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ABSTRACT 

 

Invasive species are a persistent threat to biodiversity and agriculture that cost countries 

millions of dollars each year. Despite the scale and impact of the problem of invasive 

species, it remains a mystery why some introduced species become invasive and others 

remain benign. Here, I examined the theory that invasive species possess key traits which 

make them successful invaders. Specifically, I investigated the hypotheses that 1) 

plasticity increases invasive species’ success compared to native species, 2) invaders 

evolve rapidly in their new ranges, 3) invasive species avoid tradeoffs apparent in natives 

related to growth, resource use, or defense. Using 30 species of native and invasive shade 

tolerant shrub species in a common garden, I tested whether invasive species had leaf 

traits that were more plastic to seasonal changes in light availability. I found that invasive 

species were more plastic, but I found no evidence that their plasticity contributed to 

increased carbon assimilation across the growing season. Next, I compared leaf traits of 

populations of five invasive species growing in forests from East Asia in their native 

range (Japan) and their invasive range (Eastern North America). I also compared these 

five invaders to three native co-occurring North American species. I selected individuals 

that occurred along a natural light gradient to assess leaf plasticity in response to light 

availability. I determined that plasticity in invaders partially arose in the native range, and 

that some plasticity evolved rapidly in the invaded range after introduction. I concluded 

that many North American species are less adapted for life in high light environments, 

such as along forest edges, than East Asian invaders; the ability to grow in both low and 

high-light conditions may give some forest invaders a competitive advantage. Finally, I 

quantified traits of annual, perennial, coastal salt tolerant perennials, and invasive 



 
 

populations of Mimulus guttatus in a greenhouse setting (22 total populations). I 

decomposed relative growth rates of each group into specific leaf area, photosynthetic 

rate, and leaf mass fraction to determine which trait contributed most to growth rate 

within each group of populations. Invasive populations did not have higher relative 

growth rates, contrary to our predictions, but they did have different ways of achieving 

high growth rates. I also examined whether tradeoffs associated with global trait patterns 

such as the leaf economics spectrum apply at the population level. I found that global 

patterns of plant functional traits may not be applicable when studying traits within 

species. I conclude that a variety of traits and evolutionary history contribute to the 

success of invasive species around the globe.  
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CHAPTER 1: INTRODUCTION 

Invasive species are those species that have been transported outside of their 

continent of origin by anthropogenic means and have established prolific populations in 

their new ranges, often to the detriment of native species diversity and productivity of 

agricultural lands (Elton 1958). Invasive species are opportunities to study foundational 

concepts in ecology and evolution, such as how organisms come to thrive in novel 

environments (Sax et al. 2007). The economic costs of managing invasive species and 

mitigating damage they cause, upwards of $336 billion USD in the US, Australia, United 

Kingdom, South Africa, and India alone (Pimental et al. 2001; Moles et al. 2012) are 

increasing each day as the world becomes increasingly interconnected.  

 Our understanding of which traits or ecological circumstances allow some 

introduced species to become invasive and preclude establishment of others remains 

poor. Some have hypothesized that repeated introductions of invasive species, either 

through contaminated trade vessels or through horticultural means, allows invasive 

species to establish through repeated introductions to favorable habitats. Others purport 

that traits of the invasive species themselves, such as high relative growth rate (Baker 

1965), high resource use efficiency, or prolific seed production (Von Holle & Simberloff 

2005) allow invaders to establish. Still others hypothesize that traits of the invaded 

communities, like low diversity or high resource availability facilitate invasions (Jeschke 

et al. 2012; Fridley & Sax 2014). Most likely, it is a combination of these three factors 

that cause some species to become invasive. I focus on testing the general hypothesis that 

traits of invasive species themselves make them successful in their new, invaded ranges. 

Specifically, I address two commonly hypothesized traits of invasive species: increased 
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plasticity (Richards et al. 2006; Davidson, Jennions & Nicotra 2011) and increased 

relative growth rate (Baker 1965; Pattison, Goldstein & Ares 1998; Bellingham et al. 

2004). 

 High phenotypic plasticity in invasive species is a theory originally proposed by 

Baker (1965) suggesting invaders possess higher phenotypic plasticity than co-occurring 

natives, which allows them to colonize more environments and ultimately maintain 

higher fitness. For example, in the deeply shaded deciduous understory of temperate 

deciduous forests, phenotypic plasticity in response to light may be advantageous 

(Delagrange et al. 2004; Paquette et al. 2012). This is because light levels in the 

understory are highly seasonally variable (Augspurger, Cheeseman & Salk 2005; 

Martinez & Fridley 2018) and canopy gaps due to treefall can occur. Plants that can take 

advantage of these changes in light availability may assimilate more carbon which in turn 

leads to higher growth rates and seed production. Additionally, the ability to colonize a 

wide variety of light environments as a result of phenotypic plasticity may allow species 

to colonize both forest understory interiors and forest edges while native species might 

frequently be limited to one type of environment (Pattison et al. 1998; Leicht & Silander 

2006). Invasive species phenotypic plasticity may be the result of millions of years of 

evolution in the native range (Fridley & Sax 2014), but it may evolve in the new range 

because of population bottlenecks or differences in selection pressures, such as release 

from enemies present in the native range but not invaded range (Keane & Crawley 2002). 

However, where invader phenotypic plasticity arises (native range or invaded range) 

likely varies by species, so additional studies are needed to understand these mechanisms 

fully.  
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One way to test for trait differences between ranges is to perform ‘home’ and 

‘away’ studies of populations of invasive species in both their native (home) and invaded 

(away) ranges. For example, through this type of study, some forest understory invaders 

have been shown to display increased resource (nitrogen) use efficiency in comparison to 

co-occurring native species (Heberling & Fridley 2016). Changes in nitrogen use 

efficiency may come about through changes in nitrogen allocation to various pools within 

leaf tissue. Allocation to one pool or the other becomes advantageous in differing light 

environments (Evans 1989), and an optimal allocation scheme exists for each light 

environment (Hikosaka 2014). For example, N allocation to light cycle reactions may be 

higher in high light environments relative to shaded environments (Hikosaka 2014).  

Phenotypic shifts in the invaded range may also be influential in successful 

invasions if they impact relative growth rate (RGR), which is often cited as key trait 

influencing invader success (Baker 1965; Grotkopp, Rejmánek & Rost 2002). However, 

invasive species cannot also possess high RGR before arriving in their invasive ranges. 

Three physiological traits underlie RGR: leaf mass fraction (LMF), photosynthetic rate, 

and specific leaf area (SLA) (Hunt & Cornelissen 1997). Few studies on the influence of 

each of these traits in invasive plant populations exist. Insights to how invaders maximize 

RGR, and whether they maximize it in different ways from native populations will allow 

us to better understand why species invasions exist and what traits facilitate their success 

in novel environments.  
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Chapter 2 

 Woody understory species tend to leaf out earlier than the tree canopy and 

maintain their leaves after tree canopy senescence in autumn (Fridley 2012). 

Consequently, they are faced with a physiological challenge: adapt leaf photosynthesis to 

light environment changes or face decreased carbon returns. I hypothesized that 

understory invaders would display higher adaptive plasticity in leaf traits in response to 

seasonal light changes than native species. I monitored leaf production in all individuals 

to assess the importance of leaf production in trait plasticity within a single plant. In 

addition, I assessed if plants were plastic via production of new leaves or through 

variation in leaves produced at the onset of the growing season. Using 17 species of 

invasive and 13 species of native shrubs in a common garden in Syracuse NY, I 

monitored seasonal changes in leaf physiology. I found that invaders displayed higher 

levels of seasonal plasticity with respect to light level changes, but I found no evidence 

that this plasticity was adaptive in a C gain sense. The only species group for which 

seasonal plasticity influenced C gain was in native species that continually produced new 

leaves throughout the growing season. 

 

Chapter 3 

When non-native plants first arrive in their new ranges, they may be subject to 

genetic bottlenecks or artificial selection through horticultural plantings that alter their 

phenotypes (Dlugosch & Parker 2008). They may also undergo rapid evolutionary 

change because of exposure to a novel environment or release from natural enemies 

(Keane & Crawley 2002). Regardless of mechanism, phenotypic changes in the invasive 
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range can facilitate spread and successful invasion. In chapter 3 I examined traits of 

invasive woody understory species from East Asia in both their native and invasive 

ranges and compared them to native species in ENA forests. Specifically, I measured 

ecophysiological traits in four invasive species in their native and invasive ranges 

occurring along a natural light gradient in forests. I hypothesized that invasive species 

would have higher leaf trait variability along a light gradient, which would make them 

more successful in a variety of light environments than native species. I also 

hypothesized that trait shifts in the invasive range would facilitate carbon (C) gain for 

invasive species. I found evidence that invaders respond plastically to light availability in 

their native range, but also that the plasticity may be heightened in their invaded range 

and may lead to increased C gain. This result is highly trait-dependent – not all traits 

showed shifts between the native and invasive ranges. Furthermore, I saw trait shifts in 

leaf traits related to C gain in the invaded range and found evidence that ENA native 

species are poorly adapted to light conditions outside of deeply shaded, intact understory. 

 

Chapter 4 

Global patterns of plant traits predict that long-lived perennial plants should have 

a different set of traits than short lived annual plants (Wright et al. 2004). For example, 

according to the leaf economics spectrum (LES) theory, perennial plants should have 

traits such as low photosynthetic rates and low specific leaf area (SLA), while annual 

plants should display the opposite traits (Wright et al. 2004). In general, longer lived 

plants tend to have traits that extend the lifespan of their leaves, while annual plants have 

leaf traits that instead maximize carbon assimilation during a short growing period. 
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However, these trait co-occurrences have not frequently been examined within a single 

species. RGR is thought to be predictive of invasiveness, but the physiological traits that 

contribute to RGR within a single species containing annual, perennial, and invasive 

populations has not been studied before (Baker 1965). I sought to decompose RGR 

within a single species that possesses multiple life history strategies (annual vs. 

perennial) and that is also invasive. I used approximately 22 populations of Mimulus 

guttatus grown in the greenhouse to assess differences in RGR, leaf photosynthesis, leaf 

mass fraction ([LMF] allocation to photosynthetic material), SLA, and leaf N content. I 

hypothesized that annual and perennial populations would divide themselves along the 

trait axes associated with the LES (Wright et al. 2004) and they would have different 

traits contributing most to their RGR, and that invasive populations would have higher 

RGR than native populations. I found that traits of annual and native perennial 

populations were very similar and that the two maximized RGR via similar combinations 

of traits. RGR of invasive populations was comparable to that of native perennial 

populations, but they maximized RGR through LMF and SLA, while native populations 

only showed significant contributions of SLA to RGR. This study suggests that within 

small scales or within closely related taxa, global patterns such as the LES may not apply. 

Additionally, RGR does not always increase in the invaded range and may not be the best 

predictor of invasiveness. 
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CHAPTER 2: ACCLIMATION OF LEAF TRAITS IN SEASONAL LIGHT 

ENVIRONMENTS: ARE NON-NATIVE SPECIES MORE PLASTIC? 

Published in Journal of Ecology, 2018, vol 106 

Abstract 

1. In temperate deciduous forests, understory light environments vary dramatically 

throughout spring, summer, and autumn due to tree canopy leaf display. This 

variability in light level is a physiological challenge for understory species that 

produce sun-adapted leaves in the spring before being shaded by the tree canopy. 

Similarly, some understory species display leaves late into autumn after the tree 

canopy senesces.  

2. Many species in North American deciduous forests with extended leaf display are 

not native to North America. Since many non-native species have been shown to 

have greater plasticity than natives, we hypothesized that leaves of non-native 

species may be more plastic with respect to seasonal light changes than natives, 

and that this plasticity may allow them to assimilate more carbon in the same 

environment.  

3. We measured leaf traits and photosynthetic capacity of 17 native and 13 non-

native understory shrub species in a common garden in Syracuse, New York, 

during spring, summer, and autumn. We tested for the contribution of seasonal 

mean and variance (plasticity) of leaf traits to a species’ average photosynthetic 

rate and total leaf production. We also analyzed the extent to which leaf 

adjustments depended on whether plants continued to produce new leaves over 

the growing season.  
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4. Leaf traits of both native and non-native species varied seasonally, but plasticity 

varied in extent and contribution to overall carbon gain. Non-native species had 

the highest seasonal plasticity, but, contrary to our hypothesis, such plasticity did 

not contribute to their overall carbon gain. However, leaf trait plasticity was 

adaptive for native species that continued to produce leaves throughout the year, 

primarily due to increases in quantum efficiency and electron transport rate in 

leaves produced mid-year compared to leaves produced early in the year.  

5. Synthesis. Despite large adjustments in leaf traits across seasonal light 

environments for both native species and non-native species, we found little 

evidence that leaf-level plasticity drives non-native invasion or contributes 

strongly to annual carbon gain or productivity in understory species. Instead, 

differences in mean leaf traits across seasons are sufficient to explain carbon gain 

advantages of non-native woody species in deciduous forests. 

  

Keywords 

Invasion ecology; leaf traits; plasticity; leaf demography; non-native species; 

ecophysiology; seasonality; photosynthesis; deciduous understory 

 

Introduction 

The light environments of deciduous understories are highly dynamic due to tree canopy 

leaf display. Light levels peak in late spring, decrease with tree canopy leaf out, and 

increase again after tree canopy senescence in autumn (Hutchison and Matt, 1977; Fig. 

1). This dramatic variation in light availability poses a unique challenge for understory 
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plants: leaves produced in high light levels in the spring, with high photosynthetic rates, 

may experience negative carbon balances once light levels decrease in the summer 

(Augspurger, Cheeseman and Salk, 2005). Leaves produced after canopy emergence 

forego high carbon gain associated with spring light levels. Due to putative tradeoffs in 

resource allocation between light and dark reactions of photosynthesis, sun and shade 

leaves often exhibit contrasting metabolic traits (Evans and Poorter, 2001; Hikosaka, 

2004; Oguchi et al., 2006). Shade-adapted leaves tend to be thin with high specific leaf 

area (SLA) and chlorophyll (chl) content, increased levels of light harvesting capacity 

and efficiency (quantum efficiency [α]), and reduced dark respiration rates (Rd) 

(Valladares and Pearcy, 1998; Sánchez-Gómez et al., 2006; Valladares and Niinemets, 

2008). These traits maximize carbon assimilation rates in low light and reduce tissue 

maintenance and respiration costs (Lambers et al., 1998; Valladares and Niinemets, 

2008). Sun-adapted leaves tend to have the opposite traits: low SLA, high assimilation 

rates, high respiration rates, high electron transport rates (Jmax), and high maximum 

carboxylation capacity of rubisco (Vcmax). These traits can be maintained at a positive 

carbon balance when light is abundant, and together maximize C assimilation in full sun 

(Abrams and Kubiske, 1990).  

