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Abstract 
 
 System xc- (Sxc-) is a cellular antiporter that links the import of L-cystine with the 

export of L-glutamate. In the central nervous system (CNS), this export contributes to 

the ambient glutamate levels found in the synaptic cleft. To wit, a 50% reduction in 

extracellular glutamate has been demonstrated in animals null for the substrate-specific 

light chain, xCT. Moreover, in most tissues, including the CNS, cystine import through 

Sxc- is necessary for the synthesis and maintenance of glutathione (GSH) levels. Given 

that either a reduction in ambient glutamate levels and/or a redox imbalance involving 

GSH have been reported to affect synaptic strength and intrinsic neuronal excitability, 

the main focus of this dissertation was to elucidate whether Sxc- signaling contributes to 

brain excitatory/inhibitory (E/I) balance in vivo. Using chemoconvulsants to uncover 

excitability changes in SLC7A11sut/sut mice — mice that are null for Sxc- because of a 

spontaneous mutation in exon 12 of SLC7A11 — we uncovered a sex-independent 

alteration in neuronal excitability. Specifically, we found that both female and male 

SLC7A11sut/sut mice had lower convulsive seizure thresholds than their wild-type 

(SLC7A11+/+) littermates after acute challenge with two pharmacologically distinct 

chemoconvulsants: the glutamate receptor agonist, kainic acid (KA), or the GABAA 

receptor antagonist, pentylenetetrazole (PTZ). Paradoxically, after repeated 

repeated/chronic administration of the same chemoconvulsants, SLC7A11sut/sut mice 

exhibit signs of hypo-excitability, a response polar opposite to that which occurs in 

SLC7A11+/+ littermate controls. Whether the aberrant neuronal excitability in 

SLC7A11sut/sut mice occurred in association with alterations in brain morphology – at the 

gross, cellular, and sub-cellular level – or with alterations in redox balance or plasma 



 

membrane protein expression levels, was also investigated. Overall, our data 

demonstrate that neuronal excitability in SLC7A11sut/sut mice provoked by 

chemoconvulsant challenge deviates from that of SLC7A11+/+ littermates in a complex 

manner that differs in sign depending on the chemoconvulsant dosing paradigm 

employed. Moreover, mutations in Sxc- trigger sex-dependent changes in redox status, 

brain morphology, and plasma membrane protein expression, any or all of which could 

contribute to the observed E/I imbalance in SLC7A11sut/sut mice. 
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 2 

1.1 Overview  

In several brain disorders including autism, stroke, and epilepsy an imbalance 

between the excitatory and inhibitory (E/I) neurotransmitter systems exists. 

Understanding fully the cellular and molecular processes that underlie normal, 

physiological synaptic transmission is the first step in determining how such aberrations 

might be countered to provide affected individuals with E/I imbalance symptomatic 

relief. This dissertation focuses on the role of the cystine/glutamate antiporter System 

xc- (Sxc-) ─ which exports glutamate and imports cystine, the latter of which is the rate-

limiting substrate for the synthesis of the thiol antioxidant glutathione ─ in maintenance 

of E/I balance. 

 
1.2 The cystine/glutamate antiporter System xc- (Sxc-) 

Sxc- was first described in 1980 by Bannai and Kitamura who demonstrated that 

the Na+-independent uptake of cystine into cultured human diploid fibroblasts was 

inhibited by glutamate (and vice versa) (Bannai & Kitamura 1980). Sxc- is an amino acid 

antiporter that imports L-cystine and exports L-glutamate in a Na+-independent, Cl--

dependent, 1:1 stoichiometric ratio (Bannai 1986, Bannai & Kitamura 1980). 

Cystine/glutamate exchange is electroneutral, with transport limited to the anionic form 

of these amino acids. The direction of exchange is determined by the substrate 

concentration gradient and is independent of membrane potential (Bannai 1986). 

Though Sxc- is capable of transporting either amino acid in either direction, rapid 

kinetics of excitatory amino acid transport (EAAT) systems and intracellular reductases 

maintain relatively low levels of extracellular glutamate and intracellular cystine, 

respectively, whereas intracellular glutamate levels are typically in the millimolar range, 
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conferring the aforementioned directionality of transport (Bannai & Kitamura 1980, Hertz 

et al 1988).  

 

1.2.1 Sxc- structure  

Identification of Sxc- by expression cloning revealed it is a heteromeric amino 

acid transporter (HAT) and therefore composed of a light chain and a heavy chain 

covalently linked through a disulfide bridge (Sato et al 1999). The light (catalytic) chains 

of HATs, also known as glycoprotein-associated amino acid transporters (gpaATs), are 

members of the solute carrier 7 (SLC7) family and confer their substrate specificity 

(Verrey et al 2004). HAT light chains must associate with a glycoprotein heavy chain of 

the SLC3 family in order to allow for surface expression (Verrey et al 2004). With 

respect to Sxc- the gpaAT light chain is xCT, encoded by the solute carrier gene 

SLC7A11, and the heavy chain is 4f2hc (4f2 cell-surface antigen heavy chain, also 

known as cluster of differentiation 98 [CD98]), encoded by SLC3A2 (Bassi et al 2001, 

Sato et al 1999). While xCT is specific to Sxc-, 4f2hc forms a heterodimer with at least 

five other gpaAT light chains within the HAT family (Verrey et al 2004).  

In humans, the SLC7A11 gene is located on chromosome 4q28-31, producing a 

40 kDa protein of a predicted 501 amino acids (Bassi et al 2001). The encoded xCT 

protein shares 93-96% similarity and 89% identity to mouse xCT protein, which is a 

predicted 502 amino acids (Bassi et al 2001, Sato et al 1999). The mouse SL7A11 gene 

maps on chromosome 3 (Lane 1988). As with other proteins of the HAT family, xCT has 

12 putative transmembrane domains and is thus highly hydrophobic (Gasol et al 2004). 

Both the N- and C-termini are intracellularly localized, and there is a reentrant loop 
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between transmembrane domains 2 and 3 (Gasol et al 2004). This reentrant loop is 

believed to be a site of substrate binding, as biotinylation of His110 at the apex of loops 2 

and 3 does not occur in the presence of cystine, glutamate, or the non-transportable 

Sxc- inhibitor, (s)-4-carboxyphenylglycine (4-CPG) (Gasol et al 2004). Another potential 

substrate binding site is near Cys327 in the middle of the eighth transmembrane domain; 

in a study by Jimenez-Vidal and colleagues, the authors proposed a scenario whereby 

small side-chains at this position are permissive to substrate binding and translocation 

whereas bulky amino acids inflict steric hindrance to transporter activity (Jiménez-Vidal 

et al 2004). More recently, precrystallization screening of xCT bacterial orthologs and 

subsequent identification of a representative amino acid, polyamine, and organocation 

(APC) transporter revealed greater insight into HAT structure (Shaffer et al 2009). 

Further substrate permeation residues were identified including human xCT residue 

Arg135, suggested to be a binding-site of the substrate’s g-carboxylate entity (Shaffer et 

al 2009). Using the crystal structure of this APC transporter, Bridges et al proposed a 

novel three-dimensional representation of xCT protein structure using protein threading 

of human xCT (Fig. 1.1) (Bridges et al 2012b). 

The SLC3A2 gene encoding the type II membrane glycoprotein 4f2hc is located 

on chromosome 11q12-13 in humans (chromosome 19 in mouse) and produces a »94 

kDa glycosylated protein (72 kDa unglycosylated) of approximately 526-529 amino 

acids in humans (Francke et al 1983, Lumadue et al 1987, Quackenbush et al 1987). 

This protein shares 75% amino acid identity with mouse 4f2hc, which has a predicted 

526 amino acids (Parmacek et al 1989). Mouse 4f2hc consists of a 428 amino acid  
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Figure 1.1 xCT homology model 

xCT homology model depicting xCT protein in its inwardly-facing Apo form as proposed 
by Bridges et al 2012. The human xCT protein sequence was threaded over the crystal 
structure of a bacterial xCT homolog, ApcT (Shaffer et al 2009). Each helical ribbon 
represents a transmembrane domain of xCT, while the white thread demonstrates the 
ApcT structure. The truncated N and C termini are depicted by light pink and red 
spheres, respectively. Yellow spheres depict the conserved cysteine residue (Cys158), 
located between pore loops three and four of the xCT protein, that forms a bond with 
4f2hc. Adapted from (Bridges et al 2012b).  
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extracellular C-terminal domain, a 23 amino acid transmembrane domain, and a 75 

amino acid N-terminal cytoplasmic domain (Parmacek et al 1989). The bulky C-terminus 

is heavily glycosylated, with nine potential N-linked glycosylation sites in mouse and 

four such sites in human (Parmacek et al 1989). Northern blot analysis has revealed 

that 4f2hc is ubiquitously expressed in mouse, with highest levels of expression found in 

kidney, lung, spleen, testis, and brain (Parmacek et al 1989). It is involved in a diverse 

array of biological processes including integrin signaling, cell adhesion, and cell 

activation and proliferation (Bron et al 1986, Fenczik et al 1997, Nguyen et al 2008). 

The latter role is supported by evidence that its expression is induced upon fibroblast 

activation and maintained at high expression levels throughout the cell cycle (Parmacek 

et al 1989). Given that 4f2hc is abundantly expressed throughout the body, Sxc- 

transport activity is tied to the expression and availability of the light-chain subunit xCT 

(Verrey et al 2004).  

  Multiple studies have confirmed that xCT forms a disulfide bridge with 4f2hc at a 

single, conserved cysteine residue (Cys158) located between pore loops three and four 

of the xCT protein (Bassi et al 2001, Bridges et al 2012b, Sato et al 1999). Experiments 

using cysteine-to-serine mutagenesis or reducing agents with 4f2hc/HAT dimers 

suggest that this light-chain residue interacts with Cys109 of 4f2hc (Estévez et al 1998, 

Torrents et al 1998). Intriguingly, the functional role of this covalent linkage remains 

elusive. This cys-cys interaction is not required to induce transporter activity in at least 

one other HAT; cysteine-to-serine mutagenesis at the disulfide bridge in LAT1, an 

aromatic and branched-chain amino acid HAT, results in functional transport activity in 

both Xenopus oocytes and mammalian cells (Nakamura et al 1999, Wagner et al 2000). 
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Whether the same is true for the xCT/4f2hc disulfide bridge remains to be investigated. 

Furthermore, exactly how 4f2hc interacts with xCT is unknown, though it too may share 

similar characteristics with other HATs. In the case of LAT2, a neutral amino acid 

transporter, the 4f2hc ectodomain interacts with its extracellular loops, covering the 

extracellular surface of the light chain protein and increasing transporter stability (Rosell 

et al 2014).  

As mentioned previously, 4f2hc can interact with five other gpaAT light-chains at 

Cys109 besides xCT; LAT1 (SLC7A5) (Kanai et al 1998, Mastroberardino et al 1998), LAT2 

(SLC7A8) (Pineda et al 1999, Rossier et al 1999, Segawa et al 1999), system asc1 (small 

neutral amino acid transporter, SLC7A10) (Fukasawa et al 2000), and the cationic amino 

acid transporters y+LAT1 (SLC7A7) and y+LAT2 (SLC7A6) (Pfeiffer et al 1999, Torrents et 

al 1998) [for detailed reviews see (Palacín et al 2005, Verrey et al 2004)]. All 4f2hc-

associated light-chains require the heavy chain to translocate to the plasma cell 

membrane and induce transporter activity. With respect to Sxc-, this was demonstrated 

in Xenopus oocytes whereby co-injection of xCT and 4f2hc cRNA induced transport of 

L-glutamate and L-cystine and resulted in expression of xCT at the oocyte plasma 

membrane (Bassi et al 2001, Sato et al 1999). In contrast, injection of xCT or 4f2hc 

alone did not induce transport activity, with the former scenario resulting in intracellular 

retention of xCT (Bassi et al 2001, Sato et al 1999). Induction of cystine/glutamate 

exchange can also be induced by co-injection of mouse, but not human, cRNA for xCT 

and rBAT, a heavy chain with significant homology to 4f2hc (Bassi et al 2001, Wang et 

al 2003). Whether xCT associates with rBAT in vivo has yet to be ascertained.  
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1.2.2 Sxc- expression  

Expression of xCT mRNA and protein have been detected throughout the body 

suggesting that Sxc- plays a role in maintaining cellular health in a variety of biological 

processes. Northern blot and quantitative polymerase chain reaction (PCR) analyses 

have revealed widespread xCT mRNA expression in the pancreas, intestine, ovary, 

spleen, and stomach (Bassi et al 2001, Dave et al 2004). Using an xCT specific 

antibody confirmed by xCT siRNA knockdown in HT22 cells, Burdo and colleagues also 

demonstrated xCT protein expression in kidney (Burdo et al 2006).  

Within the mouse central nervous system (CNS), in situ hybridization studies 

have revealed xCT mRNA expression at the brain/cerebral spinal fluid (CSF) borders 

including the cerebral ventricles, meninges, and circumventricular organs such as the 

area postrema and subfornical organ (Sato et al 2002). Furthermore, robust expression 

of xCT mRNA was found in most major brain regions including in the cerebral cortex, 

putamen, and medulla, with xCT protein detected in cortex, hippocampus, and striatum 

(Sato et al 2002, Shih et al 2006). Weak xCT mRNA expression was found in the 

choroid plexus, thalamus, cerebellum, brainstem, and nucleus of the solitary tract, with 

no expression detected in mouse brain vasculature (Sato et al 2002). Interestingly, xCT 

protein is present in human brain vasculature, suggesting that cystine/glutamate 

exchange across the blood brain barrier may be species specific (Burdo et al 2006).  

Despite the scarcity of reliable antibodies against xCT protein – largely owing to 

its hydrophobicity bestowed by its 12 transmembrane domains – the cell-type specificity 

of xCT expression in the CNS is becoming increasingly better understood. While Sxc- is 

expressed in cultured microglia (Jackman et al 2010, Piani & Fontana 1994), neurons 
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(Burdo et al 2006, Dun et al 2006, Jackman et al 2010, Murphy et al 1990), and the 

HT22 neuronal cell line (Lewerenz et al 2003), there is a growing consensus that 

astrocytes are the primary cell types expressing Sxc- in the mature brain in vivo (Fig. 

1.2). Nearly 20 years ago, Pow and colleagues elucidated the cell-type specificity of Sxc- 

activity using an antibody against the xCT substrate inhibitor, a-aminoadipate, in rat 

brain slice (Pow 2001). Substrate accumulation occurred in glia – specifically Bergmann 

glia, radial glia, and astrocytes – and was conspicuously absent from neurons and 

oligodendrocytes (Pow 2001). Furthermore, rodent astrocytes in cell culture express 

xCT, as do human glioma cell lines (Bender et al 2000, Burdo et al 2006, Cho & Bannai 

1990, Gochenauer & Robinson 2001, Pow 2001, Ye & Sontheimer 1999), and 

transcriptome data from both human and mouse cortex indicates that xCT is enriched in 

astrocytes as compared to other parenchymal cells (Zhang et al 2014, Zhang et al 

2016b). More recently, Ottestad-Hansen and colleagues engineered an xCT specific 

antibody and determined that Sxc- is expressed throughout the adult mouse brain 

parenchyma in a subpopulation of astrocytes – but not any other cell type investigated 

including neurons, microglia, and oligodendrocytes (Ottestad-Hansen et al 2018). 

Confirming in situ studies, xCT labeling was found concentrated at the 

brain/blood/cerebral spinal fluid periphery, as well as in most major brain regions 

including cortex, thalamus, hypothalamus, striatum, and hippocampus – where labeling 

intensity was greatest in the molecular layer of the dentate gyrus and the stratum 

lacunosum moleculare (Ottestad-Hansen et al 2018). Finally, the concentration of xCT 

protein was estimated to be comparable to that of EAAT3 (0.013 mg/g hippocampal  
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Figure 1.2 Sxc- is predominantly localized to CNS astrocytes 

(A) An antibody against the xCT substrate inhibitor, a-aminoadipate, demonstrated that 
a-aminoadipate uptake occurred mainly in Muller glia cells (M) and was excluded from 
synaptic terminals in the outer (OPL) and inner (IPL) plexiform layers of rat retina. (B) 
Mouse cortical transcriptome data from the Barres lab indicates that astrocytes are the 
predominant cell types expressing SLC7A11 in mouse cortex (OPC: oligodendrocyte 
precursor cell; FPKM: Fragments Per Kilobase of transcript per Million mapped reads). 
(C) Ottestad-Hansen and colleagues observed that xCT expression (red) exclusively co-
localized with a subset of GFAP (green) expressing astrocytes in CA1 hippocampus 
(shown) and throughout the CNS (not shown).  Figures adapted from [A (Pow 2001), B 
(Zhang et al 2014), and C (Ottestad-Hansen et al 2018)].   
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tissue), suggesting that xCT abundance is sufficient to contribute to brain function 

(Holmseth et al 2012, Ottestad-Hansen et al 2018). 

 

1.2.3. Sxc- function 

1.2.3.1 Use of xCT null mice to characterize Sxc- function in vivo 

Insight into the in vivo contribution of Sxc- signaling has been possible due to the 

use of genetic xCT loss of function mouse models. Sato and colleagues genetically 

engineered the first global xCT knock-out (xCT-/-) mouse on the C57BL/6 background by 

removing the ATG start codon in exon 1 of SLC7A11 (Sato et al 2005). These mice lack 

glutamate-sensitive cystine uptake as well as xCT transcript and protein in all tissues 

examined, including in brain and thymus where constitutive expression is normally 

observed (McCullagh & Featherstone 2014, Sato et al 2005). xCT-/- mice, however, 

were healthy in appearance, fertile, and all of the major organs examined – including 

the kidney, pancreas, lung, liver, and brain – had no apparent abnormalities (Sato et al 

2005). A second xCT loss of function mouse was engineered by inducing an in-frame 

TGA stop codon in exon 10 of SLC7A11 in C57BL/6 mice using N-ethyl-N-nitrosourea 

(ENU) mutagenesis (Nabeyama et al 2010). Finally, a spontaneous mutation in 

SLC7A11 gave rise to the subtle gray (sut) mutant mice on the C3H/HeSnJ background, 

henceforth referred to as the SLC7A11sut/sut mice  (Chintala et al 2005). The 

SLC7A11sut/sut mice have a large deletion (481,280 base pairs) that extends from intron 

11 to exon 12 and into the SLC7A11 intergenic region neighboring the Pcdh18 gene, 

resulting in a new stop codon in exon 12’ (Chintala et al 2005). Important for this 

dissertation, no xCT protein or transcript have been detected in the brains of 
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SLC7A11sut/sut mice (Chintala et al 2005, McCullagh & Featherstone 2014). These mice 

are fertile and healthy in appearance (Hewett lab unpublished observations). 

SLC7A11sut/sut mice have a subtle gray coat color, which is a result of decreased 

pheomelanin (red/yellow) pigment production due to reduced Sxc--mediated cystine 

import into melanocytes (Chintala et al 2005). Interestingly, Shih et al found that 

SLC7A11sut/sut mice exhibit gross brain atrophy by 13 weeks of age compared to wild-

type C3H/HeSnJ mice maintained on a separate, homozygous background as 

demonstrated by a reduction in hemisphere and striatal area, cortical thinning, and 

ventricular enlargement (Shih et al 2006). However, the observed neurodegeneration in 

this particular SLC7A11sut/sut sub-strain may be attributable to genetic drift from the 

authors wild-type colony as a result of maintaining homozygous colonies (Henderson 

1997, Masel 2011). Indeed, SLC7A11sut/sut mice derived from heterozygous breeding 

units do not exhibit gross brain atrophy when compared to wild-type littermate controls 

(Chapter 2), suggesting the phenotype reported by Shih et al is not exclusively due to 

loss of the SLC7A11 gene. 

  

1.2.3.2 Cellular cystine supplier 

Sxc--mediated cystine import is fundamental in maintaining the extracellular and 

intracellular redox balance as it provides the rate-limiting substrate (cysteine) for the 

biosynthesis of the thiol antioxidant glutathione (GSH; g-glutamylcysteinylglycine) (Sato 

et al 1998) and it facilitates the cysteine/cystine redox coupling across the cell plasma 

membrane (Banjac et al 2008). Once transported intracellularly, cystine is rapidly 

reduced into two cysteine molecules that can be incorporated in proteins, GSH, or 
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exported via the neutral alanine-serine-cysteine transporters (system ASC) in 

maintenance of the cystine/cysteine redox couple (Banjac et al 2008, Sato et al 1998). 

It should be noted that cells throughout the body can accumulate cyst(e)ine via 

several alternative mechanisms. De novo cysteine synthesis from methionine via the 

transsulfuration pathway represents a mechanism by which cells can obtain cysteine, 

and evidence suggests this pathway may be particularly active in supplying cysteine for 

GSH synthesis under conditions of oxidative stress or when Sxc- transport is limited 

(McBean 2012). In addition, several cystine transporters are expressed throughout the 

body, including system b0,+ and the aspartate/glutamate transporter 1 (AGT1), 

responsible for cystine reabsorption in the renal proximal tubules (Fernández et al 2002, 

Nagamori et al 2016). In the CNS, other known cysteine transporters include system 

XAG- transporters EAAT2 and EAAT3, expressed in astrocytes and/or neurons (Chen & 

Swanson 2003, Watts et al 2014), the ASC transporters 1 and 2, predominantly 

expressed in astrocytes (Fernández et al 2005, Fotiadis et al 2013, Nagamori et al 

2016), the aromatic preferring amino acid transporter (ArpAT) (Fernández et al 2005), 

the system A Na+-coupled neutral amino acid transporters 1 and 2 (SNAT1 and SNAT2) 

(Mackenzie & Erickson 2004), and the neurotransmitter transporter 4 (NTT4) (Zaia & 

Reimer 2009).  

Despite the prevalence of cyst(e)ine transporters, GSH synthesis in CNS 

astrocytes is tightly linked to Sxc--mediated cystine import. In fact, in their seminal 

characterization of Sxc--mediated cystine/glutamate exchange, Bannai and Kitamura 

demonstrated that approximately 15% of Sxc--mediated cystine import is incorporated 

into GSH within five minutes of transport (Bannai & Kitamura 1980). This is further 
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exemplified by evidence demonstrating enhanced Sxc- activity occurs in association with 

increases in GSH (Hosoya et al 2002, Sasaki et al 2002), and that inhibition of Sxc- 

diminishes intracellular GSH stores (Kato et al 1992, Sagara et al 1996).  

GSH synthesis takes places intracellularly in the cytosol in a two-step reaction 

(Fig. 1.3) (Meister 1974). In the first step, glutamate and the rate-limiting substrate 

cysteine are used to form the dipeptide g-glutamylcysteinyl in a reaction catalyzed by g-

glutamylcysteinyl synthetase (glutamate-cysteine ligase). In the second step, 

glutathione synthetase catalyzes the formation of g-glutamylcysteinylglycine (GSH) from 

g-glutamylcysteinyl and glycine; with the final product (GSH) capable of feedback 

inhibiting g-glutamylcysteinyl synthetase (step one) (Meister 1974, Richman & Meister 

1975).  In fulfillment of its role as an antioxidant, GSH either directly detoxifies radicals 

or serves as a cofactor for the antioxidant enzyme glutathione peroxidase in the 

reduction of peroxides (Chance et al 1979, Saez et al 1990, Winterbourn & Metodiewa 

1994). In either case, GSH oxidation results in a glutathione disulfide (GSSG) product, 

which itself is a substrate for glutathione reductase in a reaction that regenerates GSH 

[reviewed in (Dringen et al 2000)]. In this way, GSH molecules synthesized 

intracellularly and used for detoxification are recycled. Conversely, GSH molecules 

used as a substrate for intracellular glutathione-S-transferases (GST) lower the 

intracellular GSH concentration, as does GSH export [reviewed in (Dringen et al 2000)].  

In the CNS, increased astrocyte GSH production is intimately linked to decreased 

oxidative stress susceptibility in neurons (Gegg et al 2005). Interestingly, astrocytes 

export 10% of their GSH per hour (Minich et al 2006). Once extracellular, GSH may 

serve as a substrate for the ectoenzyme g-glutamyl transpeptidase (gGT) and its  
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Figure 1.3 GSH metabolism and transport 

Astrocyte Sxc- imports cystine (C-C) which, once intracellular, is rapidly reduced to 
cysteine (Cys). Glutamate-cysteine ligase (GCL; also known as γ-glutamylcysteinyl 
synthetase) catalyzes the formation of glutamate (Glu) and Cys to γ-glutamylcysteine 
(Cys-Glu). Glycine (Gly) is added to the dipeptide by GSH synthetase (GS) to form the 
tripeptide glutathione (GSH). Astrocytic export of GSH is facilitated through the 
multidrug resistance protein 1 (MRP-1) transporter. Once extracellular, GSH is cleaved 
by γ-glutamyltransferase (γ-GT) into cysteinylglycine (Cys-Gly). Aminopeptidase N (AP-
N) promotes further breakdown of cysteinylglycine into glycine and cysteine. Cysteine is 
taken up into neurons via EAATs (E), where it is metabolized into GSH. Alternatively, 
the extracellular oxidation of cysteine into cystine promotes Sxc--mediated uptake into 
astrocytes. Adapted from (Bridges et al 2012a). 

 

 

 



 16 

product, cysteinylglycine (CysGly), can serve as a GSH precursor (Taniguchi & Ikeda 

1998). Neurons express an ectopeptidase of their own (aminopeptidase N) which allows 

them to utilize CysGly by taking up its constituent amino acids (cysteine and glycine) to 

be used for GSH synthesis intracellularly (Dringen et al 2001). Thus, astrocytic GSH 

production is not only used as a cell-autonomous thiol antioxidant, but its export confers 

protection to neurons as well. Apart from its role as an antioxidant, GSH is perhaps the 

most important cellular thiol that participates in signal transduction and regulates cellular 

metabolism and proliferation, gene expression, cytokine and growth factor production, 

and the function of proteins with redox-modification residues (Dringen 2000, Klatt & 

Lamas 2000, Poot et al 1995, Shih et al 2006, Stamler & Hausladen 1998).  

Since astrocytes derive the majority of their cystine from Sxc- transport, and 

cyst(e)ine is the rate-limiting substrate in the synthesis of GSH and forms a redox 

couple (cysteine/cystine) on its own, it follows that Sxc- is involved in maintaining redox 

balance in vivo. Indeed, male xCT-deficient mice on a C57BL/6 background have a 

plasma redox imbalance characterized by elevated CySS and decreased GSH levels as 

compared to wild-type control animals (Sato et al 2005). Intriguingly, male xCT null mice 

on this same background do not have a hippocampal or striatal redox imbalance as 

evidenced by lack of oxidative stress markers and similar GSH levels as compared to 

wild-type controls (De Bundel et al 2011, Massie et al 2011b).  Furthermore, the 

striatum of male xCT null mice have similar expression levels of oxidative stress-related 

markers HO-1, HNE, and NT as compared to wild-type controls following a 6-

hydroxydopamine (6-OHDA) injection (Massie et al 2011b). Whether a compensatory 
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expression of other cysteine transporters in xCT null mice explains their lack of brain 

redox imbalance is not known.  

 

1.2.3.3 Regulation of ambient extracellular glutamate levels  

Evidence from xCT null animals has demonstrated that Sxc--derived glutamate 

contributes to the extracellular glutamate pool that bathes the CNS in vivo. In male       

xCT-/- mice, extracellular glutamate levels are decreased by »40% in the hippocampus 

and »70% in the striatum as compared to wild-type C57BL/6 controls (De Bundel et al 

2011, Massie et al 2011b). Similarly, in male SLC7A11sut/sut mice, extracellular 

glutamate levels are decreased in the striatum by »50% as compared to wild-type 

C3H/HeSnJ mice (McCullagh & Featherstone 2014). Interestingly, extracellular 

glutamate levels in male SLC7A11sut/sut cerebellum are comparable to wild-type 

controls, suggesting that the contribution of Sxc- to ambient glutamate occurs in a brain 

region-dependent manner (McCullagh & Featherstone 2014). These findings are in line 

with results from the Danbolt lab showing relatively weak cerebellar xCT expression 

levels as compared to forebrain (Ottestad-Hansen et al 2018). Of note, the one study 

that investigated extracellular glutamate levels in both male and female Sxc- null mice 

found that male, but not female, SLC7A11sut/sut mice have decreased extracellular 

glutamate levels in the striatum as compared to wild-type sex-matched controls (Borra 

et al 2014). Interestingly, the authors did find a »70% decrease in striatal extracellular 

glutamate levels in wild-type females versus males, giving rise to the idea that there are 

sex-differences in glutamate physiology and perhaps, Sxc--mediated glutamate release 

(Borra et al 2014).    
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Regulation of ambient extracellular glutamate levels by Sxc- is conserved across 

species. In Drosophila, genetic disruption of the xCT homolog, genderblind, results in a 

»50% reduction in hemolymph glutamate levels (Augustin et al 2007, Piyankarage et al 

2008). Furthermore, reverse dialysis of the xCT pharmacological inhibitors homocysteic 

acid or (S)-4-carboxyphenylglycine (CPG) leads to a 60% decrease in extracellular 

glutamate levels in rat striatum (Baker et al 2002). 

The role of ambient glutamate appears to be multifaceted (section 1.3.3.2), and 

several mechanistic studies have shed light on whether Sxc--derived glutamate 

contributes to physiological neural transmission. In genderblind mutants, Augustin and 

colleagues demonstrated that a reduction in glutamate levels occurs in association with 

increased ionotropic glutamate receptor immunoreactivity and enhanced spontaneous 

excitatory junction current amplitudes at the neuromuscular junction (NMJ) (Augustin et 

al 2007). Moreover, bathing wild-type larval NMJs in abnormally low levels of glutamate 

was sufficient to phenocopy glutamate receptor expression levels in genderblind 

mutants (Augustin et al 2007). More recently, this same group confirmed Sxc--derived 

glutamate controls synaptic strength at the mouse hippocampal CA3-CA1 synapse by 

demonstrating that slices derived from male xCT-/- mice have enhanced AMPA receptor 

immunoreactivity and spontaneous and evoked excitatory postsynaptic currents 

(EPSCs) in  CA1 as compared to wild-type control slices (Williams & Featherstone 

2014). Similar to their studies in Drosophila, the authors phenocopied their xCT-/- 

electrophysiology findings by incubating wild-type slices in Glu-free artificial 

cerebrospinal fluid or by using the Sxc- inhibitor (S)-4-carboxyphenylglycine (4-CPG), 

providing evidence that glutamate released via Sxc- modulates synaptic strength 
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(Williams & Featherstone 2014). Finally, Sxc--derived glutamate negatively modulates 

release of synaptic glutamate and dopamine in the nucleus accumbens and striatum, 

respectively, by exerting glutamatergic tone on group II metabotropic glutamate 

receptors in male rats (Baker et al 2002, Moran et al 2005). Thus, evidence across 

multiple species suggests that Sxc--derived ambient glutamate contributes to the 

delicate balance between excitatory and inhibitory neurotransmission (E/I balance) that 

exists in the CNS.  

