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Abstract 

Surrogate surfaces are used to measure atmospheric dry deposition of contaminants, and are 

sometimes designed intentionally with simple geometry to estimate the lower limit of the flux to 

any surface.  However, most surrogate surfaces have a small collection area: long periods of dry 

weather may be needed to obtain sufficient deposited contaminants to be detected and quantified, 

and such exposure periods may not be common in wet climates.  In this study, two relatively 

large surrogate surfaces—disks with surface areas > 1 m2—were designed to measure dry 

deposition of F-, Cl-, SO4
2-, and NO3

- in Syracuse, NY.  Results indicate that good reproducibility 

is possible for measurements with exposure periods of 2-6 days.  Computational Fluid Dynamics 

modeling shows that the boundary layer thickness varies somewhat over the disk, but average 

fluxes to different sections of the disk differ by only 8%.  This study also proposes a new method 

to measure dry deposition to urban surfaces by measuring the removal of dry deposited material 

in runoff samples collected from an urban surface during a rainstorm at various time steps.  For 

this method to work, the amount of dry deposited mass must be substantially greater than the 

amount contributed by precipitation.  As an example calculation, the amount of SO4
2- deposited 

to the roof of the War Memorial Arena in downtown Syracuse, NY is estimated using dry 

deposition data from the disks and compared to the amount of SO4
2- in the precipitation for a 

hypothetical storm.  The results show that it may be possible to measure the removal of SO4
2- 

and other contaminants from the roof by stormwater runoff during a subsequent rainstorm.   
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Chapter 1: Introduction  

Dry and wet deposition remove particles and gases from the ambient atmosphere, transferring 

them to natural surfaces such as soil and vegetation and human-made surfaces such as building 

roofs and pavement.  Deposition is an important pathway for air contaminants to enter the 

environment (Mohan, 2016), and some contaminants have well-known impacts.  Deposition of 

nitrogen (N as NO2, NO3
-, and HNO3) can enrich the amount of nitrogen in soils and natural 

waters, depleting soil nutrients that contribute to soil fertility, acidifying surface waters, and 

reducing biodiversity in ecosystems (Vitousek et al., 1997).  Deposition of sulfur (S as SO2, 

SO4
2-, and H2SO4) is also a significant contributor to acidification of ecosystems (Driscoll et al., 

2018; Heard et al., 2014) and can affect the cycling and release of micronutrients and organic 

matter in soils (Monteith et al., 2007).  Anthropogenic activities have increased atmospheric 

concentrations of trace metals, including lead (Pb), above prehistoric levels (Settle and Patterson, 

1982), and these metals can deposit in terrestrial and marine ecosystems (Boyle et al., 2014; 

Chien et al., 2017; Fishwick et al., 2018).  Mercury (Hg) emitted by industrial sources can also 

deposit in ecosystems (Lindberg et al., 2007) and poison wildlife (Wolfe et al., 1998).  

Atmospheric carbon, mainly particulate elemental and organic carbon, can deposit on buildings, 

forming black crusts (Bonazza et al., 2007; Hamilton and Mansfield, 1991).  There is also 

interest in understanding dry deposition of polycyclic aromatic hydrocarbons (PAHs), which are 

emitted from biomass burning and oil and gas production (Zhang et al., 2015).   

Wet deposition fluxes of contaminants can be measured by collecting precipitation samples.  But 

measuring dry deposition is more complex, and it is often difficult to measure dry deposition 

directly to natural and human-made surfaces.  Therefore, the flux of a contaminant is obtained by 

calculating the product of the atmospheric airborne concentration (measured at some height 
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above the surface) and the dry deposition velocity.  The deposition velocity (usually expressed in 

cm s-1) is estimated with mathematical functions based on particle size (Nicholson, 1988).  Other 

factors that influence the deposition velocity include surface characteristics (canopy structure, 

stomatal conductance, pH, etc.), local meteorology (surface roughness, wind speed, temperature, 

etc.), and the properties of the depositing material (density, solubility, shape, etc.). These 

variables are further discussed in Sehmel (1980).  Given the number of factors that can affect the 

deposition velocity, modeled estimates are highly parameterized.  Therefore, while atmospheric 

concentrations of a contaminant at two sites may be similar, the deposition velocities can be 

different (Schwede et al., 2011).  Time-averaged fluxes computed using modeled dry deposition 

velocities can also result in large uncertainties (Ban et al., 2016; Endo et al., 2011; Erisman et al., 

1994).  Inferring deposition of contaminants using modeled dry deposition velocities on a 

regional scale is also associated with uncertainties due to sparse data coverage, biases at 

locations far from the original emission sources (Liu et al., 2017), and errors from interpolating 

dry deposition with varying land cover and surface characteristics (Im et al., 2013).  Regional dry 

deposition models can have uncertainties of 50% (Fowler et al., 2009).  With these uncertainties, 

measured deposition velocities could be useful for comparison with modeled estimates and for 

obtaining a range of possible values to a complex surface.       

Dry deposition velocities can be measured by the use of surrogate surfaces.  The accumulated 

material on the surrogate surface is extracted and analyzed for the chemical species of interest, 

and therefore surrogate surfaces allow for direct estimates of the dry deposition flux (Holsen and 

Noll, 1992).  By simultaneously measuring the flux of a contaminant using the surrogate surface 

and its airborne concentration, the dry deposition velocity for that contaminant can be computed 

by dividing the flux by the airborne concentration.   
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Surrogate surfaces used in early studies include petri dishes, Teflon plates and filters, and 

dustfall buckets (Dasch, 1985; Davidson et al., 1985).  More recent surrogate surface designs 

include the symmetric airfoil and the knife-edge surrogate surface (McCready, 1986; Wu et al., 

1992a) these surfaces are designed to collect less deposition than natural and human-made 

surfaces (Mohan, 2016), enabling an estimate of the minimum flux to the complex surface of 

interest.  The deposition plate in the center of the symmetric airfoil has also been modified with a 

water surface to collect gases such as SO2 (Yi et al., 1997) as well as with artificial turf to better 

mimic the roughness elements of a natural surface (Hall et al., 2017; Lynam et al., 2015).  

Therefore, deposition velocities obtained using the symmetric airfoil and the knife-edge 

surrogate surface are lower limits to a range of values for a complex surface, with modeled 

estimates as a possible upper limits.        

Numerous studies have used surrogate surfaces to compute dry deposition velocities of 

particulate chemical species.  Some studies with simultaneous measurements of SO4
2- and NO3

- 

include Wu et al. (1992a), Saxena et al. (1992), Chen et al. (1996), and Lestari et al. (2003).  