Leaf traits often adjust after expansion in response to shifts in irradiance levels, 

such as the formation of forest gaps (Turnbull et al., 1993; Yamashita et al., 2000; 

Oguchi et al., 2003; Oguchi et al., 2008) or self-shading due to new growth (Kikuzawa, 

1991). This trait adjustment with respect to changes in light availability, herein defined as 

plasticity within a single leaf or plant, is an important component of understory plant 

fitness in deciduous forests (Kikuzawa, 1991; Gill et al., 1998; Augspurger et al., 2005). 
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Within-plant or within-leaf plasticity can become especially important after light level 

changes due to gap formation or seasonality. Such plasticity may be accomplished by 

adjusting existing leaves or producing new leaves for plants with indeterminate growth 

(Augspurger et al., 2005; Kikuzawa and Lechowicz, 2011). Seasonal leaf trait plasticity 

may allow leaves to maintain positive carbon balance as light levels change after the leaf 

is produced, and can include both chemical changes (i.e. Rubisco & chl fractions) 

(Rothstein and Zak, 2001; Niinemets et al., 2003) and physical traits such as SLA or 

mesophyll cell density (Oguchi, Hikosaka & Hirose, 2003). Leaf chemical changes often 

involve shifts in nitrogen (N) allocation that reflect different light levels. For example, in 

the spring more N may be allocated to rubisco, increasing carboxylation (Vcmax) levels in 

high light. In the summer, when light is low, N may be reinvested in chl and light 

harvesting proteins  (Kitaoka & Koike, 2004). Light-saturated electron transport rate 

(Jmax) is also maximized in full sunlight, which may determine the light level at which 

photosynthesis becomes limited by cellular CO2 concentration instead of light (Farquhar, 

VonCaemmerer & Berry, 1980; Niinemets and Tenhunen, 1997). Although plasticity 

with respect to forest gap formation is relatively well understood (Naidu and Lucia, 1997; 

Kitao et al., 2000; Yamashita et al., 2000; Myers and Anderson, 2003; Oguchi et al., 

2006; 2008), studies that have measured leaf trait plasticity of shade-tolerant understory 

plants with respect to light seasonality are based largely on tree seedlings or herbaceous 

species in spring and summer (Jurik, 1986; Rothstein and Zak, 2001; Kitaoka and Koike, 

2004, 2005; Yasumura, Hikosaka and Hirose, 2006) and have not addressed the 

significance of autumnal changes, particularly in the context of forest invasions (but see 

Xu, Griffin and Schuster, 2007). Additionally, the cumulative fitness consequences of 
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leaf trait plasticity over long time scales (single year or multiple years) are not well 

understood due to limited studies that have linked whole-plant carbon gain to 

environment-induced plasticity in functional traits.  

Another component of seasonal leaf plasticity is leaf demography: the combined 

patterns of leaf emergence, longevity, leaf cohort production, and leaf fall (Kikuzawa & 

Lechowicz, 2011). Leaves of understory species produced at different periods in the 

growing season vary both physiologically and morphologically as a result of the 

prevailing light environment at leaf birth (Xu et al., 2007; Fridley, 2012). Understory 

species that produce only one cohort of leaves must either adapt to varying light 

conditions and sudden bursts of light or restrict leaf activity to certain seasons. One way 

plants may do this is through delayed spring leaf emergence (Kikuzawa, 1991; 

Augspurger et al., 2005). In temperate deciduous woody species of Eastern North 

America (ENA), we have observed three broad leaf demographic strategies: 1) highly 

shade tolerant, late successional determinant species that produce a single cohort of 

leaves in conjunction with or after tree canopy leaf out; 2) indeterminant shade-tolerant 

species that continually produce new leaves until autumn; and 3) species that produce a 

cohort early in the spring prior to tree canopy leaf out and a second cohort of leaves in 

early summer or in conjunction with tree canopy leaf out (see also Kikuzawa, 1991; 

Fridley and Craddock, 2015). Continual leaf production across seasons may be an 

effective strategy for maximizing photosynthetic capacity across light environments. 

However, this strategy is likely to come at a significant cost of energy and nutrients used 

to make new leaves rather than for reproduction or reserve storage (Chapin et al., 1990).  
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High plasticity in form and function is an oft-cited mechanism of non-native 

species advantage (Baker, 1965; Sultan, 2001; Callaway et al., 2003; Funk, 2008 ). Leaf 

phenology differs strongly between native and non-native ENA forest species, 

particularly in terms of autumnal senescence (Fridley, 2012). However, it is unclear 

whether non-native species advantage includes concomitant seasonal plasticity in leaf 

traits within individual plants. One non-native species in ENA forests, Berberis 

thunbergii, has been shown to shift leaf traits seasonally with respect to changing light 

availability in the understory more than co-occurring native species. Seasonal plasticity 

allows this species to take advantage of the high light availability in the spring, while co-

occurring native species fail to utilize high spring light availability, and thus assimilate 

less C overall (Xu et al., 2007). Non-native species may also have different resource-use 

strategies than natives, such as higher chl:N ratios in shaded conditions, higher 

photosynthetic rate, and/or higher photosynthetic nitrogen use efficiency (Niinemets et 

al., 2003; Heberling and Fridley, 2013; 2016). High seasonal plasticity relative to native 

species, in concert with large seasonal fluctuations in understory light levels, may be one 

way that non-native species outcompete natives in the understory.  

Here, we focus on seasonal plasticity in leaf function as a potential mechanism of 

non-native species advantage in temperate deciduous forests. This is only one of several 

potential ways in which plasticity drives forest invasions but likely one of the most 

significant to the fitness of understory species (Valladares and Niinemets, 2008). Our 

analysis considers seasonal plasticity at two scales, including variance in a leaf trait 

within 1) an individual plant (including trait changes associated with the production of 
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new leaves) and 2) an individual leaf, as plant fitness in a heterogeneous light 

environment may be influenced by both types of adjustments. 

We monitored seasonal leaf function in a common garden composed of native and 

non-native understory shrubs common to ENA. We included measurements taken before 

(May), during (July), and after (Oct) simulated forest shade. As a proxy of individual 

fitness, we used two performance parameters related to an individual’s energy budget and 

fitness: 1) mean instantaneous photosynthetic rate (MIPR) across the growing season 

(related to annual C gain and gross primary productivity, which contributes to fitness in 

ways beyond leaf growth, such as root growth, survival, and defense, that we did not 

measure), and 2) aboveground net primary production (NPP), estimated as total annual 

leaf production as a proxy for annual growth rate. We sought to answer the following 

questions: 1) Do physiological leaf traits vary seasonally with light environment? 2) Does 

variation in leaf traits across seasons influence annual C gain or NPP? 3) Do non-native 

species have more seasonally plastic leaf traits than native species? 4) Do indeterminate 

plants, with leaves produced in both sun and shade environments due to tree canopy 

dynamics, exhibit greater plasticity in leaf traits than determinate (single flush) plants? 

We hypothesized that in the spring and autumn, leaf traits associated with full sun 

environments (high Vcmax, Jmax, and low SLA) maximize understory shrub C gain, while 

in the summer, C gain is maximized by efficient light harvesting characteristic of shade-

adapted leaves (high α, chl, and SLA). We also hypothesized that non-native species 

would exhibit higher seasonal leaf plasticity than native species, facilitating their greater 

overall assimilation and leaf production rates. Lastly, we hypothesized that indeterminate 
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plants exhibit higher seasonal leaf plasticity due to the production of new leaves rather 

than through adjustments of existing leaves.  

 

Methods and Materials 

Study Site and Species 

We measured leaf properties across three seasons in a common shade garden in 

Syracuse, New York, USA (43.0° N, 76.1° W). Our study included 30 species (two to 

three individuals of each species) of native and non-native deciduous shrubs and lianas of 

ENA common to forest understories (Table 1). Individuals were planted as saplings in 

three replicate blocks 7-9 years before this study (Fridley, 2012). Transplants were 

sourced from local natural areas when possible and otherwise obtained from nursery 

stock of similar latitude. All selected non-native species are managed as invasive species 

in ENA (Fridley, 2008) except for naturalized Viburnum setigerum. We selected species 

to include phylogenetically paired native and non-native species to minimize the effect of 

phylogenetic autocorrelation. Similarly, growth-determinate and indeterminate pairs were 

selected within genera whenever possible. To simulate a tree canopy a black 

polypropylene shade cloth transmitting 20% of total radiation (Fig. 1) was placed over 

the common garden from June 5 to October 1. (Note Fig. 1 shows light levels for a 

subsequent year of more complete light data, in which plant culture was identical except 

the shade cloth was removed November 1). Although the light red:far red ratio (R:FR) 

under black (neutral) shade cloth does not reproduce forest understory R:FR (<1), plants 

adapted to shaded conditions are generally unresponsive to R:FR (Smith 1982; Schmitt 

and Wulff, 1993; Morgan and Smith, 2017) and we have not detected phenological 
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differences between shaded and unshaded individuals at the garden (Fridley, 2012). 

Average midday light conditions in the common garden were 1500-2000 PPFD in the 

spring, 300-400 PPFD in the summer, and 800-1000 PPFD in autumn (Fig. 1). 

 

Leaf Trait Measurements 

 Leaf traits of each individual were measured in late May, July, and mid-late 

October of 2015. Gas exchange measurements were performed on cut branches in the 

laboratory following Niinemets et al., (2005), Heberling and Fridley, (2013), and 

Heberling et al., (2016). Healthy branches at or near the top of the leaf canopy were 

chosen for collection. Branches were cut from plants just before dawn on cool mornings 

to reduce water loss and were then immediately recut under water inside a bucket to 

restore xylem conductivity. We allowed the cut branches to acclimate in low light to lab 

conditions for 24-48 hours loosely covered under plastic wrap. Each morning, branches 

were recut under fresh water. Measured gas exchange parameters after this adjustment 

period are similar to those measured in the field for these species (Heberling et al. 2016). 

Leaf gas exchange was measured on one leaf per individual using an LI-6400 portable 

infrared gas analyzer (Li-Cor, Lincoln, Nebraska, USA) with a set flow rate of 700 µmol 

s-1 at 25 °C. Leaves were allowed to stabilize in the Li-Cor cuvette for at least 15 minutes 

prior to collecting data. Assimilation rate was measured at CO2 concentrations in the 

following order: 400, 300, 200, 100, 50, 400, 400, 600, 800, and 1000 ppm (all at a 

saturating light level of 1000 PPFD [photosynthetic photon flux density - photons m-2 s-

1]). Following collection of A/Ci curves, A/q curves were collected using light levels of 

200, 150, 100, 50, 20, and 0 PPFD at 400 ppm [CO2]. Chlorophyll content was measured 
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on two leaves per individual via reflectometry with a portable atLEAF+ meter (GREEN 

LLC, Wilmington, Delaware, USA). Three chlorophyll readings per leaf were taken, 

avoiding large veins. Leaves were scanned using a LI-3100 leaf area meter (Li-Cor, 

Lincoln, Nebraska, USA), dried for 48 hours at 70°C, and weighed to determine specific 

leaf area (SLA; cm2 g-1). Following weighing, leaves were ground and analyzed for total 

C and N content (Nmass, g m-2; NC 2100, CE Elantech, Lakewood, NJ, USA). We used 

area-based leaf traits for all analyses. Mass-based leaf traits, such as %N and %C were 

converted to area-based using SLA.   

 We marked leaf nodes with colored string to track production of additional leaf 

cohorts throughout the growing season. In July and October, gas exchange and leaf 

properties were collected using the same methods as in the spring for each individual. If 

the individuals produced additional leaves after the placement of the shade cloth, gas 

exchange data and leaf traits were collected for these new leaves (cohort 2) in addition to 

the leaves belonging to the cohort produced in full sun (cohort 1). We considered 

determinate species to be those that did not produce any additional leaves after an initial 

spring flush and indeterminate species to be those that produced more leaves throughout 

the growing season. Leafing patterns were determined using both 2015 data and detailed 

leaf demography surveys from 2008-2010 (Fridley and Craddock, 2015). Leaves of the 

native species Lindera benzoin and Hydrangea arborescens were senescent by the 

October measurements and were given trait values of zero. After removal of the shade 

cloth in October, no species produced a third cohort of leaves in time for autumn 

measurements and therefore the maximum number of cohorts in our study is two. Time 

constraints prevented the monitoring of total leaf production in 2015, so we used 
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estimates derived from a prior (2008-2010) study that tracked the total number of leaves 

produced per year on five randomly selected branches of each focal plant (Fridley, 2012; 

Fridley and Craddock, 2015). Annual rates of leaf production (g yr-1) were calculated as 

the maximum amount of leaves produced per year in 2008-2010 for all five branches, 

multiplied by a species’ average leaf mass. 

 

Data Analysis 

Photosynthetic parameters were modeled from gas exchange data by fitting the Farquhar, 

Von Caemmerer, and Berry (FvCB) model of C3 photosynthesis in a hierarchical 

Bayesian framework (Farquhar et al. 1980; Feng and Dietze 2013; Peltier and Ibanez 

2015; Heberling and Fridley 2016). We fit a separate hierarchical model for each species-

season-leaf cohort combination with a random effect for block. We modeled maximum 

rate of carboxylation (Vcmax), apparent quantum yield (α), maximum rate of electron 

transport (Jmax), maximum photosynthetic rate at saturating PPFD (Amax), and daytime 

dark respiration rate (Rd). Values of constants and priors for fixed and random variables 

are listed in Table 2. Rd was fit using data from both A/Ci and A/q curves, and Amax was 

calculated using the minimum of the light and CO2-limited photosynthesis equations at 

400 ppm [CO2]. Models were parameterized in JAGS (Plummer 2003) using R2jags (Su 

and Yajima, 2015) in R (R Core Team, 2016) (JAGS v 3.4.0) (Methods S1&S2). 

Posterior estimates were derived from model runs with three parallel Markov chain 

Monte Carlo (MCMC) chains for 80,000 iterations (10,000 burn-in iterations were 

discarded). Convergence was assessed with the Gelman-Rubin (1992) diagnostic (<1.1). 

R code is included in Appendix A. Mean values of the posterior distributions of the above 
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parameters were used in linear models to analyze seasonal trait plasticity and in a PCA 

incorporating lab-measured leaf traits.  

We evaluated the contribution of seasonal trait plasticity to a species’ overall 

carbon gain and competitive ability using two performance parameters: a C gain estimate 

using photosynthetic rates, and leaf production rates. We calculated the first performance 

parameter, mean instantaneous photosynthetic rate (MIPR), using Anet at 1000, 100, and 

800 PPFD (at 400 ppm [CO2]) during spring, summer, and autumn, respectively. 

Observed Anet values for each season were extracted from gas exchange curves, and then 

an average was calculated for each plant across the three seasons: 

  𝑀𝐼𝑃𝑅 = (𝐴1000 + 𝐴100 + 𝐴800)/3     (1) 

All other physiological parameters equal, leaf plasticity in response to varying light 

conditions contributes to fitness if such changes increase a species’ overall mean 

photosynthetic rate across seasons. We thus used a species’ MIPR as one measure of the 

adaptive significance of plasticity. Because annual carbon gain also depends on leaf 

allocation, we used our estimates of annual leaf production rate as a secondary 

performance measure related to fitness. These measures can describe plant growth 

potential in response to leaf plasticity. For both response/performance measures we used 

a generalized least squares (GLS) model that included, the mean and variance across 

three seasons of five area-based leaf traits (Jmax, α, Rd, SLA, and Narea) as fixed-effects 

(eq. 2) using the ‘nlme’ package in R (Pinheiro et al., 2017). Our model structure took the 

form: 

𝐶 ~ 𝜇𝑇1 +  𝜎2𝑇1 +  𝜇𝑇2 +  𝜎2𝑇2+. . . + 𝜇𝑇𝑛 +  𝜎2𝑇𝑛    (2) 
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where C = MIPR or leaf production rate and T = mean leaf trait for a group of native or 

non-native plants. In this equation plasticity is estimated by the variance of each trait 

across the entire growing season. The use of trait means and variances in a regression to 

quantify the adaptive significance of plasticity follows the approach of Lacey et al. 

(1983).  Significant relationships of trait variance to performance parameters related to 

fitness (here, MIPR and annual leaf production) have been called ‘adaptive phenotypic 

plasticity’ (van Kleunen & Fischer 2005), which we estimate here by comparing 

regression coefficients of standardized mean and variance statistics across seasons for 

leaf traits in relation to assimilation and growth rates (C) (eq. 2). GLS models included a 

phylogenetic distance matrix to account for phylogenetic autocorrelation (Fig. S1; 

phylogeny from Jo et al. 2016). We created separate models for native and non-native 

species and for each dependent performance variable (MIPR and annual leaf production). 

