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ABSTRACT 

 

Due to challenges associated with current clinical techniques used to treat bone defects, there has 

been an increased focus on finding a tissue engineered solution.  However, while great progress in 

this field has been achieved, researchers have yet to suitably combine the proper biological and 

structural environments needed to serve as a complete bone tissue substitute that is comparable to 

modern clinical solutions.  

 

To achieve the goal of creating a model bone tissue substitute which could eventually serve as a 

viable therapy for bone trauma, be it caused by congenital medical conditions, age related diseases 

or high impact forces, three areas of the engineered construct architecture and composition were 

identified and studied in a successive fashion.  First, a soft, biocompatible matrix within which 

cells could be encapsulated was studied, followed by an investigation on how to combine the soft 

matrix with a 3D printed structural frame.  Finally, user-defined perfusable vasculature was added 

to the soft matrix in order to create a model bone tissue engineering construct capable of possible 

in vivo implantation. 

 

In Chapter 2 of this work, osteoblast-like human osteosarcoma cells (Saos-2) were encapsulated 

within gelatin methacrylate (GelMA) hydrogels and the effect of the hydrogel density on cellular 

morphology and mineralization was investigated.  It was found that the less dense hydrogels 

allowed for increased cell viability and spreading, while the denser gels appeared to encourage 

more mineral deposition on the construct periphery. 

 



Building upon Chapter 2, Chapter 3 focused on the 3D printing of polycaprolactone (PCL) and 

composite PCL cages which could be combined with the soft GelMA matrices used for cellular 

encapsulation.  It was found that while PCL and PCL composite cages could be reproducibly 

printed via a Makerbot 3D printer, the structural strengths did not surpass those of standard poly 

lactic acid (PLA) thermoplastic cages.  Furthermore, it was demonstrated that the cell-laden 

GelMA hydrogels containing encapsulated Soas-2 cells could be incorporated with the 3D printed 

structures for potential bone tissue engineering applications. 

 

In Chapter 4, a simpler version of the cages produced in Chapter 3 were combined with sacrificial 

3D printed polyvinyl alcohol (PVA) pipes and the dense cell-laden hydrogels investigated in 

Chapter 2 to create structurally supported, cell-laden hydrogel constructs.  It was found that 

encapsulated cells could be stimulated to deposit mineral in the centers of the constructs via direct 

perfusion.  However, in a larger version of the construct containing multiple pipes, mineralization 

was impeded due to diffusion issues caused by individual channel mineralization. 

 

Finally, in Chapter 5 future strategies to improve upon the structurally supported cell-laden 

hydrogels are discussed which would solve the issues found in Chapter 4.  Additionally, potential 

in vivo applications for this system are explored. 

 

  



STRUCTURALLY SUPPORTED CELL-LADEN 

SCAFFOLDS FOR BONE TISSUE REGENERATION 

 

 

By 

 

STEPHEN WILLIAM SAWYER 

 

B.S., Virginia Military Institute, 2005 

M.B.A., University of South Carolina, 2009 

 

 

DISSERTATION 

 

 

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in 

Bioengineering. 

 

 

Syracuse University 

December 2018 

  



 

 

 

 

 

 

 

 

 

 

Copyright © Stephen William Sawyer 2018 

All Rights Reserved 

 

  

  



 

 

 

 

 

 

 

 

 

 

For G.T.S. 

 



 vi 

ACKNOWLEDGEMENTS 

 

First and foremost, I would like to thank my advisor, Dr. Pranav Soman, for his support and 

guidance over the past 5 years.  When I entered the Bioengineering PhD program at Syracuse 

University I had little research experience, and as a new faculty Dr. Soman took a great risk in 

selecting me to be his first student.  I will always appreciate the patience and leadership 

demonstrated by Dr. Soman as he helped to mold me into a better researcher over the course of 

this program.  I would also like to thank Dr. Soman for allowing me the opportunity to be involved 

in the publication of six different manuscripts over the course of my tenure in his lab. 

 

I would next like to thank Dr. James Henderson and Dr. Cristina Marchetti for originally putting 

their faith in me by allowing me to enter the Syracuse Bioengineering PhD program with an IGERT 

fellowship.  Like Dr. Soman, their ability to look past my lack of research experience and grant 

me the opportunity to succeed at Syracuse will never be forgotten.  I would also like to extend an 

extra thank you to Dr. Henderson for agreeing to be a secondary advisor and mentor throughout 

this journey.  His guidance and insight have been extremely important to me during this entire 

process. 

 

I would next like to extend a special appreciation to both Dr. Megan Oest and Dr. Jason Horton.  

Not only did Dr. Oest and Dr. Horton allow me unfettered access to their labs at SUNY Upstate 

Medical University, but they provided key guidance and expertise which has allowed me to 

succeed over the course of my PhD career. 

 



 vii 

Next, I would like to thank Dr. Dacheng Ren for not only serving on my committee, but for also 

being one of the original professors who put their faith in me prior to acceptance to Syracuse 

University.  Additionally, I would like to thank Dr. Teng Zhang who agreed on very short notice 

to serve as the chair of my defense committee.  I am deeply thankful for his willingness to take 

time out of his schedule to serve as my committee chair. 

 

I would also like to acknowledge all of the students, both past in present, in Dr. Soman’s lab, Dr. 

Henderson’s lab, Dr. Oest’s lab, and Dr. Horton’s lab.  Be it through material synthesis, data 

analysis, or basic laboratory practices, the wonderful and skilled students who I have worked 

alongside all of these years will not be forgotten as I move forward with my career and I thank you 

all. 

 

Throughout the course of this PhD, I was fortunate to be involved in the publication of six 

manuscripts, three of which serve as individual chapters in this work.  Chapter 2, “Behavior of 

Encapsulated Saos-2 cells within Gelatin Methacrylate Hydrogels,” was my first manuscript 

published and would not have been possible without the contributions of Dr. Bryan Margulies and 

Dr. Megan Oest.  Dr. Margulies initially taught me cell culture and was instrumental in the initial 

stages of experimental development while Dr. Oest was pivotal in the writing and editing of the 

manuscript. 

 

Chapter 3 of this work, “Developing 3D Scaffolds in the Field of Tissue Engineering to Treat 

Complex Bone Defects,” was a collaboration between myself and Lucas D. Albrecht, an 

outstanding master’s student in the Soman lab who I had the pleasure of working with.  With the 

aid of Alex B. Filip, an undergraduate in the Soman lab, Lucas drove the hybrid spool development 



 viii 

and mechanical testing.  Without the hard work from Lucas, the manuscript would not have been 

possible. 

 

Chapter 4, “Perfusion Directed 3D Mineral Formation within Cell-Laden Hydrogels,” was the final 

paper published prior to my defense and served as the capstone to my work at Syracuse.  As was 

the case with the other manuscripts, this paper was possible due to the combined effort of numerous 

students and professors.  First and foremost, Shivkumar Shridhar, a previous student in Dr. 

Soman’s lab, was solely responsible for the COMSOL modeling and was a key reason for the 

article’s acceptance into Biofabrication.  Kairui Zhang, a PhD student in the Soman lab, aided in 

the perfusion of constructs and made my work much more manageable towards the end of my 

studies.  Furthermore, Lucas and Alex were critically important in the initial project design, printed 

all 3D constructs, and spearheaded the creation of the bioreactors in the Syracuse University 

machine shop.  Finally, Dr. Horton was intimately involved in the writing of the manuscript and 

provided a much-needed perspective during the resubmission process. 

 

I also wish to thank the SBI facility manager, Dr. Eric Finkelstein, and administrative staff, Karen 

Low, Lynore de la Rosa, and Jason Markle for their advice and help over the past few years.  I 

appreciate their patience and willingness to always help. 

 

Finally, I would like to thank my mother and father, who supported my decision to return to school 

and pursue a PhD.  Without their support, this process would have never happened and for that, I 

am deeply grateful. 



 ix 

TABLE OF CONTENTS 

List of Figures ............................................................................................................................. xiii 

Chapter 1:  Introduction ............................................................................................................... 1 

1.1 The need for bone tissue engineering ................................................................................. 1 

1.1.1 Creating a tissue engineered solution ............................................................................. 4 

1.2 The structure and composition of bone ............................................................................. 4 

1.2.1 Cellular component ........................................................................................................ 5 

1.2.2 Bone matrix .................................................................................................................... 6 

1.2.3 Cortical and cancellous bone .......................................................................................... 7 

1.2.4 Hierarchy of the long bone ............................................................................................. 8 

1.3 Bone vasculature and its role in bone growth and homeostasis .................................... 10 

1.3.1 New bone growth ......................................................................................................... 11 

1.3.2 Bone remodeling .......................................................................................................... 13 

1.3.3 Fracture repair .............................................................................................................. 14 

1.4 Challenges of developing a tissue engineered construct ................................................ 15 

1.4.1 Challenge 1 – Soft matrix for cellular encapsulation ................................................... 15 

1.4.2 Challenge 2 – Strategies for combining soft and hard components ............................. 17 

1.4.3 Challenge 3 – Adding perfusable vasculature .............................................................. 18 

1.5 Scope of dissertation .......................................................................................................... 20 

1.6 References .......................................................................................................................... 20 

Chapter 2:  Behavior of Encapsulated Saos-2 Cells within Gelatin Methacrylate Hydrogels 

 ....................................................................................................................................................... 30 

2.1 Abstract  ............................................................................................................................. 30 

2.2 Introduction ....................................................................................................................... 31 



 x 

2.3 Materials and Methods  .................................................................................................... 32 

2.3.1 Gelatin methacrylate pre-polymer solution preparation ............................................... 32 

2.3.2 Saos-2 culture and encapsulation ................................................................................. 33 

2.3.3 Osteosarcoma mineralization ....................................................................................... 34 

2.3.4 Histochemical analysis, Live/Dead staining, and image processing  ........................... 34 

2.3.5 Micro-computed tomography ....................................................................................... 35 

2.3.6 Quantitative values and statistical analysis .................................................................. 36 

2.4 Results ................................................................................................................................. 36 

2.4.1 Formation of cell-laden hydrogels ................................................................................ 36 

2.4.2 Viability of encapsulated cells ...................................................................................... 38 

2.4.3 Cellular morphology ..................................................................................................... 41 

2.4.4 Mineral deposition ........................................................................................................ 43 

2.5 Discussion ........................................................................................................................... 45 

2.6 Conclusions ........................................................................................................................ 48 

2.7 Non-Author Acknowledgements ...................................................................................... 48 

2.8 Disclosure statement .......................................................................................................... 49 

2.9 References .......................................................................................................................... 49 

Chapter 3:  Developing 3D Scaffolds in the Field of Tissue Engineering to Treat Complex 

Bone Defects  ................................................................................................................................ 54 

3.1 Abstract .............................................................................................................................. 54 

3.2 Introduction ....................................................................................................................... 55 

3.3 Materials and Methods ..................................................................................................... 57 

3.3.1 Development of hybrid spools ...................................................................................... 57 

3.3.2 Chemical composition testing ...................................................................................... 58 



 xi 

3.3.3 3D printing and mechanical testing .............................................................................. 58 

3.3.4 Cell incorporation within log-pile scaffolds ................................................................. 59 

3.4 Results ................................................................................................................................. 60 

3.4.1 3D printing using hybrid PCL spools ........................................................................... 60 

3.4.2 Composition and mechanical properties of printed scaffolds ...................................... 62 

3.4.3 3D printing of complex porous geometries .................................................................. 63 

3.4.4 Cell incorporation within log-pile scaffold .................................................................. 65 

3.5 Discussion ........................................................................................................................... 67 

3.6 Conclusions ........................................................................................................................ 69 

3.7 Non-Author Acknowledgements ...................................................................................... 70 

3.8 Disclosure Statement ......................................................................................................... 70 

3.9 References .......................................................................................................................... 70 

Chapter 4:  Perfusion Directed 3D Mineral Formation within Cell-Laden Hydrogels  ....... 74 

4.1 Abstract .............................................................................................................................. 74 

4.2 Introduction ....................................................................................................................... 75 

4.3 Materials and Methods ..................................................................................................... 77 

4.3.1 3D printing of frames and pipes ................................................................................... 77 

4.3.2 Design and fabrication of polycarbonate bioreactor ..................................................... 77 

4.3.3 Gelatin methacrylate (GelMA) synthesis ..................................................................... 78 

4.3.4 Cell culture and perfusion setup ................................................................................... 78 

4.3.5 Cellular viability ........................................................................................................... 79 

4.3.6 MicroCT analysis ......................................................................................................... 79 

4.3.7 Histological analysis ..................................................................................................... 80 

4.3.8 COMSOL modeling ..................................................................................................... 81 



 xii 

4.3.9 Statistical analysis ........................................................................................................ 83 

4.4 Results ................................................................................................................................. 83 

4.4.1 Design and fabrication of a plug-and-flow construct ................................................... 83 

4.4.2 Perfusable GelMA laden hydrogels containing Saos-2 cells ....................................... 85 

4.4.3 Channel mineralization and modeling .......................................................................... 88 

4.4.4 Histological analysis and quantification ....................................................................... 91 

4.4.5 Construct scalability ..................................................................................................... 93 

4.4.6 Estimation of the influence of mineral formation on oxygen diffusion ....................... 95 

4.5 Discussion ........................................................................................................................... 96 

4.6 Conclusions ........................................................................................................................ 99 

4.7 Non-Author Acknowledgements ...................................................................................... 99 

4.8 Disclosure statement .......................................................................................................... 99 

4.9 References ........................................................................................................................ 100 

4.10 Supplementary figures .................................................................................................. 105 

Chapter 5:  Ongoing Work and Future Recommendations  ................................................. 109 

5.1 Introduction ..................................................................................................................... 109 

5.2 The addition of endothelial cells to the perfusable system .......................................... 111 

5.3 In vivo extension of model system .................................................................................. 115 

5.4 Final remarks ................................................................................................................... 118 

5.5 References ........................................................................................................................ 118 

VITA ........................................................................................................................................... 122 

 
  



 xiii 

LIST OF FIGURES 

 

Figure 2.1:  Cellular encapsulation schematic. (A) Schematic of surface tension encapsulation 

technique.  75,000 Saos-2 cells in 20 µl aliquots were combined with 130 µl of prepolymer solution 

containing .25% photoinitiator and pipetted dropwise into a bed of vegetable oil.  UV light was 

cast onto the hydrogel drops for one minute to cure before being rinsed with PBS and transferred 

into incubation media.  (B) Cured hydrogel spheres containing encapsulated cells resembled disc 

like structures with dimensions approaching 6mm x 6mm x 4mm (scale bar = 5mm).  (C)  

Mechanical data of various GelMA (w/v) concentrations modified from previous work. 

[18].................................................................................................................................................37 

 

Figure 2.2:  Cellular viability and activity within degradable hydrogel scaffolds of different 

stiffness.  (A) Cells were grown within hydrogel constructs for 5 days and analyzed for cellular 

viability using calcein-AM (live = green) and ethidium homodimer (dead = red).  Fluorescent 

images of live/dead cells show live and dead cells throughout the entire scaffold.  (B) 

Representative schematic of the region of interest used to standardize measurements between fixed 

and sectioned histological samples.  Areas between the center of the slices and the peripheries were 

used due to sectioning artifacts.  (C) Cells stained with DAPI were counted in the ROI of 

histological slices for 3 day, 7 day, and 14 day timepoints.  Increases in cellular population over 

time within the hydrogels were evident in all samples at all timepoints (n = 3; * = p < 0.05).  (C) 

Saos-2 cells tagged with green fluorescent protein (GFP) showed activity in all samples well over 

one month after encapsulation (scale bar = 100μm).  (D) Fluorescence in histological samples due 

to DAPI staining allowed for apparent porosity of hydrogels containing encapsulated cells to be 

measured for 3 day, 14 day and 49 day timepoints.  Blue coloring represents GelMA staining while 



 xiv 

black coloring represents apparent void space.  All gels degraded significantly over time (n = 3; * 

= p < 0.05; scale bar = 100μm)........................................................................................................40 

 

Figure 2.3:  Nuclear and cytoskeleton staining of encapsulated Saos-2 cells.  (A) Cells were 

grown within hydrogel constructs for either 3, 7, or 14 days, fixed, sectioned, and stained for f-

actin (red = phalloidin) and counterstained for nuclei (blue = DAPI).  Representative pictures at 7 

days (scale bar = 100μm) and 14 days (high resolution; scale bar = 20μm) show distinct 

morphological differences in the ROI of samples of different stiffness at all timepoints.  (B) 

Histological samples stained with phalloidin and counterstained with DAPI were analyzed for 

morphological differences in the nuclei and lacunae at 3 day, 7 day, and 14 day timepoints.  

Measurements showed significant differences in aggregate nuclear diameters and areas, as well as 

aggregate lacunae diameters and areas, for softer hydrogels over time (n = 3; * = p < 0.05)...........42 

 

Figure 2.4:  Mineralization and microCT of encapsulated Saos-2 cells.  (A) Cells were grown 

within hydrogel constructs for 7 days and were subsequently placed in osteogenic media for an 

additional 14 days.  Constructs were fixed, sectioned, stained for mineral deposition (red = alizarin 

red S) and counterstained for nuclei (blue = DAPI).  Representative pictures for all samples show 

distinct difference in the mineral located within the ROI for different gel stiffnesses (top scale bar 

= 100μm; bottom scale bar = 20μm).  (B) Cells were grown within hydrogel constructs for 14 days 

and were subsequently placed in osteogenic media for an additional 14 days.  Samples were 

analyzed via microCT for total mineral within the constructs of different stiffnesses.  (C) 

Histological samples stained with alizarin red S and counterstained with DAPI were analyzed for 

mineral cluster area and area fraction of mineral coverage within the ROI and showed significant 

differences for implants of varying moduli (n = 2; * = p < 0.05).  MicroCT scans were analyzed 



 xv 

for total mineral throughout the constructs and showed no significant differences between implants 

of varying moduli (n = 3)................................................................................................................44 

 

Figure 3.1:  3D printing schematic using hybrid PCL spools.  (A) The raw material is fed into 

the filament extruder creating a long strand of three polymer spools (PCL, PCL-HA, and PCL-

PLA).  (B) A commercially available MakerBot Replicator 3D printer.  (C) The printer settings 

are set for each filament spool, respectively.  (D) The model of the log-pile scaffolds and the 

printed counterparts to the right.  Scale bar:  2mm.  HA, hydroxyapatite; PCL, polycaprolactone; 

PLA, polylactic acid.......................................................................................................................61 

 

Figure 3.2:  Printed scaffold compositions and mechanical properties.  (A) High-resolution 

TGA of polymer spools.  (B) Results in tabular form showing the degradation points and 

percentages for each compound.  (C) Compression testing apparatus to obtain mechanical 

properties of log-pile scaffolds.  (D) Stress-strain plots and bar graphs of modulus and maximum 

stresses for each polymer spool (n=5).  TGA, thermogravimetric analysis...................................63 

 

Figure 3.3:  3D printing of complex geometries.  (A) Cartesian data for a human femur were 

placed into the MakerBot Desktop.  (B) A slice from the diaphysis of the femur was taken and 

Lattice meshed in Meshmixer.  On the right is the 3D printed model in PCL.  (C) Longer slice 

from the diaphysis was Voronoi meshed in Meshmixer to create a hollow cage-like representation 

of the outside femur.  On the right is the 3D printed PCL model.....................................................65 

 

Figure 3.4:  Incorporation of cells within 3D printed scaffolds.  (A) Schematic representation 

of the process used for incorporating living cells within printed scaffolds.  The case was slightly 



 xvi 

larger than the 6mm3 log-pile structure to allow for GelMA-cell solution perfusion.  (B) PCL 

scaffold infused with 7% GelMA containing 15% (v/v) MiO orange coloring to show complete 

perfusion of GelMA throughout the scaffold (left to right: PCL GelMA top, PCL GelMA middle, 