 

1.2.4 Role of Sxc- in CNS function  

While Sxc- signaling has been implicated in a number of disorders and disease 

states associated with a primary or secondary excitatory/inhibitory (E/I) imbalance 

including multiple sclerosis (Domercq et al 2007, Evonuk et al 2015, Pampliega et al 

2011), amyotrophic lateral sclerosis (Albano et al 2013, Mesci et al 2014), Huntington’s 

disease (Frederick et al 2014), Alzheimer’s disease (Barger & Basile 2001, Qin et al 

2006, Zhang et al 2016a), Parkinson’s disease (Bentea et al 2015b, Massie et al 2011b, 

Massie et al 2008), cerebral ischemia (Fogal et al 2007, Soria et al 2014), addiction 

(Baker et al 2003, Knackstedt et al 2010, Moran et al 2005), epilepsy (Lewerenz et al 

2014, Takaki et al 2008), and glioblastoma multiforme (Chung et al 2005, Takeuchi et al 

2012, Ye et al 1999, Ye & Sontheimer 1999) and its associated epileptiform activity 

(Buckingham et al 2011, Robert et al 2015), a growing body of evidence suggests that 

Sxc- may also contribute to physiological brain E/I balance. Behaviorally, male xCT-/- 

mice demonstrate decreased spatial working memory as determined by reduced 

alternations in the three-arm spontaneous alternation task compared to wild-type 
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controls, and similar deficits were found in male and female SLC7A11sut/sut mice (De 

Bundel et al 2011, McCullagh & Featherstone 2014). Furthermore, male SLC7A11sut/sut 

mice have impaired long-term memory in a hippocampal and amygdala-dependent fear 

conditioning task as well as in a hippocampal-dependent passive avoidance task (Li et 

al 2012). Given the memory deficits across several distinct tasks, it is perhaps 

unsurprising that long-term potentiation at the CA1-Schaeffer collateral synapse is also 

reduced in male SLC7A11sut/sut mice (Li et al 2012).  

In assays of anxiety, male xCT-/- mice have a decreased latency to eat in a 

novelty suppressed eating paradigm and spend an increased amount of time in an open 

field or in the lighted portion of a light/dark box as compared to wild-type littermates 

(Bentea et al 2015a). These results suggest that Sxc- increases behavioral anxiety. In 

addition, xCT-/- mice demonstrate increased climbing behavior and decreased 

immobility in the forced swim and tail suspension tests as compared to wild-type 

littermate controls, suggesting that xCT-/- mice have less behavioral despair as 

compared to wild-type controls (Bentea et al 2015a). Of note, motor activity and visual 

acuity is normal in xCT-/- and SLC7A11sut/sut mutants, suggesting that these are unlikely 

confounds in any of the aforementioned behavioral paradigms (Bentea et al 2015a, 

McCullagh & Featherstone 2014). 

Despite xCT-/- mice demonstrating enhanced spontaneous and evoked EPSCs at 

the hippocampal CA3-CA1 synapse (discussed above), De Bundel and colleagues have 

demonstrated that male xCT-/- mice have an apparent increase in seizure threshold 

upon acute stimulation with the chemoconvulsants kainic acid, NMDA, or pilocarpine 

(De Bundel et al 2011, Williams & Featherstone 2014). Specifically, male xCT-/- mice 
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require a higher dose of kainic acid or pilocarpine, delivered via intravenous infusion, to 

induce seizure activity as compared to wild-type controls (De Bundel et al 2011). 

Furthermore, xCT-/- mice have a decreased incidence of mortality and increased latency 

to convulsive seizure upon administration of a single intraperitoneal dose of NMDA as 

compared to wild-type mice (De Bundel et al 2011). The increase in seizure threshold in 

xCT-/- mice in vivo is in stark contrast to their enhanced excitability in ex vivo slice 

(Williams & Featherstone 2014), suggesting a complex regulation of E/I balance by Sxc- 

in vivo. Moreover, these results are also in contrast to findings reported in this 

dissertation demonstrating a sex-independent decrease in seizure threshold in 

SLC7A11sut/sut mice as compared to SLC7A11+/+ sex-matched littermate controls in 

response to an acute dose of two pharmacologically distinct chemoconvulsants, 

pentylenetetrazole (Chapter 2, Fig. 2.9) or kainic acid (Chapter 4, Fig. 4.1).  

 

1.3 Excitatory/inhibitory (E/I) balance in the brain 

Effective communication between cells in the CNS requires a balance between 

excitatory and inhibitory neural transmission. This balance is established during 

development and maintained throughout adulthood (Turrigiano & Nelson 2004). At the 

network level, the E/I balance refers to the innumerable inhibitory and excitatory 

neurons that together, maintain a stable circuit [reviewed in (Gao & Penzes 2015, 

Nelson & Valakh 2015)]. At the cellular level, E/I balance is influenced by the intrinsic 

membrane excitability and synaptic strength controlling the overall output – or firing 

probability – of a given neuron (Beck & Yaari 2008, Megıas et al 2001, Pratt & 

Aizenman 2007, Turrigiano et al 1998). Importantly, the physiological E/I balance 
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provides a stable substrate upon which the information transfer underlying learning and 

memory formation can occur (Cannon 1932, Zhou & Yu 2018).   

Of particular interest to this dissertation is the balance between excitatory 

glutamatergic and inhibitory GABAergic neural transmission – including the synthesis, 

release, and uptake of these neurotransmitters, as well as the myriad receptors upon 

which they exert their influence. Functional alterations at excitatory or inhibitory 

synapses have been implicated in numerous neurodevelopmental disorders (Gao & 

Penzes 2015, Nelson & Valakh 2015) and disease states (Foerster et al 2013, Fritschy 

2008, Lai et al 2014, Ren et al 2018, Snyder et al 2005), and as such, understanding all 

factors that contribute to maintenance of E/I balance is integral in developing novel 

therapeutic targets to provide symptomatic relief. In this section, factors driving normal 

glutamatergic or GABAergic neural transmission, as well as modulators of E/I balance, 

including those influenced by Sxc- transport, are discussed. 

 

1.3.1 Inhibitory GABAergic neural transmission  

GABA (g-aminobutyric acid) is the major inhibitory neurotransmitter in the CNS. 

Originally classified as a glutamatergic neuromodulator, evidence demonstrating that it 

is present in large concentrations in the mammalian brain and that ionotophoretic 

application to cortex is sufficient to inhibit cell firing paved the way for its classification 

as an inhibitory neurotransmitter (Awapara et al 1950, Elliott 1965, Krnjević & Phillis 

1963, Krnjević & Whittaker 1965). Additionally, GABA signaling regulates proliferation of 

neural progenitors and neuronal development (Ge et al 2007, Platel et al 2010).  
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GABA synthesis and packaging: GABA is predominantly synthesized from 

glutamate via one of two molecularly distinct enzymes – glutamate decarboxylase 65 

(GAD65) or GAD67 – using pyridoxal 5’-phosphate as a cofactor. The subcellular 

distribution of the two GAD enzymes differs. GAD65 is primarily located in nerve 

terminals and thus produces GABA for neurotransmission (Martin & Rimvall 1993, 

Waagepetersen et al 1999). GAD67 is distributed uniformly throughout neurons and 

provides GABA to fulfill non-neurotransmitter roles such as redox regulation and 

developmental synaptogenesis (Lamigeon et al 2001, Martin & Rimvall 1993, 

Waagepetersen et al 1999). Approximately 50% of GAD exists in its inactive, 

apoenzyme form; this is thought to function as a reserve for when enhanced GABA 

synthesis is required (Itoh & Uchimura 1981, Miller et al 1980). Alternatively, GABA can 

be synthesized directly from glutamine derived from the Kreb’s cycle via 2-oxoglutarate 

and glutamate (Waagepetersen et al 1998, Westergaard et al 1995). Following its 

synthesis, GABA is transported into synaptic vesicles via vesicular GABA transporters 

(VGATs) in a process dependent on both the membrane potential and the proton 

gradient (Chaudhry et al 1998, McIntire et al 1997). Interestingly, glycine is a shared 

substrate for VGATs, and as such, glycine is co-released at certain GABAergic 

synapses (Wojcik et al 2006). 

GABA signaling: Upon depolarization of the GABAergic nerve terminal, a rise in 

intracellular calcium levels stimulates exocytosis of GABA-containing vesicles (Chen et 

al 2017). In the synaptic cleft, GABA can activate one of three major GABA receptors 

(GABARs): the ionotropic GABAAR and GABACR as well as the G-protein coupled 

metabotropic GABABR [for review see (Bormann 2000)].   
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The GABAAR and GABACR are pentameric ligand-gated ion channels that 

mediate the majority of fast synaptic inhibition [for review see (Bormann 2000)]. As the 

potassium/chloride (K+/Cl-) cotransporter (KCC2) maintains relatively low intracellular Cl- 

levels in mature neurons, GABA binding to either ionotropic receptor facilitates a Cl- 

influx and bicarbonate (HCO3-) efflux leading to a net hyperpolarization (Rivera et al 

1999). Each receptor is composed of five subunits: there are 18 GABAAR subunits (a1-

6, b1-4, g1-4, d, e, p, and q) and three GABACR subunits (r1-3) [(Bonnert et al 1999, 

Hedblom & Kirkness 1997) and reviewed in (Macdonald & Olsen 1994, Zhang et al 

2001)]. While GABAARs must contain at least three subunits (including an obligatory a 

and b subunit) and are expressed throughout the brain, GABACRs are only composed of 

r subunits and are predominantly expressed in the vertebrate retina (Bormann 2000, 

Bormann & Feigenspan 1995). Despite structural dissimilarities, both GABAA and 

GABAC receptors allow for Cl- influx upon ligand binding. However, GABACRs are more 

sensitive to GABA and have a smaller single channel conductance compared to 

GABAARs (major conductance state of 1–5 pS versus »30 pS) (Chang & Weiss 1999, 

Karim et al 2013, Wotring et al 1999, Zhang et al 2001). Pharmacologically, GABAARs 

are positively modulated by benzodiazepines and barbiturates via binding sites at their 

subunit interfaces (Chiara et al 2013, Macdonald & Olsen 1994, Pritchett et al 1989). 

Moreover, GABAARs are selectively inhibited by the competitive antagonist bicuculline 

(Andrews & Johnston 1979). In contrast, GABACRs are benzodiazepine, barbiturate, 

and bicuculline insensitive (Bormann & Feigenspan 1995).   

The GABABR is a G-protein coupled metabotropic receptor capable of 

modulating synaptic transmission through its intracellular effector systems (Padgett & 
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Slesinger 2010). Each receptor is a heterodimer consisting of a GABAB1 subunit – of 

which there are A and B isoforms – and a GABAB2 subunit [reviewed in (Heaney & 

Kinney 2016)]. GABABR activation results in a bicuculline-insensitive GABAergic current 

that is modulated by the GABABR selective agonist baclofen (Bowery et al 1979). 

Moreover, GABABR activation is negatively coupled to adenylate cyclase and therefore 

has an overall inhibitory effect, with presynaptic activation inhibiting neurotransmitter 

release and postsynaptic activation increasing the K+ conductance responsible for long-

lasting inhibitory postsynaptic potentials (IPSPs) (Kabashima et al 1997, Pérez-Garci et 

al 2006, Sakaba & Neher 2003).  

GABA uptake: GABA released into the synaptic cleft is cleared by GABA 

transporters expressed on both neurons and astrocytes. There are four known high-

affinity GABA transporters, all of which belong to the SLC6 family: GABA transporter 1-3 

(GAT1-3), and the betaine-GABA transporter (BGT1) (Guastella et al 1990, Liu et al 

1993, Lopez-Corcuera et al 1992, Radian et al 1986, Yamauchi et al 1992). All 

transporters are Na+ and Cl- coupled, with reported Km values of 8 µM (GAT1), 18 µM 

(GAT2), 0.8 µM (GAT3), and 80 µM (BGT1) (Liu et al 1993, Liu et al 1992, Lopez-

Corcuera et al 1992). In the CNS, GAT1 is localized to both neurons and astrocytes 

whereas GAT3 is selectively expressed in astrocytes (Minelli et al 1995, Minelli et al 

1996). In contrast, GAT2 and BGT1 are largely excluded from the brain, except for the 

encompassing leptomeninges and blood vessels, but are predominantly expressed in 

the kidney and liver (Zhou et al 2012, Zhou et al 2011). In the brain, GABA taken up by 

neurons can be directly packaged into vesicles for neurotransmission (Coulter & Eid 

2012, Eulenburg & Gomeza 2010). Alternatively, in a process known as the GABA 
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shunt, GABA taken up by neurons or astrocytes can replenish TCA cycle intermediates 

via its catabolism into succinate by GABA-transaminase (GABA-T) and succinic 

semialdehyde dehydrogenase (SSADH) (Bak et al 2006, Fonnum & Fyske 2000).  

 

1.3.2 Excitatory glutamatergic neural transmission 

Glutamate is the most abundant excitatory amino acid neurotransmitter in the 

vertebrate nervous system (Fonnum 1984, Ottersen & Storm-Mathisen 1984). The first 

evidence of its role as an excitatory neurotransmitter came from the seminal discovery 

that direct application of glutamate to neural tissue resulted in epileptic seizure activity 

(Hayashi 1952, Hayashi 1954, Okamoto 1951). Its presence in concentrations three- to 

four-fold greater than aspartate, glutamine, or taurine – the next three most abundant 

amino acids in brain – also provided suggestion that it had specialized functions apart 

from serving as an amino acid building block (McGeer et al 1978). Later work 

established that glutamate fulfills the criteria for classification as a neurotransmitter: it is 

localized to nerve terminals, it is released from a neuron upon stimulation, it is capable 

of activating its cognate receptors, direct application of glutamate mimics neuronal 

stimulation, and mechanisms exist to rapidly terminate its action (Fonnum 1984, 

Watkins & Evans 1981). In addition to its role as the major excitatory neurotransmitter in 

the brain, glutamate is a precursor for GABA and other various Krebs cycle 

intermediates and it is involved in the regulation of ammonia levels and osmotic balance 

(McGeer et al 1978, Roberts & Frankel 1950, Weil-Malherbe 1950). Furthermore, 

glutamate is involved in the synthesis of fatty acids, proteins, and peptides, including 

glutathione (Meister 1979). 
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Approximately 80-90% of neurons, and the same proportion of central synapses, 

are glutamatergic (Braitenberg & Schüz 2013, Ottersen & Storm-Mathisen 1984). Given 

its ubiquitous CNS localization, it is unsurprising that glutamate signaling is involved in a 

diverse array of brain functions including sensory transduction, motor coordination, and 

cognitive processes such as learning and memory [for review see (Hassel & Dingledine 

2012)]. However, high fidelity glutamatergic transmission requires a stable substrate – 

efficient glutamate release and uptake, as well as low ambient extracellular glutamate 

concentrations – and it follows that alterations in such are associated with neurological 

disorders and disease states. For example, hypo-glutamatergic signaling is implicated in 

the cognitive deficits associated with schizophrenia (Moghaddam & Javitt 2012). 

Moreover, excessive glutamate release and prolonged activation of its receptors can 

lead to seizures and neuronal cell death via excitotoxicity (Choi 1992, Nadler et al 1978, 

Olney 1969). Thus, it is essential that the release and uptake of glutamate be tightly 

regulated.  

Glutamate synthesis and packaging: Neurons synthesize glutamate via the 

hydrolysis of glutamine to glutamate and ammonia, catalyzed by the phosphate-

dependent mitochondrial enzyme glutaminase (Errera & Greenstein 1949baker, Laake 

et al 1999). Alternatively, glutamate can be rapidly transaminated from a-ketoglutarate, 

a key intermediate in the Kreb’s cycle, via the enzyme glutamate dehydrogenase (Peng 

et al 1993). Finally, glutamate can be directly transported from the extracellular space 

into neurons through Na+-dependent EAATs (Danbolt et al 2016). In its final form, 

glutamate is transported into synaptic vesicles via vesicular glutamate transporters, of 

which there are three mammalian isoforms (VGLUT1-3 encoded by the genes 
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SLC17A6-8), to a maximum glutamate concentration of approximately 70-210 mM per 

vesicle (Burger et al 1989, Omote et al 2011, Riveros et al 1986). Accumulation of 

glutamate via VGLUTs is chloride-dependent and driven by both the membrane 

potential and an electrochemical gradient of H+ ions established by the V-ATPase (Naito 

& Ueda 1985, Omote et al 2011).  

Glutamate release: Upon depolarization of nerve terminals, increasing 

intracellular calcium levels stimulate vesicular fusion with the presynaptic membrane, 

allowing for glutamate molecules to be released into the synaptic cleft (Fernandez-

Chacon et al 2001, Geppert et al 1994). Though vesicular-mediated neuronal glutamate 

release mediates the majority of fast excitatory neurotransmission, glutamate can also 

be released by neurons and/or astrocytes via several other mechanisms. In both cell 

types, calcium-independent glutamate release can occur via EAAT reversal, especially 

under pathological conditions such as cerebral ischemia wherein the Na+ and K+ 

gradients across the plasma cell membrane are reduced (Longuemare & Swanson 

1995, Nicholls & Attwell 1990, Szatkowski et al 1990). In an attempt to achieve volume 

homeostasis under hypo-osmotic conditions, neurons and astrocytes may release 

anions, including glutamate, through volume-regulation anion channels (VRACs) 

(Kimelberg et al 1990, Mongin & Orlov 2001). Additionally, astrocytic hemichannels – 

when left unopposed versus aligned with a hemichannel on a neighboring astrocyte to 

allow for intercellular gap junction-mediated transport – are independently functional 

and can efflux glutamate and other amino acids (Ye et al 2003). This mechanism of 

glutamate release may be functional under conditions of metabolic inhibition when 

hemichannels appear to open (Contreras et al 2002, John et al 1999), though some 
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evidence also indicates hemichannels are open physiologically (Bruzzone et al 2001, 

Kamermans et al 2001, Plotkin & Bellido 2001, Quist et al 2000). Furthermore, P2X7 

receptor-associated ion channels are capable of glutamate efflux upon ligand binding 

(Duan et al 2003). Moreover, calcium-dependent vesicular glutamate release from 

astrocytes has been demonstrated, and is supported by evidence that G-protein 

coupled receptor activation, and the ensuing rise in intracellular calcium levels, 

culminate in glutamate release (Bezzi et al 1998, Parpura et al 1994). This release 

mechanism is further substantiated by astrocytic expression of exocytotic machinery 

including cellubrevin, synaptobrevin II, syntaxin, vesicular soluble N-ethylmaleimide-

sensitive factor attachment protein receptors (SNAREs), and VGLUTs (Bezzi et al 2004, 

Parpura et al 1995, Schwarz et al 2017). However, opposing evidence indicates lack of 

metabotropic glutamate receptors in adult astrocytes suggesting that vesicular-mediated 

glutamate release may be a developmental phenomenon (Sun et al 2013). Moreover, 

astrocyte transcriptome analyses and more recent immunohistochemical data 

demonstrate a paucity of VGLUT expression (Barres 2008, Cahoy et al 2008, Li et al 

2013, Zhang et al 2014) and as such, whether this route of glutamate release exists in 

vivo is hotly debated (for dual perspective reviews see (Fiacco & McCarthy 2018, 

Savtchouk & Volterra 2018)). Finally, of particular interest to this dissertation, glutamate 

release occurs via Sxc--mediated cystine/glutamate exchange (Bannai & Kitamura 

1980). Route of release notwithstanding, once released into the synaptic cleft or 

extracellular space, glutamate binds to its cognate receptors and/or is taken up by 

EAATs.  
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Glutamate receptors: Two distinct classes of glutamate receptors exist within the 

CNS, ionotropic (iGluR) and metabotropic (mGluR) [for reviews see (Niswender & Conn 

2010, Traynelis et al 2010)]. Canonical iGluRs are integral membrane cation channels 

capable of mediating rapid synaptic transmission and can be further classified into three 

subtypes based upon structure and agonist pharmacology: a-amino-3-hydroxy-5-

methyl-4-isoxazole propionic acid receptors (AMPARs), kainic acid receptors (kainate, 

KARs), and N-methyl-D-aspartate receptors (NMDARs) [for review see (Traynelis et al 

2010)]. Glutamate delta receptors (d1 and d2) are a fourth iGluR subtype, which have 

been classified as such solely upon sequence homology as they are not gated by 

glutamate (Lomeli et al 1993, Yamazaki et al 1992). Instead, endogenous ligands for 

these receptors include D-serine and glycine (Naur et al 2007). The eight mGluR 

subtypes function as G-protein coupled receptors and can be broadly classified into 

three subcategories based upon sequence homology, pharmacology, and second 

messenger systems (Pin & Acher 2002).  

Tetrameric AMPARs are assembled using combinations of subunits GluA1-4, 

with forebrain receptors containing predominantly GluA1/GluA2 and GluA2/GluA3 

subunits (Craig et al 1993). Upon glutamate binding, the opening of the ion-channel 

pore allows for Na+ influx and K+ efflux, facilitating postsynaptic membrane 

depolarization with rapid onset and desensitization kinetics (Jones & Westbrook 1996). 

RNA editing of the GluA2 subunit (Q/R edit) is prevalent in the adult brain, and this 

feature bestows calcium-impermeability to the pore channel (Greger et al 2003). 

However, the presence of unedited GluA2 subunits and/or GluA2-lacking AMPARs 

allow for AMPA-mediated calcium influx; the latter receptors have been demonstrated to 
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play a role in plasticity, including in the stabilization of long-term potentiation (Plant et al 

2006, Yang et al 2010). AMPARs are enriched at glutamatergic synapses, and dendritic 

spine morphology correlates with the number of synaptic AMPARs (Kasai et al 2003, 

Matsuzaki et al 2001). Their dynamic trafficking to and from the postsynaptic 

membrane, often via lateral diffusion from extrasynaptic sites, are key determinants of 

synaptic strength (Lüscher et al 1999).  

KARs are tetrameric receptors composed of a combination of the subunits 

GluK1-5. These subunits have heterogeneous expression patterns and, although 

expressed throughout the CNS, predominant localization has been demonstrated in the 

hippocampus (GluK2, GluK3, GluK4, GluK5) and cerebellum (GluK1, GluK2, GluK5) 

(Porter et al 1997). In addition to agonist binding, KARs require external monovalent 

cations and anions at binding sites on the GluK1-5 subunits to allow for pore opening 

(Bowie 2002, Paternain et al 2003). Similar to AMPARs, Q/R editing within subunits 

GluK5-6 bestows calcium-impermeability (Köhler et al 1993, Sommer et al 1991). At the 

postsynaptic membrane, KAR activation enhances excitation, albeit via a slower and 

smaller excitatory postsynaptic current than AMPAR activation (Castillo et al 1997, 

Frerking et al 1998). Presynaptically, KAR activation induces depression of inhibition 

(Rodríguez-Moreno et al 1997, Sloviter & Damiano 1981), thought to occur via a 

noncanonical metabotropic route of KAR signaling (Rodríguez-Moreno & Lerma 1998). 

Moreover, presynaptic KAR activation can modulate glutamate release, with facilitation 

or depression of release at the mossy fiber-CA3 and CA3-CA1 hippocampal synapses 

dependent upon agonist concentration (Chittajallu et al 1996, Frerking et al 2001, 

Schmitz et al 2000).  
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NMDARs are distinct from the aforementioned iGluRs in that they exhibit high 

calcium permeability (in addition to fluxing Na+ and K+) and mediate the slow 

component of excitatory synaptic currents, thus allowing for temporal summation 

(Schiller & Schiller 2001). NMDARs function as coincidence detectors: channel opening 

is dependent upon the binding of glutamate and glycine along with membrane 

depolarization to relieve a voltage-dependent magnesium (Mg2+) block (Mayer et al 

1984). Much like AMPARs and KARs, the tetrameric assembly of GluN1, GluN2A-D, 

and/or GluN3A-B subunits dictates their physiology [reviewed in (Sanz-Clemente et al 

2013)]. GluN1 and GluN2 subunits are required for receptor function as they contain the 

glutamate and glycine binding sites, respectively, while receptors containing a GluN3 

subunit are calcium impermeable (Kew et al 2000, Laube et al 1997, Matsuda et al 

2002, Nishi et al 2001). Given their calcium conductance, NMDARs play a role in the 

expression of activity-dependent plasticity and multiple lines of evidence suggests that 

NMDAR trafficking contributes to both Hebbian (long-term potentiation and depression) 

and homeostatic forms of plasticity as well (Hunt & Castillo 2012, Pérez-Otaño & Ehlers 

2005).  

G-protein coupled mGluRs are classified into three groups based on agonist 

pharmacology and intracellular second messenger cascades [for reviews see 

(Niswender & Conn 2010, Pin & Acher 2002)]. Group I (mGluR 1 and mGluR5) 

receptors are coupled to phospholipase C and generally lead to increases in protein 

phosphorylation and activation of calcium binding proteins. Group II (mGluR2 and 

mGluR3) and III (mGluR4 and mGluR6-8) receptors are negatively coupled to adenylate 

cyclase, decreasing cAMP production and protein phosphorylation. In the CNS, the 
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physiological role of mGluR signaling is varied, ranging from positive and negative 

facilitation of presynaptic neurotransmitter release to inhibition of postsynaptic calcium 

channels (Pin & Acher 2002).  

Glutamate uptake: Extracellular glutamate is taken up by EAATs in an 

electrogenic process driven by the import of 3Na+ and 1H+ coupled to the export of 1K+ 

(Barbour et al 1991, Kanner & Schuldiner 1987, Levy et al 1998, Nicholls & Attwell 

1990, Zerangue & Kavanaugh 1996). Transport also occurs with an uncoupled Cl- 

gradient (Bergles et al 2002, Wadiche et al 1995). Rapid glutamate uptake by the 

EAATs is necessary to prevent overactivation of glutamate receptors and excitotoxic 

cell death. There are five mammalian EAAT transporters that differ in their cellular and 

regional distribution, all of which belong to the SLC1 (high affinity glutamate and neutral 

amino acid) family of transporters (Hediger et al 2013). Found throughout the brain are 

EAAT1 (GLAST) (Storck et al 1992, Tanaka 1993), localized exclusively on astrocytes 

(Lehre et al 1995), EAAT2 (GLT-1) (Danbolt et al 1990), localized predominately to 

astrocytes but also located on some neuronal axon terminals (Chen et al 2004, Furness 

et al 2008, Zhou et al 2018), and EAAT3 (EAAC1) (Bjørjås et al 1996, Kanai & Hediger 

1992), localized to neuronal somata and dendrites (Holmseth et al 2012, Rothstein et al 

1994).  EAAT4 is found primarily in cerebellar Purkinje cells (Fairman et al 1995, Itoh et 

al 1997), but also astrocytes (Hu et al 2003), whereas EAAT5 is restricted to retinal 

bipolar and photoreceptor neurons (Arriza et al 1997). Despite redundant functional 

activity among the EAATs, the vast majority (»95%) of extracellular glutamate uptake is 

performed by EAAT2 (Danbolt et al 1992, Haugeto et al 1996, Otis & Kavanaugh 2000). 

Indeed, genetic deletion of EAAT2 in mice results in spontaneous epileptiform activity 
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by three weeks of age (Tanaka et al 1997), and spontaneous electrographic seizures 

and increased mortality have been reported in astrocytic (but not neuronal) EAAT2 

conditional knock-out mice (Petr et al 2015). Once taken up into astrocytes, glutamate 

can be released via one of the aforementioned mechanisms, including Sxc-, or it can be 

incorporated into proteins, metabolized via the Kreb’s cycle, or converted to glutamine 

via the enzyme glutamine synthetase (Erecińska & Silver 1990, Krebs 1935). The 

transport of glutamine from astrocytes into neurons via sodium-coupled neutral amino 

acid transporters (SNATs) or other glutamine transporters is thought to provide the 

majority of glutamate precursor to neuronal terminals (Jenstad et al 2008, Mackenzie & 

Erickson 2004, Solbu et al 2010). Together, neuronal glutamate release, its astrocytic 

uptake and conversion to glutamine, and its subsequent transport to neurons for 

glutamate or GABA synthesis is referred to as the glutamine-glutamate (GABA) shuttle 

(Hertz 2013).   

 

1.3.3 Modulators of E/I Balance  

Other than fast inhibitory or excitatory synaptic transmission, a comprehensive 

understanding of mechanisms underlying brain E/I balance includes the effects exerted 

by neuromodulators. These include substances such as brain derived neurotrophic 

factor (BDNF) and adenosine, as well as a cell type of particular interest to this 

dissertation, astrocytes. Interestingly, astrocytes can release soluble factors, such as 

glypicans, tumor necrosis factor-a (TNFa), and secreted protein acidic and rich in 

cysteine (SPARC), that influence synaptogenesis and synaptic activity (Allen et al 2012, 

Jones et al 2011, Stellwagen & Malenka 2006). Moreover, the glutamate-glutamine 
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cycle, maintained by astrocytes, controls synaptic strength during period of intense 

neuronal activity (Tani et al 2014). Of interest to this dissertation is how the 

intracellular/extracellular redox environment and ambient extracellular glutamate levels 

– two parameters maintained in part by astrocytes and influenced by Sxc- signaling – 

contribute to E/I balance.  

 

1.3.3.1 Redox status 

Numerous lines of evidence suggest that redox status influences the E/I balance. 

For instance, a redox imbalance is associated with impaired neuronal synaptic plasticity 

(Almaguer-Melian et al 2000, Robillard et al 2011), with effects of such on seizure 

activity reported (Jiang et al 2000, Liang & Patel 2004). However, the exact mechanism 

by which redox signaling influences E/I balance is unclear, with reports of increased 

(Liang & Patel 2004) or decreased (Jiang et al 2000) seizure activity in mice under 

oxidative stress. Moreover, compounds with antioxidant properties (vitamin C, 

superoxide dismutase [SOD], melatonin, and N-acetylcysteine) have been 

demonstrated to reduce seizures and seizure-induced cell death in several animal 

models of epilepsy (MacGregor et al 1996, Rong et al 1999, Tan et al 1998, Zaeri 

2015). Interestingly, both glutamate transporters and the NMDAR possess redox-

sensing properties that regulate their activity (Aizenman et al 1989, Köhr et al 1994, 

Sullivan et al 1994, Trotti et al 1997), suggesting that a redox imbalance can modulate 

E/I balance through influencing glutamatergic neural transmission.  
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1.3.3.2 Ambient extracellular glutamate 

Despite the efficient glutamate uptake mechanisms described earlier, there is a 

pool of ambient extracellular glutamate that bathes the CNS in vivo. Estimates of the 

ambient extracellular glutamate concentration range from 25-90 nM as determined by 

electrophysiological measurement of tonic NMDAR activity in acute brain slices 

(Benveniste et al 1984, Cavelier & Attwell 2005, Herman & Jahr 2007, Meur et al 2007) 

to 0.2-35 µM as measured by in vivo microdialysis (Baker et al 2003, Dash et al 2009, 

De Bundel et al 2011, Massie et al 2011b). Some reports postulate that the discrepancy 

in ambient glutamate concentrations could reflect compartmentalization within distinct 

synaptic (nM) and extrasynaptic (µM) glutamate compartments (Baker et al 2002, 

Moussawi et al 2011). Another possibility for the discordant measurements in ambient 

glutamate is that in vivo microdialysis studies are typically performed in adult mice 

whereas acute slice experiments are performed using young rodents (postnatal day 11-

19), a point in development when glutamate transporters, including Sxc-, are not yet fully 

expressed (Kugler & Schleyer 2004, La Bella et al 2007). However, the two 

aforementioned theories were recently refuted by work demonstrating that ambient 

glutamate levels in acute brain slices are »25 nM throughout the brain in both young 

(postnatal day 15-22) and old (8-12 week old) rats, indicating a distinct lack of 

compartmentalization and age-related differences in rat (Chiu & Jahr 2017). Finally, 

micromolar glutamate levels as measured by in vivo microdialysis could be an artifact of 

tissue damage inflicted by the sampling probe, thus rendering the adjacent neuropil 

metabolically impaired (Sun et al 2014).  
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Despite conflicting reports over the precise concentration of extracellular 

glutamate, evidence suggests that ambient levels are sufficient to influence E/I balance. 