For native species, we fit separate models for determinate and indeterminate species. For 

non-native species there were insufficient determinate species to merit separate models 

for leafing class. Additional separate models were also created for indeterminate plants 

including and excluding second cohort leaf traits to examine the adaptive significance of 

second leaf cohort production in within plant plasticity. Vcmax was excluded from GLS 

models due to high collinearity (r > 0.7) with other assimilation parameters.  

We compared GLS model fits incorporating phylogenetic autocorrelation with 

standard linear mixed models (lmer; package ‘lme4’) that included a random effect for 

block (Bates et al., 2015). To fit a phylogenetic regression using GLS, we produced 

correlation matrices using different values of phylogenetic signal (Pagel’s λ) and used the 

correlation matrix producing the lowest regression AIC value (λ = 0.8). The use of the 
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phylogenetic correlation matrix did not qualitatively alter regression coefficients (Table 

S5) compared to the random block model, so we report results of the latter model below. 

 To compare suites of leaf traits between nativity groups and across seasons, we 

performed a principal component analysis (PCA) on ranked values of all leaf traits and 

photosynthetic parameters. Multivariate inference was based on Hotelling tests for 

season, nativity, and their interaction, and post-hoc corrections on individual leaf traits 

included Hochberg’s test (Curran, 2017). Lastly, we performed Wilcoxon rank sum tests 

between native and non-native and determinate and indeterminate groups to compare 

differences in MIPR, leaf production rates, and photosynthetic leaf traits. All statistical 

analyses were performed using R v3.3.1 (R Development Core Team, 2017). 

 

Results 

Seasonal variation in leaf traits  

All leaf traits varied seasonally (Fig. 2). Overall, non-native species had higher mean trait 

values than native species. Trait values frequently associated with sun leaves, such as 

high Vcmax, Jmax, Rd, and Amax, were highest in the spring, decreased in summer, and 

increased or maintained similar values from summer into autumn. Trait values associated 

with shade-adapted leaves, such as high chl content and α, were highest in the summer 

(Fig. 2). Nmass (not shown) was highest in the spring and decreased gradually until leaf 

senescence. However, Narea stayed relatively constant throughout the year, increasing 

slightly for non-natives and indeterminate native species consistent with gradual leaf 

thickening (decreasing SLA; Fig 2). Non-native species had higher trait values associated 

with high photosynthetic rates (Vcmax, Jmax) in spring and autumn compared to native 
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species than in the summer (Fig. 2).  All non-native species maintained higher values of 

Vcmax into autumn, whereas only leaves of the second cohort of native species maintained 

similar Vcmax values into autumn. Similarly, all second-cohort leaves and determinate 

non-native species maintained higher Jmax values into autumn than determinate native 

species (Fig 2). Indeterminate plants had 14% higher MIPR than determinate plants 

(W=4260, p<0.01; 7.06 vs. 6.21 µmol CO2 m
-2 s-1, respectively). Non-native plants had 

21% higher MIPR than native plants (W=4987, p<0.001; 7.42 vs. 6.12 µmol CO2 m-2 s-1, 

respectively). Indeterminate plants had 58% higher leaf production rates than determinate 

plants (W=4584, p<0.001; 5.66 vs. 3.59 g, respectively). Differences in MIPR between 

native and non-native species did not translate into differences in leaf production rates 

(W= 3238, p=0.39).  

 

Influence of trait plasticity on fitness parameters 

The contribution of seasonal plasticity to MIPR across species varied by whether 

a species produced more than one leaf cohort. Overall, determinate (single-flush) species 

displayed much less seasonal plasticity than indeterminate species (Table 3). For non-

native species, no leaf traits were significantly related to MIPR, but effect sizes 

(standardized coefficients) were largest for variance of α and mean SLA. For native 

determinate species there were no significant effects of leaf trait means or plasticity on 

Anet, but high SLA and Rd values had relatively strong negative effects on MIPR. For 

native indeterminate species seasonal plasticity played a more important role in 

maintaining high MIPR. The analysis including seasonal changes in only the first cohort 

of leaves suggests seasonal plasticity is not important for indeterminate species as no 
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trait’s variance significantly affected MIPR. However, including the second cohort of 

leaves in the plasticity analysis indicated high individual-level plasticity in α marginally 

increased MIPR, and high plasticity in Rd decreased MIPR. Additionally, high mean SLA 

negatively related to MIPR using the second leaf cohort of indeterminate species (Table 

3).  

The effects of seasonal leaf trait plasticity and leaf trait values were less 

pronounced on leaf production rates. For non-native species there were no significant 

effects of mean leaf traits or trait variance on leaf production rate. However, mean Narea 

and variance in Narea had the strongest negative effects and mean α had the strongest 

positive effect. Determinate native species’ leaf production was most positively affected 

by mean α and variance in Narea, and most negatively affected by mean Narea, though 

neither were significant predictors. For native indeterminate species variance of SLA of 

the first cohort of leaves was significantly negatively correlated with leaf production, as 

was variance in Rd. For the second cohort leaves of indeterminate native species, variance 

in Jmax significantly increased leaf production rates, while variance in Rd had a marginally 

significant negative effect on leaf production rate (Table 3).  

 

Multivariate patterns across seasons 

Overall, native and non-native species showed similar directional changes in leaf 

traits with respect to season and light level (Fig. 3). However, the large spring-to-summer 

changes in leaf traits present in non-natives were generally absent in natives, and non-

native and native species varied significantly both from each other and seasonally in 

multivariate trait space. From spring to summer, leaves of both non-native and native 
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species showed increased α and decreased Amax, Jmax, and Vcmax values. From summer to 

autumn, non-natives decreased SLA and reduced α and Vcmax values. Jmax was the only 

trait significant for predicting variation in traits between first and second cohorts of 

leaves (Fig. 3).  

 

Discussion 

Our analysis of leaf traits of ENA deciduous understory species suggests that leaves of 

non-native species exhibit greater seasonal plasticity than native species. This finding is 

in agreement with the long-standing hypothesis about ‘ideal weeds’ originally proposed 

by Baker that phenotypic plasticity is a proximate driver of species invasions (Baker, 

1965; Richards et al., 2006; Funk, 2008; Paquette et al., 2012). Plasticity has been 

theorized to benefit non-natives by allowing them to maintain ‘fitness homeostasis’ in a 

variety of environments (Rejmánek, 2000; Richards et al., 2006). In contrast to this 

hypothesis, we found no evidence that such leaf plasticity is associated with annual 

carbon gain in non-native species or their annual rate of leaf production. Non-native 

species in our study maximized MIPR primarily by maintaining high values of all leaf 

traits throughout the year, rather than by adjusting leaf traits. While ours is not the first 

study to conclude that non-native species seasonal plasticity is not always adaptive 

(Davidson, Jennions & Nicotra, 2011), the relatively large species comparison suggests 

leaf plasticity per se is not a common mechanism of invasions in temperate forests (but 

see Xu et al., 2007).  

 In lieu of leaf adjustments throughout the growing season, our results suggest that 

the success of non-native forest shrubs is driven by higher values of leaf traits associated 
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with high assimilation rates (Fig 2). Native species’ MIPR was more strongly associated 

with high quantum efficiency (α) in summer, suggesting higher shade tolerance that does 

not lead to higher overall growth rates. Although high quantum efficiency is not solely 

associated with shade tolerance, it is commonly found in shade tolerance trait syndromes 

such as low Rd, high SLA, and low Vcmax. The ability of non-native species to maintain 

higher Vcmax, Jmax, and α values during all seasons may be due to resource allocation 

tradeoffs associated with defense, leaf toughness, enemy release, leaf N partitioning, and 

belowground allocation (Jo, Fridley & Frank, 2015) not measured in this study (Feng, 

Auge & Ebeling, 2007; Feng et al., 2009). Although non-native species in our study 

system generally have longer leaf lifespan (Heberling and Fridley, 2013), it is yet unclear 

whether leaf defense- or structure-related chemistry is different across native and non-

native groups. Native species in our study may have evolved to have highest leaf function 

during shaded summer conditions due to historically higher climate variability and 

extreme events in ENA forests relative to East Asian and European forests (Rahmstorf 

and Coumou, 2011; Augspurger, 2013; Zohner et al., 2017). This strategy likely allowed 

natives to avoid risky periods of leaf display in early spring or late autumn when extreme 

cold events are most likely to occur. Whether climate change will reduce or intensify the 

occurrence of such extreme events relative to the foliar phenology of native and non-

native species is unclear (Rahmstorf and Coumou, 2011; Augspurger, 2013), and likely to 

influence the relative importance of leaf plasticity versus restrictive phenology to the 

fitness of deciduous species.   

Indeterminate native plants showed a clear photosynthetic advantage over 

determinate species in our study. The significance of plasticity in indeterminate plants 
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lies in the production of new leaves midseason; no variance terms were predictive for 

MIPR or leaf production rate when only the first cohort of leaves were analyzed, except 

for SLA plasticity (Table 3). Plasticity in SLA describes the tendency of leaves of most 

species to thicken over the growing season. Maximum electron transport rate (Jmax) and 

quantum efficiency (α) had the largest effect sizes of the photosynthetic traits for these 

species most associated with adaptive plasticity, which is reflected in the strong tendency 

of second cohort leaves to exhibit high Jmax and low light harvesting in autumn compared 

to first cohort species (Fig. 2). As high α and Jmax are often associated with adaptation to 

low and high light conditions, respectively (Lambers et al., 1998, Valladares & 

Niinemets, 2008), the production of new leaf cohorts in indeterminate species appears to 

be an adaptation allowing for renewed high Anet late in the season after canopy 

senescence. However, because a high correlation between Jmax and maximum 

carboxylation rate (Vcmax) prevented our use of both traits in plasticity analyses, we 

cannot exclude potential late-season increase in Vcmax as an additional feature of adaptive 

leaf plasticity in indeterminate species. Vcmax variation across leaves is driven by 

investment in rubisco (Niinemets & Tenhunen 1997); isolation of the seasonal 

concentration of rubisco, chlorophyll, and membrane-associated nitrogen in leaves of 

understory species (Hikosaka and Terashima, 1996) would therefore help to explain 

mechanisms of adaptive leaf changes in these species. 

One caveat in our interpretation is that the summer light levels present in our 

common garden (20% of above-canopy radiation) may not be representative of light 

levels of understories where some determinate species typically grow (<10%, Fig. 1A). 

Had we subjected plants to lower light levels in the summer, photosynthesis of some 
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determinate natives may have been higher than non-native species that prefer sunnier 

conditions. Compared to natural forests the shade cloth treatment in our common garden 

also reduces the occurrence of sunflecks, which drive photosynthesis in some understory 

species (Way and Pearcy, 2012). Due to pragmatic constrains, we did not measure total 

or integrated seasonal C gain for our species which may have reduced the power of our 

adaptive plasticity analyses. Temperature dependency of photosynthesis is also known to 

vary by species (Berry and Bjorkman, 1980; Battaglia, Beadle & Loughhead, 1996), and 

we did not account for fluctuating temperatures in the spring and fall that could impact 

photosynthetic rate (Dougherty et al., 1979). Nonetheless, our results suggest that for a 

wide variety of deciduous forest species that are not associated with extreme summer 

shade (Fig. 1), seasonal plasticity in leaf structure or chemistry is not the primary 

mechanism of understory non-native species’ success.  

 

Conclusion 

We found that understory shrub leaf traits vary seasonally with light availability in a 

simulated deciduous forest environment. However, contrary to our expectations, most 

leaf-level seasonal plasticity did not strongly contribute to photosynthetic rates or leaf 

growth. We found little evidence that seasonal leaf plasticity is a general explanation for 

the success of non-natives in deciduous forests. Non-native species did have higher 

overall photosynthetic traits (Vcmax, Jmax, Amax, Narea; Fig 2) across seasons than native 

species. These higher photosynthetic trait values likely contribute significantly to their 

invasion success in ENA forests. In contrast, we found that seasonal plasticity does 

contribute to annual leaf production in native indeterminate plant species. Specifically, 
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indeterminate plants adjusted Jmax and α to their advantage depending on seasonal light 

availability through the production of mid-season, shade-adapted leaves. Indeterminate 

species also had high photosynthetic rate overall, indicating an advantage to having an 

indeterminate growth strategy if resource levels are high enough to support continued leaf 

production. Seasonal plasticity may drive fitness for some native continuously growing, 

indeterminate plants, but we found no evidence that seasonal plasticity drives non-native 

species invasions in ENA forest understories. Instead, fitness for non-native species 

appears to be driven by maintenance of high photosynthetic trait values throughout the 

growing season.  
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Table 1: Study species, *indicates indeterminate plants. NA=North America (USDA, 

NRCS 2017). 

Species Family Nativity Origin 

Sambucus racemosa Adoxaceae Native* Circumboreal 

Viburnum acerifolium Adoxaceae Native NA 

Viburnum dentatum Adoxaceae Native* NA 

Viburnum dilatatum Adoxaceae Non-native Asia 

Viburnum lantana Adoxaceae Non-native Europe/Asia 

Viburnum prunifolium Adoxaceae Native* NA 

Viburnum 

rafinesquianum Adoxaceae Native NA 

Viburnum setigerum Adoxaceae Non-native* Asia 

Berberis thunbergii Berberidaceae Non-native* Asia 

Calycanthus floridus Calycanthaceae Native* NA 

Lonicera hirsuta Caprifoliaceae Native NA 

Lonicera japonica Caprifoliaceae Non-native* Asia 

Lonicera maackii Caprifoliaceae Non-native* Asia 

Lonicera reticulata Caprifoliaceae Native NA 

Lonicera 

sempervirens Caprifoliaceae Native* NA 

Lonicera tataricum Caprifoliaceae Non-native Asia 

Celastrus orbiculatus Celastraceae Non-native* Asia 

Celastrus scandens Celastraceae Native NA 

Euonymus alatus Celastraceae Non-native Asia 

Euonymus 

atropurpureus Celastraceae Native NA 

Euonymus bungeanus Celastraceae Non-native* Asia 

Euonymus obovatus Celastraceae Native NA 

Cornus amomum Cornaceae Native* NA 

Elaeagnus umbellata Elaeagnaceae Non-native* Europe/Asia 

Elaeagnus commutata Elaeagnaceae Native* NA 

Hamamelis virginiana Hamamelidaceae Native* NA 

Hydrangea 

arborescens Hydrangeaceae Native NA 

Lindera benzoin Lauraceae Native* NA 

Frangula alnus Rhamnaceae Non-native* Europe 

Rhamnus cathartica Rhamnaceae Non-native Europe 



 

 

33 
 

Table 2: Bayesian priors and parameter information for the model used to fit photosynthetic parameters. 

