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Abstract 

Throughout the Pleistocene the northern hemisphere was subject to alternating ice-free 

and ice accumulation periods. Today’s glacial landscapes, composed of a mix of erosive and 

depositional geomorphological features, reflect the integrated impacts of successive Pleistocene 

glaciations. In North America such impacts include the formation of the Great Lakes, the 

reorganization of river networks and the deposition of till sheets, erratic boulders, and moraines. 

Nearly all of New York State was covered by ice; however, the impact of the successive 

glaciations on the landscape varies throughout the state. An examination of the regional 

topography reveals relatively undissected, streamlined landforms of the Finger Lakes area, while 

adjacent areas retain a largely remnant dissected fluvial landscape. This variation implies 

differences in the erosive effect of glaciers on modifying the landscape and this study explores 

that variation. The earliest work in the area hypothesized that the first glacial episode exploited 

the differences in rock competence related to the facies of the Appalachian Basin in order to 

create today’s physiographic differences, preparing a path for subsequent advances to follow 

with no further erosion. This study uses the cosmogenic nuclide 10Be to constrain the magnitude 

of glacial erosion in the Finger Lakes and adjacent areas. Exploiting a stratigraphically 

continuous sandstone layer, the Devonian Oriskany Sandstone, an estimate of the amount of 

glacial erosion experienced by the landscape over the last million years is determined using the 

concentration 10Be produced at depth by the muon production mechanism. This thesis explores a 

family of plausible erosion scenarios by forward modeling of the accumulation of 10Be 

concentrations as successive glacial erosion events exhumes the sandstone layer towards the 

surface. The model output as well as calculated erosion rates and effective ages are used to make 

determinations about each of the sites in the context of elevation and topography, including 

interpretations based on the presence of various glacial erosive features. In an east - west transect 

across the Finger Lakes Region, increasing site elevation correlates with older effective ages and 

low erosion rates, with one exception whose high elevation is secondary to its proximity to areas 

of focused glacial erosion.    
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Introduction 

The periodic advance and retreat of continental ice sheets in the northern hemisphere has 

been a persistent feature of the Earth’s climate system since the Pliocene (Paillard, 1998). 

Glaciers leave a suite of readily recognizable erosive and depositional landforms in their wake 

such as U-shaped valleys, nunataks, moraines, and glacial erratics (von Engeln, 1961; Anderson 

and Anderson, 2010). Since ice sheets, with the exception of nunataks, completely cover and 

flow over the land surface, modifying the landforms of prior glaciations, the record of the last 

glacial maximum (LGM) deglaciation dominates our view of glacial erosion and deposition 

(MacClintock and Apfel 1944; Fullerton, 1986; Muller and Calkin, 1993). It is often difficult to 

definitively ascribe the erosion and sculpting of the bedrock as the result of a single or integrated 

number of glacial events given the general challenges of directly dating landforms (Davis et al., 

1999), let alone in glaciated terranes (e.g. Stroeven et al., 2002; Balco and Rovey, 2010; Valletta 

et al. 2017) and with our strong dependence on the organic carbon 14C chronometer (Muller, 

1977; Snyder and Bryant, 1992; Muller and Calkin, 1993). 

While radiocarbon is used extensively to determine the age of post LGM glacial 

landforms (e.g., Muller and Calkin, 1993) the use of in-situ cosmogenic radionuclides 10Be, 26Al 

and 14C (Granger et al. 2013) to determine the age of moraines, nunataks, and buried tills is on 

the rise (Briner at al., 2003; Balco and Rovey, 2010; Balco, 2011; Bierman et al., 2015). Using 

cosmogenic nuclide concentrations to argue for minimal glacial erosion under frozen based 

glaciers (Stroeven et al. 2002) or the duration of cover by glaciers (Bierman et al. 1999; Bierman 

et al., 2015) is also becoming more common. However, quantifying the amount, rate, and timing 

of pre-LGM glacial erosion, even with million-year half-life cosmogenic nuclide chronometers, 

remains challenging because of the strong depth dependence of nuclide production in the upper 
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meters of the surface, and the high potential for violating steady-state assumptions including 

erosion rate. In order to constrain integrated histories of glacial erosion, new approaches using 

cosmogenic nuclides must be explored.   

This study determines the magnitude of glacial erosion along the northern escarpment of 

the Appalachian Plateau between the Finger Lakes and Mohawk Valley Regions of New York 

State (Fig. 1). The study area spans the sharp physiographic boundary between the smooth, 

relatively undissected long-wavelength topography of the Finger Lakes and the shorter 

wavelength fluvially dissected landscape of surrounding areas. Exploiting a stratigraphically 

continuous sandstone layer present throughout the study area (Fisher et al., 1970), I estimate the 

amount of glacial erosion experienced by the landscape over the last million years using the 

concentration of cosmogenic 10Be, which is produced at an increasing rate as a rock layer moves 

towards the earth’s surface (Gosse and Philips, 2001). The measured 10Be concentrations, 

combined with the timing of the glacial periods inferred from the marine isotope curve (Lisiecki 

and Raymo, 2005), are used to model plausible erosion scenarios related to successive glacial 

periods over the last million years.   

Regional Setting 

Bedrock geology 

Dominating the bedrock lithology of New York State are the Devonian sedimentary rocks 

of the northern Appalachian Basin (Oliver et al, 1967; Fisher et al., 1970). The Appalachian 

Basin, a foreland basin, developed adjacent to the Paleozoic orogenies which stretch from Maine 

to Alabama (Ryder, 1995). The Finger Lakes roughly coincide with the trough of the Devonian 

Appalachian Basin where sedimentary facies consist of black and dark grey shales with more 

competent lithologies more prevalent on the shelves to the east and west (Fig. 2B) (Gray, 1991). 
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The Lower Devonian Tristates group contains the quartz rich Oriskany Sandstone and overlying 

Onondaga Limestone, which are typically separated by less than 5 meters within the study area. 

The middle Devonian Hamilton and Genesee Groups that overly the Onondaga limestone are 

composed of interbedded shales, limestones, siltstones and sandstones that were deposited in a 

marine environment (Fig. 3). In New York, the Oriskany Sandstone is one of the few coarse-

grained quartz sandstones exposed along the topographic escarpment of the Appalachian Basin 

(Oliver et al., 1967) and in nearby aggregate quarries where it occurs it is as much as 30 m below 

the surface. It is nearly pure quartz which makes it ideal for the cosmogenic nuclide analysis in 

this study and its broad regional extent and horizontal orientation make it an ideal datum for 

evaluating regional patterns in glacial erosion.  

Pleistocene glaciations 

During the Last Glacial Maximum (LGM) nearly all of New York State, apart from the 

Salamanca re-entrant, at the SW edge of the state, was covered by ice (Snyder and Bryant, 1992). 

The Salamanca re-entrant was not covered by glacial ice during any of the North American 

glaciations and the surrounding area preserves moraines associated with both the Illinoian and 

Wisconsinan glaciations (Snyder and Bryant, 1992). In addition to the Wisconsin and Illinoian 

moraines preserved around Salamanca, a pre-Illinoian moraine is present in NE Pennsylvania 

(Fullerton, 1986). These moraines are evidence that the Laurentide ice sheet advanced to cover 

New York State a minimum of three times during the last million years (Fig. 1). 

