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ABSTRACT

Identification of user state is of interest in a wide range of disciplines that fall under the umbrella of
human machine interaction. Functional Near Infra-Red Spectroscopy (fNIRS) device is a relatively
new device that enables inference of brain activity through non-invasively pulsing infra-red light
into the brain. The fNIRS device is particularly useful as it has a better spatial resolution than the
Electroencephalograph (EEG) device that is most commonly used in Human Computer Interaction
studies under ecologically valid settings. But this key advantage of fNIRS device is underutilized
in current literature in the fNIRS domain.

We propose machine learning methods that capture this spatial nature of the human brain ac-
tivity using a novel preprocessing method that uses ‘Region of Interest’ based feature extraction.
Experiments show that this method out performs the F1 score achieved previously in classifying
‘low’ vs ‘high’ valence state of a user.

We further our analysis by applying a Convolutional Neural Network (CNN) to the fNIRS data,
thus preserving the spatial structure of the data and treating the data similar to a series of images to
be classified. Going further, we use a combination of CNN and Long Short-Term Memory (LSTM)
to capture the spatial and temporal behavior of the fNIRS data, thus treating it similar to a video
classification problem. We show that this method improves upon the accuracy previously obtained
by valence classification methods using EEG or fNIRS devices. Finally, we apply the above model
to a problem in classifying combined task-load and performance in an across-subject, across-task
scenario of a Human Machine Teaming environment in order to achieve optimal productivity of

the system.
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CHAPTER 1

INTRODUCTION

The human brain is one of the most sophisticated structures in the known universe. Up until
the invention of precise measurement and imaging devices, the functional details of the human
brain had remained a mystery. But with recent advances in measurement technology and analysis
methods, we are provided with a window into the workings of the human brain. Treating the brain
as a sensor, we can obtain the most objective view possible; into the state of the human. Functional
Near Infrared Spectroscopy (fNIRS) is one such non-invasive brain activity measurement device. It
has been introduced in the mid 1990’s and has several advantages over existing brain measurement
technologies such as Electroencephalography (EEG) and Functional Magnetic Resonance Imaging
(fMRI). fNIRS devices measure the blood flow in the brain through pulsing near infra-red light into
the brain tissue. The reflected light intensity can be used to infer the concentration of oxygenated
(HbO) and deoxygenated (Hb) blood in that particular area. The fNIRS has become popular in
human computer interaction field due to the ease of setup, calibration and portability. One of the
key advantages of fNIRS over the EEG devices is the high spatial resolution of its data. However,
most of the existing body of literature on NIRS ignores the spatial structure of the fNIRS dataset,
treating it instead as a tabular dataset. In our research, we attempt to fill this gap in existing fNIRS
research by including the spatial information in the analysis of fNIRS data. We also introduce a

method to capture the temporal dynamics of the fNIRS data. Additionally, we demonstrate the



use of fNIRS in diverse applications in the Human Computer Interaction domain. In the first two
chapters of this work, we use an fNIRS dataset labeled with emotion labels based on [1], and
show how our method improves on the state of the art brain activity classification. We look at
valence, or the positivity or negativity of emotion, which has been historically difficult to classify
with high accuracy using physiological data. In the third chapter, we extend this classifier model
to the Human Machine Teaming domain where we predict the potential for human performance
degradations due to high task load. Our method situates the fNIRS as a useful device in measuring

the mental state of a human.

1.1 Objectives

The main focus of this dissertation is to capture the spatial and temporal nature of fNIRS data in
novel machine learning methods as well as demonstrate several basic research areas that can benefit
from the method. These basic methods such as valence classification and performance degradation

classification can be applied in a wide range of applied settings such as,

e Wearable devices, especially head mounted systems such as Virtual Reality or Augmented
Reality systems can benefit from information about the wearer’s mental state so that the

device can optimize the user interface to the user state.

e Assistive technologies, Users with disabilities such as muscular dys-trophy have difficulties
expressing emotion using facial expressions. An emotion detection system can use their

brain activity to communicate their emotion to other humans that interact with them.

e Robotic Systems, As robots become more ubiquitous, the need for them to understand and
respond to human state changes becomes critical. Our research is a first step in creating
Artificial Intelligence (Al) that is emotion aware. Which will in turn make the vision of

domesticated Al a reality.

e Interactive media, As the multitude of entertainment content providers saturate the market



with content such as movies, video games and TV shows, the demand for content that can
adapt to the user is also growing. This can be seen in open ended video games and other con-
tent that has recently become popular. Such content can benefit from the research presented
in this work where the content can adapt to user state, be it emotional state or the cognitive

overload of the user.

e Human Machine Teaming, as the line between human and machine become blurred due
to the conglomeration of wearables and implants that are designed to augment the user’s
abilities, there is a need to optimize this human machine symbiosis. The last chapter of this

dissertation touches on this topic in detail.

1.2 Research Impact

The research presented in this dissertation has resulted in multiple publications.

e Bandara, D., Velipasalar, S., Bratt, S., & Hirshfield, L. (2018). Building predictive mod-
els of emotion with functional near-infrared spectroscopy. International Journal of Human-

Computer Studies, 110, 75-85.

e Bandara, D., Hirshfield, L., & Velipasalar S. (Under Review) Classification of affect using

deep learning on brain blood flow data. Journal of Near Infrared Spectroscopy.

e Bandara, D., Hirshfield, L., & Velipasalar S. (Under Review) Identification of Potential Task
Shedding Events Using Brain Activity Data. ACM Transactions on Computer Human Inter-

action.

e Bandara, D., Song, S., Hirshfield, L., & Velipasalar, S. (2016, July). A more complete picture
of emotion using electrocardiogram and electrodermal activity to complement cognitive data.