Symbol Definition Term Type Prior Distribution 

Rd 

mitochondrial daytime respiration 

rate parameter 

dnorm(1, 1/variance between replicate 

individuals) 

Vcmax 

maximum carboxylation rate of 

rubisco parameter 

dnorm(25, 1/variance between replicate 

individuals) 

α 

quantum efficiency of electron 

transport parameter 

dlnorm(.24, 1/variance between replicate 

individuals) 

Amax Maximum photosynthetic rate parameter 

calculated using modeled photosynthetic data 

using ambient CO2 (400 ppm) 

Jmax Maximum electron transport rate parameter 

dnorm(55, 1/variance between replicate 

individuals)  

Ci Intercellular partial pressure of CO2 

independent 

variable data 

Gamma* CO2 compensation point 

independent 

variable data 

q 

photosynthetic photon flux density 

(PPFD) 

independent 

variable data 

RE indiv Random effect for individual plants parameter  

O 

intercellular O2 partial pressure 

(kPa) constant 21 

Variance model variance   

Anet observed net photosynthetic rate 

dependent 

variable data 

α Anet modeled net photosynthetic rate  

Either Aj or Av, depending on which was 

lowest 

Av 

carboxylation limited portion of 

A/Ci curve parameter Model fit of Vcmax 

Aj 

electron transport limited portion of 

A/Ci curve parameter Model fit of electron transport rate 
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Table 3: Results of plasticity regression analysis (gls) on MIPR (µmol CO2 m
2 s-1) and leaf production (g) across three seasons. 

We used separate models for non-natives, native determinate species and native indeterminate species (first and second leaf 

cohorts). “ns” = non-significant, “.”= P=0.07, “*” = P<0.05, “**” = P<0.01, “***” = P<0.001. Significant effects are bolded. 

 
  Non-native   Native Determinate 

Native Indeterminate – 2nd 

Cohort 

Native Indeterminate – 1st 

Cohort 

   Coefficient P Coefficient P Coefficient P Coefficient P 

MIPR         

 Rd µ 0.04 ns -0.73 ns -0.12 ns -0.71 ns 

 Rd σ
2 0.17 ns 0.29 ns -0.53 . 0.08 ns 

 α µ 0.38 ns 0.37 ns 0.75 ns 0.80 ns 

 α σ2 0.28 ns -0.36 ns 1.11 . 0.25 ns 

 SLA µ -0.03 ns -1.15 ns -2.44 * -0.92 ns 

 SLA σ2 0.10 ns -0.32 ns 0.14 ns 0.93 ns 

 N g/cm2 µ 0.27 ns -0.38 ns -0.54 ns 0.63 ns 

 N g/cm2 σ2 0.06 ns 0.30 ns 0.51 ns 0.15 ns 

 Jmax µ 0.14 ns 0.81 ns 0.40 ns 0.15 ns 

 Jmax σ
2 -0.10 ns -0.55 ns 0.61 ns 0.67 ns 

Leaf Production          

 Rd µ -0.52 ns 0.33 ns -0.24 ns -1.10 ns 

 Rd σ
2 0.47 ns -0.01 ns -2.87 . 1.92 ns 

 α µ -0.19 ns 1.69 ns 3.17 ns 0.49 ns 

 α σ2 1.90 ns 0.02 ns 2.85 ns -0.46 ns 

 SLA µ 1.95 ns 0.17 ns -0.52 ns 1.19 ns 

 SLA σ2 -0.55 ns -1.10 ns 1.14 ns -5.76 * 

 N g/cm2 µ -1.50 ns -1.27 ns 1.63 ns -5.28 ns 

 N g/cm2 σ2 -1.37 ns 1.64 ns -2.95 ns 2.26 ns 

 Jmax µ 0.75 ns 1.33 ns -1.06 ns 6.79 ns 

 Jmax σ
2 0.58 ns -0.77 ns 5.03 * -1.35 ns 
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Figure 1: A) Seasonal trajectory of understory light levels in five forest types common to central 

New York, as measured by the Gap Light Index (Frazer et al. 1999) derived hemispherical 

photographs taken from Mar to Dec 2016 at a height of 2 m, with loess regression lines. 

‘Boxelder’ is a <50 yr stand of deciduous Acer negundo; ‘Tuliptree’ is a <80 yr stand of 

deciduous Liriodendron tulipifera; ‘Sugar maple’ is a >200 yr mixed stand dominated by 

deciduous Acer saccharum and evergreen Tsuga canadensis; ‘White pine’ is a <100 yr plantation 

of evergreen Pinus strobus; and ‘Hemlock’ is a >200 yr mixed stand dominated by T. 
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canadensis.  B) Maximum daily photosynthetic photon flux density (µmol m-2 s-1) from quantum 

sensors located above (black) and below (gray) shade cloth at the common garden study location, 

in a year subsequent to that of the current study where the shade cloth was deployed from June 5 

to Nov 1. In the present study, we removed the shade cloth on Oct 1.  
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 Figure 2: Mean and standard error of A) observed Anet (µmol CO2 m
2 s-1), B) Amax (µmol CO2 m

2 

s-1), C) Jmax (µmol e- m2 s-1), D) Vcmax (µmol CO2 m
2 s-1), E) α (mol e- mol quanta-), F) Rd (µmol 

CO2 m
2 s-1), G) SLA (cm2/g), H) Chlorophyll index, I) Narea (g/m2) , and J) %N, across 3 seasons 

and for each leaf cohort. Solid lines indicate values for first cohort leaves, dashed lines indicate 

means for second cohort leaves. Circles and triangles represent non-native and native species, 

respectively. Insets report overall means for all leaf cohorts of non-native and native species 

groups (“NN” and “N”, respectively). Asterisks in insets indicate results of Wilcox rank-sum 

tests; *=p<0.05, **=p<0.0, ***=p<0.001. Anet: W=11126; Amax: W=12492; Jmax: W=12553; 

Vcmax: W=12812; α: W=11137; Rd: W=11432; SLA: W=7906; %N: W=10388; Narea: W=12284; 

chlorophyll index: W=14134. 
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Figure 3: PCA of area-based leaf traits. Large triangles and circles represent nativity-season 

centroids +/- SE. Small points represent individual leaves. Gray arrows show trajectory of 

centroids for natives and non-natives. Red arrows represent trait vectors. Axes 1 and 2 explain 

38% and 20% of variation, respectively. 
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Abstract 

Temperate forests are widely invaded by shade-tolerant shrubs and trees, including those of 

Eastern North America (ENA). However, it remains unknown whether these invaders are ‘pre-

adapted’ for success in their new ranges due to unique aspects of their evolutionary history, or 

whether selection due to enemy release has driven rapid evolution in the invaded range. We 

sampled leaf traits of populations of woody understory invaders across light gradients in their 

native range in Japan and in their invaded ENA range to examine potential phenotypic shifts 

related to carbon gain between ranges. We also measured leaf traits in three co-occurring ENA 

native shrub species. In their invaded range, invaders invested significantly less in leaf 

chlorophyll content (both per unit leaf mass and area) compared to native range populations of 

the same species yet maintained similar rates of photosynthesis in low light. On the other hand, 

compared to ENA natives, ENA invaders displayed greater trait variation in response to 

increasing light availability (forest edges, gaps) in both their native and invasive ranges, giving 

them a potential advantage over ENA natives in a variety of light conditions. We conclude that 



 

 

 

 

both evolutionary history in the native range and new selection pressures in the invaded range 

underlie the success of many shade tolerant forest invaders.  
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Introduction  

Temperate deciduous forests are increasingly invaded by introduced woody plants, 

despite relatively low disturbance rates (Rejmánek 2014). This is particularly true in Eastern 

North America (ENA), where dozens of species of Old World shrubs and lianas dominate the 

understory of closed-canopy forests that are otherwise inhabited by mature native trees and 

shrubs. Many of these species are highly shade tolerant (Fridley 2008; Martin, Canham & Kobe 

2010; Heberling & Fridley 2013, 2016; Martinez & Fridley 2018) and some are also highly 

productive in forest interiors, gaps, and edge habitats compared to native species (Ellsworth, 

Harrington & James 2004; Leicht & Silander 2006). Mechanisms explaining how these invaders 

proliferate and outcompete co-occurring native species are not well understood. It is unclear 

whether non-native forest invaders have evolved competitive phenotypes de novo in their 

introduced range—for example, due to shifts in resource allocation from defense to growth 

(Blossey & Notzold 1995)–or whether certain introduced lineages are ‘pre-adapted’ for success 

as invaders due to unique aspects of their ancestral environments (Fridley & Sax 2014). These 

two mechanisms of invasion are not mutually exclusive, as both genetic changes in the invaded 

range and pre-adaptation can occur within multiple traits that affect population growth and 

potentially fitness. Studies of plant function in native and invaded range populations remain 

relatively rare but are required to address whether pre-adaptation or evolution in the invaded 



 

 

 

 

range contributes to their population growth as invaders (Parker et al. 2013). Although traits of 

invaders have frequently been compared to those of native co-occurring or congeneric species in 

the invaded range (Niinemets, Valladares & Ceulemans 2003; Hierro, Maron & Callaway 2005; 

Xu, Griffin & Schuster 2007; Heberling & Fridley 2013, 2016), few studies have compared 

physiological traits of invaders in their native and invaded ranges, and even fewer studies have 

involved woody plants (cf. Reinhart & Callaway 2004; Heberling et al. 2016).  

Relative to co-occurring native shrub species, shade-tolerant invaders often have 

increased photosynthetic rates (Heberling & Fridley 2013), faster responses to increases in light 

availability (Yamashita et al. 2000), and higher trait variation in response to light (Niinemets, 

Valladares & Ceulemans 2003b; Funk 2008; Paquette et al. 2012). One or a combination of such 

photosynthetic advantages may lead to increased growth rates and fecundity (Valladares & 

Niinemets 2008). However, it is unknown whether these traits are also present in the native range 

of invaders or if selection and admixture (i.e. bottlenecks or genetic drift, repeated introductions) 

have fostered the evolution of new phenotypes in their invaded ranges (Tsutsui et al. 2000; Lee 

2002; Maron et al. 2004; Puzey & Vallejo-Marin 2014).  

Trait variation within and among populations may facilitate species invasions by 

allowing invaders to colonize a wider variety of environments with greater success than natives 

(Baker 1965; Richards et al. 2006; Funk 2008; Paquette et al. 2012; Lamarque et al. 2015). Trait 

variation in response to light availability is often a key contributor to woody forest plant fitness, 

given the importance of canopy disturbance for long-term survival of most tall-stature plants 

(Canham 1989). One way that invaders may display higher trait variation than native species is 

through quickened leaf responses to fluctuating light resources caused by canopy gap formation 

(Davis, Grime & Thompson 2000). For example, some understory trees are capable of increasing 



 

 

 

 

mesophyll surface area after canopy gap formation to increase photosynthetic rate (Oguchi et al. 

2006). Furthermore, although trait variation can be costly (DeWitt, Sih & Wilson 1998; Relyea 

2002; Oguchi, Hiura & Hikosaka 2017), invaders may experience lower energy or nutrient costs 

in leaf function. These lower costs are a result of reduced need for chemical or structural 

defenses against specialist herbivores that are lacking in the invaded range. For example, 

variability of allocation in leaf nitrogen (N) may be beneficial for shade tolerant understory 

plants if light levels or defense needs are variable, especially since N often limits growth in 

temperate deciduous forests (Lebauer & Treseder 2016). However, debate remains about the 

benefits of trait variation to population growth because invader trait variation with respect to 

some environmental gradients need not be adaptive (Funk 2008, Martinez & Fridley 2018). 

Leaf function depends on the allocation of N to three major functions: metabolism 

(photosynthesis and respiration), defense (N-containing secondary compounds) (Gleadow, Foley 

& Woodrow 1998), and structure (Evans 1989). In metabolism, N is primarily allocated to either 

thylakoid membrane proteins and light cycle pigments (i.e. chlorophyll [chl]) or Calvin cycle 

enzymes, including rubisco. In theory, an optimal partitioning of N exists for each leaf at a given 

light level that maximizes daily photosynthesis and photosynthetic nitrogen use efficiency 

(PNUE, carbon assimilated per unit leaf N) (Hikosaka & Terashima 1995). Changes in leaf N 

allocation and maintenance of high PNUE in response to shifting light availability can enhance 

carbon gain for invaders relative to co-occurring native species with lower PNUE (Heberling & 

Fridley 2013). Although some species of woody, shade-tolerant invaders have been found to 

have higher PNUE in their invasive ranges (Heberling & Fridley 2013; Heberling et al. 2016), it 

remains unclear whether this is an advantage at both high and low light levels. In addition, one 

study of native and invaded range N allocation in an invasive herbaceous plant, Ageratina 



 

 

 

 

adenophora, showed a decrease in cell wall N and an increase to photosynthetically active 

compounds in the invasive range (Feng et al. 2009). This change in N allocation may relate to 

leaf structural defense since cell wall proteins aid in cell wall strength (Feng et al. 2009). If 

invaders allocate leaf N differently than co-occurring native species, this may explain the 

photosynthetic advantages found in prior studies of invaders.  

 The goal of our study was to quantify differences in leaf traits between native and non-

native invasive species and estimate their variance across populations of different light levels 

(hereafter interpopulation trait variability, or ITV). We focused on populations in the native and 

invaded ranges of four woody, understory invaders native to East Asia (EAS), and compared leaf 

traits with co-occurring, native Eastern North American (ENA) species (Table 1). Our study is 

unique in that it includes trait values along an environmental gradient for a suite of invasive 

species in both their native and invaded ranges. We were specifically interested in understanding 

how N allocation influences photosynthetic rates in invaders along a light gradient, and the 

distribution of structural leaf traits associated with herbivore defense in their native and invaded 

ranges. We hypothesized that invaders 1) invest less in structural defense in the invaded range 

due to enemy release (low LDMC and high SLA), and as a consequence, 2) have higher PNUE 

than natives, 3) allocate leaf N differently in their away range (e.g., chl per unit leaf N; ChlN) that 

increases PNUE for invaders compared to individuals in the native range (Heberling et al. 2016), 

and 4) display greater ITV than co-occurring natives in N allocation along forest light gradients.  

 

 

 

 



 

 

 

 

Methods 

Study Species 

Our focal species included four species native to EAS and invasive in ENA: Celastrus 

orbiculatus (liana in the Celastraceae), Lonicera japonica (liana in the Caprifoliaceae), 

Viburnum dilatatum (shrub in the Adoxaceae), and Euonymus alatus (shrub in the Celastraceae). 

Co-occurring ENA natives included Prunus virginiana (shrub/tree in the Rosaceae), Cornus 

racemosa (shrub in the Cornaceae), and Viburnum acerifolium (shrub in the Adoxaceae). We 

also included the circumboreally distributed Sambucus racemosa (shrub in the Adoxaceae), 

considered native to both regions. All EAS species are shade tolerant, deciduous plants that 

occur in forest interiors in both their native and invasive ranges. ENA invaders were selected 

based on knowledge that they frequently occurred in similar forest types and forest interiors in 

ENA compared to EAS forests.  

 

Study Sites  

We measured leaf traits on ENA invaders in both Japan (native range) and New York 

(NY)/Pennsylvania (PA) (invasive range) and the same traits of co-occurring ENA native species 

in NY and PA. All measurements were taken in July of either 2016 or 2017. We selected plants 

from two to three populations per species in each range (3 sites in Japan, 3 sites in ENA [NY and 

PA]). Within each location, individuals were selected along a light gradient. Individuals 

occurring in high light were located near forest edges or large gaps, and individuals in deep 

shade were in forest interiors. Invaders and S. racemosa were measured in forests near Sendai, 

Japan; in forests in the Hudson Valley, NY (Cary Institute for Ecosystem Studies; Cary IES, 

41.79, -73.74; and in State College, PA (Penn State Arboretum, 40.81, -77.87). In Japan, sites 



 

 

 

 

included a primary growth forest in the Botanical Gardens of Tohoku University (38.26, 140.85), 

a secondary forest in the Experimental Station for Medical Plant Studies, Graduate School of 

Pharmaceutical Sciences, Tohoku University (38.26, 140.84), and a secondary forest in an 

experimental garden at the Graduate School of Life Sciences, Tohoku University (38.26, 

140.83). ENA native species, including S. racemosa, were measured at Cary IES, Penn State 

Arboretum, and in a forest near Pompey, NY (42.92, -76.04). In Japan, six to seven individuals 

of each invader and S. racemosa were sampled across the three field sites and along a light 

gradient. We attempted to create similar light gradients for each species at each site. For ENA 

samples, at least six individuals of each species were sampled along a light gradient (Table 1). 