 One of the most prominent glacial landscapes of New York State is the Finger Lakes 

Region (FLR), composed of eleven elongate troughs, some containing lakes, that splay out from 

the north towards the south; the deepest of which is Cayuga Lake whose lake floor is 140 m 

below sea level (von Engeln, 1961; Mullins et al., 1996). The Valley Heads Moraine coincides 
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with the southern ends of the Finger Lakes troughs (Fig. 1), and it also coincides with a major 

physiographic transition from a long-wavelength high relief topography north of the moraine to a 

short-wavelength, fluvially dissected topography to the south. The southward fanning form of 

today’s Finger Lakes led early researchers to suggest that the lakes were likely part of an ancient 

river network which drained northward prior to being excavated by glacial erosion into the 

mechanically weaker facies of the Devonian bedrock (Brigham, 1893; Tarr, 1893; von Engeln, 

1961; Mullins et al., 1996; Bloom, 2004). Tarr (1893) attributed the majority of landscape 

modification into these weaker rocks to the initial glacial episode, which implies that the 

physiographic change north and south of the Valley Heads Moraine is a long-standing feature, 

despite multiple glaciations. In order to explore this hypothesis, it is necessary to look beyond 

the most recent glaciation, which overprints or outright removes the surficial glacial 

formations/deposits of previous advances. 

While there are burial ages on tills in central Missouri as old as 2.58 Ma (Balco and 

Rovey, 2010), we focus on the last million years when global ice volume was similar to the 

Laurentide ice sheet at the LGM. Ice sheet modeling of the last 400,000 years shows the 

correlation between the eccentricity cycle (100ka period), which dominated the last million 

years, and high δ18O values. Global ice volumes are inferred from the marine isotope curves 

derived from benthic δ18O records (Lisiecki and Raymo, 2005). We assume that it is only during 

periods where the δ18O values and thus global ice volumes are similar to that of the LGM that the 

ice sheet extended far enough south to reach the study area (Lisiecki and Raymo, 2005). Using 

this approach, we identify a total of five glacial periods (marine isotope stages (MIS) 2, 6, 10, 12, 

and 16) where ice most likely covered our study area and extended further south. A northern 

hemisphere ice sheet model (IcIES) coupled with a general circulation model spanning the last 



 
 

5 

400 ka suggests glacial advances over the study area during MIS 2 and 6 (Abe-Ouchi et al., 

2013).  

Cosmogenic Nuclides 

Cosmogenic nuclides are produced through two major pathways; primary and secondary 

cosmic rays. Primary cosmic rays, high energy particles (the majority of which are protons) 

originating from outside our galaxy, interact with the atmosphere and the upper most portion of 

the earth’s surface (Friedlander, 1989). The collision of protons with atoms in the atmosphere 

produces secondary cosmic rays and ultimately results in a cascade of secondary particles that 

interact with atoms in the earth’s atmosphere and crust to result in the production of cosmogenic 

nuclides (Friedlander, 1989; Dunai and Lifton, 2014).  

In quartz, the collision between the cosmic-ray derived high energy particles and atoms 

of silica and oxygen results in the in-situ production of radionuclides 26Al and 10Be, with half-

lives of 700 ka (Norris et. al., 1983) and 1.38 Ma (Chmeleff et al., 2010; Korschinek et al., 

2010), respectively. Nearly all 26Al and 10Be in near-surface rocks are produced by cosmic ray 

interactions (Sharma and Middleton, 1989). The concentration of a given in-situ cosmogenic 

radionuclide, specifically in quartz, is controlled by the production rate, which varies according 

to variations in the cosmic ray flux, the erosion rate, and the depth and elevation dependencies 

related to each production mechanism, as well as the decay rate (Lal, 1991; Philips et al., 2016). 

Spallation is the dominant cosmogenic nuclide production mechanism in the upper three 

meters of regolith and rock, and results from the collision of high energy nucleons that remove 

protons and neutrons from the atomic nuclei resulting in lighter nuclei (Dunai and Lifton, 2014). 

The surface spallation production rate of 10Be at sea level and high latitude is 4.09 ±0.39 atoms 

g-1 yr-1 (Lifton et al, 2014; Phillips et al. 2016). Below three meters, production is dominated by 
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muons, which interact more weakly with matter, resulting in greater penetration depths (Dunai, 

2010). 

 Muons are negatively charged particles resulting from the decay of pions created in the 

upper atmosphere through the interaction of primary cosmic rays and atomic nuclei (Dunai, 

2010). There are two main types of muon reactions; slow and fast muons. Slow muons are the 

result of negative muon capture that occurs when an atom’s electron cloud captures a 

slowed/stopped muon, which ultimately neutralizes a proton in that atom’s nucleus (Dunai and 

Lifton, 2014). Fast muons create secondary neutrons, and ultimately cosmogenic nuclides, 

through breaking radiation (Bremstrahlung) of sufficiently high energy (Dunai and Lifton, 

2014). At the Earth’s surface at sea level the slow muon production rate for 10Be is 0.012 atoms 

g-1 yr-1 and the fast muon production rate for 10Be is 0.039 atoms g-1 yr-1 (Braucher at al., 2011).  

This study focuses on the use of in-situ 10Be measured in samples collected more than 8 

meters below the current ground surface; thus, we only consider production by slow and fast 

muons. Samples of the Oriskany Sandstone at depth allow for comparison across the study area, 

with differing cosmogenic nuclide concentrations reflecting variable exposure histories and the 

different amounts of erosion that occurred above the Oriskany Sandstone (Fig. 4). Forward 

models of alternating ice shielding and glacial erosion events are used to determine a range of 

plausible time-erosion events that match measured concentrations. The concentration of the 

cosmogenic nuclide 10Be in the sample is the ultimate output of the model (see below).  

Methods 

Sampling 
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The Oriskany Sandstone was sampled at varying depths in the landscape along the 

northern escarpment of the Appalachian Plateau along a roughly E-W transect during the fall of 

2016 (Fig. 2A). Sampling sites were dictated by the access to the quarries and road cuts that 

exposed the Oriskany Sandstone.  At each sampling locality we determined the depth below the 

surface based on information provided by the quarry operators or by making measurements in 

the field with a laser range finder.   

Surface reconstruction 

Accurate determination of the Oriskany Sandstone’s depth below the surface at each site 

is essential in order to accurately interpret and model cosmogenic nuclide concentrations in the 

context of glacial histories. We used historic USGS topographic maps, with vertical resolutions 

ranging from six – three meters, in conjunction with the measured elevation of the Oriskany 

Sandstone in each quarry to determine the depth of the Oriskany Sandstone layer below the 

original surface at this specific site. For example, at the Oriskany Falls Quarry (Fig. 2A), the top 

of the Oriskany Sandstone has an elevation of 341.4 m.a.s.l and the pre-quarry surface elevation 

is 371.9 m.a.s.l., which yields a depth of 30.5 meters below the surface (Table 1).  

Sample processing 

 A total of six samples from 5 localities were processed at Syracuse University to isolate 

pure quartz. Samples were crushed and milled and sieved to a grain size of 250 to 750 microns. 

Subsequently, samples were treated with aqua regia to remove carbonate and grain coatings, 

etched on heated rollers at 40°C in a solution of 5% nitric acid and 5% hydrofluoric acid prior to 

etching in a 1% hydrofluoric and 1% nitric acid solution within an ultrasonic bath. Post etching, 

250 mg of sample were dissolved in 5 ml of concentrated HF with 1% H2SO4 and fumed. The 

residual H2SO4 was diluted with pure H2O to assess quartz purity by measuring the 
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concentrations of Be, Fe, Ca, Al, Ti, Na, K by Inductively Coupled Plasma Optical Emission 

Spectrometry (ICP-OES) at SUNY-ESF. At the University of Vermont, 20 g of purified quartz 

from each sample was dissolved and 10Be was isolated by cation exchange chemistry before 

being converted to BeO, mixed with Nb and packed for Accelerator Mass Spectrometry (AMS) 

analysis (Corbett et al., 2016) at Purdue University’s PRIME Lab.  

Modeling glacial erosion  

We employ a forward numerical model to explore the range of the glacial erosion 

histories consistent with the measured concentrations at each sampling site and assume that only 

the last 1 Ma of Earth history, dominated by the eccentricity orbital forcing (Abe-Ouchi et al., 

2013), results in glacial episodes affecting the Finger Lakes and Mohawk Valley regions. 