For instance, tonic activation of NMDARs by glutamate of non-vesicular origin (Ca2+-

independent, tetrodotoxin-insensitive) regulates the intrinsic excitability and 

synchronization of hippocampal pyramidal and granule cells (Angulo et al 2004, 

Cavelier & Attwell 2005, Dalby & Mody 2003, Jabaudon et al 1999, Meur et al 2007, 

Sah et al 1989). Moreover, tonic exposure to micromolar levels of glutamate has been 

demonstrated to cause steady-state glutamate receptor desensitization and 

suppression of synaptic strength (Augustin et al 2007, Williams & Featherstone 2014, 

Zorumski et al 1996). Other evidence points to a role for ambient glutamate in 

depolarization induced suppression of inhibition (DSI) of inhibitory interneurons through 

its activation of pyramidal cell mGluRs in the hippocampus (Varma et al 2001). Finally, a 

developmental role for ambient glutamate in E/I circuit formation has been suggested, 

with reports indicating it can regulate cellular differentiation and migration (LoTurco et al 

1991, LoTurco et al 1995, Manent et al 2005, Nguyen et al 2001).  

 

1.3.4 Use of chemoconvulsants to investigate E/I balance in vivo 

Experimentally, baseline E/I balance can be measured using brain slice or in vivo 

electrophysiological recordings. Alternatively, the use of pharmacological agents to 

stimulate or inhibit excitatory and/or inhibitory signaling can be used to uncover an E/I 

imbalance that may not be apparent physiologically. Pertinent to the studies performed 

in this dissertation, the chemoconvulsants pentylenetetrazole (PTZ) and kainic acid (KA) 

will be discussed. As potent chemoconvulsants, PTZ and KA are capable of eliciting 
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seizures, which is a brain state characterized by abnormally excessive or synchronous 

neuronal activity (Fisher et al 2005). The aberrant electrical activity induced by a seizure 

can be recorded via electroencephalography; it also manifests as behavioral motor 

changes ranging from immobility to generalized convulsive seizures involving clonic 

limb movements. Thus, by using frank motor seizures as a behavioral readout, 

chemoconvulsant-induced brain excitation is readily observable.    

 

1.3.4.1 Pentylenetetrazole (PTZ) 

PTZ was first characterized as an inhibitor of GABARs in 1978 (Macdonald & 

Barker 1978). Several years later,  radioligand studies determined its site of action to be 

at the picrotoxin binding site within the GABAAR channel pore (Ramanjaneyulu & Ticku 

1984, Squires et al 1984). A more recent report by Huang and colleagues indicated that 

PTZ and picrotoxin share common but not identical domains of action, as the PTZ 

antagonized-GABAAR current occurs exclusively through competitive inhibition whereas 

picrotoxin displays both non-competitive and competitive inhibition of GABAARs (Huang 

et al 2001). Following its synthesis in 1924, PTZ was initially used as a cardiovascular 

and respiratory stimulant (Haury 1939). In a line of investigation stemming from his 

postmortem neuropathological observations of decreased gliosis in schizophrenic tissue 

versus enhanced gliosis in epileptic tissue, Meduna began using PTZ in 1934 as a 

therapeutic treatment to induce epileptic activity in schizophrenic individuals in an 

attempt to stimulate gliosis (Meduna 1932, Meduna 1935). Eventually, PTZ was 

replaced with electroconvulsive therapy as the therapeutic stimulant of choice in mood 

disorders and schizophrenia (Bini 1938).  
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PTZ administration in laboratory animals is traditionally used to experimentally 

test the efficacy of anti-seizure drugs in response to seizure activity (Swinyard 1949). 

Alternatively, it can be used in rodents to explore their seizure threshold, or the innate 

balance between excitation and inhibition that influences seizure susceptibility 

(Steppuhn & Turski 1993). Finally, PTZ can be used as a chemical kindling agent to 

model epileptogenesis – which is the process by which a normal brain network develops 

spontaneous recurrent seizures (i.e. epilepsy) over time. The kindling phenomenon 

occurs via a gradual sensitization of neuronal circuitry to repeated application of a low 

intensity stimulus (Goddard 1967). A similar period of sensitization is thought to occur 

during the latent period of acquired epilepsies, which are a group of diseases 

characterized by spontaneous seizures resulting from an antecedent CNS injury and 

ensuing latent, seizure-free period (Braunwald et al 2001, Victor & Ropper 2002). Thus, 

kindling serves as a model of acquired epilepsies, and understanding the cellular and 

molecular mechanisms facilitating this period of sensitization is integral in developing 

therapeutic targets to thwart their progression  (Jensen 2009). Moreover, given that 

kindling induces synaptic changes over time it is, at its core, a plasticity model. In fact, 

kindling shares common mechanisms with long-term potentiation (LTP) (Cain 1989, 

Goddard & Douglas 1975) and as such, it can be used to study how E/I balance evolves 

during plastic sensitization of neuronal circuitry.   

Though strain differences exist with regards to seizure presentation, in general, 

within tens of seconds of receiving a systemic dose of PTZ rodents will socially isolate 

themselves, becoming distinctly hypomobile and unresponsive (Kosobud et al 1992). 

These seizures can evolve into myoclonic muscle jerks, indicative of increased 
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synchronous neuronal activity in the motor cortex. Depending on the dose of PTZ (sub-

convulsive vs. convulsive), seizure severity can further progress into a generalized 

convulsive episode involving forelimb and/or hindlimb clonus. This progression of 

seizure activity – from behavioral immobility and facial automatisms, to forelimb clonic 

movements and generalized convulsions –  was first characterized by Ronald Racine 

(Racine 1972). 

In the seminal kindling studies performed by Goddard, the stimulus was a sub-

convulsive threshold electrical current, delivered daily via depth electrodes implanted in 

rat amygdala (Goddard 1967). Several years later, several studies pioneered the use of 

PTZ as a chemical kindling agent (Ito et al 1977, Mason & Cooper 1972). In this model, 

a low dose of PTZ is administered daily via systemic injections. Over time, an initially 

sub-convulsant dose will evoke behavioral convulsions, at which point an animal is 

considered to be “kindled” (Dennison et al 1995, Wada et al 1974), an effect generally 

viewed as being permanent. It should be noted that the kindling phenomenon is not 

specific to rodents, rather, it has been demonstrated in every species tested, from frog 

to humans, where a similar seizure progression was observed in response to brain 

tumors (McNamara 1986, Morrell 1985).  

 

1.3.4.2 Kainic Acid (KA) 

The excitatory agent KA was first isolated by Murakami and colleagues from the 

red seaweed Digenea simplex (Murakami et al 1953). Soon after, it was found that 

microiontophoretic administration to cortical neurons resulted in prolonged spike 

discharges (Shinozaki 1978, Shinozaki & Konishi 1970), followed next by the 
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observation that parenteral KA delivery resulted in excitotoxic, depolarization-induced 

cell death (Olney et al 1974). In its seminal use as a chemoconvulsant, Lagowska and 

Ben-Ari discovered that KA administration in the amygdala produced prolonged, 

recurrent convulsive seizures (status epilepticus), heralding its use in epilepsy research 

(Ben-Ari & Lagowska 1978). Indeed, KA induces excitatory activity as it exhibits affinity 

for both AMPARs as well as its own cognate receptors, bindings to KARs containing the 

GluK1-2 and GluK5-7 subunits with high-affinity (Vincent & Mulle 2009). Within minutes 

of systemic KA administration, animals become immobile and/or hypermobile – 

including unilateral rotations and/or pacing – which can further progress to displays of 

myoclonic twitching, kyphotic rearing, and paw clonus associated with rearing [personal 

observations and (Ben-Ari 2012, McKhann II et al 2003)]. Depending on the dose, these 

seizures can evolve into generalized convulsions and “popcorn” like violent jumping that 

in some instances culminates in death [personal observations and (Ben-Ari 2012, 

McKhann II et al 2003)]. Following KA administration, early activation of the 

hippocampus and amygdala, two brain regions with a particularly low seizure threshold, 

is observed via EEG recording (Ben-Ari 2012). Postmortem analysis of KA-treated 

animals reveals extensive cell loss in hippocampal CA3, a region particularly vulnerable 

to KA-induced excitation, in part, due to a high density of KARs and excitatory recurrent 

collaterals that, once synchronous, propagate to other structures within the limbic 

system and brain (Ben-Ari 2012, Ben-Ari & Cossart 2000, Miles & Wong 1983, 

Robinson & Deadwyler 1981, Vincent & Mulle 2009, Westbrook & Lothman 1983). 

Finally, the KA-induced model of status epilepticus represents a model of acquired 



 42 

epilepsy as animals can develop spontaneous seizures several weeks to months 

following the initiation of seizure activity (Ben-Ari 2012).  

 

1.3.5 Current need for understanding E/I balance  

An E/I imbalance has been implicated in numerous neurological disorders and 

disease states. For instance, dysfunction of GABAergic signaling, glutamatergic 

signaling, or both has been implicated in the etiology of autism spectrum disorders 

(ASD), anxiety, depression, intellectual disability, cerebral ischemia, traumatic brain 

injury, schizophrenia, and epilepsy (Coghlan et al 2012, Luscher & Fuchs 2015, 

Meldrum 1994, Moghaddam & Javitt 2012, Olsen & Avoli 1997). This is exemplified by 

ASDs and schizophrenia which, despite varied genetic etiologies, both present with 

similar E/I deficits including NMDAR hypofunction (Akbarian et al 1996, Blundell et al 

2010, Duffney et al 2013, Gao & Penzes 2015, Maliszewska-Cyna et al 2010, Morris et 

al 2005). In fact, an emerging hypothesis is that a shared pathophysiological E/I 

imbalance underlies similar social and cognitive behavioral phenotypes in ASD and 

schizophrenia (Gao & Penzes 2015). Furthermore, while dozens of disease associated 

genes have been implicated in epilepsy (Poduri & Lowenstein 2011), behavioral 

presentation of spontaneous seizures – the hallmark of epilepsy diseases – are thought 

to be a result of commonalities in GABAergic hypofunction and/or glutamatergic 

hyperfunction (Bradford 1995). Given the prevalence of disorders and disease states 

associated with an E/I imbalance, it is necessary to fully understand all cellular and 

molecular processes that underlie normal, physiological E/I transmission in order to 
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develop novel therapeutic options to provide individuals with an E/I imbalance 

symptomatic relief. 
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1.4 Specific Aims  

Numerous studies demonstrate that Sxc- is an important contributor to the 

ambient extracellular glutamate levels that bathe the central nervous system in vivo 

(Augustin et al 2007, Baker et al 2002, Bannai 1986, De Bundel et al 2011, Massie et al 

2011a, Melendez et al 2005). Moreover, Sxc--mediated cystine import provides cells 

with the rate-limiting substrate (cysteine) of the major cellular antioxidant glutathione; it 

also forms a redox couple on its own (Banjac et al 2008, Dringen 2000). Given that 

glutamate signaling and cellular redox status both influence neuronal excitability, the 

objective of this dissertation was to determine whether endogenous Sxc- signaling 

contributes to E/I balance in vivo and if so, to investigate the mechanism(s) underlying 

its contribution. 

 

1.4.1 Specific Aim 1 

Experiments were designed to determine whether Sxc- contributes to the E/I 

balance in vivo using the acute-PTZ seizure threshold test (Chapter 2). Female 

and male mice that harbor a spontaneous mutation in Sxc- (SLC7A11sut/sut mice) were 

used to assess the contribution of endogenous Sxc- signaling in acute seizures induced 

indirectly by disinhibition achieved via administration of the GABAA receptor antagonist 

PTZ. Moreover, experiments in this aim characterized naïve SLC7A11sut/sut mice by 

exploring the extent to which loss of Sxc- affected brain morphometry at the gross and 

cellular level.   
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1.4.2 Specific Aim 2 

Experiments were designed to determine whether Sxc- signaling affects synaptic 

plasticity assessed using the PTZ-kindling model of epileptogenesis (Chapter 3). 

Whether endogenous Sxc- signaling contributed to epileptogenesis was assessed by 

comparing PTZ-kindling acquisition between male SLC7A11sut/sut and SLC7A11+/+ 

littermates. Furthermore, experiments in this aim addressed whether observed changes 

in PTZ-kindling were associated with morphological changes implicated in 

epileptogenesis, with changes in brain redox status, and/or with changes in plasma 

membrane protein expression.  

 

1.4.3 Specific Aim 3 

Experiments were designed to determine whether Sxc- signaling regulates E/I 

balance using both the acute-KA seizure threshold test and the elevated KA 

dosing model of status epilepticus (Chapter 4). To explore whether results found in 

chapters two and/or three were model-dependent, this specific aim used a 

pharmacologically distinct chemoconvulsant, KA, to directly elicit excitation in vivo in two 

different dosing paradigms.  

Aim 3.1: Female and male SLC7A11sut/sut and SLC7A11+/+ littermates were used 

to assess the contribution of endogenous Sxc- signaling to acute seizures 

induced by KA. 

Aim 3.2: Whether endogenous Sxc- signaling contributed to the incidence of 

status epilepticus elicited using an elevated KA dosing paradigm was assessed 

using female and male SLC7A11sut/sut and SLC7A11+/+ littermates. Furthermore, 
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the contribution of endogenous Sxc- signaling to repeated KA dosing-induced cell 

death and KA-mediated changes in glutamate or GABA receptor plasma 

membrane protein expression levels was investigated.    

 
 
1.5 Significance  

A variety of neurological disorders and disease states are afflicted by an E/I 

imbalance (Section 1.3.5). In order to develop therapeutic targets for disease states 

resulting from an E/I imbalance, including epilepsy, we must first fully understand the 

cellular and molecular processes that underlie normal, physiological transmission. 

Towards this end, the results presented herein provide the first evidence that 

physiological Sxc- function maintains E/I balance in vivo in both female and male mice. 

Additionally, evidence is presented implicating Sxc- in epileptogenesis. As such, the 

work presented in this thesis may pave the way for the development of therapeutic 

targets to combat an E/I imbalance.   
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Chapter 2: Sex-dependent alterations in neuronal morphometry occur 
in association with altered E/I balance in system xc- null mice 
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2.1 Summary  

Despite evidence that the cystine/glutamate antiporter Sxc- contributes to ambient 

extracellular glutamate levels and redox status, its contribution to physiological brain 

function in vivo remains incompletely defined. As such, the present study investigated 

whether and how Sxc- contributes to morphological parameters implicated in E/I 

balance, as well as, whether it contributes to acute seizure activity elicited by the 

chemoconvulsant PTZ. Gross brain and cellular morphology were explored using 

thionin or Golgi-Cox staining, respectively, in female and male SLC7A11+/+ and 

SLC7A11sut/sut mice. Furthermore, littermate mice were administered an acute dose of 

PTZ (i.p.) and seizure severity was scored using a five-point behavioral scale. Our 

results demonstrate that loss of Sxc- signaling results in sex-dependent brain 

morphological alterations at the gross, cellular, and sub-cellular level. Specifically, 

female SLC7A11sut/sut mice have decreased corpus callosum thickness, soma size, and 

dendritic spine head widths as compared to SLC7A11+/+ sex-matched littermate 

controls. Conversely, male SLC7A11sut/sut mice have enhanced dendritic complexity and 

dendritic spine head widths as compared to SLC7A11+/+ sex-matched littermate 

controls. Interestingly, these sex-dependent morphological alterations occur in 

association with a sex-independent enhancement of neuronal excitability, exemplified 

by a decreased convulsive seizure threshold upon administration of an acute dose of 

PTZ. This study provides the first evidence that Sxc- signaling regulates brain 

morphology in a sex-dependent manner, and that loss of Sxc- disrupts E/I balance in the 

acute PTZ seizure threshold test.  
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2.2 Introduction  

System xc- (Sxc-) is an amino acid antiporter that couples the import of L-cystine 

(CySS) with the export of L-glutamate (Glu) with 1:1 stoichiometry (Bannai 1986, Bannai 

& Kitamura 1980). Sxc- is a heterodimer composed of a light chain (xCT, encoded by 

SLC7A11) that confers substrate specificity linked via a disulfide bridge to a heavy chain 

(4f2hc or CD98, encoded by SLC3A2) that traffics xCT to the plasma membrane (Bassi 

et al 2001, Sato et al 1999, Verrey et al 2004). Within the central nervous system 

(CNS), transcriptome and immunohistochemical analyses conclude that Sxc- is 

predominantly localized to astrocytes (Ottestad-Hansen et al 2018, Pow 2001, Zhang et 

al 2014).  

Evidence from xCT mutants indicates that Sxc--mediated glutamate release 

accounts for >50% of the ambient extracellular glutamate pool that bathes the CNS in 

vivo (Augustin et al 2007, De Bundel et al 2011). This pool of glutamate is largely 

regulated by glial transporters, and multiple studies suggest it plays a role in maintaining 

physiological excitatory/inhibitory (E/I) balance. For example, glial-derived ambient 

glutamate can modulate neuronal Kv2.1 channels, whose somatodendritic location and 

delayed-rectifier K+ current exert a strong influence on action potential initiation 

(Mulholland et al 2008, Murakoshi & Trimmer 1999). Moreover, tonic activation of 

NMDA receptors by ambient glutamate regulates the intrinsic excitability and 

synchronization of hippocampal pyramidal and granule cells (Angulo et al 2004, 

Cavelier et al 2005, Dalby & Mody 2003, Meur et al 2007, Sah et al 1989). Other 

evidence points to a role for ambient glutamate in depolarization induced suppression of 

inhibition (DSI) of inhibitory interneurons through its activation of pyramidal cell 
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metabotropic glutamate receptors (mGluRs) in the hippocampus (Varma et al 2001). 

Pertinently, studies performed in xCT mutants have demonstrated that genetic deletion 

of xCT results in increased (200-300%) postsynaptic glutamate receptors in Drosophila, 

and male transgenic xCT null mice have enhanced AMPA receptor surface expression 

and larger evoked and spontaneous EPSCs in ex vivo slice (Augustin et al 2007, 

Williams & Featherstone 2014). Although the magnitude of EPSCs is positively 

correlated with morphological parameters, such as dendritic complexity (Klenowski et al 

2016) and dendritic spine geometry (Matsuzaki et al 2001), whether mice null for Sxc- 

have cellular morphological alterations is not known.  

Sxc- also contributes to the intracellular/extracellular redox homeostasis; CySS 

import through Sxc- is necessary for the synthesis and maintenance of the cellular 

antioxidant glutathione (GSH) and contributes to the cysteine/cystine (Cys/CySS) redox 

cycle across the cell plasma membrane (Banjac et al 2008, Sato et al 2005). 

Interestingly, cellular redox status influences the E/I balance in part because glutamate 

receptors (NMDA) and transporters are susceptible to redox modification; disulfide 

reduction potentiates NMDA mediated currents and increases glutamate uptake 

whereas thiol oxidation does the opposite (Aizenman et al 1989, Köhr et al 1994, 

Sullivan et al 1994, Trotti et al 1997). Additionally, GSH participates in signal 

transduction and regulates gene expression, cellular metabolism, and cell proliferation 

(Lu 2009, Wu et al 2004). Moreover, GSH deficiency in excitatory amino acid 

transporter 3 (EAAT3/EAAC1) null mice (Aoyama et al 2006), as well as 

pharmacologically induced GSH deficiency in rats (Jain et al 1991), occurs in 

association with brain tissue atrophy, suggesting that decreased GSH levels induces 
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neurodegeneration. However, exactly how redox balance influences excitability in vivo 

appears to be complex; mice deficient in glutathione peroxidase, with elevated brain 

oxidative stress levels, display less seizure activity following KA administration whereas 

manganese superoxide dismutase (SOD+/-) mice with chronic mitochondrial oxidative 

stress have increased seizure severity (Jiang et al 2000, Liang & Patel 2004). 

Pertinently, male and female transgenic xCT null mice have elevated levels of plasma 

CySS (Sato et al 2005). However, male transgenic xCT null mice have normal levels of 

hippocampal GSH and are resistant to seizures elicited by intravenous infusion of three 

pharmacologically distinct chemoconvulsant – pilocarpine, NMDA, or KA (De Bundel et 

al 2011).  

Taking an in vivo approach, we investigated whether female and male Sxc- null 

(SLC7A11sut/sut; sut/sut) mice have alterations in brain excitability as compared to wild-

type littermate control mice. Given that changes in synaptic efficacy and redox balance 

are associated with changes in brain morphology, we investigated whether alterations in 

such occurred in SLC7A11sut/sut mice. Herein, we demonstrate that sex-dependent 

changes in neuronal morphology occur in association with a sex-independent increase 

in susceptibility to PTZ-evoked convulsive seizures in SLC7A11sut/sut mice. These 

results indicate that Sxc- signaling contributes to the endogenous network activity that 

maintains E/I balance in vivo. 
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2.3 Materials and Methods  

2.3.1 Animals 

Mice were bred and maintained in the AALAC accredited Laboratory Animal 

Resource facility of Syracuse University on a 12 hr light/dark schedule (7am/7pm). 

Standard mouse chow and water were provided ad libitum. Wild-type (SLC7A11+/+) and 

xCT mutant (SLC7A11sut/sut) littermates for studies were derived from heterozygous 

(SLC7A11+/sut) breeding units (F1) that were obtained by crossing SLC7A11sut/sut male 

mice [Jackson Laboratories (JAX) Stock #001310] with SLC7A11+/+ female C3H/HeSnJ 

mice (JAX, Stock #000661). F2 SLC7A11+/sut progeny were also used as breeding units 

for studies. Genotyping was performed via PCR analysis of tail genomic DNA samples: 

+/+ primers, 5'- GAA GTG CTC CGT GAA GAA GG -3' (forward), 5'- ATC TCA ATC 

CTG GGC AGA TG -3' (reverse); sut/sut primers, 5'- CCA CTG TTG TAG GTC AGC 

TTA GG -3’ (forward), 5'- CAG GAC CTG TGA ATA TGA TAG GG -3' (reverse). Mice 

were segregated by sex at weaning and SLC7A11+/+ and SLC7A11sut/sut housed two to 

four per cage. Experiments were carried out on female and male mice 8-12 weeks of 

age in accordance with the National Institutes of Health guidelines for the use of 

experimental animals as approved by the Institutional Animal Care and Use Committee 

of Syracuse University. These breeding and housing strategies were employed to 

control for environmental differences, genetic background influences, and genetic drift 

(Barnwell et al 2009, Pick & Little 1965). 
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2.3.2 Gross Brain Morphology Measurements 

Brains were harvested from naïve 12 week old SLC7A11+/+ and SLC7A11sut/sut 

littermates and snap-frozen on dry ice in Optimal Cutting Temperature (O.C.T) 

compound (Tissue-Tek, Torrance, CA). Frozen sections (coronal, 40 µm) were cut on a 

cryostat at 80 µm intervals, mounted on SuperFrost Plus slides (Fisher Scientific, 

Houston, TX), and thionin-stained as we previously describe (Chowdhury et al 2018). 

ImageJ Software (version 1.47v or 1.51n; National Institutes of Health, Bethesda, MD, 

RRID: SCR_003070) was used to make gross brain morphological measurements on 

scanned images (Epson 3170; 720 dpi) of slices at +1.1, -0.1, -0.94, -1.46, and -2.54 

mm relative to bregma  by three individuals blind to genotype. Mean cortical width was 

obtained by averaging six non-overlapping, straight tool measurements taken from the 

apex of the corpus callosum to the pial layer in the somatosensory cortex (3 each 

bilaterally). Mean corpus callosum width was obtained by averaging three non-

overlapping, straight tool measurements taken from the base to the apex of the corpus 

callosum at the midline.  Mean ventricular, striatal, hemispheric, and corpus callosum 

areas were determined by averaging user-defined pixel volumes using the free hand 

tool taken of the respective regions measured three times bilaterally (six in total) or 

three times total for structures decussating the midline (corpus callosum). In all cases, 

data are expressed as the mean ± SEM of measurements obtained from animals in the 

respective genotype derived from the mean calculated from three individual raters blind 

to experimental conditions.  
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2.3.3 Cellular Morphological Measurements  

2.3.3.1. Golgi-Cox Staining 

Brains from naïve SLC7A11+/+ and SLC7A11sut/sut littermates were Golgi-Cox 

stained using the FD Rapid Golgi Stain Kit (FD Neuro Technologies, Inc., Baltimore, 

MD) as per manufacturer’s instructions. Following removal from the cranium, brains 

were immediately rinsed in deionized (DI) water, placed in a proprietary impregnation 

solution (Solution A plus B) containing potassium dichromate, potassium chromate, and 

mercuric chloride, and stored at room temperature for 14 days in the dark. Brains were 

then transferred to a sucrose solution (Solution C) for 3 days followed by rapid freezing 

on dry ice. Frozen brain were cut serially (≈ +2.46 – -2.30 mm posterior to bregma) into 

140 µm coronal sections, mounted on gelatin-coated slides (FD Neuro Technologies, 

Inc., Baltimore, MD), air dried at room temperature for 2 days in the dark. Sections were 

Golgi-Cox stained as per manufacturer’s instructions (FD Rapid Golgi Stain Kit). Briefly, 

sections were initially rinsed 2x with DI water (4 min each) then placed in a solution 

containing silver nitrate (Solution D plus E) for 10 min. Slides were rinsed in DI water 2x 

for 4 min each followed by serial dehydration in absolute ethanol (50%, 75%, 95%, 

100%, 100%, 100%, 100%; 4 min each). Ethanol was cleared with xylene (3x for 4 min 

each), after which coverslips were mounted using Permount mounting media.   

2.3.3.2 Dendritic Morphology and Soma Area Analysis 

Photomicrographs of Golgi-Cox stained layer V pyramidal cells in the primary 

motor cortex (PM1) were obtained with a Nikon eclipse Ni-U upright microscope with 

motorized stage at 20x magnification. Neurons whose cell body and dendrites were 

completely impregnated and visible within the plane(s) of focus were selected for 
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analysis. Neurons were reconstructed with Adobe Illustrator. The complexity of dendritic 

arborization in reconstructed neuronal drawings was quantified (Image J) using Sholl 

analysis as described (Sholl 1953). Briefly, the number of dendrites intersecting 

concentric circles of a gradually increasing radius from the centroid of the soma were 

calculated. The soma cross-sectional area was quantified using the polygon tool in 

Image J. The number and length of primary, secondary, tertiary, apical, and basal 

dendrites were also determined using Neuron J. Experimenters blind to genotype 

performed the image acquisition and analyses. Six to 11 neurons from 3-5 

mice/genotype/sex were analyzed; data are expressed as the mean ± SEM of all 

measurements obtained.  

2.3.3.3 Spine Morphometric and Density Analysis: 

Photomicrographs of Golgi-Cox stained secondary apical dendrites on layer V 

pyramidal cells in the PM1 were obtained with a Nikon eclipse Ni-U upright microscope 

with motorized stage at 60x magnification. Neurons whose cell body and dendrites were 

completely impregnated and were visible within the plane(s) of focus were selected for 

analysis. Spine morphometric analysis was carried out as described (Risher et al 2014). 

In brief, Z-stack sections were analyzed using RECONSTRUCT software by measuring 

the length and head width of all protrusions (spines) along the dendritic segment of 

interest. The spine density was determined by calculating the number of protrusions/µm 

of dendrite. The length-to-width ratios (LWR) of individual spines were calculated in 

Microsoft Excel and used for hierarchical classification into the following categories: 

branched (entered manually by experimenter), filopodia (length > 2µm), mushroom 

(width > 0.6 µm), long thin (length > 1µm), thin (LWR > 1), and stubby (LWR ≤ 1). All 
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image acquisition and analyses were performed by experimenters blinded to genotype. 

Eight-nine neurons from three mice/genotype/sex were analyzed; data are expressed 

as the mean ± SEM of all measurements obtained. 

 

2.3.4 PTZ dosing paradigm  

Five days prior to each study, SLC7A11+/+ or SLC7A11sut/sut mice were 

acclimated to handling by performing mock daily intraperitoneal (i.p.) injections which 

consisted of inverting the mouse and rubbing its abdomen. Prior to each experiment, 

mice were brought into the procedure room, weighed, and allowed to acclimatize for at 

least one hour. PTZ (Sigma Chemical Co., St. Louis, MO) was dissolved in saline, filter 

sterilized, and administered i.p. in a volume of 10 ml/kg body weight. Mice were injected 

with a single dose of PTZ. Doses were chosen following initial dose ranging studies in 

female and male SLC7A11+/+ or SLC7A11sut/sut mice to determine the PTZ seizure 

threshold for each strain (Supplementary Fig. S1) (Kosobud et al 1992). Following each 

injection, mice were observed for acute behavioral seizures over the next 30 min. The 

time and severity of behavioral seizures (see Table 2.1 below) were scored and 

recorded for each mouse by an observer blinded to genotype to ensure unbiased 

scoring. The percentage of animals exhibiting convulsive seizures was determined by 

dividing the number of animals with a maximum seizure score of 3 or 4 by the total 

number of animals injected.  
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2.3.5 Statistical analysis 

All statistical analyses were performed using GraphPad Prism (Version 6.0.1, 

Graphpad Software, Inc., La Jolla, CA). Brain morphological parameters, including 

areas, lengths, and widths, were compared using two-way ANOVA. Prior to parametric 

analysis, count or percentage data were log (y = log(y)) or arcsine (y = 

arcsine[sqrt(y/100)] transformed, respectively. Seizure severity was compared using a 

Mann-Whitney U test, whereas proportions indicating the percent of mice convulsing 

were compared using a Fisher’s exact test. In all cases, significance was set at p < 

0.05.  
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Table 2.1: Descriptive PTZ-induced Seizure Scoring System 

Seizure 
Score 

Abbreviated 
Description 

Detailed 
Description 

0 Normal behavior 
Frequent ambulation/exploration, sniffing, rearing, peer 
interactions, grooming, eating, digging, climbing are 
common. 

