input vector xt to the reset gate). σ is

the logistic activation function and h is a user defined activation function. Here
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we use tanh activation function as h. Note that a GRU has two gates (update

and reset), while an LSTM has three gates (input, forget, output). GRUs do not

have the output gate that is present in LSTMs. Instead, the cell state is taken as

the output. The input and forget gates are coupled by an update gate z, and the

reset gate r is applied directly to the previous cell state.

In the above set of equations, we have six matrix-vector multiplications. In

the reset and update gates, W∗xxt+W∗cct−1 can be combined/fused in one matrix-

vector multiplication by concatenating the matrix and vector as W∗(xc)[xT
t , cT

t−1]T .

Furthermore, the reset and update gate matrices can also be concatenated and

calculated through one matrix-vector multiplication as W(rz)(xc)[xT
t , cT

t−1]T . In this

way, we compute the above equations with three matrix-vector multiplications,

i.e. W(rz)(xc)[xT
t , cT

t−1]T , Wc̃xxt, and Wc̃c(rt � ct−1).

1.6 Contributions

This thesis studies the inference acceleration for modern machine learning mod-

els with high accuracy performance. We investigate three computing paradigms

to explore the efficient machine learning model acceleration. The organization

and contributions of this thesis are concluded as the following.

1. Cogenet confabulation based models on the text recognition system have

been investigated and optimized in [77, 98, 99] to offer the state-of-the-

art quality. In Chapter 2, we used Chinese language sentence completion

problem as a case study to describe our exploration on the cogent confab-

ulation based text recognition models. The exploration and optimization
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of the cogent confabulation based models have been conducted through

various comparisons.

2. In Chapter 3, we develop a multi-processing system for cogent confabula-

tion models on sentence completion problems [78]. We propose a parallel

framework for the confabulation recall algorithm. The parallel implemen-

tation reduced runtime, improve the recall accuracy by breaking the fixed

evaluation order and introducing more generalization, and maintain a bal-

anced progress in status update among all neurons. A lexicon scheduling

algorithm was presented to further improve the model performance.

3. In Chapter 4, the Stochastic Computing (SC) based efficient inference

framework for the deep convolutional neural networks (DCNNs) are de-

signed [104, 79, 70]. We firstly describe how we apply the stochastic com-

puting paradigm to DCNNs followed by a detailed partitioning of DCNN

components [71, 136, 72]. The joint optimizations among the DCNN com-

ponents are discussed from the perspective of SC [103, 80, 76, 75]. Finally

we propose the hardware-level optimization on the complete SC based

system. The synthesis results have shown that our proposed framework

achieves remarkable low hardware cost and low power and energy con-

sumption. The comparisons with latest peer works are provided.

4. In Chapter 5, we introduced the structured matrices based acceleration of

the neural network. Inspired by previous work [18], we propose block-

circulant matrices [140] based weight matrices formatting, where a weight

matrix is partitioned into several blocks each of which is a circulant ma-

trix. A circulant matrix can be represented using a single vector so that the

matrix is compressed. In this way, the compression of the weight matrix is

controllable. With the help of Fourier Transform based equivalent compu-

17



tation, the inference of the deep neural network can be accelerated energy

efficiently on the FPGAs [124, 74]. We also offer the optimization for the

training algorithm for block circulant matrices based neural networks to

obtain a high accuracy after compression.

5. Finally in Chapter 6, the works contributing this thesis are reviewed and

summarized. Potential directions to improve the studies are proposed.

18



CHAPTER 2

COGENT CONFABULATION ASSISTED CHINESE SENTENCE

COMPLETION

2.1 Introduction

As an important part of text recognition, sentence completion and prediction,

which stands for the capability of filling missing words in an incomplete sen-

tence, has attracted much attention. The first step of sentence completion is syn-

tactic parsing of the input text. Among different languages, Chinese is a great

challenge due to its linguistically isolating. Each Chinese character generally

corresponds to exactly one morpheme and multiple semantic meanings. More-

over, there has been a strong tendency in the Chinese language family over the

last 2000 years for single morpheme words to develop into compounds of two

or more morphemes [120], which makes Chinese language linguistically more

flexible and complex. All of the above makes Chinese sentence completion ex-

tremely difficult.

In our previous research [102, 100, 101, 132], a cogent confabulation based

sentence completion framework is developed. A sentence is represented by a set

of lexicons corresponding to its words, word pairs, and part-of-speech tags. The

conditional probability between neighboring lexicons are learned from training

corpus. During recall, the missing information (including unknown word and

part-of-speech tags for both unknown and given words) is selected that max-

imizes the likelihood of observed information (i.e. those words already given

in the input sentence). Due to the difference between linguistic structures, this

framework has to be modified for Chinese sentences. First of all, each Chinese
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character, which is represented as a 3-byte UTF-8 code, is analogy to an English

word. In the rest of the chapter, we use character and word interchangeably, as

they are the same in Chinese. Secondly, the part-of-speech tagging of Chinese is

usually associated with each multi-character compound. Correct segmentation

is essential to syntactic parsing of the sentence.

We improve previous cogent confabulation model and apply it to Chinese

sentence completion. Besides integrating parts-of-speech (POS) tagging that iden-

tifies the function of each word, in the Chinese sentence confabulation, segmen-

tation label for multi-character compound is added, which identifies word com-

pound consisting of 1 ∼ 4 Chinese characters. This work focuses on developing,

optimizing and evaluating a confabulation model for Chinese sentence comple-

tion with high accuracy. It has three major contributions:

1. We extend the original sentence confabulation model to consider linguis-

tic properties of Chinese language. Segmentation labels and beginning of

sentence markers are specifically added to the model. Knowledge links (KL)

are shared to reduce complexity and improve performance as well. Ex-

periment results shows that the extended Chinese sentence confabulation

model achieve 76.9% sentence recall accuracy with reduced memory and

computing complexity.

2. We analyze the mutual information between source and target lexicons

of each knowledge link in the confabulation model and assign weight to

these knowledge links accordingly. Compared to the original model, the

model with weighted knowledge link has 9% higher recall accuracy.

3. The mutual information of KLs is also exploited to find the best training

set size, which gives the best trade-offs between training effort and recall
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Table 2.1: Penn Treebank tag list.

Tag Function Examples
VA Predicative Adjective 很(very),雪白(snow white), . . .
VC Copula (be), (not be), . . .
VE 有 (have) as the main verb 有(have),没有(have not),无(not have), . . .
VV Other verb 想(want to),走(walk),喜欢(like), . . .
NR Proper Nouns (location, newspaper, . . . ) 北京(Beijing),纽约时报(New York Times), . . .
NT Temporal Nouns 一月(Janurary),汉朝(Han Dynasty), . . .
NN All other Nouns 书(book),房子(house), . . .
PN Pronoun 我(I),你(you),这(this), . . .
. . . . . . . . .

accuracy.

2.2 Formulation of Chinese Completion using Cogent Confab-

ulation

2.2.1 Processing the training text

Our training text is segmented and tagged using Standford Part-of-speech

(POS) tagger [39]. It is one of the most matured Natural Language Process-

ing software based on probabilistic tagging systems. First, the Chinese train-

ing sentences are segmented using Stanford Chinese word Segmenter, which

is based on a linear-chain conditional random field (CRF) model. The tool parti-

tions sentence into compound words consisting of single or multiple Chinese

characters. And then Stanford POS Tagger takes segmented sentence as input

and assigns a part-of-speech tag to each compound. Stanford POS Tagger for

Chinese Language exploits 33 word level Chinese tags specified by the Penn

Treebank Tagging System [129]. Table. 2.1 lists some examples of these Tags.

The information of POS tags and segments will be built into the knowledge
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base during training. However, the POS tagger cannot be used to process sen-

tences with missing words. Therefore during recall, we cannot use POS tagger

for syntactic analysis. Our solution is to rely on the confabulation model to re-

call the segments and tags during the same time when the missing words are

filled in. The basic idea is to assume that all tags and segment partitions are pos-

sible at the beginning, and gradually eliminate the ambiguity during the recall

process. This approach is feasible since the number of tags and possible seg-

ment partitions is limited. Our experimental results show that considering tags

and segmentations at the same time helps to improve the accuracy of sentence

completion.

2.2.2 Chinese Sentence Confabulation

Basic confabulation framework

Inheriting from original sentence confabulation framework [101], we assume

that the maximum length of a sentence is 20 words and sentence with more

than 20 words will be truncated. We pad the sentence that has less than 20

words with special character [`] to represent the end of a sentence. Anything

beyond the end of sentence will be ignored during training and recall.

Original Sentence confabulation framework has two levels of lexicons −

word and word pair. Lexicons 0 to 19 correspond to single English word at

location 0 to 19 in a sentence. Lexicons 20 to 38 correspond to 19 word pairs

combining word from lexicon 0 ∼ 19 and its right adjacent neighbor. Each lex-

icon stores tremendous number of symbols (words or word pairs) that appears

in the corresponding location.
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In original framework, a KL is created between any two lexicons. In training

process, we build all KL matrices to form knowledge base. And during recall,

observed symbols will be set active in each lexicon. When there is no ambiguity

in observation, only one symbol in a lexicon will be set active. Multiple sym-

bols in the same lexicon will be set active because of ambiguous observation.

They are referred as candidates. When a lexicon is not observable, all possible

symbols will be set active to indicate the highest ambiguity. The excitation level

of each candidate in the lexicon with ambiguity will be calculated and the sym-

bols that is least excited will be suppressed. This procedure repeats until there

is only one symbol left in each lexicon.

Chinese sentence confabulation model

Each Chinese character is encoded using 3 bytes of UTF-8 code. As mentioned

before, we regard each Chinese character as a “word” and they occupy the word

level lexicons in the confabulation framework. Modern Chinese language is

based on word compound, which consists of 1 ∼ 4 single Chinese characters.

These word compounds are not delimited, however, they can be found with the

help of tools, such as the Stanford POS tagger. We label each Chinese character

based on its position in a word compound, and refer this as segmentation label.

For example, in a two character word compound 书籍 (book), 书 (book) is

located at the first position of the two character word compound, therefore, it is

marked as 1IN2, and 籍 (book) is marked as 2IN2. In this work, ten segmenta-

tion labels are used. They are: 1IN1, 1IN2, 2IN2, 1IN3, 2IN3, 3IN3, 1IN4, 2IN4,

3IN4, and 4IN4. Please note that segmentation label is only needed in Chinese

sentence confabulation. This is a major difference between Chinese and western
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languages. In the next section, we will show the necessity of including segmen-

tation label in the confabulation model.

In the improved confabulation model, new lexicons are created for tags and

segmentation labels. Moreover, instead of having lexicons for two adjacent

words, we create lexicons for three adjacent words in order to adapt to seman-

tic compounds of multiple Chinese characters. Therefore, lexicons in the new

confabulation model can be divided into four levels: lexicons 0 ∼ 19 correspond

to single Chinese word; lexicons 20 ∼ 37 correspond to Chinese word triplets;

lexicons 38 ∼ 57 correspond to POS tags and lexicons 58 ∼ 77 correspond to

segmentation labels.

The original sentence confabulation framework has a knowledge link be-

tween any two lexicons. Therefore, the size of knowledge base increases expo-

nentially with the number of lexicons. In this way, 78 × 77 = 6006 KLs will be

generated for the Chinese sentence confabulation model, which takes tremen-

dous resources. To reduce the complexity of our computational model, two

actions are jointly taken. First is to share KL matrix between lexicons that have

the same relative position in sentence. For example, the distance from lexicon

0 to lexicon 1 is the same as the distance from lexicon 1 to lexicon 2, so the KLs

between 0 ∼ 1 and 1 ∼ 2 are merged and shared.

The second action is to only create KLs between lexicons within N-

neighborhood in the same lexicon level or across lexicon levels. In [88], ex-

perimental results show that considering words with low correlation in speech

recognition making the performance poor. Empirically, Five-neighborhood is a

best trade-off for accuracy and complexity. Therefore, we only generate knowl-

edge links between two lexicons whose horizontal distance is within -5 to 5.
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We refer to the new sentence confabulation model with these two changes as

circular model as the knowledge links are circulated among lexicons.

Segmented and tagged training text is used during training. Characters, tags

and segment labels are placed in corresponding lexicons. KLs are established

not only between two lexicons in the same level, but also between lexicons in

different levels, as long as their distance is less than 5. However, there is no

KL between tag and segmentation label lexicons, because tags and segments

are derivatives of the Chinese characters, and Stanford tools are not able to en-

sure 100% accuracy in tagging. Keeping KL between tag and segment lexicons

will introduce noise in the confabulation procedure. A test sentence with miss-

ing characters will be given during recall. For those lexicons that are partially

observable, a set of candidates that compliant with the partial observation is ac-

tivated. If a lexicon is completely unobservable, then all possible symbols are

activated as potential candidates. Since the test sentence originally is provided

without tags and segmentation labels, the confabulation model automatically

activates all tags and segmentation labels as possible candidates for each tag

and segmentation label lexicon respectively.

2.3 Training and Recall Algorithm with Case Study

Given the confabulation model, the training and recall procedures are devel-

oped. The training process establishes knowledge base on tagged and seg-

mented text. Taking following sentence “国王#NN (The king) 有#VE (has)

两#CD个#M (two)儿子#NN (sons)” as example, the corresponding tagged and

segmented training text is as follows, and the confabulation model constructed
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国 王 有 两 个 儿 子

国王有 王有两 有两个 两个儿 个儿子

NN NN VE CD M NN NN

1IN2 2IN2 1IN1 1IN1 1IN1 1IN2 2IN2

`

`

`

Lex 0 Lex 1 Lex 2 Lex 3 Lex 4 Lex 5 Lex 6

Lex 38 Lex 39 Lex 40 Lex 41 Lex 42 Lex 43 Lex 44

Lex 58 Lex 59 Lex 60 Lex 61 Lex 62 Lex 63 Lex 64

Lex 20 Lex 21 Lex 22 Lex 23 Lex 24

^

^

^国王

^

Lex 25

Lex 7

Lex 45

Lex 65

...

...儿子`

...

...

Lex 8

Lex 26

Lex 46

Lex 66

Figure 2.1: Lexion Structure of confabulation model.

based on the training text is given in Figure 2.1.

As shown in Figure 2.1, a special symbol [ˆ] is assigned to the first lexicon in

each level. Those words that frequently appear at the beginning of a sentence

will have strong link with this special symbol. The indication of beginning of

sentence is especially important for circular model, because its knowledge base

only contains relative position information. The beginning of sentence sym-

bol acts as anchors that provide absolute position information. We can also see

from Figure 2.1 that the sentence is extended to 20 characters that are symbols

assigned to lexicons 0 to 19 respectively. Those 20 characters will generate 18

three-word triplets and be assigned to lexicons 20 ∼ 37, 20 tags and 20 segmen-

tation labels will enter lexicons 38 ∼ 57 and lexicons 58 ∼ 77 respectively. At

the end of training, the system will calculate the symbol to symbol conditional

probability to fill in the KL matrix entry. For example, P(“国”|“王”) will be

stored as an entry in the KL connecting lexicons 1 and 2, and P(“国”|“NN”)

will be stored as an entry in the KL connecting lexicons 1 and 39.

During recall, sentences with missing characters will be given. Taking the

same sentence in Figure 2.1 as example, Figure 2.2 gives a simple explanation
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国 ? 有 ... 子

国?有 王有两 有两个

? ? ? ... ?

? ? ? ... ?

...

...

...

...

?

^

^国?

?

Lex 0 Lex 1 Lex 2 Lex 3 Lex 7

Lex 20 Lex 21 Lex 22 Lex 23

Lex 38 Lex 39 Lex 40 Lex 41 Lex 45

Lex 58 Lex 59 Lex 60 Lex 61 Lex 65

Figure 2.2: Lexion Structure of confabulation model (Any arrow is from source
lexicon to target lexicon. Orange arrows represents Knowledge Links from ob-
servable lexicons to unobservable or partially observable lexicons; Green arrows
represents Knowledge Links between lexicons in same level; Blue arrows rep-
resents Knowledge Links from unobservable or partially observable lexicons to
observable lexicons).

how the model works. Assume that the third character “王(king)” is partially

observable, and the ambiguous observation gives two candidates: “‘王(king)”

and “工(labor)” . Symbols in lexicons are activated according to the observa-

tion. Hence lexicon 2 has two symbols “王(king)” , “工(labor)” activated.

And since no tags and segmentation labels are provided for the test sentence,

all tags and segmentation labels are activated in tag and segmentation label lex-

icons. The lexicons with only one candidate are regarded as known lexicons

and others are regarded as unknown lexicons. Through KLs, active symbols

in source lexicons will excite candidate symbols in target lexicons. Each candi-

date’s excitation level is calculated based on equation 1.1. The least excited one

is eliminated from candidate list and others are set to be active. It is noted that
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no matter a source lexicon is known or not, as long as its candidates are set to be

active, the active symbols will always excite the symbols in unknown lexicons.

In this example, [ˆ] in lexicon 0 will excite tag candidates in lexicon 38, and ac-

tive symbols in lexicon 38 will then excite tag candidates in lexicon 40, while the

active symbols in lexicon 40 excite candidates, “王(king)” , “工(labor)” respec-

tively in unknown lexicon 2. This procedure iterates so that unknown character

will be determined gradually by eliminating weak candidates in unknown tag

lexicons, segmentation lexicons and word triplet lexicons. Finally only one can-

didate is left in each lexicon and the candidate will be chosen as the most likely

result and “王(king)” is recalled for the missing character.

2.3.1 Knowledge Link Weighting

In the basic confabulation model, the excitation level of a candidate is the sum

of contributions from active symbols in other lexicons. Intuitively, however, dif-

ferent source lexicons do not contribute equally to a target lexicon. For example,

the lexicon right next to an unknown word obviously gives more information in

determining the unknown word than the lexicon that is five words away. This

motivates us to weight KL’s contribution during recall.

The basic idea is to weight the contribution of each KL based on the Mutual

information (MI) [133] between its source and target lexicons. Mutual informa-

tion of two random variables is a measure of variables’ mutual independence.

In our work, mutual information is calculated as

I(A; B) =
∑
b∈B

∑
a∈A

p(a, b)log(
p(a, b)

p(a)p(b)
) (2.1)

where A is the source lexicon and a represents symbols in A; B is the target
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lexicon and b represents symbols in B. p(a, b) is the joint probability of symbol

a and b; p(a) and p(b) are the margin probability of symbol a and b respectively.

I(A; B) is nonnegative. The value of I(A; B) will increase when the correlation of

symbols in lexicon A and B get stronger. Because each knowledge link has its

source and target lexicons, in the rest of the chapter when we say the MI of a KL

we refer to the MI of the source and target lexicons of that KL.

2.4 Evaluations

In this section, we compare the performance of different models and show how

the analysis of mutual information can help to improve the efficiency of the

confabulation modeling and recall. We train the Chinese confabulation model

with a corpus of 10 sets of collected fairy and folk tales. We choose Chinese

version of worldwide fairy tales such as Hans Christian Andersen’s Fairytales,

Grimm’s Fairy Tales and also Chinese folk tales, because those works use vivid

and common language, which will lead to a statistically meaningful knowledge

base. The training set includes 364, 709 sentences and 3, 232, 600 words, and is

chunked into 1328 small files with equal size. The test document includes 91

sentences extracted from elementary school textbook on Chinese language art.

Each test sentence has 1 ∼ 4 randomly picked missing Chinese words. For each

missing word, 2 ∼ 5 possible candidates will be given. Accuracy is measured as

the rate of successfully confabulated sentences, which must be identical to the

original sentences.
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Figure 2.3: Recall accuracy of sentence confabulation model with/without seg-
mentation label .

2.4.1 Necessity of incorporating segmentation labels and circu-

lar Knowledge Base

The first thing we want to show is the importance of including segmentation

labels in the confabulation model. In this experiment, all knowledge links have

the equal weight. We compare the recall accuracy of confabulation models with

and without segmentation labels. The result is shown in Figure 2.3. As we can

see, adding segmentation label improves recall accuracy by 4.4%.

Another experiment compares the training time, recall time and accuracy be-

tween non-circular model and circular model. Table 2.2 shows that non-circular

model takes about four times training effort more than the circular model, and

17.5% more recall time, but gives 13% lower recall accuracy.
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Table 2.2: Comparison of non-circular and circular model.

Non-circular Circular Improvement(%)
Training time(s) 489,180 144,540 70.45%

Recall time(s) 6,317.22 5,207.83 17.56%
accuracy 54.95% 68.13% 13.18%

2.4.2 Analysis of mutual information

In the second set of experiments, we demonstrate how the change of mutual

information (MI) relates to the effectiveness of the training process. We con-

tinuously monitor the mutual information of each KL as the training process

progresses. The 1328 files of the training corpus is processed one by one. The

MI of each KL is calculated each time after a training file is processed.

The line chart in Figure 2.4 shows the change of MI for four selected KLs as

the number of processed training files increases. The blue line gives the MI of

KL0, which connects two word lexicons of immediate neighbor. We can see that

as more files are trained; the MI of KL0 gets smaller. The grey and yellow lines

in the figure give the MI of KL72 and KL94 respectively. They are the knowledge

links between a single word lexicon and its corresponding tag lexicon. The MI of

these KLs fluctuate within a very small range at the beginning of training. When

more training files are processed, they converge to a stable value. This is because

every Chinese character has its specific semantic and syntactic function and the

relation between tags (or segmentation labels) and words are relatively fixed.

Very few new character-tag or character-segment relationship will be learned

after certain amount of training. In other words, the knowledge base becomes

saturated at certain point.

The orange line gives the MI of KL50 that connects between single word lex-
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Figure 2.4: Mutual information trend chart for 4 kinds of Knowledge Links.

icon and its corresponding word triplet lexicon. Our results show that there is

a strong correlation between a word and its corresponding word triplet. This

means a character always co-occur with a limited number of word triplets. Sim-

ilar to the MI of KL0, 72 and 94, when more training files are processed, the MI

of KL50 increases and then gradually saturates to a stable value.

The convergence of MI of KLs indicates that adding more training files will

not necessarily increase the learned knowledge. At certain point, the knowledge

acquiring speed slows down and further learning will not be as effective as

before. It is the time that we should either stop the training or switch to another

set of training text that has significantly different style.

Our experimental data show that most Knowledge Links’ mutual informa-

tion will reach ±5% and ±3% of its stable value after the model is trained with
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Figure 2.5: Recall accuracy of different training set size.