PCL GelMA bottom).  (C) Live (green)/Dead (red) calcein-AM/ethidium homodimer pictures 

from PCL/PLA scaffold (left to right:  PCL-PLA GelMA top, PCL-PLA GelMA middle, PCL-

PLA GelMA bottom).  GelMA, gelatin methacrylate.....................................................................66 

 

Figure 4.1:  Design and performance testing of 3D-printed construct and bioreactor 

apparatus.  Schematic and representative images of the mechanically supportive ABS frame with 

inserted pipe before (A) and after (B) photopolymerization of GelMA, and after dissolution of the 

sacrificial PVA pipe (C).  Schematic image of a two-piece polycarbonate bioreactor containing a 

PDMS gasket between layers (D) and leakage test of polycarbonate bioreactor showing liquid-

tight seal in machined device (E).  Complete bioreactor setup inside a standard cell culture 

incubator (F)...................................................................................................................................85 

 

Figure 4.2:  Perfusion can direct mineral deposition.  Schematic representation of outcomes 

following osteogenic induction under (A) perfusion or (F) static culture conditions. Cell viability 

by fluorescent live (green)/dead (red) staining after perfusion (B, C) or static culture (G, H) 

conditions for either 1 (B, G) or 14 days (C, H) respectively. Brightfield microscopy showed an 

accumulation of an opaque matrix surrounding the perfused pipe (D) that was not evident in static 

constructs lacking a pipe (I) (scale bar: 400µm). Micro-CT imaging demonstrated mineral deposits 

surrounding the perfused pipe (E), whereas mineral accumulated only at the periphery of 

constructs maintained in static conditions (J).................................................................................87 

 



 xvii 

Figure 4.3:  MicroCT analysis of mineral deposition.  Representative microCT image of total 

mineral deposition after culture in osteogenic media under static (S) or perfused (P) conditions for 

1, 2, or 4 weeks (A).  For representative images, the entire frame was digitally contoured in order 

to visually show how mineralization occurs in static samples immersed in osteogenic media versus 

samples perfused directly with osteogenic media.  Mineral volume deposited around pipes after 1, 

2, or 4 weeks of both static osteogenic culture and osteogenic media perfusion showed significant 

increases in volume after 4 weeks (4wk static and 4wk flow n=7, 2wk flow n=8, rest n=6.  * p<0.05 

via one-way ANOVA) (B).  Density of mineral deposited around pipe after 1, 2, or 4 weeks of 

both static osteogenic culture and osteogenic media perfusion remained constant at every time 

point (4wk static and 4wk flow n=7, 2wk flow n=8, rest n=6) (C)..................................................90 

 

Figure 4.4:  Histological analysis of perfused constructs.  Cellular localization decreases, and 

matrix mineralization increases as function of distance from the perfused channels. Representative 

Alizarin Red (A) and H&E (B) histology stains of construct samples after either 1, 2, or 4 weeks 

of perfusion with osteogenic media (scale bar: 500µm).  Box plot analysis of H&E samples was 

used to measure cell number in measured increments away from the central pipe (scale bar: 

325µm) (C).  Histogram quantification of the number of cells as a function of distance away from 

the lumen for 1, 2 and 4 week perfused samples shows that cell number decreases as the distance 

from the perfused channel increases (n=3, *p<0.05 via one-way ANOVA) (D).............................92 

 

Figure 4.5:  Schematic representing the scalability of perfusable constructs.  Multiple 

channels spaced at optimal distances are capable of being perfused via one inlet (A).  COMSOL 

modeling of oxygen diffusion between one channel (B Top) and two channels spaced 1mm apart 

(B Bottom), as well as COMSOL modeling of the radial oxygen consumption by cells around the 



 xviii 

channels within cell laden constructs spaced 1mm apart (C) was used to determine optimal pipe 

spacing in larger constructs.  Schematic of a scaled cell-laden construct (D) and corresponding 

ABS cage (6x6x6 mm3) (E).  CAD isometric view of a machined, two-piece polycarbonate 

bioreactor containing a PDMS gasket between layers (red) (F).  Micro-CT imaging of mineral 

deposition surrounding pipes (G, side view; H Cross-sectional view) after four weeks of 

perfusion with osteogenic media showed that the model system could be easily scaled.  

Representative Alizarin Red histology of a large-scale construct after perfusion with osteogenic 

media for 4 weeks showed robust mineralization (I) (scale bar: 500µm)........................................94 

 

Figure 4.6: Effect of mineral formation on oxygen diffusion radially across the channel. 

Surface slices were obtained from 3D data sets in MIMICS, and mineral area was measured (A-

B). A schematic model showing the three domains used for COMSOL modeling (C).  Table shows 

the various parameters used to calculate Domain 3 (D, Top table).  Simulation of oxygen diffusion 

for weeks 1, 2 and 4 (D, Bottom) (white arrows showing the donut shell thickness).  Distribution 

of oxygen radially away from the channel surface for weeks 1, 2 and 4 along with control without 

any mineral deposits (E).................................................................................................................96 

 

Figure S4.1:  Polycarbonate base plate dimensions and scale.................................................105 

 

Figure S4.2:  Polycarbonate top plate dimensions and scale...................................................106 

 

Figure S4.3: Representative series of static and perfused images showing contrast of 

deposited mineral from background and frames after microCT scanning.  Representative 

whole views of in-tact constructs within 16mm diameter sample holders after scanning show 



 xix 

contrast of deposited mineral (white) from background (grey) and sample frames (dark grey).  To 

normalize data, only mineralized pipes were contoured for mineral (ROI)..................................107 

 

Figure S4.4:  Total mineral quantification.  Total mineral deposited around pipes after 1, 2, or 

4 weeks of both static osteogenic culture and osteogenic media perfusion showed significant 

increases in deposition after 4 weeks (4wk static and 4wk flow n=7, 2wk flow n=8, rest n=6.  * 

p<0.05 via one-way ANOVA)......................................................................................................108 

 

Figure 5.1:  MicroCT analysis of mineral deposition within a co-culture single pipe system.  

HUVECS (H) were either seeding along the perfusable channels (Channel) or added in a 2:1 ratio 

with Saos-2 cells in the GelMA matrix (Bulk) and were either perfused with osteogenic media 

(Flow) or left in static control wells (Static).  After two weeks of perfusion, HUVECS encapsulated 

in the bulk material significantly increased Saos-2 mineral deposition as compared to the 

constructs containing HUVEC lined channels and their static controls (* p<0.05 as compared to H 

Bulk Flow 2Wk, n=5)...................................................................................................................113 

 

Figure 5.2:  MicroCT analysis of mineral deposition within a co-culture double pipe system. 

HUVECS (H) were added in a 2:1 ratio with Saos-2 cells (S) in the GelMA matrix and perfused 

with osteogenic media for either 1 or 2 weeks.  After two weeks of perfusion, HUVEC+Saos-2 

constructs did not show a significant increase in mineral deposition as compared to samples 

containing only Saos-2 cells.  (*p<0.05 as compared to S+H Flow 2Wk; $p<0.05 as compared to 

S Flow 2Wk; n=3 for HUVEC only samples, n=5 for rest)...........................................................114 

 



 xx 

Figure 5.3:  Ectopic implantation of thermoplastic ABS frames containing primary BMSC 

and VEC cells. 6x6x6mm3 frames containing encapsulated BMSCs, VECs, or a combination of 

both were implanted subcutaneously in c57BL/6J mice (red arrows, top X-ray).  After two weeks 

of implantation, the implants were retrieved and showed blood invasion and minimal host 

ingrowth in the cell-laden constructs (bottom)*..........................................................................116 

 

Figure 5.4:  Cartoon depicting surgical anastomosis of perfusable structurally supported 

cell-laden constructs.  (A) 3D printed constructs containing cell-laden GelMA and perfusable 

channels will be anastomosed directly into the host femoral artery and sewn in place via 3D printed 

anchor grommets.  (B)  3D rendering of structural frame (blue) and stainless-steel catheter 

connections (grey)*......................................................................................................................117 

 

 



 1 

CHAPTER 1:  INTRODUCTION 

 

1.1 The need for bone tissue engineering 

 

Over the past decade, there has been an increased focus on providing a tissue engineered solution 

for orthopedic bone defects which cannot heal properly.  These types of defects, many of which 

involve bone fracture, can be caused by birth disorders, tumors, infections, revision surgeries, and 

high impact traumas and pose a large financial burden on the medical community.[1-5]  In fact, as 

of 2010 the American Academy of Orthopedic Surgeons estimated that there were over 6 million 

fractures annually in the United States alone resulting in hundreds of thousands of bone graft 

procedures costing approximately $2.5 billion dollars.[4, 6]   

 

It has been estimated that approximately 10% of all bone fractures do not heal properly and 

therefore require clinical intervention.[5]  These types of segmental bone defects, which are 

commonly referred to as critically sized defects, include fractures that either cannot heal naturally 

without intervention, regenerate less than 10% over the course of the lifetime of the injury, or are 

approximately 2 to 3 times larger than the diameter of the injured bone.[6]  As segmental bone 

defects come in different shapes and sizes, there are a range of clinical techniques used to aid the 

bone healing process.  In general, these solutions rely on either vascularized autografts, allografts, 

synthetic implants, or specialized techniques such as distracted osteogenesis[1, 6-8]. 

 

The preferred treatment of a segmental bone defect is a vascularized bone graft, such as pedicled 

vascularized bone graft used in repairing broken wrists or fractures in the femoral neck and hip.[6, 

9]  These types of grafts are harvested from the patient itself and include host vasculature, thereby 
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allowing for direct anastomosis to the local blood supply.  Vascularized bone grafts have been 

shown to dramatically enhance healing times, however they do include drawbacks such as donor 

site morbidity and the  necessity of shielding the surgical site from weight bearing applications 

during the healing process.[6, 9, 10] 

 

Due to the donor morbidity associated with vascularized bone grafts, allografts are a widely 

available solution as they are not patient derived.[1]  Additionally, allografts can serve as solutions 

to fractures that will necessitate load bearing post-surgery, making them an attractive option in the 

treatment of a segmental defects.[1, 6]  However, as allografts are not vascularized and the material 

is not patient specific, concerns such as disease transmission, the possibility of implant failure, and 

on rare occasions host rejection, remain.[6] 

 

Implants are another common solution to repairing segmental bone defects and can be made from 

a variety of materials.  For instance, intramedullary nails, which are the standard of care for injuries 

such as tibial shaft fractures, have been shown to be highly biocompatible.[5, 8]  However, as the 

implants are generally not made from organic material, the possibility of corrosion, wear, and 

fibrous encapsulation remain issues that could lead to implant failure or secondary surgery.[11, 

12]  Fortunately, implants made of stainless steel and titanium have mitigated these concerns 

greatly. 

 

Techniques such as distraction osteogenesis have also been used to treat segmental bone defects 

with great success.[6, 13]  In this particular technique, the cortical shell of the fractured bone is 

cut, leaving the periosteum and medullary cavity intact.[6]  The cut is then stabilized with an 

external fixator that extends the bone segment between the cut and the defect at a rate of 1mm/day, 
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thereby “distracting” the natural callus formed during bone repair.[6, 14]  Essentially, the 

“distraction” of the callus stimulates bone formation de novo through both mechanical and 

biological stimulation, and eliminates the need for graft material.[14]  However, while the external 

fixator makes weight bearing possible, its application may be extremely cumbersome to the patient 

and the time frame for healing could be prolonged.[6] 

    

Autografts, whether they are vascularized as explained before or avascular, remain the current gold 

standard for bone replacement in a clinical setting.[15]  Not only are they harvested from host 

material, but they generally include the inherent structure and growth factors needed for bone 

repair.[6]  However, while autografts provide an excellent option for the repair of segmental 

defects, they do still have drawbacks such as donor site morbidity and limited availability in elderly 

patients.[6]  As such, researchers have attempted to find possible alternative solutions in the form 

of tissue engineered constructs.  For instance, in one such case a b-tricalcium phosphate matrix 

combined with recombinant human homodimeric PDGF subunit B, a peptide signaling molecule 

involved in bone repair, were compared against autografts in ankle arthrodesis cases.[16]  It was 

shown that while the fusion rates were similar between the two groups, the PDGF constructs 

seemed to reduce the patient pain.  Regardless, while current clinical practices for the repair of 

segmental bone defects have been very successful, they do all have their own drawbacks and 

research into alternative solutions, such as tissue engineered constructs, is necessary to improve 

patient care and advance the field of orthopedics.[5] 
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1.1.1 Creating a tissue engineered solution 

 

The noted issues associated with clinical approaches to treat segmental bone defects and fractures 

highlight the need for a robust and reproducible tissue engineered bone replacement.  More 

specifically, this replacement must be capable of providing a suitable microenvironment which not 

only is able to house appropriate cells for regenerative purposes, but also capable of recruiting 

cells in vivo to support a complete restoration of the defective bone tissue.[7]  Not only will this 

improve the quality of life for those maligned with orthopedic defects of any kind, but will 

hopefully reduce the burden on healthcare systems around the world.  However, before attempting 

to create a tissue engineered solution, the complex architecture of native bone needs to be 

understood. 

 

1.2 The structure and composition of bone 

 

Bone is a hard, composite tissue which houses the body’s organs, provides the structural support 

needed for the body’s motion, and serves as the calcium repository for the human body.[17]  

Additionally, due to advances in bone biology over the past decade, bone has also been identified 

as an endocrine organ which is vital in regulating the body’s glucose and testosterone levels.[17]    

As such, not only must a healthy human skeleton have sufficient structural properties, it must also 

be capable of continuous adaptation and remodeling through complex interplays between cellular, 

organic, and inorganic components.[17, 18] 
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1.2.1 Cellular component 

 

There are three main types of bone cells which reside within the bone hierarchy that derive from 

either the mesenchymal or hematopoietic stem cell lineages. Two of these cells, osteoclasts and 

osteoblasts, are directly responsible for the bones ability to remodel itself over time via coupled 

actions.[6, 18]  The first cell, called osteoclasts, are multinucleated cells which originate from 

mononuclear hematopoietic stem cells and are responsible for the resorption stage of bone 

remodeling.[19-21]  Osteoclast precursor cells are found circulating in the blood and, when 

stimulated through a combination of signals expressed by osteogenic lineage cells such as receptor 

activator of nuclear factor-kb ligand (RANKL) and macrophage colony-stimulating factor (M-

CSF), fuse together into large multinucleated osteoclasts.[6, 18, 19]  Once fused, mature 

osteoclasts attach to the surface of the bone via anb3 integrins and acidify the environment on the 

bone surface through H+ATPase-mediated extracellular proton transport, leading to the breaking 

down of the organic and inorganic bone components.[18, 21, 22]  The second type of bone cells, 

called osteoblasts, originate from the non-haematopoietic cells within the bone marrow.[6]  Once 

osteoblasts are mature, they are primarily responsible for secreting osteoid, the main organic 

component of bone which contains primarily type-I collagen and other non-collagenous 

proteins.[20]  As the resorbed bone is replaced by the osteoblasts, a process that can take up to 3 

months, mature osteoblasts follow one of three paths.[20, 23]  Some of the osteoblasts will flatten, 

become quiescent, and line the surface of the newly formed bone, while others will simply die via 

apoptosis.[23, 24]  The third pathway, however, gives rise to the third bone cell type, called the 

osteocyte.  Osteocytes are osteoblasts which have become encased within the lacunae of 

mineralized osteoid bone matrix.[21] Osteocytes, which comprise 90 percent of the total number 

of bone cells within the skeleton, develop long dendritic processes which facilitate communication 
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between other cells in the mineralized matrix and the bone lining cells via microscopic channels 

between the lacunae called canaliculi.[20, 21, 25]  

 

1.2.2 Bone matrix 

 

The bone matrix is a complex combination of organic and inorganic components and comprises 

approximately 90% of the entire tissue volume, the rest of which is taken up by cells and blood 

vessels.[20, 21, 26]  The organic matrix component, which is mainly a combination of different 

forms of collagen, accounts for about 20% of the matrix and gives the bone tensile strength.[20, 

21, 26]  The inorganic matrix component, which is the mineral component of bone, is responsible 

for approximately 65% of the matrix by weight and is responsible for the bones compressive 

strength.[20, 21, 27] 

 

Type I collagen accounts for roughly 90% of the entire organic matrix component, the rest of 

which is a mixture of type V and XII collagen and several non-collagenous proteins.[20, 21, 28]  

Of the non-collagenous proteins, osteocalcin is the most abundant as it is readily secreted by 

osteoblasts and has a high binding affinity to hydroxyapatite mineral.[21, 29]  Furthermore, 

osteocalcin has been shown to be a key regulator of glucose metabolism and testosterone levels 

within the body, thereby making the skeleton an endocrine organ.[17]  Osteopontin is the second 

most abundant non-collagenous protein in the bone matrix and is secreted by numerous bone cells 

and progenitors.  Due to its acidic nature, osteopontin readily binds Ca+2 ions and is responsible 

for both the suppression and promotion of mineral formation.  Additionally, osteopontin contains 

numerous Arg-Gly-Asp (RGD) motifs and readily aids cell adhesion and movement.[21, 30]  Other 

notable proteins found in the bone matrix include bone phosphoproteins, bone sialoprotein, and 
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numerous proteoglycans which all are attributed to regulating how cells interact with the matrix, 

how cells communicate with one another, and how mineralization occurs.[20, 26] 

 

The inorganic components of bone are a combination of numerous ions and a form of apatite 

mineral.  Ca2+, PO43- and CO32- are among the main ions found in the bone, along with Mg2+, Fe2+, 

Na+, K+, F- and Cl- and serve as the major reservoir source for the rest of the bodies calcium and 

phosphorous.[20, 21, 31]  Apatite mineral, which is the major inorganic component, comprises 

approximately 65% of the total mass of the bone[32] and is not pure hydroxyapatite 

(Ca10(PO4)6(OH2)2), but rather a form of apatite that contains acid phosphate groups and carbonate 

ions but no hydroxyl groups.[20, 21]  

 

1.2.3 Cortical and cancellous bone 

 

Natural bone consists of hard cortical bone, spongy cancellous bone, and bone marrow.  Cortical 

bone, which has a high mechanical strength and comprises the outer hard layer of bone, is 

responsible for approximately 80% of the human skeleton weight.[21, 33] Cancellous bone, on the 

other hand, has a low mechanical strength as compared to cortical bone and is a porous structure 

that contains bone marrow.  Bone marrow contains stem cells capable of differentiating into 

osteoblasts, adipocytes, chondrocytes and fibroblasts, as well haematopoietic stem cells capable 

of differentiating into myeloid lineage cells, lymphoid lineage cells, and osteoclasts.[34]  

Additionally, it is speculated that since oxygen tension ranges from 1% to about 7% of atmospheric 

oxygen levels within the marrow depending on the location of capillaries, specific niches are 

formed which enable populations of stem cells to remain undifferentiated.[34, 35]  
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Depending on the arrangement of the cortical bone, cancellous bone, and bone marrow, the bones 

in the human skeleton are classified as either long bones, short bones, flat bones, or irregular 

bones.[21]  The first group, long bones, are bones such as the femur and tibia.  These types of 

bones are generally longer than they are wide and consist of a long cortical shaft called the 

diaphysis which surrounds a medullary cavity containing bone marrow.[20]  As you move away 

from the center of the diaphysis of a long bone, referred to as the midshaft, the cortical walls 

become thinner, the bone diameter widens, and there is an increasing amount of cancellous bone 

in the center underneath the cortical shell.[20]  This area of increased cancellous bone is called the 

metaphysis and supports the growth plate, a layer of hyaline cartilage that separates the metaphysis 

from the rounded end of the long bone.[20]  This rounded end, called the epiphysis, is filled with 

cancellous bone and bone marrow and has a layer of articular cartilage directly next to the bone 

joint. 