Lisiecki and Raymo’s (2005) global benthic δO18 record is used to determine periods during 

which the Finger Lakes Region (FLR) when: 1) glacial ice would shield in-situ cosmogenic 

nuclide production, 2) in-situ production during ice free periods and 3) to specify when glacial 

erosion events transported the Oriskany Sandstone towards surface subjecting it to a change in 

production rate. A graphical representation of the effects depth, production mechanism, and 

shielding have on concentration are shown in Figure 4.  The concentration through time is 

determined using the following equation, slightly modified from Lal (1991) to account for 

shielding by glacial ice: 

𝑁(𝑥, 𝑡) = 𝑁(𝑥, 0)𝑒−𝜆𝑡 + 𝐼(𝑡)
𝑃0

(𝜆 + 𝜇𝜖)
𝑒−𝜇𝑥(1 − 𝑒−(𝜆+𝜇𝜖)𝑡) 

where N = concentration; x = depth; t = time; λ = decay constant; P = production rate; ε = erosion 

rate and I = ice cover. (Table 2) 
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Ice cover, I, is treated as a binary that invokes complete shielding during inferred times of 

cover by glacial ice. Periods of ice cover are determined by a threshold δ18O values > 4.3 ‰ on a 

smoothed (5 ka moving window) version of the marine isotope stack (Lisiecki and Raymo, 2005) 

to remove high frequency variations; otherwise we consider the landscape to be subject to 

standard surface production rates. Carbon dating of debris at the South Dansville site, located in 

Central New York, west of the FLR, yields ages between 14 ka and 15 ka for the Valley Heads 

Moraine (VHM) which corresponds to an approximate δ18O value of 4.3‰ (Muller and Calkin, 

1993) (Fig. 1).  This threshold, however, results in an unrealistic number of potential glacial 

events compared to the number observable in the models; therefore, we focused on the largest 

positive MIS excursions 2, 6, 10, 12 and 16 as the most likely to generate similar southern ice 

extents. This choice is supported by the three preserved terminal moraines of Wisconsinan (MIS 

2), Illinoian (MIS 6), and Pre-Illinoinan (MIS 10) age in NY and in northern PA (Fullerton, 

1986). The duration of ice cover is assumed to be a relatively brief period of time (≤ 30 ka) based 

on numerical models of the LGM (Abe-Ouchi et al., 2013) and the rate of ice recession since the 

LGM (e.g. Muller and Calkin 1993). Under this scenario, cosmogenic nuclide concentrations 

would be most impacted by shielding, while the effect of decay is negligible over the duration of 

a shielding event.  

Random variations in the magnitude of glacial erosion, which results in the movement of 

the Oriskany Sandstone toward the Earth’s surface, are invoked during the switches from ice 

cover to ice free conditions according to a random draw from a gamma distribution. More 

specifically, a matrix of varying erosional magnitudes (changes in depth) is created using the 

gamma distribution which is modified through the manipulation of its shape and scale factors 

(Table 2). This allows for the tailoring of the matrix to the magnitude of erosion inferred from 
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the depth of the OS at each site. The rationale behind this choice is that production resumes after 

the glacier recedes regardless of when erosion occurred during advance, ice cover or recessional 

phase of glaciation. A total of 10,000 simulations of erosion related to the timing of Marine 

Istope Stages 2, 6, 10, 12 and 16 are generated and are used to forward model cosmogenic 

nuclide concentrations. Erosion pathways are randomly generated from a gamma distribution for 

each MIS event we consider and summed to determine the total erosion.  Random erosion 

pathways are generated to create 10,000 simulated erosion histories between the sample 

collection depth and the bottom of the production window, defined as where production is < 1% 

surface fast muons production rates. The starting depth of each erosion history is assumed to 

have a starting concentration that reflects secular equilibrium at a background erosion rate of 25 

m Myr-1 (Matmon et al., 2003a; Matmon et al., 2003b; Reuter et al., 2003). The subset of model 

solutions within the two-sigma uncertainty of the measured cosmogenic nuclide concentrations 

reflect plausible scenarios for glacial erosion histories that best explain the observed 

concentrations. 

Results 

Cosmogenic nuclide concentrations 

The AMS measurements and the 10Be concentrations for the six samples are listed in 

Table 1. The concentration of 10Be ranged from 4,600 atoms g-1 to 2,700 atoms g-1 and two of the 

samples were below detection limit. Uncertainties are high because the low concentrations of 

10Be and the small aliquots of quartz dissolved resulted in concentrations near the instrumental 

detection limit. Reanalysis of larger aliquots of quartz for the no-detect samples are in progress. 

10Be concentrations yield apparent ages between 17.5 ka to ~ 300 ka and erosion rates vary 

between 637 m Myr-1 and 43 m Myr-1 for depths ranging from 10 m to 30 m and production rates 
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between 0.0108 atoms g-1 and 0.0303 atoms g-1. From west to east the calculated age at each site 

varies a great deal with no real consistent trend based solely on changes in longitude (Fig. 7).  

The lowest erosion rates are on the same order of magnitude as the Appalachian background 

erosion rates of 25 m Myr-1 (Matmon et al. 2003a; Matmon et al. 2003b; Reuter et al., 2003) 

(Fig.7).  

Mean erosion rates and effective ages  

Mean erosion rates and effective ages were calculated for each site, including the sites 

below detection limits (Table 1). Ages and erosion rates are calculated assuming constant depth 

and constant erosion rate (Lal, 1991), which is unlikely at 4 of the 5 sites, thus it is important to 

remember that these values only serve to determine whether the erosion was LGM or earlier in 

timing and whether it significantly differed from the background erosion rate.  

Glacial erosion modeling 

The 10,000 erosion pathways explore the extremes of erosion scenarios from background 

continental erosion to large magnitude erosion during the LGM (Fig. 5b). The subset of model 

runs that reflect the measured concentration narrows the number of possible erosion scenarios 

(Fig. 5a) and are used to calculate median, mean and the 1-sigma envelope about the mean for 

each model time step (Fig. 5). At the sites with no measurable 10Be, we assumed a concentration 

of >1000 atoms g-1 as an initial exploration of the erosion history at both no-detect sites.  The 

size of the erosion events ranged from extremes up to 60 m to small events indistinguishable 

from our prescribed background erosion rate of 25 m Myr-1. Our forward modelling shows that 

the largest events occurred as a consequence of the LGM (MIS 2) or at the penultimate glaciation 

(MIS 6).  
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Discussion 

 Early work in the Finger Lakes attributed the majority of erosion to the first advance of 

the glacier and promoted variations in the competence of the Devonian substrate as the ultimate 

control on the total amount of erosion (Tarr, 1902; von Engeln, 1961). Assumptions on the 

timing of glacial erosion, consistency of that timing and the reasons beyond the variation need to 

be further explored. Our results generally indicate that pre-glacial topography had an effect on 

the magnitude of erosion; for example, the highest topographic positions in the landscape east of 

the Valley Heads Moraine experienced minimal glacial erosion. In terms of the timing of the 

glacial erosion, our results suggest more recent erosion during the Wisconsinan and Illinoian 

glaciations clearly impacted areas both north and south of the Valley Heads Moraine with 

variations in the magnitude and timing of erosion linked to differences in elevation.   

Data interpretation 

Seneca Stone and Han1601: Insights from unmeasurable concentrations 

The Seneca Stone Quarry (Seneca Stone) is the westernmost site in the transect with a 

reconstructed surface elevation of ~170 meters and the Oriskany Sandstone formation located 

approximately 9 meters below the surface. The erosion rate and effective age, calculated using 

the assumed concentration of 1000 atoms g-1 at a depth of 9 m with a production rate of 0.0303 

atoms g-1 (Table 1) for this site, were extremes in the transect in that this site experienced the 

highest calculated erosion, 640 m Myr-1, and had the youngest calculated effective age, 30 ka. 