1 
Hypomobility 

and hypoactivity 

Mice will socially isolate self and disregard peers; body 
will be positioned close to bottom of cage. The overall 
behavioral picture will be dominated by bouts (>10 sec 
in duration) of staring and motionlessness that may be 
interrupted by brief sniffing or ambulation. 

2 

 
Repeated 
myoclonus 

 

Animal exhibits at least two isolated myoclonic 
seizures typically involving axial muscles, commonly 
seen as neck flexion. Straub tail (dorsiflexion) is also 
common, as is an increase in locomotor activity 
(compared to score 1). 

3 

 
Convulsive 

seizure with intact 
righting reflex 

Clonic seizures involve forelimbs and neck while the 
animal assumes an upright posture using hind limbs to 
support body weight. 

4 

 
Convulsive 

seizure with loss 
of righting reflex 

 

Clonic seizures involve both forelimbs and hind limbs 
preventing the maintenance of upright posture. 
Infrequently, these seizures can be associated with 
violent running and jumping episodes and tonic hind 
limb extension. 

Table adapted from descriptions in (Ferraro et al 1999, Pitkanen 2006, Racine 1972).  
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2.4 Results  

 
Gross morphometric analysis of SLC7A11+/+ and SLC7A11sut/sut mice 

Mice null for the neuronal cysteine uptake transporter EAAT3 (EAAC1) exhibit 

gross brain atrophy in association with decreased GSH levels (Aoyama et al 2006). 

Whether loss of the predominant cyst(e)ine supplier in astrocytes, Sxc-, similarly 

influences brain morphology was explored. Though quantification of female brain 

hemisphere area using coronal sections spanning +1.1 to -2.54 bregma revealed a 

slight decrease in overall brain size in SLC7A11sut/sut mice as compared SLC7A11+/+ 

sex-matched littermate controls, this effect was not statistically significant (Fig. 2.1B; p = 

0.2520; repeated measures two-way ANOVA). Similarly, SLC7A11sut/sut females showed 

a slight, but not significant, decrease in cortical area (Fig. 2.1C; p = 0.2472), striatal 

area (Fig. 2.1D; p = 0.5675), and corpus callosum area (Fig. 2.1F; p = 0.0739), while 

their lateral ventricle area was indistinguishable from SLC7A11+/+ littermates (Fig. 2.1E; 

p = 0.2941; repeated measures two-way ANOVA). However, a significant reduction in 

corpus callosum thickness was detected in SLC7A11sut/sut female as compared to 

SLC7A11+/+ littermates (Fig. 2.1G; p = 0.0399; repeated measures two-way ANOVA). 

Interestingly, these findings were sex-dependent, as male SLC7A11sut/sut mouse brains 

were virtually indistinguishable from their SLC7A11+/+ sex-matched littermate controls 

with respect to not only corpus callosum thickness, but also hemisphere area, cortical 

thickness, striatal area, lateral ventricle area, and corpus callosum area (Fig. 2.2). 

 

 

 



 60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Comparison of gross brain morphology between female SLC7A11+/+ 
and SLC7A11sut/sut mice 

Gross brain morphological measurements were made on thionin-stained coronal brain 
sections from 12 week old naïve female SLC7A11+/+ (+/+) (n = 4) and SLC7A11sut/sut 
(sut/sut) (n = 4) littermates. Sections of 40 μm thickness were imaged using an Epson 
Digital Scanner at 720 dpi. Digitized images were processed and quantified using NIH 
Image J software. 
A) Representative thionin-stained coronal sections spanning +1.1 to -2.54 anterior to 
posterior from bregma from +/+ and sut/sut mice derived from sut/+ breeders.  
B-E) Quantification of (B) hemispheric area, (C) cortical width, (D) striatal area, (E) lateral 
ventricle area, (F) corpus callosum area, and (G) corpus callosum width from +/+ and 
sut/sut mice was performed over 3-5 coronal sections as described in Materials and 
Methods. Data are expressed as the mean ± SEM width (mm) or area (mm2). No significant 
difference between +/+ and sut/sut mice was observed in hemispheric area (B; p = 0.2520), 
cortical thickness (C; p = 0.2472), striatal area (D; p = 0.5675), lateral ventricle area (E; p = 
0.2941), or corpus callosum area (F; p = 0.0739) as determined by repeated measures two-
way ANOVA. *Corpus callosum width is significantly decreased in sut/sut as compared to 
+/+ littermates (G; p = 0.0399, repeated measures two-way ANOVA). 
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Figure 2.2 Comparison of gross brain morphology between male SLC7A11+/+ and 
SLC7A11sut/sut mice 

Gross brain morphological measurements were made on thionin-stained coronal brain 
sections from 12 week old naïve male SLC7A11+/+ (+/+) (n = 7) and SLC7A11sut/sut 
(sut/sut) (n = 8) littermates. Sections of 40 μm thickness were imaged using an Epson 
Digital Scanner at 720 dpi. Digitized images were processed and quantified using NIH 
Image J software. 
A) Representative thionin-stained coronal sections spanning +1.1 to -2.54 anterior to 
posterior from bregma from +/+ and sut/sut mice derived from sut/+ breeders.  
B-E) Quantification of (B) hemispheric area, (C) cortical width, (D) striatal area, (E) 
lateral ventricle area, (F) corpus callosum area, and (G) corpus callosum width from +/+ 
and sut/sut mice was performed over 3-5 coronal sections as described in Materials and 
Methods. Data are expressed as the mean ± SEM width (mm) or area (mm2). No 
significant difference between +/+ and sut/sut mice was observed in hemispheric area 
(B; p = 0.3061), cortical thickness (C; p = 0.6010), striatal area (D; p = 0.7010), lateral 
ventricle area (E; p = 0.7990), corpus callosum area (F; p = 0.6587), or corpus callosum 
width (G; p = 0.6321) as determined using repeated measures two-way ANOVA. 
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Quantification of primary motor cortex layer V pyramidal cells in SLC7A11+/+ and 

SLC7A11sut/sut mice 

The dendritic tree complexity of cortical layer V excitatory pyramidal cells can 

influence their stereotypical repetitive spike bursting train firing pattern and thus E/I 

balance (Mainen & Sejnowski 1996). At the cellular level, the dendritic complexity of 

layer V neurons derived from the primary motor cortex of female SLC7A11sut/sut mice 

was indistinguishable from sex-matched SLC7A11+/+ controls (Fig. 2.3C; p = 0.8603; 

two-way ANOVA). Conversely, neurons derived from male SLC7A11sut/sut mice had 

enhanced dendritic complexity as compared to SLC7A11+/+ sex-matched littermates 

(Fig. 2.3C; p < 0.0001) and in fact, were indistinguishable from SLC7A11sut/sut female 

mice (Fig. 2.3C; p = 0.4185). Interestingly, a sex-difference was uncovered in that 

SLC7A11+/+ males had decreased dendritic complexity as compared to SLC7A11+/+ 

females (Fig. 2.3C; p < 0.0001) (two-way ANOVA). While this data indicates a clear sex 

difference with respect to dendritic complexity in female and male SLC7A11+/+ mice on 

the C3H/HeSnJ background, it also indicates that loss of Sxc- in male mice rendered 

dendritic complexity more “female-like” overall. 

Quantification of primary, secondary, and tertiary neurite numbers and length 

revealed further sex differences: while no within-sex genotype differences were 

observed, the number of tertiary neurites in SLC7A11sut/sut male mice was enhanced as 

compared to SLC7A11sut/sut females (Fig. 2.4A; p < 0.05; two-way ANOVA with 

Bonferroni’s multiple comparisons). Moreover, the length of both primary (Fig. 2.4C; p = 

0.0210) and secondary (Fig. 2.4C; p = 0.0014) neurites was enhanced in females 

versus males (two-way ANOVA), and further classification of primary, secondary, and  
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Figure 2.3 Comparison of dendritic complexity between SLC7A11+/+ and 
SLC7A11sut/sut mice 

Photomicrographs of Golgi-Cox stained primary motor cortex (PM1) layer V pyramidal 
cells from naïve SLC7A11+/+ [+/+, n = 64 neurons (39M, 25F) from 7 mice (4M, 3F)] and 
SLC7A11sut/sut [sut/sut, n = 82 neurons (43M, 39F) from 9 mice (5M, 4F)] littermates 
from eight separate litters were reconstructed using Adobe Illustrator as depicted by 
representative tracings from (A) females or (B) males.  
C) The complexity of dendritic arborization in these neurons was explored by Sholl 
analysis in females and males. Each data point represents the mean number of 
crossings ± SEM. *Neurons derived from sut/sut male mice have enhanced dendritic 
complexity compared to +/+ littermate controls (p < 0.0001; two-way ANOVA with 
Bonferroni’s multiple comparisons). #Male +/+ neuronal complexity is also significantly 
decreased as compared to +/+ females as denoted by the # sign (p < 0.0001). 
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Figure 2.4 Neurite number and length analysis in female and male SLC7A11+/+ and 
SLC7A11sut/sut mice 

Neurite processes on reconstructed neurons from Figure 2.3 were quantified by NIH 
Image J analysis.  
A-B) Bars [black bar (SLC7A11+/+; +/+) and open bar (SLC7A11sut/sut; sut/sut)] represent 
the mean ± SEM number of (A) primary, secondary, or tertiary or (B) apical or basal 
neurites. No significant within-sex genotype differences were observed in the number of 
neurites at any order (1°, 2°, or 3°) or polarity (apical or basal) quantified (two-way 
ANOVA). However, sut/sut males have an increased number of 3° neurites as 
compared to female sut/sut mice as denoted by the asterisk (p < 0.05, Two-way ANOVA 
with Bonferroni’s multiple comparisons on log transformed data).   
C-D) Bars [black bar (+/+) and open bar (sut/sut)] represent the mean ± SEM length of 
(C) primary, secondary, or tertiary or (D) apical or basal neurites. No significant within-
sex genotype differences were observed in the length of neurites at any order (1°, 2°, or 
3°) or polarity (apical or basal) quantified (two-way ANOVA). #Females have increased 
1° (p = 0.0210) and 2° (p = 0.0014) order as well as basal (p = 0.0067) neurite lengths 
as compared to males (two-way ANOVA with Bonferroni’s multiple comparisons).  
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tertiary neurite polarity into apical or basal revealed enhanced basal neurite length in 

females as compared to males (Fig. 2.4D; p = 0.0067; two-way ANOVA). 

Evaluation of the neuronal cell body revealed that the cross-sectional soma area 

was similar in neurons derived from male SLC7A11+/+ and SLC7A11sut/sut littermates. 

However, an 18% reduction in cross-sectional soma area was revealed in female 

SLC7A11sut/sut as compared to SLC7A11+/+ sex-matched littermate controls (Fig. 2.5; 

335.6 ± 14.18 µm2 for SLC7A11+/+ and 273.7 ± 10.98 µm2 for SLC7A11sut/sut mice, mean 

± SEM; p < 0.01; two-way ANOVA with Bonferroni’s multiple comparisons). Once more, 

sex-differences between SLC7A11+/+ male and SLC7A11+/+ female mice were observed 

(Fig. 2.5; p < 0.01; two-way ANOVA with Bonferroni’s multiple comparisons), and loss of 

Sxc- in female mice rendered their cross-sectional soma area more “male-like” given 

that they were indistinguishable from SLC7A11sut/sut male mice (Fig. 2.5; two-way 

ANOVA with Bonferroni’s multiple comparisons).  

 

Cortical layer V pyramidal cell dendritic spine analysis 

The majority of fast excitatory synaptic activity occurs at ionotropic glutamate 

receptors residing on dendritic spines. Moreover, the spine structure-function 

relationship has been well-characterized, with increases and decreases in spine head 

width correlating with increases and decreases in glutamate receptors and thus, 

strengthening and weakening of synaptic efficacy, respectively (Matsuzaki et al 2001, 

Noguchi et al 2005). Herein, the head width and length of spines were used for 

categorical classification to determine the proportion of nascent (filopodia, long thin), 

immature (thin), or mature (stubby, mushroom, branched) dendritic spines  
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Figure 2.5 Soma analysis in female and male SLC7A11+/+ and SLC7A11sut/sut mice 

The cross sectional soma area of reconstructed neurons from Figure 2.3 were 
quantified by NIH Image J analysis. Bars [black bar (+/+) and open bar (sut/sut)] 
represent the mean soma area ± SEM in females (left) or males (right). *Neurons 
derived from female sut/sut mice have a decreased soma area compared to +/+ sex-
matched littermate controls as denoted by the asterisk (p < 0.01); two-way ANOVA with 
Bonferroni’s multiple comparisons). #Female +/+ neurons are also significantly different 
from male +/+ neurons ( #p < 0.01).   
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Figure 2.6 Comparison of dendritic spine density and morphology between 
SLC7A11+/+ and SLC7A11sut/sut mice 

Golgi-Cox stained dendritic spines located on secondary apical dendrites of primary motor 
cortex layer V pyramidal cells from naïve SLC7A11+/+ [+/+, n = 18 neurons (9M, 9F) from 6 
mice (3M, 3F)] and SLC7A11sut/sut [sut/sut, n = 17 neurons (8M, 9F) from 6 mice (3M, 3F)] 
littermates from seven separate litters were analyzed using the Risher et al. method as 
described in materials and methods. The spine density was determined by calculating the 
number of protrusions/µm of dendrite. 
A) Bars represent the mean number of spines/10 µm dendritic length ± SEM in +/+ or 
sut/sut female or male mice. No significant difference between female or male +/+ and 
sut/sut mice was observed in dendritic spine density in layer V pyramidal cells (two-way 
ANOVA on log-transformed data). Inset: Representative photomicrographs (60x) of 
secondary apical dendritic spines from Golgi-Cox stained +/+ and sut/sut female or male 
mice. 
B) Bars represent the mean percentage of spines ± SEM in female or male +/+ or sut/sut 
mice categorized as either mushroom, filopodia, stubby, branched, thin, or long thin. No 
significant within-sex genotype differences in spine typology were observed between +/+ 
and sut/sut mice (two-way ANOVA on arcsine transformed data). #Males have increased 
mushroom (p = 0.0261), stubby (p < 0.0001), and thin (p = 0.0060) spines as compared to 
females whereas females have increased filopodia (p < 0.0001) and long thin (p = 0.0242) 
spines as compared to males (two-way ANOVA on arcsine transformed data). 
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(Risher et al 2014). Assessment of secondary apical dendritic spines on cortical layer V 

pyramidal cells indicated that spine density was similar in both SLC7A11+/+ and 

SLC7A11sut/sut female and male mice (Fig. 2.6A, two-way ANOVA). Further categorical 

classification of these spines – facilitated by calculating the spine length to head-width 

ratios – revealed sex-differences, with male mice exhibiting an increased proportion of 

mature mushroom (p = 0.0261) and stubby (p < 0.0001) spines, as well as thin spines 

(p = 0.0060), as compared to female littermates (Fig. 2.6B; two-way ANOVA). 

Furthermore, female mice demonstrated an increased proportion of nascent filopodia (p 

< 0.0001) and long thin (p = 0.0242) spines as compared to males (Fig. 2.6B; two-way 

ANOVA). These genotype-independent sex-differences demonstrated that a greater 

proportion of male spines are classified into mature (versus nascent) categories as 

compared to females, suggesting that male spines may be strengthened overall as 

compared to females.  

Further analysis of the spine length and head width parameters used to derive 

the aforementioned classifications revealed that spine head widths were significantly 

decreased in female SLC7A11sut/sut mice as compared to SLC7A11+/+ sex-matched 

littermates (Fig. 2.7A-B; p < 0.0001; two-way ANOVA). The opposite occurred in males, 

wherein SLC7A11sut/sut male mice had increased spine head widths as compared to 

sex-matched SLC7A11+/+ controls (Fig. 2.7A-B; p < 0.0001; two-way ANOVA). Analysis 

of sex-differences revealed that spine head widths of SLC7A11+/+ females were 

enhanced as compared to SLC7A11+/+ males whereas SLC7A11sut/sut females were 

decreased as compared to SLC7A11sut/sut males (Fig. 2.7A-B; two-way ANOVA  
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Figure 2.7 Comparison of spine head width between SLC7A11+/+ and 
SLC7A11sut/sut mice 

The distribution of head width variables from SLC7A11+/+ [+/+; females, n = 4763; 
males, n = 5056) on 18 neurons (9F, 9M) from 6 mice (3M, 3F)] and SLC7A11sut/sut 
[sut/sut; females, n = 4430; males, n = 5355) on 17 neurons (9F, 8M) from 6 mice (3F, 
3M)] littermates used to derive length-to-width ratios in Figure 2.6 were compared.  

A and B) Top: Each data point [black circles (+/+) or gray circles (sut/sut)] represents 
the head width of a spine in female (open bars) or male (hatched bars) mice. Bars 
represent the mean spine head width for each genotype. Bottom: the distribution of 
variables in the above scatterplot were fit to a violin plot. *Sut/sut female mice have 
significantly decreased mushroom spine head widths as compared to +/+ littermate 
controls (p < 0.0001; two-way ANOVA performed on head widths [n = 9 
neurons/genotype]); the opposite effect was observed in males (p < 0.0001; two-way 
ANOVA [n = 8-9 neurons /genotype]). Within-genotype sex-differences are indicated by 
the # signs.  
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Figure 2.8 Comparison of spine length between SLC7A11+/+ and SLC7A11sut/sut 
mice 

The distribution of spine length variables from SLC7A11+/+ [+/+; females, n = 4763; 
males, n = 5056) on 18 neurons (9F, 9M) from 6 mice (3M, 3F)] and SLC7A11sut/sut 
[sut/sut; females, n = 4430; males, n = 5355) on 17 neurons (9F, 8M) from 6 mice (3F, 
3M)] littermates used to derive length-to-width ratios in Figure 2.6 were compared.  
A and B) Top: Each data point [black circles (+/+) or gray circles (sut/sut)] represents 
the spine length of spine in female (open bars) or male (hatched bars) mice. Bars 
represent the mean spine length for each genotype. Bottom: the distribution of variables 
in the above scatterplot were fit to a violin plot. *Sut/sut male mice have significantly 
increased mushroom spine length as compared to +/+ littermate controls (males, p < 
0.0001; two-way ANOVA performed on head widths [n = 8-9 neurons/genotype/sex]). 
Within-genotype sex-differences are indicated by the # signs. 
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with Bonferroni’s multiple comparisons). With respect to spine lengths, SLC7A11+/+ and 

SLC7A11sut/sut female mice were identical whereas SLC7A11sut/sut males had increased 

spine lengths as compared to SLC7A11+/+ sex-matched littermate controls (Fig. 2.8A-B; 

p < 0.0001; two-way ANOVA with Bonferroni’s multiple comparisons). Moreover, 

analysis of sex-differences indicated that male spine head lengths were decreased as 

compared to females (Fig. 2.8A-B; p < 0.0001; two-way ANOVA). Taken together, these 

results demonstrate that loss of Sxc- signaling results in a sex-dependent change in 

layer V cortical pyramidal cell spine head width, with decreases or increases occurring 

in SLC7A11sut/sut females or males, respectively, as compared to sex-matched littermate 

controls. 

 

Functional assessment of E/I balance in SLC7A11+/+ and SLC7A11sut/sut mice 

Increases in excitability have been associated with cellular morphological 

alterations including enhanced dendritic complexity (Klenowski et al 2016, Mainen & 

Sejnowski 1996), decreased soma size (Hsu et al 2012, Ye et al 2015), and increased 

spine head width (Zito et al 2009),. To determine whether the aforementioned 

morphological phenotypes affect E/I balance in SLC7A11sut/sut mice, the seizure 

threshold of female and male SLC7A11+/+ and SLC7A11sut/sut littermates was assessed 

using the GABAAR antagonist PTZ. Within minutes of an acute PTZ dose (42 mg/kg, 

i.p.), a hypomobility phenotype (seizure score = 1) was evoked in the vast majority of 

mice regardless of sex or genotype. Despite this initial similarity, the behavioral 

response of SLC7A11sut/sut mice progressed such that by the end of the 30 minute  
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Figure 2.9 SLC7A11sut/sut mice are hyper-excitable 

Naïve female (n = 21) and male (n = 29) SLC7A11+/+ (+/+, total n = 50) and female (n = 
25) and male (n = 37) SLC7A11sut/sut (sut/sut, total n = 62) littermates were treated with 
a single dose of 42 mg/kg PTZ (i.p.). Seizure behavior was scored using a 5 point scale. 
Data were pooled from 16 independent experiments performed over 9 months.   
A) Individual seizure scores: Each data point [closed black circles (+/+) or open circles 
(sut/sut)] represents the maximal seizure score obtained by an individual mouse during 
a 30 min observation period. Horizontal lines represent the median seizure score for 
each genotype. *Sut/sut mice have a significantly greater seizure score than +/+ 
littermate controls (p = 0.0237; Mann-Whitney U Test).  
B) Convulsive index: Bars [black bar (+/+) and open bar (sut/sut)] represent the 
proportion (fraction within bars) of mice that experienced a convulsive seizure (seizure 
score ≥ 3) in A expressed as a % of total mice exposed to PTZ. *Sut/sut mice have a 
higher convulsive index compared to +/+ littermate controls (p = 0.0093; Fisher’s Exact 
Test).  
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Figure 2.10 Enhancement of acute PTZ-induced seizure activity in SLC7A11sut/sut 

mice differs by sex 

The distribution of variables from mice used to derive Figure 2.9 were grouped and 
analyzed separately by sex. 
A-B) Individual seizure scores: Each data point [closed black circles (+/+) or open 
circles (sut/sut)] represents the maximal seizure score obtained by individual female (A) 
or male (B) mice during a 30 min observation period. Horizontal lines represent the 
median seizure score for each genotype. Sut/sut female (p = 0.0030) but not male (p = 
0.6459) mice have a significantly greater seizure score than +/+ sex-matched littermate 
controls as denoted by the asterisk (Mann-Whitney U Test).  
C-D) Convulsive index: Bars [black bar (+/+) and open bar (sut/sut)] represent the 
proportion (fraction within bars) of mice that experienced a convulsive seizure (seizure 
score ≥ 3) in A (C) or B (D) as a % of total mice exposed to PTZ.  *Sut/sut female (p = 
0.0054) but not male (p = 0.4223) mice have a higher convulsive index compared to +/+ 
sex-matched littermate controls as denoted by the asterisk (Fisher’s Exact Test). n.s. 
denotes not-significant (p > 0.05).  
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Figure 2.11 Enhancement of acute PTZ-induced seizure activity in male 
SLC7A11sut/sut mice uncovered by using a lower dose 

Naïve male SLC7A11+/+ (+/+, total n = 46) and SLC7A11sut/sut (sut/sut, total n = 44) 
littermates were treated with a single dose of 35 mg/kg PTZ (i.p.). Seizure behavior was 
scored using a 5 point scale.  
A) Individual seizure scores: Each data point [closed black circles (+/+) or open circles 
(sut/sut)] represents the maximal seizure score obtained by individual mice during a 30 
min observation period. Horizontal lines represent the median seizure score for each 
genotype. Sut/sut male mice have a significantly greater seizure score than +/+ sex-
matched littermate controls as denoted by the asterisk (p = 0.0031, Mann-Whitney U 
Test).  
B) Convulsive index: Bars [black bar (+/+) and open bar (sut/sut)] represent the 
proportion (fraction within bars) of mice that experienced a convulsive seizure (seizure 
score ≥ 3) in A as a % of total mice exposed to PTZ.  *Sut/sut male mice have a higher 
convulsive index compared to +/+ sex-matched littermate controls as denoted by the 
asterisk (p = 0.0081, Fisher’s Exact Test). 
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observation period their median seizure score was significantly enhanced compared to 

SLC7A11+/+ littermates (Fig. 2.9A; p = 0.0237; Mann-Whitney U Test). Similarly, 

SLC7A11sut/sut mice demonstrated an enhanced convulsive seizure incidence with 

43.5% (27/62) achieving a seizure stage ≥ 3, compared to 20% (10/50) of SLC7A11+/+ 

mice (Fig. 2.9B; p = 0.0093; Fisher’s Exact Test). The mean latency to convulsive 

seizure, however, did not differ between genotypes (342.8 ± 59 and 387.5 ± 55 sec, 

mean ± SEM, for SLC7A11+/+ and SLC7A11sut/sut mice, respectively; p = 0.6500; 

unpaired t test).  

Stratification of the variables in Figure 2.9 by sex revealed that female (Fig. 

2.10A; p = 0.0030), but not male (Fig. 2.10B; p = 0.6459), SLC7A11sut/sut mice 

significantly contribute to this observed hyperexcitability (Mann-Whitney U Test). While 

female SLC7A11sut/sut mice had an elevated convulsive seizure incidence, with 14/25 

(56%) of mice achieving a seizure stage ≥ 3, compared to just 3/21 (14.3%) of 

SLC7A11+/+ mice (Fig. 2.10C; p = 0.0054; Fisher’s Exact Test), male SLC7A11+/+ and 

SLC7A11sut/sut mice had a similar convulsive seizure incidence (Fig. 2.10D; p = 0.4223; 

Fisher’s Exact Test). However, given that a greater proportion of male (7/29; 24.1%) 

versus female (3/21; 14.3%) SLC7A11+/+ mice had a convulsive seizure, we reasoned 

that males could have a lower seizure threshold overall that could mask our ability to 

detect a difference in excitability. To test this, male SLC7A11+/+ and SLC7A11sut/sut mice 

were administered a lower dose of PTZ (35 mg/kg, i.p.) and observed for behavioral 

seizure activity. Indeed, hyper-excitability in male SLC7A11sut/sut mice was uncovered at 

this dose, reflected by their enhanced seizure severity (Fig. 2.11A; p = 0.0031; Mann-

Whitney U Test) and convulsive seizure incidence (Fig. 2.11B; p = 0.0081; Fisher’s 
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Exact Test) as compared to SLC7A11+/+ sex-matched littermate controls. Taken 

together, the sex-independent decrease in SLC7A11sut/sut convulsive seizure threshold, 

unmasked by chemoconvulsant challenge, suggests that SLC7A11sut/sut mice have a 

shift in their E/I balance towards excitation as compared to SLC7A11+/+ sex-matched 

littermate controls.  

 

2.5 Discussion 

Glutamate transporters, such as the excitatory amino acid transporters (EAATs), 

have been demonstrated to be important in maintaining E/I balance [reviewed in 

(Danbolt 2001)]. Despite the well-characterized significance of EAAT signaling, whether 

and how Sxc--mediated cystine/glutamate exchange contributes to E/I balance has not, 

until now, been fully investigated in vivo. In this study, we provide the first evidence that 

sex-dependent morphological differences occur in both female and male Sxc- null mice 

in comparison to their wild-type littermate controls. These morphological changes occur 

in association with a sex-independent behavioral hyper-excitability phenotype in 

SLC7A11sut/sut mice manifest by a decrease in their acute PTZ convulsive seizure 

threshold. The latter observation demonstrates that Sxc- signaling contributes to the 

endogenous network activity that maintains brain E/I balance in vivo in both female and 

male mice. 

 Two parameters maintained by Sxc- – redox balance and glutamate signaling – 

could influence brain structure and, in turn, E/I balance. For example, mice null for the 

neuronal EAAT3 transporter have decreased brain GSH levels that occur in association 

with age-dependent brain atrophy (Aoyama et al 2006). Moreover, high frequency 
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stimulation at the hippocampal CA1 synapse results in dendritic spine growth (Engert & 

Bonhoeffer 1999), which is dependent on glutamate receptor (NMDA) activation 

(Maletic-Savatic et al 1999). Overall, there was no evidence of gross brain atrophy in 

most brain regions of female or male SLC7A11sut/sut mice as compared to SLC7A11+/+ 

sex-matched littermates. One exception was the thickness of the corpus callosum in 

SLC7A11sut/sut females – it was significantly decreased – as compared to SLC7A11+/+ 

littermates. As the largest inter-hemispheric connection in brain, the corpus callosum is 

important for integrating information through its primarily excitatory connections (Bloom 

& Hynd 2005). In fact, transection of the corpus callosum is a therapeutic option to 

thwart generalization of seizure activity in epileptic individuals (Bogen & Vogel 1962, 

Van Wagenen & Herren 1940). While callosal thinning could be a result of decreased 

myelination, and electroencephalographic and behavioral seizures have been reported 

in animal models of demyelination (Hoffmann et al 2008), it could also result from 

aberrant development and/or connectivity of callosal projection neurons (Fame et al 

2016). With respect to temporal lobe epilepsy, decreased thickness in the posterior and 

anterior callosal regions have been demonstrated, with anterior corpus callosum 

thickness positively correlating with epilepsy age of onset (Hermann et al 2003, Weber 

et al 2007). However, increased corpus callosum thickness at the midline has also been 

reported in epileptic individuals (Conlon & Trimble 1988). Furthermore, it remains 

uncertain as to whether changes in callosal thickness are cause or consequence of 

seizure activity, especially given that diffuse white matter changes are not restricted to 

the corpus callosum and have been reported to occur throughout the epileptic brain 

(Arfanakis et al 2002, Gross et al 2006, Scanlon et al 2013).   
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While gross structural abnormalities of entire brain regions – including the corpus 

callosum – can perturb E/I balance, so too can morphological changes occurring at the 

cellular level. For example, the complexity of dendritic arborization increases with neural 

activity (Redmond et al 2002, Sin et al 2002, Yu & Malenka 2003). Moreover, enhanced 

dendritic complexity occurs in association with increases in spontaneous excitatory 

postsynaptic current (EPSC) frequency (Klenowski et al 2016). While we saw no 

difference in dendritic complexity between female SLC7A11+/+ and SLC7A11sut/sut sex-

matched littermates, male SLC7A11sut/sut dendritic complexity was significantly 

enhanced as compared to SLC7A11+/+ sex-matched controls. Moreover, male 

SLC7A11sut/sut dendritic complexity was indistinguishable from that of female 

SLC7A11sut/sut mice, whereas SLC7A11+/+ male dendritic complexity was significantly 

reduced as compared to SLC7A11+/+ females. These sex-differences were further 

exemplified in examining primary, secondary, and basal neurite lengths, which were 

enhanced in females versus males. Together, these findings suggest that the enhanced 

complexity in SLC7A11sut/sut versus SLC7A11+/+ males may be a result of aberrant, 

tortuous morphometry versus increases in neurite length. These observed genotype-

dependent differences in male mice could plausibly underlie an E/I imbalance manifest 

by enhanced excitation in SLC7A11sut/sut as compared to SLC7A11+/+ sex-matched 

controls.  