 

1.2.4 Hierarchy of the long bone  

 

Regardless of the geometrical arrangement of cortical and cancellous bone, their basic hierarchical 

structure is common through all native bone.  As stated previously, osteoblasts secrete osteoid, the 

mineralized extracellular matrix comprised of collagen and non-collagenous proteins.  The 

collagen polymerizes quite rapidly to form collagen fibrils that serve as the deposition points for 

apatite crystals.  Alkaline phosphatase, an enzyme which is also secreted by osteoblasts, aids in 

phosphate and calcium deposition and causes a rather organized crystal deposition along these 

collagen fibrils.[31]  These mineralized collagen fibrils are packed tightly in lamellar units and 

represent the basic hierarchical unit for mature cortical and cancellous bone. 
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In cancellous bone, the lamellar units are arranged in functional units called trabeculum.  

Geometrically, the trabeculae are arranged as a porous mesh of rods and struts that increase the 

compressive strength of the bone.  The orientation of the trabeculae change over time in a highly 

organized way to support the areas of the bone that experience the most strain.[21] 

 

Similar to cancellous bone, the lamellar units also form the functional unit of cortical bone called 

the osteon. Osteons, which are anywhere from 100 to 500 µm in diameter, are formed by concentric 

rings of lamellar units surrounding a central channel containing blood vessels and nerves called 

the Haversian canal.[20, 36]  Within each lamellar ring, the collagen fibers are oriented parallel to 

each other, but run in different directions to adjacent lamellar units.[21]  Osteocytes are located in 

lacunae within the lamellar rings and extend processes radially outwards from the Haversian canal 

through a network of canaliculi, thereby ensuring the diffusion of nutrients throughout the bone 

tissue as well as providing a mechanosensation communication network capable of passing signals 

throughout the bone structure.[20, 25]  At the edges of osteons is a thin sheet of bone matrix called 

the cement line within which most canaliculi and collagen fibers stop, essentially isolating each 

osteon from one another.[20, 25]  Running transverse throughout the osteon network within 

cortical bones are small channels called Volkmann’s canals that effectively connect the vertical 

Haversian network.  Additionally, since these small canals run the entirety of the cortical bone, 

they serve to transmit blood vessels and nutrients from the outside periosteum surrounding the 

bone to the endosteal surface surrounding the cancellous bone, thereby creating the vascular lining 

of the medullary cavity.[21, 36] 

 

The periosteum is a thin sheet of highly vascularized tissue which surrounds the outer surface of 

bone.  Structurally, the periosteum is comprised of an outer fibrous layer and an inner vascularized 
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cellular layer.  The inner layer, also called the osteogenic layer, contains cells that are capable of 

differentiating into osteoblasts while the outer layer connects bones to tendons and ligaments.[20, 

25] 

 

1.3 Bone vasculature and its role in bone growth and homeostasis 

 

Although much of the focus on the bone hierarchy revolves around its load bearing structure, 

healthy bone is also highly vascularized.  In order to provide adequate nutrients and oxygen to the 

tissue, as well as ensure the removal of metabolic waste, bone contains an intricate vascular 

network that receives up to 11% of the total cardiac output of the human body.[34, 37]  In fact, in 

native bone the vascular network is arranged in such a way that no area is further than 100 µm 

from a nutrient source, ensuring that the diffusion of nutrients and systemic signaling molecules is 

not impeded to any bone cells.[2, 38] 

 

There are four main regions of arterial input into the human long bone: the diaphyseal nutrient 

arteries, the metaphyseal arteries, the epiphyseal arteries, and the periosteal arteries.[2, 39]  The 

largest arteries are the diaphyseal nutrient arteries which supplies up to 50% of all blood to the 

human long bone and enter into the central medullary cavity as well as regions of the metaphysis 

and cortex.[2]  The diaphyseal nutrient arteries, which are located on the outer bone cortex, enter 

the medullary canal through small openings called foramina and are generally accompanied by 

large veins.  As these arteries pass through the cortical bone, they branch into the Haversian and 

Volkmann canals in the osteons, and sinusoids within the marrow.[2, 40]  Similar to the diaphyseal 

nutrient arteries, the metaphyseal and epiphyseal arteries enter into the epiphysis and metaphysis 

through their respective vascular foramina and serve to reinforce the vascular branches from the 
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diaphyseal arteries.  Finally, the periosteal arteries, which are located on the inner side of the highly 

vascularized periosteum, enter the long bone through the Volkmann canals to supply the areas of 

the cortex not supplied via the diaphyseal arteries.[2]  After circulating through the bone, the blood 

leaves through the central sinus veins.[2, 41] 

 

In addition to providing nutrient exchange and waste removal, the bone vasculature is a key 

component to bone growth and remodeling, as well as fracture repair.  In all three instances, the 

vasculature, or lack thereof, can be considered the regulatory force for how the bone is grown or 

repaired. 

 

1.3.1 New bone growth 

 

Bone is formed by intramembranous and endochondral ossification, depending on the type of bone 

being formed.  Intramembranous ossification is the method in which flat bones are formed while 

long bones are formed by both intramembranous and endochondral ossification.[42, 43]  In both 

instances, however, vasculature, or the lack thereof, mediates the growth process. 

 

In intramembranous ossification, the growth space is first invaded by capillaries that are followed 

by mesenchymal cells which differentiate into osteoblasts.  These first osteoblasts form a cluster, 

called the ossification center, and proceed to secrete osteoid which hardens within a few days.  As 

the osteoblasts within the hardened ossification center differentiate into osteocytes, new 

osteoblasts form on the outside edges of the new bone.  This process continues, and the new bony 

matrix begins to fuse together around the capillaries creating the trabeculae of the newly formed 

cancellous bone.  As the trabecular matrix continues to grow, osteoblasts and other mesenchyme 
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cells continue to aggregate on the outside of the trabeculae and form the beginning layer of a new, 

highly vascularized periosteum.  Eventually, osteogenic cells from the periosteum form cortical 

hard bone surrounding the cancellous tissue.[42, 43] 

 

Unlike intramembranous ossification, endochondral ossification occurs as vasculature invades 

cartilage regions.  In new long bone formation, the mesenchymal cells originally differentiate into 

chondrocytes which create a cartilage template that will slowly be replaced by bone.  Surrounding 

the growing cartilage template of the new bone are a group of mesenchymal cells which form the 

perichondrium that will eventually become the periosteum of the long bone.[2, 43, 44]  As the 

region of cartilage grows through chondrocyte proliferation and secretion of type II collagen, the 

chondrocytes in the center enlarge into hypertrophic chondrocytes.[44]  The hypertrophic 

chondrocytes attract blood vessels from the surrounding perichondrium via the release of vascular 

endothelial growth factors, thereby causing blood vessels to invade the hypoxic cartilage 

environment and, as was also seen in intramembranous ossification, bring with them mesenchymal 

cells which differentiate into osteoblasts.[2, 43, 44]  As the osteoblasts and vasculature continue 

to aggregate and replace the cartilage and chondrocytes in the center of what will eventually be 

the medullary cavity of the long bone diaphysis, they begin depositing bone within the structure, 

creating what is called the primary ossification center.[2, 43, 44]  As bone and vasculature replace 

the cartilage in the diaphysis of the newly forming long bone, chondrocytes and cartilage continue 

to grow outward from the primary ossification center, elongating the bone and creating what will 

eventually be the proximal and distal epiphysis of the bone.[2, 43]  The remodeling and 

organization in the diaphysis continues as osteoclasts are recruited, and the reorganization that 

occurred in the medullary repeats in the two epiphyseal regions, creating secondary ossification 

centers.[2, 43, 44]  In long bones, chondrocytes continue to grow and proliferate between the 
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primary and secondary ossification centers and form a flattened, disc shape of collagen which 

directs bone growth, called the growth plate.[44]  On the edges of the growth plates, chondrocyte 

proliferation drops and the chondrocytes serve as a reservoir for future growth.[44]  

 

1.3.2 Bone remodeling 

 

As stated previously, osteoblasts and osteoclasts are the two main bone cells involved in bone 

remodeling, a process that occurs though the entire lifespan of bone.[2]  However, while the 

osteoblasts and osteoclasts are generally the focus of the remodeling process, the bone vasculature 

serves as a key mediator and is integral to the bone metabolic unit (BMU) within which remodeling 

takes place.[23]  In fact, it has been shown that when the blood supply is inhibited or damaged, 

necrosis and bone loss occurs as bone remodeling is impaired.[34] 

 

The bone remodeling process is fairly well defined in the context of the aforementioned BMUs.  

As bones age, mature osteoblasts lose their ability to secrete osteoprotegerin (OPG), a cytokine 

decoy receptor that binds to RANKL, a ligand also secreted by osteoblasts.  Without OPG 

competition for RANKL, RANKL is free to bind to osteoclast progenitor cell RANK receptors, 

thereby allowing for osteoclast differentiation and activation.[2, 23]  Accordingly, when areas of 

cortical and cancellous bone age, osteoclasts are signaled to begin resorption and begin resorbing 

bone in a trench like fashion called a Howship lacunae.[2, 23]  As the resorption is occurring, 

mesenchymal osteoprogenitors are directed into the BMU and begin new bone deposition in the 

resorbed surface, a process that can take up to 3 months to complete.[2, 23]   
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1.3.3 Fracture repair 

 

As can be expected, the normal stages of fracture repair are also highly tied to the bone vasculature.  

Unlike soft tissue, bone undergoes a complex healing process that involves intramembranous and 

endochondral bone formation as well as bone remodeling, all of which are dependent on a healthy 

skeletal vasculature.[2]  More specifically, when a fracture occurs, the damage to the intraosseous 

vasculature and periosteum are what initially drives the regenerative process. 

 

When a fracture occurs, the blood supply of the bone is disrupted, leading to hypoxic conditions 

in the surrounding tissue.[34, 39]  In the first stage of repair, the blood around the injury clots, 

forming a hematoma, and the surrounding tissue becomes inflamed.[42, 45] The hypoxic 

conditions are extremely important in this first phase of fracture repair as they create a cascade of 

events which cause a release of several growth factors and cytokines that recruit endothelial cells 

and direct cellular differentiation.[2] As the hematoma is formed, hypoxic osteoblasts release 

vascular endothelial growth factor (VEGF) which stimulates angiogenesis through the recruitment 

of endothelial cells.[46]  However, as endothelial cells are recruited to the fracture site, stem cells, 

and inflammatory cells, such as neutrophils, travel alongside the invading vasculature.[46, 47]  The 

inflammatory cells release proangiogenic cytokines which aid in capillary repair while the VEGF 

stimulates the invading endothelial cells to release osteogenic cytokines that promote osteoblast 

differentiation and recruitment.[46]  As the cells within the hematoma die, invading fibroblasts 

form a loose connective tissue, called granulation tissue, in the injury site alongside the newer 

blood vessels.[39]  Eventually, this tissue is replaced by fibrocartilage as the hypoxic environment 

drives the differentiation of chondrocytes, thereby stabilizing the fracture and forming the internal 

callus.[2, 42]  Concurrent to the internal callus forming, the periosteum begins to undergo 
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intramembranous bone formation, leading to the creation of an external callus.[39, 42]  The two 

calluses eventually combine and form a stabilizing large fracture callus.  Once the fracture callus 

has formed, the internal callus is replaced by woven bone, which unlike lamellar bone is an 

irregular grouping of collagen.[20, 39]  After the formation of this hard callus, the bone remodeling 

process begins and the fracture callus is gradually replaced with lamellar bone.[39]   

 

1.4 Challenges of developing a tissue engineered construct 

 

In order to create a tissue engineered bone substitute, numerous variables need to be taken into 

account.  A complete solution must be capable of supporting the numerous multicellular 

interactions required for functional bone growth, must address the structural complexity of bone, 

and must contain a defined vasculature or porosity capable delivering nutrients in a controlled and 

ordered way.[48-52]  Unfortunately, a complete solution which incorporates all of these areas has 

not been developed. 

 

1.4.1 Challenge 1 – Soft matrix for cellular encapsulation 

 

Traditional strategies for bone tissue engineering have relied upon creating scaffolds that provide 

structural support containing seeded osteo-competent cells.[53]  Hard bioceramics such as 

hydroxyapatite and calcium phosphate have shown good strength and integration with native bone, 

but seeding cells post manufacturing sometimes result in an inhomogeneous distribution of 

cells.[53, 54]  Additionally, with the lack of a well-defined vasculature and proper nutrient 

exchange, such approaches generally result in construct mineralization only at the peripheries of 

the scaffold and the presence of a necrotic core.[2, 55] 
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One popular manufacturing approach in bone tissue engineering that has received increased 

attention over the past decade involves cellular encapsulation within a soft biomaterial.  In general, 

cellular encapsulation usually involves either synthetic or natural hydrogels with which cells can 

be incorporated into the matrix de novo. Additionally, cellular encapsulation can allow for the cells 

to be incorporated at specific locations and densities within the construct, thereby improving upon 

the cell seeding limitations previously mentioned.[56-59]  

 

In the context of creating a bone tissue substitute, it is necessary to ensure that the base material 

not only closely mimics the native bone extracellular matrix, but also supports cell viability and 

proper tissue growth.  As 90% of the organic bone extracellular matrix is comprised of collagen, 

naturally derived biomaterials such as gelatin are widely used as a starting material.[60]  More 

specifically, collagen derived cross-linkable hydrogels such as gelatin methacrylate (GelMA) are 

extremely attractive as scaffold materials for bone tissue engineering due to the fact that they have 

tailorable mechanical properties, exhibit minimum immunogenicity, are biodegradable, and have 

tunable porosities needed for proper nutrient diffusion.[58-61]   

 

Although cell encapsulation within a hydrogel is an appealing approach for the incorporation of 

relevant cells and growth factors into a bone tissue substitute, several issues need to be addressed.  

First, it is important to know how encapsulated cells function and remodel the hydrogel 

environment, as well as how the encapsulation process influences cellular viability and function.  

Additionally, in order to create a clinically relevant scaffold for bone tissue engineering, both the 

hydrogel biocompatibility as well as load bearing capacity needs to be taken into account, 
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indicating that the soft hydrogel would need to be encased in a load bearing material for in vivo 

applications.[62, 63] 

 

1.4.2 Challenge 2 – Strategies for combining soft and hard components 

 

While cellular encapsulation provides a means for the reliable spatial distribution of cells within a 

hydrated construct, the structural integrity and load bearing capabilities of hydrogels are not 

sufficient when creating a possible device for implantation into bone.  Additionally, apart from the 

structural strength of the engineered device, careful attention must be paid to patient-specific 

geometries when designing a possible bone tissue substitute.  Unfortunately, while traditional 

fabrication methods, such as freeze drying, solvent casting, porogen leaching and gas foaming are 

capable of creating macroscopic patient specific geometries for a bone tissue construct, they are 

not compatible with cellular encapsulation and are unable to create constructs containing an 

interconnected, user-defined porosity.[64-66] 

 

In an effort to create hard constructs containing interconnected pores which would be capable of 

supporting cell-laden hydrogels, manufacturing techniques such as laser sintering and Fused 

Deposition Modeling (FDM) have been used.[67, 68]  However, while these techniques are 

capable of creating constructs with interconnected pores, cellular encapsulation would need to 

occur after machining.  Alternatively, photomasking and stereolithography techniques are capable 

of creating soft constructs containing interconnected pores, but do not address the issue of 

combining hard scaffolds with soft internal matrices.[1, 7, 69]  
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With the advent of commercial 3D printing, researchers are now capable of using additive 

manufacturing platforms to create both hard and soft scaffolds that mimic complex 3D 

geometries.[70, 71]  Common materials used for bone tissue engineering scaffolding such as 

hydroxyapatite and polycaprolactone (PCL) are also now able to be transformed into custom made 

spools capable of being used with printers such as MakerBot.[72-74]  More importantly, as 3D 

printing technology has continued to improve, printing hard scaffolds alongside encapsulated cells 

has become a reality.  In one instance, 3D printing was used to print chondrocytes and bone marrow 

cells within alginate hydrogels supplemented with calcium phosphate and hydroxyapatite.[75]  In 

another promising instance, a custom built six nozzle printer was used to print molten PCL 

alongside encapsulated human osteoblasts and chondrocytes in a construct containing porous 

spaces for nutrient diffusion.[76]  However, despite these promising advances in the 3D printing 

of hard constructs containing encapsulated cells, the inability to develop perfusable microvascular 

networks within structures remains a major obstacle in preventing their widespread clinical use. 

 

1.4.3 Challenge 3 – Adding perfusable vasculature 

 

In native bone, perfusion of blood through defined vascular networks separated by only a few 

hundred microns guarantees effective nutrient supply, waste removal, and access of systemic 

signaling molecules to individual bone cells.[20, 41, 77]  Accordingly, by mimicking this 

hierarchical perfusable vascular network within a bone substitute, clinical outcomes could be 

drastically improved by enhancing integration with surrounding host tissue, as well as by allowing 

the restoration of controlled blood flow to the site of the injury.[78, 79] 
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To mimic vascular physiology, integration of user defined channels within cell-laden hydrogels is 

a promising approach that would significantly advance tissue-engineering technologies.[80] 

However, in addition to the inherent manufacturing difficulties presented in the fabrication of user 

defined 3D channels, other issues such as material properties, fabrication times and processes, and 

cellular viability need to be taken into account.[81, 82]   

 

Micro-fabrication techniques such as soft- and photolithography have been used to generate 

hollow microfluidic channels within both synthetic and naturally derived cell-laden hydrogels but, 

while such constructs have shown increased cellular viability while being perfused with media as 

compared to static controls, the fabrication of the 3D channels in user defined patterns is extremely 

difficult.[83-87]  Other types of machining approaches involve methods such as needles[88, 89] 

and sacrificial/fugitive-molding[90] and rely on either needle extraction or the dissolution of 

sacrificial material in order to create hollow channels.  Although these approaches are inexpensive 

and scalable, they are limited by the size of the needle or sacrificial template used. 

 

Advances in 3D printing and additive manufacturing techniques provide an exciting avenue for 

the creation of structurally supportive constructs containing user defined vascular and osteo-

competent cells.  However, while there has been a significant amount of work in this area, a 

complete bone tissue engineering solution has yet to be achieved.  In many instances, the 

combination of sacrificial 3D printed materials such as carbohydrates or pluronics within large 

cell-laden hydrogels has proven successful, but in each case the printed structure was very specific 

to the problem being explored and was either not suitable for bone tissue engineering or difficult 

to modify for different applications.[87, 90-92]   
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1.5 Scope of dissertation 

 

The overarching goal of this work is to develop a comprehensive vascularized bone tissue implant 

to eventually serve as a viable in vivo therapy for a critically sized segmental bone defect. To 

advance that goal, this thesis focuses on the development of a bone tissue model consisting of user 

defined perfusable vascular networks within structurally reinforced hydrogels that are laden with 

osteoblast-like cells. 

 

The introduction, Chapter 1, serves to present a basic view of the structure of bone and highlight 

challenges that must be addressed when developing a bone tissue engineered solution for critical 

bone defects.  Chapter 2 aims to explore the first challenge identified in creating a bone tissue 

substitute and presents a study on how encapsulated osteoblast-like cells interact within a diffusion 

limited gelatin methacrylate hydrogel.  Building upon Chapter 2, Chapter 3 investigates the second 

challenge and presents a study on 3D printed structural cages for cell laden hydrogels and explores 

how the structural cages can be combined with cell-laden hydrogels.  Chapter 4 addresses the third 

identified challenge and focuses on how user defined vasculature can be added to a structurally 

supported cell-laden hydrogel to create a perfusable bone tissue construct.  In Chapter 5, future 

directions and ongoing modifications to the current model presented in Chapter 4 are discussed. 
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CHAPTER 2:  BEHAVIOR OF ENCAPSULATED SAOS-2 CELLS WITHIN GELATIN 

METHACRYLATE HYDROGELSD*[1] 

 

2.1 Abstract  

 

The field of tissue engineering is still seeking a viable substitute to repair and replace damaged 

bone using a combination of porous implants, biochemical factors, and relevant cell types.  