While small particles of SO4
2- and NO3

- dominate airborne concentrations, large particles are 

often responsible for most of the dry deposited mass to surrogate surfaces (Davidson et al., 

1985).  Studies that have measured a wide variety of trace metals include Zufall and Davidson 

(1998), Yun et al. (2002), Wai et al. (2010) and Chu et al. (2008).  Huang et al. (2014) compiled 

a review of dry deposition measurements of Hg.  Metals derived from soil and mineral dust, such 

as Ca, usually have larger deposition velocities than metals derived from anthropogenic 

emissions, such as Pb (Yi et al., 1997).  Deposition of elemental and organic carbon is usually 

not measured with surrogate surfaces, but organic chemical species such as PAHs have been 

measured with surrogate surfaces by Sheu et al. (1996), Chang et al. (2003), Tasdemir et al. 
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(2007), Bozlaker et al. (2008), and Eng et al. (2013); these studies showed that deposition 

velocities of PAHs with low volatilities were greater than deposition velocities of PAHs with 

high volatilities.   

In this study, four symmetric airfoils were deployed for dry deposition experiments in 2015 and 

2016 to measure fluxes and dry deposition velocities of inorganic anions and trace metals at a 

single site in Syracuse, NY.  Experiments were conducted at Syracuse University on the roof of 

the Biological Research Laboratories (BRL), and exposure of the airfoils was usually 2-4 days.  

However, the results from each experiment showed that the amount of dry deposited masses in 

the samples were nearly indistinguishable from the masses in the blanks for chemical species 

such as Pb and F, which have low atmospheric concentrations.  There was also poor agreement 

among the samples for all chemical species, suggesting that the data were not reproducible.  

Because of the small collection area of the symmetric airfoils, the amount of dry deposited mass 

collected was 10-30 µg for many chemical species.  Because of the small amount of dry 

deposited masses, the samples were highly sensitive to contamination from sample handling, and 

slight inconsistencies during extraction of samples led to significant errors.  To increase the 

amount of dry deposited masses, two options were proposed: increase the number of dry days for 

each experiment or increase the collection area.  The former option was not necessarily feasible, 

and therefore two large disks were designed and built to increase the amount of dry deposition 

mass collected during each experiment.   

Dry deposition data obtained from surrogate surfaces can also be used to quantify the dry 

deposition of contaminants to building roofs.  The disks can potentially mimic some of the 

characteristics of a flat building roof, namely both are smooth, flat horizontal surfaces, although 

some building roofs may have HVAC systems, pipes, and other obstructions that could increase 
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deposition.  Therefore, dry deposition fluxes measured using the disks may be a minimum of the 

flux to a building roof. Multiplying the flux from the surrogate surface by the surface area of the 

roof and the antecedent dry period (ADP) yields the mass of contaminant deposited to the roof.   

Dry deposited contaminants on a roof can be removed during a subsequent rainstorm.  The 

removal of dry deposition can potentially be measured in the runoff if the amount of contaminant 

in the runoff contributed by dry deposition is substantially greater than the amount in the 

precipitation as well as the error in the measurement.  During the beginning of the rainstorm, 

concentrations of that contaminant in the runoff will decrease to the same level as the 

concentration in the precipitation, indicating removal of dry deposited material.   

The objectives of this study are to determine if the two disks can be used to obtain consistent dry 

deposition data of inorganic anions in Syracuse, NY, and whether deposition is uniform on the 

disks.  Because not much is known on deposition to large surrogate surfaces, the data presented 

in this study are compared to data from studies that estimated deposition using smaller surfaces.  

The results of these experiments are presented in Chapter 2.   

Future work is discussed in Chapter 3.  The objective of this future work is to determine if it is 

possible to measure the removal of dry deposited SO4
2- from a roof during a rainstorm.  The roof 

for these experiments will be on the War Memorial Arena in downtown Syracuse, NY.   
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Chapter 2: Measuring dry deposition using large surrogate surfaces for improved time 

resolution 

2.1 Introduction 

Aerosols and gases can degrade urban surfaces exposed to the atmosphere.  For example, SO4
2- 

and NO3
- can damage marble, bronze, and other materials used in historic monuments 

(Livingston, 2016).  Airborne Cl- from sea salt can erode concrete infrastructure in coastal 

regions (Anwar Hossain et al., 2009; Meira et al., 2007).  Elemental carbon aerosol can soil both 

vertical and horizontal surfaces of buildings (Etyemezian et al., 1998).  But to quantify the 

amount of damage to these surfaces, we need to estimate the dry deposition fluxes of 

contaminants to these surfaces. 

While it is difficult to measure or model aerosol dry deposition to urban surfaces of varying 

geometry and surface roughness, measurements using a smooth surrogate surface of simple 

geometry can provide estimates of the minimum flux onto any surface under similar atmospheric 

conditions.  Some examples of surrogate surfaces include the symmetric airfoil (Wu et al., 

1992a), the knife-edge surrogate surface (McCready, 1986), and the water collector (Yi et al., 

1997).  These surfaces have been used to measure dry deposition fluxes of inorganic anions such 

as Cl-, SO4
2-, and NO3

- (Chu et al., 2008; Lestari et al., 2003; Tasdemir and Günez, 2006; Wu et 

al., 1992b) and also trace metals (Tasdemir and Kural, 2005; Zufall et al., 1998) and organic 

compounds (Holsen et al., 1991; Tasdemir et al., 2004).   

Surrogate surfaces collect mainly coarse particles (> 2.5 µm) that efficiently pass through the 

quasi-laminar boundary layer by settling, turbulent inertial deposition, or impaction (Friedlander, 

1977; Seinfeld and Pandis, 2016).  Dry deposition velocities of coarse particles—defined as the 
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coarse particle flux (g m-2 day-1) divided by the coarse particle airborne concentration (g m-3)—

are usually > 0.1 cm/s, depending on particle, surface, and atmospheric characteristics (Giardina 

and Buffa, 2018; Sehmel, 1973).  In contrast, dry deposition velocities of submicron particles in 

the 0.1-1 µm range are usually < 0.1 cm/s (Horvath et al., 1996; Roupsard et al., 2013); these 

particles do not efficiently diffuse through the boundary layer.  At most locations, the bulk of the 

airborne particle mass is generally in the 0.1-1 µm range (Seinfeld and Pandis, 2016), but most of 

the particle mass deposited onto a surrogate surface is coarse (Wu et al., 1992a).  The dry 

deposition velocity computed as total flux / total airborne concentration must therefore be 

interpreted carefully since measured values of the flux and airborne concentration result from 

different size ranges. Dry deposition velocities reported in the literature are usually calculated as 

the total flux / total airborne concentration. 

Another problem is that many surrogate surfaces have a small collection area that may require 

long exposure periods to obtain signals above the detection limits and blank levels, particularly 

for contaminants with low atmospheric concentrations.  For example, the mean atmospheric 

concentration of F- in the U.S. is usually no more than 0.1 µg m-3 (Liteplo et al., 2002).  Controls 

and regulations on emissions have also caused lower concentrations of atmospheric particulate 

SO4
2- and other chemical species in the U.S. (Chan et al., 2018; Hand et al., 2012).  But long 

exposures may not be possible in regions with frequent rain and snow.  Thus, a surrogate surface 

with a larger surface area (> 1 m2) could offer opportunities to sample for short exposures and 

for chemical species found at low concentrations. 