In International Conference on Augmented Cognition (pp. 287-298). Springer, Cham.



e Bandara, D., Song, S., Hirshfield, L., & Velipasalar, S. (2016, July). A more complete picture
of emotion using electrocardiogram and electrodermal activity to complement cognitive data.

In International Conference on Augmented Cognition (pp. 287-298). Springer, Cham.

e Serwadda, A., Phoha, V. V., Poudel, S., Hirshfield, L. M., Bandara, D., Bratt, S. E., &
Costa, M. R. (2015, September). fnirs: A new modality for brain activity-based biometric
authentication. In Biometrics Theory, Applications and Systems (BTAS), 2015 IEEE 7th

International Conference on (pp. 1-7). IEEE.

e Hirshfield, L., Costa, M., Bandara, D., & Bratt, S. (2015, August). Measuring situational
awareness aptitude using functional near-infrared spectroscopy. In International Conference

on Augmented Cognition (pp. 244-255). Springer, Cham.

e Bandara, D., Hirshfield, L., & Velipasalar, S. (2014, June). Insights into User Personality and
Learning Styles through Cross Subject fNIRS Classification. In International Conference on

Augmented Cognition (pp. 181-189). Springer, Cham.

1.3 Organization of the Dissertation

The remainder of this dissertation is organized as follows, in Chapter 2 we show how preprocessing
can be used to augment a traditional machine learning classifier such as Support Vector Machines
for application to fNIRS data. Chapter 3 considers the use of Convolutional Neural Networks
(CNN) and LSTM as a method to incorporate the spatial and Temporal nature of fNIRS data.
Chapter 4 demonstrates an extension of the method to the area of performance degradation dues to

high task load.



CHAPTER 2

BUILDING PREDICTIVE MODELS OF
EMOTION WITH FUNCTIONAL

NEAR-INFRARED SPECTROSCOPY

2.1 Introduction

Accurately assessing human emotion has long been a goal of researchers and practitioners in
human-computer interaction (HCI), as emotion is essential for understanding users’ experiences
with new technologies and for designing affect-based adaptive systems [2][1] [3]. Emotion is a
complex phenomenon often difficult to recognize for humans, never mind machines [4]. While
emotions are frequently measured with self- report surveys, many HCI researchers recognize the
shortcomings associated with self-report methods, such as the tendency to inaccurately assess per-
sonal emotions. Furthermore, these self-report techniques are administered after a task completion
which interrupts the user experience and fails to capture real-time information about the user’s
changing emotional states during the task. For this reason, researchers have attempted to mea-
sure and predict changing emotional states using a variety of objective physiological sensors such

as functional magnetic resonance imaging (fMRI), Electroencephalography (EEG), Galvanic Skin



Response (GSR), and Heart Rate Variability (HRV), as detailed in the next section. While much
progress has been made in objectively measuring and predicting user emotions, further interdis-
ciplinary research is needed to develop robust models for accurately predicting real-time changes
in emotional state. As biologists and neuroscientists continue to analyze the physiology of emo-
tion, biotechnology experts are developing new non-invasive sensors that are practical, robust to
noise, and highly accurate [5] [6]. Meanwhile, computer scientists continue developing machine
learning and data mining models capable of making real-time predictions from this wide array of
multi-modal physiological sensor data [7] [8] [9] [1]. The focus of our research involves the use of
functional near-infrared spectroscopy (fNIRS), a relatively new, non-invasive brain measurement
technique that is resilient to noise, portable, and allows for naturalistic participant movement (as
compared to fMRI). Further, fNIRS has higher spatial resolution than EEG and enables the local-
ization of specific brain regions of activation while taking measurements under normal working
conditions [10] [11] [12] [13]. Our goal is to leverage the high spatial resolution of fNIRS to de-
velop machine learning classifiers capable of predicting valence and arousal in participants with
a high degree of accuracy. In the experiment described in this chapter, participants’ brain func-
tion was measured with fNIRS while they viewed a variety of clips extracted from music videos.
These videos have been shown to elicit various levels of valence and arousal. After each video clip
they filled out the Self-Assessment Manikin (SAM) [14] to indicate their valence and arousal. The
self-report values from the SAM were used as labels during subsequent supervised machine learn-
ing classification. This research makes two primary contributions in the realm of HCI: First, we
demonstrate the capability of classifying and distinguishing between affective states on the valence
and arousal dimensions using fNIRS, a practical non-invasive device. Our fNIRS results show that
specific functional brain regions are recruited during changes in valence and arousal and these
regions are consistent with those identified by fMRI research on emotion. Second, we develop
models to classify and predict emotional states across subjects, creating the capacity to general-
ize the model to new participants rather than training each model per individual. The F1-scores

achieved by our classifiers suggest that fNIRS is particularly useful at distinguishing between levels



of valence, which has proven to be difficult to measure with physiological sensors. The remainder
of this chapter proceeds as follows. We first provide related background information and a review
of the relevant literature. Next, we describe our experimental set-up and protocol. We then report
the analysis procedures and results and discuss findings in the context of our research goals. Last,

we describe study limitations and possible avenues for future work stemming from this research.

2.2 Background and Literature Review

This section describes the fNIRS device and how it compares to other popular brain measurement
techniques. We then describe conceptualizations of emotion, the measurement of emotion using
subjective and objective brain measurement techniques, and describe challenges faced in conduct-

ing research using machine learning on cognitive data for emotional state predictions.