While progress in this field has been made, current engineered solutions have not been able to 

mimic the architectural and biological requirements needed to provide a complete solution.  In 

this work, osteoblast-like human osteosarcoma cells were encapsulated inside gelatin 

methacrylate (GelMA) hydrogels of three different weight/volume (w/v) concentrations and 

stimulated to form mineral in order to determine the relationship between both bone formation 

and cellular activity with matrix density.  Distinct differences between cell morphology and 

mineral formation were found within the three types of hydrogels.  Less dense, low w/v 

constructs were shown to provide a more cell friendly microenvironment that promoted 

dispersed mineral formation while dense, high w/v constructs provided a more structured 

environment for uniform bone-mineral formation.  Additionally, while cells were able to 

function in all three types of hydrogels, cells in the less dense GelMA constructs were shown to 

grow in large colonies within the gelatin matrix while cells in the dense GelMA constructs 

tended to aggregate and grow along the construct peripheries.  

																																																								
DAdapted from:  Sawyer SW, Oest ME, Margulies BS, Soman P.  (2016) Behavior of encapsulated saos-2 cells within gelatin 
methacrylate hydrogels.  Journal of Tissue Science & Engineering 7(2):173. 
*	Reprinted as permitted by the open-access Creative Commons Attribution License	
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2.2 Introduction 
 
 
Bone has emerged as the second most transplanted tissue in the world with forecasted revenue of 

$6.6 billion by 2020 in the United States alone.[2, 3]  While clinical grafts are used in many 

reparative orthopedic procedures, they often fail due to graft necrosis and lack of integration with 

host tissue.[4, 5]  Due to the limited success of such grafts, numerous alternative solutions to 

repairing and regenerating bone have been proposed that consist of combinations of different 

types of porous osteoconductive biomaterials, osteoinductive growth factors, and osteogenic 

cells.[6-9]  However, no single option has emerged as a complete engineered solution.  When 

creating a proper bone tissue substitute, several variables need to be taken into account:  the scale 

of the implant needs to be optimized for proper porosity and nutrient distribution, the base 

material must be biocompatible and biodegradable in ways that promote high cell viability and 

natural tissue growth, and the mechanical support of the implant should be suitable for proper 

weight bearing applications.[3, 8-12]  Current tissue engineering strategies have not been able to 

address all of the aforementioned variables for an organ as intricate as bone.  Traditionally, bone 

tissue engineering has adopted the strategy of creating scaffolds that provide structural support 

followed by the seeding of relevant cells onto the construct post-manufacturing. Although the 

exclusion of living cells during manufacturing gives the flexibility of using a variety of 

fabrication techniques needed to make intricate tissue substitutes, the cell seeding approach relies 

on the ability of cells to infiltrate the interiors of the 3D scaffold and often results in inadequate 

cell dispersion and cellular densities. To address this limitation, another manufacturing approach 

involving cell encapsulation within a soft biomaterial has also been widely explored. Cell 

encapsulation generally utilizes either synthetic or naturally derived hydrogels and includes the 

incorporation of living cells into a hydrated matrix during fabrication, thus allowing for the 

precise control over the cellular density and distribution within a soft 3D construct.[13-16] 
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Although cell encapsulation is an appealing approach for the incorporation of relevant cells and 

growth factors into a bone tissue substitute, several issues need to be addressed.  Not only is it 

important to know how the hydrogel properties influence the viability and function of 

encapsulated osteoblastic cells, it is important to understand how soft hydrated matrices 

influence bone mineral formation.  Furthermore, the soft cell-laden hydrogels need to be 

integrated within a protective, structural frame in order to realize the goal of developing a 

clinically relevant biomimetic construct for bone tissue engineering. In this current study, we 

focus on how encapsulated cells interact within the hydrated microenvironment of a soft bone 

tissue substitute.  To this end, we encapsulate osteoblast-like human osteosarcoma cells (Saos-2) 

inside GelMA hydrogels of varying weight/volume (w/v) concentrations and stimulate them to 

form mineral in order to determine the relationship between bone formation and hydrogel 

density. 

 

2.3 Materials and Methods 

 

2.3.1 Gelatin methacrylate pre-polymer solution preparation   

 

Gelatin methacrylate (GelMA) macromer was synthesized using a previously reported protocol 

to serve as the base hydrogel matrix for cellular encapsulation.[17, 18]   Briefly, porcine skin 

gelatin (Sigma Aldrich) was mixed at 10% (w/v) in phosphate buffered saline (PBS, Thermo 

Fisher Scientific), stirred at 45oC, mixed with methacrylic anhydride, and stirred for 3 hours.  

After stirring, the solution was dialyzed against distilled water for one week at 40˚C, freeze-

dried, and stored at -80°C until needed. For cell encapsulation experiments, three different 
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GelMA pre-polymer solutions (7, 10 and 15% w/v) were created by combining the freeze-dried 

GelMA macromer with various amounts of PBS and 0.25% UV photoinitiator Irgacure 2959 

(Specialty Chemicals, Switzerland).  The pre-polymer solutions were sterile filtered and stored at 

2°C in autoclaved Pyrex bottles (Corning) wrapped with tin foil.  Pre-polymer solutions below 

7% were not used as they were not capable of being photo-cured while pre-polymer solution 

above 15% were not capable of being properly dissolved and sterile filtered. 

 

2.3.2 Saos-2 culture and encapsulation 

 

We employed human osteosarcoma cells (Saos-2; ATCC) transfected with a commercially 

available green fluorescent protein (GFP) lentivirus (Santa Cruz Biotechnology) as analogues for 

osteoblasts since they are a robust cell line capable of being used in the initial stages of new bone 

defect models.  The GFP tagged Saos-2 cells were cultured in Dulbecco’s Modification of 

Eagle’s Media (DMEM; Life Technologies) supplemented with 10% fetal bovine serum (v/v) 

(FBS lot G12102; Atlanta Biologicals), 1% penicillin-streptomycin (Life Technologies) and 1% 

GlutaMAX (Life Technologies). Cells were passaged using standardized protocols with 0.25% 

trypsin-EDTA (Life Technologies) and maintained at conditions of 37°C with 5% CO2. Cells 

were encapsulated in GelMA matrices of varying densities by mixing 20μL of a stock cell 

solution containing approximately 3750 cells/μL with 130μL of 7%, 10%, or 15% GelMA pre-

polymer solution (w/v).  The cell/GelMA solution was pipetted drop-wise into 5mL of 

autoclaved vegetable oil and UV cured for 1 minute with an intensity of 5mW/cm2 using a 

Hamamatsu LED Controller (Hamamatsu C11924-511; Hamamatsu Photonics K.K., Japan), 

taking advantage of an oil emersion based surface tension technique for cell encapsulation (Fig. 

2.1A).[19] The solidified GelMA hydrogels containing encapsulated cells were then washed five 
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times with 5mL of sterile PBS, transferred into 2mL of supplemented DMEM, and cultured as 

previously reported.  Media was exchanged on each construct every 2 to 3 days until being fixed 

with 2% paraformaldehyde (Sigma) in PBS. 

 

2.3.3 Osteosarcoma mineralization 

 

Saos-2 cells were encapsulated and cultured as previously mentioned for specific durations of 

time before being chemically stimulated to produce mineral.  Specifically, Saos-2 cells were 

encapsulated at approximately 75,000 cells per construct and allowed to grow for either 7 days 

(for histological staining assays) or 2 weeks (for microCT) before being chemically stimulated 

with an induction media.  The induction media consisted of DMEM containing 10% FBS and 1% 

PSG supplemented with 0.1μM dexamethasone (Sigma Aldrich), 25 μg/mL L-ascorbic acid-2-

phosphate (AA2P; Sigma Aldrich), and an increasing regiment of β-glycerophosphate (BGP; 

Sigma Aldrich).[20]  The BGP regimen included one media change with 5mM BGP, followed by 

one media change with 10mM BGP, and all subsequent media changes containing 20mM BGP.  

Once the specific time points for each experiment were reached, the samples were fixed in a 2% 

paraformaldehyde solution and cryo-protected with a 30% sucrose solution for both micro-

computed tomography imaging and sectioning. 

 

2.3.4 Histochemical analysis, Live/Dead staining, and image processing 

 

All encapsulated samples were fixed in a 2% formaldehyde solution. Chemically stimulated 

samples were cryo-protected with a 30% sucrose solution in PBS for both micro-computed 

tomography imaging and sectioning, while non-stimulated samples were cryo-protected using a 
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14% ethylenediaminetetraacetic acid (EDTA; Sigma) and 30% sucrose solution in PBS.  

Samples to be sectioned were embedded in Tissue Freezing Medium Blue (TFMTM; Electron 

Microscopy Sciences), snap frozen using liquid nitrogen, and sectioned into 10μm slices using a 

Leica CM3050 cryostat (Leica Biosystems, Germany). Following sectioning, non-chemically 

stimulated samples to be stained for F-actin were treated with 0.1 M sodium citrate buffer 

solution pH 6.0, washed with PBS, and stained with Alexa Fluor 568 Phalloidin (1:100 dilution; 

Life Technologies). Nuclei were counterstained with 2.5 μg/mL 4’, 6-diamidino-2-phenylindole 

(DAPI; Life Technologies) in PBS. Following sectioning, all chemically stimulated samples to 

be analyzed for mineral were stained with 40mM alizarin red S pH 4.2 (Sigma Aldrich) and 

counterstained with 2.5 μg/mL DAPI in PBS. The viability of cells was analyzed using a 

Live/Dead assay. To evaluate cell viability, all three different types of hydrogels containing 

encapsulated cells were placed in media containing calcein-AM (1:2000 dilution; Life 

Technologies) and ethidium homodimer (1:500 dilution; Life Technologies) after 5 days of 

growth and incubated at 37°C for 1 hour. Raw .tiff images were taken for all sectioned samples 

using an epifluorescence equipped Nikon Eclipse E-400 microscope (Nikon Corporation).  All 

reported images were processed linearly for brightness and contrast using Adobe Photoshop CC 

2015 (Adobe Systems Inc.).  Once adjusted for brightness and contrast, images were converted 

to gray scale and subsequently overlaid to produce published images. 

 

2.3.5 Micro-computed tomography 

 

Chemically stimulated samples were fixed in a 2% formaldehyde solution and subsequently 

cryo-protected with a 30% sucrose solution for micro-computed tomography imaging and 

sectioning. A Scanco micro-CT 40 (Scanco Medical) was used to image and quantify mineral 
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formation in chemically stimulated samples.  Samples were placed in groups of 3 inside gauze 

packed micro-CT canisters and kept hydrated with 2% formaldehyde solution during imaging.  

Samples were imaged at a 16 μm isotropic voxel resolution (55 kV, 145 mA, 200 ms integration 

time). After scanning, mineralized tissue volume (bone volume, BV) and density (BMD) were 

calculated by applying a lower global threshold (166 mg HA/cm3) to the image, which was 

digitally contoured. 

 

2.3.6 Quantitative values and statistical analysis 

 

All quantitative values, with the exception of micro-computed tomography values, were obtained 

using open-source ImageJ (NIH) software.  Retrieved data was entered manually into Microsoft 

Excel (Microsoft Corporation) where values were reported as means ± standard deviation.  One-

way ANOVA was performed using Microsoft Excel data pack.  P-values < 0.05 were considered 

statistically significant. 

 

2.4 Results 

 

2.4.1 Formation of cell-laden hydrogels 

 

In order to determine how osteoblast-like cells behaved while encapsulated within a soft gelatin 

matrix, 75,000 Saos-2 cells were mixed with three different concentrations of GelMA 

prepolymer solution (7%, 10%, and 15% w/v), pipetted into an oil bath to form hydrated beads, 

and UV cured for one minute (Fig. 2.1A). Free radicals released from the photoinitiator (Irgacure 

2959) in the pre-polymer solution caused the covalent binding of acrylate groups during the UV 
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exposure, thereby crosslinking GelMA drops (~6mm x 6mm x 4mm) (Fig. 2.1B). This technique 

utilized the surface tension between aqueous GelMA solution and vegetable oil to crosslink 

GelMA drops at the air-GelMA-oil interface, and provided an easy-to-use approach with high 

degree of reproducibility.[19]  A relatively low seeding density was used in order to maximize 

cell-matrix interactions within the three different types of hydrogels and the volume of the drops 

was specifically chosen to mimic murine bone defects.   

 

Figure 2.1:  Cellular encapsulation schematic. (A) Schematic of surface tension encapsulation 

technique.  75,000 Saos-2 cells in 20 µl aliquots were combined with 130 µl of prepolymer 

solution containing .25% photoinitiator and pipetted dropwise into a bed of vegetable oil.  UV 

light was cast onto the hydrogel drops for one minute to cure before being rinsed with PBS and 

transferred into incubation media.  (B) Cured hydrogel spheres containing encapsulated cells 

resembled disc like structures with dimensions approaching 6mm x 6mm x 4mm (scale bar = 

5mm).  (C)  Mechanical data of various GelMA (w/v) concentrations modified from previous 

work.[18] 
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2.4.2 Viability of encapsulated cells 

 

The size of the hydrogel drop was designed to maximize cell-matrix interactions in a porous 

space that mimicked a murine bone defect.  Viability was quantified 5 days after encapsulation 

using ethidium homodimer (dead cells = red staining) versus calcein-AM (live cells = green 

staining) (Fig. 2.2A).  It was found that there was an apparent higher viability in the less dense 

7% hydrogels with approximately 60% live as opposed to only 40% live in both the 10% and 

15% gels.  However, due to inherent diffusion limitations in constructs many millimeters in size, 

low cell viability was observed. In order to determine how cells behaved within the hydrogel 

matrices at various stages of growth, histological sectioning was performed.  Accordingly, the 

GelMA drops were fixed in 2% paraformaldehyde and cryosectioned into 10 μm slices to allow 

for imaging.  A specific region of interest (ROI) was chosen to standardize measurements 

between samples (Fig. 2.2B).  The ROI used in all analysis was determined to be the area 

between the center of the sectioned slices and the corresponding slice periphery. 

 

Due to expected nutrient diffusion limitations within the denser hydrogels, it was necessary to 

quantify cell number in the sectioned ROIs at specific time points to determine cell migration 

patterns. To analyze whether cells were forming colonies inside the bulk material or simply 

migrating out of the constructs, cells were counted in the ROIs for each of the three types of 

hydrogels at 3 day, 7 day and 14 day timepoints by staining fixed slices with DAPI (nuclei) (Fig. 

2.2C Left).  More cells were counted, on average, in the ROIs of the 7% gels at all timepoints 

and decreased as the gels became denser.  For the 3 day time point, 19 cells on average were 

observed in the 7% constructs while only 12 cells were counted in the 15% constructs.  

Additionally, over time the number of cells within the ROI of the 7% gels increased at a higher 
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rate than those in the 15% gels, with 39 cells on average appearing in the 7% and only 17 cells 

appearing in the 15%.  This represented an approximately 100% increase in the amount of cells 

in the ROI of the 7% gel with only a 41% increase in the 15% gel.  

 

Cells encapsulated within GelMA spheres were transfected with GFP in order to determine 

spatial cell location inside the scaffolds prior to fixation, as well as inherent cellular activity at all 

stages of growth.  At each specified timepoint, fixed and sectioned samples were imaged for 

green emissions to ensure that counted cells were still active.  In addition to the standard 3 day, 7 

day, and 14 day time points, cells were imaged inside of the ROIs well over 1 month after the 

initial photocuring to show long term activity (Fig. 2.2C Right). 

 

As a result of GelMA autofluorescence when exposed to UV light after cell nuclei were stained 

with DAPI, construct degradation of all three types of hydrogels could be measured.  Constructs 

were fixed and stained with DAPI at 3 day, 14 day and 49 day time points in order to determine 

if a quantifiable relationship existed between bulk matrix degradation and hydrogel density (Fig. 

2.2D).  In general, the less dense hydrogels showed higher porosities (defined as void area 

fraction within a 10μm slice) than denser hydrogels at all time points.  Compared to the dense 

15% hydrogels, 7% gels were 4% more porous at 3 days, 7% more porous at 14 days and 16% 

more porous at 49 days.  Additionally, it was shown that denser gels degraded slower over time, 

with 7% gels increasing in porosity by 21% from 3 to 49 days, compared to an 11% increase in 

10% gels and a 9% increase in 15% gels.  
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Figure 2.2:  Cellular viability and activity within degradable hydrogel scaffolds of different 

stiffness.  (A) Cells were grown within hydrogel constructs for 5 days and analyzed for cellular 

viability using calcein-AM (live = green) and ethidium homodimer (dead = red).  Fluorescent 

images of live/dead cells show live and dead cells throughout the entire scaffold.  (B) 

Representative schematic of the region of interest used to standardize measurements between 

fixed and sectioned histological samples.  Areas between the center of the slices and the 

peripheries were used due to sectioning artifacts.  (C) Cells stained with DAPI were counted in 

the ROI of histological slices for 3 day, 7 day, and 14 day timepoints.  Increases in cellular 

population over time within the hydrogels were evident in all samples at all timepoints (n = 3; * 

= p < 0.05).  (C) Saos-2 cells tagged with green fluorescent protein (GFP) appeared in all 
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samples well over one month after encapsulation (scale bar = 100μm).  (D) Fluorescence in 

histological samples due to DAPI staining allowed for apparent porosity of hydrogels containing 

encapsulated cells to be measured for 3 day, 14 day and 49 day timepoints.  Blue coloring 

represents GelMA staining while black coloring represents apparent void space.  All gels 

degraded significantly over time (n = 3; * = p < 0.05; scale bar = 100μm). 

 

2.4.3 Cellular morphology 

 

In addition to showing cell migratory differences throughout the three different hydrogel 

constructs, cell morphology was cataloged at different time points to determine if matrix density 

had an effect on cellular growth. Cell morphology was determined in the ROI for each of the 

three types of gels at 3 day, 7 day, and 14 day time-points by staining fixed construct slices with 

DAPI (nuclei) and phalloidin (F-actin).  At early timepoints, cell morphology appeared similar in 

the 7%, 10% and 15% gels, but changed dramatically at the later timepoints.  At later timepoints, 

cells within the ROI in the less dense gels formed large, defined clusters while cells in the 10% 

and 15% gels formed either limited or no clusters.  Representative images of each type of 

construct indicate significant differences between cellular aggregations and morphology between 

the 7%, 10%, and 15% samples (Fig. 2.3A Top).  This observation is evident in the high-

resolution photographs at the 14D timepoint (Fig. 2.3A Bottom).   

 

The aggregate nucleus diameter and area of encapsulated cells, as well as the aggregate lacunae 

diameter and area of encapsulated cells, were quantified in order to highlight the differences 

between how cell colonies grew within the bulk matrix of the three different hydrogels (Fig. 

2.3B). The aggregate area and diameter of nuclei stained with DAPI were rather consistent for all 
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different gels at each of the three timepoints, except for numerous large clusters of nuclei that 

were predominately observed in the 7% gels after 14 days of culture.  Synonymously, the 

aggregate lacunae area and diameter were similar in all scaffolds at each stage of growth except 

for the large clusters of cells that formed intricate lacunae after 14 days in the soft 7% gels. 

 

Figure 2.3:  Nuclear and cytoskeleton staining of encapsulated Saos-2 cells.  (A) Cells were 

grown within hydrogel constructs for either 3, 7, or 14 days, fixed, sectioned, and stained for f-

actin (red = phalloidin) and counterstained for nuclei (blue = DAPI).  Representative pictures at 
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7 days (scale bar = 100μm) and 14 days (high resolution; scale bar = 20μm) show distinct 

morphological differences in the ROI of samples of different densities at all timepoints.  (B) 

Histological samples stained with phalloidin and counterstained with DAPI were analyzed for 

morphological differences in the nuclei and lacunae at 3 day, 7 day, and 14 day timepoints.  

Measurements showed significant differences in aggregate nuclear diameters and areas, as well 

as aggregate lacunae diameters and areas, for softer hydrogels over time (n = 3; * = p < 0.05). 