30 and 100 files respectively. We take the knowledge base generated at different

stages of training and apply them to sentence completion test. Their recall accu-

racy is given in Figure 2.5. The X-axis gives the number of training files used to

generate the knowledge base and the Y-axis give the recall accuracy. The graph

shows that when training set size exceeds 300, the recall accuracy has stabilized

at around 68%, and when the training set size reaches 170, the recall accuracy is

already close to its peak. However, if the training set size is too small, the recall

quality is not acceptable. This result agrees with Figure 2.4, which shows that

the MI of knowledge links starts to converge after 170 training files and becomes

very stable after 300 training files. Based on the above discovery, we set the sat-

uration threshold of the training set size at 300. Our previous work [101] shows

that the training time is linearly proportional to the size of training data. Limit-

ing the training set size to the saturation threshold can sharply reduce training

time with very little sacrifice of accuracy.
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Figure 2.6: Knowledge Links’ mutual information.

2.4.3 Quantified Knowledge Link Weighting scheme

The goal of next experiment is to find a systematic way to assign KL weight.

Previous works [132] have shown that weighing the contribution of KLs based

on their significance can improve recall accuracy, however, their weight is as-

signed only in an ad-hoc way. We believe that the significance of a KL can be

measured by the mutual information between its source and target lexicons and

therefore the MI of a KL should decide its weight.

Figure 2.6 shows the mutual information of all knowledge links. Based on

their connections, the KLs are divided into 9 groups. The group division is

described in Table 2.3. and labeled in Figure 2.6 underneath the X-axis.

We can see from Figure 2.6 that, from left to right, the MI of the KLs in the

same group are clustered together. And as the distance between the source and
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Table 2.3: Knowledge link grouping.

KL group KL IDs Connection
(a) 0∼9 Between word lexicons
(b) 10∼19 Between word triplet lexicons
(c) 20∼29 Between tag lexicons
(d) 30∼39 Between segmentation label lexicons
(e) 40∼61 Between word and word triplet lexicons
(f) 62∼83 Between word and tag lexicons
(g) 84∼105 Between word and segmentation label lexicons
(h) 106∼127 Between word triplet and tag lexicons
(i) 128∼149 Between word triplet and segmentation label lexicons

target lexicon of the KL increases, the MI of the KL decreases. For example, KL0

and KL8 belong to the same group, therefore, they have similar MI. However,

since KL0 connects between two immediate neighboring lexicons while KL8

connects between two word lexicons that are 4 words apart from each other,

the MI of KL0 is slightly greater than KL8. This agrees with our intuitions that

adjacent characters have stronger correlations. Second, the KLs connecting to

word triplet lexicons always give more information than others, therefore they

should be weighed as the biggest during the recall.

We assign the weight of a KL as a linear function of its mutual information.

We then compare the recall accuracy of confabulation models with and without

weighted KL. Figure 2.7 shows the recall accuracy of the two sets of confabula-

tion models. For each set of models, the Bandgap is varied from 1 to 1000. As

we can see, when bandgap value is 10 or less, assigning weight to KL provides

little improvement. However, when the bandgap value exceeds 100, assigning

weight to KLs brings visible benefits; it improves accuracy by more than 4%.

We also observe that, without weighted KL, changing the bandgap value has

almost no impact on the recall accuracy. However, with weighted KL, increas-

ing the bandgap value from 1 to 10 and 100 can increase recall accuracy from
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Figure 2.7: Recall Accuracy of basic confabulation model of different bandgap
value with/without weighting.

68.13% to 69.23% and 72.53% respectively. The recall accuracy becomes satu-

rated after the bandgap exceeds 100. Thus for the rest of the experiments, we fix

the bandgap value to be 100.

2.4.4 Confabulation model optimization

Word pair lexicons increases accuracy

Modern Chinese language is based on word compounds that consists of two or

three single character words. Considering only word triplets in the confabu-

lation model will lose information of two-word compound. Thus we add one

more level of lexicons for adjacent word pairs. This brings the confabulation lex-

icon structure to five levels: words, word pairs, word triplets, tags, and segmen-
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Figure 2.8: Recall Accuracy of confabulation model with/without word pair lex-
icons (non-weighted-10 represents recall accuracy with bandgap value of 10 and
without weighting scheme; non-weighted-100 represents recall accuracy with
bandgap value of 100 and without weighting scheme; Weighted-10 represents
recall accuracy with bandgap value of 10 and weighting scheme; Weighted-100
represents recall accuracy with bandgap value of 100 and weighting scheme).

tation labels. We then repeat the previous experiments to assign KL weights and

evaluate the recall accuracy. Figure 2.8 shows two sets of recall accuracy. The

blue bars give the recall accuracy of the original 4-level confabulation model and

the red bars give the recall accuracy of the new 5-level model. Both models are

evaluated with and without KL weight and with two different bandgap values.

The results show that adding one more layer of lexicon does not improve the

recall accuracy when the KLs are not weighted and the improvement is limited

if bandgap is small. However, it does make visible differences when KLs are

properly weighted and bandgap is set large enough. The overall recall accuracy

can be 76.9%, which is about 9% higher than the basic model without weighted

KL
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Figure 2.9: Recall accuracy between different models(sentence accuracy is eval-
uated by the amount of sentences recalled identically to original sentences;
word accuracy is evaluated by the amount of missing Chinese charaters recalled
identically to the original).

Comparison with RNN model

As a reference, we compare the confabulation model with a recurrent neural net-

work (RNN) model [88]. Please note that the RNN model identifies the missing

word from the list of candidates by evaluating the probability of the sentence

that they could make. Therefore, it has to create a sentence for each combina-

tion of the candidates and calculate its probability. The complexity of the RNN

is an exponential function of the number of missing words, while the complex-

ity of confabulation model is a linear function of the number of missing words.

Figure 2.9 compares the recall accuracy of the RNN model and confabulation

model. It shows that these two has comparable recall accuracy and the confab-

ulation model has slightly better word recall accuracy.
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Figure 2.10: Recall accuracy of tags and segmentation labels(Overall denotes ac-
curacy for all characters in sentences; Unknown denotes accuracy for unknown
missing characters, Known denotes accuracy for known characters).

Syntactic parsing performance

One of the advantages of using the confabulation model is that it performs syn-

tactic parsing at the same time of sentence completion. It does not only fill in

the missing characters, but also finds out the tags and segmentation labels for

all words in the sentence. Figure 2.10 gives the tag and segmentation label re-

call accuracy. Overall, 82.6% of the words are tagged correctly with POS tagging

and 86.2% of the words are correctly labeled with their segmentation informa-

tion. We can see that even those unknown characters are tagged and labeled

with quite high accuracy. Their tagging accuracy is 75.6% and segmentation

accuracy is 84.3%.
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Figure 2.11: Training time and recall time of different KL structure.

Mutual information guided parameter selection

Observing the mutual information, we realize that the 4th and 5th neighbors of a

lexicon provide far less information than other closer neighbors. The MI of these

KLs is approximately 20 ∼ 60% of the average of other KLs. This motivates us

to use KLs only up to the 3rd-neighborhood. This simplification does not only

reduce KB size but also save training and recall time. Figure 2.11 compares the

training and recall time of the original model (5-neighbor) and simplified model

(3-neighbor). Experiments show that these two models give the same recall

accuracy, which is 76.9%. However, the training time is decreased by 18.6% and

the recall time is decreased by 53.7%. This is because the KB size is reduced from

226 to 142 by removing KLs connecting between lexicons and their 4th and 5th

neighbors. These data show that, the mutual information of KLs does not only

help us to assign weight to KLs for better recall accuracy, but also facilitate the
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Table 2.4: Example of confabulated sentences.

Original 王明负责(be in charge of)检查卫生工作
Basic 王明责任(responsibility)检查卫生工作

Optimized 王明负责(be in charge of)检查卫生工作
Original 锤炼得更坚强(temper it to be stronger)

Basic 锤炼的更坚强(tempered stronger)
Optimized 锤炼得更坚强(temper it to be stronger)

Original 口号特别震撼人心(Slogan excites people’s mind )
Basic 口号特别振撼人心(Slogan shakes people’s mind )

Optimized 口号特别震撼人心(Slogan excites people’s mind )

decision on removing KLs with small contribution for lower model complexity

without significantly sacrificing the accuracy.

2.4.5 Qualitative Results

All above results are based on the restriction that only sentences identical to the

original are considered as correct. Many recalled sentences are actually syntac-

tically correct and semantically close to the original sentence. For example, for

the original sentence: 妈妈是一个很温(柔)的人 (Mother is a gentle person),

our recalled sentence is 妈妈是一个很温(和)的人 (Mother is a gentle and mild

person), in which 温柔 (gentle) and 温和 (gentle and mild) are synonyms.

Even though the recalled sentence is not identical to the original sentence, it has

very close meaning. If we treat all grammatically correct recalled sentences as

successful recall, the accuracy will increase to 80%.

Table 2.4 lists some examples of recalled sentences. The rows labeled as

“Original” give the correct sentences; the rows labeled as “Basic” give the re-

call sentence from the original Chinese confabulation model with only word
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triplet lexicons and without KL weights; and the rows labeled as “Optimized”

give the recall results from the optimized model, which has both word triplet

and word pair lexicons as well as MI directed KL weights. The text in bold high-

lights the difference between the recall results. We can see that the optimized

model improves the recall results semantically and syntactically.

2.5 Conclusion

We proposed a Chinese sentence confabulation model by refining and modi-

fying the English sentence confabulation model. The proposed model exploits

semantic information including POS tags and segmentation labels, as well as

optimized method such as circular knowledge storage, marking the start of sen-

tence and N-neighborhood lexicon link, to successfully complete Chinese sen-

tences with missing characters. Based on the mutual information analysis, a

saturation threshold is set to the size of training set. This can sharply reduce the

training time with little sacrifice of accuracy. We also found that MI directed KL

weights could amplify the effect of other optimization actions, such as increas-

ing the bandgap value and adding word pair lexicons. All together they can

improve the recall accuracy by 9%. Finally, the MI analysis helps us to simplify

the model and reduces the overall training and recall time by 18.6% and 53.7%

respectively.
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CHAPTER 3

PARALLEL IMPLEMENTATION OF ASSOCIATIVE INFERENCE FOR

COGENT CONFABULATION

3.1 Introduction

Human perception and cognition involve two steps, sensing and association.

The association area is by far the most developed part of the cerebral cortex.

The associative inference is related to brain activities in routine, repetitive situ-

ations and well-precedent problems. It has been used to explain the perception

of sensory input [8] and language learning [56]. The superb of human cog-

nizance comes from its extensive highly associative memory. For example, it is

easy for human to correct errors and recover the damages in document images

or speech; while this has always been a difficult task for conventional OCR or

speech recognition tools.

Many associative memory models have been proposed. They include at-

tractor network associative memories, bidirectional associative memories, and

sequence associative memories, etc. In this work, we focus on the cogent con-

fabulation model, which is a belief network with recurrent connections. Cogent

confabulation arranges neurons into lexicons. The input of the cogent confab-

ulation is the initial status of the neurons, which corresponding to noisy and

ambiguous observations or lack of information. The recall process is an itera-

tive excitation and inhibition among neurons. The feedback connections also

loop back the neural activities and gradually refine the memory until at the end

only the set of the most highly associated neurons are active. This model has

been applied in text image recognition and sentence construction in previous
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works [101, 100, 132, 77, 98, 99].

Associative inference in the neocortex system is a concurrent process, where

neurons update their states simultaneously. During this procedure, there is no

deterministic order among neurons. In all previous works, cogent confabulation

is implemented as a sequential process, where neurons are updated based on a

prefixed order. The status of the neurons in one lexicon depends on the output

of neurons in some other lexicons. Due to feedback connections, the data de-

pendency is cyclic. None of the fixed evaluation order can satisfy all precedent

constrains.

In this work we aim at parallelizing the algorithm on a multicore processor.

The parallel framework consists of a thread pool, where each thread evaluates

the status of specific lexicons. In addition to reduced computation time, we

found that the parallel implementation also improves recall accuracy. The rac-

ing among threads breaks the fixed processing order in sequential processing

and introduces randomness. The parallel architecture allows neurons to use the

most up-to-date information of their neighbors.

The number of lexicons to be processed in a confabulation model is usually

much greater than the number of active threads that can be supported by a gen-

eral purpose CPU. Each thread needs to process multiple lexicons. We design

a lexicon scheduling algorithm to further add randomness in the lexicon pro-

cessing order and at the same time ensure a balanced progress in status update

among neurons. Based on the algorithm, a thread switches from one lexicon

to another when the neuron activity of the former has reached to a state that is

informational.
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The contributions of this work can be summarized as follows:

1. A parallel implementation for cogent confabulation is developed using

multi-threading and blocking queue techniques.

2. We demonstrate that the parallel implementation not only reduces run-

time, but also improves recall accuracy by breaking the fixed evaluation

order and maintain a balanced progress in status update among all neu-

rons.

3. A lexicon scheduling algorithm is presented that provides further im-

provements.

The experimental results show that up to 93.4% reduction in runtime and 5%

increase in recall accuracy can be achieved using the proposed parallel imple-

mentation and scheduling algorithm.

3.2 Sequential Cogent Confabulation algorithm

The input of the recall function is a set of activated symbols Al for each lex-

icon l. These symbols are referred as candidates. They correspond to a noisy

observation of the target. In this observation, some features are observed with

great ambiguity, therefore multiple symbols are activated in the corresponding

lexicons, i.e. |Al| ≥ 1. In extreme cases, no observation is obtained for certain

features, therefore, all symbols in those lexicons are activated as potential can-

didates. The goal of the recall process is to resolve the ambiguity and select the

set of symbols that are most highly associated with each other using the statis-

tical information obtained during the learning. At the end of the recall process,
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we obtain a refined activation set A∗l , and |A∗l | = 1, ∀l. This is achieved a se-

quence of iterative excitation and inhibition among neurons as described in the

following.

Each neuron in a target lexicon receives an excitation from neurons of other

lexicons through KLs, which is the weighted sum of its incoming excitatory

synapses. Let l denote a lexicon, F denote the set of lexicons that have knowl-

edge links going into lexicon l, and S l denote the set of symbols that belong to

lexicon l. The excitation el(t) of a symbol t in lexicon l is calculated by summing

up all incoming knowledge links:

el(t) =
∑
k∈F

{
∑
s∈S k

[I(s)wkl ln(
P(s|t)

p0
)] + B}, t ∈ S l (3.1)

I(s) =
el(s)∑

j∈S k
el( j)

, s ∈ S k (3.2)

I(s) is the normalized excitation level across all actives in the same lexicon. The

parameter p0 is the smallest meaningful value of P(si|t j). wkl is the weighting

factor which is a linear function of mutual information [7] of KL from lexicon k

to lexicon l [77]. The parameter B is a positive global constant called the bandgap.

The purpose of introducing B in the function is to ensure that a symbol receiv-

ing N active knowledge links will always have a higher excitation level than a

symbol receiving (N−1) active knowledge links, regardless of their strength. As

we can see, the excitation level of a symbol is actually its log-likelihood given

the observed attributes in other lexicons.

Among neurons in the same lexicon, those that are least excited will be sup-

pressed and the rest will fire and become excitatory input of other neurons.

Their firing strengths are normalized and proportional to their excitation levels.

As neurons gradually being suppressed, eventually only the neuron that has
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the highest excitation remains to fire in each lexicon and the ambiguity is thus

resolved.

Algorithm 1: Baseline sequence confabulation recall algorithm
Data: The activation set Al (|Al| ≥ 1) of symbols in each lexicon l,

predefined maxAmbiguity, maxIteration
Result: The refined activation set A∗l (|A∗l | = 1)
N ← maxAmbiguity
Initialize the set of unknown lexicons Lu = {l : |Al| > 1}
while N > 1 do

converged ← f alse
iterationCount ← 0
while ¬converged do

for each lu ∈ Lu do
for each symbol s ∈ Alu do

calculate el(s)
end
sort(Alu) based on el(s),∀s ∈ Alu
set the first N symbols in Alu as active
for each symbol s ∈ Alu do

calculate I(s)
end

end
iterationCount ← iterationCount + 1
if active symbol set unchanged ∨ iterationCount ≥ maxIteration then

converged ← true
end

end
for each lu ∈ Lu do

Alu ← the first N symbols in Alu
end
N ← N − 1

end
A∗l ← Al,∀l
output A∗l ,∀l

Algorithm 1 shows the recall function as a sequential process. The candi-

dates’ excitation levels are calculated lexicon by lexicon in series. Due to the

recurrent connections between lexicons, the evaluation needs to iterate sev-

eral times to ensure that changes in the excitation level of lexicons propagate
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through the network before we prune one symbol from every lexicon. It is not

optimal to prune all lexicons at the same time, because the decision is made

upon the excitation level calculated using the old symbol status. After a symbol

in one lexicon is pruned, the excitation levels of symbols in other lexicons are

likely to change. Therefore, it is possible that we are going to prune something

that should be kept. However, because it is expensive to evaluate the excitation

level sequentially, we cannot afford to update the excitation level each time after

pruning a symbol in one lexicon. And due to the fixed processing order, some

lexicons always have the privilege of making decision on more update-to-date

information than the others.

3.3 Parallel Implementation of Associative Inference

To fully explore the computation power of multi-core multi-thread processors,

we investigate parallel implementation of the recall function of cogent confab-

ulation. Starting from a naı̈ve implementation that simply duplicates multiple

copies of the recall function and run them in parallel, we improve the archi-

tecture by adopting finer grained parallelism and better-controlled scheduling

algorithms. In Section 3.4, the experimental results will show that these addi-

tions not only reduce the runtime but also improve the recall accuracy.

3.3.1 Request Level Parallelization

The intuitive design of parallelization is to run multiple copies of the recall func-

tions in Algorithm 1 using multiple threads. Each thread processes an indepen-
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Figure 3.1: Intuitive parallel confabulation architecture

dent confabulation recall, and all threads share the same knowledge base. As

shown in Figure 3.1, for each incoming confabulation request, the workload

scheduler will collect symbol candidates to assemble the initial activation set as

the input of the recall function. Once the initial activation set is assembled, it

will be placed in the scheduling queue. And each confab thread will de-queue

one request and run Algorithm 1.

At the end of recall, the refined activation set will be sent to the result queue.

Please note that in this design, scheduling queue and result queue are both

thread safe blocking queues, which enable an automatic load balancing among

multiple threads. This design can simultaneously process as many recall func-

tions as the number of confab threads. However, within a confab thread, the

processing is still sequentially. All the previously mentioned limitations of the

sequential implementation, such as fixed processing order, the need of itera-

tive evaluation, and the possibility of pruning some symbol without sufficient

information, still exists in this naı̈ve implementation.
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Figure 3.2: Parallel confabulation architecture on lexicon level

3.3.2 Lexicon Level Parallelization

To emulate the parallel structure in a biological neural system, we investigate

finer grained parallelism where lexicons are processed in parallel. A set of lexi-

con threads are created. Once a confabulation thread receives a request from the

scheduling queue, it divides the input to multiple lexicons. It places those lex-

icons with ambiguous or unknown information (i.e. the lexicons lu with more

than one active candidates) with their activation set (i.e. Alu)) into a lexicon

queue. Each lexicon thread will fetch its input from the lexicon queue, itera-

tively performs excitation level calculation and pruning the inactive symbols

until there is only one active symbol. The lexicon together with the refined ac-

tivation set is put into a report queue, which will be read by the confabulation

thread. After the confabulation thread collected the report for all the lexicons be-

longing to the same recall request, it will forward the result to the result queue.

The new architecture is depicted in Figure 3.2, except the round-robin

queues, which are not needed to achieve the lexicon level parallelism. They

will be discussed in the next section to enable lexicon scheduling. In Figure 3.2,
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scheduling queue, lexicon queue, result queue and report queue are blocking

queues. We use blocking queues for them because they are accessed by mul-

tiple threads and this makes sure that the requests and reports are read and

written thread safely. Furthermore, when a thread is blocked, it will not con-

sume CPU resource, hence making the system more efficient. Lexicon threads

reside in fixed-size thread pool so that we can control the pooling effort.

Algorithm 2: Lexicon thread confabulation recall algorithm
Data: Primary lexicon scheduling queue LexiconQ
Result: Status report queue RepQ
while True do

lu ←dequeue(LexiconQ)
N ← |Alu |

while N > 1 do
for each symbol s ∈ Alu do

calculate el(s)
end
sort(Alu) based el(s),∀s ∈ Alu
Alu ← the first N symbols in Alu
for each symbol s ∈ Alu do

calculate I(s)
end
N ← N − 1

end
A∗lu ← Alu
ReqQ← enqueue(lu)

end

Algorithm 2 shows the function of a lexicon thread. Because all lexicons up-

date their status simultaneously, it is easier for a lexicon to obtain its neighbors

most recent status and the status change of one lexicon can propagate through

the network faster than the sequential implementation. In the parallel imple-

mentation each lexicon updates its excitation level based on neighbor informa-

tion and prune inactive symbols asynchronously in a distributed manner.
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3.3.3 Lexicon scheduling for intermittent pruning

The lexicon thread in Algorithm 2 picks a lexicon from lexicon queue and keeps

on processing it until there is only one active symbol. Its effectiveness is based

on an assumption that all other lexicons are simultaneously being processed,

and the thread has the most up-to-date information on its neighbor status. For

many applications, the number of lexicons is greater than the number of active

lexicon threads that can run simultaneously on a processor. If the status of the

lexicons that are currently being computed depends on the status of lexicons

that have not been processed, then all the calculation and pruning are based

on stale information. Again, due to the recurrent knowledge link connections,

lexicons have mutual dependencies, and we are not able to find an evaluation

order for the lexicons to satisfy all precedence constraints.

Instead of oversubscribing the hardware and using a very large pool of lex-

icon threads to accommodate all lexicons, and requesting OS to schedule those

threads, we limit ourselves to a small thread pool and create our own lexicon

scheduling algorithm to share each thread among multiple lexicons. The main

idea is to process a lexicon until it reaches a state that its status is informational

to its neighbors, then yield the computation resource (i.e. the lexicon thread) to

another lexicon. Whether a lexicon status is informational is measured by the

normalized difference between the highest and second highest excitation level

of the lexicon, and we refer it as the confidence level (cl). It is calculated as the

following:

cl = min(1,
|el(0) − el(1)|

max(el(0), el(1))
) (3.3)

where el(0) and el(1) are the highest and second highest excitation level in that

lexicon.
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As shown in Figure 3.2, a local non-blocking queue is attached to each lexi-

con thread to process lexicons in a round-robin way. Lexicon thread keeps pop-

ping up one lexicon from its local queue to run confabulation algorithm. If

current lexicon’s confidence level exceeds the average cl among all lexicons in

this recall, then the lexicon will yield the thread and be put back into the local

queue for future access, and a new lexicon from the local queue will be fetched

for processing. When all lexicons in the local queue have been processed, the

thread will move a new lexicon from the lexicon queue to its local queue and

repeat the above procedures.