This magnitude of erosion would have had the potential to obliterate the pre-glacial fluvial 

dissected landscape which is still visible in adjacent areas. Examination of the local topography 

reveals that elevations are relatively flat (within 50 meters) to the immediate north and south of 

this site (Fig. 8a). In terms of the timing of the glacial events, the calculated age indicates that the 
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majority of erosion and exhumation would be coincident with the Last Glacial Maximum (MIS 

2). Our modeling indicates ~ 60 m of erosion at MIS 2; a value determined by measuring the size 

of the “step” (the change in depth) in the median simulation at MIS 2 (Fig. 6). Located in the 

trough of the Appalachian Basin, where lithologies are the weakest, a high amount of glacial 

erosion does not seem unreasonable. Furthermore, this modeled magnitude of erosion is within 

the range of estimated global quaternary glacial erosion rates which are between 0.00001 cm yr-1 

and 1.0 cm yr-1 (Delmas, 2009). Our modeling implies that the broad ridge separating Seneca and 

Cayuga Lakes was ~ 60 m higher prior to the last glacial advance (Fig. 6). If each of the four 

previous glaciations were responsible for similar amount of erosion, which is unresolvable in our 

model due to the high magnitude of last glacial erosion, the elevation of the original inter-lake 

land surface would be similar to that observed at the uplands at the southern end of the Lakes and 

the landscape south of the Valley Heads Moraine.   

 At Jamesville (Han1601), our assumed concentration of 1000 atoms g-1 in conjunction 

with a depth of 18 m and a production rate of 0.0193 atoms g-1 (Table 1) yields erosion rates and 

apparent ages of 440 m Myr-1, and 45.0 ka, respectively. The difference in rates between the 

Jamesville and Seneca Quarries sites reflects the difference in the depth of the Oriskany 

Sandstone below the surface. Nonetheless, the calculated age and the mean simulation in the 

model output of 50 meters indicate that the majority of erosion occurred during MIS 2. The 

upper surface of the Jamesville Quarry is at ~240 m.a.s.l, approximately 60 m above Seneca 

Stone. The topography in and around the site is complex, more specifically the quarry is bounded 

by melt water channels and a small field of drumlins to the north. The drumlins are the product 

of the last glacial period, however the age of the bedrock melt water channels, while dated by 

radiocarbon on sediments, is not known directly (Kehew et al., 2009). Topographic profiles 
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indicate that the Jamesville Quarry lies at the base of a steep ramp (7% grade) up onto the 

Appalachian Plateau (Fig. 8c). Given the proximity to the Tully and Jamesville Glacial troughs, 

ice flow around high points in the topography could have resulted in locally enhanced erosion. 

Alternatively, the creation of surrounding valleys is attributed to the drainage of proglacial lakes 

during the retreat of the Laurentide ice sheet (von Engeln, 1961). Erosion at the Jamesville 

Quarry may have been augmented erosion related to glacial lake water draining from W to E 

through this area.  

Han1602 

Located between the two no-detect sites, the sample from the Skaneateles Quarry 

(Han1602) has a surface of elevation of 250 meters with the Oriskany Sandstone formation 

located 25 meters below the surface. The erosion rate of 110 m Myr-1 was calculated at a depth 

of 25 meters with a production rate of 0.0141 atoms g-1 (Table 1) and is less than a quarter of the 

erosion rates modeled at the Jamesville and Seneca Quarries. Similar to the Jamesville Quarry 

area, this area also hosts bedrock channels related to the floods that drained the integrated glacial 

Lake Watkins. In contrast to the very low concentration sites, this quarry lies at the upper edge of 

a topographic ramp (Fig. 8b). The median model simulation predicts ~ 30 m of erosion occurred 

at MIS 6, the penultimate glaciation. The calculated age for this site is 180 ka, which also 

correlates well with MIS 6.  

Han1603 and Han1604 

Han1603 and Han1604 are two samples collected from the Oriskany Falls Quarry located 

at the easternmost edge of the FLR, specifically the area bordered by the Valley Heads Moraine. 

This site is located at the highest elevation in the transect, 370 m, with the Oriskany Sandstone 

formation located at a depth of 340 m. The ages of the two samples were calculated to be 380 ka 
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and 390 ka respectively, while the calculated erosion rates are 44 m Myr-1 and 43 m Myr-1. These 

values were calculated using a depth of 30 m and a production rate of 0.0108 with the variation 

in the ages stemming from differences in the measured 10Be concentrations (Table 1). The 

erosion rates calculated from these samples as well as the median model output, which has 

minimal changes in depth at each of the marine isotope stages, indicate that this site experienced 

minimal erosion, the closest to the background erosion 25 m Myr-1 which we prescribed in 

modeling the erosion histories at each site. The magnitude of the steps in the model output for 

both samples indicate that this site eroded at a rate that was indistinguishable from the prescribed 

background erosion rate. The area in and around the Oriskany Falls Quarry has been clearly 

modified by focused erosion concentrated in preexisting fluvial valleys, however, Oriskany Falls 

sits on a broad bench behind the main topographic escarpment of the Appalachian Plateau (Fig. 

8d). The position south of the topographic escarpment must have limited the ability of glaciers to 

do significant work on the landscape. 

I88S 

 The easternmost site in the transect and the only site located outside the Finger Lakes 

Region, I88S is in the rough fluvially dissected terrain of the surrounding areas. The I88S site is 

located south of a drumlin field at an elevation of 287 meters with a reconstructed surface 

elevation of ~300 meters and has a calculated erosion of 120 m Myr-1, and an effective age of 

140.0 ka. A production rate of 0.0259 atoms g-1 and a depth of 12 m were used to make these 

calculations (Table 1). The mean simulation of the model output indicates that this site 

experienced the vast majority of erosion, ~30 meters, during the penultimate glaciation (MIS 6). 

Further examination of the local topography reveals that this site is just south of a relatively flat 

area (excluding the drumlins) and north of an area of rugged/rough high elevation terrain that is 



 
 

16 

bounded by large river valleys to the North and East (Fig. 8e). The drumlins north of the site 

indicate that the ice flowed to the SW, while the contrasts in the local topography indicates that 

the erosion was focused in the valleys.   

Overall it appears that within the heavily glaciated Finger Lakes Region, the westernmost 

and lowest elevation sites experienced the highest rates of erosion, with calculated values more 

than triple that of the background erosion rate. The swath profile of the Seneca Stone site 

highlights the relatively flat terrain, more specifically there is little difference between the 

maximum and minimum elevations across this profile, and low (>200 m) topography 

characteristic of the northern and western portions of the FLR (Fig. 8a). On the other end of the 

transect at the eastern limits of the FLR the site located at the highest elevation experienced the 

least erosion, with effective erosion rates that are less than double the background erosion rate 

and with the modeled erosion rates being well within background. The swath profile of the 

Oriskany Falls site highlights an area with overall higher elevations with steep changes in 

elevation visible to the north and south (Fig. 8d). Comparing the FLR to the adjacent regions it 

appears that at relatively similar elevations the timing, as determined by the model, and 

magnitude of erosion calculated from the 10Be concentration, were analogous despite differences 

in topography. Comparing the Skaneateles and I88 Roadcut swath profiles, the similarities in 

elevation, the lack of variation between max and min, and the relatively gradual changes in 

elevation are apparent (Fig. 8). This indicates that the physiographic difference across these 

regions may owe their origins to lithological differences.  

Limitations of modeling 

Our modeling study of erosion rates provides insight to the variability in the glacial 

erosion history along the northern escarpment of the Appalachian Basin; but, it has limitations. 
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Muons present trade-offs in that their long attenuation length results in measurable 

concentrations at depth over million-year timescales. However, their attenuation length makes 

them less sensitive to small changes in depth. Depth profiles spaced at roughly five-meter 

intervals would result in a greater ability to resolve more unique erosion histories; however, the 

Oriskany Sandstone is the only sandstone coarse grained enough, in terms of what is necessary 

for cosmogenic nuclide analysis on quartz grains, across the entire study area. The 10Be data 

could be augmented with 36Cl depth profiles through the Onondaga and other limestones 

preserved at each site (Dunai, 2010).  At a minimum, the measurement of 26Al would provide an 

independent verification of the model results. While the relatively rapid episodes of ice cover are 

insignificant in terms of muon production versus the duration of shielding, our use of the MIS 

curves pre-supposes that the largest positive excursions are most sensitive to ice volume changes 

in the Laurentide ice sheet. Existing geochronology of pre-Last Glacial Maximum aged moraines 

in the Northeastern USA is inadequate to suppose that smaller, in terms of δO18 value, even 

numbered MIS excursions could have resulted in glaciers that covered the study area.     