 

2.4.4 Mineral deposition 

 

To better examine the potential effects of matrix stiffness on osteogenesis, Alizarin red S 

staining was used to identify the presence of deposited calcium in chemically stimulated 

hydrogels. Cells were stimulated to produce mineral 7 days after encapsulation and were 

subsequently grown for an additional 2 weeks in osteogenic media in order to determine what 

effect hydrogel density had on bone nodule formation.  Alizarin red and DAPI counterstain were 

used to visualize fixed samples for mineral (Fig. 2.4A), and mineral content and mineral area 

within the ROI was quantified (Fig. 2.4C).  Consistent with previous results, the total area 

fraction of mineral within the ROI was greater by 3-fold in the ROI of 7% gels than in the dense 

15% gels, while mineral clusters in the ROI of less-dense hydrogels had areas 3.5-fold greater 

than those in 15% gels. 

 

A different group of samples were grown for 2 weeks in order to mimic the 14-day culture 

period used in the cellular morphology studies and were subsequently stimulated in osteogenic 

media for an additional 14 days.  After four weeks, samples were fixed and scanned via microCT 

to determine total bone mineral content (Fig. 2.4B, C).   7% hydrogels showed indiscrete mineral 
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formation throughout the entire construct while 15% gels showed concentrated mineral 

formation at the peripheries.  Total mineral content appeared to be similar in both the 7% and 

15% samples with 0.053 mg HA and 0.058 mg HA respectively. 

 

Figure 2.4:  Mineralization and microCT of encapsulated Saos-2 cells.  (A) Cells were grown 

within hydrogel constructs for 7 days and were subsequently placed in osteogenic media for an 

additional 14 days.  Constructs were fixed, sectioned, stained for mineral deposition (red = 
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alizarin red S) and counterstained for nuclei (blue = DAPI).  Representative pictures for all 

samples show distinct difference in the mineral located within the ROI for different gel densities 

(top scale bar = 100μm; bottom scale bar = 20μm).  (B) Cells were grown within hydrogel 

constructs for 14 days and were subsequently placed in osteogenic media for an additional 14 

days.  Samples were analyzed via microCT for total mineral within the constructs of different 

stiffnesses.  (C) Histological samples stained with alizarin red S and counterstained with DAPI 

were analyzed for mineral cluster area and area fraction of mineral coverage within the ROI and 

showed significant differences for hydrogels of varying density (n = 2; * = p < 0.05).  MicroCT 

scans were analyzed for total mineral throughout the constructs and showed no significant 

differences between hydrogels of varying density (n = 3). 

 

2.5 Discussion 

 

As compared to conventional studies performed on non-physiological 2-D substrates, Saos-2-

laden GelMA hydrogels provide a more realistic 3-D environment with which to study bone 

regeneration.[21, 22]  Although human osteosarcoma Saos-2 cells do not completely represent 

the response of primary human osteoblasts, Saos-2 do serve as a robust, model cell line capable 

of allowing for the assessment of the biocompatibility and differentiating potential of the GelMA 

matrix.  As such, the results from this work indicate that the density of GelMA plays a vital role 

in encapsulated cell viability, morphology, and function.  

 

UV crosslinking of photopolymers have several advantages over both chemical and ionic 

(physical) crosslinking strategies.  UV crosslinking allows for easy tuning of material properties, 

eliminates the need for organic solvents, and provides short reaction times.  One recent study 



	 46	

reported the encapsulation of human mesenchymal stem cells within a synthetic hydrogel 

containing Irgacure 2959 photoinitiator and demonstrated excellent cellular viability 14 days 

after UV crosslinking for varying curing times.[23]  Specifically, UV light (100 W/365 nm) was 

exposed to hMSC-laden hydrogels for times varying between 2.5 minutes and 10 minutes, and 

DNA damage was not detected when exposure time was kept around 2.5 minutes. Other studies, 

which used similar UV crosslinking techniques for 2-3 minutes, also demonstrated no significant 

changes or damage to the cells as a result of UV exposure.[24]  In our study, we only use an 

exposure time of 1 minute, much lower than the reported times causing observable DNA 

damage. 

 

Recent work with UV-crosslinkable hydrogels containing living cells has shown success in an in 

vivo setting.  Specifically, N-methacryloyl chitosan hydrogels mixed with living cells was 

demonstrated to undergo rapid transdermal crosslinking in vivo within 60 s through minimally 

invasive clinical surgery.  Histological analysis revealed that low-dose UV irradiation did not 

induce skin injury and the acute inflammatory response disappeared after only 7 days.[25]  

Another study showed that encapsulated bone marrow-derived mesenchymal stem cells in UV 

crosslinked GelMA hydrogels demonstrated enhanced osteogenesis in vivo with significant 

mineralization.[26]  In yet another study, GelMA hydrogels containing multipotent stromal cells 

within an ectopic rat model was used to engineer endochondral bone.[27] 

 

As mentioned previously, low cellular viability of encapsulated osteosarcomas was expected 

since cells are required to be within 200-300μm of a nutrient supply in order to properly function 

in vivo.  Due to the larger size of our cell-laden hydrogels and inherent diffusion limitations 

associated with dense constructs, viabilities ranging from 40 to 60 percent were normal.  In a 
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similar study, Saos-2 cells were encapsulated within sodium-alginate drops of only 1mm in 

diameter and were found to survive at higher rates as compared to the GelMA drops used in this 

study, further emphasizing the role media diffusion plays in maintaining high levels of cellular 

viability.[28] 

 

The observed cell count differences in the ROIs of the three different gels suggested that cells 

were migrating outside of the denser constructs due to poor nutrient diffusion.  This result was in 

line with a recent study where it was shown that the cellular viability of encapsulated 

mesenchymal stem cells (MSCs) inside the matrix of porous gelatin constructs increased as 

porosity increased.[29]  Additionally, the observation that cells within the ROIs of the more 

porous matrices were able to form larger clusters further suggested that cells within the less 

dense gels remained active in the bulk material while cells in the dense gels migrated towards the 

peripheries.  Furthermore, the ability of cells within the 7% and 10% hydrogels to form defined 

cell colonies was consistent with existing literature detailing how cells behave while 

encapsulated in soft material. One recent study used sub-millimeter sized beads to encapsulate 

MG-63 osteosarcoma cells within gelatin-modified alginate (AlGel) hydrogels[30] and showed 

that the clusters of cells that formed within the AlGel had several protrusions with lengths of 

approximately 30μm extending between colonies. Similar phenomena have also been observed 

within encapsulated hematopoetic stem cells[31] and human embryonic stem cells.[32] 

 

In this work, we used GelMA, a collagen derivative, as our soft component since it has tailorable 

mechanical properties, is able to be chemically modified with various peptides, is biodegradable, 

and has crosslinked environments similar to the natural extracellular matrix (ECM). Although 

dense GelMA matrices showed less mineralization near the center of the construct, cells were 
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still metabolically active and capable of surviving.  Additionally, since there were no significant 

differences between the amounts of mineral produced in the 7% constructs versus the 15% 

constructs, it could be suggested that the encapsulated cells in the denser scaffolds migrated 

towards the periphery in order to uniformly encase the structure.  Furthermore, although the 

levels of BGP used in the osteogenic media far exceeded reported physiological levels[33, 34], 

indiscriminate mineralization was not observed in acellular controls, suggesting that all mineral 

observed was cell mediated.  Based on these observations, it is plausible to suggest that properly 

vascularized hydrogels of increased density could encourage osteogenic cells to create mineral in 

a consistent, ordered fashion.    

 

2.6 Conclusions 

 

This work showcases the advantages of using a gelatin-based porous hydrogel for bone tissue 

engineering.  By understanding how the osteoblast-like cells function within hydrogels of 

different densities, it may be possible to capitalize on this knowledge and design more complex 

structures capable of directed bone formation.  Specifically, going forward the denser hydrogels 

used in this study will be the base material for future work due to the robust mineral formation at 

the hydrogel peripheries. 
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CHAPTER 3:  DEVELOPING 3D SCAFFOLDS IN THE FIELD OF TISSUE 

ENGINEERING TO TREAT COMPLEX BONE DEFECTSD*[1] 

 

3.1 Abstract 

 

Polymers have been extensively used to develop 3D scaffolds in the field of tissue engineering 

and consist of certain design requirements such as biocompatibility, structural properties, and 

varying porosity inside of complex geometries, all with the ultimate goal of incorporating living 

cells within the scaffold structure. In this work, we present the synthesis and material 

characterization of hybrid spools using polycaprolactone (PCL) as the base polymer. We 

demonstrate that a commercial 3D Fused Deposition Modelling printer such as Makerbot can be 

used to print 3D scaffolds using three types of polymer spools: PCL, PCL-poly lactic acid (PLA) 

and PCL-hydroxyapatite (HA). Data derived from computerized tomography can be used to 

develop hollow porous cages using PCL. Lastly, we demonstrate that log-pile scaffolds are 

capable of being infused with a mixture of living cells and gelatin hydrogel.  This work could be 

potentially useful in the treatment of patients with complex bone defects. 

                                                        
D Adapted from:  Albrecht LD, Sawyer SW, Soman P.  (2016) Developing 3D scaffolds in the field of tissue engineering to treat 
complex bone defects.  3D Printing and Additive Manufacturing 3(2):106-12. 
* Reprinted as permitted by Mary Ann Liebert, Inc. author agreement for personal reuse. 
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3.2 Introduction 
 

Bone has emerged as the second most transplanted tissue in the world as a result of patient 

traumas, aging populations, osteoporosis, and bone tumors.[2] Since current clinical therapies 

have not been sufficiently successful, the field of bone tissue engineering continues to develop 

new bone substitutes by combining porous biomaterial scaffolds with relevant cells, growth 

factors and other stimuli.  Important aspects of bone tissue engineering include the fabrication of 

porous polymer scaffolds with patient-specific geometries, the necessary structural strength to 

house living cells, and the ability to facilitate tissue ingrowth during in vitro development of 

bone tissue or during in vivo implantation.[3-7]  

 

To promote cell proliferation, tissue growth, and remodeling, porous scaffolds have been 

developed using several different manufacturing approaches. Use of traditional fabrication 

methods such as solvent casting, freeze drying, porogen leaching, fiber bonding, dual phase 

separation, and gas foaming typically create simple geometries and only allow limited control 

over pore-interconnectivity within 3D scaffolds, both of which are extremely essential for bone 

tissue applications.[8-10] With the goal of developing scaffolds with a 100% pore-

interconnectivity, additive manufacturing and other solid free form fabrication (SFF) techniques 

such as laser sintering[11], stereolithography[12], and Fused Deposition Modelling (FDM) [4, 

13] have been used.[6, 7] Several researchers have developed manufacturing equipment based on 

FDM principles where a polymer spool is extruded through a heated nozzle and can subsequently 

be moved using commands obtained from a computer-aided manufacturing program.[13, 14]  

 

While most labs have typically developed custom made extrusion-based equipment to print user-

defined 3D scaffolds, the emergence of easy-to-use commercial 3D printers have allowed other 
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researchers with non-manufacturing backgrounds to print complex 3D models. For example, 

physicians use Makerbot printers to develop anatomically accurate physical models for 

educational purposes and practice surgeries. The drawback, however, is that these physical 

models can be only built using commercially available and easy-to-use polymer spools. Certain 

types of biomaterial spools such as polycaprolactone (PCL), a thermoplastic commonly used for 

bone tissue engineering applications,[15] are not commercially available and have to be custom-

made in research labs. Furthermore, these direct-writing techniques that rely on the properties of 

non-commercial colloidal biomaterial inks capable of being printed as droplets, hot-melts, or 

continuous filament lines [16-20] need specialized manufacturing knowledge to operate them. 

Moreover, incorporation of living cells within 3D printed scaffolds is yet another significant 

challenge and cells seeded on scaffolds with small pore-sizes could result in uneven cellular 

distribution throughout the scaffold. 

 

In this work we demonstrate the synthesis and fabrication of 3D scaffolds using hybrid 

polycaprolactone (PCL) spools using an easy-to-use commercial Makerbot 3D printer. Hybrid 

spools were developed by mixing commercially available fillers such as poly-l-lactic-acid (PLA) 

or hydroxyapatite (HA) particles within the PCL matrix, following which mechanical and 

materials properties were characterized. We also demonstrate the incorporation of living cells 

into the interior of the log-pile scaffold with a facile and easy-to-use technique.  
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3.3 Materials and Methods 

 

3.3.1 Development of hybrid spools 

 

Spools were made using a Randcastle microfilament extruder (Randcastle Inc.) and a base 

material of polycaprolactone (PCL) pellets having a 3mm diameter and 70kDa-90kDa molecular 

weight (Sigma Aldrich) (Fig. 3.1A). The raw PCL material and the fillers, either hydroxyapatite 

(HA) (Sigma Aldrich) or poly-l-lactic-acid (PLA) were mixed and fed into the extruder hopper. 

The shear force of the machine’s extrusion screw fed the raw material (PCL) and filler (either 

PLA or HA) into the four heating zones, allowing for homogenization of PCL-PLA composites 

and mixing of PCL-HA composites.  A cooling zone was located below the third heating zone 

and the thread of the screw was reversed, thereby causing a buildup of pressure that forced the 

melted polymer mixture out of the head (heating zone 4). The temperatures were kept at 160° 

Fahrenheit (72° Celsius), just above 140° Fahrenheit (F) or 60° Celsius (C), which was the 

melting point for PCL, for the pure PCL spool in order to keep the polymer in liquid state during 

the extrusion process and maintain constant pressure. For the PCL-HA spool the temperatures 

were raised to 170°F (76.6°C) in order to allow HA powder to mix with liquid PCL, and for the 

PCL-PLA spool the temperatures were raised to 320°F (160°C) in order to melt both of the 

polymers since PLA has a melting point between 300°-320°F. The pressure for each spool was 

kept at 1000 psi +/- 200 psi and fed through a custom nozzle with an opening diameter of 

1.57mm. The filament expanded once it left the extruder head to the appropriate 1.75 +/- 

0.05mm so that it could be wound into spools and fed into the commercially available 3D printer, 

Makerbot Replicator 2 (Makerbot Industries) (Fig. 3.1B).  
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3.3.2 Chemical composition and testing 

 

To determine the final material composition post extrusion and printing, a high resolution 

thermogravimetric analysis (TGA) was performed on PCL, PCL-HA and PCL-PLA samples 

using a Q500 thermogravimetric analysis (TA Instruments). The TGA heated spool samples to 

and beyond their degradation points while weighing them so that the amounts of each 

polymer/component could be determined based on weight percentages.  

 

3.3.3 3D printing and mechanical testing 

 

Spools were loaded into the Makerbot and both Solidworks (Dassult Systems) and Meshmixer 

(Autodesk) were used to generate the .stl files used to make the g-code for the printed scaffolds. 

Solidworks was used to make the log-pile geometry with two different sizes: (1) 10.5mm x 

10.5mm x 12mm, and (2) 6mm3, both containing sufficient porosities that allowed for repeatable 

and mechanically reliable prints. In addition to log-pile scaffolds, two complex geometries were 

fabricated using a computerized tomography (CT) scan of a right femur. The scans were 

converted to .stl files and added to Meshmixer, a program that allows for unique customization 

of .stl files in order to make user-specified designs that could be printed reliably.  

 

To test the mechanical strength of the scaffolds, the larger log-pile structures (Fig. 3.1) were 

placed between two plates on a compression MTS machine (Sintech 2 G) with a 10K Newton 

load cell. The samples were compressed to failure and the machine recorded the downward cross 

head travel and the force from the load cell. 
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3.3.4 Cell incorporation within log-pile scaffolds 

 

A mixture of gelatin methacrylate (GelMA) mixed with human osteosarcoma cells (Saos-2) were 

incorporated within log-pile scaffolds. Using a previously reported protocol GelMA was 

synthesized.[21, 22]   Briefly, porcine skin gelatin was mixed at 10% (w/v) in phosphate 

buffered saline (PBS, Thermo Fisher Scientific) and stirred at 45oC until dissolved.  After the 

porcine skin gelatin was dissolved, methacrylic anhydride was added to the solution and stirred 

at the same temperature for 3 hours.  After stirring, the solution was dialyzed against distilled 

water for seven days at 40˚C, freeze-dried, and stored at -80°C until needed. For cell 

encapsulation experiments, a final GelMA prepolymer solution of 7% was prepared by mixing 

freeze-dried GelMA with PBS and 0.25% UV photoinitiator Irgacure 2959 (Specialty Chemicals, 

Switzerland) at room temperature. 

 

Human osteosarcoma cells (Saos-2) were purchased from American Type Culture Collection 

(ATCC) and cultured in Dulbecco’s Modification of Eagle’s Media (DMEM; Life Technologies) 

supplemented with 10% fetal bovine serum (v/v) (FBS lot K14133; Atlanta Biological), 1% 

penicillin-streptomycin (Life Technologies) and 1% GlutaMAX (Life Technologies).  Cells were 

passaged using 0.25% trypsin-EDTA (Life Technologies) and maintained at 37°C. A mixture of 

GelMA and Saos-2 cells was created by adding 20μL of a cell solution containing approximately 

5000 cells/μL to 130μL of GelMA prepolymer solution.  Cell/GelMA solution was pipetted 

dropwise onto sterilized PCL, PCL/PLA, and PCL/HA scaffolds and subsequently crosslinked 

using a Hamamatsu LED Controller (Hamamatsu C11924-511; Hamamatsu Photonics K.K., 

Japan).  Viability of cells were analyzed using a Live/Dead assay on day 5. To evaluate cell 

viability, scaffolds were placed in media containing calcein-AM (1:2000 dilution; Life 
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Technologies) and ethidium homodimer (1:500 dilution; Life Technologies) and incubated at 

37°C for 1 hour.  After 1 hour, scaffolds were cut into three equal pieces using single edge 

industrial razor blades and imaged using an epifluorescence microscope (Nikon, Eclipse E-400, 

Nikon Corporation, Japan). Raw .tiff images were taken for all samples and processed linearly 

for contrast and brightness using Adobe Photoshop CC 2015 (Adobe Systems Inc., CA).  

Processed images were overlaid and false colored to create final live/dead images with green 

representing live cells and red representing dead cells.  Brightfield images were not processed 

linearly for contrast and brightness. Images were also obtained using Hirox KH-8700 digital 

microscope (Hirox-USA, Inc., NJ). 

 

3.4 Results 

 

3.4.1 3D printing using hybrid PCL spools 

 

The overall process of manufacturing log-pile geometries using hybrid spools is depicted in 

Figure 1.  In order to manufacture spools, a Randcastle microfilament extruder was used to 

combine base PCL material with either HA or PLA (Fig. 3.1A).  Extruded filaments of an 

appropriate diameter of 1.75±.05mm could then be wound and fed into a commercially available 

Makerbot Replicator 2 3D printer (Fig. 3.1B). 

 

A range of process parameters used for 3D printing (Fig. 3.1C) were determined from the 

melting point and degradation point information for each spool that were obtained from 

thermogravimetric analysis. A set of temperatures were chosen within these ranges and 

optimized such that the spools could be fed into the machine in a reliable and repeatable manner. 
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Temperature, which was the critical variable, was adjusted to allow easy printability (extrusion) 

using viscous melts.  

 

For clarity, the “diameter” variable does not refer to the diameter of the spool, but rather to a 

number fed into Makerbot Slicer program.  This was necessary to compensate the pushing force 

on various spools. For PCL and PCL-HA spools, this variable was decreased from 1.75mm 

(standard size) to 1.5mm in order to force the extruder to push more filament out, effectively 

compensating for the differences in density from PLA (1.4g/cm3) to PCL (1.14g/cm3).   Finalized 

log-pile prints were realized after optimizing the printing conditions (Fig. 3.1D). 