2.2.1 Review of Brain Measurement Techniques

The measurement of brain activity has significant potential for evaluating the physiological corre-
lates of emotion. Sensor technologies such as functional magnetic resonance imaging (fMRI) and
positron emission tomography (PET) provide valuable insight into the functions and structures of
the brain. However, they constrain subject movement and in the case of fMRI, require that subjects
remain completely still. Further, they can expose subjects to hazardous materials (PET) or to loud
noises (fMRI) [3] and are not ideal for assessing the neural activity of participants under normal
working conditions. The use of the electroencephalograph (EEG) has attracted researchers inter-
ested in non-invasively measuring users’ brain activity [15] [8]. The EEG has gained popularity for
research use be- cause of its cost-effectiveness, ease of use, and granular temporal resolution. In
the 1990s fNIRS was introduced, a tool which can augment and overcome some of the limitations
of EEG and other brain-imaging devices [16]. The fNIRS device pulses near-infrared light in the
wavelength range (690-900 nm) into the brain (Fig. 2.1).
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Fig. 2.1: Near-infrared light is emitted from a diode into the cortex, and detectors measure the
light reflected out of the cortex.

The primary absorbers of near-infrared light are deoxygenated hemoglobin (Hb) and oxy-
genated hemoglobin (HbO) in tissues. During hemodynamic and metabolic processes, these light
values change in association with neural activity in the brain [16]. These metabolic changes can
then be detected through the measurement of the diffusively reflected light pulsed into the brain
cortex [16] [3] [17]. The use of fNIRS includes measuring a range of cognitive states while com-
puter operators engage in tasks during normal working conditions [18] [19] [20] [6]. In the next
section, we describe the construct of emotion and provide a review of the literature on the subjec-

tive and objective measurement of emotion.

2.2.2 The Construct of Emotion

Research on emotion has increased significantly over the past two decades with many fields con-
tributing; including psychology [19] [20] [6] [21], neuroscience [22] [23], medicine [24] [25],
sociology [26] [27], and computer science [3] [11]. Among this recent surge, most researchers
agree that emotions are affective states that exist over a relatively short period, with durations
ranging from milliseconds to minutes, and are related to an event [28] [29]. A frequently used

metric for quantifying emotions is by mapping them to points in a two-dimensional space of affec-



tive valence and arousal. Valence represents overall pleasantness of an emotional experience and
arousal represents the intensity level of an emotion, ranging from calm to excited [2] [30] [31].
These two dimensions enable us to differentiate between four basic categories of emotions. Some
models of emotion identify nine categories of emotion by including a neutral section. In principle,
an infinite number of other categories can be defined [32], but Russell’s [2] circumplex model of
affect is a widely used and well-vetted [33] [34] [35] model in contemporary HCI research. Fig.
2.2 depicts the arousal and valence dimensions and their relation to emotional state [2]. Other
conceptual models of emotion include Ekman and Friesen’s [36] model based on discrete sets of
universal emotions and Plutchik’s [37]. The literature on modeling emotion is reviewed further by

Posner et al. [38]. They provide support for the two-dimensional model of affect with examples

from empirical studies.

AST
¢ ASTONISHED EXCITED
L ]
ALARMED)
RAI
ANGRY & 0% o , AROUSED
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FRUSTRATED * ® DELIGHTED
ANNOYED
DISTRESSED s GLAD
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% SATISFIED
e e Y s
-
DEPRESSED CALM
GLOOWMY * e RELAXED
o gl L TRED ®  SLEEPY

2.2: The Circumplex model of affect. Horizontal axis shows degree of valence (plea-

sure/displeasure) and vertical axis shows degree of arousal [2].

Self-report surveys, such as the Self-Assessment Manikin (SAM) or the Positive and Negative
Affect Scale (PANAS) survey instruments [39] are most commonly used to locate a person’s per-

ceived emotion within the circumplex model [2]. In our experiment, we use the SAM, a pictorial
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assessment technique for evaluating the pleasure, arousal, and dominance associated with subjects’

affective reactions to stimuli.

2.2.3 Objective Measures of Emotion

To overcome the subjective limitations of self-report surveys, a range of objective sensors have
been used to measure emotion. Charles Darwin formally documented variations in facial expres-
sions associated with specific discrete emotions [40]. Schwartz and his colleagues built on the pio-
neering work of Darwin and recorded facial EMG of subjects engaging in pleasant and unpleasant
mental imagery [41] [42] [36]. Facial Electromyography (EMG), the recording of electrical sig-
nals associated with facial muscle activity, is used extensively as a measure of emotional state [43]
[44] [45]. Early research found that conscious experiences of emotion evoke specific physiological
activity [46]. Another view is that distinct experiences of emotions are produced by a continuous
interaction of both mind and body [47]. More recent research has shown that psychological states
evoke skin conductance changes when a user is presented with emotionally charged pictures [48],
computer games [49] and emotional films [50]. Extensive literature has examined the strong asso-
ciation of emotion with cognition and brain activity. Cacioppo et al. [51] suggested that emotion
helps construct cognition and cognition helps construct emotion. Further, methods for identifying
neural networks associated with different semantic emotional states in the brain were developed
[52] as well as using Russell’s 2-dimensional valence/arousal model [6]. With its capability to
localize specific brain regions of activation, fMRI studies have measured the neural correlates of
emotion in the brain. For example, Viinikainen et al. [53] showed participants affective images
from the International Affective Picture System (IAPS) [30] database while in the fMRI scanner.
Results showed that both arousal and valence manifested different types of responses to negative
and positive stimuli in the brain and suggesting that there are different valence and arousal repre-
sentations in the brain for negative and positive (unpleasant and pleasant) stimuli. They also note
that the medial pre-frontal cortex (mPFC), a large region spanning the front portion of the human