The revised parallel implementation processes each lexicon in an intermit-

tent manner; therefore, we refer it as lexicon level parallel with intermittent-

pruning. Intuitively if lexicons are pruned too slowly, as they were in the se-

quential implementation, then there are too many active symbols in the net-

work and they will introduce noise to the recall. On the other hand, if lexicons

are pruned too fast, as they were in the simple lexicon level parallel implemen-

tation, then there is not enough time for the status change to propagate through

the network. The intermittent-pruning finds a balance between these two. It

maintains a balanced progress among all lexicon evaluations and by putting a

lexicon back to the local queue it gives some time for the lexicon’s new status to

propagate through the network before working on it again.

Interestingly, intermittent pruning also helps to improve the performance,

as we will show in the experimental results. This is probably because it reduces

the memory contention. Since all running lexicon threads are using shared data,

cache coherence [113] needs to be maintained. It takes a lot of time updating the

L1/L2 Cache for each CPU core when the excitation levels are read and writ-
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ten by different threads running on different cores simultaneously. Intermittent

pruning reduces the frequency that a lexicon is updated, therefore, it reduces

the chance of memory access contentions.

3.4 Experimental Results

We take sentence reconstruction as an example to evaluate the proposed par-

allel implementation of associative inference. We implemented our proposed

algorithm as a standalone module in ITRS [100, 98, 99]. It receives ambiguous

word candidates from noisy scan input, then run confabulation recall to resolve

the ambiguity and select appropriate words to reconstruct a sentence. In sen-

tence confabulation model, we assume that the maximum length of a sentence

is 20 words and sentences with more than 20 words will be truncated. As Fig-

ure 3.3 shows, we have three layers of lexicons: words, adjacent word pairs,

and Part-of-speech(POS) tags [123, 122, 132]. Lexicon 0 to 19 correspond to single

English word at location 0 to 19 in a sentence. Lexicons 20 to 38 correspond

to 19 word pairs combining word from lexicon 0 to 19 and its right adjacent

neighbor. Lexicon 39 to 58 correspond to the POS tag in accordance with each

word. Each lexicon stores a tremendous number of symbols (words, word pairs

or tags) that appears in the corresponding location. We define intra-level KLs

as KLs from one lexicon to another in the same lexicon layer while inter-level

KLs are KLs from one lexicon to another lexicon in a different lexicon layer. KLs

are created between two inter-level or intra-level lexicons that are less than N-

neighborhood (empirically N = 5) far away from each other and shared among

lexicon pairs that have the same relative position in a sentence.
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Figure 3.3: Sentence lexicon model example

We took three pages of occluded scanned documents, which are not included

in the training corpus of sentence confabulation model. The documents consist

of 315 sentences, totally 2241 words scanned from a printed paper. About 10%

of the words are fully or partially occluded. The noise causes great ambiguity

in the input of sentence confabulation. In average there are 5 candidate words

at each word location of a sentence, and we need to resolve the ambiguity to

recover the sentences.

We measure the compute time as the duration from the end of system ini-

tialization to the time when the last sentence has been confabulated. The recall

accuracy is measured by sentence accuracy, which specifies the percentage of

sentences that are reconstructed exactly same as the original sentence. The tests

are implemented on a Linux-2.6.32 based machine with two 4-core CPUs (Intel R©

Xeon R© W5580@3.20GHz with 48GB RAM). The machine has totally 8 cores and

16 logical processors (16 simultaneous threads).

The first group of tests compares the request level parallelism (RLP) to lexicon

level parallelism (LLP). No intermittent pruning is enabled. For the parallel de-

sign, we set lexicon thread pool size to 5 and vary the number of confabulation

threads from 1 to 16. When there is only 1 confabulation thread, the RLP im-
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Figure 3.4: Compute time for RLP and LLP w/o intermittent pruning

plementation reduces to serial implementation. Figure 3.4 and Figure 3.5 show

the compute time and recall accuracy of these two implementations. We can

observe that as the number of confab thread increases, the compute time of RLP

decrease linearly, and the sentence accuracy of RLP is consistently 69.21% for

all five configurations. This is because each confab thread in RLP processes in-

dependent recall requests serially. Increasing the number of threads will not

affect how the recall function is evaluated. Meanwhile, the compute time of

LLP is relatively independent of the number of confabulation threads, because

its computation resources are the lexicon threads, whose size is constant in this

experiment. Furthermore, because LLP no longer has the overhead of conver-

gence check and it prunes inactive symbols asynchronously, running with 5 lex-

icon threads in LLP is faster than running with 8 confab threads in RLP. It is

interesting to see that using LLP the recall accuracies are also improved visi-

bly. Because parallel confabulation introduces randomness of computation and

overcomes the error due to the fixed execution order.

In the second group of tests, we compare lexicon level parallel implementa-
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Figure 3.5: Sentency accuracy for RLP and LLP w/o intermittent pruning

tion without intermittent pruning (LLP w/o Itm) with parallel implementation

with intermittent pruning (LLP w. Itm). Again we set lexicon thread pool size

to 5 for both of them. Figure 3.6 shows that the compute time of both implemen-

tations are independent to the number of confabulation threads. However, LLP

with intermittent pruning is 7.2% faster than LLP without intermittent pruning.

As we explained before, we attribute this phenomenon to less memory con-

tention. Pausing will spread the processing of a lexicon over longer period of

time, and hence reduce the chance of memory contention due to simultaneous

read and write by different threads, and alleviate the cache coherence overhead.

As for the accuracies, with intermittent-pruning, sentence accuracy im-

proved by about 1%. In the second group compared to the other group. As

Figure 3.7 shows, the sentence accuracy ranges from 72.38% to 73.02%, which

is higher than the other group’s accuracies ranging from 71.11% to 71.75%.

This is because with intermittent pruning, more lexicons can be loaded to lexi-

con threads; therefore, it maintains a more balanced progress of status update

among different lexicons. Furthermore, a lexicon is pruned through multiple

pruning runs instead of one processing. This gives some time for changes to
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Figure 3.6: Compute time for LLP w/o and w/ intermittent pruning

Figure 3.7: Sentency accuracy for LLP w/o and w/ intermittent pruning

propagate through the network.

In the third group of tests, we compare performance and accuracy of differ-

ent configurations of LLP with intermittent pruning. The sizes of lexicon pool

are set to 5, 10, and 20. We can see that in Figure 3.8, given the same number

of confab thread, increasing number of lexicon threads improves performance.

Moreover, more lexicon threads not only speed up computation, but also in-

crease the accuracies as shown in Figure 3.9. In general, higher parallelism in-

troduces more randomness in processing order and more vividly resemble a real
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Figure 3.8: Compute time for LLP w/ intermittent pruning for different lexicon
thread pool sizes

Figure 3.9: Sentence accuracy for LLP w/ intermittent pruning with different
lexicon thread pool sizes

biological neural network. However, the improvement is not significant when

we increase lexicon pool size from 10 to 20. This is probably because in average

each lexicon is connecting to 10 neighbors (N = 5). We also found that increasing

the number confabulation thread does not have noticeable impact on recall ac-

curacy. It does not help to reduce computing time either when the lexicon pool

is small. However, when the lexicon pool size increases to 20 threads, increasing

the number of confabulation thread can give up to 60% reduction in computing

time. This is because we need more confabulation threads to generate inputs

and analyze outputs for the large number lexicon threads.
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Figure 3.10: Compute time for LLP w/ intermittent pruning on 8-core CPU ma-
chine and 16-core CPU machine with 20 lexicon threads

In the last group of tests, to investigate the impact of over-subscription, we

run LLP with intermittent pruning on another Linux-2.6.32 based machine with

two 8-core CPUs (Intel R© Xeon R© E5-2690@2.90GHz with 192GB RAM). The ma-

chine has totally 16 cores and 32 logical processors (32 simultaneous threads).

We compare LLP-Itm running on the 16-core CPU with that running on the 8-

core CPU. We set lexicon thread pool size as 20 so that we will oversubscribe the

8-core CPU. As shown in Figure 3.10, it is not surprising to see that 16-core CPU

is faster than 8-core CPU. What is interesting is that the system on 16-core CPU

benefits more from increasing the number of confab threads. When the con-

fabulation thread increases from 1 to 2, it brings approximately 30% compute

time reduction in both systems. When we increase the number of confabulation

thread to 8, it leads to 60% improvement in the 8-core system but more than

100% improvement in the 16-core system. It receives more than 100% reduc-

tion in compute time. This is because not all 20 lexicon threads are active in the

8-core system, and its throughput saturates. However, the accuracy of both sys-

tems are very close. This is because oversubscription randomly schedules the
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lexicon thread to be processed, the randomness of the execution order remains.

3.5 Conclusion

We proposed a parallel sentence confabulation framework inspired by concur-

rent association phase of human cognitive processing. The proposed framework

exploits multi-threading to build a parallel structure to process lexicons in sen-

tences. We optimized the proposed framework by using intermittent pruning,

to overcome the compute speed overhead due to cache coherence and this also

improves the accuracy performance of the framework. Compared to request

level parallelization, the proposed finer grained parallelization reduces the re-

call time by up to 93.4%, and increase the sentence accuracy by 5%.
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CHAPTER 4

HIGHLY-SCALABLE DEEP CONVOLUTIONAL NEURAL NETWORK

USING STOCHASTIC COMPUTING

4.1 Introduction

Deep learning (or deep structured learning) has emerged as a new area of ma-

chine learning research, which enables a system to automatically learn complex

information and extract representations at multiple levels of abstraction [28].

Deep Convolutional Neural Network (DCNN) is recognized as one of the most

promising types of artificial neural networks taking advantage of deep learning

and has become the dominant approach for almost all recognition and detec-

tion tasks [67]. Specifically, DCNN has achieved significant success in a wide

range of machine learning applications, such as image classification [112], nat-

ural language processing [22], speech recognition [108], and video classification

[57].

Currently, the high-performance servers are usually required for executing

software-based DCNNs since software-based DCNN implementations involve

a large amount of computations to achieve outstanding performance. How-

ever, the high-performance servers incur high power (energy) consumption and

large hardware cost, making them unsuitable for applications in embedded and

mobile IoT devices that require low-power consumption. These applications

play an increasingly important role in our everyday life and exhibit a notable

trend of being “smart”. To enable DCNNs in these application with low-power

and low-hardware cost, the highly-parallel and specialized hardware has been

designed using General-Purpose Graphics Processing Units (GPGPUs), Field-
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Programmable Gate Array (FPGAs), and Application-Specific Integrated Cir-

cuit (ASICs) [65, 114, 138, 89, 5, 118, 3, 116, 49, 130, 17, 43]. Despite the per-

formance and power (energy) efficiency achieved, a large margin of improve-

ment still exists due to the inherent inefficiency in implementing DCNNs using

conventional computing methods or using general-purpose computing devices

[53, 58].

We consider Stochastic Computing (SC) as a novel computing paradigm to

provide significantly low hardware footprint with high energy efficiency and

scalability. In SC, a probability number is represented using a bit-stream [33],

therefore, the key arithmetic operations such as multiplications and additions

can be implemented as simple as AND gates and multiplexers (MUX), respec-

tively [12]. Due to these features, SC has the potential to implement DCNNs

with significantly reduced hardware resources and high power (energy) ef-

ficiency. Considering the large number of multiplications and additions in

DCNN, achieving the efficient DCNN implementation using SC requires the

exploration of a large design space.

In this chapter, we propose SC-DCNN, the first comprehensive design and

optimization framework of SC-based DCNNs, using a bottom-up approach.

The proposed SC-DCNN fully utilizes the advantages of SC and achieves re-

markably low hardware footprint, low power and energy consumption, while

maintaining high network accuracy.

We then present HEIF (i.e. Highly Efficient Inference Framework) with

broad applications including (but not limited to) LeNet5 and AlexNet, that

achieves high energy efficiency and low area/hardware cost. The HEIF over-

come the limitations in SC-DCNN in two aspects, 1) SC-DCNN suffers from the
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degraded overall accuracy because it utilizes the easy-to-implement hyperbolic

tangent (tanh) function instead of ReLU function. 2) SC-DCNN is not suffi-

ciently optimized which leads to the difficulty to maintain the high application-

level accuracy due to the stochastic nature of SC components.

This chapter made the following key contributions:

1. Applying SC to DCNNs. We are the first (to the best of our knowledge)

to apply SC to DCNNs. This approach is motivated by 1) the potential of

SC as a computing paradigm to provide low hardware footprint with high

energy efficiency and scalability; and 2) the need to implement DCNNs in

the embedded and mobile IoT devices.

2. Basic function blocks and hardware-oriented max pooling. We propose

the design of function blocks that perform the basic operations in DCNN.

Specifically, we present a novel hardware-oriented max pooling design for

efficiently implementing (approximate) max pooling in SC domain. We

propose the first (to the best of our knowledge) SC-based ReLU activation

function and corresponding optimization to catch up with recent software

advances and mitigate degradation on application-level accuracy. The

pros and cons of different types of function blocks are also thoroughly

investigated.

3. Basic function block redesign. We re-design the Approximate Parallel

Counter (APC) proposed in [59] and optimize stochastic multiplication,

which is utilized in the inner product calculations of DCNN, to achieve

a smaller footprint and higher energy efficiency without sacrificing any

precision.
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4. Joint optimizations for feature extraction blocks. We propose four op-

timized designs of feature extraction blocks which are in charge of extract-

ing features from input feature maps. The function blocks inside the fea-

ture extraction block are jointly optimized through both analysis and exper-

iments with respect to input bit-stream length, function block structure,

and function block compatibilities.

5. Weight storage schemes. The area and power (energy) consumption of

weight storage are reduced by comprehensive techniques, including effi-

cient filter-aware SRAM sharing, effective weight storage methods, and

clustering method considering the effects of hardware imprecision on the

overall application-level accuracy.

6. Overall network-level optimization. We conduct holistic optimizations

of the overall SC-DCNN and HEIF architecture with the cascade structural

connection of function blocks, the pipelining technique, and the bit-stream

length reduction. It significantly improves the energy efficiency without

compromising application-level accuracy requirements.

7. Remarkably low hardware footprint and low power (energy) consump-

tion. Overall, the proposed SC-DCNN achieves the lowest hardware cost

and energy consumption in implementing LeNet5 compared with refer-

ence works. Moreover, HEIF could achieve very high energy efficiency

of 1.2M Images/J and 1.3M Images/J, and high throughput of 3.2M Im-

ages/s and 2.5M Images/s, along with very small area of 22.9 mm2 and

24.7 mm2 on LeNet-5 and AlexNet, respectively. HEIF outperforms SC-

DCNN by throughput of 4.1×, by area efficiency of up to 6.5× and achieves

up to 5.6× energy improvement.
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4.2 Related Works

Authors in [65, 114, 63, 54] leverage the parallel computing and storage re-

sources in GPUs for efficient DCNN implementations. FPGA-based accelera-

tion [138, 89] is another promising path towards the hardware implementation

of DCNNs due to the programmable logic, high degree of parallelism and short

develop round. However, the GPU and FPGA-based implementations still ex-

hibit a large margin of performance enhancement and power reduction. It is

because 1) GPUs and FPGAs are general-purpose computing devices not specif-

ically optimized for executing DCNNs, and ii) the relatively limited signal rout-

ing resources in such general platforms restricts the performance of DCNNs

which typically exhibit high inter-neuron communication requirements.

ASIC-based implementations of DCNNs have been recently exploited to

overcome the limitations of general-purpose computing devices. Three rep-

resentative state-of-the-art works on ASIC-based implementations are Eyeriss

[16], EIE [43], and the DianNao family, including DianNao [15], DaDianNao

[17], ShiDianNao [30], and PuDianNao [84]. Eyeriss [16] is an energy-efficient

reconfigurable accelerator for the large CNNs with various shapes. EIE [43]

focuses specifically on the fully-connected layers of DCNN and achieves high

throughput and energy efficiency. The DianNao family [15]-[84] is the series of

hardware accelerators designed for a variety of machine learning tasks (espe-

cially the large-scale DCNNs) with a special emphasis on the impact of memory

on accelerator design, performance, and energy.

To significantly reduce hardware cost and improve energy efficiency and

scalability, novel computing paradigms need to be investigated. We consider
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SC-based implementation of neural network an attractive candidate to meet the

stringent requirements and facilitate the widespread of DCNNs in embedded

and mobile IoT devices. Although not focusing on deep learning, [110] pro-

poses the design of a neurochip using stochastic logic. [53] utilizes stochastic

logic to implement a radial basis function-based neural network. In addition, a

neuron design with SC for deep belief network was presented in [58]. Despite

the previous application of SC, there is no existing work that investigates com-

prehensive designs and optimizations of SC-based hardware DCNNs including

both computation blocks and weight storing methods.

4.3 Overview of DCNN Architecture and Stochastic Comput-

ing

4.3.1 DCNN Architecture Decomposition

The concept of “neuron” is widely used in the software/algorithm domain.

In the context of DCNNs, a neuron consists of one or multiple basic opera-

tions. In this chapter, we focus on the basic operations in hardware designs

and optimizations, including: inner product, pooling, and activation. The cor-

responding SC-based designs of these fundamental operations are termed func-

tion blocks. Figure 4.1 illustrates the behaviors of function blocks, where xi’s in

Figure 4.1(a) represent the elements in a receptive filed, and wi’s represent the

elements in a filter. Figure 4.1(b) shows the average pooling and max pooling

function blocks. Figure 4.1(c) shows the activation function block (e.g. hyper-

bolic tangent function). The composition of an inner product block, a pooling
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Figure 4.1: Three types of basic operations (function blocks) in DCNN. (a) Inner
Product, (b) pooling, and (c) activation.

block, and an activation function block is referred to as the feature extraction

block, which extracts features from feature maps.

4.3.2 Stochastic Computing (SC)

Stochastic Computing (SC) is a paradigm that represents a probabilistic num-

ber by counting the number of ones in a bit-stream. For instance, the bit-

stream 0100110100 contains four ones in a ten-bit stream, thus it represents

P(X = 1) = 4/10 = 0.4. In addition to this unipolar encoding format, SC can

also represent numbers in the range of [-1, 1] using the bipolar encoding format.

In this scenario, a real number x is processed by P(X = 1) = (x + 1)/2, thus 0.4

can be represented by 1011011101, as P(X = 1) = (0.4 + 1)/2 = 7/10. To represent

a number beyond the range [0, 1] using unipolar format or beyond [-1, 1] using

bipolar format, a pre-scaling operation [135] can be used. Furthermore, since the

bit-streams are randomly generated with stochastic number generators (SNGs),

the randomness and length of the bit-streams can significantly affect the calcula-

tion accuracy [105]. Therefore, the efficient utilization of SNGs and the trade-off

between the bit-stream length (i.e. the accuracy) and the resource consumption
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need to be carefully taken into consideration.

Compared to the conventional binary computing, the major advantage of

stochastic computing is the significantly lower hardware cost for a large cat-

egory of arithmetic calculations. The abundant area budget offers immense

design space in optimizing hardware performance via exploring the tradeoffs

between the area and other metrics, such as power, latency, and parallelism de-

gree. Therefore, SC is an interesting and promising approach to implementing

large-scale DCNNs.

Multiplication. Figure 4.2 shows the basic multiplication components in SC

domain. A unipolar multiplication can be performed by an AND gate since P(A·

B = 1) = P(A = 1)P(B = 1) (assuming independence of two random variables),

and a bipolar multiplication is performed by means of a XNOR gate since c =

2P(C = 1)−1 = 2(P(A = 1)P(B = 1)+P(A = 0)P(B = 0))−1 = (2P(A = 1)−1)(2P(B =

1) − 1) = ab.

Addition. We consider four popular stochastic addition methods for SC-

DCNNs. 1) OR gate (Figure 4.3 (a)). It is the simplest method that consumes

the least hardware footprint to perform an addition, but this method intro-

duces considerable accuracy loss because the computation “logic 1 OR logic 1”

only generates a single logic 1. 2) Multiplexer (Figure 4.3 (b)). It uses a multi-

plexer, which is the most popular way to perform additions in either the unipo-

lar or the bipolar format [12]. For example, a bipolar addition is performed as

c = 2P(C = 1)−1 = 2(1/2P(A = 1)+1/2P(B = 1))−1 = 1/2(2P(A = 1)−1)+ (2P(B =

1) − 1)) = 1/2(a + b). 3) Approximate parallel counter (APC) [59] (Figure 4.3

(c)). It counts the number of 1s in the inputs and represents the result with a

binary number. This method consumes fewer logic gates compared with the
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conventional accumulative parallel counter [59, 95]. 4) Two-line representation

of a stochastic number [121] (Figure 4.3 (d)). This representation consists of a

magnitude stream M(X) and a sign stream S (X), in which 1 represents a nega-

tive bit and 0 represents a positive bit. The value of the represented stochastic

number is calculated by: x = 1
L

∑L−1
i=0 (1 − 2S (Xi))M(Xi), where L is the length of

the bit-stream. As an example, -0.5 can be represented by M(−0.5) : 10110001

and S (−0.5) : 11111111. Figure 4.3 (d) illustrates the structure of the two-line

representation-based adder. The summation of Ai (consisting of S (Ai) and M(Ai))

and Bi are sent to a truth table, then the truth table and the counter together de-

termine the carry bit and Ci. The truth table can be found in [121].

Hyperbolic Tangent (tanh). The tanh function is highly suitable for SC-

based implementations because i) it can be easily implemented with a K-state

finite state machine (FSM) in the SC domain [12, 70] and costs less hardware

when compared to the piecewise linear approximation (PLAN)-based imple-

mentation [64] in conventional computing domain; and ii) replacing ReLU or

sigmoid function by tanh function does not cause accuracy loss in DCNN [63].