 

Figure 3.1:  3D printing schematic using hybrid PCL spools.  (A) The raw material is fed into 

the filament extruder creating a long strand of three polymer spools (PCL, PCL-HA, and PCL-

PLA).  (B) A commercially available MakerBot Replicator 3D printer.  (C) The printer settings 

are set for each filament spool, respectively.  (D) The model of the log-pile scaffolds and the 

printed counterparts to the right.  Scale bar:  2mm.  HA, hydroxyapatite; PCL, polycaprolactone; 

PLA, polylactic acid.   
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3.4.2 Composition and mechanical properties of printed scaffolds 

 

High-resolution thermogravimetric analysis (Fig. 3.2A) was used to quantify the exact amount of 

filler (PLA or HA) in the PCL matrix. The sample was heated above its degradation point and 

the derivative of the heat of the furnace (the rate of heating) was measured as it related to the 

drop in weight of the test-sample. This analysis was used primarily to demonstrate two distinct 

degradation points and a % composition of hybrid samples (Fig. 3.2A, B). Both PCL and PCL-

HA had a degradation point of 383°C and the change weight between PCL and PCL-HA 

(15.81%) was representative of the weight of HA present in PCL-HA spool, as inorganic HA 

does not degrade and remains on the balance after complete degradation of the PCL component. 

The actual amount of HA was found to be slightly lower after thermogravimetric analysis than 

was present during the spool-making process (15.81% as compared to 20%).   

 

Similarly, the amount of PLA was found to be slightly lower after analysis.  The mixture of PCL 

and PLA had two distinct degradation points (the first degradation point for PLA being at 325°C 

and the second point for PCL being at 355°C)  which were used as markers for determining the 

percentage of each constituent in the combined spool (Fig. 3.2B). From the thermogravimetric 

analysis, the exact amount of PLA in PCL matrix was determined to be 47.7%, a minor deviation 

from the 50:50 ratio initially put into the extrusion hopper 

 

Mechanical properties for log-pile scaffolds were obtained from the stress-strain curves using a  

MTS machine (Fig. 3.2B, C, D). PCL-PLA, PCL-HA and PCL had average compressive 

strength of 159.2 MPa, 59.3 MPa and 44.3 MPa respectively (n=5). The increase in moduli in the 
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hybrid PCL-PLA spools was a result of the higher moduli of pure PLA filler added to the PCL 

matrix.  

 

Figure 3.2:  Printed scaffold compositions and mechanical properties.  (A) High-resolution 

TGA of polymer spools.  (B) Results in tabular form showing the degradation points and 

percentages for each compound.  (C) Compression testing apparatus to obtain mechanical 

properties of log-pile scaffolds.  (D) Stress-strain plots and bar graphs of modulus and maximum 

stresses for each polymer spool (n=5).  TGA, thermogravimetric analysis. 

 

3.4.3 3D printing of complex porous geometries 

 

PCL is a common biopolymer used for bone tissue engineering applications and its ability to be 

readily augmented and printed in specific shapes via commercial 3D printers could lead to 

enhanced clinical solutions for bone defects.  Custom scaffolds for bone repair are able to be 

printed from Cartesian data obtained from a CT scan, allowing the possibility of patient-specific 
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support cages for bone tissue engineering (Fig. 3.3). The first geometry shown was created in 

order to have a log-pile lattice similar to the log-pile geometry described earlier and was 

modified from the .stl file of a human femur (Fig. 3.3A). A scaled femur model was placed into 

the mesh program and sliced in order to obtain a small cross section of the diaphysis. The 

Meshmixer program was then used to render the model into various different layers while 

keeping the same external geometry (Fig. 3.3B, red outline). The lattice structure was used to 

maximize the internal free space while minimizing the amount of material used to support 

reliable printing of the structure.  

 

To increase the internal free space, another type of scaffold was developed using Voronoi 

analysis, a solution which only uses the surface data in the .stl file (Fig. 3.3C). The Voronoi was 

made by reducing the number of triangles on the surface of the .stl file and subsequently using 

the Dual Edges function to give them all a tubular thickness and density.   For each filament, the 

.stl files were uploaded into the Makerbot Desktop software and the settings were edited in the 

slicing program to obtain printing repeatability. The resulting hollow cages maintained the 

external geometry as derived from the CT scan, while still leaving space for the incorporation of 

biomaterials containing living cells. 
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Figure 3.3:  3D printing of complex geometries.  (A) Cartesian data for a human femur were 

placed into the MakerBot Desktop.  (B) A slice from the diaphysis of the femur was taken and 

Lattice meshed in Meshmixer.  On the right is the 3D printed model in PCL.  (C) Longer slice 

from the diaphysis was Voronoi meshed in Meshmixer to create a hollow cage-like 

representation of the outside femur.  On the right is the 3D printed PCL model. 

 

3.4.4 Cell incorporation within log-pile scaffold 

 

To visually model a process in which live cells could be contained within a 3D printed log-pile 

structure, a 6mm3 PCL log-pile scaffold was placed inside a rectangular chamber and 
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subsequently covered with 7% GelMA containing 15% (v/v) MiO orange coloring (Kraft Foods 

Inc., IL) (Fig. 3.4A).  The GelMA was pipetted drop-wise onto the PCL scaffolds and 

simultaneously solidified using UV light exposure.  Sliced sections from the top, middle, and 

bottom areas were successfully able to show a thorough incorporation of GelMA within in the 

interiors of the log-pile scaffold (Fig. 3.4B).  As reported, the infusion process was facilitated by 

using a plastic column containing a small outlet port in the bottom of the chamber, thereby 

allowing an even flow-through of GelMA solution throughout the entire scaffold.   

 

For cell encapsulation, a mixture of gelatin methacrylate (7% GelMA) and human osteosarcoma 

cells (5000 cells/μL; Saos-2) were incorporated within a PCL-PLA log-pile structure in a similar 

manner. After day 5, the log-pile structure was incubated with calcein-AM and ethidium 

homodimer and imaged fluorescently for live/dead analysis (Fig. 3.4C).  Live cells (green) were 

shown in the top, middle and bottom sections of the sliced log-pile scaffold. 

 

Figure 3.4:  Incorporation of cells within 3D printed scaffolds.  (A) Schematic representation 

of the process used for incorporating living cells within printed scaffolds.  The case was slightly 

larger than the 6mm3 log-pile structure to allow for GelMA-cell solution perfusion.  (B) PCL 

scaffold infused with 7% GelMA containing 15% (v/v) MiO orange coloring to show complete 
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infusion of GelMA throughout the scaffold (left to right: PCL GelMA top, PCL GelMA middle, 

PCL GelMA bottom).  (C) Live (green)/Dead (red) calcein-AM/ethidium homodimer pictures 

from PCL/PLA scaffold (left to right:  PCL-PLA GelMA top, PCL-PLA GelMA middle, PCL-

PLA GelMA bottom).  GelMA, gelatin methacrylate. 

 

3.5 Discussion 

 

We chose PCL as our base material due to its extensive use in developing scaffolds for bone 

tissue engineering. PCL is a semi-crystalline aliphatic polymer with suitable rheological 

properties such as glass transition temperature and melting point, and is readily biodegradable by 

hydrolysis.[23]  HA, while a major component of native bone that has been shown to promote 

bone mineralization, is difficult to machine due to its brittle characteristics.[24, 25] 

 

One significant challenge in creating the composite spools was the difficulties in achieving 

filaments of consistent diameter (1.75mm), a necessary requirement for several commercially 

available 3D printers. This was achieved by controlling the extruder-pressure and barrel screw 

revolution, and by varying the “suckback” variable on MakerBot (Fig. 3.1C). The “suckback” is 

typically set at 1.3mm at a velocity of 25mm/s in order to break off each extrusion. Since PCL 

has a high specific heat, “suckback” was set to zero to avoid blocking the printer nozzle. 

 

A second challenge that will need to be addressed in subsequent studies is the apparent loss of 

both HA and PLA in the spool manufacturing process (Fig. 3.2B).  As previously mentioned, 

there was a slight decrease in the amount of HA (15.81% as compared to 20%) and PLA 

(47.70% as compared to 50%) measured in the composite PCL-HA and PCL-PLA spools as 



 

 68 

compared the starting materials placed into the hopper.  While the exact cause of the loss is 

unknown, it is most likely attributed to the adhesion of HA and PLA to either the inner barrel of 

the extruder or any of the other various surfaces that they came in contact with throughout the 

manufacturing steps.  

 

Natural bone is an organic/inorganic composite typically consisting of cortical and cancellous 

bone[26] with a compressive strength ranging from 131-205 MPa and a Young’s Modulus 

ranging between 10 – 20 GPa.[27, 28]  As reported here, the compressive strength of the hybrid 

spools had moduli ranging from 59-159MPa, thereby falling within the target zone required for 

bone tissue engineering.  However, as the compressive strengths of the spools were on the low 

end of that of natural bone, more work would be needed to replicate the properties of natural 

bone. 

 

Model scaffolds used for bone tissue engineering should mimic both the mechanical and 

chemical composition of natural bone.  Since natural bone contains collagen fibers,[26] we 

decided to incorporate GelMA laden with living cells into the printed log-pile scaffolds. We 

chose GelMA, a denatured form of collagen, as the model hydrogel because it contains an 

abundance of biologically active cell-adhesion motifs, has highly controllable mechanical 

properties, and provides increased transparency for imaging.[29]  Human Saos-2 cells were 

chosen in this study due to the fact that they are a robust cell line that can be used in the initial 

stages of new bone defect models.  By choosing Saos-2 for our initial work, we were able to 

limit donor dependent differences that would arise from primary cells.  In the future, we plan to 

use bone marrow derived stem cells to obtain an understanding of how scaffold design 

parameters influence the cell number and their metabolic activities. Integration of the structural 
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cage with cell-laden GelMA showed a construct compatible with the multifunctional nature of 

bone and showcased the potential for a tissue engineering model capable of improving the 

handling characteristics of soft hydrogel constructs under weight bearing conditions. The open 

frame design provided sufficient space for cell-laden hydrogels to support bone mineralization, 

remodeling, and integration with host tissues, while at the same time providing an interface that 

could possibly integrate with host tissues.  

  

3.6 Conclusion 

 

Polymers, with their favorable processing properties, have been extensively used to develop 3D 

scaffolds for tissue engineering applications. 3D printing of tissue engineering scaffolds often 

requires customized instruments such as heated extruders and computer controlled XYZ stages 

with precisely coordinated movements in order to lend themselves properly in the creation of 

biopolymer properties (viscosity, melting temperature, printing speed). This project developed 

hybrid spools with PCL polymer as the base material as well as hybrid spools readily compatible 

with commercial 3D printers such as the MakerBot. Porous geometries were printed using CT 

scan data with both internal log-pile lattice structures as well external meshed structures.  

Finally, we demonstrated that living cells mixed in gelatin hydrogels could be incorporated 

within log-pile scaffolds with high initial cellular viability.  

 

Moving forward, while it was shown that cell-laden GelMA could be incorporated between the 

struts of PCL and PCL composites, the varying viability of the cells in the center and bottom of 

the log-pile scaffolds indicates that an inherent porosity is needed for the proper delivery of 

nutrients to the encapsulated cells.  Additionally, as it was shown that the compressive strength 
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of the PCL and PCL cages were less than pure thermoplastic PLA cages alone, future work in the 

manufacturing of a structurally supported cell-laden hydrogel will utilize pure thermoplastic 

cages instead of PCL composites. 
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CHAPTER 4:  PERFUSION DIRECTED 3D MINERAL FORMATION WITHIN CELL-

LADEN HYDROGELSD*[1] 

 

4.1 Abstract 

 

Despite the promise of stem cell engineering and the new advances in bioprinting technologies, 

one of the major challenges in the manufacturing of large-scale bone tissue scaffolds is the inability 

to perfuse nutrients throughout thick constructs. Here, we report a scalable method to create 

perfusable bone constructs using a combination of cell-laden hydrogels and a 3D printed sacrificial 

polymer. Osteoblast-like Saos-2 cells were encapsulated within a gelatin methacrylate (GelMA) 

hydrogel and 3D printed polyvinyl alcohol (PVA) pipes were used to create perfusable channels. 

A custom-built bioreactor was used to perfuse osteogenic media directly through the channels in 

order to induce mineral deposition which was subsequently quantified via microCT.  Histological 

staining was used to verify mineral deposition around the perfused channels, while COMSOL 

modeling was used to simulate oxygen diffusion between adjacent channels.  This information was 

used to design a scaled-up construct containing a 3D array of perfusable channels within cell-laden 

GelMA.  Progressive matrix mineralization was observed by cells surrounding perfused channels 

as opposed to surface mineral deposition in static constructs.  MicroCT confirmed that there was 

a direct relationship between channel mineralization within perfused constructs and time within 

the bioreactor.   

																																																													
D Adapted from:  Sawyer SW, Shridhar SV, Zhang K, Albrecht LD, Filip AB, Horton JA, Soman P.  (2018) Perfusion directed 3D 
mineral formation within cell-laden hydrogels.  Biofabrication 10(3). 
* Reprinted with permission from IOP Publishing with minor editing provisions. 
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4.2 Introduction 

 

One of the largest barriers to engineering a large-scale bone tissue replacement is the ability to 

supply essential nutrients throughout the entire construct.  Since hypoxia and necrosis occur to 

cells that lie outside of the natural diffusion range of 200–300 μm, proper vasculature must be 

available within the replacement tissue to ensure graft viability.[2-4]  In traditional static culture 

systems, nutrient diffusion, and therefore mineralization and cellular viability, is limited to the 

outer 200-300 μm of the construct while deeper regions of the system remain hypoxic.[5, 6]   

 

In an attempt to increase nutrient diffusion into engineered scaffolds, a variety of means such as 

solvent casting, particulate leaching, phase separation, gas foaming, emulsion freeze drying, and 

fiber meshes have been used to generate a wide range of porous scaffolds.[7-10]  While these 

particular methods have been shown to enhance mass transfer within the machined constructs as 

well as improve cell seeding, cell proliferation, and construct mineralization, they unfortunately 

have not provided a complete solution.  In particular, these methods do not easily provide the 

precise control over pore parameters needed for larger tissue constructs and can often result in 

inhomogeneous cellular densities and outcome measures that are hard to predict. Furthermore, 

since these methods often require harsh solvents and high temperatures, incorporating live cells 

during fabrication is near impossible.[10-12]  Alternatively, the encapsulation of osteogenic cells 

within biocompatible hydrogel bioinks such as collagen, alginate, and gelatin can allow for a 

uniform and controlled distribution of cells in situ.[13-20] However, the absence of macroporous 

voids in the cell-laden hydrogel constructs present similar nutrient diffusion limitations.[4]  

Additionally, although the cell friendly hydrogel provides an environment which is able to closely 
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mimic the natural extracellular matrix, their weak mechanical stability provides yet another 

obstacle for their use in bone tissue engineering.  

 

Recently, 3D printing technologies have enabled the creation of user-defined channels within cell-

laden hydrogels through the extrusion of bioinks in a layer-by-layer manner alongside co-printed 

sacrificial materials.[21-28] Post-print, the sacrificial material is removed via non-toxic means, 

resulting in user defined channels within bulk gels.  However, methods such as this require custom-

made bioprinters with specialized control hardware and software as well as tunable viscoelastic 

bioinks that must be specifically matched with the printing parameters.  While perfusion of these 

constructs with nutrients is possible, the systems used are difficult to scale.  

 

A simpler, and readily scalable, fabrication method is one that combines the casting of cell-laden 

hydrogels around pre-fabricated 3D printed structures containing sacrificial materials.  In this 

work, we utilize an unmodified, commercially available 3D printer and water soluble sacrificial 

material (PVA) to establish perfusable channels within the center of a diffusion limited, 

structurally supported GelMA hydrogel laden with osteoblast-like cells. The construct is designed 

to have one inlet and one outlet that provides a direct interface between the cell-laden GelMA and 

perfusion of nutrients via a scalable, pump-driven bioreactor system. The simple horizontal 

channel geometry provides a robust method with which to analyze the influence of long-term 

(4week) perfusion of osteogenic media on the viability and function of encapsulated cells. 

Additionally, COMSOL modeling of oxygen diffusion is used to determine optimal spacing 

between adjacent 3D printed channels, allowing for the design to be scaled up into a perfusable, 5 

pipe array.  
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4.3 Materials and Methods 

 

4.3.1 3D printing of frames and pipes 

 

Acrylonitrile butadiene styrene (ABS) thermoplastic frames with inner dimensions of 9mm long 

x 6mm wide x 3mm deep containing 1mm holes along the construct peripheries and sacrificial 

polyvinyl alcohol (PVA, 400μm diameter) pipes were printed using a commercially available 

MakerBot Replicator 2 3D printer (MakerBot) (Fig. 4.1A).  PVA pipes were UV sterilized for 24 

hours and ABS frames were sterilized via submersion in 70% EtOH for 24 hours.  

 

4.3.2 Design and fabrication of polycarbonate bioreactor  

 

Polycarbonate bioreactors were machined from clear, autoclavable, scratch and UV resistant 

polycarbonate sheets (McMaster-Carr) (Fig. 4.1 D-F).  Briefly, pre-milled polycarbonate blanks 

were machined in a MT300 Pro CNC Milling Center (AutoMateCNC) to create both the bottom 

bioreactor base and its corresponding top plate (Fig. S4.1-2). The bottom bioreactor base plate 

contained four wells approximately 13mm long x 9mm wide x 3mm deep surrounded by 10 screw 

holes machined using a #43 drill bit.  Vertical holes for perfusion along the periphery of the base 

plate were machined using a #52 (outer) and #72 (inner) drill bit for 21G needle (Thermo Fisher 

Scientific) insertion.  Top plates contained screw holes machined using a #34 drill bit.  To ensure 

a water-tight seal between the polycarbonate base and top, a polydimethylsiloxane gasket (PDMS, 

Ellsworth Adhesives) mixed in a 1:4 ratio was cured at 60oC for 24 hours and inserted between 

the base and top sections.  
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4.3.3 Gelatin methacrylate (GelMA) synthesis 

 

20% (w/v) gelatin methacrylate (GelMA) prepolymer solution used for cellular encapsulation was 

synthesized according to our previous work.[29]  Briefly, porcine skin gelatin (Sigma Aldrich) 

was mixed at 10% (w/v) in phosphate buffered saline (PBS, Thermo Fisher Scientific) and reacted 

with methacrylic anhydride (Sigma Aldrich).  After dialysis and lyophilization, GelMA macromer 

was stored at -80°C until needed. Prior to cellular encapsulation, GelMA macromer was combined 

with PBS and 0.25% UV photo-initiator Irgacure 2959 (Specialty Chemicals) to form the 

prepolymer solution and sterile filtered using a 0.20 µm filter (Corning).   

 

4.3.4 Cell culture and perfusion setup 

 

Human osteosarcoma cells (Saos-2, ATCC), which can be used to represent the early stages of 

osteogenesis,[30] were chosen as osteoblast analogues for our model system.  Dulbecco’s 

Modification of Eagle’s Media (DMEM, Life Technologies) supplemented with 1% Glutamax 

(Life Technologies), 1% penicillin-streptomycin (Life Technologies), and 10% fetal bovine serum 

(FBS lot G12102, Atlanta Biologicals) was used as the base media for Saos-2 culture.  Cells were 

maintained at 37°C in a humidified, 5% CO2 atmosphere and passaged prior to any new experiment.  

In order to chemically induce Saos-2 cells to produce mineral, the base media was supplemented 

with 100 μM L-ascorbic acid-2-phosphate (AA2P, Sigma-Aldrich), 5mM b-glycerophosphate 

(BGP, Sigma-Aldrich), and 10 nM dexamethasone (DEX, Sigma-Aldrich). 

 

Prior to in situ polymerization, approximately 1x106 cells were suspended in 20% (w/v) GelMA 

to create a 15% (w/v) solution (162 µl final volume), and transferred to the 3D printed hybrid ABS 



	 79	

frame/PVA pipe construct via dropwise pipetting (Fig. 4.1B).  After the construct was filled, the 

cell-GelMA solution was UV cured for 1 minute 20 seconds at approximately 5 mW/cm2 via a 

Hamamatsu LED Controller (Hamamatsu C11924-51; Hamamatsu Photonics K.K., Japan).  PVA 

pipes were eluted from the constructs by incubation for 24 hours in warmed media (Fig. 4.1C).  