Hemispherical photographs were taken above each plant using a Canon T2i or Nikon D5300 

digital SLR camera and Polaroid .21x super fisheye lens filter attachment.  

 

Leaf Trait Measurements 

We measured photosynthetic rates using a portable infrared gas analyzer (LI-6400, Li-Cor, 

Lincoln, Nebraska, USA). All individuals were at least second-year plants and had woody tissue 

present. Plant height ranged from 0.3 to 1.5 m. Photosynthetic rates (A50 and A1000) were 

measured at photosynthetic flux densities (PPFD; µmol quanta m-2 s-1) of 50 and 1000 because 

these values bracket typical July light values in deciduous forests (Martinez & Fridley 2018). We 

selected healthy leaves near the top or outside of the plant canopy for photosynthesis and leaf 

trait measurements. Concentration of CO2 was maintained at 400 µmol mol-1, and leaf vapor 

pressure deficit was kept below 1.5 kPa. In Japan, leaf cuvette temperature was maintained at 30 

°C and in ENA, at 25 °C. We chose these temperatures because they were nearest to ambient 

conditions. All photosynthetic measurements were taken before 1:00 PM.  



 

 

 

 

Eight leaves were collected from each plant for further analysis. We determined specific 

leaf area (SLA cm2/g), total nitrogen (N) content, and total leaf carbon (C) content using three 

leaves per individual. Fresh leaves were scanned to determine leaf area, dried for > 48 hours at 

65 °C, and weighed. Total leaf N and C content was analyzed using an NC 2100 autoanalyzer for 

ENA plants (CE Elantech, Lakewood, NJ, USA) and a Vario EL III autoanalyzer for Japan 

plants (Elementar Analyser Systeme, Hanau, Germany). Leaf N and C content were determined 

using three leaves per individual. Photosynthetic nitrogen use efficiency (PNUE) was calculated 

as A1000mass /Nmass. Leaf dry mass content (LDMC) was determined using three fully hydrated 

leaves, with leaves placed in plastic bags with moistened paper towels for 24 hr before weighing 

fresh mass. Leaf chl content was determined using leaf disk punches with an area of 0.79 or 2.00 

cm2 from one leaf per individual, avoiding large midveins. Leaf disk punches were placed in 

dimethylformamide for at least 24 hr before chl content was determined spectrophotometrically 

at wavelengths of 646.8 and 633.8 nm (Porra, Thompson & Kriedemann 1989). We calculated 

low- and high-light chl use efficiency (A50 chl and A1000 chl respectively) by dividing A50area and 

A1000area by chlarea (µg/cm2).  

 

Data Analysis 

Gap light index (GLI) values (0-1) for each plant were calculated from hemispherical 

photos using Gap Light Analyzer software v2.0 (Frazer, Canham & Lertzman 1999). To 

determine differences in photosynthetic trait values for invaders and natives, we grouped plants 

into three categories: EAS natives (plants native to and growing in East Asia), ENA invaders 

(East Asian species growing in their invasive ENA range), and ENA natives. Sambucus 



 

 

 

 

racemosa fell in either EAS natives or EAS natives depending on the location of individuals 

measured.  

We used linear mixed models (lme4 in R, Bates et al. 2017) to test for differences in leaf 

traits between each of these three plant groups. Data for LDMC were arcsine transformed. We 

included log-transformed GLI as a fixed effect, and incorporated species and site nested in 

continent as random effects. If the interaction terms between GLI and nativity/range were non-

significant (P>0.05), they were excluded from the final models. Tukey’s HSD tests were 

performed on mixed model results (excluding interaction terms).  

 ITV with respect to light was evaluated in separate linear mixed models for each plant 

group (data subsetted by ENA invaders, ENA natives, EAS natives) with a random intercept 

included for species (leaf trait ~ logGLI + (1|species)). We used a linear mixed model with 

random effects for species and location to test for differences in GLI between nativity/range 

groups. Finally, we used a principle components analysis (PCA) to examine multivariate patterns 

of leaf traits, including Hotelling tests to compare differences between group means (EAS 

natives, ENA natives, and ENA invaders). All analyses were performed in R v3.3.1 (R Core 

Team 2017). 

 

Results 

Mean trait differences across plant groups 

The distribution of light (GLI) values was similar across ENA invader, ENA native, and 

EAS native populations (P>0.05) (Fig. 1). We also did not generally find significant differences 

between these groups in traits related to structural defense, including both SLA and LMDC, 

although LDMC was significantly different between ENA invaders and ENA natives (Table 2). 



 

 

 

 

For photosynthetic traits, mean values for PNUE did not vary between EAS native and ENA 

invaders, but in the full linear mixed models, ENA natives were significantly different – 

however, this difference was not present in the Tukey’s post-hoc tests which excluded GLI 

interaction (Fig. 1). ENA invaders had significantly higher A50 area and lower chlarea than EAS 

natives (Table 2).  

The results of the Tukey’s post-hoc tests on models excluding GLI interactions indicated 

ENA invaders had higher A50 chl than both ENA and EAS natives, lower chlN and chlmass 

(marginally significant) than EAS natives, and higher A50 area and A1000 chl than EAS natives. Both 

EAS natives and ENA invaders had higher Narea than ENA natives. EAS natives had marginally 

significantly higher chl a:b compared to ENA natives (Fig. 1).  

 

Interpopulation trait variability across light gradients 

For all plant groups, light availability (GLI) was positively associated with A1000 area, 

PNUE, Narea, LDMC, A1000 chl, and chl a:b (Table 2, Fig. 1). Conversely, chlN, chl mass, A50 area, 

SLA, and A50 mass decreased along the light gradient for all plant groups (Table 2). A1000 mass, chl 

area, Nmass, and A50 chl did not change significantly along the light gradient for any species group 

(Figure 1, Table 2). To determine whether the response of traits to light (ITV) differed across 

plant groups, we included GLI and a random species intercept in trait models (separate from the 

full models that assessed differences in traits between plant groups). The results of these models 

vary slightly from the full models since the data were subsetted by plant group. These secondary 

models in addition to the full interaction models indicated that, for A50 chl and A1000 chl, ENA 

invaders had increased ITV compared to both EAS natives and ENA natives (Table 2, Fig. 3). 

ENA invaders also had higher ITV compared to ENA natives in PNUE, chlN, Nmass, LDMC, and 



 

 

 

 

chl a:b (Table 2). Counter to our expectation, chl a:b marginally decreased for ENA natives with 

increasing light (P=0.05). ENA natives also had a concomitant decrease in PNUE with 

increasing GLI, while PNUE of both EAS natives and ENA invaders significantly increased with 

GLI (Fig. 1 & 3). Interestingly, the slope of Nmass across the light gradient for ENA invaders was 

not different from zero (P>0.05), while it was positive for ENA natives (P<0.001) (Fig. 3).  

 

Multivariate Differences between Plant groups 

When examined across mean values of all traits simultaneously, plant groups occupied 

significantly different regions of multivariate trait space (Hotelling test; P<0.001) (Fig. 2). ENA 

invaders were associated with higher values of A1000 area, A50 chl, A1000 chl, PNUE, chl a:b, and GLI 

than either native range group, as well lower Nmass. Leaf structural traits, including SLA, LDMC, 

and C content, separated ENA natives (higher SLA/lower LDMC) from EAS natives (lower 

SLA/higher LDMC). PCA components 1 and 2 explained 49% of the total variation in traits 

across populations. 

 

Discussion 

In agreement with past studies (Heberling & Fridley 2013, 2016; Martinez & Fridley 

2018), we found significant differences in leaf traits between native and invasive species in ENA 

forests. Unlike other studies, we investigated whether trait values of the invaders expressed in 

their invaded range were like those in native range populations. We found that leaf trait 

differences were consistent with both evolutionary change in the invaded range, where invasive 

range trait values have shifted from home range values, and invader pre-adaptation, where 

invaders showed advantageous trait values in both the invaded and native range. Among traits 



 

 

 

 

showing a shift in the invaded range is chl-use efficiency in high and low light (A1000 chl and A50 

chl), where understory invaders achieved higher rates of assimilation with lower chl area than in 

their native range. Because quantum efficiency is strongly influenced by chl content (Evans 

1989), we expected plants with higher chl content to have higher low-light photosynthetic rates 

at low light levels. A reduction in chl investment without loss of photosynthetic capacity may 

explain invaders’ greater competitive capacity in a variety of light environments relative to ENA 

natives (cf. Martinez & Fridley 2018).  

We found little support for our second hypothesis that invaders invest more in structural 

defense traits in their new ranges (e.g. low SLA and high LDMC). LDMC was marginally lower 

in ENA invaders compared to EAS natives in our full model (Table 2), but the difference is not 

likely to be biologically significant. It may be that differences in leaf anatomy, such as 

mesophyll thickness or chloroplast arrangement, or decreased N allocation to chemical defenses 

may play a role explaining increased allocation to chl but not overall N content between ranges. 

Also contrary to our hypothesis, we did not find differences in PNUE for invaders across native 

and invaded range populations, in contrast to a prior study of one invasive ENA species native to 

Europe (Heberling et al. 2016). However, this could also be explained by differences in N 

allocation between the two ranges inferred in our A50 chl and A1000 chl results—for example, less 

investment in chl and more investment in dark cycle proteins as light availability increased in the 

invaded versus home range. Invasive species in both their native and invasive ranges had similar 

levels of interpopulation trait variability (ITV) across the light gradient for many traits, such as 

Nmass, chl a:b, chlN, and SLA. However, in agreement with our hypothesis, ITV was greater in 

the invaded range for some traits relating to N allocation, where invaders captured more light 

with less chl content in both high and low light (A50 chl and A1000 chl) than native range 



 

 

 

 

populations. This supports the idea that some traits relating to carbon gain have shifted to 

invaders’ advantage in their introduced range, although the reason for the shift remains unclear. 

We found partial support for our hypothesis that invaders have higher interpopulation 

trait variability (ITV) than ENA native species along light gradients. When ENA native species 

displayed high ITV with respect to light, it was often associated with traits that we would expect 

to reduce C gain—for example, decreasing PNUE and chl a:b at higher light levels. As an 

accessory pigment that captures additional wavelengths when light is limiting, chl b expression is 

generally upregulated in shade, leading to an expected chl a:b decrease with decreasing light 

availability (Terashima & Hikosaka 1995; Valladares & Niinemets 2008; Hikosaka 2014). 

Decreasing chl a:b with GLI in ENA native species is therefore surprising and may underlie their 

reduced photosynthetic rate in high light found in other studies (Heberling & Fridley 2013). 

Unlike that of ENA invaders, leaf N (Nmass) in ENA natives increased in high light, although this 

increase was not associated with greater photosynthetic capacity. This also suggests the leaf 

physiology of ENA natives is less adapted to high light than EAS species. The function of this 

increased leaf N remains unknown, and we hypothesize it has a role in defense or structure (e.g., 

cell wall N) that was unmeasured in our study. 

The greater variability in leaf traits for ENA invader populations across a light gradient 

suggests that, all else equal, ENA invasive species have a larger niche breadth with respect to 

light than co-occurring natives, which may support higher population sizes in habitats like 

secondary forests that contain a variety of light conditions. Studies of invaders in other regions 

have reached a similar conclusion; for example, five non-native forest species in Hawaii were 

shown have higher photosynthesis rates in both high and low light than co-occurring native 

species (Pattison, Goldstein & Ares 1998b). In addition, Hawaiian invaders were found to 



 

 

 

 

allocate less leaf N to the cell wall and more N to metabolism than native species (Funk, 

Glenwinkel & Sack 2013). Similarly, Celastrus orbiculatus, a deciduous invasive liana, was 

found to grow faster in a variety of light levels when compared to C. scandens, a native 

congener, likely due to increased trait variability (Leicht & Silander 2006). In agreement with 

these studies, our results suggest invaders are more variable in their allocation of leaf N than 

native species. However, we caution that variable trait responses to light are not necessarily 

adaptive in woody invaders—in a common garden experiment of 30 native and invasive ENA 

shrub species, Martinez & Fridley (2018) found that leaf trait plasticity across varying seasonal 

light environments was not correlated with enhanced annual carbon gain. This underscores the 

need to link high- and low-light carbon gain to survival and seed production to fully evaluate the 

role that leaf-level C and N dynamics play in species invasions. 

In general, the reduced responses of ENA native leaf traits to light compared to invasive 

species remained regardless of whether the measurements were taken in the invaded or native 

range of the invaders. This partially supports the hypothesis that invaders are preadapted for 

success before introduction, for example because of different selection historical selection 

pressures in their ancestral environments (Fridley & Sax 2014). Fridley (2013) and Zohner et al. 

(2017) argued that East Asian climates of the same latitude have been more climatically stable 

than those of ENA over Pleistocene, facilitating the evolution of less risk-averse phenotypes that 

have both earlier spring and later fall foliar phenology. One possible ramification of this 

hypothesis is that EAS deciduous understory species are better adapted to both high light 

conditions present in early spring / late autumn as well as low light levels midseason, which 

could explain why we found plants across populations to be more responsive to different light 



 

 

 

 

levels. However, this was not true across all traits—for example, leaf N was more variable in 

ENA natives, although there is little evidence that this played a role in photosynthetic ability.  

 One caveat to our study is that we did not measure differences in edaphic properties 

across populations or consider the potential of different soil microbial communities in the 

invaded range to facilitate more efficient use or uptake of resources for invaders in their new 

ranges. Evidence of microbial interactions facilitating growth in the invaded range is apparent for 

some woody species; for example, soil microbial mutualisms have been shown to be of greater 

benefit to maple (Acer) invaders in their non-native ranges due to enemy release (Reinhart & 

Callaway 2004). Invaders may also be released from soil pathogens in their invaded ranges; with 

fewer resources allocated to pathogen defense, more resources can be spent on leaf function and 

metabolism (Dawson & Schrama 2016). In addition, because we sampled only a few populations 

within the range of each species, our measurements are an underestimate of the total extent of 

genetic variation in leaf traits within species. However, we believe our inclusion of multiple 

species helps generalize our results from relatively few populations per species, particularly as 

observed trait shifts were seen across species. Finally, the differences we describe in low-light 

photosynthetic performance may not extend to the very low light levels (PPFD<50 mol photons 

m2 s-1) of darker forests and would further be strongly dependent on leaf dark respiration rates 

that we did not measure. Because invaders have been previously shown to display higher returns 

on respiratory investment per unit assimilation than native species (Pattison, Goldstein & Ares 

1998; Heberling & Fridley 2013), we speculate that carbon gain advantages in very low light by 

invaders, where present, could be driven more by respiratory processes than the photosynthetic 

traits we describe here. 

 



 

 

 

 

Conclusion 

We found that photosynthetic traits were more variable along a light gradient for populations of 

ENA invaders, compared to both co-occurring native species in ENA and conspecific 

populations in the invaders’ native range in Japan. Higher variability in these traits may be 

associated with greater overall carbon gain for forest invaders, particularly for populations that 

inhabit highly heterogeneous light environments, as is common in temperate deciduous forests. 