  E/I balance is integrally related to cellular soma size as evidenced by results 

demonstrating increases in soma area enhance inhibitory input from perisomatic 

parvalbumin-positive interneurons (Ye et al 2015). Moreover, reductions in soma size 

occur in association with decreased inhibitory postsynaptic current (IPSC) frequency 
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(Hsu et al 2012) and increased seizure susceptibility (Hsu et al 2012, McLeod et al 

2013). Our results indicate that soma size in female SLC7A11sut/sut mice is significantly 

decreased as compared to SLC7A11+/+ sex-matched controls. However, this effect was 

sex-dependent, as the soma size of male SLC7A11sut/sut mice was indistinguishable 

from that of sex-matched SLC7A11+/+ controls. Interestingly, a sex-difference was 

uncovered in that SLC7A11+/+ males had soma sizes that were significantly smaller than 

SLC7A11+/+ female mice. Taken together, changes in SLC7A11sut/sut neuronal 

morphometry at the cellular level, including enhanced dendritic complexity in males and 

a reduction in soma area in females, could plausibly facilitate a physiological E/I 

imbalance, characterized by enhanced excitation, in SLC7A11sut/sut mice. 

 The vast majority of fast synaptic neurotransmission occurs at spine heads 

(Colonnier 1968), and increases or decreases in head width are associated with 

increases or decreases in glutamate receptor abundance, respectively (Matsuzaki et al 

2001). While the overall density of spines/µm was not altered between female or male 

mice of either genotype, male mice had an increased proportion of mature spines 

classified as mushroom or stubby and a concomitant decreased proportion of immature 

spines, classified as filopodia or long thin, as compared to female mice of either 

genotype, suggesting that, independent of genotype, male spines may be strengthened 

as compared to female spines. However, when comparing spine head widths of all 

dendritic protrusions, we found that head widths of spines measured in male 

SLC7A11+/+ mice were ≈7% smaller than female SLC7A11+/+ mice. Upon examination of 

within-sex genotype differences, we found that both spine head widths (≈4%) and spine 

lengths (≈11%) were enhanced in male SLC7A11sut/sut as compared to SLC7A11+/+ sex-
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matched mice. The former observation suggests that their spines have increased 

glutamate receptors (Matsuzaki et al 2001). However, an increase in spine lengths is 

associated with enhanced filtering of the signal received at the post synaptic density 

and thus, synaptic weakening (Araya et al 2006), and it is unclear what the overall 

functional effect of both increased spine head widths and spine lengths would be with 

regards to synaptic strength. Conversely, female SLC7A11sut/sut spine head widths were 

decreased by ≈8% as compared to SLC7A11+/+ littermates, and no changes in spine 

lengths were observed. While an increase in spine head widths in SLC7A11sut/sut male 

mice as compared to SLC7A11+/+ sex-matched littermates is consistent with their 

hyperexcitable phenotype, a decrease in spine head widths in SLC7A11sut/sut females is 

somewhat surprising, given that they too have a decreased convulsive seizure 

threshold. However, it is possible that a reduction in synaptic strength at excitatory 

pyramidal cell synapses in female SLC7A11sut/sut mice could be a compensatory 

response to a hyper-excitable circuit elicited by other changes – such as a reduction in 

soma size and inhibitory drive (Hsu et al 2012, McLeod et al 2013, Ye et al 2015). 

 Any of the aforementioned morphometric alterations could result in an E/I 

imbalance. Indeed, both female and male SLC7A11sut/sut mice exhibited increased 

seizure severity and convulsive seizure incidence as compared to SLC7A11+/+ sex-

matched littermate controls in response to a single dose of the chemoconvulsant PTZ. 

Thus, despite sex-dependent brain morphological differences, SLC7A11sut/sut mice 

exhibit a sex-independent functional hyper-excitability. These findings raise the 

intriguing possibility that morphological sex-differences serve to maintain E/I balance in 

brains of female and male wild-type mice, and these sex-differences are, at least in part, 
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maintained by Sxc- signaling. For instance, the decreased dendritic complexity in male 

versus female SLC7A11+/+ mice may be integral in dampening aberrant connectivity in 

males. In male mice, loss of Sxc- renders complexity more “female like”, and this occurs 

in association with hyper-excitability. With respect to soma size, the increased soma 

area in female versus male SLC7A11+/+ mice may be integral for females in maintaining 

an elevated level of somatic inhibitory input to thwart aberrant neural activity. In female 

mice, loss of Sxc- renders their soma area more “male like”, and this too occurs in 

association with hyper-excitability. That a null mutation in Sxc- eliminates morphological 

sex differences – and decreases convulsive seizure threshold – is suggestive that 

morphological sex differences exist to prevent adverse behavioral outcomes, such as 

an E/I imbalance. 

Taken together, our results are the first to detail a role for Sxc- in maintenance of 

cellular morphology.  Specifically, we found that female SLC7A11sut/sut mice with a null 

mutation in the substrate specific light chain of Sxc- demonstrate decreased corpus 

callosum thickness, cross-sectional soma area, and dendritic spine head widths as 

compared to SLC7A11+/+ sex-matched littermate controls. Conversely, male 

SLC7A11sut/sut mice exhibited enhanced dendritic complexity and spine head widths 

compared to SLC7A11+/+ mice. These sex-dependent morphological alterations occur  

in association with an E/I imbalance manifest by a decreased convulsive seizure 

threshold when provoked with the GABAAR antagonist PTZ. More broadly, these 

findings raise the intriguing possibility that morphological sex-differences serve to 

maintain E/I balance in brain, and these sex-differences are, at least in part, maintained 

by Sxc- signaling. 
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Chapter 3: Decreased epileptogenesis in mice lacking the system xc- 
transporter occurs in association with a reduction in AMPA receptor 
subunit GluA1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is near duplicate of the submitted manuscript:  

 

Sears, Sheila M.S., Hewett, James A., and Hewett, Sandra J. (2018) Decreased 
epileptogenesis in mice lacking the System xc- transporter occurs in association with a 
reduction in AMPA receptor subunit GluA1. Submitted.  
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3.1 Summary 

Although the cystine/glutamate antiporter System xc- (Sxc-) plays a permissive 

role in glioma-associated seizures, its contribution to other acquired epilepsies has not 

been determined. As such, the present study investigates whether and how Sxc- 

contributes to the PTZ chemical kindling model of epileptogenesis. Male SLC7A11sut/sut 

mice and their wild-type SLC7A11+/+ littermates were administered PTZ (i.p.) daily for up 

to 21 days (kindling paradigm). Seizure severity was scored on a five-point behavioral 

scale. Mossy fiber sprouting, cellular degeneration, and Sxc- light chain (xCT) 

messenger RNA (mRNA) was explored using Timm staining, thionin staining, or real-

time quantitative polymerase chain reaction (qPCR), respectively. Levels of reduced 

and oxidized glutathione and cysteine were determined via high performance liquid 

chromatography (HPLC). Plasma membrane protein levels of glutamate and GABA 

receptor subunits as well as the K+/Cl- co-transporter KCC2 were quantified in brains of 

SLC7A11+/+ and SLC7A11sut/sut mice via Western blot analysis. Our results demonstrate 

that repeated administration of PTZ produced chemical kindling in only 50% of 

SLC7A11sut/sut mice as compared to 82% of SLC7A11+/+ littermate control mice. Kindling 

did not result in any changes in xCT mRNA levels assessed in SLC7A11+/+ mice. No 

cellular degeneration or mossy fiber sprouting was discernible in either genotype. 

Except for a small, but significant, decrease in oxidized cysteine in the hippocampus, no 

other change in measured redox couples were determined in SLC7A11sut/sut mice. 

Cortical levels of the AMPA receptor subunit GluA1 were decreased in SLC7A11sut/sut 

mice as compared to SLC7A11+/+ littermates, whereas all other proteins tested showed 

no difference between genotypes. This study provides the first evidence that Sxc- 

signaling contributes to epileptogenesis in the PTZ kindling model of acquired epilepsy. 
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Further data indicate a reduction in AMPA receptor signaling could underlie the 

resistance to PTZ kindling uncovered in SLC7A11sut/sut mice. 
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3.2 Introduction 

System xc- (Sxc-) is a sodium-independent anionic amino acid antiporter 

comprised of two protein components linked via a disulfide bridge: xCT (encoded by 

SLC7A11), the light chain that confers substrate specificity, and 4f2hc (encoded by 

SLC3A2), the associated glycoprotein heavy chain that traffics xCT to the plasma 

membrane (Bassi et al 2001, Sato et al 1999). While xCT expression is inducible in a 

number of tissues, its constitutive expression is limited to the central nervous system 

(CNS) and lymphoid organs, including the thymus and spleen (Sato et al 2002, Taguchi 

et al 2007). Within the CNS, xCT is detected in most major brain regions with studies 

investigating its cellular source demonstrating it is predominantly of astrocytic origin 

(Ottestad-Hansen et al 2018, Pow 2001). 

Sxc- imports cystine (CySS) and exports glutamate (Glu) with 1:1 stoichiometry 

across the cellular plasma membrane (Bannai 1986). Early functional characterization 

of Sxc- established its fundamental physiological role as a cellular CySS supplier. 

Following Sxc--mediated uptake, CySS is rapidly reduced to cysteine (Cys), a critical 

component of many structural, catalytic, and regulatory domains of proteins and a 

precursor for the essential thiol antioxidant, glutathione (GSH) (Sato et al 1998). Cys is 

also directly exported from the cell via neutral amino acid transporters (Banjac et al 

2008). Thus, Sxc- regulates intracellular and extracellular thiol redox systems (Banjac et 

al 2008, Sato et al 1998). Additionally, several studies have determined that Sxc- 

contributes significantly to the ambient extracellular glutamate pool that bathes the CNS 

in vivo (De Bundel et al 2011, Massie et al 2011b, McCullagh & Featherstone 2014). 
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Alterations in redox homeostasis adversely affect neuronal synaptic plasticity 

(Almaguer-Melian et al 2000, Robillard et al 2011), stressing the importance of redox 

balance in the normal function of brain network activity. Additionally, glutamate released 

from astrocytes is known to modulate neuronal excitability and enhance synaptic 

strength [for review see (De Pitta et al 2016)]. Further, multiple studies demonstrate that 

changes in redox balance and/or extracellular glutamate levels could be permissive in 

generating ictal activity. For example, mice under chronic oxidative stress show 

increased incidence of spontaneous and handling-induced seizures, which occurs in 

association with decreased expression of the glial glutamate transporters (GLT-1 and 

GLAST) (Liang & Patel 2004). Diminished glutamate uptake in mice null for the 

glutamate transporters GLT-1 or GLAST occurs in association with spontaneous 

seizures or prolonged seizure duration in an amygdaloid kindling model, respectively 

(Tanaka et al 1997, Watanabe et al 1999). Moreover, increased Sxc--mediated 

cystine/glutamate exchange in glioma (Ye et al 1999) occurs in association with 

elevated glutamate levels (Ye & Sontheimer 1999), and pharmacological inhibition of 

Sxc- reduces peritumoral glutamate levels in human glioblastoma patients (Robert et al 

2015) as well as seizure frequency in glioma-bearing mice (Buckingham et al 2011). 

Whether Sxc- is involved in non-tumor associated seizure generation is not known, 

although xCT levels are upregulated in resected hippocampi from temporal lobe 

epileptics (Lewerenz et al 2014). Finally, male transgenic xCT null mice require an 

elevated dose of pilocarpine or KA to elicit behavioral seizures – in addition to 

demonstrating decreased seizure severity and mortality in response to an acute dose of 
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NMDA – suggesting that Sxc- signaling is permissive in generating acute seizure activity 

(De Bundel et al 2011). 

 The dual regulation of redox systems and glutamate homeostasis by Sxc- and the 

potential for alterations in such to regulate brain ictal activity prompted our interest in the 

possibility that this antiporter may also contribute to the aberrant changes that 

predispose the CNS to develop epilepsy. Thus, the overall goal of this study was to 

explore the contribution of Sxc- to epileptogenesis by comparing PTZ kindling in mice 

wild-type or null for the SLC7A11 gene.  

 

3.3 Materials and Methods 

3.3.1 Animals 

Mice were maintained in the AALAC accredited Laboratory Animal Resource 

facility of Syracuse University on a 12 hr light/dark schedule (7am/7pm). Standard 

mouse chow and water were provided ad libitum. Experiments were carried out using 

male mice (8-12 weeks at start of experimentation) in accordance with the National 

Institutes of Health guidelines for the use of experimental animals as approved by the 

Institutional Animal Care and Use Committee of Syracuse University. Purchased 

C57BL/6J mice [Jackson Laboratories (JAX) Stock #000664] were allowed to 

acclimatize to the facility for at least one week prior to any manipulations. Wild-type 

(SLC7A11+/+) and xCT mutant (SLC7A11sut/sut) mice were bred in-house from 

heterozygous (SLC7A11+/sut) breeding units (F1) that were obtained by crossing 

SLC7A11sut/sut male mice (JAX, Stock #001310) with SLC7A11+/+ female C3H/HeSnJ 

mice (JAX, Stock #000661). F2 SLC7A11+/sut progeny were also used as breeding units 
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for studies. Genotyping was performed via PCR analysis of tail genomic DNA samples: 

+/+ primers, 5'- GAA GTG CTC CGT GAA GAA GG -3' (forward), 5'- ATC TCA ATC 

CTG GGC AGA TG -3' (reverse); sut/sut primers, 5'- CCA CTG TTG TAG GTC AGC 

TTA GG -3’ (forward), 5'- CAG GAC CTG TGA ATA TGA TAG GG -3' (reverse). Mice 

were segregated by sex at weaning and placed two to three per cage such that at least 

one mouse of each genotype was represented. These breeding and housing strategies 

were employed to control for environmental differences, genetic background influences, 

and genetic drift. Gross morphological analysis of SLC7A11sut/sut and SLC7A11+/+ male 

mouse brains at 12 weeks of age revealed no significant differences (not shown). 

 

3.3.2 PTZ Kindling 

Five days prior to each study, mice were acclimated to handling by performing 

mock daily intraperitoneal (i.p.) injections, which consisted of inverting the mouse and 

rubbing its abdomen. They were also acclimatized to the procedure room for at least 

one hour on each day of injection. PTZ (Sigma Chemical Co., St. Louis, MO), made 

fresh daily, was dissolved in saline and filter sterilized. PTZ was administered i.p. in a 

volume of 10 ml/kg body weight. C3H/HeSnJ or C57BL/6J mice were dosed at 35 

mg/kg or 39 mg/kg, respectively, once daily for up to 21 days. The dose for C3H/HeSnJ 

and C57BL/6J mice was chosen following initial dose ranging studies to determine the 

PTZ seizure threshold [Supplementary Fig. S1 and (Claycomb et al 2011), respectively]. 

Following each injection, mice were monitored for 30 min and the time and severity of 

behavioral seizures scored and recorded by an observer blinded to genotype using a 

five-point modified Racine scale (0 - 4: 0 = no behavioral change; 1 = hypoactivity; 2 = 
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myoclonus; 3 = generalized convulsion with righting reflex; 4 = generalized convulsion 

with loss of righting reflex) [For full description see Table 1 (Racine 1972)]. Mice were 

deemed kindled after exhibiting convulsive seizures (≥ stage 3) on three consecutive 

days, after which PTZ injections were stopped. Ten days later, the permanence of the 

kindled state was assessed by rechallenging with PTZ. The percentage of permanently 

kindled mice was determined by dividing the number of animals with a maximum 

seizure score ≥ 3 by the total number of animals injected. It should be noted that six 

SLC7A11sut/sut mice were a priori excluded from the study as they responded to the first 

injection with a convulsive seizure (behavioral score ≥ 3) making any further reduction in 

seizure threshold elicited by the kindling protocol (vide supra) indeterminable.  

 

3.3.3 Real-Time Quantitative Polymerase Chain Reaction (q-PCR) 

Total RNA, isolated using TRIzol reagent (Invitrogen, Carlsbad, CA) from cortical 

or hippocampal tissue of PTZ-kindled, PTZ-non-kindled, or saline-injected C57BL/6J 

mice one day following the final injection with PTZ or saline, was subjected to first-

strand cDNA synthesis. cDNA was subjected to real-time quantitative polymerase chain 

reaction (qPCR) in a reaction containing mouse-specific primers for the system xc- light 

chain (xCT) (SLC7A11, Mm01292531_m1, Taqman Gene Expression Assays, Applied 

Biosystems, Foster City, CA) and the reference gene hypoxanthine guanine 

phosphoribosyl transferase (HPRT, Mm01545399_m1, Taqman Gene Expression 

Assays, Applied Biosystems, Foster City, CA) along with TaqMan Universal PCR 

MasterMix (Applied Biosystems, Foster City, CA). HPRT expression levels were stable 

under our experimental conditions. A serial dilution of cortical or hippocampal cDNA 
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demonstrated that the calculated slope of the line comparing ∆CT (CT value of xCT – CT 

value of HPRT) versus input cDNA was -0.007606 or -0.000905, respectively, and that 

the efficiency of both primers was >90% in either tissue. Reactions were performed in 

duplicate or triplicate using an Eppendorf Realplex2 under the following conditions: 50°C 

for 2 min and 95°C for 10 min followed by 40 amplification cycles (95°C for 15 sec and 

60°C for 1 min). Data analysis was performed using the comparative cycle threshold 

method (∆∆CT), where CT values of xCT were normalized to HPRT CT values from the 

same sample and compared to the calibrator CT values (saline controls) to determine 

the relative fold increase in xCT mRNA.  

 

3.3.4 Timm and Thionin Staining 

Mossy fiber sprouting, elucidated by Timm staining, was quantified in the 

supragranular layer of the dentate gyrus (DG) by an observer blinded to the 

experimental condition. Brain slices from PTZ kindled SLC7A11+/+ and SLC7A11sut/sut 

mice and saline-injected SLC7A11+/+ mice were sacrificed 16-17 days after kindling 

acquisition or cessation of saline injections by transcardial perfusion with a proprietary 

(FD Rapid TimmStain Kit; FD Neuro Technologies, Inc., Baltimore, MD) sodium sulfide-

containing perfusate (Perfusate A plus B), followed by 4% paraformaldehyde (PFA) in 

0.1 M phosphate buffer (PB). Following removal from the cranium, brains were post-

fixed in 4% PFA for 24 hr (4°C), transferred to a 30% sucrose solution in 0.1 M PB for 

72 hr (4°C), and then snap-frozen on dry ice in Optimal Cutting Temperature (O.C.T.) 

compound (Tissue-Tek, Torrance, CA) prior to storage at -80°C. Frozen brains were cut 

serially (≈-0.94 – -2.46 mm posterior to bregma) into 40 µm coronal sections, mounted 
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on gelatin-coated slides (FD Neuro Technologies, Inc., Baltimore, MD), air dried at room 

temperature for 24 hours, then stored in a light-protected box at -20°C. Timm staining 

was carried out per manufacturer’s instructions (FD Rapid TimmStain Kit) with the 

exception that the time in the silver nitrate developing solution (Solution A, B, C, and D) 

was extended to 55-70 min. Mossy fiber sprouting was quantified using a six-point 

rating scale (0-5) developed by Cavazos et al.(Cavazos et al 1991): 0 = no Timm 

granules; 1 = patchy distribution of sparse granules in supragranular layer; 2 = 

continuous distribution of granules in supragranular layer; 3 = continuous distribution of 

granules with patches of confluency in supragranular layer; 4 = prominent granules that 

form a dense, confluent laminar band in supragranular layer; 5 = prominent granules 

that form a dense, confluent laminar band in the supragranular layer that extend into the 

inner molecular layer. A Timm score for each mouse was determined by calculating the 

median of the scores assigned to the left and right DG at »-1.94 mm posterior to 

bregma. Tissue sections within 80 µm of those processed for Timm staining were 

thionin-stained (Sigma Chemical Co., St. Louis, MO) as we previously describe to 

assess for any neurodegeneration. All tissue analyses were performed on identically 

processed photomicrographs acquired using a DP73 digital color camera (Olympus, 

Tokyo, Japan) mounted on an Olympus IX50 inverted microscope (Olympus, Tokyo, 

Japan). 

 

3.3.5 Reduced/Oxidized Glutathione and Cysteine Measurements 

Fully anesthetized naïve SLC7A11+/+ or SLC7A11sut/sut mice were perfused 

transcardially with ice-cold phosphate buffered saline (PBS, 1x). Hippocampal and 
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cortical tissue were rapidly dissected and snap-frozen separately in liquid nitrogen. The 

concentrations of reduced and oxidized glutathione (GSH and GSSG) and cysteine 

(Cys and CySS) were determined via high performance liquid chromatography (HPLC) 

by the Emory-Children’s Pediatric Biomarkers Core facility.  

 

3.3.6 Immunoblotting  

3.3.6.1 Plasma membrane protein isolation: 

Naïve SLC7A11+/+ or SLC7A11sut/sut mice were perfused transcardially with ice-

cold 1x PBS under full anesthesia. Bilateral hippocampi and cortices were dissected, 

snap frozen in liquid nitrogen separately, and stored at -80°C prior to use. Plasma 

membrane proteins were isolated from pooled hippocampi (2-5 mice/sample) or bilateral 

cortices (one mouse/sample) using an aqueous two-phase separation method as per 

manufacturer’s instructions (Plasma Membrane Protein Extraction Kit, Abcam, 

Cambridge, U.K.). Isolated proteins were suspended in 0.5% Triton X-100 in PBS. 

Samples were stored at -80°C until immunoblotting. Protein concentrations were 

quantified using the BCA assay kit (Pierce, Rockford, IL).  

 

3.3.6.2 Gel electrophoresis and protein detection 

Protein samples (7.5 µg) were separated by 8% SDS-PAGE under reducing 

(10mM dithiothreitol) and chaotropic (8M urea) conditions followed by electrophoretic 

transfer to a PVDF membrane (Bio-Rad; Hercules, CA). Membranes were blocked for 

one hr at room temperature (Odyssey® blocking buffer, LI-COR Biosciences; Lincoln, 

NE) then probed overnight (4°C) with the following antibodies: anti-Na+/K+ ATPase α1 
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mouse monoclonal antibody (1:750; Abcam; RRID: AB_306023); anti-GluA1 rabbit 

polyclonal antibody (1:750; Abcam; RRID:AB_2113447); anti-GluA2 rabbit polyclonal 

antibody (1:750; Abcam; RRID:AB_2232655); anti-GluN1 rabbit monoclonal antibody 

(1:750; Cell Signaling; RRID: AB_1904067); anti-GluN2A rabbit polyclonal antibody 

(1:750; Cell Signaling; RRID: AB_2112295); anti-GluN2B rabbit polyclonal antibody 

(1:750; Cell Signaling; RRID: AB_1264223); anti-GABAARα1 rabbit polyclonal antibody 

(1:3000; Abcam; RRID: AB_732498); anti-K+/Cl- co-transporter (KCC2) rabbit polyclonal 

antibody (1:750; Abcam; RRID: AB_881571). Species-specific secondary antibodies 

labeled with spectrally distinct IRDye® fluorescent dyes (LI-COR Biosciences, Lincoln, 

NE) were used to detect primary antibodies (1 hr at 25°C) (1:10,000 dilution). Results 

were recorded on a LI-COR ODYSSEY® Fc Imaging system (LI-COR Biosciences; 

Lincoln, NE) and protein levels quantified using Image Studio 3.1 (LI-COR Biosciences; 

Lincoln, NE). Each protein was normalized to the Na+/K+ ATPase levels contained in 

each lane. The signal intensity pertaining to the amount of hippocampal or cortical 

protein per lane (7.5 µg) was determined to be in the linear range for each antibody at 

their respective dilution (data not shown). 

 

3.3.7 Statistical Analysis 

All statistical analyses were performed using GraphPad Prism (Version 6.0.1, 

Graphpad Software, Inc., La Jolla, CA). Curves depicting kindling acquisition as a 

function of time were compared using a log-rank test. Two-way ANOVA or unpaired t 

test was used to compare seizure latencies, mouse weight, and the concentrations of 

reductants/oxidants. Proportions indicating the percent of mice convulsing were 
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compared using a Fisher’s exact test. The Mann-Whitney U test was used to compare 

Timm scores. Prior to parametric analysis, qPCR data were transformed to the 

geometric means whereas immunoblot data was log transformed (y = log(y+1)) and 

compared using one-way ANOVA or an unpaired t test, respectively. In all cases, 

significance was set at p < 0.05.  

 

3.4 Results  

Kindling acquisition, maintenance and mortality 

Irrespective of the mouse’s genotype, the rate of kindling steadily increased over 

the 21-day dosing paradigm (Fig. 3.1A) with the mean latency to kindle being 10.3 ± 1.1 

and 11.4 ± 1.2 days for SLC7A11+/+ and SLC7A11sut/sut mice, respectively (p = 0.54, 

unpaired t test). Although the latency to convulsive seizure on each of the three 

consecutive days leading up to and inclusive of the kindled state was similar between 

SLC7A11+/+ and SLC7A11sut/sut littermates (Fig. 3.1B; p = 0.40, two-way ANOVA), 

kindling acquisition was significantly reduced in SLC7A11sut/sut (9/18; 50%) as compared 

to SLC7A11+/+ (22/27; 81.5%) (Fig. 3.1A; p = 0.02, log-rank test).  

Permanency of the kindled state, determined by rechallenge with PTZ ten days 

after the third convulsion, was neither 100% for either genotype nor statistically 

significant between genotypes with only 82% of the SLC7A11+/+ (18/22) and 78% of 

SLC7A11sut/sut (7/9) responding to the PTZ challenge with a seizure score of ≥ 3 (p = 

1.00, Fisher’s exact test). The latency to convulsion upon rechallenge also did not differ  
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Figure 3.1 Comparison of PTZ kindling acquisition and convulsive seizure latency 
between SLC7A11+/+ and SLC7A11sut/sut mice 

SLC7A11+/+ (+/+; closed circles, n = 27) and SLC7A11sut/sut (sut/sut; open circles, n = 
18) mice were administered 35 mg/kg PTZ (i.p.) once daily for 21 days or until the 
mouse became kindled. Five separate experiments were performed over 24 months.  
A) Kindling acquisition: Each data point represents the percentage of mice kindled each 
day over the 21 day paradigm, which was determined by dividing the number of animals 
defined as kindled (see methods) by the total number of animals injected. Fractions 
represent the proportion of mice kindled at the end of the protocol. The rate and 
proportion of SLC7A11sut/sut mice that kindled is significantly decreased as compared to 
SLC7A11+/+ littermate controls as denoted by the large and small asterisk, respectively 
(*p = 0.02, log-rank test; #p = 0.047, Fisher’s exact test).  
B) Convulsive seizure latency: Each data point [closed black circles (+/+) or open 
circles (sut/sut)] represents the latency to convulsion (behavioral score ≥ 3) of a single 
mouse for each of the three consecutive convulsions (depicted as Convulsion 1-3) that 
led to its kindled state. Bars represent the mean latency to convulsive seizure for each 
genotype. Kindled SLC7A11+/+ and SLC7A11sut/sut mice have similar convulsive seizure 
latencies (p = 0.40, two-way ANOVA).  



 96 

between the genotypes (431 ± 45 vs. 416 ± 51 s for SLC7A11+/+ vs. SLC7A11sut/sut, 

respectively; p = 0.85, unpaired t test). 

Of note, no mortality occurred in either group during the kindling paradigm. Mice 

that completed the paradigm exhibited an average weight loss of 0.28 g. However, the 

final weight of kindled mice did not differ between genotypes (25.2 ± 0.4 vs. 23.9 ± 0.5 g 

for SLC7A11+/+ and SLC7A11sut/sut, respectively), nor did these differ from that of non-

kindled mice (23.2 ± 1.1 vs. 24.4 ± 0.5 g for SLC7A11+/+ and SLC7A11sut/sut, 

respectively, two-way ANOVA). 

 

xCT mRNA levels 

To determine whether the kindling phenotype was associated with an increase in 

xCT expression, we measured hippocampal and cortical xCT mRNA levels in kindled, 

non-kindled, and saline-injected SLC7A11+/+ mice via quantitative PCR one day 

following the final PTZ or saline injection. Neither hippocampal nor cortical xCT mRNA 

expression levels of kindled mice differed from non-kindled or saline-administered 

control mice (Figure 3.2), suggesting that basal levels of Sxc- are sufficient to facilitate 

kindling.  

 

Histological analysis of injury and axonal sprouting 

Sixteen to seventeen days following PTZ-kindling, brains were examined for 

signs of overt cellular degeneration. Thionin-staining of brain slices revealed that the 

cortex (not shown) and principal layers of the hippocampal formation (Fig. 3.3A, E, I),  
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Figure 3.2 PTZ kindling phenotype is not associated with alterations in xCT 
mRNA 

SLC7A11+/+ mice on a C57BL/6J background were administered 39 mg/kg PTZ once 
daily for 21 days or until kindled. Mice receiving vehicle (saline) were injected in parallel. 
A) The left hippocampus and (B) left cortex were harvested 24 hours following the final 
injection of PTZ or vehicle and xCT mRNA assessed via qPCR. Data are expressed as 
mean ± SEM fold change in xCT mRNA compared with vehicle-injected controls. No 
significant between-group differences in xCT mRNA expression in hippocampus (p = 
0.84) or cortex (p = 0.26) was found as determined by one-way ANOVA. N = 4-5 each 
per treatment group.  
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Figure 3.3 PTZ kindling phenotype is not associated with cellular degeneration 

Representative photomicrographs of thionin-stained coronal brain sections ≈ -1.82 mm 
posterior to bregma: (A-D) vehicle (saline)-injected SLC7A11+/+ (+/+; n = 3), (E-H) 
kindled SLC7A11+/+ (+/+; n = 4), and (I-L) kindled SLC7A11sut/sut (sut/sut; n = 2) brain 
sections. Images represent the hippocampal formation (A, E, I; 8x), CA1 (B, F, J; 20x), 
CA3 (C, G, K; 20x), or the DG (D, H, L; 20x). 
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Figure 3.4 PTZ kindling phenotype is not associated with increased mossy fiber 
sprouting 

A-F) Representative photomicrographs of Timm stained hippocampal formation ≈ -1.94 
mm posterior to bregma: (A-B) vehicle (saline)-injected control SLC7A11+/+ (+/+; n = 3), 
(C-D) kindled SLC7A11+/+ (+/+; n = 4) (C-D), and (E-F) kindled SLC7A11sut/sut (sut/sut; n 
= 2). Images represent the hippocampal formation (A, C, E; 8X) and the DG (B, D, F; 
40X). Boxes in A, C, and E depict the region of the DG assessed for mossy fiber 
sprouting. 
G) Each closed circle represents the Timm score (see methods) of a single mouse 
determined by calculating the median of the scores assigned to the right and left DG 
(40x) at ≈ -1.94 mm bregma. Open bars represent the median Timm score for each 
group. There was no significant difference in mossy fiber sprouting between vehicle-
injected SLC7A11+/+ and kindled SLC7A11+/+ mice as determined by the Mann-Whitney 
U test (p = 0.69).  
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including the CA1 (Fig. 3.3B, F, J), the CA3 (Fig. 3.3C, G, K), and the dentate gyrus 

(DG; Fig. 3.3D, H, L) of kindled mice appeared grossly normal and intact irrespective of 

genotype. The lack of degeneration was confirmed in adjacent sections using Fluoro 

Jade C and a 4’,6-Diamidino-2-Phenylindole, Dilactate (DAPI) counterstain (data not 

shown). Aberrant sprouting of DG granule cell axons, known as mossy fiber sprouting, 

is a common feature in temporal lobe epilepsy and is found in some, but not all, rodent 

models of epileptogenesis. PTZ-kindled SLC7A11+/+ mice, maintained on a C3H/HeSnJ 

background, had few mossy fiber synaptic terminals as evidenced by little to no Timm 

granules in the supragranular layer of the DG that were comparable in number to those 

quantified in saline-treated control mice (Fig. 3.4; median Timm score = 0.75 vs. 1, 

respectively; p = 0.69, Mann Whitney U test). SLC7A11sut/sut kindled mice also showed 

little to no change in mossy fiber sprouting (Fig 3.4; median Timm score = 1). Thus, 

alterations in mossy fiber sprouting cannot explain the reduction in kindling acquisition 

in SLC7A11sut/sut as compared to SLC7A11+/+ mice.  