Constructs destined for static culture conditions remained in 12-well culture dishes, with media 

renewed every 2-3 days. Constructs destined for perfusion conditions were transferred and press 

fit within the polycarbonate bioreactor base (Fig. 4.1D-E). Construct perfusion was maintained 

using a syringe pump system (NE-300 Just InfusionTM, New Era) at 0.2 μl/hr per well, for up to 

28 days (Fig. 4.1F).  Syringes were replaced as needed during the course of the experiments. 

 

4.3.5 Cellular viability 

 

Cell viability of encapsulated Saos-2 cells was evaluated using a Live/Dead assay for two time 

points: 1 day after encapsulation and 14 days after either perfusion or static culture using 

osteogenic media.  Samples to be evaluated were sliced into 1mm thick sections and transferred 

into culture media supplemented with calcein-AM (live, 1:2000 dilution, Life Technologies) and 

ethidium homodimer (dead, 1:500 dilution, Life Technologies) for one hour prior to imaging.  

 

4.3.6 MicroCT analysis 

 

Constructs were removed from the bioreactor intact, fixed in formaldehyde (4% for 24 hours), 

washed in PBS, and placed lengthwise in a 16 mm diameter sample holder for micro-CT imaging 

(micro-CT 40, Scanco Medical AG, Brüttisellen, Switzerland). Foam spacers were placed between 

samples, which were kept hydrated with PBS. Samples were imaged at a 16-20 μm isotropic voxel 
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resolution (55 kV, 145 mA, 200 ms integration time). After scanning, mineralized tissue volume 

(bone volume, BV) and density (BMD) were calculated by applying a lower global threshold (166 

mg HA/cm3) to the image, which was digitally contoured to isolate the entire length of the 

perfusion channel from the bulk construct mass (Fig. S4.3). Thickness of the mineralized matrix 

surrounding the perfusion channel was calculated using the 2D section morphology tool in 

BoneJ.[31] Briefly, the reconstructed micro-CT images (.isq files) were imported into ImageJ, 

cropped to isolate the perfusion channel, and a global threshold of 166 mg HA/cm3 was applied 

prior to running BoneJ. The BoneJ plugin then calculates an average “cortical thickness” for each 

image slice, which corresponds to mineral wall thickness in this model.  Consistency in 

thresholding between ImageJ and Scanco software was ensured by importing a scan of the Scanco 

hydroxyapatite (HA) quality control phantom into ImageJ, and plotting greyscale (ImageJ) values 

vs. HA density.  However, based on the fact that the structural organization and chemical 

constitution of the deposited mineral cannot be verified via micro-CT, the cell-mediated deposition 

is referred to as “mineral” in the subsequent text. 

 

4.3.7 Histological analysis 

 

Perfused samples were prepared for histological analysis via standard snap freezing protocols.  

Briefly, samples were fixed in 4% formaldehyde for 24 hours before treatment with a 30% sucrose 

in PBS solution for 48 hours.  After sucrose treatment, samples were embedded in Tissue Freezing 

Medium (Electron Microscopy Sciences) and frozen over dry ice.  Sections (10µm thick) were cut 

on a Leica CM3050 cryostat (Leica Biosystems, Germany) and mounted on lysine coated 

SuperFrost Plus slides.  Cover-slipped and stained sections were imaged using a Nikon Eclipse E-

400 microscope (Nikon Corporation). 
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Hematoxylin and Eosin (H&E) Staining: Sections were stained by standard H&E procedure using 

Mayer’s Hematoxylin and Eosin/Phloxine solutions (Electron Microscopy Sciences). Sections 

were then dehydrated through an ethanol series, cleared in xylene, and cover-slipped with 

Permount (Fisher Scientific) for imaging.  Imaged sections were analyzed via ImageJ (NIH) for 

cell quantification. 

 

Alizarin Red S Staining:  Calcium mineral deposition was visualized using 40mM Alizarin Red S 

solution (4.1 pH, Sigma). After staining for 5 minutes, slides were washed in deionized water and 

mounted and imaged as previously described. 

 

Image J Box Plot Analysis: H&E images were imported into ImageJ and analyzed via a box 

analysis for cell quantification.  Briefly, images were converted to binary via automatic 

thresholding and values representing cells were recorded in boxed increments of 325 μm2 away 

from the edge of the channel lumen.  For each image, three different directions were analyzed 

away from the central channel. 

4.3.8 COMSOL modeling 

 

COMSOL was first used to model oxygen diffusion within cell-laden GelMA constructs between 

adjacent channels spaced 1mm apart (edge-to-edge). Two domains were considered. Domain 1 

represented the primary flow of nutrients supplied from the inlet reservoir and was solved using 

Navier-Stokes steady state flow analysis. Domain 2 represented the diffusion of media and 

consumption by cells, and was solved by diffusion-consumption analysis using Michaelis–Menten 

rate laws.  The “Reacting Flow of Porous Media” module in COMSOL was used to plot steady 

state oxygen diffusion within cell-laden GelMA. The GelMA matrix was represented via user-
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defined material values of porosity (0.5)[32], and permeability (1 x 10-7)[33].  The maximum 

amount of dissolvable oxygen was assumed to be 0.2185 [mol.m-3][34], approximately 

representing oxygen dissolved in water. The consumption of oxygen by cells was represented as a 

decrease in oxygen species over time, following the equation, R = -kt, where R is the reaction rate 

(R<0), k is the rate constant relating to oxygen concentration, and t is time in [s]. The rate constant 

was determined to be 2 x 10-5 [mol.s-1] by taking into account the oxygen consumption rate of cells 

within each GelMA construct.[35]   

 

COMSOL was also used to model the changes in oxygen diffusion within cell-laden GelMA 

constructs due to mineral deposition around the lumen/channels. In this model, three domains were 

considered.  Domain 1 represented the primary flow of nutrients supplied from the inlet reservoir 

and Domain 2 represented the diffusion of media and consumption by cells encapsulated within 

GelMA. A new Domain 3 was introduced in the form of a donut-shell and represented both regions 

of mineral deposition and cell-laden GelMA. With more perfusion time, the thickness of Domain 

3 increased and the porosity decreased due to an increasing amount of mineral deposition. The 

thickness of the donut-shell Domain 3 was obtained from Image J data, while the material porosity 

of Domain 3 (𝑃"#$%&'()*++) at weeks 1, 2, and 4 was calculated as described below. The porosity 

of Domain 3 was a combination of (i) the porosity of the mineralized GelMA (identified from CT 

data) and (ii) the porosity of cell-laden GelMA (identified as void regions in CT data) given by the 

following equation (Fig. 4.6B-C): 

𝑃"#$%&'()*++ 	= 		𝐴 ∗ 𝑃12$*34+ + (1 − 𝐴) ∗ 𝑃9*+:;   

where A is the fraction of the donut-shell area occupied by mineralized GelMA and (1-A) is the 

remaining fraction that is occupied by cell-laden GelMA. Porosity of pure bone, 𝑃12$*34+ (0.035) 

and cell-laden GelMA 𝑃9*+:; (0.5) were obtained from previously published work[32, 36]. In this 
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work, the inner channel radius was assumed to be 0.2 mm while the outer donut-shell radius for 

weeks 1, 2 and 4 were calculated as 0.2719 mm, 0.2854 mm and 0.2873 mm respectively from the 

Bone J cortical thickness measurements of the mineralized crust.  𝐴, the fraction of donut shell 

area occupied by the mineral, was calculated via a two-step process.  First, CT data was imported 

into MIMICS (Materialise, Belgium), a medical image processing software program, and 30 

surface slices were generated for each time point and converted into 2D masks before being 

exported into Image J as binary (.stl) files. Second, the freehand boundary option in Image J was 

used to mark the irregular outer boundaries in each image to calculate the area occupied by mineral 

and void regions (area occupied by cell-laden GelMA).  This data was then used to calculate 

𝑃"#$%&'()*++ for week 1, 2 and 4 (Fig. 4.6D). 

 

4.3.9 Statistical analysis 

 

Numerical data was entered into Microsoft Excel to calculate mean and standard deviation and 

either Student’s t-test or one-way ANOVA was used to assess statistical significance of differences.  

P-values less than 0.05 were accepted as statistically significant. 

 

4.4 Results 

 

4.4.1 Design and fabrication of a plug-and-flow construct 

 

Mechanically supportive ABS cages capable of housing GelMA hydrogels were printed using a 

commercially available 3D printer.  Sacrificial polyvinyl alcohol (PVA) pipes were printed and 

inserted into holes within the ABS cage peripheries (white, Fig. 4.1A, B). GelMA prepolymer was 
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cast into the constructs and UV cured (Fig. 4.1B, C) prior to the dissolution of the pipes (Fig. 

4.1C). A fully customizable, two-piece plug-and-flow bioreactor fitted with a PDMS gasket was 

used to house the 3D printed constructs (Fig. 4.1D-F, S4.1-2).  Within the bioreactor base, the 3D 

printed constructs containing GelMA hydrogels could be press fit and perfused with DI water 

containing an orange food dye via a standard syringe pump.  Flowed wells containing no constructs 

showed fluid-tight seals (Fig. 4.1E middle-top) while the well containing an ABS cage and 

GelMA hydrogel with dissolved pipe showed directed dye flow (Fig. 4.1E bottom).   

 

All aspects of the plug-and-flow model process were capable of being fully sterilized using 

conventional techniques.  Specifically, the PVA pipes and bioreactors were UV sterilized for 24 

hours prior to use and the ABS frames were sterilized in 70% EtOH.  Accordingly, the system was 

capable of being placed within a standard cell culture incubator for extended periods of time (Fig. 

4.1F).  Nutrients needed for cell viability were perfused through the constructs via a syringe pump 

placed within the incubator and gas exchange took place through a pressure relief needle in the 

waste collection area. 
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Figure 4.1:  Design and performance testing of 3D-printed construct and bioreactor 

apparatus.  Schematic and representative images of the mechanically supportive ABS frame with 

inserted pipe before (A) and after (B) photopolymerization of GelMA, and after dissolution of the 

sacrificial PVA pipe (C).  Schematic image of a two-piece polycarbonate bioreactor containing a 

PDMS gasket between layers (D) and leakage test of polycarbonate bioreactor showing liquid-

tight seal in machined device (E).  Complete bioreactor setup inside a standard cell culture 

incubator (F).   

 

4.4.2 Perfusable GelMA hydrogels containing Saos-2 cells 

 

In order to create cell-laden GelMA hydrogels containing encapsulated cells and fully perfusable 

pipes, Saos-2 cells were added to GelMA prepolymer and cast into the constructs.  After curing, 

constructs were placed in cell culture media for 24 hours prior to being placed in either well plates 

for static culture or the bioreactor for perfusion with osteogenic media (Fig. 4.2A). To determine 
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if the plug-and-flow bioreactor represented a viable cell culture platform, cells were encapsulated 

around the dissolvable pipes and cultured for 24 hours in order to determine process associated 

cell death.  After one day of culture, minimal cell death was observed around the dissolved pipe 

(red, Fig. 4.2B).  Constructs perfused with osteogenic media for two weeks showed high cell 

viability (green, Fig. 4.2C) and mineral deposition around the entirety of the pipe (Fig. 4.2D).  

MicroCT imaging showed mineral deposition surrounding the channel along the entire length of 

the construct (Fig. 4.2E).  

 

Control experiments were run with cell-laden GelMA constructs without channels. Cells were 

encapsulated within ABS cages containing no dissolvable pipes and incubated for either 1 day or 

14 days in osteogenic media (Fig. 4.2F).  After 1 day of culture constructs were sectioned into 

1mm slices and showed low cell viability in the center of the hydrogel (red, Fig. 4.2G).  After 14 

days of static culture high cell death, in addition to a decreased number of cells, was observed (Fig. 

4.2H) and no mineral appeared to form in the center of the hydrogel (Fig. 4.2I, J). 
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Figure 4.2:  Perfusion can direct mineral deposition.  Schematic representation of outcomes 

following osteogenic induction under (A) perfusion or (F) static culture conditions. Cell viability 

by fluorescent live (green)/dead (red) staining after perfusion (B, C) or static culture (G, H) 

conditions for either 1 (B, G) or 14 days (C, H) respectively. Brightfield microscopy showed an 

accumulation of an opaque matrix surrounding the perfused pipe (D) that was not evident in static 
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constructs lacking a pipe (I) (scale bar: 400µm). Micro-CT imaging demonstrated mineral deposits 

surrounding the perfused pipe (E), whereas mineral accumulated only at the periphery of 

constructs maintained in static conditions (J).  

 

4.4.3 Channel mineralization and modeling 

 

MicroCT was used to evaluate mineral formation around the construct channels under both static 

and dynamic conditions. Samples cultured within the bioreactor and perfused with osteogenic 

media for either 1 (P-W1), 2 (P-W2), or 4 (P-W4) weeks showed robust mineralization along the 

channel walls (Fig. 4.3A, Right). Solid samples containing no channels in static osteogenic culture 

showed mineral deposition around the construct periphery with no quantifiable activity within the 

center of the construct (Fig. 4.2J).  Under the same conditions, constructs with channels were 

cultured in static osteogenic conditions for either 1 (S-W1), 2 (S-W2), or 4 (S-W4) weeks and 

showed increasing amounts of mineral deposition along the central pipe walls (Fig. 4.3A, Left).  

Additionally, in the static culture mineral was also deposited on the surface of the constructs, but 

appeared random and unordered.  Furthermore, acellular control experiments showed no presence 

of mineral, indicating that the mineralization was completely mediated by encapsulated Saos-2 

cells. 

 

For mineral quantification, only the central channels of the constructs were digitally contoured in 

order to normalize comparisons between static and perfused samples (Fig. S4.3).  Quantification 

of micro-CT data for the central channels of each construct showed that after one month of either 

static or perfusion culture, mineralization of the inner lumens increased significantly both 

volumetrically and in total mineral content for the 4 week samples as compared to their 1 and 2 



	 89	

week counterparts (Fig. 4.3B, S4.4). Additionally, perfused constructs did not have significantly 

more mineral around their inner lumens as compared to their static equivalents.  Furthermore, 

despite the increase in mineral content, the density of mineral formed was consistent among all 

samples at all time points, regardless of culture type (Fig. 4.3C). 

 

To further characterize the constructs perfused within the bioreactor, BoneJ was used to analyze 

the micro-CT data to determine the average thickness of the mineral ring formed around the central 

channels (Fig. 4.6D, Table). While an upward trend in thickness could be inferred based on the 

data available, there was no statistically significant change as a function of time. Additionally, 

although total mineral content did increase significantly over the course of 4 weeks for the perfused 

samples, the high variability in data, as well as the fact that the total mineral formed was not 

significantly greater in the perfused samples as compared to their static counterparts (Fig. S4.4), 

suggested that an increasing crust thickness could be inhibiting diffusion into the surrounding 

hydrogel matrix.  
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Figure 4.3:  MicroCT analysis of mineral deposition.  Representative microCT image of total 

mineral deposition after culture in osteogenic media under static (S) or perfused (P) conditions for 

1, 2, or 4 weeks (A).  For representative images, the entire frame was digitally contoured in order 

to visually show how mineralization occurs in static samples immersed in osteogenic media versus 

samples perfused directly with osteogenic media.  Mineral volume deposited around pipes after 1, 

2, or 4 weeks of both static osteogenic culture and osteogenic media perfusion showed significant 

increases in volume after 4 weeks (4wk static and 4wk flow n=7, 2wk flow n=8, rest n=6.  * p<0.05 

via one-way ANOVA) (B).  Density of mineral deposited around pipe after 1, 2, or 4 weeks of 

both static osteogenic culture and osteogenic media perfusion remained constant at every time 

point (4wk static and 4wk flow n=7, 2wk flow n=8, rest n=6) (C). 

 

 

 



	 91	

4.4.4 Histological analysis and quantification 

 

Alizarin red S staining was used to visualize whether the diffusion limitations affected 

mineralization away from the perfused pipes, as well as verify that the deposits observed by the 

micro-CT contained calcium.  After one week of perfusion, a small amount of mineral was present 

away from the pipe (Fig. 4.4 A, P-W1).  After two weeks of perfusion, an increase of mineral was 

observed away from the perfused lumen, but appeared to decrease to levels consistent with 1 week 

of flow as the distance increased towards the construct peripheries (Fig. 4.4A, P-W2). After 4 

weeks of perfusion, however, while the amount of mineral observed closest to the pipe did not 

appear to increase significantly, more robust staining was observed (Fig. 4.4A, P-W-4).  

Additionally, a significant amount of mineral was detected further away from the pipe in the 4 

week samples as compared to both the 1 and 2 week samples, indicating that hydrogel degradation 

may possibly have played a role in the ability of the Saos-2 cells to mineralize the matrix after 4 

weeks of perfusion. 

 

H&E staining was performed on the perfused samples to visualize differences in construct 

cellularity over time (Fig. 4.4B) and a histogram analysis was used to quantify what effect long 

term diffusion had on the distribution of cells away from the channel lumen (Fig. 4.4C,D).  After 

one week of perfusion, a large number of cells were observed approximately 300μm away from 

the channel, a distance in accordance with diffusion limitation values as reported in the literature 

(Fig. 4.4B,D).[37]  However, as the mineral crust increased over the course of 2 weeks to 1 month, 

the quantity of cells dropped significantly 300μm away from the pipe. 
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Figure 4.4:  Histological analysis of perfused constructs.  Cellular localization decreases, and 

matrix mineralization increases as function of distance from the perfused channels. Representative 

Alizarin Red (A) and H&E (B) histology stains of construct samples after either 1, 2, or 4 weeks 

of perfusion with osteogenic media (scale bar: 500µm).  Box plot analysis of H&E samples was 

used to measure cell number in measured increments away from the central pipe (scale bar: 325µm) 

(C).  Histogram quantification of the number of cells as a function of distance away from the lumen 

for 1, 2 and 4 week perfused samples shows that cell number decreases as the distance from the 

perfused channel increases (n=3, *p<0.05 via one-way ANOVA) (D). 
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4.4.5 Construct scalability 

 

To test the scalability of this plug-and-flow approach, an array of 5 dissolvable PVA pipes 

within a larger ABS construct (11x8x6 mm outer dimension; 6x6x6 mm inner dimension) was 3D 

printed. The optimal pipe spacing in the larger construct was chosen based on COMSOL 

simulations of the radial consumption of oxygen around the channels within the cell-laden GelMA 

matrix (Fig. 4.5A, B).  Specifically, COMSOL simulations showed that the addition of a second 

pipe spaced 1mm away would ensure that the lowest oxygen concentration anywhere between the 

pipes would be approximately 80%, as opposed to 50% and below with only one channel (Fig. 

4.5A-C).  Additionally, the design criteria were chosen to allow for the uncured cell-laden GelMA 

to conformably flow between the pipes, thereby ensuring there were no air pockets left between 

the pipes after UV exposure. Based on the analysis, it was determined that 400µm channels spaced 

approximately 1mm apart (edge-to-edge) would ensure that the entire hydrogel matrix between 

the channels would be adequately supplied with oxygen and other diffusible nutrients (Fig. 4.5C, 

D). 