Conclusion 

The Finger Lakes Region of Central New York represents a unique region as it is an area 

of smooth topography surrounded by rough topography and yet nearly the whole of New York 

was subject to the same erosive events, the glacial advances and retreats of the Pleistocene. 

Traditional thought agreed that the differences in erosion and topography could be attributed to 

lithological differences and that the first advance of the glacier was the one that did the vast 

majority of the landscape transforming work with subsequent advances finding a prepared path 

to traverse and thus having minimal impact on the landscape. Exploring the veracity of that 

statement and determining the magnitude and timing of the glacial erosion is complicated by the 
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nature of glacial advances and retreats and the obliteration of any surficial deposits left by 

previous glacial events. Cosmogenic nuclides, specifically 10Be, in conjunction with the 

Oriskany sandstone, a flat-lying regionally extensive formation, enable this study to look beyond 

the most recent glaciation, the LGM, and make determinations about the previous glaciations. 

The 10Be concentrations, ages and erosion rates varied but several patterns emerged. More 

specifically samples at high elevations had the oldest ages, and erosion rates similar to the 

background erosion rate and low elevation samples had the youngest ages and the erosion rates 

more than triple the background erosion rates. Comparing the Finger Lakes Region to that of an 

adjacent area it appears that the Finger Lakes Region experienced much more erosion.   
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Figure 1. Regional Topographic Overview: There are three terminal moraines 

preserved in Southern NY and Northern Pennsylvania providing local evidence for 

multiple for glaciations across New York. These moraines range in age from: 

Wisconsinan glaciation corresponding to the LGM, ~20Ka, Illinoian glaciation, 

ranging from 130ka-190ka Pre-Illinoian glaciation, >200ka (Fullerton, 1986). In 

addition, the Valley Heads Moraine marks a physiographic transition between the 

smooth long-wavelength areas to the north and the rough short-wavelength areas to 

the south. Radiocarbon dating has been done on samples from the Valley Heads 

Moraine providing ages between 14 ka and 15 ka at the South Dansville Site (Muller 

and Calkin, 1993). Inset: Regional Area outlined in black 
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Figure 2: A) Digital Elevation Model 

(SRTM) showing the topography of 

the landscape. B) Isopach Map of 

Middle Devonian Facies. (Oliver et 

al., 1967) and Paleogeographic 

reconstruction of New York State 

during the Middle Devonian. (Gray, 

1991; Fisher et al., 1970).  

Inset: Study area location outlined in 

red 
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Figure 3. Stratigraphic Column: The formations overlying the Oriskany Sandstone Formation at 

each of the sampling sites (Rogers et. al., 1990; Anderson and Goodwin, 1991; Selleck, 2010; 

Additional Materials Provided by Quarry Operators).  
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Figure 4. Conceptual Model Diagram: The interaction between the Oriskany Sandstone, periodic glacial events derived from 

the Lisiecki and Raymo (2009) Marine Isotope Curve (blue plot at the bottom of the graph), depth, time, and varying 

cosmogenic nuclide production mechanisms. As time increases each successive glacial event has the potential to result in 

some quantity of erosion; exhuming the target layer toward its depth at the time of sample collection and changing the 

amount/type of cosmogenic nuclide production in a stepwise fashion. Each of the lines on the graph represents a different 

erosive scenario with the target layering starting at various depths. Red: only the proscribed background erosion rate (25 m 

Myr-1) effects the depth of the target layer. Green: MIS 6 and 12 had large erosion events. Orange: MIS 10 had a large erosive 

event. Teal: MIS 16 and 2 had large erosion events. Black: MIS 2 had a large erosion event. 
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A 

B 

Figure 5. Simulations at Han1602: In grey are all 10,000 simulations. The red 

simulations are the within one standard deviation of the observed value. A) Simulated 
10Be concentration through time compared to the observed concentration, indicated by 

the black arrow. The bold black line indicates the median path/simulation. B) Change 

in depth over time, ultimately resulting in the modern target layer depth of ~25 

meters. The bold black line indicates the median path/simulation. The Lisiecki and 

Raymo (2005) Marine Isotope Curve is in blue. 
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A 

B 

Figure 6. Model Output Summary Figure: A) Median Path/Simulation with respect 

to concentration vs. time for each of the 6 samples. Changes in the slope of the lines 

represents changes in production rate resulting from changes in depth. B) Median 

Path/Simulation with respect to depth vs. time for each of the 6 samples. Steps in 

each of the lines represents changes in depth resulting from corresponding 

glacial/erosive events (Blue dotted line: Lisiecki and Raymo Marine Isotope Curve 

(2005)).  
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 Figure 7. Plot of calculated ages and erosion rates vs. longitude, allowing for 

comparison of these values from west – east.  
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Figure 8. Sampling Site Swath Profiles: North to South profiles with a width of 2 

km for each of the profiles while length varies from 18-30km. The black dots on 

each of the profiles represents the approximate location of each of the sites within 

the profile. Blue: Maximum elevations. Red: Average elevations. Green: Minimum 

elevations. 
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Table 1: Sample Data: The names of the two no-detect sites are in red. 

Sample 

ID 

Sample 

location 
Lat. Long. 

[10Be] (atm 

g
-1

) 

[10Be] 

Unc.  

(atm g
-1

) 

Surface 

elevation 

(m)  

Elevation of 

Oriskany 

sandstone 

(m) 

Depth to 

sample 

(m) 

Production 

at depth  

(atm g
-1

) 

Erosion 

rate  

(cm yr
-1

) 

Erosion Rate 

unc.   

(cm yr
-1

) 

Age 

(ka) 

Age 

unc. 

(ka) 

Seneca 

Stone 

Seneca Stone 

Quarry 42.85472 -76.78694 No Detect 938 168 160 9 0.0303 0.064 0.0599 30 28 

Han1601 

Jamesville 

Quarry 42.99472 -76.04306 No Detect 894 238 220 18 0.0193 0.044 0.0392 45 41 

Han1602 

Skaneateles 

Quarry 43.00194 -76.41417 2600 662 250 225 25 0.0141 0.011 0.00294 180 51 

Han1603 

Oriskany 

Falls Quarry 42.95528 -75.45944 4500 952 372 341 30 0.0108 0.0044 0.00106 380 96 

Han1604 

Oriskany 

Falls Quarry 42.95528 -75.45944 4600 661 372 341 30 0.0108 0.0043 0.000774 390 79 

I88S I88 Roadcut 42.68 -74.40444 4100 1148 299 287 12 0.0259 0.012 0.00372 140 44 
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Table 2. Model Parameters: The slow and fast muon production rates are from Braucher et al, 

2011. The slow and fast attenuation lengths are from Braucher et al, 2003.  

Parameter Range/Value 

Production Rate Fast Muons (atoms g-1)  0.039  

Production Rate Slow Muons (atoms g-1)  0.012 

Attenuation Length Fast Muons (g/cm2)  5300 

Attenuation Length Slow Muons (g/cm2)  1737.2 

10Be Decay Constant  5.0 x 10-7 

Sample Depth (meters)  0 to 110 

Threshold Value (δ18O)  5.0-3.0 

Concentration (atoms g-1 yr-1)  1000 to ~5000  

Gamma Distribution Shape factor   0.1 

Gamma Distribution Scale factor  (110 - depth)/2  

  



 
 

29 

Appendix:  

 

A1. Determining sample depth below the surface 

Historic USGS topographic maps, detailed in the table below, were selected using the following 

criteria: 1) the bounds of the map quadrangle must contain both the sampling site and a sufficient 

amount of the surrounding area such that an elevation is readable. 2) the year of the map survey 

must be pre-quarry or roadcut formation in order to determine the undisturbed surface elevation. 