Therefore, we choose tanh as the activation function in SC-DCNNs in our de-

sign. The diagram of the FSM is shown in Figure 4.4. It reads the input bit-

stream bit by bit, when the current input bit is one, it moves to the next state,

otherwise it moves to the previous state. It outputs a 0 when the current state is

on the left half of the diagram, otherwise it outputs a 1. The value calculated by

the FSM satisfies S tanh(K, x) � tanh( K
2 x), where S tanh denotes stochastic tanh.
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4.3.3 Application-level vs. Hardware Accuracy

The overall network accuracy (e.g., the overall recognition or classification rates)

is one of the key optimization goals of the SC-based hardware DCNN. Due to

the inherent stochastic nature, the SC-based function blocks and feature extrac-

tion blocks exhibit certain degree of hardware inaccuracy. The network accuracy

and hardware accuracy are different but correlated, — the high accuracy in each
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function block will likely lead to a high overall network accuracy. Therefore, the

hardware accuracy can be optimized in the design of SC-based function blocks

and feature extraction blocks.

4.4 Design for Function Blocks and Feature Extraction Blocks

In this section, we first perform comprehensive designs and optimizations in or-

der to derive the most efficient SC-based implementations for function blocks,

including inner product/convolution, pooling, and activation function. The

goal is to reduce power, energy and hardware resource while still maintain-

ing high accuracy. Based on the detailed analysis of pros and cons of each basic

function block design, we propose the designs of feature extraction blocks in

SC-DCNN and HEIF through both analysis and experiments.

4.4.1 Inner Product/Convolution Block Design

As shown in Figure 4.1 (a), an inner product/convolution block in DCNNs is

composed of multiplication and addition operations. In DCNNs, inputs are
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distributed in the range of [-1, 1], we adopt the bipolar multiplication imple-

mentation (i.e. XNOR gate) for the inner product block design. The summation

of all products is performed by the adder(s). As discussed in Section 4.3.2, the

addition operation has different implementations. To find the best option for

DCNN, we replace the summation unit in Figure 4.1 (a) with the four different

adder implementations shown in Figure 4.3.

OR Gate-Based Inner Product Block Design. Performing addition using

OR gate is straightforward. For example, 3
8 + 4

8 can be performed by ”00100101

OR 11001010”, which generates ”11101111” ( 7
8 ). However, if first input bit-

stream is changed to ”10011000”, the output of OR gate becomes ”11011010”

( 5
8 ). Such inaccuracy is introduced by the multiple representations of the same

value in SC domain and the fact that the simple ”logic 1 OR logic 1” cannot

tolerate such variance. To reduce the accuracy loss, the input streams should

be pre-scaled to ensure that there are only very few 1’s in the bit-streams. For

the unipolar format bit-streams, the scaling can be easily done by dividing the

original number by a scaling factor. Nevertheless, in the scenario of bipolar en-

coding format, there are about 50% 1’s in the bit-stream when the original value

is close to 0. It renders the scaling ineffective in reducing the number of 1’s in

the bit-stream.

Table 4.1 shows the average inaccuracy (absolute error) of OR gate-based in-

ner product block with different input sizes, in which the bit-stream length is

fixed at 1024 and all average inaccuracy values are obtained with the most suit-

able pre-scaling. The experimental results suggest that the accuracy of unipolar

calculations may be acceptable, but the accuracy is too low for bipolar calcula-

tions and becomes even worse with the increased input size. Since it is almost
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Table 4.1: Absolute Errors of OR Gate-Based Inner Product Block

Input Size 16 32 64
Unipolar inputs 0.47 0.66 1.29
Bipolar inputs 1.54 1.70 2.3

Table 4.2: Absolute Errors of MUX-Based Inner Product Block

Input size
Bit stream length

512 1024 2048 4096
16 0.54 0.39 0.28 0.21
32 1.18 0.77 0.56 0.38
64 2.35 1.58 1.19 0.79

impossible to have only positive input values and weights, we conclude that the

OR gate-based inner product block is not appropriate for SC-DCNNs.

MUX-Based Inner Product Block Design. According to [12], an n-to-1 MUX

can sum all inputs together and generate an output with a scaling down factor

1
n . Since only one bit is selected among all inputs to that MUX at one time, the

probability of each input to be selected is 1
n . The selection signal is controlled by

a randomly generated natural number between 1 and n. Taking Figure 4.1 (a) as

an example, the output of the summation unit (MUX) is 1
n (x0w0 + ... + xn−1wn−1).

Table 4.2 shows the average inaccuracy (absolute error) of the MUX-based

inner product block measured with different input sizes and bit-stream lengths.

The accuracy loss of MUX-based block is mainly caused by the fact that only

one input is selected at one time, and all the other inputs are not used. The

increasing input size causes accuracy reduction because more bits are dropped.

However, we see that sufficiently good accuracy can still be obtained by increas-

ing the bit-stream length.

APC-Based Inner Product Block. The structure of a 16-bit APC is shown in

Figure 4.5. A0 − A7 and B0 − B7 are the outputs of XNOR gates, i.e., the products
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of inputs xi’s and weights wi’s. Suppose the number of inputs is n and the length

of a bit-stream is m, then the products of xi’s and wi’s can be represented by a

bit-matrix of size n ×m. The function of the APC is to count the number of ones

in each column and represent the result in the binary format. Therefore, the

number of outputs is log2 n. Taking the 16-bit APC as an example, the output

should be 4-bit to represent a number between 0 - 16. However, it is worth

noting that the weight of the least significant bit is 21 rather than 20 to represent

16. Therefore, the output of the APC is a bit-matrix with size of log2 n × m.

From Table 4.3, we see that the APC-based inner product block only results

in less than 1% accuracy degradation when compared with the conventional

accumulative parallel counter, but it can achieve about 40% reduction of gate

count [59]. This observation demonstrates the significant advantage of imple-

menting efficient inner product block using APC-based method, in terms of

power, energy, and hardware resource.

Two-Line Representation-Based Inner Product Block. The two-line
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Table 4.3: Relative Errors of the APC-Based Compared with the Conventional
Parallel Counter-Based Inner Product Blocks

Input size
Bit stream length

128 256 384 512
16 1.01% 0.87% 0.88% 0.84%
32 0.70% 0.61% 0.58% 0.57%
64 0.49% 0.44% 0.44% 0.42%

representation-based SC scheme [121] can be used to construct a non-scaled

adder. Figure 4.3 (d) illustrates the structure of a two-line representation-based

adder. Since Ai, Bi, and Ci are bounded as the element of {−1, 0, 1}, a carry bit

may be missed. Therefore, a three-state counter is used here to store the positive

or negative carry bit.

However, there are two limitations for the two-line representation-based

inner product block in hardware DCNNs: i) An inner product block gener-

ally has more than two inputs, the overflow may often occur in the two-line

representation-based inner product calculation due to its non-scaling character-

istics. This leads to significant accuracy loss; and ii) the area overhead is too

high compared with other inner product implementation methods.

4.4.2 Pooling Block Designs

Pooling (or down-sampling) operations are performed by pooling function

blocks in DCNNs to significantly reduce i) inter-layer connections; and ii) the

number of parameters and computations in the network, meanwhile maintain-

ing the translation invariance of the extracted features [1]. Average pooling

and max pooling are two widely used pooling strategies. Average pooling is

straightforward to implement in SC domain, while max pooling, which exhibits
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higher performance in general, requires more hardware resources. In order to

overcome this challenge, we propose a novel hardware-oriented max pooling

design with high performance and amenable to SC-based implementation.

Average Pooling Block Design. Figure 4.1 (b) shows how the feature map

is average pooled with 2 × 2 filters. Since average pooling calculates the mean

value of entries in a small matrix, the inherent down-scaling property of the

MUX can be utilized. Therefore, the average pooling can be performed by the

structure shown in Figure 4.3 (b) with low hardware cost.

Hardware-Oriented Max Pooling Block Design. The max pooling opera-

tion has been recently shown to provide higher performance in practice com-

pared with the average pooling operation [1]. However, in SC domain, we can

find out the bit-stream with the maximum value among four candidates only

after counting the total number of 1’s through the whole bit-streams, which in-

evitably incurs long latency and considerable energy consumption.

To mitigate the cost, we propose a novel SC-based hardware-oriented max

pooling scheme. The insight is that once a set of bit-streams are sliced into seg-

ments, the globally largest bit-stream (among the four candidates) has the high-

est probability to be the locally largest one in each set of bit-stream segments.

This is because all 1’s are randomly distributed in the stochastic bit-streams.

Consider the input bit-streams of the hardware-oriented max pooling block

as a bit matrix. Suppose there are four bit-streams, and each has m bits, thus

the size of the bit matrix is 4 × m. Then the bit matrix is evenly sliced into

small matrices whose size are c × m (i.e., each bit-stream is evenly sliced into

segments whose length are c). Since the bit-streams are randomly generated,
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ideally, the largest row (segment) among the four rows in each small matrix

is also the largest row of the global matrix. To determine the largest row in

a small matrix, the number of 1s are counted in all rows in a small matrix in

parallel. The maximum counted result determines the next c-bit row that is sent

to the output of the pooling block. In another word, the currently selected c-bit

segment is determined by the counted results of the previous matrix. To reduce

latency, the c-bit segment from the first small matrix is randomly chosen. This

strategy incurs zero extra latency but only causes a negligible accuracy loss when

c is properly selected.

Figure 4.6 illustrates the structure of the hardware-oriented max pooling

block, where the output from max output approximately is equal to the largest

bit-stream. The four input bit-streams sent to the multiplexer are also connected

to four counters, and the outputs of the counters are connected to a compara-

tor to determine the largest segment. The output of the comparator is used to

control the selection of the four-to-one MUX. Suppose in the previous small bit

matrix, the second row is the largest, then MUX will output the second row of

the current small matrix as the current c-bit output.

Table 4.4 shows the result deviations of the hardware-oriented max pooling

design compared with the software-based max pooling implementation. The

length of a bit-stream segment is 16. In general, the proposed pooling block can

provide a sufficiently accurate result even with large input size.
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Table 4.4: Relative Result Deviation of Hardware-Oriented Max Pooling Block
Compared with Software-Based Max Pooling

Input size Bit-stream length
128 256 384 512

4 0.127 0.081 0.066 0.059
9 0.147 0.099 0.086 0.074

16 0.166 0.108 0.097 0.086

4.4.3 Activation Function Block Designs

Stanh. [12] proposed a K-state FSM-based design (i.e., Stanh) in the SC do-

main for implementing the tanh function and describes the relationship be-

tween Stanh and tanh as S tanh(K, x) � tanh( K
2 x). When the input stream x is

distributed in the range [-1, 1] (i.e. K
2 x is distributed in the range [−K

2 ,
K
2 ]), this

equation works well, and higher accuracy can be achieved with the increased

state number K.

However, S tanh cannot be applied directly in SC-DCNN for three reasons.

First, as shown in Figure 4.7 and Table 4.5 (with bit-stream length fixed at 8192),

when the input variable of Stanh (i.e. K
2 x) is distributed in the range [-1, 1],
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Table 4.5: The Relationship Between State Number and Relative Inaccuracy of
Stanh

State Number 8 10 12 14 16 18 20
Relative Inaccuracy (%) 10.06 8.27 7.43 7.36 7.51 8.07 8.55

Figure 4.7: Output comparison of Stanh vs tanh.

the inaccuracy is quite notable and is not suppressed with the increasing of K.

Second, the equation works well when x is precisely represented. However,

when the bit-stream is not impractically long (less than 216 according to our ex-

periments), the equation should be adjusted with a consideration of bit-stream

length. Third, in practice, we usually need to proactively down-scale the inputs

since a bipolar stochastic number cannot reach beyond the range [-1, 1]. More-

over, the stochastic number may be sometimes passively down-scaled by certain

components, such as a MUX-based adder or an average pooling block [81, 79].

Therefore, a scaling-back process is imperative to obtain an accurate result. Based

on the these reasons, the design of Stanh needs to be optimized together with

other function blocks to achieve high accuracy for different bit-stream lengths

and meanwhile provide a scaling-back function. More details are discussed in

Section 4.4.4.

Btanh. Btanh is specifically designed for the APC-based adder to perform a
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scaled hyperbolic tangent function. Instead of using FSM, a saturated up/down

counter is used to convert the binary outputs of the APC-based adder back to

a bit-stream. The implementation details and how to determine the number of

states can be found in [58].

ReLU. Rectified Linear Unit (ReLU) has become the most popular activation

function in state-of-the-art DCNNs, however, only hyperbolic tangent/sigmoid

functions have been implemented in the SC domain in previous works [12, 60].

Therefore, it is important to have the design of SC-based ReLU block [75] in or-

der to accommodate the SC technique in the state-of-the-art large-scale DCNNs,

such as AlexNet [63] for ImageNet applications.

The mathematical expression of ReLU is f (x) = max(0, x), i.e., when input

x is less than 0, the activation result is 0, otherwise the activation result is x

itself. This characteristic of ReLU gives rise to a challenge for SC-based designs.

Since x is represented by a stochastic bit-stream in SC with length m, we can

only intuitively determine its sign and value through a counter using m clock

cycles. This straightforward implementation of ReLU function in SC domain

undoubtedly leads to a significant extra delay and energy overhead. On the

other hand, the bit-stream-based representation in SC restricts the number it

represents within the range [-1, 1], and as a result, the output of SC-based ReLU

block should be clipped to 1. The clipped ReLU in the SC domain is expressed

as f (x) = min(max(0, x), 1).

Figure 4.8 illustrates the proposed architecture of SC-based ReLU. The in-

put of SC-based ReLU is accumulated, and the accumulation result is compared

with a reference number (half of the passed clock cycles). The comparator out-

put is used as an input and also the control signal of the multiplexer. If the
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Figure 4.8: Diagram of the proposed ReLU block.

accumulation result is less than the reference number, the comparator outputs a

1 and is selected by the multiplexer as the output of SC-based ReLU block. Oth-

erwise, the output is determined by the FSM inside the SC-based ReLU block.

Please note that the proposed SC-based ReLU will not incur any extra latency.

The algorithm of the proposed SC-based ReLU is illustrated in Algorithm

3. Please note that the Positive signal is used to adjust the SC-based ReLU for

different types of APCs. When the outputs of APCs represent the number of

1’s among inputs, the normal logic is assigned to the output of SC-based ReLU.

When the outputs of APCs represent the number of 0’s, the inverted logic is

assigned. The purpose is to make the output of SC-based ReLU (and thereby

the whole FEB) not affected by the types of APCs.
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Algorithm 3: Proposed SC-based ReLU hardware.
input : BitMatrix is the output of the previous pooling block

each column of the matrix is a binary vector
Cyclehal f is the half of the passed clock cycles
S is the FSM state number
N is the input size of a feature extraction block
m is the length of a stochastic bit-stream
Positive indicates whether APC’s output represents the number of

1’s
output: Z is a bit-stream output by ReLU
S max = S ; //upper bound of the state
S hal f = S/2;
S tate = S hal f ; //S tate is used to record the state history
Accumulated = 0; //to accumulate each column of BitMatrix
if Positive == 1 then

ActiveBit = 1; InactiveBit = 0;
else

ActiveBit = 0; InactiveBit = 1;
end
for i + + < m do

BinaryVec = BitMatrix[: i]; //current column
S tate = S tate + BinaryVec ∗ 2 − N; //update current state
//accumulate current column of the input
Accumulated = Accumulated + BinaryVec;
if Accumulated < Cyclehal f then

Z[i] = ActiveBit;
//enforce the output of ReLU to be greater than or equal to 0,
//otherwise the output is determined by the following FSM

else
if S tate > S max then

S tate = S max;
else

if S tate < 0 then
S tate = 0;

end
end
if S tate < S hal f then

Z[i] = ActiveBit;
else

Z[i] = InactiveBit;
end

end
end
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4.4.4 Feature Extraction Block Designs

In this section, we propose an optimized feature extraction blocks. Based on

the previous analysis and results, we select several candidates for constructing

feature extraction blocks shown in Figure 4.9, including: the MUX-based and

APC-based inner product/convolution blocks, average pooling and hardware-

oriented max pooling blocks, and Stanh and Btanh blocks.

In SC domain, the parameters such as input size, bit-stream length, and the

inaccuracy introduced by the previous connected block can collectively affect the

overall performance of the feature extraction block. Therefore, the isolated op-

timizations on each individual basic function block are insufficient to achieve

the satisfactory performance for the entire feature extraction block. For exam-

ple, the most important advantage of the APC-based inner product block is its

high accuracy and thus the bit-stream length can be reduced. On the other side,

the most important advantage of MUX-based inner product block is the low

hardware cost and the accuracy can be improved by increasing the bit-stream

length. Accordingly, to achieve good performance, we cannot simply compose

these basic function blocks, instead, a series of joint optimizations are performed

on each type of feature extraction block. Specifically, we attempt to fully making

use of the advantages of each of the building blocks.

In the following discussion, we use MUX/APC to denote the MUX-based

or APC-based inner product/convolution blocks; use Avg/Max to denote the

average or hardware-oriented max pooling blocks; use Stanh/Btanh to denote

the corresponding activation function blocks. A feature extraction block config-

uration is represented by choosing various combinations from the three compo-

nents. For example, MUX-Avg-Stanh means that four MUX-based inner prod-
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Figure 4.9: The structure of a feature extraction block.

uct blocks, one average pooling block, and one Stanh activation function block

are cascade-connected to construct an instance of feature extraction block.

MUX-Avg-Stanh. As discussed in Section 4.4.3, when Stanh is used, the

number of states needs to be carefully selected with a comprehensive consider-

ation of the scaling factor, bit-stream length, and accuracy requirement. Below

is the empirical equation that is extracted from our comprehensive experiments

to obtain the approximately optimal state number K to achieve a high accuracy:

K = f (L,N) ≈ 2 × log2 N +
log2 L × N
α × log2 N

, (4.1)

where the nearest even number to the result calculated by the above equation

is assigned to K, N is the input size, L is the bit-stream length, and empirical

parameter α = 33.27.

MUX-Max-Stanh. The hardware-oriented max pooling block shown in Fig-

ure 4.6 in most cases generates an output that is slightly less than the maximum

value. In this design of feature extraction block, the inner products are all scaled

down by a factor of n (n is the input size), and the subsequent scaling back func-
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Figure 4.10: Structure of optimized Stanh for MUX-Max-Stanh.

tion of Stanh will enlarge the inaccuracy, especially when the positive/negative

sign of the selected maximum inner product value is changed. For example,

505/1000 is a positive number, and 1% under-counting will lead the output of

the hardware-oriented max pooling unit to be 495/1000, which is a negative

number. Thereafter, the obtained output of Stanh may be -0.5, but the expected

result should be 0.5. Therefore, the bit-stream has to be long enough to dimin-

ish the impact of under-counting, and the Stanh needs to be re-designed to fit

the correct (expected) results. As shown in Figure 4.10, the re-designed FSM

for Stanh will output 0 when the current state is at the left 1/5 of the diagram,

otherwise it outputs a 1. The optimal state number K is calculated through the

following empirical equation derived from experiments:

K = f (L,N) ≈ 2 × (log2 N + log2 L) −
α

log2 N
−

β

log5 L
, (4.2)

where the nearest even number to the result calculated by the above equation

is assigned to K, N is the input size, L is the bit-stream length, α = 37, and

empirical parameter β = 16.5.

APC-Avg-Btanh. When the APC is used to construct the inner product

block, conventional arithmetic calculation components, such as full adders and

dividers, can be utilized to perform the averaging calculation, because the out-

put of APC-based inner product block is a binary number. Since the design of
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Btanh initially aims at directly connecting to the output of APC, and an average

pooling block is now inserted between APC and Btanh, the original formula

proposed in [58] for calculating the optimal state number of Btanh needs to be

re-formulated as:

K = f (N) ≈
N
2
, (4.3)

from our experiments. In this equation N is the input size, and the nearest even

number to N
2 is assigned to K.

APC-Max-Btanh. Although the output of APC-based inner product block is

a binary number, the conventional binary comparator cannot be directly used to

perform max pooling. This is because the output sequence of APC-based inner

product block is still a stochastic bit-stream. If the maximum binary number

is selected at each time, the pooling output is always greater than the actual

maximum inner product result. Instead, the proposed hardware-oriented max

pooling design should be used here, and the counters should be replaced by ac-

cumulators for accumulating the binary numbers. Thanks to the high accuracy

provided by accumulators in selecting the maximum inner product result, the

original Btanh design presented in [58] can be directly used without adjustment.

Structural Exploration of Feature Extraction Blocks. Extended in [81], we

also explored the alternative structure of FEB. In software-level design, a FEB of

DCNN is formed by convolution neurons, pooling neurons and activation func-

tion in order.This is reasonable, because intuitively the order of pooling before

activation can save 3/4 computation resources to do the activation. However,

in hardware design, due to the cross-dependency of components and their ef-

fects on calculation precision, another arrangement of neurons (pooling after
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Table 4.6: The designs of FEBs and corresponding optimization functions

No. Design Optimization Function Parameters
1 MUX-Avg-Stanh K = f (L,N) ≈ 2 log2(N)+ α = 33.27

N log2(L)/α log2(N)
2 MUX-Stanh-Avg K = f (L,N) ≈ α log2 N+ α = 1.3

N log5 L/β log2 N β = 8.74
3 MUX-Max-Stanh K = f (L,N) ≈ 2(log2 N + log2 L) α = 37

−α/ log2 N − β/ log5 L β = 16.5
4 MUX-Stanh-Max K = f (L,N) ≈ −γ

√
N log2 N/L α = 1, β = 5

+α log2 N + L/β log2 L γ = 5.2
5 APC-Avg-Btanh

K = g(N) ≈ αN

α = 0.5
6 APC-Btanh-avg

α = 27 APC-Max-Btanh
8 APC-Btanh-Max

activation) in an FEB must be investigated [79]. In this section, we summarize

two different arrangements. Eight designs of FEBs are analyzed and optimized

listed in Table 4.6 by permuting MUX-based inner-product calculation block (in

short, MUX), APC-based inner-product calculation block (APC) Average pool-

ing (Avg), Max Pooling (Max), FSM-based Stanh (Stanh) and Binary-based Btanh

(Btanh). For each design, we extract empirical functions by regression of exhaus-

tive data samples, which is shown in Table 4.6. The enormous data samples

are generated randomly and the expected outputs are regarded as golden ref-

erences for the regression functions respectively. The functions are obtained by

minimizing the difference between golden reference and the calculated value of

a design with a specific K.

As shown in Table 4.6, given the input size N (and bit-stream length L for

MUX based designs), an optimal number of K is the nearest even number of the

result calculated by the corresponding function. Please note in No. 5, each set

of output of the average pooling block is a binary number instead of stochastic
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a bit-stream, the formula proposed by [58] to determine the optimal state num-

ber should be modified because of the existence of the average pooling block.