 

The pipes were placed in three layers spaced 1mm apart in any direction (Fig. 4.5D) and the larger 

construct contained two reservoirs to ensure that all 5 pipes could be perfused via one syringe 

pump (Fig. 4.5E).  In order to flow media through the larger system, the original bioreactor design 

was increased only in the z-direction to highlight the ease of scaling (Fig. 4.5F).  After 4 weeks of 

perfusion, micro-CT and alizarin red S staining showed robust  mineral deposition along the length 

of each pipe, as well as between the pipes and along the edges of the bulk construct (Fig. 4.5 G-

I).  
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Figure 4.5:  Schematic representing the scalability of perfusable constructs.  Multiple 

channels spaced at optimal distances are capable of being perfused via one inlet (A).  COMSOL 

modeling of oxygen diffusion between one channel (B Top) and two channels spaced 1mm apart 

(B Bottom), as well as COMSOL modeling of the oxygen consumption as a function of radius by 

cells around the channels within cell laden constructs spaced 1mm apart (C) was used to determine 

optimal pipe spacing in larger constructs.  Schematic of a scaled cell-laden construct (D) and 

corresponding ABS cage (6x6x6 mm3) (E).  CAD isometric view of a machined, two-piece 

polycarbonate bioreactor containing a PDMS gasket between layers (red) (F).  Micro-CT imaging 

of mineral deposition surrounding pipes (G, side view; H, end view) after four weeks of perfusion 
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with osteogenic media showed that the model system could be easily scaled.  Representative 

Alizarin Red histology of a large-scale construct after perfusion with osteogenic media for 4 weeks 

showed robust mineralization (I) (scale bar: 500µm).   

 

4.4.6 Estimation of the influence of mineral formation on oxygen diffusion 

 

Based on the microCT results, it was clear that the mineral deposited by the encapsulated cells 

around the channel was not uniform (Fig. 4.6A). The annular ring of mineralized crust (Fig. 4.6B-

C) was porous with several void spaces that contained cell-laden GelMA. To gain insight into the 

spatial changes in oxygen diffusion due to the deposited mineralized “donut shell” around the 

channels, a new COMSOL Domain 3 (Fig. 4.6C) was introduced in the form of a “donut-shell” 

with thickness values obtained from Bone J data, and material porosity (𝑃"#$%&'()*++) values 

calculated as described in the Methods section (Fig. 4.6D). The results were plotted as percent 

decrease in oxygen concentration radially away from the channel/lumen edge (Fig. 4.6E).  The 

results demonstrate that a higher drop in oxygen concentration is possibly due to the formation of 

mineral. 
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Figure 4.6: Effect of mineral formation on oxygen diffusion radially across the channel. 

Surface slices were obtained from 3D data sets in MIMICS, and mineral area was measured (A-

B). A schematic model showing the three domains used for COMSOL modeling (C).  Table shows 

the various parameters used to calculate Domain 3 (D, Top table).  Simulation of oxygen diffusion 

for weeks 1, 2 and 4 (D, Bottom) (white arrows showing the donut shell thickness).  Distribution 

of oxygen radially away from the channel surface for weeks 1, 2 and 4 along with control without 

any mineral deposits (E).  

 

4.5 Discussion 

  

Provision of adequate vascular perfusion is one of the most daunting challenges facing the 

implantation of any tissue engineered construct.[38, 39] Accordingly, over the past decade 

numerous groups have successfully combined various techniques and sacrificial materials such as 

pluronics, 3D printed carbohydrates, and 3D printed gels to create vascularized systems, but in 
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each case the process used was extremely specific to the application being studied.[21, 40, 41]  In 

our plug-and-flow system, however, any component can be readily exchanged and scaled based 

on the desired application.  For instance, the model cell could be replaced with any other osteogenic 

cell such as patient-derived multipotent marrow stromal cells or autologous osteoblasts.  

Alternatively, the printed hydrogel could be easily modified via the addition of side groups and 

growth factors, or could be substituted for a different hydrogel altogether.  Furthermore, due to the 

recent advances in 3D printing technology, numerous different hard and soft materials could be 

printed simultaneously, allowing for multiple cell types and complex vasculature to be easily 

incorporated during a single print using only slight modifications to our approach. 

 

For this work, GelMA was chosen as our model hydrogel to encapsulate cells as it is a collagen 

derivative which contain RGD motifs necessary for cell adhesion, contains readily tunable 

mechanical properties, and exhibits high structural integrity for experiments lasting over one 

month.[42, 43]  Additionally, previous work has shown that GelMA properties such as diffusion, 

swelling, compressive moduli, and degree of crosslinking are highly consistent between batches, 

thereby reducing material variabilities which could affect experimental outcomes.[44-46] 

Furthermore, GelMA is capable of being UV crosslinked with minimal negative side effects to the 

encapsulated cells.[47, 48] PVA was chosen to be the sacrificial material and ABS was chosen to 

be the structural frame for our model system due to the fact that they both are commercially 

available thermoplastics capable of being printed at high fidelities using common 3D printers.  The 

selection of PVA allows for the possibility of printing user-defined channel-patterns for more 

complex tissue structures.  Additionally, post-processing removal of PVA from the system is also 

simplified as PVA is water soluble, thereby reducing the possibility for external contaminants to 

be introduced into the system via manual pipe removal. In this model a flow rate of 0.2 ml/hour 
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was used, a rate well below what would be needed in a larger construct containing primary 

cells.[49-51] The decision to use this lower rate was made, however, based on previous work that 

has shown how higher flow rates in in vitro bioreactor systems have led to significant increases in 

cell death and reduced cell proliferation.[52]  However, as the flow in this system is driven by a 

programmable syringe pump, further studies would easily be able to address this issue.  

 

It is known that mineralized matrix (in this case mineralized GelMA) is conducive to the diffusion 

of small solutes through interstitial spaces, albeit in the sub-nanometer range that cannot be 

observed with microCT.  After 2 and 4 weeks of perfusion, large voids in the deposited mineral 

were observed (Fig. 4.2E) that would allow for the diffusion of oxygen and other nutrients even 

after the formation of the mineralized crust. From the Live/Dead results (Fig. 4.2C), live cells 

could be seen outside the mineralized crust, indicating that diffusion of essential nutrients took 

place even after mineral formation. However, the crust did appear to inhibit the oxygen 

concentration away from the perfused pipes to a degree, as was qualitatively explained via 

COMSOL modeling (Fig. 4.6).  

 

This work represents a simple bioreactor system capable of inducing cell-mediated mineral 

deposition around perfusable channels. However, more work needs to be performed to create a 

completely mineralized thick bone construct as was indicated by the lack of mineralization 

between the pipes. The modularity of this model system allows for the incorporation of other cell 

types as well as the perfusion of growth factors with pulsatile perfusion conditions. One direction 

to enhance overall mineral formation is the co-encapsulation of vascular endothelial cells with 

bone cells in this system to facilitate the formation of perfusable microvasculature between printed 

channels. Increased perfusion rates as well as the incorporation of pulsatile flow and specific 
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growth factors can also be optimized within this model system. While long-term studies building 

upon the foundation of this model are necessary, this work provides early evidence that 3D printed, 

cell-laden hydrogels containing user defined channels can be used as a model system for bone 

tissue engineering applications. 

 

4.6 Conclusions 

 

Our study demonstrated that user-defined 3D printed channels could be used to promote mineral 

deposition within a diffusion-limited environment using commonly available 3D printers, 

sacrificial materials, and hydrogels. Based on these results, we anticipate that this technology could 

be easily scaled and reproduced in order to create thick, cell-laden constructs capable of serving 

as vascularized bone tissue substitutes, as well as be translated to other tissue engineering 

applications.  
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4.10 Supplementary figures 

 

 

Figure S4.1:  Polycarbonate base plate dimensions and scale. 
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Figure S4.2:  Polycarbonate top plate dimensions and scale. 
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Figure S4.3: Representative series of static and perfused images showing contrast of 

deposited mineral from background and frames after microCT scanning.  Representative 

whole views of in-tact constructs within 16mm diameter sample holders after scanning show 

contrast of deposited mineral (white) from background (grey) and sample frames (dark grey).  To 

normalize data, only mineralized pipes were contoured for mineral (ROI). 
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Figure S4.4:  Total mineral quantification.  Total mineral deposited around pipes after 1, 2, or 

4 weeks of both static osteogenic culture and osteogenic media perfusion showed significant 

increases in deposition after 4 weeks (4wk static and 4wk flow n=7, 2wk flow n=8, rest n=6.  * 

p<0.05 via one-way ANOVA). 
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CHAPTER 5:  ONGOING WORK AND FUTURE RECOMMENDATIONS 

 

5.1 Introduction 

 

The overarching goal of this work was to create a model bone tissue engineering construct that 

would support the numerous cellular interactions required for bone growth, provide potential 

structural support, and allow for nutrients to be delivered in a controlled, precise fashion via a user-

defined internal vasculature.  To achieve this goal, it was first necessary to identify a suitable soft 

matrix for cellular encapsulation and sustainable viability.  After identifying the soft matrix for 

cellular encapsulation, a way to combine the soft, cell-laden matrix with a hard, 3D printed 

structural support needed to be explored.  Finally, after combining the soft and hard components, 

the incorporation of a user defined perfusable vasculature was studied. 

 

In Chapter 2 of this work, osteoblast-like cells were encapsulated in GelMA hydrogels of varying 

density and chemically induced to produce mineral over the course of two weeks.  Although cells 

in the less dense gels had a higher overall viability and formed larger cellular clusters within the 

GelMA matrix, cells encapsulated within the denser constructs appeared to form more uniform 

mineral at the hydrogel periphery.  Moving forward, the dense gels were chosen to be more suitable 

as the base material for a model bone tissue engineering construct based on the mineralization 

results and literature suggesting that stiffer substrates promoted osteogenic differentiation and 

increased cell mediated mineralization.[1, 2]  However, based on the results from Chapter 4 of this 

work, the lack of pericellular material deposition between perfusable pipes could have been 

mitigated if the less dense hydrogels were used as the base material. 
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In Chapter 3 of this work, three different types of structural cages were 3D printed to serve as 

potential structural supports for the soft, cell-laden GelMA.  This chapter compared 

polycaprolactone (PCL) cages, polycaprolactone-hydroxyapatite (PCL-HA) composite cages, and 

polycaprolactone-poly lactic acid (PCL-PLA) composite cages and found that of the three, the 

PCL-PLA cages had the highest compressive strength.  However, none of the cages surpassed the 

compressive strength of a pure PLA cage alone.  Additionally, the print resolutions of the PLA 

cages were significantly higher than the PCL and PCL composites.  As a result, pure thermoplastic 

cages were chosen to be the supporting material for the cell-laden hydrogels going forward.  While 

PLA cages would have been optimal, purchasing issues required the use of acrylonitrile butadiene 

styrene (ABS) thermoplastic spools as a substitute for PLA. 

 

At the end of Chapter 3 it was shown that the cell-laden GelMA studied in Chapter 2 could be 

incorporated within the 3D printed cages via dropwise pipetting.  However, based on the live/dead 

imaging, it was hypothesized that the cellular density of living cells was not uniform throughout 

the entirety of the log-pile structure, most likely due to nutrient diffusion limitations in the center 

of the construct.  Accordingly, in Chapter 4 of this work it was decided that in order to increase 

cellular distribution throughout the construct and mitigate the hypothesized diffusion limitations, 

the 3D printed cage would not be log-pile in form but instead consist of an outside frame containing 

dissolvable 3D printed polyvinyl alcohol (PVA) pipes.  Upon casting the cell-laden GelMA into 

the 3D printed frame, the pipes were dissolved, leaving behind a fully perfusable, structurally 

supported cell-laden hydrogel.  However, sacrificing the log-pile structure for a rectangular cage 

would need to be addressed in any future work should the printed structure be used as a load-

bearing in vivo support. 
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While the structurally supported hydrogels from Chapter 4 could be perfused with osteogenic 

media for 1 month, the mineral deposition along the channel walls appeared to impede oxygen 

transfer into the surrounding GelMA matrix.  Furthermore, although the constructs could be scaled 

up into larger, 5 pipe arrays, little to no mineralization occurred between the channels.  As 

suggested previously, any future work would need to address the issue of mineralization between 

the perfusable pipes, most likely by changing the density of the hydrogel used to encapsulate the 

osteogenic cells. 

 

5.2 The addition of endothelial cells to the perfusable system 

 

Generally, monoculture systems for bone growth tend to be supplemented with growth factors like 

vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and bone 

morphogenetic protein (BMP).  However, while these supplements have been shown to promote 

mineralization and the formation of vasculature, they are prohibitively expensive and unwanted 

side effects such as in vitro tumor growth are common.[3-6]  Accordingly, as vascularization of 

the bone tissue constructs is desired, an alternative approach is to incorporate endothelial cells in 

the construct alongside osteogenic cells.[7-9]  

 

It has been shown that co-cultures of endothelial and osteogenic cells within tissue engineered 

constructs promote increased mineral deposition and vasculature creation.[10-12]  Autocrine and 

paracrine signaling between osteoblasts and endothelial cells is primarily modulated through the 

release of VEGF by osteoblasts and direct contact through gap junctions.[12-14]  The release of 

VEGF has been shown to stimulate vasculature formation through the recruitment of endothelial 

cells, which in turn has a complementary effect on osteoblasts as endothelial cells release pro-
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osteogenic cytokines such as BMP-2 and endothelin-1 that directly support osteoblast 

differentiation and mineralization.[15-19]  

 

Lining premade channels with endothelial cells is a common approach when making a vascularized 

tissue engineered construct, and seeded cells have shown the capability of forming a confluent 

cellular sheet along the channel lumens which selectively allow nutrients to pass into the bulk 

material.[20, 21]  Alternatively, encapsulated endothelial cells within hydrogels between premade 

vasculature channels have shown a high potential for vasculature creation in in vitro settings.[22]  

In one instance, encapsulated HUVECS within collagen gels rearranged into cords over the course 

of only 10 hours,[23] while HUVECS embedded within a fibrin gel containing supportive 

fibroblasts showed capillary formation between two larger, perfusable channels.[24] 

 

To investigate the addition of HUVECS in the model system presented in Chapter 4 of this work, 

HUVECS were either lined within the perfusable channels and surrounded by Saos-2 cells in the 

bulk GelMA or were added with the Saos-2 cells in a 2:1 ratio in the bulk (Fig. 5.1).  In order to 

line the channels with HUVECS, a cell suspension containing 25,000 HUVECS was pipetted 

dropwise into the channel, left to stand for 30 minutes, and repeated after flipping the construct.  

After two weeks of perfusion, channels lined with HUVECS had stunted mineral formation, while 

HUVECS added into the bulk significantly enhanced mineral deposition. 
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Figure 5.1:  MicroCT analysis of mineral deposition within a co-culture single pipe system.  

HUVECS (H) were either seeding along the perfusable channels (Channel) or added in a 2:1 ratio 

with Saos-2 cells in the GelMA matrix (Bulk) and were either perfused with osteogenic media 

(Flow) or left in static control wells (Static).  After two weeks of perfusion, HUVECS encapsulated 

in the bulk material significantly increased Saos-2 mineral deposition as compared to the 

constructs containing HUVEC lined channels and their static controls (* p<0.05 as compared to H 

Bulk Flow 2Wk, n=5). 

 

Due to the results presented in Fig. 5.1, the next step in expanding upon the model system 

described in this thesis is to encapsulate the osteoblast-like Saos-2 cells alongside HUVEC cells 

in a multi-pipe system in an attempt to enhance mineralization within the bulk GelMA between 

channels.  To that end, preliminary work has been performed in an expanded two pipe perfusable 

system similar to the model presented in Chapter 4.  Specifically, the one pipe system described 
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earlier has been extended to two pipes spaced 1mm apart in the x-y plane surrounded by a bulk 

GelMA matrix containing encapsulated Saos-2 cells and HUVECS (Fig. 5.2).  In the preliminary 

work, either HUVECS, Saos-2 Cells, or HUVECS with Saos-2 cells were encapsulated within a 

GelMA matrix and perfused with osteogenic media for either 1 or 2 weeks.  HUVECS and Saos-

2 cells were encapsulated at a 2:1 ratio (1 million HUVECS : 500,000 Saos-2).  After two weeks 

of perfusion, there was no significant increase in the mineral deposited in the Saos-2 only or Saos-

2/HUVEC constructs, however both had significantly more mineral deposition as compared to the 

one-week samples.  However, as the mineral recorded was the total mineral deposited in the entire 

construct, future work would include isolating only the mineral produced between the channels in 

order to quantify how HUVECS affect mineral formation between two nutrient supplies. 

 

Figure 5.2:  MicroCT analysis of mineral deposition within a co-culture double pipe system. 

HUVECS (H) were added in a 2:1 ratio with Saos-2 cells (S) in the GelMA matrix and perfused 

with osteogenic media for either 1 or 2 weeks.  After two weeks of perfusion, HUVEC+Saos-2 
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constructs did not show a significant increase in mineral deposition as compared to samples 

containing only Saos-2 cells.  (*p<0.05 as compared to S+H Flow 2Wk; $p<0.05 as compared to 

S Flow 2Wk; n=3 for HUVEC only samples, n=5 for rest). 

 

5.3 In vivo extension of model system 

 

The integration with host tissue remains a major obstacle facing any tissue engineered 

construct.[25-27]  In general, for complete integration to occur in an in vivo setting, any engineered 

construct needs to be biocompatible and show minimum immunogenicity.[28]  Furthermore, the 

challenge of either anastomosing or inosculating the construct with the host vasculature is a 

lengthy process that often results in implant failure, tissue necrosis, site inflammation, and local 

ischemia.[13, 29] 

 

Most work on integrating an implant with the host has relied on letting the host’s vasculature 

passively grow into the implant.  Unfortunately, approaches such as these could take many days 

to occur and complete anastomosis with the host is highly dependent on the geometry of the 

implant’s vasculature.[23, 30]   

 

In order to assess the biocompatibility of the model system presented in this work, preliminary 

ectopic implantation experiments were undertaken using our perfused constructs.  Specifically, 

6x6x6mm3 ABS frames were printed to house GelMA hydrogels containing primary mouse bone 

marrow skeletal stem cells (BMSC) and primary mouse vasculature endothelial cells (VEC).  The 

constructs were subsequently implanted subcutaneously in the dorsal pockets of C57BL/6J mice 

and retrieved after two weeks of implantation (Fig. 5.3).  As was expected, the constructs did show 
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some host ingrowth and blood invasion, as well as no signs of tissue inflammation or infection.  

Unfortunately, the constructs were inadvertently destroyed during the fixation and subsequent 

paraffin embedding process for histology, making the types of host ingrowth and cellular invasion 

impossible to elucidate. 

 

Figure 5.3:  Ectopic implantation of thermoplastic ABS frames containing primary BMSC 

and VEC cells. 6x6x6mm3 frames containing encapsulated BMSCs, VECs, or a combination of 

both were implanted subcutaneously in c57BL/6J mice (red arrows, top X-ray).  After two weeks 

of implantation, the implants were retrieved and showed blood invasion and minimal host 

ingrowth in the cell-laden constructs (bottom).* 

 

Based on the results of the preliminary ectopic implantation experiments, future work would be 

aimed at directly anastomosing the implant’s vasculature with the hosts blood supply (Fig. 5.4).  

Direct anastomosis would ensure that the perfusion of nutrients occurs at the time of implantation, 

thereby reducing the chance for implant failure and increasing the potential for host integration 

and encapsulated cell osteogenesis.[28]  However, as stated previously, the direct anastomosis 

                                                        
* All animal studies were performed at SUNY Upstate Medical University by Dr. Jason Horton under established and approved 
IACUC protocol. 
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process is highly risky and difficult, requiring extended practice and planning prior to 

implementation.  

 

Figure 5.4:  Cartoon depicting surgical anastomosis of perfusable structurally supported 

cell-laden constructs.  (A) 3D printed constructs containing cell-laden GelMA and perfusable 

channels will be anastomosed directly into the host femoral artery and sewn in place via 3D printed 

anchor grommets.  (B)  3D rendering of structural frame (blue) and stainless-steel catheter 

connections (grey).* 

 

 

 

 

                                                        
* Cartoon created by and used with permission from Dr. Jason Horton, SUNY Upstate Medical University. 
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5.4 Final Remarks 

 

This work has focused on creating a bone tissue engineering construct which could eventually 

serve as an in vivo implant to aid in regenerating lost bone.  While the model presented provides a 

promising avenue to explore, future work must be conducted to not only enhance nutrient transport 

and mineralization between the user defined macro-vasculature, but also to achieve implant 

integration with native tissue in an in vivo setting. 
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