brain, is important in the processing of emotions. In another fMRI study, Colibazzi et al. [6] found
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that changes in arousal directly affected the supplementary motor cortex, and several deep brain
regions that support the limbic system. Changes in valence also effected the supplementary mo-
tor cortex, as well as the dorsolateral prefrontal cortex (DLPFC), inferior parietal cortex, and the
frontopolar cortex. The researchers suggest that the more unpleasant the emotion the higher the
activity in the DLPFC and frontopolar cortex. Also, the researchers note that the supplementary
motor cortex may constitute an interface between limbic and motor-executive systems, whereby
the brain transforms affective experiences into complex motor plans. For example, a feeling of
excitement that drives a desire to dance activates the motor cortex even if the movement is not
actually executed. The emotion-related activation in the pre-motor cortex was complemented by
recent research by Warren et al. [45], who made concurrent fMRI and EMG recordings of par-
ticipants while they listened to auditory sounds designed to elicit different levels of valence and
arousal. Their results showed that positive auditory-induced emotions engage the pre-motor cortex,
by causing the brain to automatically prepare for responsive facial gestures to the affective stimuli.
In other words, sounds that induce positive emotions engage the pre-motor cortex, as the brain is
preparing to create a facial gesture, such as producing a smile. Several fMRI studies of music and
emotional states also found the pre-motor cortex to be directly related to the emotional experience
of music. For example, they suggested sad pieces of music contrasted with happy pieces by pro-
ducing differing activations in the DLPFC, frontopolar cortex, and superior temporal gyrus. These
regions have also been associated with emotional experiences, introspection, and self-referential
evaluation [54]. Broca’s area the central region for language processing has also been linked to
the emotional experience of lyric-based music [55]. Recent work in EEG and fNIRS have also
focused on measuring emotion in the brain. For example, [56] used fNIRS to measure the DLPFC
region of participants’ brains during their experiences of different emotional states. They found
that increases in participants’ subjective arousal correlates with activation in DLPFC. Rodrigo et
al. [57] conducted an experiment that compared the subjects’ emotional response to neutral and
fearful faces using fNIRS. They found that some regions of the PFC (right medial) showed in-

creased activity when viewing fearful faces. In another study, Balconi et al. [58] made concurrent
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measurements of EEG, Heartrate, and fNIRS data while participants viewed IAPS pictures and
filled out the Self-Assessment Manikin for self-assessed valence and arousal ratings. Both the
fNIRS and EEG results showed an increase in activation on the right side of the frontopolar region

relating to negative emotions.

2.2.4 Challenges in Using Machine Learning on Cognitive Data

Several of the studies described above use single trial classification on cognitive data to predict
emotional state. It is worth noting that using machine learning (ML) techniques on cognitive data
(whether it be from EEG, fNIRS, fMRI, or some other measurement technique) is non-trivial in
terms of the difficulty of data preparation, cleaning noise artifacts, feature generation, and algo-
rithm selection and parameter adjustment. Although ML has the potential to help researchers
maximize the use of neurophysiological sensors in a variety of domains, there are significant re-
search challenges to using ML on cognitive data. For example, the high dimensionality of sensor
data coupled with small sample sizes produces datasets that can be susceptible to model overfitting.
Smaller subject populations provide less data for ML algorithms to train on, making the develop-
ment of across subject model development and

generalizability particularly challenging [29]. Because the brain is a highly-individualized struc-
ture, most ML on brain data trains and tests classifiers at the individual level [8] [7]. These clas-
sifiers have been found to improve dramatically as training time and model development improve.
However, lengthy training sessions can be laborious. While well suited to research in areas such
as Brain Computer Inter- facing (where a user spends days, and even months training his or her
medical system), long training sessions may not be ideal in the HCI domain for users. One way to
increase training data is to merge datasets from multiple subjects, enabling the classifier to train and
test models based on data from many people and test the models on new individuals [59]. Across
subject ML on cognitive data has been explored by a handful of researchers in the HCI domain, but
classification accuracy tends to be lower than that achieved by training each model per individual.

One reason for this finding is that each person’s brain has slight differences, and the placement of
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sensors on each person’s brain may differ spatially. Thus, one ‘channel’ of EEG or f{NIRS data
on one participant, may be quite different than the same ‘channel’ of data on another participant,
making it difficult to generate and compare features in a meaningful way for inter-subject compar-
isons. Furthermore, the state of the art fNIRS-based emotion research has its own set of issues, as
highlighted by [60]. They highlight the challenge of separating emotional activity from the other
cognitive processes in the prefrontal cortex. Mentioning the importance of good experimental de-
sign when it comes to the study of emotion using fNIRS. They also identify the lack of sufficient
experimental conditions, where some studies choose to use only positive and negative emotional
conditions [61] where others include positive, negative as well as the neutral condition [62], which
makes it difficult to compare results between experiments. In addition, fNIRS signals can be af-
fected by peripheral responses such as facial muscle movements and changes in cardiovascular
activity [63]. Another issue pointed out by [63]. is the possibility of the subjective emotional re-
sponse and the neural responses lasting longer than the length of the stimuli. The length of stimuli
needs to be decided with this consideration. They also mention how the selection of appropriate
indicators of cortical activation (oxygenated blood flow vs deoxygenated blood flow) can affect the
analysis of emotion. Also, the individual biological differences need to be taken into consideration
when analyzing data between subjects. This effect has so far been difficult to investigate due to the

small size of the fNIRS datasets available (15-60 participants).