Thus the parameter α is adjusted to 0.5. In No. 6 and 8, the Btanhs are directly

connected with APCs just as they are originally designed, thus the formula pro-

posed in [58] to determine the optimal state number is not modified. However,

since we do not conduct the pre-scaling, the scaling factor s in [58] is 1, α is

adjusted to 2. In No. 7, since the Max pooling block for binary numbers is ac-

curate (implemented by accumulators), APC is regarded to connect with Btanh

directly, then the same parameter of α = 2 is used.

4.5 Further Optimization for Function Blocks and Feature Ex-

traction Blocks in HEIF

4.5.1 Transmission Gate Based Multiplication

As discussed before, the multiplications are implemented with XNOR gates in

bipolar SC. Generally, an XNOR gate costs at least sixteen transistors if it is im-

plemented in static CMOS technology, and its simplest structure in gate-level

is shown in Figure 4.11 (a). However, if the XNOR gate is implemented with

transmission gates, only eight transistors are needed, leading to 50% savings in

hardware. The main drawback of potential voltage degradation of a transmis-

sion gate does not cause latent errors for three reasons: i) the multiplication op-

erations are only performed in the first sub-layer of each network layer, so any

latent voltage degradation will not be significant; ii) the following APCs and

activation blocks are implemented with static CMOS technology, so any minor
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Figure 4.11: XNOR gate implementations. (a) Static CMOS design, (b) Trans-
mission gate design.

voltage degradation introduced by transimission gates will be compensated; iii)

SC itself is soft error resilient, i.e., a soft error at one single bit has a negligible

impact on the whole bit-stream. The structure of the transmission gate based

XNOR gate is illustrated in Figure 4.11 (b).

4.5.2 APC Optimization

Approximate Parallel Counter (APC) [59] has been designed for efficiently per-

forming addition with a large number of inputs in SC domain. More specif-

ically, it efficiently counts the total number of 1’s in each “column” of the in-

put stochastic bit-streams and the output is represented by a binary number, as

shown in Figure 4.3 (c). The APC consists of two parts: approximate units (AU),

implemented by a combination of simple two-input gates such as AND/OR

gate, and an accurate Parallel Counter (PC) with size significantly reduced. The

PC circuit consists of a network of full adders for precisely counting the total

number of 1’s among the input bit-streams. Although the literature [59] pre-

sented the operation principle of APC, there is no existing work targeting at
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Figure 4.12: (a) Redesigned 16-input APC structure, (b) Redesigned 25-input
APC structure.

optimization of the performance and energy efficiency. We mitigate this limita-

tion by presenting a holistic optimization framework of APC in the following.

First, we investigate the design optimization of adder trees in PC to refine

APC design. A conventional PC uses full adders and half adders to calculate

the number of active inputs (the total number of 1’s). Each adder reduces a set

of three inputs (for full adder) or two inputs (for half adder) with weight 2n

into an output line with weight 2n and another output with weight 2n+1, which

correspond to the summation and output carry, respectively. To reduce the area

and power & energy consumption of APC, we design adder tree using inverse

mirror full adders [128], i.e. mirror full adders without output inverters, whose

outputs are the logical inversion of summation and carry out bits. Compared

to a full adder synthesis results (from Synopsys Design Compiler) requiring

32 transistors, an inverse mirror full adder only costs 24 transistors. An adder

tree design is available for the PC using inverse full adders, in which the odd

layer (of adders) outputs the inverse values of summation and output carry,

representing the number of inactive inputs (the total number of 0’s). The results
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are inverted back in the subsequent even layer of adders. Inspired by the same

idea of using inverse logic, NAND/NOR gates can be used to construct the AU

layer instead of AND/OR gates, to achieve further delay/area reductions.

Depending on the input size, the output of the proposed APC can either

represent the number of 1’s among the input bit-streams, or the number of 0’s.

Please note that the activation function needs to be modified if the APC output

represents the number of 0’s as discussed in the ReLU block design. As an

example, the proposed 16-input APC design is shown in Figure 4.12 (a).

Next, we discuss the APC designs for input size that is not a power of two.

An example of the proposed 25-input APC is shown in Figure 4.12 (b). Two

modifications are needed compared with the previous case. First, arithmetic in-

verse half adders are required to calculate the number of inactive inputs (number

of 0’s among inputs). In addition, in this case, the final output of APC should

be the non-inverted value compared with the inputs to the adder tree. In other

words, if the inputs of adder tree represent the number of 0’s (inactive inputs),

then the APC output must also be the number of 0’s. The reason is as follows:

the summation of the number of 0’s and the number of 1’s should be equal to

the input size (e.g., 25 as shown in Figure 4.12 (b)), whereas the inverse opera-

tion in adders assumes that their summation is 2N+1, where N is the number of

bits in the output binary number. Thus, the final layer of adder tree should use

either adders or inverse adders to generate non-inverted results compared with

the inputs.

Table 4.7 shows the comparison of inner-product blocks before and after op-

timization using the 1024-bit-stream. After applying the optimization on the

inner-product blocks, the hardware performance in terms of clock period, area,
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Table 4.7: Comparison of inner-product blocks before and after optimization
using 1024-bit-stream.

Input Size Approach Optimization Delay(ns) Area(µm2) Energy ( f J)

16 SC before 0.57 51.1 26.2
after 0.49 26.6 22.8

binary - 2.02 2759.4 4775.4

32 SC before 0.88 134.3 133.9
after 0.78 82.7 122.3

binary - 2.15 5589.7 10618.2

64 SC before 1.24 253.5 328.3
after 1.12 147.1 294.3

binary - 2.38 11279.9 24095.1

128 SC before 1.46 597.4 1069.7
after 1.32 380.9 996.2

binary - 2.61 22664.7 53492.0

256 SC before 1.78 1177.6 2652.3
after 1.62 740.3 2450.6

binary - 2.84 45438.7 117201.1

and energy are all reduced, especially the area. Table 4.7 also demonstrates the

advantages of SC over conventional binary computing. We can observe that

the SC delay/area/energy are much smaller than binary’s, this is because SC

based inner-product blocks taking multiple input bit-streams in a parallel man-

ner with simple gate logic, while the binary logic compute equivalent binary

numbers bit by bit with complex gate logic.

4.5.3 Weight Storage Optimization

The main computing task of an inner-product block is to calculate the inner-

products of xi’s and wi’s. xi’s are inputs of neurons, while wi’s are weights ob-

tained during training, stored, and used in the hardware-based DCNNs. The

number of weights is skyrocketing as the structure of DCNNs becomes much

deeper and more complex. For example, LeNet-5 [68] includes 431k parame-
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ters, AlexNet [63] has around 61M parameters, and VGG-16 [112] contains over

138M parameters. It is urgent to explore the techniques to store the tremendous

parameters efficiently. In convolutional layers, weights are shared within filter

domain, while in fully connected layers, the number of weights is enormous

and independent. Thus the weights need to be either shared or reduced. The re-

duction of weights has been explored in many previous works such as [43, 31],

however, weight sharing lacks the discussion. In this section, we present a sim-

ple weight reduction method and a clustering based weight sharing optimiza-

tion. The methods presented can be combined with weight reduction/pruning

methods in related works.

We use Static random access memory (SRAM) for weight storage due to its

high reliability, high speed, and small area. The specifically optimized SRAM

placement schemes and weight storage methods are imperative for further re-

ductions of area and power (energy) consumptions.

Efficient Filter-Aware SRAM Sharing Scheme. Since all receptive fields of

a feature map share one filter (a matrix of weights), all weights functionally can

be separated into filter-based blocks, and each weight block is shared by all in-

ner product/convolution blocks using the corresponding filter. Inspired by this

fact, we propose an efficient filter-aware SRAM sharing scheme, with structure

illustrated in Figure 4.13. The scheme divides the whole SRAM into small blocks

to mimic filters. Besides, all inner product blocks can also be separated into fea-

ture map-based groups, where each group extracts a specific feature map. In

this scheme, a local SRAM block is shared by all the inner product blocks of the

corresponding group. The weights of the corresponding filter are stored in the

local SRAM block of this group. This scheme significantly reduces the routing
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Figure 4.13: Filter-Aware SRAM Sharing Scheme.

overhead and wire delay.

Low Precision Weight Storage Method In general, DCNN will be trained

with single floating point precision. Thus on hardware, up to 64-bit SRAM is

needed for storing one weight value in the fixed point format to maintain its

original high precision. This scheme can provide high accuracy as there is al-

most no information loss of weights. However, it also brings about high hard-

ware consumptions in that the size of SRAM and its related read/write circuits

is increasing with the increasing of precision of the stored weight values.

According to our software-level experiments, many least significant bits

far from the decimal point only have a very limited impact on the overall

application-level accuracy, thus the number of bits for weight representation

in the SRAM block can be significantly reduced. We adopt a mapping equation

that converts a weight in the real number format to the binary number stored

in SRAM to eliminate the proper numbers of least significant bits. Suppose the

weight value is x, and the number of bits to store a weight value in SRAM is w

(which is defined as the precision of the represented weight value in this paper),
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then the binary number to be stored for representing x is:

y =
Int( x+1

2 × 2w)
2w (4.4)

where Int() means only keeping the integer part. Please note that the binary

numbers stored in SRAMs are fed into efficient Random Number Generators

(RNGs) to generate stochastic numbers at runtime. For instance, a 6-bit bi-

nary number can be used to generate a stochastic number with 1024-bit length

through RNG. Hence, there is no need to store the entire 1024 bit stochastic

number in SRAM. The overhead of RNGs is also taken into account in our ex-

periments. Therefore, this weight storage method can significantly reduce the

size of SRAMs and their read/write circuits through decreasing the precision.

The area saving achieved by this method based on estimations from CACTI 5.3

[119] is 10.3×.

Weight Clustering. As mentioned before, a state-of-the-art DCNN contains

millions of weights. A large amount of SRAM will be consumed for storing all

these weights. In fact, many weight values can be rounded to a neighboring

value without significant accuracy loss according to our experiments. There-

fore, we investigate the k-means based weight clustering method that clusters

all weights into clusters and rounds the weights in each cluster to one centroid

value. Consequently, only a part of weight values need to be stored in SRAM.

A multiplexer is used to select a weight from a SRAM block for each wi of an

inner product block, and the selection signals are stored in SRAM block as well.

Suppose the filter size is p × p, each weight occupies n bits, and storing one

bit consumes t units hardware resources on average (including read/write cir-

cuits). Accordingly, the size of an SRAM block before clustering is p2 × n × t.

After clustering, only s weights are needed, thus the size of an SRAM block for

storing weights is s × n × t. Since an inner product block has p2 weight val-
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Figure 4.14: Application-level error rates for (a) clustering through all layers, (b)
clustering within each layer and layer-wise clustering.

ues, p2 multiplexers are required for each inner product block, and p2 × log2s × t

units hardware resources are needed for storing the selection signals. Suppose

the size of a multiplexer is m units hardware resources, and there are q inner

product blocks for extracting a feature map. The area saving achieved by the

clustering method is p2 × n × t − (s × n × t + p2 × log2s × t + p2 × m × q) for each

feature map.

As shown in Figure 4.14(a), when the clustering is performed on all weights

of the network, the application-level error rate vibrates obviously with the

change of the clustering number, and the error rates in many cases exceed 10%.

It indicates that the clustering on all weights is not practicable.

Then we perform the clustering on weights within each single layer to

explore the application-level accuracy performance. As illustrated in Figure

4.14(b), when the clustering is performed on each layer from Conv1 to FC2,

desirable application-level accuracy can be obtained while the number of clus-

ters is more than three. Inspired by the experimental results, we investigate

the application-level accuracy when the clustering is performed on the whole

network but each layer is individually clustered (called layer-wise, and different
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Figure 4.15: Two-tier pipeline design in the framework.

layers may have the different number of clusters). When all layers are individ-

ually clustered into five or more clusters, the application-level error rate is less

than 2%.

4.5.4 Pipeline Based DCNN Optimizations

We propose a two-tier pipeline based network optimization as shown in Fig-

ure 4.15.

The first-tier pipeline is placed in between different convolutional and fully-

connected layers, i.e., inserting DFFs between consecutive layers to hold the

temporary results, which enables pipelining across the deep layers of DCNNs.

The second-tier pipeline is placed within a layer which is inspired by [111].

More specifically, based on the delay results of inner product, pooling and ReLU

blocks, we insert DFFs between the pooling unit and ReLU block in order to fur-
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Table 4.8: Hardware performance of FEBs with the different input sizes using
1024-bit-stream w/ and w/o pipeline based optimization

Optimization Pipelining Non-pipelining
Input size 16 32 64 128 16 32 64 128

Clock Period (ns) 1.74 1.82 2.08 2.16 2.2 2.51 2.67 2.79
Area (µm2) 910.8 1162.4 1569.4 2305.2 904.4 1102.3 1453.9 2149.5

Power (µW) 556.6 771.2 928.4 1409.4 421.5 490.3 659.9 973.5
Energy ( f J) 968.4 1403.5 1931.0 3044.2 927.3 1230.8 1762.0 2716.1

ther reduce the system clock period. We place the pooling unit in the first stage.

Because after pooling, the output size is reduced so that we can use less DFFs

to save area & power & energy. To show the effectiveness of pipelining within

a layer, we also evaluate the hardware costs for FEBs without pipelining in the

right section in Table 4.8. Comparing the results in Table 4.8, we observe that the

pipelining optimization significantly reduce the delay (clock period) by about

22% in average with slight area & power & energy increase by DFFs. An ad-

ditional key optimization knob is the bit-stream length. A smaller bit-stream

length in SC can almost improve the energy efficiency in a proportional man-

ner. However, we must ensure that the overall application-level accuracy is

maintained when the bit-stream length is reduced, and therefore, a joint opti-

mization is required. In this procedure, we first optimize the accuracy of each

function block, i.e., APC, max pooling and ReLU, to reduce the imprecision

within an FEB. Furthermore, we conduct co-optimization through FEB to find

the best configuration of each unit inside one FEB, in order to mitigate the prop-

agation of imprecision and maintain the overall application-level accuracy.
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4.6 Overall Evaluation

In this section, we present optimizations of feature extraction blocks along with

comparison results with respect to accuracy, area/hardware footprint, power

(energy) consumption, etc. Based on the results, we perform thorough opti-

mizations on the overall SC-DCNN and HEIF to construct LeNet5 structure,

which is one of the most well-known large-scale deep DCNN structure. The

goal is to minimize area and power (energy) consumption while maintaining a

high network accuracy. We present comprehensive comparison results among

i) SC-DCNN and HEIF designs with different target network accuracy, and ii)

existing hardware platforms. The hardware performance of the various SC-

DCNN and HEIF implementations regarding area, path delay, power and en-

ergy consumption are obtained by: i) synthesizing with the 45nm Nangate

Open Cell Library [2] using Synopsys Design Compiler; and ii) estimating using

CACTI 5.3 [119] for the SRAM blocks. The key peripheral circuitries in the SC

domain (e.g. the random number generators) are developed using the design in

[60] and synthesized using Synopsys Design Compiler.

4.6.1 Optimization Results on Feature Extraction Blocks

Figure 4.16 shows the imprecisions of eight FEB designs. Each evaluation is

given 10, 000 sets of random inputs ranging from −1 to 1 with different input

sizes, i.e. 16, 32, 64, 128, 256 and bit-stream lengths, i.e. 256, 512, 1024. The

average absolute error is used as the measure of imprecision, which is the mean

of the absolute difference between the expected results and the observed results

for the same test cases. We observed for each design that (i) as a bit-stream gets
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Figure 4.16: Imprecision for Optimized FEBs with bit-stream length L =

256, 512, 1024

longer, the absolute error decreases for the same input size. Because a number

can be represented more precisely with longer bit-streams. But the improve-

ments are not significant from the observation of each group of bars in Fig. 4.16.

(ii) With the same length of bit-stream, additional inputs result in increase of

imprecision.

From MUX-Avg-Stanh and MUX-Stanh-Avg, it is observed that hardware-
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Table 4.9: Comparison among various hardware-based and software-based DC-
NNs

No. Software Validation Test Area Power Delay Energy Harware Bit-stream Validation Test Area Power Delay Energy
Configuration Error (%) Error (%) (mm2) (W) (ns) (µJ) Configuration Length Error (%) Error (%) (mm2) (W) (ns) (µJ)

1

Avg-tanh 1.41 1.34

CPU MUX-
Avg-
Stanh

256 10.54 11.55
6.62 3.3

332.8 1.1
160 41.4 876062 36268.97 512 9.80 9.96 665.6 2.2

GPU 1024 8.69 8.64 1331.2 4.4

2
148 54 39910 2155.14 APC-

Avg-
Btanh

256 1.72 1.69
13.98 3.1

1280.0 4.0
Binary-ASIC 512 1.61 1.54 2560.0 7.9

769.30 587.5 4.2 2.44 1024 1.48 1.50 5120.0 15.8

3

tanh-Avg 1.01 1.02

CPU MUX-
Stanh-
Avg

256 7.91 8.01
11.42 8.1

332.8 2.7
160 41.4 1069806 44289.99 512 6.86 7.38 665.6 5.4

GPU 1024 6.11 6.59 1331.2 10.8

4
148 54 40969 2212.32 APC-

Btanh-
Avg

256 2.16 1.95
28.67 6.2

1280.0 7.9
Binary-ASIC 512 1.64 1.75 2560.0 15.8

4334.64 603.1 4.2 2.03 1024 1.67 1.60 5120.0 31.5

5

Max-tanh 0.93 0.96

CPU MUX-
NMAX-
Stanh

256 7.92 8.12
10.12 6.4

332.8 2.1
160 41.4 865169 35818.04 512 4.78 4.88 665.6 4.3

GPU 1024 3.18 2.96 1331.2 8.5

6
148 54 30178 1629.59 APC-

NMAX-
Btanh

256 1.11 1.08
28.29 5.6

1280.0 7.2
Binary-ASIC 512 1.15 1.04 2560.0 14.3

770.81 444.2 5.6 3.48 1024 1.02 0.96 5120.0 28.6

7

tanh-Max 0.94 0.96

CPU MUX-
Stanh-
NMAX

256 11.19 11.11
17.51 13.4

332.8 4.4
160 41.4 1059372 43858.03 512 7.84 8.18 665.6 8.9

GPU 1024 3.99 4.08 1331.2 17.8

8
148 54 40119 2166.46 APC-

Btanh-
NMAX

256 1.11 1.21
34.94 6.8

1280.0 8.7
Binary-ASIC 512 1.05 1.12 2560.0 17.5

1067.88 590.6 5.46 3.9 1024 1.02 1.06 5120.0 35.0

oriented design, where pooling blocks follows activation function, halves that

absolute error at its best effort. Generally, APC-based FEBs are more accurate

than MUX-based ones, for APCs precisely count and sum 1s in the input bit-

streams. However, as a special case, from MUX-Stanh-Avg and APC-Btanh-

Avg, we can observe that when the input size reaches 64 or more, the MUX-

based design is more accurate than the APC-based one. For both MUX-based

and APC-based designs, near-max pooling designs gives competitive and bet-

ter results than average pooling designs. Because in our average pooling design,

we use multiplexers to randomly select bits from one of the inputs as the aver-

age of all inputs while in near-max pooling, our selection of the maximum bit-

stream from inputs is based on local statistics. This greedy selection mechanism

guarantees the precision of designs using max pooling.

In Table. 4.9, we conclude the software-based DCNNs as the reference on

the left side and shows the performance for corresponding proposed hardware-

based DCNNs on the right side. There are totally four reference software-based

models. Avg-tanh represents a software-based LeNet-5 model with FEBs in
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which average pooling is followed by an activation function of hyperbolic tan-

gent. Similarly, we named other three models as tanh-Avg, Max-tanh, tanh-

Max. Correspondingly, each software reference model has two hardware im-

plementations listed on the right side. Each DCNN with one hardware FEB

design is evaluated with different lengths of bit-streams, i.e. 256, 512, 1024.

Both network accuracies (validation error rate and test error rate) and hardware

performance are analyzed. The delay and energy are measured for one run of

DCNN inference.

It is observed that the DCNNs using MUX-based inner-product blocks (No.

1, 3, 5, 7) provide smaller footprints while the DCNNs with APC-based inner-

product blocks (No. 2, 4, 6, 8) achieve better network accuracies and lower pow-

ers. However, APC-based designs have longer path delays than MUX-based

designs with the same bit-stream length correspondingly, which makes APC-

based designs’ energy consumptions are much higher. Average pooling based

designs (No. 1 − 4) exploit smaller footprints than max pooling based de-

signs (No. 5 − 8), for its simplicity in the hardware implementation (multiplex-

ers only). For the same reason, average pooling based designs show a lower

power/energy than max pooling based designs. The arrangements of pooling

neurons and activation functions reflects two different facts that for some de-

signs like No. 1 and No. 3, hardware-oriented modified designs perform better

network accuracy (smaller validation and test error), whereas, for some designs

like No. 5 and No. 7, SC implementations on software-based structure provide

better accuracy and hardware performance.

The proposed SC-based hardware designs of DCNN are much more area

efficient, with improvements up to 24.17×, 22.36×, and 776.61× compared to
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CPU, GPU, and synthesized Binary-ASICs respectively. Besides, compared with

CPU and GPU, proposed designs of SC-based DCNN outperform in the aspects

of energy efficiency and power efficiency. They achieve up to 13.41× power

and 32, 835.32× energy improvements over CPU implementations as well as up

to 17.49× power and 1, 951.11× energy improvements over GPU implementa-

tions. Regarding the synthesized Binary-ASICs, the proposed designs provide

as high as 190.27× power efficiency improvements and up to 2.21× energy ef-

ficiency improvement. Please note in each Binary-ASIC synthesis, we imple-

mented an ideal full-parallel pipelined structure where SC-based components

are replaced with binary-based components and we used 8-bit fix-point num-

bers for the implementation. Thus the Binary-ASICs conducted the inference

of a DCNN much faster, which made the energy efficiency improvement by

SC-based designs not significant. But in reality, the power (400 ∼ 600W) and

area (700 ∼ 4000mm2) of the Binary-ASIC syntheses are not acceptable. With the

sequential logic to reduce the area and power, the delay and energy consump-

tion of the Binary-ASICs will be considerably increased, so that the SC-based

DCNNs have the potential to achieve more substantial energy improvements.