 

Redox signaling 

Cys derived from Sxc- import of CySS is the rate-limiting substrate for the 

production of the low molecular weight thiol GSH and contributes to the Cys/CySS 

redox couple across the cell plasma membrane (Banjac et al 2008, Dringen 2000, Lu 

2009). To determine whether loss of Sxc- resulted in a redox imbalance in SLC7A11sut/sut 

brains, the hippocampal and cortical levels of reduced and oxidized GSH (GSH and 

GSSG) and Cys (Cys and CySS) were measured and compared to levels measured  
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Figure 3.5 Comparison of redox couples in SLC7A11+/+ and SLC7A11sut/sut mice 

The concentration of reduced and oxidized glutathione (GSH and GSSG) or cysteine 
(Cys and CySS) was determined by high performance liquid chromatography (HPLC) in 
hippocampus (A-B) or cortex (C-D) of naïve SLC7A11+/+ (+/+; n = 8-10) and 
SLC7A11sut/sut (sut/sut; n = 10) littermates. Bars represent the mean ± SEM fold-change 
over control (+/+, set to one) of the concentration of hippocampal or cortical GSH (A, C; 
left bars), GSSG (A, C; right bars), Cys (B, D; left bars), or CySS (B, D; right bars). 
Comparisons between individual levels of reduced or oxidized GSH or Cys were made 
using an unpaired t test on raw data. An asterisk (*) represents a significant between 
group difference (p = 0.002).  
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Figure 3.6 Comparison of plasma membrane protein expression in SLC7A11+/+ 
and SLC7A11sut/sut mice 

Plasma membrane protein levels in hippocampus or cortex derived from SLC7A11+/+ 
(+/+) or SLC7A11sut/sut (sut/sut) littermates were compared using Western blot analysis 
(see methods). Representative Western blots of +/+ and sut/sut hippocampal plasma 
membrane proteins are shown in (A). Each data point [closed black circles (+/+; n = 7-9) 
or open circles (sut/sut; n = 5-9) represents the level of hippocampal (B) or cortical (C) 
protein following normalization to their respective loading control (i.e., Na+/K+ ATPase 
levels). Bars indicate the mean fold change over control (+/+), which was set to one. 
Hippocampal or cortical plasma membrane protein expression levels were compared 
using an unpaired t test on log-transformed data. An asterisk (*) represents a significant 
between group difference (p = 0.01).  
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from SLC7A11+/+ tissues. Neither hippocampal nor cortical GSH (Fig. 3.5A left; p = 0.74; 

Fig. 3.5C left; p = 0.28, unpaired t test) nor GSSG (Fig. 3.5A right; p = 0.34; Fig. 3.5C 

right; p = 0.12, unpaired t test) levels were different between SLC7A11+/+ and 

SLC7A11sut/sut mice. Cortical levels of Cys were also similar between the genotypes 

(Fig. 3.5D left; p = 0.80, unpaired t test), while there was a small, but non-significant, 

increase in CySS (Fig. 3.5D right; p = 0.12, unpaired t test). Notably, in the 

hippocampus, the level of CySS was significantly decreased in SLC7A11sut/sut mice as 

compared to SLC7A11+/+ littermate controls (Fig. 3.5B right; p = 0.002, unpaired t test), 

while Cys levels were unchanged (Fig. 3.5B left; p = 1.00, unpaired t test). 

 

Plasma membrane protein expression levels 

Finally, we assessed cortical and hippocampal surface expression of AMPA 

(GluA1, GluA2), NMDA (GluN1, GluN2A, and GluN2B), and GABA (GABAARα1) 

receptor subunits, as well as, the K+/Cl- co-transporter (KCC2) (Figure 3.6), as 

aberrations in plasma membrane levels of each has been associated with abnormal 

neuronal synchronization (Kelley et al 2016, Mathern et al 1998, Raol et al 2006). 

Western blot analysis of this suite of plasma membrane proteins revealed no change in 

expression levels between SLC7A11+/+ and SLC7A11sut/sut littermates in the 

hippocampus (Fig. 3.6A,B). Of note, cortical levels of the AMPA receptor subunit GluA1 

were significantly decreased in SLC7A11sut/sut mice as compared to SLC7A11+/+ 

littermate controls (Fig. 3.6C; p = 0.01, unpaired t test on log transformed data). No 

other cortical plasma membrane proteins were altered in SLC7A11sut/sut as compared to 

SLC7A11+/+ littermate controls (Figure 3.6C).  
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3.5 Discussion  

By virtue of its localization to astrocytes and its role in regulating thiol redox 

systems as well as ambient extracellular glutamate levels, Sxc- (cystine/glutamate 

antiporter) contributes importantly to CNS homeostasis. In fact, astrocytic transporters, 

in general, regulate brain excitatory/inhibitory (E/I) balance by providing neurons with 

energy substrates, by maintaining ion homeostasis, and by removing excess 

neurotransmitters from the extracellular space. Dysfunction in any one of these activities 

can facilitate epileptogenesis [reviewed in (Eid et al 2018)]. In this study, we now 

provide evidence that Sxc- signaling contributes to epileptogenesis in the PTZ-kindling 

model of acquired epilepsy (Figure 3.1). These findings complement studies 

demonstrating an incontrovertible role for Sxc- in glioma-associated epilepsy in both 

mice and man (Buckingham et al 2011, Robert et al 2015).  

While Sxc- has been found to be upregulated in glioma(Yuen et al 2012), we do 

not find any changes in xCT mRNA expression in PTZ-kindled mice as compared to 

vehicle-injected controls (Figure 3.2), suggesting that basal levels of Sxc- are sufficient 

to facilitate PTZ-kindling. Given the lack of reliable commercial antibody for xCT 

(personal observations and (Van Liefferinge et al 2016)), we cannot rule out the 

possibility that enhanced transporter trafficking (as has been described in human glioma 

cells in vitro (Chase et al 2013)) or increased transporter kinetics (as demonstrated in 

rat striatum in vivo) occurs in wild-type mice (Baker et al 2002). However, present data 

suggests that in vivo glutamatergic tone — maintained in large part by non-vesicular 

release of glutamate by Sxc- (De Bundel et al 2011, Massie et al 2011b, McCullagh & 

Featherstone 2014) — may be enough to dysregulate excitatory signaling in wild-type 
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mice, as we previously documented in an in vitro paradigm of hypoglycemic neuronal 

cell death (Thorn et al 2015). Leading credence to this interpretation are the findings 

that a reduction in GABAergic inhibition (Kapur et al 1989a, Kapur et al 1989b) and an 

increase in extracellular glutamate and glutamate receptor levels (Li et al 2000, 

Schröder et al 1993) are associated with PTZ-kindling in rodents. Conversely, a 

decrease in ambient, extracellular glutamate levels has been reported in mice lacking 

Sxc- (De Bundel et al 2011, Massie et al 2011b, McCullagh & Featherstone 2014). This, 

together with the reduction in cortical GluA1 AMPA receptor subunit protein expression 

found herein (Figure 3.6), suggests that glutamatergic signaling may be hypo-functional 

in the SLC7A11sut/sut mouse brain in a manner sufficient to reduce PTZ-kindling. In 

keeping with this idea, long-term potentiation (LTP), which is observed at glutamatergic 

excitatory synapses in hippocampus and cortex, is also reduced in SLC7A11sut/sut mice 

(Li et al 2012). However, it should be noted that enhanced synaptic GluA1 expression 

has been reported in the CA1 region of the hippocampus of transgenic xCT null mice 

(Williams & Featherstone 2014), although we found no change in global hippocampal 

GluA1 levels in SLC7A11sut/sut mice (Figure 3.6). It is difficult to compare these two 

studies as our plasma membrane measurements include all hippocampal subregions 

and would capture receptors of both synaptic and extrasynaptic origin. Nevertheless, a 

global plasma membrane reduction in cortical GluA1 is interesting given evidence from 

animal models that block of AMPA receptor signaling is anti-epileptogenic (Kodama et 

al 1999, Namba et al 1994). 

Sxc--mediated CySS import has been demonstrated to be fundamental in 

maintaining the extracellular and intracellular redox balance (e.g., GSH/GSSG and 
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Cys/CySS) at least in vitro where growth of xCT deficient cells is dependent upon the 

addition of a reducing agent (Sato et al 2005). Interestingly, dysregulation of glutathione 

homeostasis is associated with impairment of synaptic strength (Almaguer-Melian et al 

2000, Robillard et al 2011) and thus represents another possible explanation for the 

resistance of SLC7A11sut/sut mice to PTZ-kindling. However, SLC7A11sut/sut mice have 

normal Cys, GSH and GSSG levels in hippocampal and cortical tissue, although 

hippocampal CySS levels were found to be significantly decreased (Figure 3.4). Our 

data are in agreement with other studies in transgenic xCT nulls showing normal 

hippocampal GSH levels as compared to wild-type mice (De Bundel et al 2011). To our 

knowledge, this study is the first to measure the concentration of GSH in cortex as well 

as brain cyst(e)ine levels in a mouse null for Sxc-. Taken in toto, current and previous 

data in both transgenic xCT nulls and SLC7A11sut/sut mice suggest these animals must 

employ compensatory mechanisms (e.g., EAAT3 or the alanine-cysteine-serine 

transporter [ASCT1/2] as alternative Cys transporters) to sustain GSH levels in vivo.  

Finally, epileptogenic network sensitization and its resultant E/I imbalance is 

associated with synaptic reorganization, particularly when hilar neurons in the dentate 

gyrus are lost (Buckmaster & Dudek 1997, Cavazos & Sutula 1990). This reorganization 

includes reactive synaptogenesis of granule cell mossy fibers, whose targets have been 

demonstrated to include both excitatory (Scharfman et al 2003) and inhibitory (Sloviter 

et al 2006) neurons. However, we found no cellular loss in the hippocampus or cortex of 

PTZ-kindled mice of either genotype (Figure 3.3). We also did not observe any 

significant hippocampal mossy fiber sprouting in any group tested, indicating that this 

structural alteration was not necessary for kindling development. These results are not 
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unprecedented as previous studies show that rats (Osawa et al 2001) and guinea pigs 

(Mohapel et al 2000) kindle in the absence of mossy fiber sprouting. Moreover, 

suppression of reactive sprouting in rats (Longo & Mello 1997) and mice (Buckmaster & 

Lew 2011) has been demonstrated to be ineffective in preventing epileptogenic 

neuronal sensitization following chemically-induced status epilepticus.  

In sum, our results demonstrate that SLC7A11sut/sut mice have a reduction in 

PTZ-kindling acquisition that occurs in association with decreased GluA1 levels. Given 

the permissiveness of Sxc- signaling to epileptogenesis — both glioma- (Buckingham et 

al 2011, Robert et al 2015) and PTZ-induced (this study) — we postulate that inhibition 

of astrocyte Sxc- may represent an alternative therapeutic strategy to modulate 

excessive glutamatergic signaling in individuals predisposed to developing epilepsy.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 108 

 

 

 

 

 

Chapter 4: KA-mediated alterations in excitability in system xc- null 
mice differ according to dosing paradigm. 
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4.1 Summary  

 Sxc- null (SLC7A11sut/sut) mice exhibited hyper-excitability (Chapter 2) or hypo-

excitability (Chapter 3) following acute or chronic dosing with PTZ, respectively, which 

induces seizure activity indirectly via disinhibition. In this chapter, the model-

dependency of these findings was explored using KA, a glutamate receptor agonist that 

directly elicits excitation. Female and male SLC7A11sut/sut and SLC7A11+/+ littermates 

were injected with KA once (acute paradigm) or repeatedly (escalated dosing paradigm) 

and the resulting seizure severity scored on a nine-point behavioral scale. Following the 

elevated dosing paradigm, brains of SLC7A11+/+ and SLC7A11sut/sut mice were 

evaluated for hippocampal cellular degeneration or for plasma membrane protein levels 

of glutamate and GABA receptor subunits using Fluoro jade C staining or Western blot 

analysis, respectively. Our results demonstrate that SLC7A11sut/sut mice exhibit 

behavioral hyper-excitability following acute KA administration. In contrast, repeated 

administration of KA in the elevated dosing paradigm elicits behavioral hypo-excitability 

in SLC7A11sut/sut mice, a response opposite to that observed in the vast majority of 

SLC7A11+/+ littermates who entered into a period of unremitting convulsive seizure 

activity (status epilepticus). The repeated KA dosing paradigm elicited neural 

degeneration in a subset of both SLC7A11+/+ and SLC7A11sut/sut littermates. However, 

the hippocampal sub-region predominantly affected differed by genotype, with the CA3 

or CA1 sub-region demonstrating degeneration in SLC7A11sut/sut or SLC7A11+/+ 

littermates, respectively. Cortical levels of the GABA receptor subunit GABAARa were 

increased in SLC7A11sut/sut mice that became hypo-mobile by the end of the repeated 

dosing paradigm as compared to SLC7A11sut/sut mice that entered into status 

epilepticus. No between-genotype differences were found in plasma membrane proteins 

tested following the repeated KA dosing protocol. These results extend findings in 

Chapters 2 and 3 and indicate that positive or negative excitability alterations elicited in 
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SLC7A11sut/sut mice via acute or repeated/chronic chemoconvulsant administration, 

respectively, are not model dependent.  
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4.2 Introduction  

System xc- (Sxc-) is a heteromeric amino acid antiporter that exports glutamate 

and imports cystine with 1:1 stoichiometry (Bannai & Kitamura 1980, Sato et al 1999). In 

most tissues, including the central nervous system (CNS), cystine import through Sxc- is 

necessary for the synthesis and maintenance of the cellular antioxidant, glutathione 

(GSH). This, along with the cysteine/cystine (Cys/CySS) redox cycle, also influenced by 

Sxc- activity, contributes to the intracellular/extracellular redox homeostasis (Banjac et al 

2008, Sato et al 2005). Sxc- is also an important contributor to the ambient extracellular 

glutamate levels that bathe the CNS in vivo (Augustin et al 2007, Baker et al 2002, De 

Bundel et al 2011, Massie et al 2011b, Melendez et al 2005). Studies addressing the 

cellular source of this glutamate conclude that it is astrocyte-derived (Augustin et al 

2007, Grosjean et al 2008, Warr et al 1999). 

Data presented in Chapter 2 of this dissertation demonstrated that SLC7A11sut/sut 

mice ─ who harbor a natural mutation in exon 12 of SLC7A11, rendering them null for 

the Sxc- substrate specific light chain xCT (Chintala et al 2005) ─ are more excitable 

(i.e., have lower convulsive seizure thresholds) than SLC7A11+/+ littermate control mice 

following acute challenge with the GABAA receptor antagonist PTZ (Fig 2.9). Despite 

this, SLC7A11sut/sut mice show behavioral signs of hypoexcitability upon chronic 

administration of PTZ. Specifically, data presented in Chapter 3 established that 

repeated daily injections of a kindling dose of PTZ ultimately leads to a permanent 

decrease in the threshold of excitability in SLC7A11+/+ mice (i.e., mice become kindled), 

whereas the percent SLC7A11sut/sut mice that kindle over the same 21 days is 
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significantly lower (Fig 3.1). These data suggest that Sxc- activity modulates synaptic 

strength in vivo in a context-dependent manner. 

In contrast to our findings using PTZ – whereby excitation results from 

endogenous glutamate signaling – transgenic xCT null mice on a C57BL/6 background 

appear to have an elevated seizure threshold in response to three pharmacologically 

distinct chemoconvulsants (De Bundel et al 2011). Specifically, xCT null mice require an 

elevated dose of either the muscarinic acetylcholine agonist, pilocarpine, or the 

glutamate receptor agonist, KA, to elicit the same behavioral seizure response as wild-

type controls (De Bundel et al 2011). Furthermore, this study demonstrated that xCT 

null mice exhibit decreased seizure severity and mortality, as well as increased latency 

to seize, in response to a systemic injection of the glutamate receptor agonist NMDA 

(De Bundel et al 2011). Thus, contrary to our findings using the SLC7A11sut/sut mice in 

the acute PTZ paradigm (Chapter 2), these results suggest that xCT null mice on the 

C57BL/6 background have an elevated seizure threshold.  

The goal of this study was to determine if our findings using PTZ in the 

SLC7A11sut/sut mice were model-dependent. As such, the susceptibility of SLC7A11+/+ 

and SLC7A11sut/sut littermates to seizures evoked by acute or repeated administration of 

the glutamate receptor agonist KA was explored. Whether KA induced neural 

degeneration or altered plasma membrane protein expression levels was also explored 

given the association of these phenotypes with KA-mediated excitoxic cell death (Nadler 

et al 1980) or neuronal synaptic strength, respectively (Mathern et al 1998, Raol et al 

2006). 
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4.3 Materials and Methods  

4.3.1 Animals 

Mice were maintained in the AALAC accredited Laboratory Animal Resource 

facility of Syracuse University on a 12 hr light/dark schedule (7am/7pm). Standard 

mouse chow and water were provided ad libitum. Experiments were carried out using 

male and female mice (8-12 weeks old) in accordance with the National Institutes of 

Health guidelines for the use of experimental animals as approved by the Institutional 

Animal Care and Use Committee of Syracuse University. Wild-type (SLC7A11+/+) and 

xCT mutant (SLC7A11sut/sut) mice were bred in-house from heterozygous (SLC7A11+/sut) 

breeding units (F1) that were obtained by crossing SLC7A11sut/sut male mice (JAX, 

Stock #001310) with SLC7A11+/+ female C3H/HeSnJ mice (JAX, Stock #000661). F2 

SLC7A11+/sut progeny were also used as breeding units for studies. Genotyping was 

performed via PCR analysis of tail genomic DNA samples: +/+ primers, 5'- GAA GTG 

CTC CGT GAA GAA GG -3' (forward), 5'- ATC TCA ATC CTG GGC AGA TG -3' 

(reverse); sut/sut primers, 5'- CCA CTG TTG TAG GTC AGC TTA GG -3’ (forward), 5'- 

CAG GAC CTG TGA ATA TGA TAG GG -3' (reverse). Mice were segregated by sex at 

weaning and placed two to three per cage such that at least one mouse of each 

genotype was represented. These breeding and housing strategies were employed to 

control for environmental differences, genetic background influences, and genetic drift 

(Barnwell et al 2009, Pick & Little 1965).  
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4.3.2 KA dosing paradigms  

Changes in in vivo network excitability were provoked in SLC7A11+/+ and 

SLC7A11sut/sut mice by injection of KA (Abcam, Cambridge, U.K.). Mice were acclimated 

to handling by performing mock daily intraperitoneal (i.p.) injections five days prior to 

each study, which consisted of inverting the mouse and rubbing its abdomen. They 

were also acclimatized to the procedure room for at least one hour prior to 

experimentation. The KA injection solution (1 – 1.5 mg/mL) was prepared fresh on day 

of use in 0.05M phosphate buffered saline (PBS) and filter sterilized prior to i.p. 

administration.  

4.3.2.1 Acute Dose 

SLC7A11+/+ or SLC7A11sut/sut mice were injected once with KA (12 mg/kg, males; 

15 mg/kg, females) in a volume of 10 ml/kg body weight. Following the injection, mice 

were monitored for 30 min and the time and severity of behavioral seizures scored and 

recorded by an observer blinded to genotype using a nine-point modified Racine scale 

as described below. All mice received 5mg/kg diazepam (i.p., dissolved in 0.9% saline 

containing 40% propylene glycol) 60 min after dosing to arrest any ongoing seizure 

activity. 

4.3.2.2 Escalating Dose 

The escalating dosing paradigm was initiated by injecting SLC7A11+/+ or 

SLC7A11sut/sut mice with a loading dose of 10 mg/kg KA in a volume of 10 ml/kg body 

weight. Booster doses of 2.5 mg/kg KA were administered 30, 60, 90, 120, and 150 min 

later (see below) in a volume of 2.5 ml/kg body weight. Mice were continuously 

monitored throughout the 240 min paradigm and the time and severity of behavioral 
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seizures scored and recorded by an observer blinded to genotype using a nine-point 

modified Racine scale as described in Section 4.3.2.3 (Table 4.1). All mice received 

5mg/kg diazepam (i.p., dissolved in 0.9% saline containing 40% propylene glycol) 240 

min after the initial dose of KA to arrest any on-going seizure activity. 

 

 

 

 

 

 

 

 

 
4.3.2.3 Quantification of KA-induced Seizure Behavior 

Behavioral seizure scores were recorded for each mouse by an observer blinded 

to genotype to ensure unbiased scoring (see Table 4.1 below). Scores ≤ 4 = non-

convulsive seizures; scores ≥ 5 = clonic/convulsive seizure. 
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Table 4.1: Descriptive KA-induced Seizure Scoring System  

 

Table adapted from descriptions in (Ferraro et al 1999, Pitkanen 2006, Racine 1972).  

 

 

 

Seizure 
Score 

Abbreviated 
Description 

Detailed 
Description 

0 Normal behavior 
Normal ambulation/exploration: sniffing, rearing, grooming, eating, digging, 

and climbing are common. Unless sleeping, mice will rarely be motionless for 
more than a few seconds. 

1 Hypomobility 
and hypoactivity 

Overall behavior will be dominated by bouts (> 10 sec in duration) of staring 
and motionlessness that may be interrupted by brief sniffing or ambulation. 

2 Hyperactivity 
Hyperactivity includes excessive unidirectional rotations, escape-like 

behavior, and running with an abnormal gait. This generally follows periods of 
hypoactivity. 

3 
Repeated 

twitching or  
myoclonus 

Animal with normal posture exhibiting two or more brief (≤ 2 sec) myoclonic 
twitches of head, tail or axial musculature. Twitching of whiskers and facial 

movements are apparent. 

4 Rearing without 
clonus 

Animal adopts a posture with prominent kyphosis. Head bobbing or nodding 
may occur, but movement is not clonic. 

5 Rearing with 
clonus 

Similar to score 4 with addition of clonic movement of one or both 
paws/forelimbs. Animal may transiently lose balance but never falls on side. 

Continuous clonic movements lasts  ≤ 10 min. 

6 
Generalized 
seizure with 

righting reflex 

Animals start showing generalized convulsive seizures but will not lose their 
righting reflex. Convulsive seizures rarely last longer than 1 min. 

7 

Generalized 
seizure with loss 

of righting or 
violent jumping 

Similar to score 6, but animal will fall on side for ≥5 seconds due to hind and 
forelimb clonus. Animal may barrel roll or violently jump (popcorn) and run 

around cage. 

8 

Status 
Epilepticus, 
continuous 
generalized 

seizure activity 

Sustained score 5-7 seizures for ≥ 20 min. Typically, score 5 seizures evolve 
to score 6-7 and resolve back to score 5 without any intervening periods of 
absent convulsive seizure activity or lesser seizure scores. Clonic seizures 

involving loss of posture may proceed uninterrupted for tens of minutes. 
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4.3.3 Histology  

SLC7A11+/+ or SLC7A11sut/sut mice administered 22.5 mg/kg KA (escalated 

dosing paradigm) were sacrificed 72 hr later by transcardial perfusion and fixation with 

ice-cold 1x PBS and 4% paraformaldehyde (PFA) in PBS. Following removal from the 

cranium, brains were post-fixed in 4% PFA in PBS for 24 hr (4°C), transferred to a 20% 

sucrose solution for 24 hr (4°C), and then snap-frozen on dry ice in Optimal Cutting 

Temperature (O.C.T.) compound (Tissue-Tek, Torrance, CA) prior to storage at -80°C. 

Frozen brains were cut serially (≈-0.94 – -2.46 mm posterior to bregma) into 14 µm 

coronal sections, mounted on SuperFrost Plus slides (Fisher Scientific, Houston, TX), 

air dried at room temperature for 24 hours, and then stored at -20°C until processing. 

4.3.3.1 Thionin staining 

Frozen sections were removed from -20°C and initially incubated in a descending 

ethanol series of 70% (five min) and 50% (one min) ethanol followed by a one min rinse 

in deionized (DI) water prior to incubation in 0.5% thionin (Sigma Chemical Co., St 

Louis, MO) for 10 min. Slides were rinsed in DI water 2x for one min each followed by 

serial dehydration in absolute ethanol (70%, 95%, 100%, 100%; one min each). Ethanol 

was cleared with xylenes (2x for one or three min each), after which coverslips were 

mounted using Permount mounting media.  

4.3.3.2 Fluoro Jade C staining 

Tissue sections within 168 µm of those processed for thionin staining were 

Fluoro Jade C stained (AAT Bioquest, Sunnyvale, CA). Frozen sections were removed 

from -20°C and dried at 50-60°C for 25-30 min. Samples were initially incubated with 

basic alcohol solution (1% NaOH in absolute ethanol) for 5 min followed by 70% ethanol 
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for 2 min and a 2 min rinse in deionized (DI) water. Sections were then placed in 0.06% 

potassium permanganate for 10 min, rinsed in DI water for 2 min, and then placed in 

0.0001% Fluoro Jade C in 0.1% acetic acid for 10 min. Samples were rinsed in DI water 

3X for 1 min each, dried on a slide warmer at 50-60°C, and images captured with a 

Zeiss Axio Imager A2 microscope equipped with epifluorescence and an AxioCam MRc 

digital camera (Carl Zeiss, Germany). Following image acquisition, samples were 

cleared with xylenes and mounted with DPX mounting media. All images were 

processed identically using Zen Microscope and Imaging Software (Carl Zeiss, 

Germany, RRID: SCR_013672) and Microsoft PowerPoint. 

 

4.3.4 Immunoblotting 

4.3.4.1 Plasma membrane protein isolation 

A separate cohort of SLC7A11+/+ or SLC7A11sut/sut mice having undergone the 

escalating KA dosing paradigm were perfused transcardially with ice-cold 1x PBS under 

full anesthesia within 5-25 min of diazepam injection. Cortices were dissected, snap 

frozen in liquid nitrogen, and stored at -80°C prior to use. Plasma membrane proteins 

were isolated from bilateral cortices (one mouse/sample) using an aqueous two-phase 

separation method as per manufacturer’s instructions (Plasma Membrane Protein 

Extraction Kit, Abcam, Cambridge, U.K.). Isolated proteins were suspended in 0.5% 

Triton X-100 in PBS. Samples were stored at -80°C until immunoblotting. Protein 

concentrations were quantified using the BCA assay kit (Pierce, Rockford, IL).  
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4.3.4.2 Gel electrophoresis and protein detection 

Protein samples (7.5 µg) were separated by 8% SDS-PAGE under reducing 

(10mM dithiothreitol) and chaotropic (8M urea) conditions followed by electrophoretic 

transfer to a PVDF membrane (Bio-Rad; Hercules, CA). Membranes were blocked for 

one hr at room temperature (Odyssey® blocking buffer, LI-COR Biosciences; Lincoln, 

NE) then probed overnight (4°C) with the following antibodies: anti-Na+/K+ ATPase α1 

mouse monoclonal antibody (1:750; Abcam; RRID: AB_306023); anti-GluA1 rabbit 

polyclonal antibody (1:750; Abcam; RRID:AB_2113447); anti-GluA2 rabbit polyclonal 

antibody (1:750; Abcam; RRID:AB_2232655); anti-GluN1 rabbit monoclonal antibody 

(1:750; Cell Signaling; RRID: AB_1904067); anti-GABAARα1 rabbit polyclonal antibody 

(1:3000; Abcam; RRID: AB_732498). Species-specific secondary antibodies labeled 

with spectrally distinct IRDye® fluorescent dyes (LI-COR Biosciences, Lincoln, NE) 

were used to detect primary antibodies (1 hr at 25°C) (1:10,000 dilution). Results were 

recorded on a LI-COR ODYSSEY® Fc Imaging system (LI-COR Biosciences; Lincoln, 

NE) and protein levels quantified using Image Studio 3.1 (LI-COR Biosciences; Lincoln, 

NE). Each protein was normalized to the Na+/K+ ATPase (males) or total protein 

(females) levels contained in each lane. The signal intensity pertaining to the amount of 

cortical protein per lane (7.5 µg) was determined to be in the linear range for each 

antibody at their respective dilution (data not shown).  

 

4.3.5 Statistical analysis 

All statistical analyses were performed using GraphPad Prism (Version 6.0.1, 

Graphpad Software, Inc., La Jolla, CA). Acute seizure severity and proportions 
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indicating the percent of mice convulsing were compared using a Mann-Whitney U test 

and Fisher’s exact test, respectively. An unpaired t test with Welch’s correction was 

used to compare latency to seizure. Curves depicting the median seizure scores over 

time were compared using a comparison of fit test, while individual seizure scores over 

time were compared using the Kruskal-Wallis test. Kaplan Meier survival curves were 

compared using the Mantel-Cox log-rank test. Prior to parametric analysis, immunoblot 

data was log transformed (y = log(y+1)) and compared using two-way ANOVA. In all 

cases, significance was set at p < 0.05.  