Additionally, higher trait variability along a light gradient in their invaded ranges may be 

allowing invaders to colonize a wider variety of habitats. On the other hand, because higher 

variation in some leaf traits was seen in both the invaded and native range for invaders, both the 

evolutionary history of these species and changes in selection pressures in the invaded range 

appear to facilitate the greater annual carbon gain of invaders. Whether these traits are predictive 

of invasions requires additional study of the relationship of carbon gain and population growth in 

understory species. 
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Table and Figure Captions 

 

Table 1: List of species included in the study. Numbers indicate number of individuals studied at 

each location (109 total). 

 

Table 2: Mixed model coefficients of the effects of light (GLI) and plant group (ENA invaders 

are reference category) on leaf traits. Interaction between GLI and plant group were removed 

from models if non-significant, reported as “NA”. *** = P<0.001; ** = P<0.01; * = P<0.05; . = 

P<0.09 

 

Table 3: Mean leaf trait values by species. SLA = g/cm2, LDMC = %, chlarea=mmol/m2, 

chlmass=umol/g, A50chl = µmol CO2 m
-2 s-1: µmol/m2; A1000chl = µmol CO2 m

-2 s-1: µmol/m2 ; Nmass 

= % leaf N, Narea=g N/cm2, PNUE= µCO2 g
-1 N s-1, chlN = g chl/g N, GLI = % canopy cover, 

A50=µmol CO2 m
-2 s-1, A1000=µmol CO2 m

-2 s-1 

 

Figure 1: a-p) Leaf traits as a function of increasing Gap Light Index (GLI). Points represent 

individual plants; lines are fitted OLS regression lines within each group. Bars to the right of 

each scatterplot represent median and upper and lower quantiles for each species grou: p. Letters 

above bars represent results of Tukey’s HSD tests for mixed models without GLI interactions 

included in the model structure (P<0.05, except where noted with * between bars, then P<0.09). 

a) Nmass = % leaf N; b) chl a:b; c) chlN: g chl g-1 N; d) SLA: g cm-2; e) PNUE: µCO2 g
-1 N s-1; 

f) LDMC % leaf dry mass content; g) A1000 area: µmol CO2 m
-2 s-1; h) A50 area: µmol CO2 m

-2 s-1; i) 

A1000 mass: µmol CO2 g
-1, j) A50 mass: µmol CO2 g

-1, k) chlarea: mmol m-2, l) chlmass: µmol g-1, m) 



 

 

 

 

A50 chl: µmol CO2 m
-2 s-1: µmol/m2, n) A1000 chl: µmol CO2 m

-2 s-1: µmol/m2, o) Narea: gN cm-2, p) 

logGLI: log % canopy cover.  

Figure 2: PCA of all measured leaf traits. Bars represent S.E.M. around group centroids. 

Eigenvalues = 0.31 and 0.20 respectively.  

 

Figure 3: Model coefficients and 95% CIs of traits regressed against (log) Gap Light Index 

(GLI). Colors denote plant groups as in Fig. 1. Separate models were fit for each species group 

(ENA invaders, EAS natives, ENA natives), including a random effect for species. Note that 

these model fits are different from the models used in Table 2. Units and abbreviations same as 

in Table 3.



 

 

 

 

Table 1 

 

 

Species Family Habit Nativity EAS ENA Total 

Celastrus orbiculatus Celastraceae Liana East Asia 8 12 20 

Cornus racemosa Cornaceae Shrub North America NA 14 14 

Euonymus alatus Celastraceae Shrub East Asia 6 12 18 

Lonicera japonica Caprifoliaceae Liana East Asia 6 9 15 

Prunus virginiana Rosaceae Shrub North America NA 10 10 

Sambucus racemosa Adoxaceae Shrub Circumboreal 7 6 13 

Viburnum acerifolium Adoxaceae Shrub North America NA 6 6 

Viburnum dilatatum Adoxaceae Shrub East Asia 7 6 13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Table 2 

 

  Intercept  EAS natives ENA Natives logGLI EAS native*GLI ENA native*GLI 

Nmass 2.95 -0.61 -2.82*** -0.25 0.19 1.02*** 

Chl a:b 2.08 0.28 0.53 0.37*** -0.09 -0.29. 

ChlN 0.7 0.18 0.47** -0.12** -0.02 -0.14* 

SLA 574.1 1.05 40.14 -106.43*** NA NA 

PNUE 3.74 4.23 12.12** 1.92* -1.37 -3.93** 

LDMC 0.07 0.06. 0.08* 0.06*** -0.02 -0.02. 

A1000area -0.91 0.13 0.48 2.83*** NA NA 

A50area 3.05 -0.27* 0.07 -0.16* NA NA 

A1000mass 0.14 0.00 0.06. 0.01 NA NA 

A50mass 0.16 -0.01 0.01 -0.03*** NA NA 

Chlarea 0.31 0.07* -0.01 0.01 NA NA 

Chlmass 17.9 2.24 0.6 -3.08*** NA NA 

Narea 0.15 0 -0.24* 0.24*** NA NA 

A50chl 7.12 1.93 3.58 0.86 -1.82* -1.82* 

A1000chl -15.76 10.18 22.22** 14.97*** -6.10* -9.35** 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Table 3 

 

  Nmass Chl a:b ChlN SLA PNUE LDMC A1000 area A50 area Chlarea Chlmass Narea A50chl A1000chl %C GLI 

EAS Natives                 
C. orbiculatus 1.76 3.15 0.638 401.62 0.14 0.17 6.59 2.31 0.32 12.66 0.486 7.25 20.69 40.81 16.1 

E. alatus 1.92 3.36 0.423 229.53 0.11 0.33 9.12 2.53 0.4 9.2 0.855 6.28 22.65 43.94 19.9 

L. japonica 1.98 3.19 0.373 285.87 0.11 0.25 8.03 1.96 0.28 8.11 0.744 6.88 28.19 45.62 29.77 

V. dilatatum 1.73 2.85 0.628 307.53 0.08 0.26 5.21 2.55 0.41 12.31 1.156 6.18 12.63 45.08 12.56 

S. racemosa 3.94 3.1 0.401 362.44 0.06 0.19 7.21 2.38 0.47 16.81 0.671 5.05 15.31 43.07 18.58 

 All EAS natives 2.27 3.12 0.529 323.39 0.1 0.23 7.14 2.35 0.38 12.03 0.773 6.21 18.88 43.56 18.97 

ENA invaders                 
C. orbiculatus 2.51 3.2 0.412 434.28 0.13 0.16 7.6 2.66 0.25 11 0.607 10.5 30.01 44.55 16.37 

E. alatus 2.13 2.8 0.356 249.02 0.08 0.28 7.11 2.91 0.34 8.64 0.882 8.52 20.81 45.13 11.77 

L. japonica 1.4 3.33 0.386 285.48 0.12 0.25 6.72 2.52 0.21 6.29 0.543 11.91 31.75 44.18 27.82 

V. dilatatum 1.68 2.84 0.448 260.29 0.07 0.26 5.27 2.2 0.32 8.33 0.675 6.82 16.34 47.3 12.51 

 All EAS 

invaders 
2 3.06 0.394 315.4 0.1 0.24 6.88 2.63 0.28 8.72 0.684 9.4 24.59 45.05 17.27 

ENA natives                 
C. racemosa 1.63 2.86 0.598 289.99 0.13 0.28 7.02 2.7 0.33 9.45 0.551 8.22 21.37 39.26 16.98 

P. virginiana 2.09 2.85 0.43 295.39 0.07 0.28 5.17 2.64 0.34 9.9 0.594 7.84 15.35 43.57 9.25 

S. racemosa 3.73 2.8 0.443 450.11 0.1 0.15 7.53 2.58 0.36 16.16 0.739 7.12 20.75 43.03 15.56 

V. acerifolium 1.79 2.61 0.588 335.01 0.09 0.24 4.77 2.86 0.35 11.59 0.555 8.11 13.52 44.6 10.48 

 All ENA natives 2.16 2.8 0.524 328.01 0.1 0.25 5.99 2.71 0.34 11.15 0.598 7.95 17.57 41.93 13.23 
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Abstract 

Many ecologists have tried to predict suites of plant traits that characterize different life history 

strategies and distinguish native and invasive plant populations. Growth-related traits may be 

predictive of invasions at global scales, but within-species studies of these traits may fail to 

support theories such as the leaf economics spectrum. Furthermore, how growth rate is 

maximized by invasive species and species possessing multiple life history strategies remains 

underexplored. Using 22 total populations of an invasive herbaceous species native to the 

Western United States with annual and perennial phenotypes maintained by a chromosomal 

inversion (Mimulus guttatus), we sought to quantify physiological and leaf traits related to life 

history strategies and to understand which traits contribute most to relative growth rate (RGR) in 

native and invasive populations of an herbaceous species. We predicted that perennial 

populations would display traits related to resource conservation, such as low RGR, low SLA, 

and low photosynthesis rates, and that annual populations would display the opposite traits. We 

also predicted that invasive populations would have higher RGR and would maximize RGR 

through a different mode than native populations. Annual and perennial populations had similar 

SLA and similar proportional increases in unit RGR per unit SLA. Furthermore, invasive 



 

 

 

 

populations did not have higher RGR than native populations, and RGR in coastal and invasive 

populations was largely impacted by both SLA and LMF. Our results are evidence that global 

patterns of leaf traits within a species displaying multiple life history strategies may not be 

apparent within a single species. We also found evidence that within a single species, RGR may 

be maximized by different traits, and that RGR may not be a good predictor of invasiveness.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 

Introduction 

Suites of traits related to plant growth strategies, including relative growth rate, have 

been of interest to ecologists since the birth of the field. The three main traits underlying RGR 

are specific leaf area (SLA), leaf mass fraction (LMF), and net assimilation rate (NAR, Anet, or 

unit leaf rate) (Briggs, Kidd & West 1920; Hunt & Cornelissen 1997; Poorter & van der Werf 

1998). All four traits (SLA, LMF, photosynthesis, and RGR) are predicted to vary along life 

history axes. For example, RGR is a fundamental trait in Grime’s characterization of plant 

strategies along two axes relating to environmental stress and disturbance (competitor, ruderal, 

stress tolerator) (Grime 1977). Plants capable of tolerating extreme stress tend to grow slowly, 

while ruderal and competitive species tend to grow quickly (low vs high RGR, respectively) 

(Grime 1977). Similarly, on a global scale, leaf traits fall out along the Leaf Economics 

Spectrum (LES) (Wright et al. 2004) – as leaf lifespan and need to tolerate stress increases, leaf 

nutrient content and photosynthetic rates decrease and leaf thickness increases. However, some 

have argued that the patterns seen in schemes like the global LES and Grime’s triangle are less 

applicable on small scales or within herbaceous species or genera (Mason & Donovan 2015; 

Anderegg et al. 2018). For example, within the genus of sunflower, Helianthus, SLA was 

uncorrelated with leaf lifespan (Mason & Donovan 2015), opposite of the prediction of the LES 

that SLA decreases with leaf lifespan (Wright et al. 2004). 

Within herbaceous plant taxa, both annual and perennial growth forms exist. According 

to theories of life history strategies, we expect annual plant species to adapt a ‘live fast, die 

young’ strategy and occur in areas where resources are abundant but perhaps occur in seasonal 

pulses, while we expect perennials to exhibit slow-growth, resource conservative strategies 

because they more frequently occur in lower resource areas. Groups of traits associated with 



 

 

 

 

annual and perennial growth strategies have been examined across taxa (Grime 1977; Wright et 

al. 2004), and within a single genus (Garnier 1992; Mason & Donovan 2015; Pilote & Donovan 

2016). Within congeneric grass species pairs, annual species were found to have higher RGR 

than perennial species, mostly explained by differences in SLA (Garnier 1992). Garnier (1992) 

also reported that annual species had higher SLA than perennial species, which affords them 

high RGR. In contrast, another study assessing RGR components in different light levels in grass 

species pairs found that photosynthetic rate and proportion of leaf mass influenced RGR the most 

depending on light availability – for shade-tolerant species, photosynthesis (NAR) was the most 

important, and for species of high light environments, LMA was most influential (Ryser & Wahl 

2001). Interestingly, multiple life history strategies (e.g., annual vs. perennial) do sometimes 

occur within a single species and can remain fixed within populations (Vickery 1952; Hitchcock 

& Cronquist 1973). Further study of co-occurring traits within species can offer insights in to 

evolutionary patterns in co-occurring traits that are not visible when looking across large scales 

(Ackerly & Donoghue 1998; Muir et al. 2017). For example, direct selection may be acting on 

one trait strongly correlated with another trait (e.g., SLA and RGR), causing indirect selection 

and change on the correlated trait, even though there are no obvious selection pressures on the 

correlated trait (Conner 1988).  

Relative growth rate and its underlying physiological drivers are also of interest in 

invasion ecology (Baker 1965). This is because invasive species often display higher RGR than 

both co-occurring and native species from the same genus (Pattison, Goldstein & Ares 1998; 

James & Drenovsky 2007, cf Bellingham et al. 2004). Populations of invasive species have also 

been shown to display higher RGR in the invasive range when compared to populations from the 

native range (Graebner, Calloway & Montesinos 2012). RGR is thought to contribute to invader 



 

 

 

 

success, especially after disturbance (Baker 1965), since high RGR increases resource uptake 

(Grime & Hunt 1975). However, the physiological mechanisms responsible for how invaders 

maximize RGR are not well understood. More specifically, we do not know if populations of 

invasive species maximize RGR through variation in SLA, photosynthesis, and LMF in different 

combinations than native populations. Previously, invasive populations of woody species have 

been shown to have higher photosynthetic resource use efficiency and high photosynthetic rates 

overall compared to native populations of the same species (Heberling et al. 2016), but it 

remains unknown how these traits influence RGR. By studying native and invasive populations 

of plants within the same species, we can specifically test for which traits, if any, have changed 

to maximize RGR in invasive populations.  

We aimed to answer the following questions in this study: 1) Are there groups of traits 

associated with different life history strategies in a single species? 2) Which traits maximize 

RGR and is RGR maximized via different traits among populations of a single species? 3) Do 

invasive populations have higher RGR than native populations with different underlying traits 

accounting for increases in RGR? We hypothesized that 1a) annuals would possess leaf traits 

associated with a resource acquisitive strategy: high SLA, high leaf N content, high 

instantaneous photosynthetic rates, low allocation to roots which drive high RGR; 1b) perennials 

would possess leaf traits associated with long leaf life span and a slower resource acquisition 

strategy: low SLA, lower instantaneous photosynthetic rates, and high allocation to roots, which 

culminate to lower RGR than annual populations; 1c) populations with physiological tolerances 

to stressors (e.g. coastal salt spray) would show similar allocation patterns as perennials, but 

have decreased instantaneous photosynthetic rates, low SLA, and lowest RGR due to 

physiological costs of stress tolerance; 2) native populations would maximize RGR differently 



 

 

 

 

than invasive populations, but that SLA would be an important driver of RGR in all life history 

groups; and 3) invasive perennial populations would have the highest RGR and maximize RGR 

using LMF and photosynthetic rate, while native populations would use SLA.  

 

Methods 

Study System 

Mimulus guttatus (aka Erythranthe guttata; yellow monkeyflower) is an herbaceous plant in 

Phyrmaceae native to Western North America. It is highly phenotypically variable and primarily 

lives in seeps and seasonally wet habitats (Hitchcock & Cronquist 1973). Two life history 

strategies (annual and perennial) in the species are maintained via a chromosomal inversion 

(Twyford & Friedman 2015). The annual form lives in habitats that are wet in spring but dry out 

over the summer, while the perennial form lives in areas that are wet year-round (Hitchcock & 

Cronquist 1973). The annual form flowers before its habitat dries out during the summer, while 

the perennial form tends to produce both flowers and multiple stolons that may persist multiple 

years. A third group of native M. gutattus populations exists in coastal cliff areas on the coast of 

California that displays high salt tolerance (Lowry, Rockwood & Willis 2008). The populations 

are fully compatible and gene flow is high between populations of all life history strategies 

(Twyford & Friedman 2015).  