2.3 Experiment

Our experiment goal was to induce a variety of emotional states in participants while measuring
the hemodynamics of their brain with fNIRS. We aimed to demonstrate the use of the resulting
fNIRS brain data to identify emotional state. Specifically, we aimed to develop across subject
classifiers to accurately predict emotional state. For the sake of consistency, throughout the rest of
the chapter we will consider emotion to be an affective mental state as perceived by the person, as

elaborated upon in Section 2, thus quantifiable with self-report surveys. We use the SAM measure
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of emotion as our ‘ground truth’ measure of emotion. Twenty healthy, college age participants
from a university in the Northeast took part in the experiment (13 male, 7 female). Upon arrival to
the lab, participants provided informed consent and completed a pre-questionnaire to obtain their
demographic data. They were then provided with instructions explaining the experiment and how

to fill out the post task surveys.

2.3.1 Selection of Stimulus Material

The widely-used databases for emotion elicitation are International Affective Picture System (IAPS)
and International Digitized Sound System (IADS) [64]. In this study, we chose music video clips
from the Dataset for Emotions Analysis using Physiological signals (DEAP) dataset [1] because
prior studies have found that visual-audio stimulus gives a better result than using either visual
stimulus or audio stimulus [65]. A subset of music videos from the DEAP dataset were selected as
stimuli to elicit participants’ emotions. The DEAP dataset experimenters preselected 120 videos
using the emotion related tags from last.fm, and using a manual selection method. With this, their
goal was to make sure to choose videos that fit in the four quadrants of the circumplex model
(Fig. 2.2). Then they used a web-based subjective assessment experiment with 14 volunteers
to further rate the music videos on valence and arousal scales. The resulting processed scores
(mean/standard deviation) for valence and arousal were used as coordinates to place the music
videos on the circumplex model. Then the final 40 videos were chosen that constituted regions
in the circumplex model representing five experimental conditions of High Valence Low Arousal
(HVLA), High Valence High Arousal (HVHA), Low Valence High Arousal (LVHA), Low Va-
lence Low Arousal (LVLA) and Neutral Valence Neutral Arousal (N). We selected fifteen of these
videos; three videos to represent each of the above five conditions. Videos were intentionally se-
lected to maximize the expected emotional reaction of participants; that is, the HVLA, HVHA,
LVHA, LVLA videos were handpicked from the results reported by Koelstra et al. that were as
far away from circumplex model’s ‘neutral’ center as possible. The purpose of this selection was

to ensure that each participant’s brain state was maximally representative of the quad- rants in the
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valence/arousal space.

2.3.2 Equipment Setup

The experiment was performed in a controlled laboratory environment. The fNIRS signals from
participants’ brains were recorded using a Hitachi ETG-4000 fNIRS device with a sampling rate
of 10 Hz. The device provides 52 channels of brain activity data from the frontal region of the
participant’s brain. [66] Each participant was seated on the experiment chair and the chair was
adjusted to his or her comfort level. The fNIRS probe (Fig. 2.3) was a 3x11 probe with 17 light
sources and 16 detectors, resulting in 52 locations measured on the head. The distance between
all light source and detector on the ETG-4000 is 3 cm, resulting in a measurement depth into the
average adult brain of 2-3 cm [67]. Once the fNIRS probe was in place, a 3d digitizer was used to

record the locations of each fNIRS channel on that subject’s head.

Fig. 2.3: (Left) fNIRS probe positions mapped onto brain. (right) A participant wearing the f{NIRS
Sensors.

2.3.3 Protocol

After starting the recording of physiological data, the participant viewed a series of music videos.

Each video was 60 seconds long. After the video ended, participants filled out the SAM survey for
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self-report assessment of valence (Likert ratings of 1-5) and arousal (Likert ratings of 1-5). Since
a hemodynamic response triggered by an event typically shows an increase in signal lasting 10-12
s to rise to peak and return to baseline [68], the rest period between the videos was chosen to be
15 seconds. After this 15 s rest to allow neural activity to return to baseline, participants began
watching the next video. Fig. 2.4 shows a screen shot of one of the music videos and a REST

screen.

Fig. 2.4: Music video stimuli that was presented to the user and the rest screen that was shown in
between trials.

The protocol followed a block design format. The music videos were separated into three
blocks, each containing videos from the DEAP dataset with five unique emotion labels and in-
cluded the conditions of Low Valence/Low Arousal (LVLA), High Valence/High Arousal (HVHA),
Low Valence High Arousal (LVHA), High Valence/Low Arousal (HVLA), and Neutral Valence
Neutral Arousal. A Note that the ‘neutral’ condition was included with music videos that were
found by Koelstra et al. to be neutral on both the valence and arousal dimensions. The order
within blocks was selected to ensure that within each block of videos the stimuli were presented
in a random manner to the participant (so that the participants would not be able to easily guess
which type of video would be played next, and to avoid the possible confounding effects of having
the same-emotion-inducing video in a row, which would result in an intensified emotion effect),
while still ensuring that each block in the experiment contained one video from each of the five

conditions above.
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Music video block 1 (videos in this block were randomized in order)

1.A fine frenzy, Almost Lover: Low Valence Low Arousal (LVLA)

2.Black Eyed Peas, My Humps: High Valence Low Arousal (HVLA)

3. Blur, Song 2: High Valence High Arousal (HVHA)

4. Smashing pumpkins, 1979: Neutral (N)

5. Stigmata, in the reflection of the eyes : Low Valence High Arousal (LVHA)
Music video block 2 (videos in this block were randomized in order)