 

4.4 Results  

 
Acute KA-induced seizure severity  

The behavioral seizure severity in response to a single acute dose of KA (12-15 

mg/kg) was compared in SLC7A11+/+ and SLC7A11sut/sut mice. Irrespective of genotype 

or sex, within minutes of receiving the dose of KA, all mice exhibited a decrease in 

spontaneous locomotor activity (seizure score = 1). This behavior was often followed by 

hypermobility, manifest by excessive pacing, climbing, or unilateral rotations (seizure 

score = 2), or sporadic myoclonic twitches (seizure score = 3). In a subset of mice, 

behavioral seizures progressed to a kyphosis, or hunchback, posture (seizure score = 

4). The majority of SLC7A11sut/sut (19/20), and a subset of SLC7A11+/+ mice (4/17), 

progressed to behavioral clonic or convulsive seizures manifest by kyphosis with 

forelimb clonus (seizure score = 5), a generalized convulsion (seizure score = 6), or a 

generalized convulsion with loss of righting reflex and/or violent jumping (seizure score  
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Figure 4.1 Comparison of acute KA-induced seizure activity in SLC7A11+/+ and 
SLC7A11sut/sut mice 

Male (n = 6) and female (n = 11) SLC7A11+/+ (+/+, total = 17) and male (n = 7) and 
female (n = 13) SLC7A11sut/sut (sut/sut, n = 20) littermates were treated with a single 
dose of either 12 mg/kg (males) or 15 mg/kg (females) KA (i.p.). Seizure behavior was 
scored using a 9 point scale as described in the materials and methods. Data were 
pooled from 6 independent experiments performed over 2 months.   
A-C) Individual seizure scores: Each data point [closed black circles (+/+) or open 
circles (sut/sut)] represents the maximal seizure score obtained by an individual mouse: 
(A) male and females combined, (B) females, or (C) males only during a 30 min 
observation period. Horizontal lines represent the median seizure score for each 
genotype. SLC7A11sut/sut mice have significantly greater seizure severity as compared 
to SLC7A11+/+ littermate controls (*p = 0.0002, **p < 0.0001; Mann-Whitney U Test).  
B) Convulsive index: Bars [closed black bar (+/+) and open bar (sut/sut)] represent the 
proportion (fraction within bars) of mice that experienced a clonic seizure (seizure score 
≥ 5) in A (D), B (E), or C (F) expressed as a % of total mice exposed to KA. 
SLC7A11sut/sut mice have a higher clonic index compared to SLC7A11+/+ littermate 
controls as denoted by the asterisk(s) (*p = 0.0210, **p = 0.0005, ***p < 0.0001; Fisher’s 
Exact Test).  
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Figure 4.2 Comparison of convulsive seizure latency between SLC7A11+/+ and 
SLC7A11sut/sut mice 

The latency to convulsion of SLC7A11+/+ (+/+, n= 4; 2M, 2F) and SLC7A11sut/sut (sut/sut, 
n = 19; 7M, 12F) mice that achieved a score of ≥ 5 in Figure 4.1 is graphed.  
A-C) Each data point [closed black circles (males) or open circles (females)] represents 
the latency to convulsion (behavioral score ≥ 5) of a single mouse during the 30 min 
observation period: (A) combined males plus females, (B) females, or (C) males only. 
Bars represent the median latency for each genotype. SLC7A11sut/sut mice have a 
decreased convulsive seizure latency as compared to SLC7A11+/+ littermate controls as 
denoted by the asterisk (A only; *p = 0.0346, Unpaired t test with Welch’s correction).  
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= 7). A fraction of SLC7A11sut/sut mice exhibited unremitting clonic/convulsive seizure 

activity as evidenced by a score of 5, 6, or 7 for ³ 20 min and as such, these mice were 

assigned a score of 8 (status epilepticus).  

The median seizure score in female and male SLC7A11sut/sut mice was 

significantly greater than that of SLC7A11+/+ littermate controls (Fig. 4.1A p < 0.0001; 

Mann-Whitney U test). Stratification of this data by sex revealed that female (Fig. 4.1B; 

p = 0.0002) but not male (Fig. 4.1C; p = 0.1142) SLC7A11sut/sut mice have significantly 

enhanced seizure severity as compared to SLC7A11+/+ sex-matched littermate controls 

at their respective KA doses (Mann Whitney U test). Furthermore, a decreased 

convulsive seizure threshold was evident in the SLC7A11sut/sut mice, with 95% (19/20) 

reaching a seizure stage ≥ 5, compared to 23.5% (4/17) of SLC7A11+/+ mice (Fig. 4.1D; 

p < 0.0001; Fisher’s exact test). This effect, however, was sex-independent, with 92.3% 

of female and 100% of male SLC7A11sut/sut mice experiencing a clonic seizure as 

compared to 18.2% of female and 33.3% of male SLC7A11+/+ sex-matched littermate 

controls (Females, Fig. 4.1E, p = 0.0005; Males, Fig. 4.1F, p = 0.0210; Fisher’s exact 

test). Finally, the mean latency to clonus was decreased in combined female and male 

SLC7A11sut/sut mice as compared to SLC7A11+/+ littermate controls (Fig. 4.2A; 265 ± 57 

and 302 ± 45 sec, mean ± SEM, for SLC7A11+/+ and SLC7A11sut/sut mice, respectively, 

p = 0.0346, unpaired t-test with Welch’s correction). It is also noteworthy that the latency 

to clonic seizure was reduced in SLC7A11sut/sut versus sex-matched SLC7A11+/+ female 

(Fig. 4.2B; 1044 ± 148.5 s in SLC7A11sut/sut vs. 1493 ± 171 s in SLC7A11+/+, mean ± 

SEM) and male (Fig. 4.2C; 1444 ± 122.6 s in SLC7A11sut/sut vs. 1711 ± 37.5 s in  
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Figure 4.3 Comparison of SLC7A11+/+ and SLC7A11sut/sut seizure severity in the 
escalating KA dosing paradigm 

 
Male (n = 12) and female (n =16) SLC7A11+/+ (+/+, total n = 28) and male (n = 13) and 
female (n = 12) SLC7A11sut/sut (sut/sut, total n = 25) littermates underwent the escalating 
KA dose treatment paradigm and behavioral responses were scored using a 9-point 
scale as described in the materials and methods. Data were pooled from 9 independent 
experiments performed over 4 months.  
A-C) Time Course: The shaded area represents the 150 min interval in which KA was 
administered. Each data point [closed black circles (+/+) or open circles (sut/sut)] 
represents the median maximal seizure score obtained: (A) females and males 
combined, (B) females, or (C) males only for each 10 min interval of the 240 min 
treatment paradigm. Green linear regression lines are fitted from the last kainate dose (t 
= 150 min) to the end of the protocol (t = 240 min). Slope of the SLC7A11sut/sut line is 
significantly different from slope of the SLC7A11+/+ line as denoted by the asterisk (p < 
0.0001; Comparison of fit test). 
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Figure 4.4 Comparison of individual SLC7A11+/+ and SLC7A11sut/sut mouse seizure 
severity in the escalating KA dosing paradigm 

The individual seizure scores of mice administered KA in Figure 4.3 were compared.  
A-C) Individual seizure scores: Each data point [closed black circles (+/+) or open 
circles (sut/sut)] represents the median seizure score obtained by an individual mouse: 
(A) females and males combined, (B) females, or (C) males only calculated from the 
maximal seizure score obtained over the six 10 min intervals contained in each quartile 
(Q1-Q4). Bars represent the median seizure score for each genotype calculated using 
the median score from all animals. SLC7A11sut/sut mice have significantly lower seizure 
severity in the final 60 min quartile (Q4) of the four hour KA dosing paradigm as 
compared to SLC7A11+/+ littermate controls as denoted by the asterisk(s) (*p < 0.01, **p 
< 0.001, ***p < 0.0001; Kruskal-Wallis test). 
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SLC7A11+/+, mean ± SEM) littermates, although the sample sizes preclude a sufficiently 

powered statistical comparison. 

 

Seizure severity in mice administered an escalating dose of KA  

To further explore changes in excitability, mice were administered an escalating 

dose of KA (22.5 mg/kg over 150 min) (Claycomb et al 2012). Similar to behavioral 

seizure activity elicited in the acute paradigm, a profound hypomobility was observed in 

in all mice regardless of genotype or sex within minutes of the initial 10 mg/kg dose of 

KA. As the dosing protocol progressed over the first hour, the median maximal seizure 

score (MMSS) in the SLC7A11sut/sut mice reached a score of 5 (kyphosis with forelimb 

clonus) compared to a score of 4 (kyphosis) in SLC7A11+/+ littermate controls (Fig. 

4.3A). However, by the second hour of the protocol (t = 120 min), the behavior of 

SLC7A11sut/sut mice was indistinguishable from their SLC7A11+/+ littermate controls (Fig. 

4.3A). Interestingly, in the 90 min following the final KA dose (t = 150-240 min), the 

MMSS trend lines fit to seizure scores in SLC7A11+/+ and SLC7A11sut/sut mice began to 

diverge (green lines on Fig. 4.3A, p < 0.0001, comparison of fit test). Upon receiving the 

final dose of KA at t = 150 min, seizure activity in SLC7A11+/+ mice escalated such that 

the MMSS reached status epilepticus (seizure score = 8) by the final hour of the 

protocol. Unexpectedly, SLC7A11sut/sut mice exhibited a striking decrease in behavioral 

seizure severity within the final hour of the protocol dominated by immobility (seizure 

score = 1) in the majority of mice. Of note, the aforementioned seizure behaviors 

occurred independent of sex, with both female (Fig. 4.3B) and male (Fig. 4.3C) 

SLC7A11sut/sut mice exhibiting hypomobility in the final quartile of the paradigm as 
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compared to SLC7A11+/+ sex-matched littermate controls, which were consistently in 

status epilepticus.  

A comparison of the MMSS of individual mice in each quartile of the paradigm 

further demonstrated the divergence in seizure activity between SLC7A11+/+ and 

SLC7A11sut/sut mice in the final quartile of the escalating dose protocol. While the 

median MMSS of the population of male and female (Fig. 4.4A), female (Fig. 4.4B), or 

male (Fig. 4.4C) SLC7A11+/+ mice was at a seizure score = 8 in the fourth quartile, the 

median MMSS of the SLC7A11sut/sut mice was at a seizure score = 1 (Females and 

males, Fig. 4.4A, p < 0.0001; Females, Fig. 4.4B, p < 0.01; Males, Fig. 4.4C, p < 0.001; 

Kruskal-Wallis test).  

 

Incidence of status epilepticus (SE) and fatality in escalated dosing paradigm. 

The disparity in behavioral seizure activity induced by an escalating dose of KA 

was further exemplified by examining the incidence of status epilepticus in quartile four, 

which was three times greater in SLC7A11+/+ [85.2% (23/27)] as compared to 

SLC7A11sut/sut mice [28% (7/25)] (Fig. 4.5A; p < 0.0001; Fisher’s exact test). This effect 

was also sex-independent, with 81.3% of female and 91% of male SLC7A11+/+ mice 

experiencing status epilepticus as compared to 33.3% of female and 23.1% of male 

SLC7A11sut/sut sex-matched littermate controls (Females, Fig. 4.5B, p = 0.0189; Males, 

Fig. 4.5C, p = 0.0013; Fisher’s exact test).   

 In toto, 23% (12/53) of mice administered an escalating dose of KA died over the 

course of the four-hour paradigm, with all but one of the deaths occurring in the final 

hour after cessation of the 150 min dosing period (Fig. 4.6). Notably, the majority of 
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deaths occurred in SLC7A11+/+ mice, with just 64.3% (18/28) of SLC7A11+/+ as 

compared to 92% (23/25) of SLC7A11sut/sut mice surviving the paradigm (Fig. 4.6A; p = 

0.0137, Mantel-cox log-rank test). This effect was driven by a decreased incidence of 

death in SLC7A11sut/sut male mice relative to SLC7A11+/+ sex-matched controls; 92.3% 

(12/13) of SLC7A11sut/sut mice survived the paradigm as compared to 58.3% (7/12) of 

SLC7A11+/+ mice (Fig. 4.6C; p = 0.0402; Mantel-cox log-rank test). A similar decrease 

in KA-induced mortality, although statistically insignificant (Fig. 4.6B; p = 0.1374, 

Mantel-cox log-rank test), was observed in SLC7A11sut/sut female mice.  

 

KA-induced hippocampal neural degeneration occurs in different sub-regions in 

SLC7A11+/+ and SLC7A11sut/sut mice. 

A subset of SLC7A11+/+ and SLC7A11sut/sut mice dosed with 22.5 mg/kg KA (Fig. 

4.3A) were sacrificed 72 hr post-seizure initiation and brains were processed for thionin 

or Fluoro-Jade C staining. All of the tissue analyzed was derived from SLC7A11+/+ (Fig. 

4.7A, 5 females, 3 males) or SLC7A11sut/sut (Fig. 4.7B, 4 females, 1 male) mice that 

achieved behavioral seizure scores of 6 (generalized convulsion) or 7 (generalized 

convulsion with loss of righting reflex and/or violent jumping) over the course of the 

dosing paradigm. Despite their behavioral seizure similarities, the hippocampal neural 

degeneration in SLC7A11+/+ and SLC7A11sut/sut mice occurred with striking sub-region 

specificity. Though the incidence of neural degeneration occurred in a similar fraction of 

SLC7A11+/+ [37.5% (3/8; 2 males, 1 female)] and SLC7A11sut/sut [60% (3/5; 1 male, 2 

females)] mice (p = 0.5921; Fisher’s exact test), degeneration in the SLC7A11+/+ mice  
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Figure 4.5 Effect of SLC7A11 disruption on incidence of status epilepticus SE in 
the escalating KA paradigm. 

A-C) Bars represent the proportion (fraction within bars) of SLC7A11+/+ [+/+, n = 27 
(11M, 16F)] and SLC7A11sut/sut [sut/sut, n = 25, (13M, 12F)] mice that experienced a 
seizure score = 8 (SE) in the final 60 min quartile of the four hour KA dosing paradigm. 
*Indicates significant between group difference (*p = 0.0189, **p = 0.0013, ***p < 
0.0001; Fisher’s exact test). 
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Figure 4.6 Effect of SLC7A11 disruption on mortality in the escalating KA 
paradigm. 

A-C) Kaplan-Meier survival curves up to 72 hr following initial KA dose for SLC7A11+/+ 
[+/+, n = 28 (12M, 16F)] and SLC7A11sut/sut [sut/sut, n = 25, (13M, 12F)] (A) females and 
males combined, (B) females, or (C) males are graphed. Each data point represents the 
time at which individual mice died during the KA dosing protocol or over the following 72 
hr. Fractions represent the proportion of mice that survived the 240 min KA paradigm 
(shaded region). *Indicates significant between group difference (*p = 0.0402, **p = 
0.0137; Mantel-Cox log-rank test). 
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Figure 4.7 Comparison of cellular degeneration in hippocampus of SLC7A11+/+ 
and SLC7A11sut/sut mice exposed to the escalating KA dose paradigm 

A cohort of SLC7A11+/+ and SLC7A11sut/sut mice responding to the escalated KA dosing 
paradigm with a seizure score ≥ 6 were sacrificed 72 hr later by transcardial perfusion 
and fixation with 4% PFA. Brains were removed and coronal sections of 14 μm 
thickness were taken at 28 μm intervals spanning the hippocampal formation. 
A-B) Representative photomicrographs of (A) SLC7A11+/+ (+/+, n = 8) and (B) 
SLC7A11sut/sut (sut/sut, n = 5) brain sections stained with (a-d) thionin or (e-h) Fluoro-
Jade C. Photomicrographs represent the hippocampal formation ≈ -1.2 to -1.9 anterior 
to posterior from bregma (a, e; 4X); the CA1 (b, f; 10X); the CA3 (c, g; 10X); and the 
dentate gyrus (DG) (d, h; 10X).  
C) Incidence of hippocampal histological damage: Bars represent the proportion 
(fraction within bars) of SLC7A11+/+ (+/+, black bar) and SLC7A11sut/sut (sut/sut, blue 
bar) mice with degenerating cells in the hippocampal formation sub-regions (CA1, CA3, 
or DG) as indicated by positive Fluoro-Jade C staining. 
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occurred primarily in the hippocampal CA1 sub-region whereas degeneration was 

limited to area CA3 in SLC7A11sut/sut mice (Fig. 4.7C). This was demonstrated by 

pyknosis or green fluorescence predominating in the CA1 (Fig. 4.7Ab and Fig. 4.7Af) or 

CA3 (Fig. 4.7Bc and Fig. 4.7Bg) of SLC7A11+/+ or SLC7A11sut/sut mice, respectively. 

 

Plasma membrane protein expression levels 

Despite receiving 22.5 mg/kg KA over the course of the escalating dosing 

paradigm, the majority of SLC7A11sut/sut mice exhibited profound hypo-excitability 

(seizure score = 1) in the fourth quartile of the protocol, a behavioral state polar 

opposite to SLC7A11+/+ littermate controls who entered into behavioral status 

epilepticus (seizure score = 8). Given that aberrations in plasma membrane levels of 

AMPA (GluA1, GluA2), NMDA (GluN1), or GABA (GABAARα) receptor subunits are 

associated with abnormal neuronal synchronization (Kelley et al 2016, Mathern et al 

1998, Raol et al 2006), we measured cortical plasma membrane expression levels of 

this suite of proteins to investigate whether alterations in such could underlie the 

behavioral hypo-excitability observed in the majority of SLC7A11sut/sut mice.  

As such, comparisons were made between cortical plasma membrane proteins derived 

from naïve SLC7A11+/+ and SLC7A11sut/sut mice as well as mice of each genotype that 

entered into a state of KA-induced hypomobility (MMSS = 1) or status epilepticus 

(MMSS = 8) in the final quartile of the escalating dose paradigm. Western blot analysis 

revealed no change in female and male SLC7A11+/+ and SLC7A11sut/sut GluA1 (Fig. 

4.8A), GluA2 (Fig. 4.8B), GluN1 (Fig. 4.8C), or GABAARa (Fig. 4.8D) expression levels 

(two-way ANOVA with Tukey’s multiple comparisons). Moreover,  
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Figure 4.8 Comparison of plasma membrane protein expression in SLC7A11+/+ 
and SLC7A11sut/sut mice 

Plasma membrane protein levels in cortex derived from female and male SLC7A11+/+ 
(+/+) or SLC7A11sut/sut (sut/sut) littermates naïve to any treatment (ctrl) or mice 
exhibiting hypo-mobility [KA (1)] or status epilepticus [KA (8)] in the final quartile of the 
four hour escalating dose paradigm were compared using Western blot analysis (see 
methods). Each data point [closed black circles (+/+; n = 8) or open circles (sut/sut; n = 
8) represents the level of cortical (A) GluA1, (B) GluA2, (C) GluN1, or (D) GABAARa 
protein following normalization to their respective loading control (i.e., Na+/K+ ATPase 
levels or total protein) and subsequent normalization to +/+ controls. Bars indicate the 
mean fold change from control (+/+), which was set to one. Cortical plasma membrane 
protein expression levels were compared using a two-way ANOVA on log-transformed 
data.  
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Figure 4.9 Comparison of plasma membrane protein expression in female 
SLC7A11+/+ and SLC7A11sut/sut mice 

Plasma membrane protein levels in cortex derived from female SLC7A11+/+ (+/+) or 
SLC7A11sut/sut (sut/sut) littermates naïve to any treatment (ctrl) or mice exhibiting hypo-
mobility [KA (1)] or status epilepticus [KA (8)] in the final quartile of the four hour 
escalating dose paradigm were compared using Western blot analysis (see methods). 
Each data point [closed black circles (+/+; n = 4) or open circles (sut/sut; n = 4) 
represents the level of cortical (A) GluA1, (B) GluA2, (C) GluN1, or (D) GABAARa 
protein following normalization to their respective loading control (i.e. total protein 
levels) and subsequent normalization to +/+ controls. Bars indicate the mean fold 
change from control (+/+), which was set to one. Representative Western blots of +/+ 
and sut/sut cortical plasma membrane proteins are shown beside their respective 
graphs. Cortical plasma membrane protein expression levels were compared using a 
two-way ANOVA on log-transformed data.  
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Figure 4.10 Comparison of plasma membrane protein expression in male 
SLC7A11+/+ and SLC7A11sut/sut mice 

Plasma membrane protein levels in cortex derived from male SLC7A11+/+ (+/+) or 
SLC7A11sut/sut (sut/sut) littermates naïve to any treatment (ctrl) or mice exhibiting hypo-
mobility [KA (1)] or status epilepticus [KA (8)] in the final quartile of the four hour 
escalating dose paradigm were compared using Western blot analysis (see methods). 
Each data point [closed black circles (+/+; n = 4) or open circles (sut/sut; n = 4) 
represents the level of cortical (A) GluA1, (B) GluA2, (C) GluN1, or (D) GABAARa 
protein following normalization to their respective loading control (i.e., Na+/K+ ATPase 
[NKA] levels) and subsequent normalization to +/+ controls. Bars indicate the mean fold 
change from control (+/+), which was set to one. Representative Western blots of +/+ 
and sut/sut cortical plasma membrane proteins are shown above their respective 
graphs. Cortical plasma membrane protein expression levels were compared using a 
two-way ANOVA on log-transformed data. An asterisk (*) represents a significant 
between group difference (p < 0.05).  
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stratification of this data by sex revealed a similar trend in female SLC7A11+/+ as 

compared to SLC7A11sut/sut sex-matched littermates, who also demonstrated similar 

levels of GluA1, GluA2, GluN1, and GABAARa protein levels (Fig. 4.9; two-way ANOVA 

with Tukey’s multiple comparisons). Interestingly, while glutamate receptor subunits 

were similar between male SLC7A11+/+ and SLC7A11sut/sut sex-matched littermates 

regardless of treatment (Fig. 4.10A-C), male SLC7A11sut/sut mice that became 

hypomobile by the end of the four-hour protocol demonstrated elevated GABAARa 

expression levels as compared to male SLC7A11sut/sut mice that entered into status 

epilepticus (Fig. 4.10D, p < 0.05, two-way ANOVA with Tukey’s multiple comparisons). 

 
4.5 Discussion 

Results presented in Chapter 2 demonstrated that SLC7A11sut/sut mice have a 

decreased seizure threshold upon administration of an acute dose of PTZ. Despite this, 

SLC7A11sut/sut mice were less susceptible to PTZ-kindling (Chapter 3), suggesting that 

Sxc- contributes to E/I balance in a context-dependent manner. The present chapter 

extends these findings by demonstrating that alterations in excitability observed in 

SLC7A11sut/sut mice were generalizable to acute and elevated KA dosing seizure 

paradigms.  

KA induces excitatory activity by binding to both AMPA receptors as well as its 

own cognate receptors (Vincent & Mulle 2009). In response to an acute systemic dose 

of KA, a significantly greater number of female and male SLC7A11sut/sut mice 

experienced a clonic or convulsive seizure as compared to SLC7A11+/+ littermates, 

indicating that they have a decreased KA-induced seizure threshold. While these results 

support our initial studies using the GABAAR antagonist PTZ (Chapter 2), they are in 
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contrast with results reported by De Bundel et al demonstrating that transgenic xCT null 

(xCT-/-) mice on a C57BL/6 background require a significantly greater dose of KA to 

elicit behavioral clonus, and thus have an increased seizure threshold, as compared to 

xCT+/+ littermate controls (De Bundel et al 2011). Given that both the xCT-/- and 

SLC7A11sut/sut mice are xCT null (Chintala et al 2005, De Bundel et al 2011, McCullagh 

& Featherstone 2014), the reason for the discrepancy in findings is not immediately 

clear. However, it may be accounted for by differences in experimental paradigms. In 

De Bundel et al, continuous intravenous infusion of chemoconvulsant resulted in rapid 

behavioral seizure onset such that clonic seizures were evoked in xCT+/+ and xCT-/- 

mice by the time 58.1 or 75.6 mg/kg KA was infused, respectively (De Bundel et al 

2011). However, it is difficult to attribute behavioral activity to a given dose when the 

dose is continuously changing, and it is possible that 58 mg/kg KA could elicit clonus in 

both xCT+/+ and xCT-/- mice, but xCT-/- mice have an increase in clonic seizure latency. 

While the clonic latencies were not calculated in De Bundel et al, keeping the weight of 

an animal constant, the rapid infusion rate (150 µl/min) utilized in this protocol would 

result in a dose of 58.1 mg/kg by »77 sec versus a dose of 75.6 mg/kg by »100 

seconds, which were the doses that evoked clonic seizures in xCT+/+ or xCT-/- mice, 

respectively. Whether this change represents a significant difference in latency to 

clonus (77 versus 100 sec) is uncertain. Despite the discrepancy between the De 

Bundel et al study and our own, the present findings in this chapter parallel the results 

seen using the GABAAR antagonist PTZ (Chapter 2), and provide further evidence that 

SLC7A11sut/sut mice have a decreased acute seizure threshold.  
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Interestingly, repeated administration of KA in the elevated dosing paradigm 

revealed the opposite behavioral results; regardless of sex, the majority of 

SLC7A11sut/sut mice became profoundly hypomobile as compared to SLC7A11+/+ 

littermate controls in the final quartile of the dosing protocol. Given the acute hyper-

excitability observed in the SLC7A11sut/sut mice, it is tempting to speculate that the 

hypomobility seen in the latter portion of the escalating dose paradigm is simply due to 

excessive excitation and a resultant comatose post-ictal state. However, this does not 

appear to be the case, as this type of hypo-activity is usually associated with death and 

the SLC7A11sut/sut mice exhibiting hypomobility in the final quartile fully recover – with 

diazepam administration ostensibly superfluous in some mice (S. Sears personal 

observations). In fact, SLC7A11sut/sut mice have significantly decreased mortality overall 

as compared to SLC7A11+/+ littermate controls in this paradigm.    

In the final quartile of the elevated dosing paradigm, SLC7A11sut/sut mice 

exhibited a significantly decreased incidence of status epilepticus as compared to 

SLC7A11+/+ mice. KA-induced behavioral convulsions are typically associated with 

structural alterations, as excessive depolarization can result in cell death (Olney et al 

1974), and cell populations in the CA3 sub-region of the hippocampal formation have 

been demonstrated to be particularly vulnerable to KA-induced degeneration (Nadler et 

al 1980). However, mouse strain differences with respect to KA-induced degeneration 

do exist (Schauwecker 2003). As such, a subset of mice that attained a seizure score ³ 

6 were examined for overt hippocampal cellular degeneration. Interestingly, 

degeneration was not pervasive in every mouse examined, though of the mice that did 

exhibit cell loss, the hippocampal sub-region affected was strikingly genotype specific 
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with the CA1 and CA3 region exhibiting neural degeneration in SLC7A11+/+ and 

SLC7A11sut/sut mice, respectively. Although xCT is expressed throughout the 

hippocampal formation, Ottested-Hansen and colleagues recently demonstrated that 

xCT protein levels are greatest in the stratum lacunosum moleculare (SLM) and the 

molecular layer of the dentate gyrus (DG) (Ottestad-Hansen et al 2018). Interestingly, 

afferent projections from the entorhinal cortex (EC) terminate in both of these layers 

(Amaral et al 2007). This gives rise to the intriguing possibility that afferent EC 

projections to the SLM, together with Sxc- signaling, promotes neural degeneration in 

the CA1 hippocampal sub-region, and that lack of Sxc- thwarts this degeneration. 

Although the DG molecular layer is relatively cell-free – containing granule cell dendrites 

and inhibitory basket cells (Amaral et al 2007) – it is possible that afferent EC 

projections, together with Sxc- signaling, promotes basket cell-mediated inhibitory drive 

onto granule cells, thus thwarting over-activation of their CA3 synaptic targets and 

preventing KA-mediated CA3 cell death. Conversely, lack of Sxc- signaling in the 

molecular layer of SLC7A11sut/sut mice could render DG granule cells hyper-active, thus 

underlying the enhanced neural degeneration of their CA3 synaptic partners. 

Regardless of the underlying mechanism, the sub-region specific differences in 

SLC7A11+/+ and SLC7A11sut/sut mice neural degeneration elicited by an elevated dose 

of KA suggest that Sxc- signaling regulates hippocampal circuitry. Nevertheless, 

hippocampal sub-region notwithstanding, the incidence of KA-induced cellular 

degeneration was similar in either genotype. Taken together, although not completely 

comparable to the chronic 21-day PTZ-kindling paradigm (Chapter 3), the behavioral 

hypo-excitability observed in response to an elevated KA dosing protocol in the present 
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chapter is qualitatively similar, suggesting that loss of Sxc- increases seizure threshold 

in response to repeated/chronic chemoconvulsant administration. 

The increased synaptic drive elicited by repeated chemoconvulsant 

administration could plausibly engage homeostatic synaptic scaling mechanisms to 

allow stabilization of neuronal firing rate (Christie & Jahr 2008, Turrigiano 2008, 

Turrigiano et al 1998). This process is largely accomplished through the addition and 

subtraction, respectively, of ionotropic AMPA (O’Brien et al 1998, Turrigiano et al 1998, 

Wierenga et al 2005), NMDA (Mu et al 2003, Rao & Craig 1997, Watt et al 2000) or 

GABAA (Kilman et al 2002, Stellwagen et al 2005) receptors at the postsynaptic 

membrane. As such, we compared glutamate and GABAA receptor levels in cortical 

plasma membrane of naïve or KA-treated SLC7A11+/+ and SLC7A11sut/sut mice. Out of 

all of the receptors investigated, the only difference observed was in GABAARa levels: 

male, but not female, SLC7A11sut/sut mice that attained a MMSS = 1 (hypomobility) in 

the final quartile of the escalated dosing paradigm had increased GABAARa levels as 

compared to sex-matched SLC7A11sut/sut mice that reached a MMSS = 8 (status 

epilepticus). However, neither KA-treated group significantly differed from naïve 

SLC7A11sut/sut mice nor from naïve or KA-treated SLC7A11+/+ sex-matched controls. 

These results give rise to the intriguing possibility that KA-administration resulting in a 

slight increase in GABAARa expression in the SLC7A11sut/sut mice confers diminished 

excitatory seizure activity – a behavioral state evident in the majority of SLC7A11sut/sut 

mice – whereas a slight decrease in GABAARa expression does the opposite. However, 

these findings do not rule out the possibility that the changes detected in plasma 

membrane are driven by alterations in extrasynaptic (Brickley & Mody 2012) versus 
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synaptic GABAARs, and it will be important to determine whether GABAAR-dependent 

inhibitory postsynaptic currents (IPSCs) are functionally enhanced in the KA-treated 

male SLC7A11sut/sut mice with a fourth quartile MMSS = 1. Nevertheless, it is plausible 

that the fourth quartile hypo-excitability observed in SLC7A11sut/sut male mice is driven 

by an increase in plasma membrane GABAARa expression. The mechanism conferring 

behavioral hypo-excitability in female SLC7A11sut/sut mice requires further investigation. 

Finally, the idea that this phenotype (behavioral hypo-excitability) is sex-independent yet 

could be driven by sex-dependent differences (altered GABAAR expression in males 

versus unknown mechanism(s) in females) is perhaps unsurprising given results 

described in Chapter 2 of this dissertation, whereby a sex-independent hyperexcitable 

phenotype occurred in association with sex-dependent cellular morphological changes.   