The perennial form of M. guttatus is invasive in the United Kingdom (UK) and New 

Zealand (NZ) (Vallejo-Marin & Lye 2013). In its invasive range, M. guttatus occurs in mesic to 

wet habitats, such as roadside ditches, streams, and seeps. M. guttatus is thought to have been 

introduced multiple times to these continents through horticultural plantings (Puzey & Vallejo-

Marin 2014). In its invasive range, M. guttatus spreads both through sexual and vegetative 



 

 

 

 

reproduction. Previous studies have found invasive populations of M. guttatus to be genetically 

distinct from native populations (Puzey & Vallejo-Marin 2014).  

Population Sampling and Data Collection 

We selected maternal families of field-collected seed from 22 populations of M. guttatus 

across its native and invasive ranges in Western North America and the Aleutian Islands (native), 

and NZ and the UK (invasive). Specifically, we grew seeds from 4 annual populations across the 

Western US, 9 perennial populations, 4 populations in the coastal perennial phylogenetic group 

(Twyford & Friedman 2015), 3 invasive populations from NZ, and 3 invasive populations from 

the UK (Fig. 1). A total of 450 plants were grown in a greenhouse during January-May 2018. 

The plants were grown in two time ‘blocks’ consisting of 250 and 200 plants. We grew 3 to 5 

maternal families per population (most populations had 5 families, but one population did not 

germinate well so it only had 3 families). Each family had two or four replicates (depending on 

germination success) and a total of 10 plants per population. Seeds were cold stratified for 5-7 

days before being moved to a greenhouse with a 14-hour daylength. Plants were watered daily 

using a flood bench.  

 On the first set of ~250 plants, total leaf area, leaf mass, total plant biomass, 

photosynthetic rate (Anet), root biomass, total leaf nitrogen (N), photosynthetic nitrogen use 

efficiency (PNUE), and days to flowering were collected on half of the plants (one per each 

family). The remaining plants continued to grow until flowering, and then the same 

measurements were repeated on these post-flowering plants to calculate relative growth rate and 

average pre- and post-flowering trait values for each family. To calculate total leaf area we 

scanned fresh leaves and used the R package ‘LeafArea’ to calculate total leaf area per plant 

(Katabuchi 2017). After scanning, leaves were dried at 65ºC for at least 48 hours before 



 

 

 

 

weighing to determine leaf mass and specific leaf area (SLA; cm2/g). Roots were cleaned using 

tap water and dried and kept separate from leaf, stem, and reproductive material to determine 

total biomass, root mass fraction (RMF) and leaf mass fraction (total aboveground green biomass 

(LMF)). Photosynthetic rates (Anet) were measured using a portable infrared gas analyzer (LI-

6400, Li-Cor, Lincoln, Nebraska, USA).  Leaves acclimated in the cuvette for 5 minutes before 

photosynthetic rate was recorded at 300 PPFD (photosynthetic photon flux density - µmol quanta 

m-2 s-1), which was the approximate light level in the greenhouse. We maintained leaf 

temperature at 25 ºC for all measurements, and flow rate was adjusted to maintain leaf vapor 

pressure deficit (VPD) below 2.0. Total leaf N and C content was determined from a 

homogenized sample of at least three leaves per plant using an NC autoanalyzer (NC 2100; CE 

Elantech, Lakewood, NJ, USA). PNUE was calculated by dividing area-based photosynthetic 

rates by N content per unit leaf area.  

 A second set of ~200 plants from the same families (excluding invasive populations) 

were grown from March-May to determine stem area and its contribution to carbon gain for each 

family. Stem area data was collected on pre- and post-flowering plants using the length/height of 

each stolon and stem and its associated diameter. We used the formula for the surface area of a 

cone minus basal area to determine the area of each stem or stolon. Stem area was added to total 

leaf area for each plant to determine a ‘whole-plant’ photosynthetic rate per area. We assumed 

stem tissue photosynthesized at the same rate as leaf tissue. Relative growth rate (RGR) was 

calculated for each family using the total biomass of two family replicates harvested pre- and 

post-flowering ([log(masspostflower)-log(masspreflower)]/days between harvest). 

Data Analysis 



 

 

 

 

We tested for differences between RGR, Anet, whole-plant photosynthetic rate, LMF, 

RMF, leaf N, and SLA between life history groups, using linear mixed models with latitude as a 

fixed effect, and population as a random effect nested in life history group. The dependent 

variable was an average of the first and second harvested plant for each family. We used the 

lme4 package in R to create all mixed models (Bates et al. 2017). Model structure was as 

follows: 

Trait ~ Life History + Latitude + (1|Life History Group/Population) 

 

Using Tukey’s post hoc pairwise tests, we tested for differences between life history groups. 

Similarly, we also ran mixed models for each life history group with RGR as the dependent 

variable and SLA, RMF, LMF, and Anet as independent variables with a random population 

effect to determine the contribution of each trait to RGR (R Core Development).  

Using a PCA of each family-averaged leaf trait, we assessed trait variation of life history 

groups in multivariate space. We performed Hotelling tests to test for differences between life 

history means in multivariate space (Curran 2017). Finally, to compare variance in traits at 

multiple scales, we performed linear mixed model analyses with an intercept and random effects 

of life history and population nested within life history. Proportion of variance for each level was 

determined by dividing each levels’ variance by the total dependent variable variance. Residual 

variance quantifies within-population variance. All analyses were performed in R v. 3.4.0. 

Results 

Traits varied by life history group, and the different groups had different combinations of 

traits that maximized RGR. Invasive populations did not have significantly different RGR from 

any other life history groups aside from annual populations (Fig. 2). Annual populations had 



 

 

 

 

significantly higher Anet and RGR than all other life history groups (Table 1, Fig. 2), but the 

lowest whole plant photosynthesis due to lower stem surface area and leaf area. Annual 

populations had the highest leaf N content. SLA did not vary significantly among the life history 

groups, except for coastal perennial groups, which had lower SLA than the other three groups. 

We found that coastal perennial populations had the lowest RGR, but not significantly lower 

than invasive populations. PNUE was highest in annual and perennial plants, although perennial 

populations did not have significantly higher PNUE than invasive populations. Coastal and 

invasive populations had similar values of PNUE (Fig. 2). We did not find large differences in 

allocation to roots across life history groups, except for coastal perennials having marginally 

significantly higher RMF than annual populations. 

Annuals and perennials primarily maximized RGR through the same trait: increased SLA 

(Figs. 3, 4). However, coastal perennial populations and invasive populations increased RGR by 

increasing LMF and SLA (RGR slope Figs. 3, 4). Although invasive populations did not have 

significantly different RGR from perennial populations, the mechanism by which they achieved 

equal RGR differed – both LMF and SLA contributed to RGR in invasive populations, while 

only SLA contributed significantly to RGR in perennial populations.  

The results of the linear mixed models for each life history group with RGR as the 

response variable returned significant relationships between SLA and RGR for both perennial 

and invasive populations. For invasive populations, RMF was also significantly related to RGR. 

No other traits were related to RGR for any of the other life history groups (Table 3).  

Both SLA and PNUE displayed negative relationships with latitude across life history 

groups (Table 2). No other traits showed a relationship with latitude. Proportion of trait variance 

encompassed by each grouping level (life history, population, and within population) varied by 



 

 

 

 

trait, but SLA (both leaf level and on a whole-plant basis) had the highest proportion of variance 

explained by population and life history, Anet had the highest proportion of variance explained by 

population, while LMF and RMF had the highest proportion of variance within population or due 

to residual model variance (Fig. 5).  

Multivariate analysis results indicated that RGR, SLA, leaf photosynthesis (Anet), and leaf 

N were all highly correlated. Annual populations primarily differentiated themselves from the 

other three life history groups along the axis associated with increases in these traits. The 

remaining life history groups varied along the axis associated with biomass allocation (LMF vs. 

RMF). Coastal perennials allocated more biomass belowground than both perennial and invasive 

populations. Perennial populations were on the other side of this continuum, with higher 

allocation aboveground than both coastal and invasive populations. All pairwise Hotelling tests 

of multivariate means of life history groups were significant (P<0.05) (Fig. 6). 

 

Discussion 

Traits of life history strategies 

 Contrary to our hypothesis that perennial populations have traits associated with the 

opposite side of the LES and Grime’s classification of plant traits, we found that perennial plants 

had similar SLA values to annual plants and only marginally lower RGR (Fig. 2). In perennial 

populations, the need for low SLA leaves to extend leaf longevity may be avoided by production 

of trichomes or anti-herbivory secondary compounds (Holeski 2007a). Interpopulation variation 

in trichome production is high and thought to be both genetically determined and inducible, and 

populations that produce the most trichomes are also thought to experience the most herbivory 

(Holeski 2007b). The need for leaves that are well defended with low SLA may also be negated 



 

 

 

 

by shortening the lifespan of any given leaf in trade for production of new leaves and senescence 

of older leaves, but to our knowledge, no studies have recorded leaf demography in M. guttatus. 

When corrected for leaf and stem area, perennial populations also had higher total plant 

photosynthetic rates than annual populations (Fig. 2). However, as predicted by life history 

theories, leaf-level photosynthetic rate and leaf N content was higher for annual populations (Fig. 

2; Table 2). We also expected that annual populations would have higher resource use efficiency 

(PNUE) than annual populations because this trait is associated with fast growth and short-lived 

plants in both Grime’s classification of life history and the LES. Surprisingly, annual and 

perennial populations showed no differences in resource use efficiency (PNUE). Thus, at small 

taxonomic scales, trait differences associated with life history strategies on a global scale are not 

necessarily always present. A similar result was found by Anderegg et al. (2018) in a metanalysis 

of approximately 2000 species, where trait patterns did not sort out along global patterns 

predicted by the LES. For example, the global relationship between decreasing SLA and 

increasing leaf lifespan was not supported within species; rather, the opposite relationship 

between SLA and leaf lifespan was found (Anderegg et al. 2018).  

As predicted, coastal perennial populations displayed low RGR, SLA, and PNUE, which 

may reflect the potential costs of physiological tolerance to salt spray (Fig. 2) (Kozlowski 1997; 

Munns 2002). Compared to populations of non-halophytic M. guttatus, these traits fit onto the 

axes of traits predicted by life history strategy, such as the one outlined by Grime (1974). Plants 

with high physiological stress tolerance tend to grow slower than those with lower stress because 

they must invest resources in mitigating damage from stressors. To tolerate salt, plants must 

reduce absorption of salt into their tissues and/or find a way to contain and remove it from their 

tissues after uptake (Munns 2002). Since we did not expose our plants to salt, we assume reduced 



 

 

 

 

RGR in coastal populations was due to costs of plant mechanisms that attempt to reduce salt 

entry into plant tissue. For example, thick, low SLA leaves with waxy cuticles may reduce the 

amount of salt exposure (Ahmad & Wainwright 1976; Kozlowski 1997). Halophytes also have 

reduced photosynthetic rates even when not exposed to salt, which perhaps partially explains the 

reduction in PNUE in coastal populations (Kozlowski 1997). We expect that reduced PNUE is 

also a factor of reduced SLA, since thick, dense leaves are not conducive to maximum gas 

diffusion rates through leaf tissue.  

 

Decomposition of RGR by life history 

We found that annual and perennial populations maximized RGR through similar values 

of the same trait, SLA (Fig. 5). This is contrary to other studies of congeneric pairs of annual and 

perennial plant species, where SLA explained differences in RGR between pairs of annual and 

perennial species from the same genus. Whereas annual plants have higher SLA than perennials, 

which contributes greatly to increased RGR in annuals (Garnier 1992). The amount of gene flow 

amongst populations of M. guttatus may be prohibiting annual and perennial plants from 

diverging in traits that strongly impact RGR (Twyford & Friedman 2015). Furthermore, the 

previously mentioned traits that perennial M. guttatus populations use to defend their leaves 

against herbivory might negate the need for thicker SLA leaves, thus making the relationship 

between SLA, LMF, and photosynthesis similar for both annual and perennial populations.  

In coastal perennial populations, proportional increases in LMF had the highest increases 

in RGR. The relationship between SLA and RGR for coastal perennial populations was like that 

of both annual and perennial populations (Fig. 5). We suspect that large proportional increases in 

RGR with LMF in coastal populations are explained by the cost of a trait associated with salt 



 

 

 

 

tolerance. Coastal populations of M. guttatus are also highly morphologically divergent and 

genetically differentiated from inland populations (Lowry et al. 2008), so it is not surprising that 

LMF contributes differently to RGR for this group of populations than inland perennials and 

annuals. However, LMF in coastal populations was only marginally different from LMF in 

annual populations, and not different from either perennial populations or invasive populations 

(Fig. 2). Variance in LMF was also high within populations (Fig. 5), which also reduces the 

relationship between it and RGR.  From this, we conclude that reduced SLA most strongly 

contributes to reduced RGR in coastal populations.  

 

Traits of Invasive populations 

 Contrary to our fourth hypothesis, invasive populations did not have higher RGR than 

native populations. The lack of difference in RGR between native and invasive populations is 

contrary to many studies of invasive species that have shown invaders to possess higher RGR 

than native species (Pattison et al. 1998; Grotkopp et al. 2002; van Kleunen & Fischer 2008). 

Because invaders do not display higher RGR than native populations, we speculate that other 

circumstances facilitated successful invasion of M. guttatus in the UK and NZ. For example, 

enough repeated introductions of a species will likely allow it to establish and become invasive if 

the environment is similar enough to its home range even if it does not have a novel combination 

of traits. It also may be that the high level of leaf production and clonal nature of invasive 

populations gives them a competitive advantage for sunlight over co-occurring native plants. 

Similarly, increased clonal reproduction in the invasive range is predicted to enhance invasion 

success in an invasive grass, Phalaris arundincea (Lavergne & Molofsky 2007), and an invasive 

aquatic plant, Butomus umbellatus (Brown & Eckert 2005). However, invasive populations 



 

 

 

 

appear to be constrained by low leaf photosynthetic rates (Fig. 2) which may reduce RGR. 

Reduced photosynthetic rate may be a tradeoff with increased LMF when resources are limiting 

(e.g. N). It may also be that in specific environments in the invaded ranges or in competition with 

other plants (Graebner, Callaway & Montesinos 2012), invasive populations of M. guttatus have 

higher RGR than surrounding native species. Whole plant photosynthetic rates were unmeasured 

on invasive populations, but given their high number of stolons and leaves, we predict that they 

would be like rates seen in native perennial populations. 

 Also contrary to our prediction that invasive populations would have higher PNUE than 

native populations, invasive populations had lower PNUE than perennial native populations (Fig. 

2). We based this prediction on previous studies of populations of invasive species in both 

ranges, where invasive populations had higher PNUE than native populations (Heberling et al. 

2016). The broader implications of our result remain unclear, since albeit non-significant, 

invasive populations in our study had slightly lower SLA than native populations, which could 

explain reduced PNUE in that leaf thickness reduces gas diffusion through leaf epidermis.  

No matter the ecological and anthropogenic circumstances of successful M. guttatus 

invasion in the UK and NZ, our results are evidence RGR alone may not be an adequate 

predictor of invasiveness of species when comparing between native and invasive populations of 

the same species or closely related taxa. Although this result is not the norm (Pattison et al. 

1998b; Grotkopp et al. 2002; Graebner, Callaway & Montesinos 2012), other studies have made 

similar conclusions that RGR does not accurately predict invasiveness (Bellingham et al. 2004). 