Furthermore, while georeferencing was an inherent feature of the maps to insure accuracy each 

of the maps was compared with/checked against a satellite image base map in Arc GIS.  

In order to determine the depth of the Oriskany Sandstone beneath the surface at each site the 

elevation of the Oriskany Sandstone needed to be measured. In the Hanson Quarries (Jamesville 

(Han1601), Skaneateles (Han1602), Oriskany Falls Lower Horizon (Han1603) and Oriskany 

Falls Upper Horizon (Han1604), the elevation of the Oriskany Sandstone was provided by quarry 

operators. In the remaining sampling sites, the Seneca Stone quarry (Seneca Stone) and the I88 

Roadcut (I88S) a laser range finder, a device which uses a laser beam to measure the distance to 

an object and measures the inclination of the shot (laser), was used in order to measure the 

elevation of the Oriskany Sandstone (Appendix Figure 1). 
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Appendix Table 1. Historic USGS Topographic Map Details 

Sample ID Site Location USGS Historical Topographic 

Map Quadrangle (Code) 

Year Scale Contour 

Interval (m) 

Seneca Seneca Stone Corporation Romulus, NY (136106) 1953 1:24000 3 

Han1601 Hanson Aggregates 

Jamesville Quarry 

Jamesville, NY (129988) 1973 1:24000 6 

Han1602 Hanson Aggregates 

Skaneateles Quarry 

Jordan, NY (130109) 1955 1:24000 3 

Han1603 Hanson Aggregates 

Oriskany Falls Quarry 

(Lower horizon) 

Oriskany Falls, NY (135895) 1943 1:24000 6 

Han1604 Hanson Aggregates 

Oriskany Falls Quarry 

(Upper horizon) 

Oriskany Falls, NY (135895) 1943 1:24000 6 

I88S Route I-88 Roadcut 

(Southern exposure) 

Cobleskill, NY (137181) 1996 1:24000 6 

 

 

Appendix Figure 1. Laser Range Finder Diagram: The scenario in this figure mimics the methods used 

at the Seneca Stone quarry to measure the elevation of the Oriskany Sandstone. The first shot was 

from A1 to B (Oriskany Sandstone), resulting in a measurement of the distance between those points 

and the inclination (b) of the shot. The height of the bench that point A1 is on can be determined using 

the following equation. 𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 × 𝐬𝐢𝐧(𝒃) = 𝑯𝒆𝒊𝒈𝒉𝒕 To measure the full height of material above 

point B another measurement must be taken from point A2. This scenario allows for a different 

methodology which makes use of a built-in function of the laser range finder called the height routine. 

This routine uses two shots (A2 – D and A2 – C) and the measured angle between them to determine 

the height of the wall with no secondary calculations needed. 
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A2. Sample processing 

The process begins with sample collection, approximately 1kg of material at each site. Samples 

were crushed, using a rock hammer, jaw crusher and disc mill down to a target grain size 

between 250-750 µm, which was isolated using 750 and 250 µm sieves. The sieved sample was 

treated with aqua regia to remove carbonates. Leaching of silicate minerals occurred in two 

steps: 1) in a 5% HF/5%HNO3 V/V solution in conjunction with agitation at 40⁰C using hotdog 

rollers and 2) in a 1% HF/1%HNO3 in an ultrasonic bath at 40⁰C. The hotdog roller etching, and 

ultrasonic etching were initially repeated three times for each sample. Post etching, 250 mg of 

sample was dissolved in capped Teflon beakers with 5 ml of concentrated HF with 1% H2SO4 

prior to fuming off the HF. The residual bead of H2SO4 was diluted with pure H2O to assess 

quartz purity by measuring the concentrations of Be, Fe, Ca, Al, Ti, Na, K by Inductively 

Coupled Plasma Optical Emission Spectrometry (ICP-OES) at SUNY-ESF. Typical acceptable 

results are approximately 100 ppm of Al, < 100 ppm for Ti and Fe and < 30 ppm for Ca, Na and 

K, however quartzites typically have higher overall concentrations. The first quartz purity test 

(See Table 3) showed two of the samples still contained high concentrations. All samples were 

subject to an additional ultrasonic leaching and Han1603 and I88S had an additional 3 rounds of 

treatment. Finally, to remove additional non-quartz material the two “dirty” samples were run 

through the Frantz, a large electromagnet which separated magnetically susceptible minerals 

from the non-magnetically susceptible minerals. More specifically the samples were run through 

the Frantz 3x up to an amperage of 1.5. A follow-up quartz purity test showed an increase in 

purity in all the samples. Additional sample processing occurred at the University of Vermont 

following the procedures outlined in Corbett et al. (2016). For each sample 250 µg of 9Be carrier 

solution was added to 20 g of clean quartz and subsequently digested in HF at 135⁰C. After 

evaporating the HF, the sample was fumed 3x with perchloric acid at 230⁰C to remove fluorides. 
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Centrifuging the sample removed Ti and insoluble fluorides. 10Be was then isolated by ion 

exchange chromatography (remove Fe, B, Ti) before being converted to BeO, mixed with Nb 

powder and packed into stainless steel cathodes for Accelerator Mass Spectrometry (AMS) 

analysis. AMS analysis was conducted at Purdue University’s PRIME Lab.  

 
 
Appendix Figure 2. Lab Protocols: Flowchart describing sample processing for quartz purification 

at Syracuse University.  

 
 

Sample ID Hotdog Roller 

Leaching 

Ultrasonic 

Leaching 

2nd Ultrasonic 

Leaching 

Frantz 

Seneca Stone 3x 3x 1x NA 

Han1601 3x 3x 1x NA 

Han1602 3x 3x 1x NA 

Han1603 3x 3x 4x 3x to 1.5 amps 

Han1604 3x 3x 1x NA 

I88S 3x 3x 4x 3x to 1.5 amps 

 

Appendix Table 2. Syracuse University Sample Processing: The number of repetitions for each of 

the steps for each sample is listed here. 
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  Analyte Name and Concentration (ppm) 

Sample 
ID 

Al 
396.153 

Al 
308.215 

Be 
313.042 

Ca 
317.933 

Ca 
315.887 

Fe 
238.204 

Fe 
259.939 

K 
766.490 

Mg 
285.213 

Mg 
279.077 

Na 
589.592 

Ti 
334.940 

Ti 
336.121 

Control 48.2 49.7 0.0 4.1 4.1 3.1 3.1 1.2 8.6 8.6 1.6 3.7 3.9 

Seneca 
Stone 118.9 119.8 0.0 21.7 22.4 27.1 27.1 17.2 12.4 12.6 16.6 41.3 41.3 

Han1601 138.1 139.5 0.0 17.3 17.1 28.6 28.5 16.9 11.2 11.4 17.0 47.3 47.6 

Han1602 113.1 113.8 0.0 28.9 29.7 32.7 32.8 16.2 11.3 11.3 16.0 47.4 47.6 

Han1603 137.8 144.5 0.0 539.7 535.5 172.9 172.6 33.3 19.0 18.6 33.4 41.6 41.6 

Han1604 122.9 123.4 0.0 28.7 29.7 40.4 40.5 16.8 11.1 11.2 19.3 47.8 47.9 

I88S 234.9 244.5 -0.1 54.4 53.7 87.3 87.2 32.4 32.0 31.6 29.3 237.2 238.9 

  Analyte Name and Concentration (ppm) 