In this study, I present dry deposition measurements of particulate F-, Cl-, SO4
2-, and NO3

- using 

large surrogate surfaces—disks of just over 1 m2—exposed on a building roof.  The goals were 

(1) to determine whether consistent anion dry deposition data could be obtained with the disks 
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over short exposures at typical airborne concentrations in Syracuse, NY, and (2) to examine 

deposition as a function of position on the disk by measuring the flux on four sections of the 

disk, and by modeling the ambient wind speed over the disk using computational fluid dynamics 

(CFD) to examine if the quasi-laminar boundary layer varies significantly in thickness.   

2.2 Materials and Methods 

2.2.1 Description of field site and sampling equipment 

Experiments were conducted on the roof of the Biological Research Laboratories (BRL) at 

Syracuse University (SU) in Syracuse, NY.  BRL is ~ 30 m high and overlooks the campus quad 

to the west and several shorter buildings to the east and west.  A steep hill rises to the south.  

Figure 2.1 is a diagram of the roof with the locations of the sampling equipment and the roof 

dimensions.  The penthouse occupies most of the north edge of the roof and is ~ 3 m in height.  

Two or more parallel Teflon PTFE filters (polytetrafluorethylene, Item Number: 722PTPT, 

Zefon International Inc., Ocala, FL) were connected to a vacuum pump—each filter with its own 

rotameter (Model Number: FL2015, Omega Engineering, Stamford, CT).  The rotameters were 

calibrated with a Gilibrator (Sensidyne, Clearwater, FL).    

BRL is ~ 180 m from a weather station on the roof of the Center for Science and Technology 

building on campus.  The weather station was installed in 2017 and records data every minute.  

Data on wind direction were downloaded for experiments conducted in 2017 and 2018.  The 

mean wind direction ranged from 130-240° (SE-WSW) for these experiments.           

The two surrogate surfaces deployed in the field are shown in Figure 2.2.  Each disk is 1.2 m (48 

inches) in diameter and 0.32 cm (1/8 inch) thick.  The disk is polyethylene, and smooth Teflon 

FEP film (fluorinated ethylene propylene, Bytec® Corporation) is wrapped around the disk to 
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serve as the deposition surface and to protect the disk against sunlight and harsh reagents.  A 

drain hole with a diameter of 2.54 cm is at the center of the disk; a bottle is placed under the 

drain while collecting samples.  The total height of each assembly is ~ 1.2 m.   

2.2.2 Experimental Procedures: Dry deposition and airborne concentration measurements 

Several experiments were conducted to measure dry deposition fluxes onto the disks and 

simultaneous airborne concentrations.  The date, total exposure period, number of samples and 

blanks prepared from the disks, and number of air filters deployed for each experiment are 

shown in Table 2.1.  An experiment consisted of (i) preparing blanks, (ii) exposing the disks, and 

(iii) collecting samples.  The exposure period was defined as the time from the end of the 

collection the last field blank to the collection of the first deposition sample.        

Prior to each experiment, glass sample bottles, Teflon PFA vials (perfluoroalkoxy alkane), and 

Teflon PTFE forceps and scrapers were cleaned with methanol and Milli-Q® water (18.2 MΩ 

cm resistivity).  These items were dried overnight.  Scrapers were double-bagged in sealed clean 

bags.  High-density polyethylene spray bottles were filled with Milli-Q® water and transported 

from the lab to BRL in Ziploc bags.   

At the beginning of each experiment, air filters were run for 1 minute as blanks, and then sample 

filters were deployed—all without denuders.  Sampling was not isokinetic.  The flow rate 

through the rotameters was usually recorded at least twice per day during each experiment.  At 

the end of the experiment, filters were re-capped and stored in their casings in a clean room 

(usually for < 1 week).  The filters were submerged in 10-11 mL of Milli-Q® water inside PFA 

vials and extracted with ultrasound at a frequency of 37 kHz for 30 minutes.  The extracts were 

poured into separate vials and stored at 5°C.  For some experiments, the sample filters were 

extracted a second time to verify that the first extraction removed all material from the filter.   
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Prior to exposure, the disks were wiped with low-lint cloths soaked with high-purity methylene 

chloride, sprayed with Milli-Q® water, and then wiped dry.  Blanks were then prepared from 

each disk: Milli-Q® water was sprayed onto the surface of the disk and scraped into the bottle 

underneath the drain hole a total of three times for each blank.  This procedure was repeated two 

more times, yielding three blanks for each disk (from the nine scrapings of that disk).  After the 

procedure, the scrapers were cleaned and bagged again until sample collection.     

Samples were collected after exposure using the same procedure: Milli-Q® water was sprayed 

onto the disk, and the water and particles on the disks were scraped into a bottle underneath the 

drain hole.  The procedure was usually repeated two more times, providing three consecutive 

samples that could be compared to determine if all of the deposited material was removed from 

the disk.  Blanks and samples collected from the disks were weighed and stored at 5°C until 

analysis.  

Two experiments were conducted to determine how fluxes differ on the four sections of the disk 

(indicated by asterisk in Table 2.1).  The surface areas of sections one, two, three, and four were 

0.58, 0.24, 0.22, and 0.11 m2, respectively. Section four was assumed as the leading edge based 

on wind direction data.  Strips of FEP film were used to mark the sections.  Blanks were 

collected from section one.  To examine wind direction for both experiments, hourly data were 

downloaded from the Syracuse Hancock International Airport, which is 8 km north of campus 

(http://www.ncdc.noaa.gov). 

2.2.3 Chemical and data analysis 

Samples and blanks were usually analyzed within 2 weeks after collection.  Analysis of F, Cl-, 

SO4
2-, and NO3

- was conducted by ion chromatography (DX 500, DionexTM, Sunnyvale, CA).  

All analytical runs were calibrated with 4-6 standards (IC Check Standard #1, SPEX CertiPrep®, 
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Metuchen, NJ).  A calibration standard and laboratory blank were analyzed after each batch of 

10 samples.  The recovery of the calibration standard was 90-110%.  Only calibration curves 

with an R2 ≥ 99.5% were accepted.   

Ten laboratory blanks were analyzed to compute the limit of detection (LOD) and limit of 

quantification (LOQ) for each analytical run.  The LOD was defined as the average of the 10 

laboratory blanks plus 3 times the standard deviation; the LOQ was taken as ten times the LOD.  

Concentrations below the LOD were replaced with zero, and concentrations between the LOD 

and LOQ were flagged but still used for analysis—filter blanks were sometimes in this range.  

All other sample and blank concentrations were above the LOQ.   

The mass of each anion was computed for all samples.  The net mass deposited to each disk was 

calculated as the sum of masses in the three consecutive samples on a disk, minus the average 

blank for that experiment.  The average blank for an experiment was computed by summing the 

masses of the three consecutive blanks on each disk, and then taking the average of the two 

sums.   Thus, it was assumed that each sample contained a level of contamination equal to the 

average blank.  For the two experiments investigating the differences in the flux across sections 

of the disk, the mass deposited to each section was calculated, and the masses for all four 

sections were summed to estimate the total mass deposited.  Blank values were computed for 

each section by scaling the mass from each blank by the area of that section; these calculations 

assumed that contamination was distributed evenly across the disks.  