Among 33 species of native and invasive woody species in New Zealand, seedlings of invasive 

species did not display higher RGR than native species (Bellingham et al. 2004). Furthermore, 

Bellingham et al. (2004) concluded that invasive status of woody species in New Zealand was 



 

 

 

 

likely highly related to human introductions, which we predict is also at play in our study of M. 

guttatus. 

 

Decomposition of RGR in Invasive Populations 

Interestingly, there were large proportional increases in RGR per unit increase in LMF 

for invasive populations (Fig. 4). A cline in vegetative growth and reproduction – a large 

component of LMF - with increasing latitude has been documented in M. guttatus, such that 

plants in higher latitudes tend to produce vegetatively instead of sexually (van Kluenen & 

Fischer 2008). We hypothesize that the large effect of increases in LMF in invaders may be 

related to increased vegetative reproduction because of the high latitude of origin of our invasive 

populations, rather than their invasive status. Decreased allocation to sexual reproduction and 

floral structures may increase resources available for vegetative growth and increase returns on 

leaf production. Invasive populations were unique in this aspect since no other life history groups 

showed any significant relationship of RGR with LMF. This suggests that invasive populations 

may be avoiding a tradeoff between SLA (leaf thickness) and LMF to which other populations 

may be restricted. Further evidence of this tradeoff avoidance is that invasive populations also 

displayed a large proportional increase in RGR with increasing SLA compared to native 

perennial populations (Fig. 4). However, it should be noted that the relationship between RGR 

and LMF was not significant in our mixed model analysis (Table 3). 

 

Local and Latitudinal Patterns 

We found evidence of the potential for local selection on SLA, RGR, and photosynthetic 

rates, since these traits had the highest amount of variance explained by life history strategy and 



 

 

 

 

population. However, LMF, RMF, and leaf N displayed the highest variance within populations, 

indicating there is either substantial genetic variance for these traits within populations, or they 

are plastic and determined by a microenvironmental variable that we did not measure in this 

study (Kawecki & Ebert 2004). We caution that high within-population variance in LMF and 

RMF may be the result of the difficulty of washing peat-based potting mix from plant roots. Had 

we used a different growing medium, we expect that population level variance in these traits 

might be reduced. However, RMF has been shown to vary at least two-fold in some M. guttatus 

populations (Harper, Smith & Macnair 1997), so our results may have been similar had we used 

a different potting medium. This result of high within population variance for some traits, such 

as vegetative traits, and minimal variance within population for other traits, specifically 

flowering time (Hall & Willis 2006), has been found before in M. guttatus.  

Further evidence of local selection is shown by an effect of population latitude in some 

traits. Specifically, SLA and PNUE were negatively associated with increasing latitude across all 

populations (Table 2). We speculate that this SLA pattern may be driven by increased 

precipitation, longer growing seasons, and thus need for leaves with a longer lifespan in higher 

latitudes than those growing in lower latitudes. Because precipitation increases along our latitude 

gradient, so does growing season length and herbivore pressure, indicating that leaf defense may 

also be driving the latitudinal decrease in SLA (Holeski 2007a, Kooyers, Blackman & Holeski 

2017). Combined, increased herbivore pressure and leaf longevity necessitate thicker more well 

defended leaves, which may explain the decrease in SLA with increasing latitude. Interestingly, 

more northern populations, such as Northern California (not those as far north as Alaska), also 

exhibit higher trichome density, which acts as additional herbivore defense (Holeski 2007b). 

Decreases in PNUE with increasing latitude may also be explained by the same drivers, such that 



 

 

 

 

more N needs to be allocated to production of trichomes and other defensive compounds instead 

of photosynthesis.  

Our study and interpretation of results are not without minor limitations and caveats. We 

caution that all our populations were grown under the same constant photoperiod (14 hr). In a 

natural setting, some of our more northern populations (especially those from the Aleutian 

Islands) may be exposed to much longer and rapidly changing photoperiods, which has the 

potential to induce physiological changes unobserved in this study. Environmental conditions 

such as light availability or soil nutrient content may play a large role in the proportional 

contributions of plant traits to RGR as well (Poorter & VanderWerf  1998; Ryser & Wahl 2001; 

Shipley 2002). 

 

Conclusion 

Plant traits contributing to whole-plant growth rate, including photosynthetic rate, leaf dry matter 

partitioning, specific leaf area, and leaf N content, varied across native and invasive populations 

of a single species, Mimulus guttatus, in ways that were not consistent with global plant trait 

relationships. Furthermore, while relative growth rate is typically predictive of invasiveness, we 

did not find any differences in growth rate between native and invasive populations. Thus, we 

also conclude that relative growth rate is not an adequate predictor of invasiveness in herbaceous 

taxa and that special care should be taken when generalizing about traits that correlate with 

invasion success or when comparing traits among populations of the same species.  
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Table and Figure Captions 

 

Table 1: Populations used in study. 

 

 

Table 2. F-statistics from trait mixed models, includes population as random effect nested in life 

history group. *** = P<0.001; ** = P<0.01; * = P<0.05; . = P<0.09. 

 

Table 3. F-statistics from RGR mixed models (RGR dependent variable) for each life history 

type. *** = P<0.001; ** = P<0.01; * = P<0.05; . = P<0.09. (Total photo is whole-plant 

photosynthesis, except for invasive populations that we did not measure stem surface area on, so 

Anet is substituted). 

 

Figure 1. Map of populations included in study in degrees, minutes, seconds.  (Exact coordinates 

of New Zealand populations are unknown, but all are sourced from Otago). 

 

Figure 2. Boxplots of traits by nativity/life history group. Black lines indicate median values. 

Letters above graphs display results of Tukey’s posthoc comparisons of mixed models (no 

interaction terms included; * indicates Tukey’s pairwise comparison is marginally significant, 

P<0.1). RGR: relative growth rate (log(g) d-1); SLA: specific leaf area (cm2 g-1); LMF: leaf 

mass fraction (proportion of biomass allocated to leaves); Photo/Anet: leaf-based photosynthetic 

rate (µmol CO2 m-2 s-1); Whole plant photosynthesis (µmol CO2 s-1); RMF: root mass fraction 

(proportion of biomass allocated to root mass); %N: % leaf N content; PNUE: Photosynthetic 

nitrogen use efficiency (µmolCO2 g N-1 s-1). 

 



 

 

 

 

Figure 3. Relative growth rate (RGR) vs. measured leaf traits. Colors and units are same as Fig. 

2. Lines are fit using OLS, no random effects included. 

 

Figure 4. Decomposition of relative growth rate (RGR) into its components: LMF, SLA, and 

photosynthesis. Model coefficients extracted from logRGR ~ log(LMF) + log(Photosynthesis) + 

log(SLA). These coefficients explain relative contribution of each plant trait to RGR. Trait units 

are the same as in Fig. 2. 

 

Figure 5. Proportion of variance explained by each grouping/level determined by model:  

Trait ~ 1 +(1|Life hist. group/population). Abbreviations are same as Figs. 2 and 3.  

Figure 6. PCA of observed leaf traits. Eigenvalues for PCA 1 and PCA 2 were 0.42, and 0.20 

respectively. Circles represent mean and SE of life history groups. 

 

Figure 6. PCA of observed leaf traits. Eigenvalues for PCA 1 and PCA 2 were 0.42, and 0.20 

respectively. Circles represent mean and SE of life history groups.  

 

Figure 7. Days to flowering and leaf photosynthesis (Anet). P<0.05 for overall slope of all points. 

 

 

 

 



 

 

 

 

Tables and Figures  

 

Table 1 

 

Population Lat Lon Life History Nativity Location 

BCB 36.03.771 121.35.532 Coastal Perennial Native Big Creek Reserve, CA 

BHI 41.09.295 123.53.378 Annual Native Redwood NP, CA 

CER 53.0 3.32.564 Perennial Invasive Cerrigydrudion, Denbigshire, Wales 

DBL 56.11.492 3.57.54 Perennial Invasive Dunblane, Perthshire, Scotland 

FEV 44.24 122.18 Annual Native Linn County, OR 

G27 35 58.290 118 28.359 Perennial Native Sequoia National Forest, CA 

GBM 41.22.718 124.04.175 Coastal Perennial Native Gold Bluffs Marsh, Redwood NP, CA 

HEC 44.08 124.07 Coastal Perennial Native Heceta Beach, OR 

HOC 47.23.124 123.08.8837 Perennial Native Hood Canal, WA 

KCG   Perennial Native Aleutian Islands, AK 

LCA 40.2 121.12 Perennial Native CA ?? 

LMC 38.51.839 123.05.035 Annual Native Lower Mendocino County, CA 

MUB 45.47 113.36 Perennial Native Mussigbrod Creek, MT 

NKL 50.21.503 126.55.839 Annual Native Nimpkish Lake, Vancouver Island, BC 

NZ1   Perennial Invasive Otago, New Zealand 

NZ3   Perennial Invasive Otago, New Zealand 

NZ4   Perennial Invasive Otago, New Zealand 

SLS   Perennial Native Aleutian Islands, AK 

STB 37.53.479 122.38.085 Coastal Perennial Native Stinson Beach, CA 

SWB 39.02.159 123.41.428 Coastal Perennial Native Sperm Whale Beach, Irish Beach, CA 

TOM 57.15.18 3.22.48 Perennial Invasive Tomintoul, Moray, Scotland 

TRR 39.18 120.12 Perennial Native Truckee River, CA 

TSG 53.25.130 131.54.944 Perennial Native 

Ted's Spring, Queen Charlotte Islands, 

BC 

 

 

 



 

 

 

 

 

 

Table 2 

 

 Life History Latitude 

SLA 15.43*** 6.86* 

Photo 6.51** 2.69 

LMF 2.77. 0.25 

RMF 2.84. 0.01 

RGR 8.10** 2.42 

%N 4.31* 0.24 

PNUE 7.10** 6.02* 

Total Photo 3.98* 0.44 

 

Table 3 

 

 SLA LMF RMF Total photo 

Annual 2.22 0.47 2.69 0.05 

Coastal 1.53 0.34 0.29 0.47 

Perennial 6.56* 0.35 4.83* 0.60 

Invasive 4.81* 0.11 0.23 0.24 
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CHAPTER 5: SYNTHESIS 

Invasive species are a major threat to biodiversity, and their threat will continue 

increasing as a result of anthropogenic activity and global change (Moles et al. 2012). Therefore, 

it is imperative that we understand how they become invasive and how they operate in their new 

ranges if we are to mitigate their damaging effects. There are both demonstrated and 

hypothesized plant traits that contribute to invader success. For example, invasive species may 

be more plastic in response to fluctuating resources (Baker 1965; Funk 2008), they may be more 

efficient with limiting resources (Heberling & Fridley 2016), or they may have developed traits 

that allow them to avoid tradeoffs exhibited by native plants (Martin et al. 2010). Here, I focused 

on illustrating trait-based mechanisms that may facilitate invasions and whether those traits 

originated in the species’ historic range or the new, invaded range. I also looked for ways that 

invasive species may avoid tradeoffs related to key traits, such as relative growth rate, to which 

native species are subject. 

First, I tested whether invasive species have higher plasticity than native species. I 

studied how 30 native and invasive understory shrub species showed plastic responses to 

seasonal fluctuations in light availability (Ch 2). I found that invasive species were more plastic 

than native species, but that plasticity in photosynthetic traits was not adaptive in a carbon gain 

sense. This result was surprising and questions the importance of the broader significance and 

adaptiveness of plasticity: just because plasticity exists doesn’t necessarily mean it is an 

important aspect of fitness in the invasive species’ new range. Examining the adaptiveness of 

plasticity should be a goal of studies on invaders in the future.  

Second, I found evidence that plasticity in invasive species may arise from processes in 

both the species’ native range and its invasive ranges. This result was significant because the 



 

 

 

 

field of invasion ecology still lacks information about how traits of invasive species arise. In my 

study of five invasive shrub species native to East Asia (Ch. 3), I found that some traits were 

plastic in response to light availability in the understory in the native range, but new, additional 

traits were plastic in response to light when looking in the species’ invasive range. I conclude 

that a mix of pre-adaptation from evolutionary history and life history tradeoff avoidance in the 

invasive range make an invasive species a successful invader. 

Lastly, I examined patterns of leaf traits in different life history strategies of a single 

invasive species (Mimulus guttatus) to test the applicability of theories such as the Leaf 

Economics Spectrum at the species level (Wright et al. 2004). I also decomposed relative growth 

rate (RGR) of populations of M. guttatus with different life history strategies and invasive status 

to determine if invasive populations maximize RGR differently. By measuring RGR, I was also 

able to test the theory that RGR is a good predictor of invasiveness within a single species. To do 

this, I performed a greenhouse study of 22 populations of M. guttatus. The 22 populations 

included perennial, annual, coastal perennial, and invasive populations. I decomposed RGR into 

its component traits: specific leaf area, photosynthetic rate, and leaf mass fraction (Poorter & 

VanderWerf 1998). Using this decomposition, I determined that proportional increases in some 

traits led to much larger increases in relative growth rate for invasive populations than they did 

for native populations of M. guttatus. I also found evidence that, on small taxonomic scales, co-

occurring traits predicted by life history theories like the Leaf Economics Spectrum (Wright et 

al. 2004) do not hold true. For example, short-lived annual plants are predicted to invest less in 

leaf construction and have higher SLA than long-lived perennials. However, in my study, annual 

and perennial populations had similar values of specific leaf area, and additionally had similar 

decompositions of relative growth rate. However, I did not find that invasive populations had 



 

 

 

 

higher RGR than native populations. Within a single species, RGR may not be a good predictor 

of invasiveness.   

In sum, I found that a variety of approaches are necessary to understand how and why 

invasive species become successful in their new ranges. Continued study of invasive species in 

their native habitats will allow us to determine if invaders truly are pre-adapted for success or 

evolve rapidly in their invaded ranges. On the other hand, controlled experiments in common 

gardens or greenhouses allow for environmental noise reduction, which allows us to see true 

inter-species or inter-population variation in traits. I theorize that invasion success is determined 

on a species-by-species basis, and that while larger patterns across taxa may improve our general 

understanding of how invasive species come to be, to gain a true mechanistic understanding of 

invader success, we must study them on small taxonomic levels. For example, my dissertation 

results indicate the importance of growth in invasiveness varies taxonomically. While growth 

rate appears important for predicting invasiveness in shade tolerant shrubs, the importance of 

growth rate was much less important for populations of an invasive herbaceous plant like M. 

guttatus. These discrepancies in my results may stem from the differences in habitat and 

presence of competitors for these species. Shade tolerant shrubs in Eastern North America start 

life in a shaded environment and must constantly compete for light, while fast-growing 

herbaceous annuals grow up in full sunlight. Furthermore, large, slow-growing woody plants and 

small herbaceous plants vary greatly in the time that they take to reach maturity and reproduce: 

M. guttatus reaches maturity in 2-3 months, while shade tolerant woody shrubs take years to 

reach reproductive age.  

Differences in traits relating to invasiveness in my target woody and herbaceous species 

may also stem from the use of field versus controlled (greenhouse) environments. Had I studied 



 

 

 

 

M. guttatus plants in their natural habitats, I predict I would have seen a greater signal of growth 

in invasive populations, since many populations grow in harsh low resource conditions in the 

desert of Western North America. Observing invaders in their natural environments would also 

take into account processes like enemy release or extended phenology (Fridley 2012) that might 

be increasing the growth invasive species. To obtain a fuller understanding of the importance of 

growth, leaf traits, and pre-adaption of invasive species, more reciprocal transplant studies of 

invasive species in the habitats in which they occur and along resource or competition axes are 

needed. 
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