1. Sia, Breathe me: Low Valence Low Arousal (LVLA)

2. Christina Aguilera Lady Marmalade: High Valence High Arousal (HVHA)
3. Napalm Death, Procrastination : Low Valence High Arousal (LVHA)

4. Madonna, Rain: Neutral (N)

5. Taylor Swift, Love Story: High Valence Low Arousal (HVLA)

Music video block 3 (videos in this block were randomized in order)

1. Glen Hansard, Falling Slowly: Neutral (N)

2. White Stripes, Seven nation army High Valence High Arousal (HVHA)
3.Trapped Under Ice, Believe: Low Valence High Arousal (LVHA)

4. Wilco, How to Fight Loneliness: Low Valence Low Arousal (LVLA)

5. Louis Armstrong, What a Wonderful World: High Valence Low Arousal (HVLA)

Table 2.1: Block design of experiment. Videos within each block were randomized.

2.4 Data Analysis and Results

2.4.1 Survey Data Analysis and Results

Responses to the valence and arousal items from the Self-Assessment Manikin (SAM) are made on
two 5-point scales. Before beginning analyses, we looked for agreement between the SAM survey
data reported by our participants and the expected results, based on the label of each video within
the DEAP dataset. It is well known in the emotion literature that individual and cultural differences
effect one’s emotional response to a given stimulus [69] [70]. Despite these individual differences,
if we look at the survey data in aggregate, we would expect that a video in the DEAP dataset with a
label of high valence would, on average, result in similar ratings on the SAM when our participants
watched that video. For example, the song ‘What a Wonderful World’ by Louis Armstrong (Table
2.1) was labeled at high valence low arousal in the DEAP dataset, and we would expect most
participants to feel these pleasant and serene emotions while viewing the video. However, an

individual who doesn’t like that song, or who is in a hurry to complete the experiment and collect
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compensation, may experience the slow-paced song in a different way than others. This would
result in slightly different emotional experiences due to individual differences. We were curious
to see whether the subjective responses from our participants were, on average, in agreement with
the labels from the DEAP dataset. So, we took all videos with a DEAP dataset label of HVHA and
computed the average of our respondents’ valence and arousal self- report scores reported after
they saw that video. We did the same for the rest of the experimental conditions. Average results
are shown in Table 2.2, with Fig. 2.5 depicting a more detailed view comparing our participants’

survey responses on valence arousal and their agreement with the labels from the DEAP dataset.

DEAP Grouping Average Valence from Survey Average Arousal from survey

HVHA 3.38 2.95
HVLA 3.90 2.83
LVHA 2.35 3.15
LVLA 2.95 2.33

N 1.38 1.38

Table 2.2: Comparison of DEAP labels to self-report surveys from experiment

Participant | i i —
Self Report
Values (1-5)

HVHA HVLA LVHA LVLA N
DEAP Dataset Groupings

Fig. 2.5: The rating distribution of participants’ responses using the labels provided by DEAP
dataset (A = Arousal, V = Valence).

Our survey results showed a moderate amount of agreement between the DEAP dataset labels
and our participants perceived emotional responses. Notice the wide range of responses shown in

the rating distribution (Fig. 2.5), showing there were varied responses to each video. In fact, the
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subjects in this experiment did not report complete agreement; neither amongst themselves, nor
with the DEAP dataset. Our participants disagreed with DEAP’s labels in the HVHA condition
participants on average said they felt 2.95 (just under ‘neutral’) for arousal, instead of above 3.
Second, Neutral videos were reported to elicit Low Valence and Low Arousal (LVLA) instead of
an average of ‘3’ for a neutral response. In line with prior research on individual differences in
emotional experiences [69] [70], this disagreement illustrates the fact that different individuals can
have different, highly individualized, emotional reactions to stimuli, and it is essential to gauge
each participant’s self-reported reaction to stimuli, rather than assuming the stimuli will affect all

individuals in the same way.

2.4.2 Label Selection

The self-report valence scale was a five-item scale (1-5), and each participant’s response was
rounded to the closest integer and collapsed to Low (Likert scores of 1-2), High (Likert scores
of 4-5) and Neutral (Likert scores of 3) Valence. The self-report arousal scale was also a five- item
scale, and the same process was used to collapse each participant’s response into Low, High, and
Neutral Arousal. Fig. 2.6 shows the distribution of the resulting valence and arousal labels for all

participants.

Valence Self Report Labels | Arousal Self Report Labels

Low Valence High Arousa
High Valence 26% = o Low Arousal
42% - -
Neutral Valence
32%

Meutrz| Arousal
30%

Fig. 2.6: Post task survey label distribution among the subjects. The numbers represent the
percentage of trials, across participants, that were labeled as the respective arousal or valence with
Likert scores of 1, 2 = low, 3 = neutral, 4, 5 = high.

These collapsed labels were used as the labels for subsequent super- vised machine learning.
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It is apparent from Fig. 2.6 that there is an uneven distribution between class labels, which will
cause unbalanced datasets for machine learning. This is a common issue when conducting ma-
chine learning on participants’ self-report data, as individuals are likely to experience different
emotional reactions to various stimuli, as reflected in their self-reports. We account for this imbal-
ance by reporting F1-scores, because F1-scores are commonly used in lieu of overall accuracy in

the presence of small unbalanced datasets. The F1 score is denoted by the following equation:

F1 — Score = 2 % (Precision x Recall)/(Precision + Recall)

Precision = No.ofTruePositives/(No.ofTruePositives + No.O f false Positives)

Recall = No.ofTruePositives/(No.ofTruePositives + No.of False Positives)

2.4.3 fNIRS Data Analysis and Results

Data from three participants were removed from the analysis due to large motion artifacts through-
out their datasets, with many channels reporting a value of 4.999, the default value used by the
Hitachi- ETG when the source-detector channel has been oversaturated with light [66]. Machine
Learning was carried out on the remaining 17-subject dataset. We preprocessed each participant’s
raw light intensity data by first down sampling our data from 10 Hz to 2 Hz. Next, we used a
band pass filter to remove noise from our data, saving the frequencies between 0.5 and 0.01 Hz.
We then used the modified Beer-Lambert law to convert the resulting light intensity data into rela-
tive changes of oxy- and deoxy-hemoglobin. The data was then normalized in each channel using

Z-score normalization.