The dry deposition flux onto each disk was calculated in µg m-2 day-1, and the values from the 

two disks were averaged.  Filter samples were blank corrected and then averaged to obtain the 

average particulate airborne concentration in µg m-3 for each anion.  Only average masses that 
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were 5 times greater than the average of the blanks were accepted to compute dry deposition 

fluxes and airborne concentrations.   

The average dry deposition velocity was computed in cm/s for each anion.  Standard deviations 

of the dry deposition velocities were computed by compounding the standard deviations of the 

dry deposition fluxes and airborne concentrations (formula is shown in Appendix).      

2.2.4 CFD modeling  

ANSYS Fluent was used to solve the 2-D (x, y) velocity field.  An inlet wind speed of 3 m/s was 

chosen based on the average wind speed recorded on the Center for Science and Technology for 

the Feb. 17-21, 2017 experiment.  The local Reynolds number, based on distance across the disk, 

is unlikely to exceed 500,000 where the boundary layer becomes turbulent (Schlichting and 

Gersten, 2000).  But on a rooftop, there could be sufficient atmospheric turbulence to cause a 

transition from a laminar to a turbulent boundary layer.  To capture any transition effects on 

boundary layer structure, the Transition (γ-Reθ) Shear Stress Transport model was selected.  This 

model can also sufficiently capture boundary layer separation and reattachment under low-Re 

flows (Aftab et al., 2016).  An inlet turbulence intensity of 25% was chosen as a possible value 

for BRL based on measurements of the turbulence intensity on a roof ~ 11 m tall; values 

typically ranged from 20-60% (Carpman, 2011).  All FLUENT runs assumed an air density and 

viscosity with T = 20°C.  Residuals converged to less than 10-9.   

The model was rerun with successively finer grids until grid independence was achieved, and the 

number of grids near the surface of the disk was also increased until u*y/υ < 5 (dimensionless) to 

resolve the viscous sublayer, where u* = friction velocity (cm/s) of the air, y = distance to the 

surface (cm), and υ = kinematic viscosity of the air (cm2/s).  For the final model, u*y/υ ≤ 0.2.  
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The model was also rerun with different turbulence intensities; changes in turbulent properties 

were observed but changes in the boundary layer structure were negligible.   

In ANSYS CFD-Post, vertical lines were plotted at five positions on the disk; these positions are 

designated as A, B, C, D, and E, and are shown in Figure 2.3.  For each line, the velocity in the 

x-direction was computed from the surface of the disk to 1.5 cm above it.   

2.3 Results and Discussion 

Results show that good reproducibility is possible with the disks.  The dry deposition flux 

between the two disks varies on average for all experiments by 7.2%, 9.3%, 8.5%, and 6.7% for 

F-, Cl-, SO4
2-, and NO3

-, respectively (Wilcoxon rank-sum test; p >> 0.05).   

The fluxes reported in this study are conservative estimates because the three consecutive blanks 

are summed for each disk, which probably overestimates the blanks.  The third blank is usually 

the smallest of the three values.  Since the mass usually decreases with subsequent scrapings, it is 

likely that the masses in the first two consecutive blanks are greater than the contamination in the 

sample, which is mainly a result of contaminants introduced during sample handling such as dust 

and sweat.  If only the mass in the third and final blank is considered, the average flux is larger, 

and the standard deviation is smaller.  Therefore, the percent differences in the fluxes between 

the two disks, if only the third blank is used, are smaller than the values reported above.   

Even with the overestimated blank values, the ratios of the average mass in the sample to the 

average mass in the blank are nearly all > 10 for each anion.  The average ratios for all flux data 

are 14, 35, 39, and 18 for F-, Cl-, SO4
2- and NO3

-, respectively.  While ratios are generally lower 

for F- and NO3
-, most values < 5 are for Cl-; methylene chloride efficiently removed dirt on the 

surface of the disks but probably increased Cl- levels in the blanks for these experiments.   
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Although grease is sometimes used in dry deposition experiments to minimize resuspension, it 

was not applied to the disks.  This is because the high background levels of each anion in the 

grease and the handling from applying and removing the grease could contaminate both the 

blanks and the samples.  Thus, the dry deposition data reported here include the effects of both 

deposition and resuspension.   

Of the three consecutive samples, the first sample on average accounts for 90-99% of the total 

dry deposited mass of each anion after correcting for blank levels.  The dry deposited mass in the 

third consecutive sample from each disk is nearly indistinguishable from the average mass of the 

blanks (Wilcoxon-signed rank test; p > 0.05).  Therefore, nearly all dry deposited mass is most 

likely removed from the disks in the first two consecutive samples.   

The disks and air filters have been used to obtain dry deposition velocities of each anion for 

exposure periods ≤ 6 days (Table 2.2).  Dry deposition velocities of Cl-, SO4
2-, and NO3

- are 

generally within ranges of previously published values, which include measurements to both 

smooth and complex surfaces (MacLeod et al., 2011).   

Dry deposition velocities of Cl- are in the range 1.9-2.4 cm/s during the summer and fall and in 

the range 5.5-9.2 cm/s during the winter.  Values from this study are generally higher than those 

measured using ungreased symmetric airfoils over Lake Erie (Zufall et al., 1998) and the values 

in Hong Kong measured using ungreased petri dishes (Tanner et al., 2001); the dry deposition 

velocities from these studies range 1 to 2 cm/s.  Summer and fall dry deposition velocities from 

this study are lower than the average value of 4.1 cm/s measured using ungreased knife-edge 

surrogate surfaces for Taiwan (Chu et al., 2008) while winter values are higher.   
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Seasonal differences in the fluxes and airborne concentrations of Cl- are apparent.  The fluxes are 

> 1000 µg Cl- m-2 day-1 during the winter compared to the average flux of 50 µg Cl- m-2 day-1 

during the summer and fall. Airborne concentrations (Table 2.3) vary from 0.15 to 1.5 µg Cl- m-3 

during the winter compared to the average of 0.03 µg Cl- m-3 during the summer and fall.  

Because the airborne concentrations do not increase as much as the fluxes, the deposition 

velocities are higher in the winter by a factor of about 3.  This pattern is consistent with the 

concept that the increase in flux is due to the largest airborne particles, but these particles have a 

slightly smaller influence on the total airborne concentration since submicron particles dominate 

the airborne concentration.  It is likely that the increase in the Cl- airborne concentration and flux 

is due to resuspension of deicing salt applied to the sidewalks and streets (Kolesar et al., 2018; 

Kumar et al., 2012).  However, evaporation of Cl- from the Teflon filters in summer may have 

contributed to the low airborne concentration data as well.   