The proposed SC-based DCNNs can achieve as low as 1.02% validation error

rate (No. 8) and 0.96% test error rate (No. 6) which are extremely close to cor-

responding software-based model results. In those cases, the power, area, and

energy of proposed SC-based designs are very small compared to CPU and GPU

implementations. Meanwhile, those SC-based designs are more power/area ef-

ficient than synthesized Binary-ASICs.
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4.6.2 Overall Results on the DCNNs

Using the design strategies presented so far, we perform holistic optimizations

on the overall SC-DCNN to construct the LeNet 5 DCNN structure. The (max

pooling-based or average pooling-based) LeNet 5 is a widely-used DCNN struc-

ture [66] with a configuration of 784-11520-2880-3200-800-500-10. The frame-

works are evaluated with the MNIST handwritten digit image dataset [27],

which consists of 60, 000 training data and 10, 000 testing data.

The baseline error rates of the max pooling-based and average pooling-based

LeNet5 DCNNs using software implementations are 1.53% and 2.24%, respec-

tively. In the optimization procedure, we set 1.5% as the threshold on the error

rate difference compared with the error rates of software implementation. In

another word, the network accuracy degradation of the SC-DCNNs cannot ex-

ceed 1.5%. We set the maximum bit-stream length as 1024 to avoid excessively

long delays. In the optimization procedure, for the configurations that achieve

the target network accuracy, the bit-stream length is reduced by half in order to

reduce energy consumption. Configurations are removed if they fail to meet the

network accuracy goal. The process is iterated until no configuration is left.

Table 4.10 displays some selected typical configurations and their compari-

son results (including the consumption of SRAMs and random number gener-

ators). Configurations No.1-6 are max pooling-based SC-DCNNs, and No.7-12

are average pooling-based SC-DCNNs. It can be observed that the configura-

tions involving more MUX-based feature extraction blocks achieve lower hard-

ware cost. Those involving more APC-based feature extraction blocks achieve

higher accuracy. For the max pooling-based configurations, No.1 is the most

area efficient as well as power efficient configuration, and No.5 is the most en-
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Table 4.10: Comparison among Various SC-DCNN Designs Implementing
LeNet 5

No. Pooling Bit Configuration Performance
Stream Layer 0 Layer 1 Layer 2 Inaccuracy (%) Area (mm2) Power (W) Delay (ns) Energy (µJ)

1

Max

1024 MUX MUX APC 2.64 19.1 1.74 5120 8.9
2 MUX APC APC 2.23 22.9 2.13 5120 10.9
3 512 APC MUX APC 1.91 32.7 3.14 2560 8.0
4 APC APC APC 1.68 36.4 3.53 2560 9.0
5 256 APC MUX APC 2.13 32.7 3.14 1280 4.0
6 APC APC APC 1.74 36.4 3.53 1280 4.5
7

Average

1024 MUX APC APC 3.06 17.0 1.53 5120 7.8
8 APC APC APC 2.58 22.1 2.14 5120 11.0
9 512 MUX APC APC 3.16 17.0 1.53 2560 3.9

10 APC APC APC 2.65 22.1 2.14 2560 5.5
11 256 MUX APC APC 3.36 17.0 1.53 1280 2.0
12 APC APC APC 2.76 22.1 2.14 1280 2.7

Table 4.11: Application-level performance and hardware cost of LeNet-5 imple-
mentation using the proposed HEIF.

Bit ReLU Clipped Area Power Delay Energy
Stream Validation Test (mm2) (W) (ns) (µJ)

1024 1.07% 0.88%

22.9 2.6

2498.6 6.4
512 1.12% 0.87% 1249.3 3.2
256 1.13% 0.91% 624.6 1.6
128 1.18% 0.93% 312.3 0.8

software 0.94% 0.83% -
highest software accuracy in the literature [21] 0.23%

ergy efficient configuration. With regard to the average pooling-based configu-

rations, No.7, 9, 11 are the most area efficient and power efficient configurations,

and No.11 is the most energy efficient configuration.

Table 4.11 concludes the performance and hardware cost of the proposed

HEIF on LeNet-5 implementation. One can observe that the proposed HEIF can

realize the entire LeNet-5 with only 0.10% accuracy degradation compared to

the software accuracy of our software-based implementations. Table 4.12 com-

pares the performance and hardware cost of the proposed HEIF with the exist-

ing hardware platforms on the MNIST dataset. For SC-DCNN, the configura-

tion No.6 and No.11 are selected to compare with software implementation on

CPU server or GPU. No.6 is selected because it is the most accurate max pooling-

based configuration. No.11 is selected because it is the most energy efficient

average pooling-based configuration. It can be observed that compared with
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Table 4.12: Comparison with existing hardware platforms for handwritten digit
recognition using the MNIST [27] dataset

Platform Network Year Platform Clock Area Power Accuracy Throughput Area Efficiency Energy Efficiency
Type Type (MHz) (mm2) (W) (%) (Images/s) (Images/s/mm2) (Images/J)

2×Intel Xeon W5580 CNN 2009 CPU 3200 263 156 99.17 656 2.5 4.2
Nvidia Tesla C2075 CNN 2011 GPU 1150 520 202.5 99.17 2333 4.5 3.2

Minitaur [90] ANN1 2014 FPGA 400 N/A ≤1.5 92.00 4880 N/A ≥3253
SpiNNaker [115] DBN 2015 ARM 150 N/A 0.3 95.00 50 N/A 166.7
TrueNorth [31] SNN2 2015 ASIC Async 430 0.18 99.42 1000 2.3 9259

SC-DCNN (No.6)[103] CNN 2016 ASIC 200 36.4 3.53 98.26 781250 21439 221287
SC-DCNN (No.11)[103] CNN 2016 ASIC 200 17.0 1.53 96.64 781250 45946 510734

HEIF(128bit) CNN 2016 ASIC 410 22.9 2.6 99.07 3203125 139874 1231971
1ANN: Artificial Neural Network; 2SNN: Spiking Neural Network

the other platforms, the proposed HEIF yields the highest throughput, area ef-

ficiency and energy efficiency while approaching the highest software accuracy,

i.e. 99.77%, demonstrating the effectiveness of the SC technology and our pro-

posed holistic optimization procedure. Compared with the high-performance

version of SC-DCNN in [103], the proposed method achieves up to 0.81% accu-

racy increase, and 4.1×, 6.5× and 5.5× improvement in terms of throughput, area

efficiency and energy efficiency, respectively. Compared with the low-power

version of SC-DCNN, the proposed HEIF achieves improved accuracy due to

the overall optimization on the cascade connection of function blocks and the

novel ReLU design, whereas the area, power and energy efficiency gain are

mainly achieved through APC optimization, pipelining technique, bit-stream

length reduction, and weight storage optimization.

Next we present the results of HEIF on the large-scale AlexNet applications.

We trained AlexNet using ImageNet training set by our own configurations. To

follow the stochastic computing paradigm, we use scaled pixel values within

[0,1] instead of original range [0,255]. Because data pre-processing first deducts

the mean value of each image from each pixel value, the input then ranges in

[-1,1]. Moreover, we use clipped ReLU to restrain the activation output to be

[0,1]. We also move pooling units before ReLU so that we can save resource of

ReLU in the aspect of hardware cost. The trained network achieves top-1 and
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Table 4.13: List of existing hardware platforms for image classification using
(part of) the AlexNet [63] on ImageNet [26] dataset

Platform Year Platform Memory Area Power Throughput Area Efficiency Energy Efficiency
Type Type (mm2) (W) (Images/s) (Images/s/mm2) (Images/J)

2×Intel Xeon W5580 2009 CPU DRAM 263 156 139 0.5 0.9
Nvidia Tesla C2075 2011 GPU DRAM 520 202.5 573 1.1 2.8

DaDianNao [17] 2014 ASIC eDRAM 67.7 15.97 147938 2185 9263
Eyeriss [16] 2016 ASIC DRAM 12.25 0.28 35 2.8 125

EIE-64PE [43] 2016 ASIC SRAM 40.8 0.59 81967 2009 138927
EIE-256PE [43] 2016 ASIC SRAM 63.8 2.36 426230 6681 180606
HEIF(128bit) 2016 ASIC SRAM 24.7 1.9 2520161 102030 1326400

top-5 accuracies of 56.56% and 80.48% on the test set, respectively. To the best of

our knowledge, the existing hardware platforms either implemented one com-

putation layer of the AlexNet [43], built a reconfigurable circuit to accelerate

each layer separately [16], or designed a reconfigurable system that can be con-

nected in a chip system to deal with large computation tasks [17]. Table 4.13 lists

the existing hardware platforms for AlexNet implementation. As EIE [43] pro-

vided the results on the fully-connected FC7 layer of AlexNet, we evaluate the

proposed HEIF on the same FC7 layer of AlexNet. We apply the same weight

compression technique in [45], making a fair comparison. Note that Table 4.13 is

a list of existing platforms instead of a strict comparison table, because the im-

plementation scales and method of different works are not the same (and some

are not discussed in details in papers). One can observe from Table 4.13 that

the proposed HEIF has the smallest footprint due to the small footprint of each

stochastic computing component, and achieves the best performance in terms

of throughput, area efficiency and energy efficiency.

4.7 Conclusion

In this chapter, we propose SC-DCNN, the first comprehensive design and op-

timization framework of SC-based DCNNs. Then we present HEIF, the opti-
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mized version of SC-DCNN, a highly efficient SC-based inference framework

of the large-scale deep convolutional neural networks, with broad applications

on (but not limited to) both LeNet-5 and AlexNet, in order to achieve ultra-high

energy efficiency and low area/hardware cost. SC-DCNN and HEIF fully uti-

lizes the advantages of SC and achieves remarkably low hardware footprint,

low power and energy consumption, while maintaining high network accuracy.

We fully explore the design space of different components to achieve high

power (energy) efficiency and low hardware footprint. First, we investigated

various function blocks including inner product calculations, pooling opera-

tions, and activation functions. Then we propose four designs of feature extrac-

tion blocks, which are in charge of extracting features from input feature maps,

by connecting different basic function blocks with joint optimization. More-

over, three weight storage optimization schemes are investigated for reducing

the area and power (energy) consumption of SRAM.

Besides, we re-design the Approximate Parallel Counter and optimize

stochastic multiplication while proposing for the first time SC-based Rectified

Linear Unit (ReLU) activation function to track with the recent advances in soft-

ware models.

Experimental results demonstrate that the SC-DCNN achieves low hard-

ware footprint and low energy consumption. It achieves the throughput of

781, 250 images/s, area efficiency of 45, 946 images/s/mm2, and energy effi-

ciency of 510, 734 images/J. The HEIF framework achieves very high energy

efficiency of 1.2M Images/J and 1.3M Images/J, and high throughput of 3.2M

Images/s and 2.5M Images/s, along with very small area of 22.9 mm2 and 24.7

mm2 on LeNet-5 and AlexNet respectively. HEIF outperforms previous SC-
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DCNN by the throughput of 4.1×, by area efficiency of up to 6.5× and achieves

up to 5.6× energy improvement.
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CHAPTER 5

ENABLING EFFICIENT RECURRENT NEURAL NETWORKS USING

STRUCTURED COMPRESSION TECHNIQUES ON FPGAS

5.1 Introduction

Recurrent Neural Networks (RNNs) represent an important class of machine

learning techniques that are specialized for processing sequential data [38].

RNNs have wide applications in speech recognition, natural language process-

ing, scene and semantic understanding, time series analysis, etc. Many of these

applications require efficient and real-time implementations. The two major

types of RNNs with the broadest applications and highest performance are the

Long Short-Term Memory (LSTM) unit [48] and the Gated Recurrent unit (GRU)

[19]. LSTM and GRU RNNs are computationally intensive but can effectively

overcome vanishing and exploding gradient problems [96] of traditional RNNs.

However, the significant recognition accuracy improvement comes at the cost of

increased computational complexity of larger model size [36]. Therefore, cus-

tomized hardware acceleration is increasingly important for LSTM/GRUs, as

exemplified by recent works on employing GPUs [24, 82], FPGAs [42, 73] and

ASICs [32] as accelerators to speedup LSTM RNNs.

Among the numerous platforms, FPGA has emerged as a promising so-

lution for hardware acceleration as it provides customized hardware perfor-

mance with flexible reconfigurability. By creating dedicated pipelines, paral-

lel processing units, customized bit width, and etc., application designers can

accelerate many workloads by orders of magnitude using FPGAs [107]. More

importantly, High-level Synthesis (HLS) has greatly lowered the programming
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hurdle of FPGAs and improved the productivity by raising the programming

abstraction from tedious RTL to high-level languages such as C/C++ [23] and

OpenCL [125].

While the benefits of FPGAs is clear, it is still challenging to design efficient

designs for LSTMs on FPGAs mainly for two reasons. On one hand, the capacity

of the FPGA on-chip memory (a few or tens of Mb on-chip memory) is usually

not large enough to store all the weight matrices of a standard LSTM inference

model (e.g. hundreds of Mb). Although the previous work ESE [42] proposes to

use the parameter pruning based compression technique to compress the dense

weight matrices in the LSTM model into sparse ones, the sparse matrices need

extra storage and processing units to store and decode the indices of the non-

zero data, respectively. The skewed distribution of the data is likely to cause

unbalanced workloads among parallel compute units. Therefore, the benefits of

unstructured model compression is diminished by the sparsity of weight matri-

ces. On the other hand, the computational complexity among the operators of

the LSTMs is highly skewed and the data dependencies between operator are

complicated. So, it is difficult to evenly allocate computing resources under the

FPGA resource constraints while guaranteeing the complex data dependencies.

In this chapter, we propose to compress the weight matrices in the RNN in-

ference model in a structured manner by using block-circulant matrix [94]. The

circulant matrix is a square matrix, of which each row (column) vector is the cir-

culant reformat of the row (column) vector. Any matrix could be transformed

into a set of circulant submatrices a.k.a. block-circulant matrices. Therefore,

by representing each block-circulant matrix with a vector, the storage require-

ment could be reduced from O(k2) to O(k) if the block (vector) size is k. Since
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the compressed weight matrices are still dense, the block-circulant matrix based

compression is amenable to hardware acceleration on FPGAs. In order to fur-

ther speed up the computation of LSTMs, we propose to accelerate the most

computation-intensive circulant convolution operator by applying Fast Fourier

Transform (FFT) algorithm to reduce the computational complexity from O(k2)

to O(klogk).

After the model is compressed, we propose an automatic optimization and

synthesis framework called E-RNN to port efficient RNN designs onto FPGAs.

The framework is composed of model training and implementation flows. The

former one is in charge of iteratively training the compressed RNN model and

exploring the trade-offs between compression ratio and prediction accuracy. As

for the model implementation, it mainly consists of two parts which are (1) tem-

plate generation and (2) automatic RNN synthesis framework. For the former

part, after analyzing a wide range of RNN algorithms, we generalize a suite

of RNN primitive operators which is general enough to accommodate even

the most complicated RNN variant [109]. Then, a suite of highly optimized

C/C++ templates of the primitive operators are manually generated by walk-

ing through a series of optimizations such as datapath and activation quantiza-

tion, DFT-IDFT decoupling and etc. As for the latter part, the well-trained RNN

inference model is first analyzed and transformed into a directed acyclic depen-

dency graph, where each node represents an operator and each edge indicates

the associated data dependency between two operators. Secondly, we propose

a specialized pipeline optimization algorithm considering both coarse-grained

and fine-grained pipelining schemes to schedule the operators into appropriate

stages. In the third step, we use an accurate performance and resource model

to enable a fast design space exploration for optimal design parameters. Lastly,
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the scheduling results and optimization parameters are fed to code generator

and backend toolchain as to implement the optimized RNN accelerator design

on FPGAs.

Overall, the contributions of this chapter are listed as:

• We employ the block-circulant matrices based structured compression

technique for RNNs which largely reduces the computation complexity

and memory footprint without incurring any computation and memory

access irregularities. This method results in both compression and accel-

eration of the RNN models.We use ADMM-based training for deriving

block-circulant matrix-based RNN representation. ADMM-based train-

ing provides an effective means to deal with the structure requirement

in weight matrices, thereby enhancing accuracy and training speed.

• We develop a general RNN optimization and synthesis framework E-RNN

to enable automatic and efficient implementations of a wide range of RNN

variants on FPGAs. The framework mainly consists of a suite of highly op-

timized C/C++ based templates of primitive operators and an automatic

RNN synthesis flow.

• We present efficient implementations of RNNs which achieve up to 37.4×

gains in energy efficiency compared with the state-of-the-art. The pro-

posed implementations incur very small accuracy degradation.
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5.2 Related Work

Recently, FPGA has emerged as a promising hardware acceleration platform

for DNNs as it provides high performance, low power and reconfigurability.

A lot of FPGA based accelerators have been proposed for convolutional neural

networks (CNNs) to overcome the computing and energy efficiency challenges.

[127] proposes to utilize systolic array based convolution architecture to achieve

better frequency and thus performance for CNNs on FPGAs. [86] employs the

Winograd algorithm to reduce the multiplication operators as to save DSP re-

sources and accelerate matrix multiplication in CNNs. [131] proposes to take

advantage of the heterogeneous algorithms to maximize the resource utilization

for convolutional layers on FPGAs. Some studies also propose to transform the

CNN models to frequency domains and then exploit FFT algorithms for further

acceleration [61]. The FFT based acceleration scheme used in the CNN model

is completely different from this work, in which we target on a totally differ-

ent LSTM based RNN model and the FFT algorithm is applied to the circulant

convolution operators instead of the convolution layers of CNNs.

There are also a lot of works on implementing RNN accelerators for FP-

GAs [40, 73, 91]. [91] designs an accelerator for the gated recurrent network

(GRU) which embodies a different architecture from the LSTM based RNNs.

[40] and [73] focus on LSTM based RNNs but none of these works utilize

compression techniques to reduce the model size. The most relevant study

to this work is ESE [42], which proposes a software and hardware co-design

framework to accelerate compressed sparse LSTM model obtained by param-

eter pruning [44]. The performance and energy efficiency gains achieved by

ESE is very promising compared with CPU and GPU based implementations.
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However, due to the irregular computation and memory accesses caused by the

sparse weight matrices of the compressed model, the computing power of the

FPGA is not fully exerted by ESE. In order to deal with this problem, this work

proposes to employ a structured compression technique as to completely elim-

inate the irregularities of computation and memory accesses. Moreover, a suite

of highly efficient optimization techniques is enabled by an automatic synthesis

framework to generate RNN accelerators with much higher performance and

energy efficiency under the same conditions.

5.3 Structured Compression

Deep neural networks (DNNs) bear a significant amount of redundancy [44]

and thus model compression is a natural method to mitigate the computation

and memory storage requirements for the hardware implementations on FP-

GAs. In this section, we propose to employ a structured compression technique

to compress the weight matrices of RNN model by using block-circulant matri-

ces. We first introduce the block-circulant matrix and then integrate it with the

inference and training algorithms of LSTMs. In the last, we explore the trade-

offs between compression ratio and prediction error rate.

5.3.1 Block-Circulant Matrix

The circulant matrix is a square matrix whose each row (or column) vector is

the circulant reformat of the row (or column) vectors [18, 94]. Any matrix could

be transformed into a set of circulant submatrices (blocks) and we define the
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transformed matrix as a block-circulant matrix. For example, Figure 5.1 shows

that the 3×9 weight matrix (on the bottom) is reformatted into a block-circulant

matrix containing three 3 × 3 circulant matrices (on the top). Since each row

vector of the circulant submatrix is a reformat of the first row vector, we could

use a row vector to represent a circulant submatrix. Therefore, the first obvious

benefit of the block-circulant matrix is that the number of parameters in each

weight matrix is reduced by a factor of the block size O(k). As for the example

in Figure 5.1, the 3×9 weight matrix (on the bottom) holding 27 parameters is re-

duced to three 3×3 circulant matrices (on the top) containing only 9 parameters,

which easily leads to 3×model size reduction.

Intuitively, the model compression ratio is determined by the block size of

the circulant submatrices: larger block size leads to higher compression ratio

and vice versa. However, high compression ratio may degrade the prediction

accuracy. Specifically, a larger block size should be selected to achieve a higher

compression ratio but lower accuracy and the smaller block size provides higher

accuracy but less compression ratio. The block size is 1 if no compression is

utilized. It is necessary to note that block-circulant matrix based DNNs have

been proved to asymptotically approach the original networks in accuracy with

mathematical rigor [140]. Therefore, if the compression ratio is selected prop-

erly, the accuracy loss would be negligible. The design exploration from the

perspective of compression ratio and predication accuracy is discussed in Sec-

tion 5.4
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Figure 5.1: Block-circulant matrices for weight representation.

5.3.2 Inference and Training Algorithms

Forward Propagation. The primary idea of block-circulant matrix-based RNN

is to represent the original arbitrary weight matrix W ∈ Rm×n with an array of

equal-size square sub-matrices (i.e., blocks), where each sub-matrix is a circulant

matrix. Assume there are p × q blocks after partitioning the matrix W, where

p = m
Lb

and q = n
Lb

. Here Lb is the block size. Then W = [Wi j], i ∈ {1 . . . p},

j ∈ {1 . . . q}.

Each circulant matrix Wi j can be defined by a vector wi j. More specifically,

wi j is the first row vector of Wi j; the second row vector of Wi j is a circulation

of the first row vector, and so on. Figure 5.2 provides an example of circulant

matrix Wi j. The storage complexity of a block-circulant weight matrix is sig-

nificantly reduced since we only need to store one vector wi j for each circulant

matrix Wi j. As a result, we have the ability to store all the weights matrices
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Figure 5.2: An illustration of FFT-based calculation in block-circulant matrix
multiplication.

(i.e., W∗(xr)) and the projection matrix Wym in block RAM (BRAM), thereby sig-

nificantly improving the FPGA performance. Additionally, the input feature x,

bias b (bi, b f , and bo), and diagonal matrices Wc (Wic, W f c, and Woc) can also be

stored in BRAM due to a small quantity of corresponding parameters.