Sample 
ID 

Al 
396.153 

Al 
308.215 

Be 
313.042 

Ca 
317.933 

Ca 
315.887 

Fe 
238.204 

Fe 
259.939 

K 
766.490 

Mg 
285.213 

Mg 
279.077 

Na 
589.592 

Ti 
334.940 

Ti 
336.121 

Control 48.4 48.7 0.0 8.0 7.9 2.5 2.5 0.7 9.1 9.0 0.8 0.6 0.6 

Seneca 
Stone 120.3 121.1 0.0 23.5 24.2 28.2 28.3 16.3 11.9 12.0 15.3 42.9 42.7 

Han1601 129.1 130.2 0.0 16.8 16.5 30.6 30.6 15.1 10.8 10.9 15.1 45.7 45.7 

Han1602 115.1 116.0 0.0 22.5 22.9 30.1 30.1 14.9 13.1 13.1 13.7 42.9 42.8 

Han1603 132.0 138.8 0.0 482.2 479.6 162.5 162.4 32.4 18.1 17.6 30.1 42.6 42.5 

Han1604 117.8 118.8 0.0 26.2 26.9 40.8 40.9 15.3 12.3 12.4 15.3 48.2 48.0 

I88S 183.5 190.0 0.0 47.3 48.5 59.0 59.0 27.6 21.8 21.3 24.4 112.1 112.1 

Appendix Table 3. 1st Quartz Purity Results: In red are the analyte concentrations which are above the clean threshold, 

approximately 50 ppm for every analyte (excluding Al).  

Appendix Table 4. 2st Quartz Purity Results: In red are the analyte concentrations which were above the clean threshold in the 1st test. 



34 
 

A3. Matlab forward modeling script (be aware that text wrapping truncates some lines) 

function [median_depth, median_path, LR_t] = glacial_erosion_smooth3(s_depth, z, 
conc, unc) 

 

%close all 

 

%FUNCTION INPUTS 

s_depth ;% Depth of sample collection (meters) 

z ; % Elevation of quarry at Oriskany Falls 

conc; % Concentration (atoms/g) 

unc; % Concentration uncertainty 

 

% MUON SCALING FACTORS  

Psl = 1013.25; % Sea level pressure 

gMR = 0.03417; % units = K m^-1 (g is the acceleration due to gravity) % M is the molar 
weight of air and R is the ideal gas constant  

Xi = 0.0065; % Adiabatic lapse rate (greek lower case Xi) = dT/dz = 0.0065 K m^-1 

Ts = 288.15; % Sea Level Temperature (units K)   

Psite = (Psl)*exp((-gMR/Xi)*(log(Ts)-log(Ts - Xi*z))); % Pressure as a function of 
elevation 

Sf = exp((1013 - Psite)/260); %Scaling factor for fast muons 

Ss = exp((1013- Psite)/510); %Scaling factor for slow muons 

 

% MUON PRODUCTION RATE (Braucher et al, 2011) 

P10Be_f= 0.039*Sf; % Fast muons   

P10Be_s = 0.012*Ss; % Slow muons 

 

% MUON DEPTH DEPENDENT PARAMETERS (Braucher, 2003) 

atten_leng1 = ((736.6 + 2688)/2); % Attenuation length (cm^2/g); slow muon 

atten_leng2 = 5300; % Attenuation length (cm^2/g); fast muon 

Rho = 2.25; % g/cm^3density of the overburden  

Mu1 = (Rho/atten_leng1); % Slow 



 
 

35 

Mu2 = (Rho/atten_leng2); % Fast 

 

%ADDITIONAL PARAMETERS 

lambda_Be = 5.0e-07; (Chmeleff, 2010; Korschinek, 2010) %Lambda = Decay Constant  

lambda_Al = 9.83e-07; (Norris et. al., 1983) 

E = 0; % Epsilon/Erosion  

E1 = 0.0025; %Background Erosion Rate for the NE US (initial condition) (cm/yr) 
(Matmon et al., 2003a; Matmon et al., 2003b; Reuters, 2003)  

 

%TIME AND ICE COVER 

%Lisiecki and Raymo 2005 d18O record (last Ma).  

load('LR04_stack'); 

n = length(LR04stack); 

for i = 3:n-3 

    boxcar(i) = mean(LR04stack(i-2:i+2,2)); 

end 

for i = 3:n-3  

LR04stack(i,2) = transpose(boxcar(i)); 

end 

 

B = LR04stack; 

Ma = find(LR04stack(:,1) == 1000); 

B = flipud(B(1:Ma,:)); 

LR_t = B(:,1)*1000; %Time (ka) 

LR_d18O = B(:,2); %Benthic d18O (per mil) 

LR_uncert = B(:,3); %Standard error (per mil) 

 

%Set a d18O threshold value >ice sheet cover, <ice free conditions 

%Conservative estimate based on timing of LGM retreat from this latitude 

%(Use the d18O value from retreat) 

 

Th_d18O = 4.8; %threshold value for d18O, If d18O value is greater than P10Be is zero 

 



 
 

36 

f_c = LR_d18O;   

Th(f_c>4.8) = 0; 

Th(f_c<=4.8) = 1; 

Th = Th'; 

 

%CHANGE IN DEPTH THROUGH TIME 

%Determining the number of glacial events in the window of time (based on 

%Lisiecki and Raymo threshold) 

%index = zeros(1,11); % is referring to the number of glacial events (g_e_num) 

j = 1; 

for i = 2:801 

    g_events(i) = ((Th(i) - Th(i-1)) == 1); 

    if g_events(i) == 1 

        index(j) = i; 

        j = j+1; 

    end 

end 

 

g_e_num = sum(g_events); %Number of glacial events 

     

%GAMMA DISTRIBUTION 

b = ((Mu2^-1*.05) - s_depth)/2; % Scale parameter for gamma distribution 

a = 0.1; % Shape parameter for gamma distribution  

 

n = 10000; % NUMBER OF SIMULATIONS 

     

e_events = zeros(g_e_num,n); % creates empty matrix of erosion events 

 

%gamrnd: generates random numbers from the gamma distribution with shape  

%parameters in A and scale parameter in B. A and B can be vectors,  

%matrices, or multidimensional arrays that all have the same size.  

%A scalar input for A or B is expanded to a constant array with the same  

%dimensions as the other input. 
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for i = 1:n; 

     

    e_events(:,i) = gamrnd(a,b,g_e_num,1); 

    while sum(e_events(:,i)) > (b*2);         

        e_events(:,i) = gamrnd(a,b,g_e_num,1); %e_vents = 10000 possible chnages in 
depth synced with the g_e_num 

    end 

end 

 

%total amount of erosion for each of the 10000 modeled scenarios 

tot_er = sum(e_events);  

 

%Starting depth  

X1 = tot_er + s_depth+E1*.01*LR_t(1);  

%Final depth is equal to sample depth 

XF = s_depth; 

e_events2 = [X1;e_events]; %First row of e_events2 is now the starting depth 

dtt = e_events2; %dtt = depth through time 

 

%This loop subtracts the erosion events from the starting depth, so after 

%the last erosion event the depth is the sample depth (s_depth) 

w = (g_e_num + 1);  

for k = 1:n 

for j = 2:w 

dtt(j,k) = e_events2(1,k) - sum((e_events2(2:j,k))); 

end 

end 

 

%e_events indexed to match g_events; sets the timing of the changes in depth 

depths = zeros(Ma,n); 

index = [1 index]; 

for k = 1:n 

depths(index,k) = dtt(:,k);  
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end 

 

for i =1:(numel(index)-1); 

    for j = 1:n; 

depths(((index(i)):(index(i+1)-1)),j) = depths(index(i),j); 

    end 

end 

 

%add background erosion of surface 

t_int = LR_t(1:Ma-1) - LR_t(2:Ma); 

t_int = [0; t_int]; 

e_int = cumsum(t_int*E1*.01); 

 

%e_int2 = ones(Ma,n); 

for j = 1:n; 

   for i = 2:Ma 

    depths(i,j) = depths(i,j)-e_int(i); 

    end 

end 

 

%depths = depths+e_int2; 