Dry deposition velocities of SO4
2- range from 1.1 to 1.8 cm/s during the winter—nearly an order 

of magnitude higher compared to the range 0.11 to 0.39 cm/s in the summer and fall.  Despite 

seasonal differences, these values are comparable to studies reported using other surrogate 

surfaces.  The average SO4
2- deposition velocity for the summer and fall in this study is 0.19 

cm/s, which is just slightly less than average of 0.23 cm/s with greased symmetric airfoils for 

Gettysburg, PA (Wu et al., 1992a), and the values of 0.25 and 0.23 cm/s using ungreased petri 

dishes (Tanner et al., 2001).  The deposition velocities of SO4
2-

 measured using greased knife-

edge surrogate surfaces at various locations for southern Taiwan range from 0.14 to 1.2 cm/s 

(Chen et al., 1996).  However, average values measured using greased knife-edge surrogate 

surfaces are 3.0 and 7.5 cm/s at separate locations in Turkey (Tasdemir and Günez, 2006).  Both 
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the airborne concentrations and fluxes are nearly two orders of magnitude greater than those in 

this study.  These authors report unusual conditions due to excessive coal and oil consumption.   

Deicing salt can contain up to 4% CaSO4 as an impurity (Pitt et al., 1987).  Therefore, deposition 

of deicing salt may also have enhanced the dry deposition flux of SO4
2- during the winter: fluxes 

are 5-8 times larger compared to the summer and fall despite no apparent increases in the 

airborne concentration, reinforcing the idea that the increase in deposition of the largest SO4
2- 

particles has a somewhat smaller influence on the total airborne SO4
2-, which is mainly 

submicron.   

Dry deposition velocities of NO3
- range from 0.1 to 1.1 cm/s.  This range is comparable to the 

range 0.1-1.2 cm/s measured using greased knife-edge surrogate surfaces (Chen et al., 1996) as 

well as the average of 0.6 cm/s measured using ungreased symmetric airfoils in southern 

California (Wu et al., 1992a).  Values from this study are generally higher than values of 0.35 

and 0.29 cm/s measured using ungreased petri dishes (Tanner et al., 2001) and the average of 

0.27 cm/s measured using an ungreased knife-edge surrogate surface (Chu et al., 2008).  The 

airborne concentrations of NO3
- reported by Tanner et al. (2001) did not include denuders while 

those measured by Chu et al. (2008) included denuders.   

Fluxes of NO3
- do not differ by season, with values ranging from 110 to 380 µg NO3

- m-2 day-1.  

But airborne concentrations of NO3
- in winter exceed those in summer and fall on average by 

nearly a factor of 2, which may explain some of the smaller dry deposition velocities in winter.  

More atmospheric submicron NH4NO3 may exist in colder temperatures since the dissociation 

constant decreases with temperature (Stelson and Seinfeld, 1982).  Greater partitioning of NO3
- 

to the aerosol phase in colder weather and/or lower volatility of the aerosol NO3
- collected by the 

air filters could also explain increases in the airborne concentration.  However, a significant 
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fraction of particulate aerosol NO3
- deposited to the disks may have originated from 

heterogeneous reactions of NOx with Ca2+ containing aerosol—an irreversible process producing 

NO3
--containing coarse particles (Mamane and Gottlieb, 1992; Usher et al., 2003; Wolff, 1984).  

Due to the proximity of Interstate 81 (~ 0.8 km away) and other well-traveled roads, there is a 

continual input of NOx at BRL from vehicle exhaust that can react with road and soil dust.   

Dry deposition velocities of F- range from 0.6 to 2.5 cm/s, with slightly lower values during the 

winter because of slightly higher airborne concentrations.  While dry deposition of F- is not well 

studied, calculated yearly average dry deposition velocities range from 1.2 to 2.5 cm/s in the 

Netherlands using the resistance model (Slooff et al., 1990); several of the values in Table 2.2 

are within this range. 

Fluxes range from 0.45 to 4.3 µg F- m-2 day-1 and do not vary with season.  Sources of airborne 

F- include coal combustion and industrial activities such as manufacturing of metals (aluminum, 

copper, and nickel), steel, ceramics, glass, phosphate fertilizers, and adhesives (Lewandowska et 

al., 2013).  These industries do not have a major presence in Syracuse, which may explain 

airborne concentrations of 1-4 ng F- m-3.  But some industrial sources are found in cities to the 

west—the predominant upwind direction.  Gaseous F- may participate in heterogeneous reactions 

with soil and road dust containing SiO2, contributing to the aerosol fraction (Slooff et al., 1990).   

Weekly airborne concentration data of particulate Cl-, SO4
2-, and NO3

- for five rural locations in 

Upstate New York from CASTNET https://www.epa.gov/castnet were downloaded for 

comparison with airborne concentration data from this study for 2016-2018.  The average 

airborne concentration of Cl- across the five sites was 0.04 +/- 0.05 µg Cl- m-3.  Values were not 

necessarily larger during the winter, suggesting that the airborne concentrations may be less 

influenced by deicing salt in rural locations compared to urban locations such as Syracuse, where 
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airborne concentrations from this study and those measured in many cities in the Northeast U.S. 

(Kolesar et al., 2018) showed large increases during the winter.  The average airborne 

concentrations of SO4
2- and NO3

- measured at CASTNET sites were 0.76+/- 0.3 µg SO4
2- m-3 and 

0.41 +/-0.46 µg NO3
- m-3.  Airborne concentrations of SO4

2- and NO3
- from this study are also 

generally < 1 µg m-3, suggesting that measurements in Syracuse are comparable to those 

measured at rural locations for these anions.  No airborne concentrations of F- are available from 

CASTNET, but the values reported in this study are less than 0.1 µg F- m-3, which is expected at 

locations away from industrial sources (Liteplo et al., 2012).   

Because dry deposition velocities of anions are > 0.1 cm/s, coarse particles most likely account 

for a significant fraction of the dry deposition flux.  These dry deposition velocities are 

calculated as the total flux/total airborne concentration. Dry deposition velocities based only on 

coarse particles would be much greater for all of these anions.   

Previous studies in urban areas found that coarse particles account for most of the dry deposition 

fluxes of SO4
2- and NO3

- to the knife-edge surrogate surface (Lestari et al., 2003; Yang et al., 

2005, 2004).  In fact, Yang et al. (2005) report deposition velocities of NO3
- that are comparable 

to sedimentation velocities, with values > 1 cm/s.  While deposition velocities of NO3
- are 

generally lower in this study, Yang et al. (2005) controlled for resuspension; no deposition 

velocities are reported in Lestari et al. (2003) and Yang et al. (2004) for comparison of SO4
2-, but 

the fluxes measured in those studies are at least three orders of magnitude greater.  Because BRL 

is located in a heavily trafficked area, vehicles most likely resuspend coarse particles (Patra et 

al., 2008), which may account for a significant fraction of the dry deposition flux.   

On the other hand, dry deposition velocities of Cl- and NO3
- may have been overestimated 

because NO3
- and Cl- may have evaporated from the Teflon air filters during sampling, 
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depending on the temperature and relative humidity of the atmosphere (Liu et al., 2015).  The 

ratio of the gas phase concentration to the particle phase concentration of NO3
- may also be 

important (Zhang and McMurry, 1992).  Evaporation of NO3
- and Cl- may be severe: Liu et al. 