2.4.4 Region of Interest Analysis and Feature Generation

Our preprocessed data from above included 52 channels of data, where each channel contained the

rate of change in oxy- and deoxy- hemoglobin as measured at that location over time. We converted
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our 3d-digitizer data (which measured the positions of fNIRS optodes on the scalp in real-space)
into MNI coordinates on the brain. Next, channels were averaged together into Regions of Interest
(ROI) per Brodmann areas. The Brodmann areas covered by and accessible to the fNIRS channels

are depicted in Fig. 2.7 .

Brodmann | Anatomical Regions

Region Covered

6 Pre-Motor & Supplementary
Motor Cortex

8 Frontal eye fields

9 Dorsolateral prefrontal cortex

10 Frontopolar cortex

21 Middle Temporal gyrus

22 Superior Temporal Gyrus

43 Subcentral area

45 pars triangularis Broca's area

46 Dorsolateral prefrontal cortex

47 Inferior prefrontal gyrus

Fig. 2.7: Brodmann regions covered by the fNIRS probes (21, 22 only partially covered).

This resulted in 10 ROI’s for analysis, where each ROI contained information about oxy- and
deoxy-hemoglobin in that region. Next, for each ROI we computed several features of interest.
These features were chosen because they have been successfully employed in prior machine learn-
ing research [13] or because they were employed by other researchers in recent fNIRS classification
models [71]. The features were generated for both the oxy and deoxy-hemoglobin time series data
in the 10 ROIs noted above. We also generated the features separately for the (i) first half (ii)

second half, and (iii) for the total of each 60 s task:

Full-width-at-half max [71]: The time difference between the two points where the signal is

at half of its maximum value for the data from each 60-second-long video second.

Slope : Slope calculated between the start and ending values of the signal.

Mean : Average Signal Value.

e Max : Maximum Signal Value.

e Min : Minimum Signal Value. For each of the first half, second half, and total chunks of
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time series data noted above, we also further split that data into six equal segments of time

and we took average values across those segments:

e Piecewise Mean 1 : Average Signal Value of Segment 1.

e Piecewise Mean 2: Average Signal Value of Segment 2.

e Piecewise Mean 3: Average Signal Value of Segment 3.

e Piecewise Mean 4: Average Signal Value of Segment 4.

e Piecewise Mean 5: Average Signal Value of Segment 5.

Piecewise Mean 6: Average Signal Value of Segment 6.

This resulted in: (10 ROIs x 2 types of data (oxy and deoxy)x 11 features (slope, min, max, etc.)
x 3 time-segments (first, second half of task and total)] = 660 features to describe the brain activity

during each 60-second-long video.

2.4.5 Correlation Tests on the fNIRS Features vs the SAM Survey La-

bels

We were curious to see which brain regions were most highly correlated with the survey labels.
Therefore, we took all participants’ Average Oxygenated and Deoxygenated blood concentration
data for each 60 s session and correlated it with the valence labels from the surveys for those
sessions. Then we obtained the same for the arousal labels. The results of Pearson correlations are
shown in Table 2.3, where positive correlations indicate a direct relationship between the relative
change in oxy or deoxy-hemoglobin, and the survey label. Likewise, negative correlations indicate

an inverse relationship between the relative change in oxy or deoxy-hemoglobin and the survey

label.
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Feature

Valence SAM label
correlation with the

average blood conc.

Arousal SAM label
correlation with the

average blood conc.

data (Oxy and Deoxy) data (Oxy and Deoxy)

Premotor cortex average oxy -0.0337 -0.0797
Frontal eye fields average oxy -0.0672 0.0072
DLPFC average oxy -0.1247% -0.0466
Frontopolar average oxy -0.1014 -0.0335
Middle temporal Gyrus average oxy -0.0748 -0.0376
Superior temporal Gyrus average oxy -0.0485 -0.0098
Subcentral area average oxy -0.1135 -0.0056
Broca’s area average oxy -0.0679 -0.0260
Inferior prefrontal Gyrus average oxy -0.0805 0.0064
Premotor cortex average Deoxy -0.1227% 0.0124
Frontal eye fields average Deoxy -0.1905« -0.0159
DLPFC average Deoxy -0.1251% -0.1446%
Frontopolar average Deoxy -0.0854 -0.0398
Middle temporal Gyrus average Deoxy  -0.0796 -0.0399
Superior temporal Gyrus average Deoxy -0.1177 -0.0002
Subcentral area average Deoxy -0.0521 -0.0066
Broca’s area average Deoxy -0.0767 -0.0184
Inferior prefrontal Gyrus average Deoxy -0.0241 -0.0479

Table 2.3: Pearson correlation between fNIRS data and the SAM survey labels for Valence and
Arousal. A  is used to denote statistical significance.

The most significant correlations (Different from 0 with a significance level alpha = 0.05)

obtained from this test are marked by x . It is notable that the DLPFC region had a high correlation
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with valence in both oxy and deoxy features. This is consistent with what Colibazzi et al. [6]
found in their fMRI study. Also, a larger number of deoxy features have significant correlations

especially when it comes to valence.