Since a weight matrix W is now partitioned into p × q blocks, correspond-

ingly, the input x is also partitioned as x = [xT
1 , x

T
2 , . . . , x

T
q ]T , x j ∈ R

Lb . Then,

the forward propagation process in the inference phase is given by (with bias and

activation function omitted):

a = Wx =



∑q
j=1 W1 jx j∑q
j=1 W2 jx j

. . .∑q
j=1 Wp jx j


=



a1

a2

. . .

ap


, (5.1)

where ai ∈ R
Lb is a column vector. We can see the calculation of Wx is reduced

to the calculation of Wi jx j’s. Then according to the circulant convolution theorem
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[94, 10], the calculation of Wi jx j can be performed as

ai =

q∑
j=1

F−1[F(wi j) � F(x j)], (5.2)

whereF(·) is the Discrete Fourier Transform (DFT) operator,F−1(·) is the inverse

DFT (IDFT) operator, and � is the element-wise multiply operator. The compu-

tational complexity of Wx is reduced from O(n2) by direct matrix-vector mul-

tiplication to O(pqLb log Lb) by the “FFT→element-wise multiplication→IFFT”

procedure in Eqn. (5.2), which is equivalent to O(n log n) for small p, q values.

As a result, the simultaneous acceleration and model compression compared

with the original RNN can be achieved for the inference process.

Backward Propagation. The backward propagation process in the training

phase can also be implemented using block-circulant matrices. Here we use

ail to denote the l-th output element in ai, and L to represent the loss function.

Then by using the chain rule we can derive the backward propagation process

as follows:

∂L
∂wi j

=

k∑
l=1

∂L
∂ail

∂ail

∂wi j
=
∂L
∂ai

∂ai

∂wi j
, (5.3)

∂L
∂x j

=

p∑
i=1

k∑
l=1

∂L
∂ail

∂ail

∂x j
=

p∑
i=1

∂L
∂ai

∂ai

∂x j
. (5.4)

where ∂ai
∂wi j

and ∂ai
∂x j

are proved to be block-circulant matrices [140]. Thus, ∂L
∂wi j

and

∂L
∂ai

∂ai
∂x j

can be calculated similarly as Equation (5.2) with the same computational

complexity. The details of the training procedure for a fully-connected layer in

DNNs are presented in [29, 126] and also applicable to the LSTM based RNNs.
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5.3.3 Alternating Direction Method of Multipliers (ADMM)

Based Training

Consider an optimization problem minx f (x) with combinatorial constraints.

This problem is difficult to solve directly using optimization tools [139].

Through the application of ADMM [11, 55], the original optimization problem

is decomposed into two subproblems, and will be iteratively solved until con-

vergence. The first subproblem is minx f (x)+q1(x) where q1(x) is a differentiable,

quadratic term. This subproblem does not have combinatorial constraints and

can be solved using traditional optimization method, e.g., SGD for RNN train-

ing. The second subproblem is minx g(x) + q2(x), where g(x) corresponds to the

original combinatorial constraints and q2(x) is also quadratic. For special types

of combinatorial constraints, including structured matrices, quantization, etc.,

the second subproblem can be optimally and analytically solved, as shown in

the following discussions.

Consider an RNN model with N layers. The collection of weights in layer

l is denoted by Wl. The loss function is denoted by f
(
{Wl}

N
l=1

)
. Let (Wl)i j with

dimension Lb × Lb denote the i jth block in the structured matrix that Wl should

be mapped to.

We introduce auxiliary variables Zl and Ul, which have the same dimension-

ality as Wl. Through the application of ADMM1, the original structured training

problem can be decomposed into two subproblems, which are iteratively solved

until convergence. In each iteration k, the first subproblem is

1The details of the ADMM algorithm are discussed in [11, 139].
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minimize
{Wl}

f
(
{Wl}

N
l=1

)
+

N∑
l=1

ρl

2
‖Wl − Zk

l + Uk
l ‖

2
F , (5.5)

where Uk
l is the dual variable updated in each iteration, Uk

l := Uk−1
l + Wk

l −Zk
l .

In the objective function of (equation 5.5), the first term is the differentiable loss

function of RNN, and the second quadratic term is differentiable and convex.

As a result, this subproblem can be solved by stochastic gradient descent and

the complexity is the same as training the original RNN. A large number of

contraints are avoided here. The result of the first subproblem is denoted by

Wk+1
l . Proven in [11], the global optimal solution of the second subproblem is

to find a Euclidean mapping of Wk+1
l + Uk

l to the closest structured (circulant)

matrix format. The result of the second subproblem is denoted by Zk+1
l .

For better illustration, let (Wk+1
l + Uk

l ) denote a specific matrix to be mapped,

and let (Zk+1
l ) denote the corresponding structured format. For the i jth block,the

elements (1, 1), (2, 2),..., (Lb, Lb) of (Zk+1
l )i j should be equal. For Euclidean map-

ping, we have:

(Zk+1
l )i j,(1,1) = (Zk+1

l )i j,(2,2) = ... = (Zk+1
l )i j,(Lb,Lb)

=
(Wk+1

l + Uk
l )i j,(1,1) + ... + (Wk+1

l + Uk
l )i j,(Lb,Lb)

Lb

(5.6)

Similarly the other entries in (Zk+1
l )i j can be calculated. We have proved that this

is the optimal analytical solution of the second subproblem. Figure 5.3 illus-

trates an example of the Euclidean mapping by applying Eqn. (5.6).

The overall procedure of ADMM-based structured matrix training is shown

in Figure 5.4. Essentially speaking, it iteratively (i) map Zk+1
l to the structured

format in the optimal manner, and (ii) use the mapped Zk+1
l as a dynamic regu-

larization target for weight training. Upon convergence the RNN weights will
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Figure 5.4: The overall procedure of ADMM-based structured matrix training.

converge to the structured format. The proposed method effectively overcomes

the limitation of combinatorial constraints and achieves higher training accu-

racy compared with the prior work, as shall be seen in experimental results.

5.4 RNN Model Design Exploration: A software view

In this section, we perform RNN model design exploration at the algorithm

level, in order to shed some light on RNN training trial reductions. More specif-

ically, we provide an analysis of the effect of model type (LSTM or GRU), layer

size, and block size on the overall accuracy. The design variable with the least

impact on the overall accuracy should be given priority in design optimization.

We focus on TIMIT benchmark, the most widely utilized benchmark for ASR

applications. In the following, we will provide a detailed discussion on the data

set, RNN models, and results and observations.
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Dataset. The TIMIT dataset [35] contains broadband recordings of 630

speakers of eight major dialects of American English, each reading ten pho-

netically rich sentences, totally 6, 300 utterances. The TIMIT corpus includes

time-aligned orthographic, phonetic and word transcriptions as well as a 16-bit,

16kHz speech waveform file for each utterance.

RNN Models. The RNN models utilized in the design exploration are sum-

marized in Table 5.1 and Table 5.2. We stack multiple RNN layers to build our

network. The number of layers and layer sizes (dimensionality of ct) are listed

in the tables. For an LSTM cell, 256 − 256 − 256 means that the network has

three layers of LSTM cells with 256 hidden neurons in ct. The block sizes (as

a power of 2) are listed in the same format as layer sizes correspondingly. “−”

means that we do not apply (block-)circulant matrix on the network, which is

the baseline model for that specific network structure. The baseline model with

layer size 1, 024 is the same as the baseline in ESE [42]. We also list the configu-

ration options like “peephole” and “projection”. The performance is evaluated

by phone error rate (PER) or word error rate (WER) and degradations compared to

the corresponding baseline model. The smaller the PER or WER, the better of

the corresponding RNN model.

Results Discussion and Observations. From Table 5.1 and Table 5.2, we

can observe that the block-circulant matrix-based framework results in very

small accuracy degradation compared with the baseline model. More specif-

ically, when the block size is 4 (4 × parameter reduction) or smaller, there is

in general no accuracy degradation compared with the corresponding baseline.

When the block size is 8 (8 × parameter reduction), the accuracy degradation is

negligible, around 0.1%-0.15%. When the block size is 16, the accuracy degra-
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Table 5.1: Comparison among LSTM based RNN models.

ID Layer Block Peep- Projection Phone Error PER degra-
Size Size hole (512) Rate (PER) % dation (%)

1 256 − 256 − 256 − × × 20.83 −

2 256 − 256 − 256 2 − 2 − 2 × × 20.75 −0.08
3 256 − 256 − 256 4 − 4 − 4 × × 20.85 0.02
4 512 − 512 −

√
× 20.53 −

5 512 − 512 4 − 4
√

× 20.57 0.04
6 512 − 512 4 − 8

√
× 20.85 0.28

7 512 − 512 8 − 4
√

× 20.98 0.41
8 512 − 512 8 − 8

√
× 21.01 0.48

9 1024 − 1024 −
√ √

20.01 −

10 1024 − 1024 4 − 4
√ √

20.01 0.00
11 1024 − 1024 4 − 8

√ √
20.05 0.04

12 1024 − 1024 8 − 4
√ √

20.10 0.09
13 1024 − 1024 8 − 8

√ √
20.14 0.13

14 1024 − 1024 8 − 16
√ √

20.22 0.21
15 1024 − 1024 16 − 8

√ √
20.29 0.28

16 1024 − 1024 16 − 16
√ √

20.32 0.31

Table 5.2: Comparison among GRU based RNN models.

ID Layer Block Phone Error PER
Size Size Rate (PER) % degradation (%)

1 256 − 256 − 256 − 20.72 −

2 256 − 256 − 256 4 − 4 − 4 20.81 0.09
3 256 − 256 − 256 8 − 8 − 8 20.88 0.16
4 512 − 512 − 20.51 −

5 512 − 512 4 − 4 20.55 0.04
6 512 − 512 4 − 8 20.73 0.22
7 512 − 512 8 − 4 20.89 0.38
8 512 − 512 8 − 8 20.95 0.44
9 1024 − 1024 − 20.02 −

10 1024 − 1024 4 − 4 20.03 0.01
11 1024 − 1024 4 − 8 20.08 0.06
12 1024 − 1024 8 − 4 20.13 0.11
13 1024 − 1024 8 − 8 20.20 0.18
14 1024 − 1024 8 − 16 20.25 0.23
15 1024 − 1024 16 − 8 20.31 0.29
16 1024 − 1024 16 − 16 20.36 0.33
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dation is still only around 0.3%. As discussed before, the baseline model with

layer size 1,024 is the same as the baseline in ESE [42]. Then we can conclude

that the block-circulant matrix-based framework outperforms ESE in terms of

model compression. This is because ESE achieves 9× parameter reduction with

0.3% accuracy degradation. This parameter reduction even does not account

for the indices, which are needed at least one for each parameter in the network

structure after pruning. We will observe in the hardware experimental results

that the performance and energy efficiency gains are even more significant com-

pared with ESE, thanks to the regularity in this framework.

Moreover, the above design exploration procedure provides observations on

the RNN model selection and optimization, which could shed some lights on

training trial reductions. We can observe that changing from LSTM to GRU

or using a block size of 4 or smaller will not result in accuracy degradation.

Therefore, if the accuracy requirement is very tight for the target application,

we can in general change to GRU and/or using a block size of 4. In this way the

amounts of computation and storage are reduced, which is directly related to

the performance and energy consumption in hardware implementations, with

zero accuracy degradation. If a small amount of accuracy degradation is al-

lowed, then the top priority is using a block size of 8 or 16 compared with a

smaller LSTM/GRU RNN model (i.e., a smaller layer size). This is because that

the block-circulant matrix based framework, as shown in the two tables, results

in smaller amount of accuracy loss and greater computation/storage reduction

compared with a smaller LSTM/GRU RNN model. For ASR applications, a

block size of 8 or 16 will make the whole RNN model easily accommodated by

the on-chip BRAM of FPGAs. This observation validates the effectiveness of the

block-circulant framework.
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5.5 FPGA Acceleration

In this section, we start by introducing a set of FPGA optimization techniques

for circulant convolution operator and then apply quantizations to activation

and element-wise operators. In the last, we propose an operator scheduling

algorithm to generate the whole RNN pipeline with the help of performance

and resource models. In this section, we use LSTM as the case study as it is the

harder case than GRU.

5.5.1 FFT/IFFT Decoupling

Since the FFT based circulant convolution operator in the form of Equation (5.2)

is the most computation-intensive operator in the LSTM inference model, we

propose three techniques to further reduce the computational complexity by

reducing the number of DFT and IDFT operator calls, and the redundant arith-

metic operations of its complex number multiplication operators.

In order to reduce the number of IDFT calls in the circulant convolution oper-

ator, we propose the DFT-IDFT decoupling technique. Since DFT and IDFT are

linear operators [92], we could decouple the DFT and IDFT operators in Equa-

tion 5.2 and move the IDFT operator F−1(·) outside the accumulation operator∑
as following,

ai = F−1
[ q∑

j=1

F(wi j) � F(x j)
]
, (5.7)

where the number of IDFT operator calls for each circulant convolution operator

is reduced from q to 1 and the numbers of the other operator calls are kept the
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same as before.

According to Equation (5.7), the number of calls of DFT operatorF(·) in a cir-

culant convolution operator is 2q, and q is the number of weight vectors F(wi j)

and input vectors F(x j). Since the weight vectors wi j are fixed when the training

process is done, we could precalculate the F(wi j) values and store them in the

BRAM buffers of FPGAs and fetch the required values when needed instead

of computing the associated DFT values at runtime. This method completely

eliminates the DFT operator F(·) calls for weight vectors and reduces the num-

ber of calls from 2qk to qk for each circulant convolution operator. The BRAM

buffer size, however, would be doubled since the outputs of DFT values F(wi j)

are complex numbers whose both real and imaginary parts need to be stored.

In order to alleviate the BRAM buffer overhead, we propose to exploit the com-

plex conjugate symmetry property of DFT output values, where almost half of

the conjugate complex numbers could be eliminated [92, 106]. Therefore, there

is only negligible BRAM buffer overhead to store the DFT results of weight vec-

tors F(wi j).

The element-wise multiplication � between two complex number vectors

F(wi j) and F(x j) requires 4k multiplications and 3k additions. Due to the com-

plex conjugate symmetry property of DFT F(·) results, about half of the multi-

plications and additions could be eliminated. Overall, Figure 5.5 illustrates the

implementations of the original and optimized circulant convolution operators

when the block size is 8.
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Figure 5.5: An illustration of the (a) circulant convolution operator; (b) its origi-
nal implementation; (c) and the optimized implementation.

5.5.2 Datapath and Activation Quantization

The LSTM model size could be further compressed without accuracy degrada-

tion if the datapath of LSTM implementation on FPGA is carefully quantized

into shorter bitwidth. We design a bit-accurate software simulator to study the

impact of the bitwidth of datapath on the prediction accuracy. We first analyze

the numerical range of the trained weights in the LSTM, and then determine

the bitwidth of integer and fractional parts to avoid data overflow and accuracy

degradation. We observe that 16-bit fixed point is accurate enough for imple-

menting the LSTM inference model on FPGAs.

In order to alleviate accuracy degradation problem caused by the data trun-

cation and overflow problems in the architecture of the proposed circulant con-
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volution operator. It is observed that the output data of IDFT are first divided

by the block size (or IDFT input size) k, which is implemented as right shifting

the numbers by log2k bits, and then output in the last stage of IDFT pipeline.

However, the more bits are right shifted, the more fractional bits are truncated

and thus degrading the overall accuracy. In order to deal with the accuracy loss

caused by the data truncation, we propose to evenly distribute the shift opera-

tions inside the stages of the IDFT pipeline based on the observation that right

shifting one bit at a time achieves better accuracy than right shifting multiple

bits at once. As for the data overflow problem, it is most likely to occur in the

accumulation stage of circulant convolution operator since multiple values are

summed here. We propose to move the evenly distributed right shifting opera-

tions from stages of IDFT pipeline to the ones of DFT. Since the DFT is processed

before accumulation operator and right shifting makes the number to be smaller

and, it is less likely to cause overflow in accumulation stage.

The activation functions in LSTMs are all transcendental functions whose

implementations on FPGA are very expensive with respect to resource utiliza-

tion. In order to achieve a balance between accuracy and resource cost, we

propose to utilize quantized piece-wise linear functions to approximate them.

Figure 5.6 shows that the sigmoid and tanh functions are approximated using

piece-wise linear functions with 22 segments. As we can see from the figure,

the approximated and the original functions are almost the same and the er-

ror rate is less than 1%. Since the linear function could be represented in the

slope-intercept form like y = ax + b, we only need to store the associated slope a

and intercept b for each piece of linear function. In the real implementation, the

computational complexity of activation functions only involves a simple com-

parison to index the associated pair of slope and intercept and one 16-bit fixed
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(a) sigmoid (b) tanh

Figure 5.6: Piece-wise linear activation functions.

point multiplication followed by an addition. It is necessary to note that, ac-

cording to our experimental results, the piece-wise linear approximation incurs

negligible accuracy degradation for LSTMs.

5.5.3 Operator Scheduling

We use LSTM as example to explain the operator scheduling in this section.

The recurrent nature of LSTM enforces strict data dependency among operators

inside the LSTM module. In order to accommodate the complicated interactions

of LSTM primitive operators, we propose a graph generator to transform the

LSTM algorithm specification in the form of the equations like Equation (1.8) to

a directed acyclic data dependency graph. Figure 5.8 (a) shows the generated

LSTM directed operator graph from the LSTM descriptions, where each node

is an LSTM primitive operator and the edge represents the data dependency

between two operators. It is necessary to note that the generated graph is acyclic

because we deliberately remove the feedback edges from cell output ct to the

LSTM module output yt. Since the backward edges are taken care of by the

double-buffer mechanism, this practice would never harm the correctness and

efficiency of the final LSTM accelerator design.
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Figure 5.7: Computational complexity of LSTM operators.
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Figure 5.8: Illustration of operator scheduling on data dependency graph. The
circle represents the element-wise operator, and the square represents the circu-
lant convolution operator.

LSTMs exhibit a highly skewed distribution of computation complexity

among the primitive operators. Figure 5.7 shows the normalized computational

complexity of the five primitive operators of the Google LSTM [109] studied

in this work. The computational complexity gap between the circulant convo-

lution operator and element-wise multiply operator � is as large as 128 times.

So, if we want to pipeline these two operators we must either boost the par-

allelism of the former operator or make the latter operator wait (idle) for the

former one. However, the reality is that the limited on-chip resources of FP-
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GAs generally cannot sustain sufficient parallelism and the idle operators make

the design inefficient. Therefore, pipelining a complex LSTM algorithm as a

whole, such as the Google LSTM [109] shown in 5.8(a), is very inefficient on

FPGAs. In order to deal with this problem, we propose to break down the orig-

Algorithm 4: Operator Scheduling Algorithm
Input: operator graph G = (V, E), operator weight set W(V), and priority

set P(V);
Output: operator subgraph of each stage Gk = (Vk, Ek);
Traverse G = (V, E) and compute priority set P(V);
k ← 0,N(V)← {1};
foreach vi ∈ V in decreasing order of P(v) do

if k = 0 then
k ← k + 1;
Gk ← v; // add the operator to a new stage

else
foreach N′(v j) ∈ Gk do

N′(v j)← N(v j) · d
W(v j)
W(vi)
e;

end
if resource constraints are satisfied then

G j ← v; // add the operator to current stage
N(V)← N′(V); // update operator parallelisms

else
k ← k + 1;
Gk ← vi; // add the operator to a new stage

end
end

end
K ← k;
Enumerate R(Gk) values to maximize throughput and fully utilize FPGA
resource;

return N(V), {G1,G2, ...,GK}, and {R(G1),R(G2), ..., (GK)};

inal single pipeline into several smaller coarse-grained pipelines and overlap

their execution time by inserting double-buffers for each concatenated pipeline

pair. For example, the original operator graph of Google LSTM [109] in 5.8(a)

is divided into three stages in 5.8(b), where each stage will be implemented

as a coarse-grained pipeline on FPGAs. The double-buffers added between
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stages are used to buffer the data produced/consumed by the previous/current

stage. However, scheduling the operators to different stages in an efficient way

is still a problem. We propose an operator scheduling algorithm shown in Algo-

rithm 4 to tackle this problem. The algorithm takes the original operator graph

G = (V, E), operator weight set W(V), and operator priority set P(V) as input and

outputs several operator subgraphs Gk. For original operator graph G = (V, E),

each vertex vi ∈ V represents an operator and the edge ei j represents the data

dependency between vi and v j. Each vertex vi has a weight W(wi) which is the

associated arithmetic computational complexity. The algorithm first traverses

down the graph from the source vertex computing the priority of each vertex

by

P(vi) =


W(vi) + max

v j∈S ucc(vi)
P(v j), vi , vsink

W(vsink), otherwise
(5.8)

Since P(vi) is accumulated with the maximum value of successors P(v j) as shown

in Equation (5.8), priority set P(V) is topologically ordered, which means that it

is guaranteed that all predecessor operators are scheduled before scheduling a

new operator [69]. After the prioritization, the algorithm selects the operator

with the highest priority value and then determines the parallelism of the oper-

ator N(v j) and whether it should be added to the current or a new stage accord-

ing to the resource utilization of FPGAs. Then, the operator subgraphs Gk and

the operator parallelism set N(V) are output by this algorithm, where each stage

represents a corresponding LSTM execution stage that will be implemented as a

coarse-grained pipeline on FPGAs. Since the overall throughput of this coarse-

grained pipeline design is constrained by the slowest stage, we need to further

determine the pipeline replication factor R(Gk) for each stage. To fully utilize
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the resources of a certain FPGA chip, we also need to take into account of the

resource utilization of each stage, and thus we propose to enumerate pipeline

replication factor R(Gk) to get the optimal setting with the help of our analytical

performance and resource models which are presented in Section 5.5.4.

5.5.4 Performance and Resource Models

Since the throughput of the proposed coarse-grained pipeline design is con-

strained by the slowest stage, the analytical performance model is built as fol-

lowing,

FPS =
Frequency

max {T1,T2, ...,Th, ...TK}
, (5.9)

where FPS is the number of frames per second of E-RNN accelerator, Tk repre-

sents the number of execution clock cycles of stage k, and K is the total number

of stages. Tk is calculated by considering the parallelism and input data size of

each stage as following,

Tk = dmax
vi∈Gk

Q(vi)
N(vi)

/R(Gk)e + Dk (5.10)

where Q(vi) is the workload of operator vi and Dk is the pipeline depth of stage k.

It is necessary to note that, the compression ratio of the block-circulant matrices

based technique is large enough to store the whole LSTM model on BRAMs of

FPGAs, and for each frame, we only need to load very limited size of input data

which makes computation time of LSTM to be overlapped with data loading.