Taken together, our results demonstrate that SLC7A11sut/sut mice have a 

decreased convulsive seizure threshold in response to acute KA administration whereas 

an elevated dosing paradigm using the same chemoconvulsant results in SLC7A11sut/sut 

behavioral hypoactivity as compared to SLC7A1+/+ littermate controls. These results 

suggest that Sxc- contributes to E/I balance in a context-dependent manner. Moreover, 

KA-induced behavioral hypo-excitability in male SLC7A11sut/sut mice occurs in 

association with increased GABAARa levels, suggesting that a change in GABAergic 

function could underlie this phenotype. Whether this alteration in GABAARa protein 

levels confer a functional change in males, and the exact mechanism by which loss of 

Sxc- signaling confers fourth quarter behavioral hypo-excitability in female mice, requires 

further experimentation.  
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Chapter 5: Discussion, conclusions, and future directions  
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5.1 Main findings 

The goal of this dissertation was to elucidate whether and how System xc- (Sxc-) 

signaling contributes to the excitatory/inhibitory (E/I) balance in brain. The main findings 

of this dissertation are that (1) loss of Sxc- in SLC7A11sut/sut mice renders them hyper-

excitable in response to acute administration of two pharmacologically distinct 

chemoconvulsants, PTZ or KA. Furthermore, baseline hyper-excitability in 

SLC7A11sut/sut mice occurs in association with morphological alterations at the gross, 

cellular, and sub-cellular level, as well as with alterations in plasma membrane 

glutamate receptor subunit expression and brain redox status, any or all of which could 

underlie the behavioral responses elucidated. (2) Despite acute hyper-excitability in 

response to either PTZ or KA, chronic/repeated dosing with these same 

chemoconvulsants elicits a polar opposite response – behavioral hypo-excitability – in 

SLC7A11sut/sut mice as compared to SLC7A11+/+ littermate controls.  

 

5.2 Acute hyper-excitability in Sxc- null mice occurs in association with 

morphological, redox, and plasma membrane protein alterations  

Findings presented in this dissertation demonstrate a sex-independent hyper-

excitability phenotype uncovered in SLC7A11sut/sut mice via administration of two 

pharmacologically distinct chemoconvulsants, PTZ or KA. SLC7A11sut/sut mice are 

viable, fertile, do not display spontaneous seizure activity, and, other than a subtle grey 

coat color, particularly apparent in juvenile mice three to four weeks of age, are 

indistinguishable from their C3H/HeSnJ SLC7A11+/+ littermates [personal observations 

and (Chintala et al 2005, Lane 1988)]. Despite their overt similarities to SLC7A11+/+ 



 144 

controls, the behavioral hyper-excitability in SLC7A11sut/sut mice upon acute 

chemoconvulsant administration is indicative of a brain E/I imbalance.  

Previous characterization of male xCT transgenic null mice on a C57BL/6 

background revealed increased spontaneous and evoked miniature excitatory 

postsynaptic currents (mEPSCs) and synaptic AMPA receptor expression levels in 

hippocampal CA1 (Williams & Featherstone 2014). These findings, if true in the 

SLC7A11sut/sut mice, could explain the increased susceptibility to chemoconvulsant-

induced acute seizure activity (Croll et al 1999, Greenwood et al 2009). However, 

neither male (Chapter 3, Fig. 3.6) nor female (Supplementary Fig. S4) SLC7A11sut/sut 

mice have increased levels of plasma membrane glutamate receptors. In fact, the 

AMPA receptor subunit GluA1 is decreased in cortical plasma membrane of male 

(Chapter 3, Fig. 3.6) and hippocampal plasma membrane of female (Supplementary 

Fig. S4) SLC7A11sut/sut mice as compared to SLC7A11+/+ sex-matched littermate 

controls. However, our plasma membrane measurements capture receptors of both 

synaptic and extrasynaptic origin, as well as receptors in all hippocampal and cortical 

sub-regions. Thus, in order to determine if post-synaptic membranes are strengthened 

in SLC7A11sut/sut mice, dendritic spine head width – which correlates with glutamate 

receptor abundance – was measured in cortical layer V pyramidal cells. In agreement 

with findings demonstrating increased synaptic strength in male xCT transgenic null 

mice (Williams & Featherstone 2014), spine head widths in male SLC7A11sut/sut mice 

are increased as compared to SLC7A11+/+ sex-matched littermate controls (Chapter 2, 

Fig. 2.7). Thus, despite a reduction in total cortical plasma membrane GluA1 levels in 

SLC7A11sut/sut male mice, synaptic strength – as measured by spine head width – was 
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enhanced, which could plausibly underlie the acute hyper-excitability in SLC7A11sut/sut 

males. Surprisingly, results in female mice demonstrated the opposite: spine head 

widths of SLC7A11sut/sut mice were significantly decreased as compared to SLC7A11+/+ 

sex-matched littermate controls (Chapter 2, Fig. 2.7). However, these findings do not 

rule out the possibility of changes to hippocampal synapses, which, unfortunately, were 

precluded from our analysis due to the complexity and density of Golgi-Cox stained 

neurons in the hippocampal formation. To further understand how these morphological 

changes translate functionally – and to explore hippocampal synapses – an instructive 

next step would be to record (miniature) excitatory postsynaptic potentials [(m)EPSPs]) 

from whole-cell patch-clamped neurons in order to precisely and quantitatively detect 

changes in quantal content and/or postsynaptic glutamate receptors that could underlie 

a shift in E/I balance towards excitation. 

To explore further mechanisms underlying hyper-excitability in SLC7A11sut/sut 

mice, two additional lines of inquiry, cellular morphology and redox balance, were 

investigated in this dissertation. With respect to morphology, the work presented herein 

uncovered that (1) sex-differences in cellular morphology exist in SLC7A11+/+ mice on 

the C3H/HeSnJ background and (2) within-sex morphological alterations were 

uncovered that could plausibly contribute to genotype-dependent differences in E/I 

balance. With regards to the first finding, our results indicate that soma size is 

significantly increased in female SLC7A11+/+ as compared to male SLC7A11+/+ mice on 

the C3H/HeSnJ background (Chapter 2, Fig. 2.5). To our knowledge, this is the first 

account of sex-differences in cortical layer V neuronal soma size reported in mouse. 

Functionally, it is unclear why a sex-difference in soma size exists. However, loss of 
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Sxc- lends credibility to one possibility: sex morphological differences exist to prevent 

functional differences (De Vries 2004). This idea seems plausible given that loss of Sxc- 

in female SLC7A11sut/sut mice leads to a reduction in soma area – which itself is 

associated with decreased inhibition (Hsu et al 2012, Ye et al 2015) – and occurs in 

association with increased behavioral excitability (decreased acute seizure threshold). 

As such, an increase in soma area in SLC7A11+/+ females as compared to SLC7A11+/+ 

males may be important in maintaining an elevated acute seizure threshold in female 

SLC7A11+/+ mice. Of note, a slight decrease in SLC7A11+/+ male versus female acute 

seizure threshold was uncovered in Chapter 2 (Fig. 2.10), and as such, male mice 

required a lower acute PTZ (or KA) dose to uncover an E/I imbalance in SLC7A11sut/sut 

mice. Whether or not soma size is integrally linked to maintenance of E/I balance in 

females requires further investigation, including characterizing the abundance and 

strength of perisomatic inhibitory synapses using immunohistochemistry and 

electrophysiology, respectively.     

 If soma size correlates with E/I balance in female SLC7A11+/+ and SLC7A11sut/sut 

mice, does the same hold true for males? Our results indicate that soma size is similar 

in male SLC7A11+/+ and SLC7A11sut/sut sex-matched littermate controls. However, our 

results demonstrate that dendritic complexity is significantly decreased in SLC7A11+/+ 

male as compared to female mice on the C3H/HeSnJ background (Chapter 2, Fig. 2.3). 

Once again, to our knowledge, this is the first report of sex-differences in cortical layer V 

dendritic complexity in mouse. Furthermore, loss of Sxc- in male mice increases 

dendritic complexity as compared to SLC7A11+/+ sex-matched littermates, such that 

their complexity is indistinguishable from female mice (Chapter 2, Fig. 2.3). Thus – 
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similar to soma size – these findings raise the intriguing possibility that morphological 

sex-differences in dendritic complexity exist to maintain functional E/I balance. Given 

that enhanced dendritic complexity is associated with increased excitability (Klenowski 

et al 2016, Mainen & Sejnowski 1996), it is tempting to speculate that an increase in 

cortical dendritic complexity underlies the decreased seizure threshold in SLC7A11sut/sut 

male mice. Whether this morphological change is associated with enhanced neuronal 

excitability, such as increases in EPSC frequency or repetitive spikes, will require 

electrophysiological confirmation.  

 Given that Sxc--mediated cystine import provides cells with the rate-limiting 

substrate (cysteine) for synthesis of the thiol antioxidant GSH, we also explored whether 

alterations in levels of reduced and oxidized glutathione (GSH and GSSG) or cysteine 

(cysteine and cystine) could account for an E/I imbalance in SLC7A11sut/sut mice. 

Interestingly, the brains of SLC7A11sut/sut females (Supplementary Fig. S2), but not 

males (Chapter 3, Fig. 3.5), are under oxidative stress as demonstrated by elevated 

cortical GSSG and hippocampal cystine levels compared to sex-matched SLC7A11+/+ 

littermate controls. Given that increased levels of oxidants can decrease seizure 

threshold (Liang & Patel 2004), the cysteine prodrug N-acetylcysteine (NAC) was 

administered to female SLC7A11sut/sut mice and seizure threshold determined 

(Supplementary Fig. S3). Our results indicate that NAC administration over eight days 

does not increase SLC7A11sut/sut seizure threshold as compared to vehicle-administered 

SLC7A11sut/sut littermate controls, suggesting that the decreased acute seizure threshold 

in female SLC7A11sut/sut mice is not due to a redox imbalance. A potential caveat to this 

study includes the length of NAC administration, which may not have been extensive 
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enough to restore brain redox status. However, oral supplementation of NAC for seven 

days at the same dose used by our laboratory has been demonstrated to elevate brain 

thiol content in the excitatory amino acid transporter 3 (EAAC1) null mouse (Berman et 

al 2011). Conversely, in the case of the SLC7A11sut/sut mice, a balanced redox status 

may be required throughout development in order to properly establish E/I balance, 

especially if redox state influences other downstream effectors that ultimately confer E/I 

balance. One plausible example of redox status affecting E/I balance indirectly is 

through soma size: during periods of decreased protein synthesis, net loss of cellular 

protein results in somatic atrophy (Franklin & Johnson 1998). Interestingly, under 

periods of oxidative stress, shunting of cysteine from its role as a macromolecular 

building block to its incorporation into antioxidants, including GSH, is upregulated in 

order to confer cellular protection (Ratan et al 1994). As such, it is conceivable that a 

redox imbalance in female SLC7A11sut/sut mice facilitates cysteine shunting from protein 

synthesis to GSH synthesis, resulting in a reduction in soma size – and an associated 

decrease in inhibitory tone – and ultimately leading to a decrease in seizure threshold. A 

logical future direction is to administer NAC to female SLC7A11sut/sut mice throughout 

development, including in utero via dietary supplementation to the dam, to determine if 

this rescues cell body size and/or seizure threshold to that of SLC7A11+/+ sex-matched 

littermate controls.  

  

5.3 Delayed hypo-excitability in Sxc- null mice  

Despite hyper-excitability elicited in response to an acute dose of 

chemoconvulsant, SLC7A11sut/sut mice show behavioral signs of hypoexcitability upon 
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chronic administration of PTZ (Chapter 3, Fig. 3.1) or repeated administration of KA 

(Chapter 4, Fig. 4.3). Specifically, repeated daily injections of an initially sub-convulsant 

dose of PTZ ultimately leads to a permanent decrease in the threshold of excitability in 

SLC7A11+/+ mice (i.e., mice become kindled), whereas the percent SLC7A11sut/sut mice 

that kindle over the same 21 days is significantly lower (Chapter 3, Fig. 3.1). Similarly, 

SLC7A11+/+ mice attain status epilepticus (seizure score = 8) after repeated dosing with 

KA, whereas SLC7A11sut/sut mice become hypomobile (seizure score = 1) (Chapter 4, 

Fig. 4.3). These data suggest that Sxc- activity modulates synaptic strength in vivo in a 

context-dependent manner. 

In Chapter 3, PTZ-kindling was explored in male mice only, as the low seizure-

threshold in SLC7A11sut/sut females precluded our ability to carry out a kindling protocol 

(data not shown). Post-kindling, our results indicate that mossy fiber sprouting and 

cellular degeneration are unlikely to contribute to the decreased incidence of PTZ-

kindling in SLC7A11sut/sut mice, as neither reactive synaptogenesis nor cell loss were 

observed in mice of either genotype. Rather, it was postulated in Chapter 3 that 

decreased PTZ-kindling in SLC7A11sut/sut mice may be a result of hypo-glutamatergic 

signaling given that glutamate levels (McCullagh & Featherstone 2014) and basal 

plasma membrane expression levels of the glutamate receptor subunit GluA1 (Chapter 

3, Fig. 3.6) are diminished in male SLC7A11sut/sut mice. However, morphological 

parameters presented in Chapter 2 indicate that, despite decreased plasma membrane 

GluA1 levels, cortical synapses may indeed be strengthened in male mice given their 

increased dendritic spine head widths (Chapter 2 Fig. 2.7). These contradictory results 

could be explained by the fact that plasma membrane protein expression levels are not 
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indicative of synaptic protein levels as they incorporate receptors expressed in both 

synaptic and extrasynaptic regions. As such, it will be necessary to perform ex vivo 

electrophysiological brain slice recordings to directly measure synaptic strength in 

SLC7A11sut/sut mice.   

Chronic excitation elicited by PTZ-kindling (Kapur et al 1989a, Kapur et al 1989b, 

Schröder et al 1993) or status epilepticus (Friedman et al 1994, Goodkin et al 2005, 

Grooms et al 2000, Naylor et al 2013) is associated with alterations in neurotransmitter 

receptor mRNA or protein expression levels, with increases in glutamate receptor 

subunits GluN1 and GluA1 (Naylor et al 2013, Schröder et al 1993) or decreases in 

GluA2 (Grooms et al 2000) and GABAergic receptors (Goodkin et al 2005, Kapur et al 

1989a, Kapur et al 1989b) demonstrated. In order to determine whether alterations in 

repeated/chronic chemoconvulsant administration provoked changes in receptor 

expression levels, we assessed levels of glutamate (GluA1, GluA2, and GluN1) and 

GABA (GABAARa) receptor subunits in plasma membrane following repeated KA 

administration, chosen because the paradigm is complete after 240 min and likely 

provides qualitatively the same data as the 21-day PTZ-kindling paradigm. While no 

changes in glutamate or GABAA receptor subunits between female or male SLC7A11+/+ 

or SLC7A11sut/sut mice were detected, we did find that the behavioral response of male 

SLC7A11sut/sut mice within the final quartile of the dosing paradigm correlated with 

GABAARa expression levels: SLC7A11sut/sut males that became hypomobile had 

significantly increased plasma membrane GABAARa protein levels as compared to 

SLC7A11sut/sut males that entered into status epilepticus (Chapter 4, Fig. 4.10). Whether 

increases or decreases in GABAARa expression underlies male SLC7A11sut/sut 
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behavioral hypomobility or status epilepticus, respectively, requires further 

experimentation. Moreover, this change was not detected in female SLC7A11sut/sut mice 

(Chapter 4, Fig. 4.9), and the mechanism underlying their behavioral hypo-excitability in 

the face of repeated KA administration remains unexplained.     

The within-genotype change in GABAARa expression in male SLC7A11sut/sut 

mice notwithstanding, receptor expression levels are overwhelmingly similar in 

SLC7A11+/+ and SLC7A11sut/sut mice following the repeated KA dosing paradigm. 

However, just as with basal plasma membrane protein expression levels discussed 

earlier, a caveat to this study is plasma membrane measurements do not exclusively 

measure synaptic receptors. Thus, measuring synaptic activity via electrophysiology or 

measuring synaptic protein expression via immunohistochemistry will be important next 

step(s) in determining whether alterations in synaptic protein levels account for 

SLC7A11sut/sut behavioral hypo-excitability in the repeated/chronic chemoconvulsant 

dosing paradigms.  

  

5.4 Working model(s) to explain the dichotomy  

Synaptic scaling: Neurons detect fluctuations in extracellular glutamate levels 

and/or in synaptic drive and autonomously adjust the strength of their synapses up or 

down to stabilize firing via a process known as homeostatic synaptic scaling (Christie & 

Jahr 2008, Turrigiano 2008, Turrigiano et al 1998). This is largely accomplished through 

the addition and subtraction, respectively, of ionotropic AMPA receptors at the 

postsynaptic membrane (Turrigiano et al 1998, Wierenga et al 2005), although this can 

only occur within a modifiable range (Rioult-Pedotti et al 2007, Rioult-Pedotti et al 



 152 

2000). For example, scaling-up of AMPA receptors to a “ceiling” results in an occlusion 

of processes dependent upon postsynaptic AMPA receptor membrane insertion, such 

as long-term potentiation (LTP) (Li et al 2016). Interestingly, hippocampal LTP is 

diminished in SLC7A11sut/sut mice and genetically engineered xCT nulls show deficits in 

hippocampal-dependent spatial learning – a process dependent upon postsynaptic 

AMPA receptor membrane insertion (De Bundel et al 2011, Li et al 2012). Moreover, 

both kindling-induced plasticity (Cain 1989, Goddard & Douglas 1975) and status 

epilepticus (Naylor et al 2013, Rice & DeLorenzo 1998, Rice et al 1998) share common 

mechanisms with LTP, including the insertion of postsynaptic glutamate receptors 

(Naylor et al 2013), a long-lasting increase in response to a constant stimulus (Cain 

1989), and the dependency of this response on NMDAR activation (Rice & DeLorenzo 

1998). Moreover, status epilepticus, and its subsequent epileptic sensitization, impaired 

performance of rats in the Morris water maze, suggesting that status epilepticus-

induced neuronal sensitization and learning share common mechanisms (Rice et al 

1998).  

Given that enhanced expression of synaptic AMPA receptors has been 

demonstrated in the hippocampus of transgenic xCT null mice (Williams & Featherstone 

2014), and that SLC7A11sut/sut males (but not females) have increased dendritic spine 

head widths as compared to SLC7A11+/+ littermate controls (Chapter 2, Fig. 2.7), it is 

tempting to speculate that male mice null for Sxc- may have AMPA receptors scaled-up 

to the apex of their modifiable range. This endogenous “scaling-up” in male 

SLC7A11sut/sut mice, perhaps a result of diminished ambient extracellular glutamate 

levels (De Bundel et al 2011, Massie et al 2011b, McCullagh & Featherstone 2014), 
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could explain their decreased acute seizure threshold. Conversely, repeated/chronic 

chemoconvulsant administration in a system already at the “ceiling” of its modifiable 

range could cause homeostatic scaling-down of glutamate receptors, explaining the 

reduced excitability of SLC7A11sut/sut mice in the PTZ-kindling and repeated KA-dosing 

paradigm. Given that enhanced dendritic spine head width was observed in cortical 

neurons derived from male – but not female – SLC7A11sut/sut mice, if the 

aforementioned mechanisms are driving the dichotomous excitability in SLC7A11sut/sut 

mice, they may be sex-dependent and present exclusively in males. In line with this, 

decreased ambient glutamate levels – that could plausibly evoke an endogenous 

“scaling-up” of glutamate receptors – have been reported in male (De Bundel et al 2011, 

Massie et al 2011b, McCullagh & Featherstone 2014) but not female (Borra et al 2014) 

Sxc- null mice. However, it should be noted that glutamate measurements were carried 

out in the striatum in SLC7A11sut/sut female mice (Borra et al 2014), and our dendritic 

spine head measurements were limited to the cortex (Chapter 2, Fig. 2.7). As such, it 

remains plausible that reduced glutamate levels or increased spine head width exist in 

other brain regions in female Sxc- null mice, especially given that Sxc- appears to 

contribute to ambient extracellular glutamate levels in a brain-region dependent manner 

(McCullagh & Featherstone 2014).  

 Redox balance: Alternatively, the dichotomous changes in excitability evoked by 

acute or repeated chemoconvulsant stimulus could be a result of a redox imbalance in 

SLC7A11sut/sut mice. Glutamate transporters and the NMDA receptor possess redox-

sensing properties that regulate their activity (Aizenman et al 1989, Köhr et al 1994, 

Sullivan et al 1994, Trotti et al 1997). Moreover, manganese superoxide dismutase 
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(SOD2+/-) mice with chronic mitochondrial oxidative stress have a decreased KA-

induced seizure threshold (Liang & Patel 2004). Given that female (but not male) 

SLC7A11sut/sut brains have elevated levels of oxidized GSH and cysteine, it is tempting 

to speculate that their reduced acute seizure threshold is a result of a redox imbalance.   

Furthermore, LTP is diminished in GSH-deficient rodents (Almaguer-Melian et al 

2000, Robillard et al 2011), and normalizing GSH levels can restore LTP (Robillard et al 

2011). These findings stress the importance of redox balance in the regulation of 

synaptic plasticity. Given the mechanistic similarities between LTP and the sustained 

excitation elicited by chemoconvulsants in vivo (Cain 1989, Goddard & Douglas 1975, 

Naylor et al 2013, Rice & DeLorenzo 1998, Rice et al 1998), it is plausible that a redox 

imbalance could thwart the progression of PTZ-kindling or KA-induced status epilepticus 

in SLC7A11sut/sut mice, thus explaining their hypo-excitability in these models. As a 

redox imbalance was observed in female (Supplementary Fig. S2) – but not male 

(Chapter 3, Fig. 3.5) – SLC7A11sut/sut mice, if the aforementioned mechanisms are 

driving the dichotomous excitability in SLC7A11sut/sut mice, they may be sex-dependent 

and present exclusively in females. 

 

5.5 Astrocytic maintenance of E/I balance  

As discussed in Chapter 1, there is now indisputable evidence, stemming from both 

transcriptome and immunohistochemical analyses, that astrocytes are the primary cell 

types expressing Sxc- in the mature brain in vivo (Ottestad-Hansen et al 2018, Pow 

2001, Zhang et al 2014). As the most numerous glial subtype in the CNS, astrocytes 

perform a number of well-characterized homeostatic support functions, including 
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maintenance of perivascular homeostasis and blood brain barrier integrity (Alvarez et al 

2013, Mathiisen et al 2010), K+ buffering (Orkand et al 1966), supplying neurons with 

energy substrates (Pellerin et al 1998) and neurotransmitter precursors (Bak et al 

2006), and glutamate uptake via EAATs [reviewed in (Danbolt 2001)]. With respect to 

the latter, astrocytic EAAT1 or EAAT2 knock-out mice demonstrate prolonged seizure 

duration in an amygdala kindling model (Watanabe et al 1999) or spontaneous 

electroencephalographic seizures (Tanaka et al 1997), respectively, highlighting the 

potent ways in which astrocytes regulate synaptic transmission. Additionally, more 

recent evidence implicates astrocytes in the positive and negative regulation of CNS 

synaptogenesis through their release of soluble factors such as thrombospondins 

(TSPs)-1 and -2 (Christopherson et al 2005), Hevin and SPARC (Kucukdereli et al 

2011), and glypicans 4 and 6 (Allen et al 2012). While the aforementioned functions 

render astrocytes capable of modulating synaptic transmission indirectly, astrocytes 

also play an active role at the synapse by both responding to (Ding et al 2013, Murphy-

Royal et al 2015) and releasing (Allen et al 2012, Guthrie et al 1999, Malarkey & 

Parpura 2008, Schell et al 1995, Schmitt et al 2012) neurotransmitters. Moreover, 

astrocytes are capable of modulating both Hebbian and homeostatic synaptic plasticity 

through their release of the NMDA receptor co-agonist, D-serine (Henneberger et al 

2010) and the cytokine TNF-a (Stellwagen & Malenka 2006), respectively.  

In light of the multitude of ways in which astrocytes participate in CNS activity, the 

findings presented in this dissertation support a growing theme for astrocytic 

transporters – including Sxc- – in maintenance of E/I balance. Given that elevated KA 

dosing induced hippocampal neural degeneration in a sub-region dependent manner in 
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SLC7A11sut/sut and SLC7A11+/+ littermate controls, our results also implicate Sxc- 

signaling in maintenance of hippocampal circuitry (Figure 4.7). Nevertheless, it is 

important to reiterate that the SLC7A11sut/sut mice used in this study harbor a global 

natural null mutation in the SLC7A11 gene. Given that Sxc- is predominantly astrocytic it 

is tempting to speculate that the results herein are a result of astrocytic Sxc- signaling.  

However, the cell type specificity of the observations reported in this dissertation will be 

necessary to confirm using an astrocyte conditional SLC7A11 null mouse. 

  

5.6 Future directions 

While the results presented in this dissertation demonstrate that Sxc- signaling 

regulates E/I balance in a context dependent manner, several future directions remain. 

Clearly, the dichotomy that was uncovered – that SLC7A11sut/sut mice are hyper-

excitable or hypo-excitable depending on the chemoconvulsant dosing paradigm – is an 

interesting finding that warrants further investigation. Electrophysiological brain slice 

recordings from naïve mice, as well as from mice exposed to the repeated/chronic 

chemoconvulsant dosing paradigms described herein, should be made in order to 

understand physiological parameters – including both inhibitory and excitatory post-

synaptic currents – driving neuronal activity that were potentially missed by our plasma 

membrane protein analysis. Electrophysiological slice recordings will also be informative 

to understand how the observed morphological alterations affect cell firing capacity. 

Furthermore, although our results indicate that NAC supplementation in female 

SLC7A11sut/sut mice – whose brains are under oxidative stress – does not increase their 

acute PTZ seizure threshold, a future direction includes supplementation with NAC 
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throughout their lives in order to thwart changes that might occur early in development 

that confer an E/I imbalance. Additionally, developmental NAC supplementation, as well 

as its continued supplementation throughout the repeated/chronic dosing paradigms, 

would be an interesting study to pursue in both females and males in order to determine 

if hypo-excitability observed therein is a result of oxidative stress. Finally, as mentioned 

above, in order to confirm the cell type specificity of the findings presented in this 

dissertation, it would be necessary to confirm our findings using an astrocyte conditional 

SLC7A11 null mouse. 

  

5.7 Significance 

The purpose of this dissertation research was to investigate whether and how 

Sxc- signaling contributes to E/I balance in vivo. This line of inquiry was of interest given 

that an E/I imbalance is implicated in numerous neurological disorders (Gao & Penzes 

2015, Nelson & Valakh 2015) and disease states (Foerster et al 2013, Fritschy 2008, 

Lai et al 2014, Ren et al 2018, Snyder et al 2005). The findings presented herein that 

loss of Sxc- thwarts the progression of excitability upon repeated/chronic 

chemoconvulsant application, including in a model of epileptogenesis, suggests that 

inhibition of Sxc- signaling may be a therapeutic option in individuals suffering from an 

E/I imbalance, such as those prone to develop epilepsy as a result of traumatic brain 

injury or glioblastoma. However, these results should be interpreted with caution given 

that loss of Sxc- also results in acute hyper-excitability. Thus, whether the acute hyper-

excitability phenotype uncovered in SLC7A11sut/sut mice is a result of a developmental 

change or whether acute pharmacological inhibition of Sxc- elicits a similar acute hyper-
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excitability needs to be determined prior to consideration of Sxc- targeting as a 

therapeutic option for individuals suffering an E/I imbalance.  
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Supplementary Figures 
 

 

Supplemental Figure S1: Acute PTZ dose response curve in female and male 
SLC7A11+/+ and SLCA11sut/sut mice 

(A) Male SLC7A11+/+ (+/+; n = 3-29) and SLC7A11sut/sut (sut/sut; n = 3-37) or (B) female 
SLC7A11+/+ (+/+; n = 3-21) and SLC7A11sut/sut (sut/sut; n = 3-26) littermates were 
administered a single dose of PTZ (i.p.), after which behavior was monitored for 20-30 
min. Seizure severity was scored using a 5-point scale as described in Chapter 2 
materials and methods. Dose of PTZ (25-63 mg/kg) is expressed as log [PTZ], M. 
Symbols represent the mean maximal seizure score for +/+ (closed black circles) and 
sut/sut (open circles) mice during the 30 min observation period.  
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Supplemental Figure S2: Effect of SLC7A11 disruption on hippocampal and 
cortical reduced/oxidized glutathione and cysteine levels in female mice 

Naïve female SLC7A11+/+ (+/+; n = 5) and SLC7A11sut/sut (sut/sut; n = 6) littermates were 
sacrificed by transcardial perfusion with ice-cold phosphate buffered saline and the left 
(A-F) hippocampus or (G-L) cortex rapidly dissected and snap-frozen in liquid nitrogen. 
The concentration of reduced and oxidized glutathione (GSH and GSSG) or cysteine 
(Cys and CySS) was determined by high performance liquid chromatography (HPLC) as 
described in Chapter 3 Materials and Methods. GSH, GSSG, Cys, and CySS levels 
were compared using an unpaired t test whereas GSH/GSSG or Cys/CySS ratios were 
compared using a Mann Whitney U test.   
A-L) Bars [black bar (+/+) and open bar (sut/sut)] represent the mean µmoles/g tissue ± 
SEM of GSH (A and G), GSSG (B and H), Cys (D and J), CySS (E and K), or the ratio 
of GSH/GSSG (C and I) or Cys/CySS (F and L) in (A-F) hippocampus or (G-L) cortex. 
*Sut/sut female mice have a decreased hippocampal Cys/CySS ratio (p = 0.03; Mann-
Whitney U test) and elevated GSSG levels (p = 0.01; unpaired t test) as compared to 
+/+ littermate controls. 
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Supplemental Figure S3: Female SLC7A11sut/sut hyper-excitability is not rescued 
by administration of N-acetylcysteine 

Naïve female SLC7A11sut/sut (sut/sut) littermates were administered 2-3 mg/ml of the 
cysteine prodrug N-acetylcysteine (NAC) (n = 9) or vehicle (water) (n = 9) ad libitum for 
eight days. On days 4-8, animals were acclimated to handling by performing mock daily 
intraperitoneal (i.p.) injections which consisted of inverting the mouse and rubbing its 
abdomen. On day nine, mice received a single dose of 42 mg/kg PTZ (i.p.). Seizure 
behavior was scored using a 5-point scale as described in Chapter 2 Materials and 
Methods. Data were pooled from three independent experiments performed over three 
months.  
A) Seizure Scores: Each data point represents the maximal seizure score obtained by 
an individual female mouse during a 30 min observation period. Horizontal lines 
represent the median seizure score for each treatment. Seizure severity was compared 
using the Mann-Whitney U test.  
B) Convulsive index: Bars represent the proportion (fraction within bars) of mice that 
experienced a convulsive seizure (seizure score ≥ 3) in A expressed as a % of total 
mice exposed to PTZ. Convulsive incidence was compared using Fisher’s Exact test. 
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Supplementary Figure S4: Comparison of plasma membrane protein expression 
in female SLC7A11+/+ and SLC7A11sut/sut mice 

Plasma membrane protein levels in hippocampus or cortex derived from female 
SLC7A11+/+ (+/+) or SLC7A11sut/sut (sut/sut) littermates were compared using Western 
blot analysis exactly as described for male mice in Chapter 3 Materials and Methods. 
Each data point [closed black circles (+/+; n = 7-9) or open circles (sut/sut; n = 5-9) 
represents the level of hippocampal (B) or cortical (C) protein following normalization to 
their respective loading control (i.e., Na+/K+ ATPase levels). Bars indicate the mean fold 
change over control (+/+), which was set to one. Hippocampal or cortical plasma 
membrane protein expression levels were compared using an unpaired t test on log-
transformed data. An asterisk (*) represents a significant between group difference (p = 
0.0160).  
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