(2014) reported that 49-89% of the NO3
- and 60-88% of the Cl- collected on Teflon filters 

evaporated during sampling, and additional NO3
- and Cl- evaporated from the filters during 

storage.  Since deunders were not used in this study, the evaporated mass from the air filters 

cannot be quantified.   

The correlation between the dry deposition flux and the airborne concentration was low for SO4
2- 

and NO3
- (R2 < 0.01), consistent with the idea that submicron aerosols do not have a major 

influence on the dry deposition flux.  In addition, no attempts were made to conduct isokinetic 

sampling, suggesting that many of the largest airborne particles were collected by the filters with 

low efficiency.  The correlation between the dry deposition flux and the airborne concentration 

was stronger for F- (R2 = 0.37) and Cl- (R2 = 0.965).  The high correlation for Cl- should not be 

interpreted to suggest that the particles dominating the airborne concentration are the same as 

those depositing on the disks.  Rather, the correlation may reflect two regimes based on season: 

low airborne concentrations and fluxes in the summer and fall are in contrast with slightly higher 

airborne concentrations and much higher fluxes in the winter.  Two widely separated clusters of 

points can yield high correlations.      

The Nov. 12-15, 2016 experiment showed that fluxes gradually increased from section 4 to 1 for 

all anions, as shown in Figure 2.3.  The fluxes of F-, SO4
2-, and NO3

- are 42%, 25%, and 55% 

greater, respectively, on section 1 compared to section 4.  However, for the Feb. 17-21, 2017 

experiment, fluxes did not necessarily decrease from the leading edge except for NO3
-; the flux 

of NO3
- is just 17% greater on section 1 compared to section 4.  The mean hourly wind direction 
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for both experiments was ~ 210° (SW) with a standard deviation of ~ 90°.  Therefore, section 1 

was generally the leading edge for both experiments.  Observations at one minute resolution 

from the nearby weather station show that the wind came from the west 49% of the time during 

Feb. 17-21, 2017 experiment, and therefore the leading edge may have changed such that 

deposition did not gradually increase in one direction.  The presence of large road salt particles 

may also explain why deposition to section 1 was not necessarily greater than deposition to other 

sections; these particles can settle through the boundary layer somewhat independently of the 

boundary layer thickness, which increases with distance from the leading edge as suggested from 

Figure 2.4.   

There is little published information to compare the data from the two experiments on how dry 

deposition varies over surrogate surfaces under ambient conditions; most experiments have been 

conducted in wind tunnels with controlled wind speed and direction and turbulence intensity.  

Under ambient conditions, shifting wind direction can create difficulties in defining the leading 

edge.  However, Raymond et al. (2004) found no difference in deposition of total NO3
- and SO4

2- 

onto different positions of the knife-edge surrogate surface in Upstate NY and Maryland.  From 

the current study, the flux varies across the sections of the disk on average by 8% for all anions, 

suggesting that deposition is relatively uniform even if the height of the boundary layer varies.  

2.4 Conclusion 

Two identical Teflon-coated disks with a surface area of just over 1 m2 were designed to measure 

dry deposition of F-, Cl-, SO4
2-, and NO3

- for short exposures of 2-6 days.  Dry deposition fluxes 

to the two disks agreed well, and computed dry deposition velocities are generally comparable to 

values measured using smaller surrogate surfaces.   
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Dry deposition velocities of F- were in the range 0.6-2.5 cm/s and were slightly greater in 

summer.  On the other hand, dry deposition velocities of Cl- varied more strongly by season: 

values in the summer and fall ranged from 1.9 to 2.4 cm/s while values in the winter ranged from 

5.5 to 9.2 cm/s.  Much of the increase was due to fluxes that increased by a factor of 20 in the 

winter, while airborne concentrations increased by a smaller amount.  It is likely that coarse 

particles resulting from resuspension of road salt used for deicing are responsible for much of the 

increase.  Dry deposition velocities of SO4
2- also increased in the winter and ranged from 1.1 to 

1.8 cm/s, while values in the summer and fall ranged from 0.11 to 0.39 cm/s.  Unlike for Cl-, 

airborne concentrations did not show a measurable increase compared with the summer and fall, 

suggesting that an increase in the airborne concentration of coarse particle SO4
2- was enough to 

increase the flux but had negligible effect on the total airborne concentration, which is mainly 

submicron.   

While dry deposition velocities of Cl- and SO4
2- were higher in the winter, values of NO3

- were 

slightly smaller due to higher airborne concentrations.  This may be due to greater formation of 

NH4NO3 in the winter.  However, artifacts in sampling NO3
- with a Teflon filter in the absence 

of a denuder are likely to reduce the reliability of the NO3
- airborne concentration data.   

On average, dry deposition fluxes to separate sections of the disk varied on average by 8% for all 

anions in two experiments.  This consistency suggests that deposition was approximately 

uniform despite a changing boundary layer height.  Deposition to the first section of the disk, 

which includes the leading edge, was only slightly enhanced compared with downwind sections.     
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Chapter 3: Theoretical calculation for washoff of dry deposited SO4
2- 

In this chapter, I present a calculation to show if it is possible to quantify the removal of dry 

deposition from the roof of the War Memorial Arena in downtown Syracuse, NY by measuring 

the dry deposited mass in the stormwater runoff during a rainstorm.  The calculation will be 

presented for particulate SO4
2-.  Two assumptions are made: (1) only dry deposition and the 

precipitation contribute SO4
2- to the runoff, and (2) all dry deposition is removed within a short 

time after the rain begins (a time of 10 minutes is assumed).  The calculation is possible if the 

dry deposited mass of SO4
2- appreciably exceeds the mass contributed by the precipitation. If the 

dry deposited mass of SO4
2- is only a small fraction of the SO4

2- mass in the precipitation, it is 

likely that the experimental error in determining the small difference between the two 

concentrations will be too large to quantify accurately. 

3.1 Example Calculation 

The following parameters are needed: the dry deposition flux of SO4
2- (F), the antecedent dry 

period during which the flux occurred (ADP), the concentration of SO4
2- in the precipitation 

(CP), the surface area of the roof (A), and the rainfall intensity (I).  The calculation will assume 

that ADP = 2.5 days, and I = 2 mm/hr.  Removal of dry deposited SO4
2- is likely a first-order 

process, which means that it will require an infinite time for the mass on the roof to decay to 

zero.  Therefore, another assumption is that nearly all dry deposited SO4
2- is removed within 10 

minutes after the storm begins.  The time needed to remove nearly all of the dry deposited SO4
2- 

can be denoted as D = 10 minutes. 

On the roof, 14 drains connect to a single drain pipe inside the building where runoff will be 

sampled.  A rough sketch of this area is shown in Figure 3.1; the value of A is 1176 m2.   