The resource model of the highly optimized primitive operator templates is
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very straightforward because the linear model with respect to the associated op-

erator parallelism N(vi) and stage parallelism R(Gk) is accurate enough to guide

the design space exploration for energy-efficient designs. The models are shown

in the following,

DS P =

K∑
k=1

R(Gk) ·
∑
vi∈V,

∆DS P(vi) · N(vi), (5.11)

BRAM =

K∑
k=1

R(Gk) ·
∑
vi∈V,

∆BRAM(vi) · N(vi), (5.12)

LUT =

K∑
k=1

R(Gk) ·
∑
vi∈V,

∆LUT (vi) · N(vi), (5.13)

where ∆DS P(vi), ∆BRAM(vi), and ∆LUT (vi) are obtained by profiling the re-

source consumption values for operator vi on the FPGA using the manually

optimized operator template.

5.6 Hardware Design

5.6.1 E-RNN Hardware Architecture

Figure 5.9 demonstrates the E-RNN hardware architecture. A CPU and a host

memory communicate with the FPGA chip through PCI-Express (PCIE) bus.

They can transmit the input voice vector to the FPGA and receive the computa-

tion results from the accelerator on FPGA. The host memory initially stores all

the parameters (weight matrices and biases) and input voice vectors, which will

be further loaded into on-chip memories (BRAM) of FPGA for online inference.
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Figure 5.9: The overall E-RNN hardware architecture.

In the FPGA chip, we implement the E-RNN controller, E-RNN accelerator,

PCIE controller, and input/output buffer. The E-RNN accelerator comprises a

group of processing elements (PEs). PEs are the basic computation block for one

set of input voice vectors with the corresponding weights and are primarily re-

sponsible for the computing tasks in LSTM and GRU. A handful of PEs and

their peripheral components are bundled as a compute unit (CU). Each CU im-

plements the LSTM/GRU model and computes one input voice vector sequence

independently. The E-RNN controller takes charge of the process of data fetch-

ing of the PCIE controller. Most importantly, it determines the computation

pipeline flow of the whole LSTM/GRU network. The on-chip input buffer and

output buffer have the data ready for PEs and collect the output results from the

accelerator. The E-RNN accelerator fetches parameters and input voice vectors

from on-chip BRAM and collects the results and writes back to BRAM.

5.6.2 PE Design

As shown in Figure 5.10, a PE consists of two FFT operators, M multipliers, a

conjugation operator, log2 N right shifting registers, and an accumulator. The

accumulator is an adder tree with N inputs (same as the FFT size). Due to the
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Figure 5.10: The PE design in FPGA implementation.

resource limitation on FPGAs, we need to let PEs operate using time-division

multiplexing (TDM) for different blocks. Suppose the DSP and LUT usage of

one PE are ∆DS P and ∆LUT , respectively. The number of PEs can be expressed

as: #PE = min{b DS P
∆DS Pc, b

LUT
∆LUT c}, where DS P, LUT are the total resources of DSP

and LUT, respectively.

5.6.3 Compute Unit (CU) Implementation

CU implementation of LSTM

The proposed CU architecture for LSTM model described in Eqn. (1.8) can

be implemented using above designs, shown in Figure 5.11. The architecture

consists of multiple PEs, sigmoid/tanh, double buffers, and multiplier-adder

block. There are five BRAM blocks. BRAM 1 stores input features. The weights

matrices (W∗(xr) and Wc) are stored in BRAM 2, 3. BRAM 4 stores bias vec-

tors b and the projection matrix Wym is stored in BRAM 5. Of course these

weight matrices are stored with compression in the block-circulant framework.

Based on data dependency of the LSTM model, we propose to adopt multi-stage

coarse-grained pipelining (abbreviated as CGPipe) techniques, to achieve maxi-

mum performance under the resource constraints. The first CGPipe stage is

responsible for multiplication of weights matrices (i.e.,W∗(xr)) and input vectors
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Figure 5.11: One compute unit (CU) with multiple processing elements (PEs) of
LSTM.

[xT
t , yT

t−1]T . The second CGPipe stage is in charge of non-matrix vector multipli-

cations such as diagonal matrix-vector multiplication, bias addition, and acti-

vation functions. The third CGPipe stage processes the matrix-vector multipli-

cation for projection matrix Wym and projected output yt. A double buffer is in-

serted among each CGPipe stage to shorten the idle time. Fine-grained pipelin-

ing (abbreviated as FGPipe) methodology is utilized to schedule the associated

sub-operations for each CGPipe stage. In our designs, double buffers are only

used between each pair of concatenated coarse-grained pipelining stages and

only 3 coarse-grained stages are used. Double buffers are not used for weights.

Because the inputs/intermediate results of LSTM/GRU do not have high di-

mension (with dimension of 1,024, as example), the double buffers only account

for a very small portion of BRAM resource.

The intermediate results (ct and mt) are initialized to zero. To explain the

mechanism of the architecture, we take the computation of forget gate ft as a

demonstration. As shown in Figure 5.11, input feature vectors [xT
t , yT

t−1]T fetched

from BRAM 1 and weight matrices W f (xr) fetched from BRAM 2 are prepared for

PEs for the purpose of calculating W f xxt and W f ryt−1 in CGPipe stage 1. W f cct−1
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is generated by point-wise multiplication (a group of multipliers) in the first

phase of CGPipe stage 2. Adder trees accumulate W f xxt, W f ryt−1, W f cct−1, and

bias b f in the second phase of CGPipe stage 2. After passing the intermedi-

ate data through the activation function σ, E-RNN produces the result ft. The

computations of other gates are implemented similarly. In the third phase of

CGPipe stage 2, the computed gate outputs (it, gt, and ft) are then fed into the

multiplier-adder block. By multiplying ot with the intermediate result from tanh

activation, E-RNN produces the projected output mt. Output yt will be written

back to BRAM 1 and replace yt for the next recurrent process (yt−1 ← yt) after

CGPipe stage 3.

CU Implementation of GRU

The CU of GRU model described in Eqn. (1.9) can also be implemented us-

ing above design. The proposed architecture for GRU is shown in Figure 5.12,
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Figure 5.13: Overview of high level synthesis framework.

which contains multiple PEs, double buffer, sigmoid/tanh, adder tree, and

element-wise multiplier. GRU architecture has four BRAM blocks, in which

input feature vectors [xT
t , cT

t−1]T are stored in BRAM 1. Weight matrix W∗(xc) is

stored in BRAM 2. Bias values (including bz, br, and bc̃) are stored in BRAM 3,

and weight matrix Wc̃x is stored in BRAM 4.

Multi-stage CGPipe techniques are utilized based on data dependency of

the GRU model, to separate the timing and resource-consuming matrix-vector

operations. In GRU, the first CGPipe stage takes charge of multiplication

of W∗(xc)[xT
t , cT

t−1]T . The second CGPipe stage computes the multiplication of

Wc̃c(rt � ct−1) (rt calculated in the first CGPipe stage) and Wc̃xxt. The third CG-

Pipe stage is responsible for the point-wise multiplication, activation functions,

and summation operations. In the proposed GRU architecture, CGPipe stage 1

and CGPipe stage 2 can be implemented using the same hardware resource of

FPGA with TDM method.

High-Level Synthesis (HLS) Exploration

We have developed an HLS framework for automatically converting high-

level descriptions of RNNs into FPGA implementations, with the framework

141



overview shown in Figure 5.13. This is a template-based framework for design

automation of RNN implementations, based on the above described optimiza-

tions. The HLS framework consists of two parts which are the primitive operation

templates generator and the RNN hardware design generator. More details are pro-

vided as follows:

Template Generator: We develop the C/C++ based template for each of the

primitive operations in RNNs, e.g., tanh, sigmoid σ, point-wise vector addition,

point-wise multiplication, and “FFT→element-wise multiplication→IFFT” pro-

cedure.

Graph Generator: In order to extract the complicated interactions among

primitive operations in an RNN model, we design a graph generator that pro-

duces a directed acyclic data dependency and operation graph unrolling the

computations in RNNs. We deliberately remove the feedback edges of ct and

yt, which are taken care of by the double-buffer mechanism, and therefore do not

harm the correctness and efficiency of the RNN.

Operation Scheduler: The computational complexities of the primitive oper-

ations in RNN exhibit a highly skewed distribution. For example, the complex-

ity of matrix-vector multiplication [W∗x W∗r][xT
t , yT

t−1]T is 128× as that of point-

wise multiplication Wic � ct−1. Therefore, we develop an automatic operation

scheduler to generate a pipeline scheme given the data dependency and opera-

tion graph from the graph generator. The objective is to maximize throughput

under hardware resource constraints.

Code Generator and Synthesis Backend: The code generator takes the oper-

ation scheduling result as input and generates the final C/C++ code automat-
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Table 5.3: Comparison of two selected FPGA platforms

FPGA Platform DSP BRAM LUT FF Process
ADM-PCIE-7V3 3,600 1,470 859,200 429,600 28nm

XCKU060 2,760 1,080 331,680 663,360 20nm

ically by integrating the involved primitive operations. The generated C/C++

code for RNN is then fed to an off-the-shelf commercial synthesis backend to

generate the FPGA implementation.

5.7 Experiment Evaluation

Experiment Platform. We use two FPGA platforms for evaluating the proposed

E-RNN framework for LSTM and GRU RNNs: Alpha Data’s ADM-PCIE-7V3

and Xilinx KU060. The ADM-PCIE-7V3 board, comprising a Xilinx Virtex-

7 (690t) FPGA and a 16GB DDR3 memory, is connected to the host machine

through PCIE Gen3 × 8 I/O Interface. Xilinx KU 060 is a Kintex UltraScale serial

FPGA with two 4GB DDR3 memory. The host machine adopted in our experi-

ments is a server configured with multiple Intel Core i7-4790 processors. The de-

tailed comparison of on-chip resources of the two FPGA platforms is presented

in Table 5.3. We use Xilinx SDX 2017.1 as the commercial high-level synthesis

backend to synthesize the high-level (C/C++) based RNN designs on the se-

lected FPGAs. The E-RNN framework of FPGA implementation of (LSTM and

GRU) RNNs are operating at 200MHz on both platforms, which is configured to

be the same as the prior works ESE [42] and C-LSTM [124] for fair comparisons.

We evaluate the performance on both FPGA platforms for LSTM and GRU

RNNs using the same TIMIT dataset, which is the same dataset utilized in the
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Table 5.4: Detailed comparisons for different (LSTM and GRU) RNN designs on
FPGAs (ours, ESE, and C-LSTM).

ESE [42]
C-LSTM FFT8 [124]

(Block size: 8)
E-RNN FFT8
(Block size: 8)

E-RNN FFT16
(Block size: 16)

E-RNN FFT8
(Block size: 8)

E-RNN FFT16
(Block size: 16)

RNN Cell LSTM-1024 w/ projection-512 [109, 42] GRU-1024
Matrix Size

(#Params of top layer) 0.73M 0.41M 0.20M 0.45M 0.23M

Quantization 12bit fixed 16bit fixed 12bit fixed
Matrix

Compression Ratio 4.5 : 1a 7.9 : 1c 15.9 : 1 8.0 : 1 15.9 : 1

Platform KU060 7V3 KU060 7V3 KU060 7V3 KU060 7V3 KU060 7V3
DSP (%) 54.5 74.3 95.4 85.6 96.4 79.6 79.0 62.1 79.5 64.3

BRAM (%) 87.7 65.7 88.1 78.5 90.3 65.2 90.8 88.2 81.2 79.5
LUT (%) 88.6 58.7 77.6 74.0 76.5 59.4 81.2 78.8 72.5 67.4
FF (%) 68.3 46.5 61.2 52.3 65.1 55.3 72.4 73.2 65.2 60.3

Frequency (MHz) 200
PER Degradation 0.30% 0.32% 0.14% 0.31% 0.18% 0.33%

Latency (µs) 57.0 16.7 13.7 12.9 7.4 8.3 10.5 10.5 6.7 6.5
Frames per

Second (FPS) 17,544b 179,687 231,514 240,389 429,327 382,510 284,540 284,463 445,167 464,582

Power (W) 41 22 - 24 - 25 - 22 - 29
Energy Efficiency

(FPS/W) 428 8,168 - 10,016 - 15,300 - 12,930 - 16,020

a This estimation considers both weights and indices (there is at least one index per weight after compression in ESE). However, this is a
pessimistic estimation for ESE because indices can use fewer bits for representation than weights.
b We use ESE’s theoretical computation time to calculate FPS, the real computation time is larger than theoretical one which leads to smaller
FPS.
c We measure the compression ratio by the number of parameters in matrices. As the network architectures are identical in C-LSTM and
E-RNN, their matrix compression ratios are the same.

prior works ESE and C-LSTM. The latencies of E-RNN framework implemen-

tation are measured by the total number of clock cycles (NCC) multiplied by the

clock period T (5 ns) from the Xilinx SDx tools, and power/energy consump-

tions are from actual power measurements. For platform KU060, since we do

not have the physical platform for power measurement, we leave the power

and energy efficiency values to be blank in Table 5.4. As shown in Table 5.4 with

detailed comparison results, we explore on both LSTM and GRU, with two dif-

ferent block sizes 8 and 16, on both selected FPGA platforms. The bit length is

optimized to be 12 bits, which is validated to result in no additional accuracy

degradation due to quantization. We use the same baseline LSTM model with

ESE. (i) We present a comparison between E-RNN with block size 8 and ESE,

in which case the compression ratio will be similar. The comparison aims to

demonstrate the lower accuracy degradation and higher performance achieved

by E-RNN; (ii) we present a comparison between E-RNN with block size 16 and

ESE, in which case the accuracy degradation will be similar. The comparison
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aims to demonstrate that E-RNN achieves better performance and energy effi-

ciency under the same accuracy degradation; (iii) we compare the performance

and energy efficiency between E-RNN and C-LSTM using the same block size

(both are based on the block-circulant matrix-based framework), to illustrate the

effectiveness of the design optimization framework; (iv) we provide the results

of E-RNN based on GRU model, for further enhancement on performance and

energy efficiency.

Comparison with ESE

When the block size is 8, the compression ratio of E-RNN is similar compared

with ESE. The comparison results, as shown in the first and third columns

of Table 5.4, are both on the KU060 FPGA platform. We could observe that

the E-RNN achieves lower accuracy degradation compared with ESE (0.14%

vs. 0.30%), demonstrating the effectiveness of the block-circulant framework

in terms of accuracy. We can also observe that E-RNN achieves 13.2× perfor-

mance improvement, with an energy efficiency improvement of 23.4× using ac-

tual measurement results on the ADM-PCIE-7V3 board. It is necessary to note

that as shown in Table 5.3, the manufacturing process of XCKU060 FPGA is

20nm while the process of Virtex-7 is 28nm, which means the energy efficiency

gain reported here is even conservative.

Although the compression ratios are similar, the significant efficiency im-

provement is because of the following two reasons. First, the block-circulant

framework results in a regular network structure, and therefore a significantly

higher degree of parallelism. As an illustrative example, we can implement in

parallel 16 FFTs, each with 16 inputs, in parallel in FPGA. In contrast, it will
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be especially difficult for ESE to operate in parallel 16 × 16 = 256 inputs when

the network is stored in the irregular structure (one weight indexing another).

The second reason is the efficient implementations of tanh and sigmoid activa-

tion functions. Our piecewise linear approximation method can support activa-

tion implementation only using on-chip resources. In contrast, the ESE imple-

ments activations in look-up tables, and therefore requires off-chip DDR storage

if enough parallelism is required (although it is possible to store all weight pa-

rameters of ESE on-chip). The latter reason accounts for more than 2× energy

efficiency gain and the majority is attributed to the regularity benefit. As a side

evidence, the LUT and FF utilizations of E-RNN are lower than ESE, which

shows that E-RNN has less boolean and numeric nodes due to the regularity.

With block size 16, the accuracy degradation of E-RNN (using LSTM model)

is similar as ESE. As shown in the first and fifth column of Table 5.4, the E-RNN

achieves 24.47 × performance improvement, with a energy efficiency improve-

ment of 35.75 × using ADM-7V3 platform compared with ESE. The results are

at least 50% higher than results of E-RNN with block size 8.

Comparison with C-LSTM

We applied ADMM to well trained RNN models to train the block circulant ma-

trices. As ADMM does not hurt the original model performance theoretically,

but only convert the matrices to block circulant format, the accuracy degrada-

tion is smaller than C-LSTM. As a result, E-RNN achieves lower PER degra-

dation than C-LSTM when given the same block size (0.14% vs. 0.32% with

block size of 8). We compare the performance and energy efficiency between

E-RNN and C-LSTM using the same block size 8 (both are based on the block-
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circulant matrix-based framework). We can observe that E-RNN achieves 1.33×

performance improvement with a block size of 8, with an energy efficiency im-

provement of 1.22× using the same ADM-PCIE-7V3 board. The similar obser-

vation is also obtained from comparison using block size of 16: E-RNN (using

LSTM) achieves 1.32× performance and 1.06× energy efficiency improvement

compared with C-LSTM. These improvements are attributed to the design opti-

mization framework, including hardware system design, PE optimization, and

quantization.

Among the three, the first two components are more effective compared to

quantization: reducing from 16 bit to 12 bit only accounts for less than 10%

performance improvement. Compared to C-LSTM, E-RNN has a systematic

architecture including PE and CU for both LSTM and GRU. In addition, the op-

timization target of E-RNN is in the bottom level, i.e., PE level. The seemingly

counterintuitive observation is because the same number of DSP blocks are uti-

lized in FPGA (on the other hand, BRAM does not account for a large portion

of energy consumption in FPGA).

Experimental Results on GRU

As shown in the right four columns of Table 5.4, compared with ESE, C-LSTM,

and E-RNN with LSTM, we can observe that the E-RNN with GRU model

achieves 26.48×, 2.59×, and 1.21× performance improvement under the same

accuracy degradation, respectively. For the perspective of energy efficiency, the

E-RNN with GRU model can achieve 37.4×, 2.0×, and 1.05× improvement, re-

spectively. Experimental results show that the design optimization framework

E-RNN with GRU model can have the best performance and energy efficiency.
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We verify that if the accuracy requirement can be satisfied, it is desirable to shift

from LSTM to GRU because of less computation and storage.

5.8 Conclusion

In this work, we employ a structured compression technique ( block-circulant

matrices) to compress the RNN model small enough to be fitted on BRAMs of

FPGA. Besides the reduced model size, the irregular computation and memory

accesses have been completely eliminated by the regular structure of the block-

circulant matrices. Moreover, an efficient FFT based fast circulant convolution

is applied to accelerate the RNN computation by reducing both the computa-

tional and storage complexities. we use ADMM-based training for deriving

block-circulant matrice-based RNN representation to achieve high accuracy. In

order to accommodate a wide range of RNN variants, we also propose an au-

tomatic optimization and synthesis framework. We explore on both LSTM and

GRU using the proposed E-RNN and we provide comprehensive comparisons.

Experimental results demonstrate the effectiveness of the proposed framework

E-RNN compared with the prior works.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, we studied three computing paradigms to accelearate the ma-

chine learning inference. We offered better model to improve the performance.

Meantime, the inference framework achieves higher energy efficiency and faster

speed.

In Chapter 2, we discussed the cogent confabulation based sentence comple-

tion algorithm. Using Chinese language as a case study, we developer better

model for sentence completion problem through mathematical analysis. With

incremental comparison experiments, we proved the optimization for the sen-

tence confabulation model is efficient to improve the model performance.

In Chapter 3, we deployed the sentence confabulation model on a multi-

processing system. The cogent confabulation model was implemented and

modified in a parallel manner. The system exploited multi-threading to build

a parallel structure to process lexicons in sentences. We optimized the system

by using intermittent pruning to overcome the compute speed overhead due to

cache coherence and this also improved the accuracy performance of the frame-

work.

In Chapter 4, We applied an approximate computing paradigm, stochastic

computing to the deep convolutional neural networks. By decomposing the

DCNNs, we built fuctional blocks using SC components and joint optimiza-

tion along the datapath was conducted to main a high inference accuracy with
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ultra low hardware footprint and energy/power cost. We presented two SC

based frameworks, SC-DCNN and HEIF. HEIF was an optimized version of

SC-DCNN. Both frameworks achieved high energy efficiency, throughputs, and

area efficiency for the DCNNs with less accuracy loss.

In Chapter 5, we investigated the a structured compression technique us-

ing block-circulant matrices to compress the RNN model small enough to be

fitted on BRAMs of FPGA. An efficient FFT based fast circulant convolution is

applied to accelerate the RNN model computation by reducing both the compu-

tational and storage complexities. we used ADMM-based training for deriving

block-circulant matrice-based RNN representation to achieve high accuracy. In

order to accommodate a wide range of RNN variants, we also propose an au-

tomatic optimization and synthesis framework called E-RNN. We explored on

both LSTM and GRU using the proposed E-RNN and Comprehensive experi-

mental results demonstrate the effectiveness of the proposed framework E-RNN

compared with the prior works.

6.2 Future Directions

6.2.1 Applying Structure Matrices to DCNN

We presented a holistic framework for energy efficient high-performance

highly-compressed DNN hardware design in [83]. This design can be ap-

plied to the fully-connected layers in the modern neural networks. Meanwhile,

in [126, 29], we proposed an CirCNN architecture, a universal DNN inference

engine that can be implemented in various hardware/software platforms with
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configurable network architecture. The inference engine can not only acceler-

ate the computation for the fully-connected layer (including RNNs), but also

accelerate the computation of convolution layers by reshaping the convolution

tensors. Till now, all the components can be accelerated using block circulant

matrices. As the deep learning evolves fast, modern deep learning models uti-

lize deeper architectures with lots of convolution layers. We propose to evaluate

our block circulant matrices based acceleration method on modern neural net-

work structures like ResNet [46], wide ResNet [137], etc..

6.2.2 Accelerating structured matrices on GPGPU

The structure matrices have been fully proven to support an energy-efficient fast

inference for deep neural networks based on our previous discussion. How-

ever, the structural acceleration on the GPU has not been demonstrated. We

measured the wall time of block-circulant DCNN on GPU platform but do not

observe obvious speedup. We believe such phenomenon results from the insuf-

ficient low-level optimization for block-circulant operations on GPU such tensor

padding/reshaping and FFT. Unlike matrix operation, FFT operation is far less

efficiently implemented and optimized on GPU. For instance, computation of

block-circulant DCNN requires a fine-grained parallel design consisting of both

FFT/IFFT operations and summations over divided blocks. However, block-

level synchronization on GPU has been a difficult problem. Instead, Nvidia

specifically optimizes GPU micro-architecture to accelerate matrix multiplica-

tion. Thus, a low-level customized implementation and joint optimization for

the block circulant operations on GPU are urgently needed.
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