2.4.6 Machine Learning

Because some individual’s datasets were imbalanced, we did not run a standard leave-one-participant-
out cross validation. Instead, we grouped participants’ data into four folds, while ensuring that each
participants’ data could never be split between train and test sets, as shown in Table 2.4 below. We
ran a leave one-fold out cross validation to prevent any overfitting and biases that might affect the
results when only using one person’s data at a time for the test set. The grouping was decided
simply by considering the order of participation in the study. After pulling out one-fold of data as
the test set, the resulting training set was ranked using an information gain heuristic and the most
predictive 15 features were selected for classification. A Support Vector Machine (SVM) classifier
was trained on these features and then tested on the participants that were initially left out as the
test set. This was carried out for each of the folds. The average F1-scores achieved for each fold

are shown in Table 2.4.

Valence Arousal

LvsH NvsH LvsNe LvsH NvsH LvsN
P1, P2, P3, P4 0.736 0.600 0.651 0.652 0.650 0.670
P5, P6, P7, P8 0.741 0.583  0.690 0.690 0.621 0.587
P9, P10, P12, P13 0.745 0.578  0.589 0.694 0.652  0.651
P14, P16, P17, P19, P20 0.737 0.733  0.691 0.590 0.630 0.700
Average F1-score 0.739 0.623  0.655 0.660 0.638  0.652

Table 2.4: Average F1-Scores using the self-report survey labels for across subject classification for
pairwise comparisons of high, neutral, and low valence, as well as high, neutral, and low arousal.

Since there was disagreement between the self-report labels and the original DEAP dataset
labels as seen in Fig. 2.5, for a more complete comparison with the DEAP experiment, the same
analysis was done using the DEAP labels instead of the self-report labels. The results of this

analysis are shown in Table 2.5.
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Valence Arousal

LvsH NvsH LvsNe LvsH NvsH LvsN

P1, P2, P3, P4 0.670 0.520  0.560 0.667 0.680 0.561
PS5, P6, P7, P8 0.660 0.703  0.441 0.6507 0.710  0.730
P9, P10, P12, P13 0.682 0.523  0.600 0.670 0.732  0.634

P14, P16, P17, P19, P20 0.651 0.750  0.612 0.647 0.690 0.672
Average F1-score 0.666 0.624  0.553 0.659 0.703  0.649

Table 2.5: Average F1-Scores using the DEAP dataset labels for across subject classification for
pairwise comparisons of high, neutral, and low valence, as well as high, neutral, and low arousal.

Composition of machine learning models: As noted previously, we created a feature vector
with 660 features based on the fNIRS data acquired during each 60 s video. In this section, we
describe the most predictive features and brain regions that contributed to our self-report label
based SVM models’ output. To demonstrate which brain regions were included in the feature
selection process in our self-report valence and arousal models, the left side of Fig. 2.8 shows the
frequency that each brain region was included as one of the top 15 features by the information
gain heuristic employed by all the self-report valence models created during the leave-one-fold out
cross validations. The same process was done for the self-report arousal models, with the right side
of Fig. 8 showing the frequency that each brain region was included among the top 15 features

created for each of the models created during the leave-one-fold out cross validations.
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Valence Arousal

0 0 & G W 2

Fig. 2.8: Brain mapping of frequency counts of predictive Brodmann regions for valence and
arousal classifications, across all participants

Looking beyond just the brain regions showing relevant emotional activation, we were also
curious to better understand the type of features (see Section 2.4.4 for the type of features we
generated) that were most predictive of the self-report valence and arousal class values across all
our participants. To explore these features, we simply merged all participants’ data and used the
Weka ‘Ranker Feature Selection” method to list the top 15 features using the information gain
heuristic. We did this with all participants’ data with the high and low self-report valence labels.
We then repeated the process using all participants’ data with their corresponding high and low
self-report arousal labels. Summary data for these feature analyses is shown in Table 2.6.

For the valence comparisons, about half (8/15) of the selected features were based on oxy-
hemoglobin, while the other half were based on deoxy-hemoglobin. For the arousal data, 2/3 of
the top features were based on deoxy- hemoglobin. This is notable as many fNIRS studies only
look at oxy- hemoglobin data, but in our analyses the deoxy-hemoglobin seems to have played
an important role in the distinction of self-report valence and arousal classifications. It is not
surprising to see the piecewise mean features listed often in the top 15 features, as they represented

a large portion of the 660 features generated per instance ( Section 2.4.4 ).
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Valence

Deoxy Piecewise Mean 3 First Half (Frontal eye)

Deoxy Piecewise Mean 3 First Half (Inferior Prefrontal gyrus)
Oxy Piecewise Mean 4 Second Half (DLPFC)

Oxy Piecewise Mean 4 Second Half (Broca’s Area)
Deoxy Piecewise Mean 4 Total (Inferior Prefrontal gyrus)
Deoxy Min First Half (Inferior Prefrontal gyrus)

Deoxy Min Second Half (Premotor)

Deoxy Piecewise Mean 4 Second Half (Frontopolar)
Deoxy Piecewise Mean 5 Second Half (Subcentral area)
Oxy Min Total (Premotor)

Oxy Piecewise Mean 4 Total (Broca’s Area)

Oxy Piecewise Mean 5 First Half (Premotor)

Oxy Piecewise Mean 5 Second Half (DLPFC)

Oxy Slope Second Half (DLPFC)

Oxy Piecewise Mean 5 First Half (Frontal Eye)