23 
 

The dry deposition flux of SO4
2- for this situation can be computed by using the average value of 

the dry deposition velocity (Vd, ave) and the value of the airborne concentration (Cave) for the 

summer and fall values in Tables 2 and 3 from Chapter 2.  Thus, Vd, ave equals 0.21 +/- 0.11 cm/s 

and Cave equals 0.82 +/- 0.58 μg SO4
2- m-3.  Therefore, the flux F can be computed as Vd, ave x Cair 

= 142 +/- 125 μg SO4
2- m-2 day-1.  This result is used as a typical value that may be measured in 

future dry deposition experiments.   

To obtain a possible estimate of the SO4
2- precipitation concentration, concentrations from 25 

separate measurements during the spring, summer, and fall of 2017 are averaged.  For nearly all 

precipitation events, the concentration of SO4
2- is an average of values from three samples 

collected during an event (the same analytical and quality control procedures used were the same 

as those discussed in Chapter 2).  The possible value of CP equals 600 μg SO4
2-/L or 0.6 +/- 0.65 

mg SO4
2-/L using these data. 

With all parameters known, the calculation can be divided into the following steps (no unit 

conversions are shown).    

Step 1: Calculate the mass of SO4
2- to the roof from dry deposition 

The mass that deposits to the roof is F x ADP x A = 142 μg m2/day x 2.5 days x 1176 m2  = 417 

mg SO4
2-.    

Step 2: Calculate the mass of SO4
2- to the roof from the precipitation 

The mass contributed by the precipitation is CP x A x I x D = 600 μg/L x 1176 m2 x 2 mm/hr x 

10 minutes = 240 mg SO4
2-.   
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The amount from dry deposition exceeds the amount from wet deposition by 177 mg SO4
2-.  If 

the mass from the precipitation is 240 mg SO4
2-, then only an ADP of 1.4 days is required for the 

amount of dry deposited SO4
2- to equal the amount of SO4

2- contributed by the precipitation 

during the first 10 minutes of the rainstorm.     

Runoff samples collected within the first 10 minutes should have concentrations that exceed the 

concentration in the precipitation.  During this period, runoff concentrations decrease to 0.6 mg 

SO4
2-/L from an initial concentration, which is calculated below.   

Step 3: Calculate the initial concentration of SO4
2- in the runoff 

The concentration is the sum of the contributions by dry deposition and the precipitation.  The 

concentration of dry deposited SO4
2- dissolved and suspended in the runoff is equal to the 

following: 

Result from Step 1/(A x I x D) = 417 mg/(1176 m2 x 2 mm/hr x 10 minutes) = 1.04 mg SO4
2-/L.   

Therefore, the average concentration in the runoff within the first 10 minutes of the storm should 

be 1.04 + 0.6 = 1.64 mg SO4
2-/L.  After 10 minutes have passed, the concentration in the runoff 

should decrease to 0.6 mg SO4
2-/L.  This concept is depicted in Figure 3.2.  Ideally, the first-

order rate constant can be computed using the initial concentration of SO4
2-, the concentration of 

SO4
2- in the precipitation, and the time it takes for the concentration to decrease to a value close 

to the level in the precipitation.    
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Chapter 4: Conclusion and Future Work 

In Chapter 2, I presented dry deposition data of F-, Cl-, SO4
2-, and NO3

- for short exposures of 2-

6 days using two large disks as surrogate surfaces.  Dry deposition fluxes to the two disks agreed 

well for all anions, and computed dry deposition velocities are comparable to previously 

published values measured using other surrogate surfaces.  Fluxes to separate sections of the 

disks differ by ~ 8%.  These results suggest that the dry deposition data from the disks are 

reproducible for inorganic anions, and that it may be possible to use the disks to measure other 

chemical species.   Seasonal differences are also apparent, with significantly larger fluxes of 

SO4
2- and Cl- observed during the winter possibly due to deposition of deicing salt.   

Future work includes the use of two annular denuder systems (URG-2000-30x242-3CSS, URG 

Corporation, Chapel Hill, NC) to measure airborne concentrations of acid gases such as HF, HCl, 

SO2, and HNO3 during dry deposition experiments.  Each denuder is equipped with a Teflon-

coated aluminum cyclone to remove coarse particles upstream of the denuder.  Analyzing the 

particles collected in the cyclones will allow for calculation of airborne concentrations of coarse 

particles, which can be compared to estimates of fine particle concentrations obtained from the 

Teflon filters downstream of the denuder.  A backup nylon filter can quantify evaporated NO3
- 

and Cl- from the Teflon filters, which is not possible with the current setup for airborne 

concentration measurements.  Quantifying any evaporation losses from the filters will help 

improve airborne concentration measurements and dry deposition velocities of NO3
- and Cl-.   

Denuders could also be used to provide quantitative evidence of heterogeneous reactions 

between acid gases (H4SO2, HNO3, organic acids, etc.) and deicing salt.  Gases may adsorb to 

the surface of salt and displace Cl-, which evaporates as HCl.  Measured losses of Cl- due to 
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adsorption of acid gases to sea salt aerosol have been quantified in several studies (Saliba and 

Chamseddine, 2012; Tanner et al., 2001; Yao and Zhang, 2012; Zhuang et al., 1999).  This 

phenomenon may be occurring for deicing salt as well; since road salt aerosol can be abundant 

during the winter (Kolesar et al., 2018), these reactions may represent an important pathway for 

acid gases to undergo a change to the particulate phase.   

In Chapter 3, I presented an example calculation to show that it may be possible to measure the 

washoff of dry deposited SO4
2- in the runoff from the roof of the War Memorial Arena in 

downtown Syracuse, NY. The amount of SO4
2- from dry deposited material dissolved and 

suspended in the runoff (417 mg) is greater than the amount from the precipitation (240 mg).  

These calculations assumed an antecedent dry period of 2.5 days and a constant rain intensity of 

2 mm/hr.  Furthermore, it was assumed that nearly all dry deposited SO4
2-

 is removed within the 

first 10 minutes.  If this assumption is true, samples collected sequentially at the beginning of the 

storm will therefore show removal of all dry deposited SO4
2- from the roof.  The concentration in 

the runoff beginning at 10 minutes will remain at the same level as the concentration in the 

precipitation for the remainder of the storm—a steady state.   

Future work includes measuring several dry deposited contaminants in stormwater runoff from 

the roof of the War Memorial Arena.  These experiments will consist of measuring the dry 

deposition flux during the antecedent dry period, followed by collecting sequential runoff 

samples simultaneously with collecting precipitation samples.  The amount of dry deposited 

mass will be compared to the mass load in the runoff to determine the removal of dry deposited 

mass at each time step. This will continue until there is no remaining dry deposited material and 

a steady state is achieved.   
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These data will be used to test the assumption of a first order removal process and to derive the 

first-order rate constant of the removal process for each storm.  The rate constant is expected to 

be dependent on the rain intensity: the rate constant is greater with a higher rain intensity.  If the 

rate constant is small and if the storm is brief, the dry deposited mass may not be completely 

removed during that storm.  But the remaining material may be completely removed in a more 

intense storm following a second dry period.  These hypotheses will be tested in future 

experiments.   