 

depths(786:801,1:10000) = s_depth; 

depths = depths*100; 

 

%Calculate production as a function of ice free and ice covered time 

%periods 

 

%PRODUCTION (through time with changing depth) 

 

%Set initial inherited concentration based on start depth 

N_10Be_slow = zeros(Ma,n); 

N_10Be_fast = zeros(Ma,n); 
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for k = 1:10000 

N_10Be_slow(1,k) = ((P10Be_s)/(lambda_Be + Mu1*E1))*exp(-depths(1,k)*Mu1); 

N_10Be_fast(1,k) = ((P10Be_f)/(lambda_Be + Mu2*E1))*exp(-depths(1,k)*Mu2); 

end 

 

% Calculate the time evolution of concentration 

 

for i = 2:801; 

for j = 1:10000; 

    N_10Be_slow(i,j) = N_10Be_slow(i-1,j)*(exp(-lambda_Be*(LR_t(i-1)-
LR_t(i))))+Th(i)*((P10Be_s)/(lambda_Be + Mu1*E))*exp(-depths(i,j)*Mu1)*(1 - exp(-
(lambda_Be + Mu1*E)*(LR_t(i-1)-LR_t(i)))); 

N_10Be_fast(i,j) = N_10Be_fast(i-1,j)*(exp(-lambda_Be*(LR_t(i-1)-
LR_t(i))))+Th(i)*((P10Be_f)/(lambda_Be + Mu2*E))*exp(-depths(i,j)*Mu2)*(1 - exp(-
(lambda_Be + Mu2*E)*(LR_t(i-1)-LR_t(i)))); 

end 

end 

 

%Sum fast and slow muon production 

N_tot_Be =  N_10Be_slow + N_10Be_fast; 

 

%Find solutions that fit obvserved value +/- 1-sigma 

R = find(N_tot_Be(801,:)<conc+unc & N_tot_Be(801,:)>conc-unc);  

 

%calculate the mean, mean and standard deviation of all acceptable fits for 

%concentrations AND  

mean_path = mean((N_tot_Be(:,R))'); 

std_path = std((N_tot_Be(:,R))'); 

median_path = median((N_tot_Be(:,R))'); 

 

depths_m = depths/100; 

mean_depth = mean((depths_m(:,R))'); 

std_depth = std((depths_m(:,R))'); 
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median_depth = median((depths_m(:,R))'); 

 

% Plotting 

 

%selected 

LR_t2 = 1000000-LR_t; % fixed LR timeline for plotting on these figures 

 

figure(1) % Time vs. Concentration 

subplot(2,1,1) 

plot(LR_t,N_tot_Be,'LineWidth',0.25,'color',[0 0 0]+0.75) 

title('Simulations') 

hold on 

plot(LR_t,N_tot_Be(:,R),'Linewidth',0.25,'color','r') 

hold on 

plot(LR_t,median_path,'y','LineWidth',4) 

hold off 

title('Simulations') 

set(gca,'FontSize',15) 

ylabel('[10Be] atoms/g') 

set(gca,'FontSize',15) 

xlabel('Time (100,000 years)') 

set(gca,'FontSize',15) 

set(gca, 'XTicklabel', [0 1 2 3 4 5 6 7 8 9 10 ]) 

set(gca,'FontSize',15) 

set(gca,'XDir','Reverse') 

hold on 

scatter(0,conc,'filled','k') 

 

subplot(2,1,2) %Time vs. Depth 

[hAx,hLine1,hLine2] = plotyy(LR_t,depths_m,LR_t2,LR_d18O); % All simulations 

ylabel(hAx(1),'Depth Below the Surface (m)','FontSize',15,'color','k') % Left y-axis 

ylabel(hAx(2),'Benthic \delta18O(‰)','FontSize',15,'color','b') % Right y-axis 

set(hLine1,'LineWidth',0.25); 
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set(hLine1,'Color',[0 0 0]+0.75); 

set(hLine2,'LineWidth',2); 

set(hLine2,'Color','b'); 

set(hAx(2),'ycolor','b','fontsize',15) 

hold on 

plot(LR_t,depths_m(:,R),'r','LineWidth',0.25)% Select simulations 

hold on 

plot(LR_t,median_depth','y','LineWidth',4)% Median simulation 

xlabel('Time (100,000 years)') 

set(gca,'FontSize',15) 

set(gca, 'XTicklabel', [0 1 2 3 4 5 6 7 8 9 10 ]) 

set(gca,'YDir','Reverse') 

set(gca,'FontSize',15) 

set(gca,'XDir','Reverse') 

 

figure(2) 

subplot(2,1,2) 

[hAx,hLine1,hLine2] = plotyy(LR_t,median_depth,LR_t2,LR_d18O); %all simulations 

ylabel(hAx(1),'Depth Below the Surface (m)','FontSize',15,'color','k') % left y-axis 

ylabel(hAx(2),'Benthic \delta18O(‰)','FontSize',15,'color','b') % right y-axis 

set(hLine1,'LineWidth',3); 

set(hLine1,'Color','b'); 

set(hLine2,'LineWidth',2); 

set(hLine2,'Color','b'); 

set(hAx(2),'ycolor','b','fontsize',15) 

set(hAx(1),'ycolor','r','fontsize',15) 

xlabel('Time (100,000 years)') 

set(gca,'FontSize',15) 

set(gca, 'XTicklabel', [0 1 2 3 4 5 6 7 8 9 10 ]) 

set(gca,'YDir','Reverse') 

set(gca,'FontSize',15) 

set(gca,'XDir','Reverse') 
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subplot(2,1,1) 

plot(LR_t,median_path,'r','LineWidth',4) 

hold off 

title('Simulations') 

set(gca,'FontSize',15) 

ylabel('[10Be] atoms/g') 

set(gca,'FontSize',15) 

xlabel('Time (100,000 years)') 

set(gca,'FontSize',15) 

set(gca, 'XTicklabel', [0 1 2 3 4 5 6 7 8 9 10 ]) 

set(gca,'FontSize',15) 

set(gca,'XDir','Reverse') 

%scatter(0,conc,'filled','k') 

 

 

%P10Be_f= 0.039;%fast_muons   

%P10Be_s = 0.012;%slow muons 

rho_unc = 0.225; 

P_unc_f = 0.004; 

P_unc_s = 0.012; 

hl = 1.38; 

hl_unc = 0.018; 

mu_unc_f = 950; 

mu_unc_s = 171.23; 

 

P_tot = P10Be_f + P10Be_s; 

 

D_cm = (s_depth*100); 

weight_total =(P10Be_f*exp(-D_cm*Mu2))+(P10Be_s*exp(-D_cm*Mu1)); 

weight_f = (P10Be_f*exp(-D_cm*Mu2))/weight_total; 

weight_s = (P10Be_s*exp(-D_cm*Mu1))/weight_total; 

P10Be_f2 = 0.039; 
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%Age and Erosion Rate Calculations (with uncertainty) 

Age = -1/lambda_Be*log(1-((lambda_Be*conc)/((P10Be_f*exp((-
D_cm)*Mu2))+(P10Be_s*exp((-D_cm)*Mu1))))) 

 

Age_unc = 
sqrt(((hl_unc/hl)^2)+(((P_unc_f/P10Be_f)*weight_f)+(((P_unc_s/P10Be_s)*weight_s))^2
)+((unc/conc)^2)) 

 

E_rate = (1/(Rho/atten_leng2))*(((P10Be_f2*exp((-D_cm)*Mu2))/conc)-lambda_Be) 

 

E_rate_unc = 
sqrt(((rho_unc/Rho)^2)+(((mu_unc_f/atten_leng2)*weight_f)^2)+(((mu_unc_s/atten_leng
1)*weight_s)^2)+((hl_unc/hl)^2)+(((P_unc_f/P10Be_f)*weight_f)^2)+(((P_unc_s/P10Be_
s)*weight_s)^2)+((unc/conc)^2)) 
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