These experiments therefore constitute a new method of estimating dry deposition to urban 

surfaces by quantifying the removal of dry deposited material in stormwater runoff from these 

surfaces during a rainstorm.  Furthermore, these experiments will assess the relative 

contributions of dry deposition and wet deposition to contamination of stormwater runoff for 

various chemical species.   
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Tables and Figures 

Table 2.1: Background information on each experiment.  The number of samples collected was 

the same as the number of field blanks except for 9/5-9/8/16.  For the 2/17-2/21/17 experiment, 

exposure of the air filters began on 2/17 while exposure of the disks began on 2/18. Asterisks 

denote experiments with the disks divided into sections (see text).  

 

 

 

 

 

 

 

 

 

 

 

 

Date Exposure period 
(days) 

Number of disk samples and 
blanks 

Number of air 
filters 

Sep. 5-8, 2016 3.1 2 samples, 1 blank 0 
Oct. 3-7, 2016 3.2 2 1 

Oct. 10-12, 2016 2.25 2 2 
Nov. 12-15, 2016* 3 3 samples per section, 3 

blanks 
2 

Feb. 17-21, 2017* 3  3 samples per section, 3 
blanks 

2 

Jul. 8-10, 2017 2.1 3 0 
Jul. 28-Aug. 30, 2017 5.1 3 4 

Aug. 25-30, 2017 5.1 3 4 
Sep. 20-26, 2017 6 3 4 
Feb. 26-28, 2018 2.1 3 2 
Mar. 19-21, 2018 1.9 3 2 
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Table 2.2: Average dry deposition velocities and standard deviations (both in units of cm/s) of 

particulate anions for each experiment.  If the sample/field blank ratio was below criterion for the 

airborne concentration or the dry deposition flux, the dry deposition velocity was removed.  

Standard deviations are compounded based on uncertainties in the samples and in the blanks.   

 

Table 2.3: Average airborne concentrations and standard deviations (both in units of μg m-3) of 

particulate anions for each experiment.  If the sample/field blank ratio was below criterion, the 

value was removed, along with the associated dry deposition velocity in Table 2.  Standard 

deviations are based on uncertainties in the samples and in the blanks.  

Date F- Cl- SO4
2- NO3

- 

Summer and Fall µc σc µc σc µc σc µc σc 

Oct. 3-7, 2017 0.0016 0.0002 0.023 0.0007 0.75 0.001 0.69 0.016 
Oct. 10-12, 2017 0.001 0.0001 0.012 0.004 0.24 0.014 0.27 0.004 
Nov. 12-15, 2017 0.004 0.0006 0.027 0.003 0.81 0.004 0.90 0.006 
Jul. 28- Aug. 2, 2017 0.002 0.0003 0.024 0.004 0.74 0.09 0.24 0.03 
Aug. 25-30, 2017 0.0007 0.0002 0.053 0.01 0.45 0.051 0.29 0.065 
Sep. 20-26, 2017 0.002 0.0007 0.029 0.011 1.9 0.17 0.45 0.04 
Winter         
Feb. 17-21, 2017 0.0032 0.0002 1.5 0.065 0.86 0.07 1.0 0.036 
Feb. 26-28, 2018 -- -- 0.15 0.007 0.59 0.034 0.82 0.03 
Mar. 19-21, 2018 0.0036 0.0003 1.2 0.12 0.35 0.01 0.83 0.015 

Date F- Cl- SO4
2- NO3

- 

Summer and Fall µv σv µv σv µv σv µv σv 

Oct. 3-7, 2017 1.7 0.4 2.2 0.4 0.12 0.01 0.36 0.04 

Oct. 10-12, 2017 1.8 0.2 -- -- 0.39 0.04 0.66 0.03 

Nov. 12-15, 2017 0.6 0.2 -- -- 0.13 0.02 0.10 0.06 
Jul. 28- Aug. 2, 
2017 

0.89 0.2 2.3 0.1 0.21 0.01 1.1 0.06 

Aug. 25-30, 2017 1.8 1.2 1.9 0.3 0.27 0.04 0.52 0.12 

Sep. 20-26, 2017 2.5 1.1 2.4 1.3 0.11 0.03 0.99 0.28 

Winter         

Feb. 17-21, 2017 0.99 0.26 5.5 0.5 1.1 0.09 0.26 0.06 

Feb. 26-28, 2018 -- -- 9.2 0.5 1.5 0.1 0.41 0.03 

Mar. 19-21, 2018 1.0 0.1 7.4 0.9 1.8 0.2 0.15 0.02 
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Figure 2.1: Aerial diagram of BRL with roof area dimensions and locations of equipment.  The 

penthouse is on the north side of the roof.  

 

 

 

Figure 2.2: The two disks deployed in the field.  Each disk is ~ 2.5 m away from the penthouse 

and the railing.  The disks are supported underneath by a frame of PVC pipe secured to concrete 

pavers.   
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Figure 2.3: (Right) Average fluxes to each section shown in the graph on the right.  Standard 

deviations are included as error bars; (Left) Sections are numbered in increasing order from W-E 

with section 1 assigned the leading edge.  Velocity profiles are calculated at positions A, B, C, D, 

and E along the surface of the disks, which are shown in Figure 4.  

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Velocity profiles computed at five positions along the surface of the disks.  The x-

axis is normalized by height and distance in the x-direction, where X = distance from leading 

edge/diameter of disk and u/uo = velocity/3 (the inlet velocity is 3 m/s). 
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Figure 3.1: Aerial view of traditional roof on War Memorial building in downtown Syracuse, 

NY.  The area of the roof that drains to the sampling pipes is indicated in the black box.  This 

area is 1176 m2, measured using CAD by Onondaga County staff.   
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Figure 3.2: Washoff of dry deposited SO4
2-

 from the roof on the War Memorial.  The initial 

concentration of 1.64 mg SO4
2-/L in the runoff decreases to the concentration of 0.6 mg SO4

2-/L 

found in the precipitation, which remains at steady-state for the remainder of the storm.   
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Appendix 

Table A.1: Dry Deposition Fluxes 

Date Flux (µg m-2 day-1) Disk Anion Exposure (days) 

10/3-10/7/16 45.6 West Cl 3.20 

10/3-10/7/16 41.4 East Cl 3.20 

2/17-2/21/17 6972.9 West Cl 3.00 

2/17-2/21/17 7359.7 East Cl 3.00 

7/8-7/10/17 39.1 West Cl 2.08 

7/8-7/10/17 29.3 East Cl 2.08 

7/28-8/2/17 47.4 East Cl 5.10 

8/25-8/30/17 67.5 East Cl 5.07 

8/25-8/30/17 70.6 West Cl 5.07 

9/20-9/26/17 55.2 East Cl 5.96 

9/20-9/26/17 65.4 West Cl 5.96 

2/26-2/28/18 1226.0 West Cl 2.07 

2/26-2/28/18 1176.7 East Cl 2.07 

3/19-3/21/18 7351.2 West Cl 1.90 

3/19-3/21/18 7715.6 East Cl 1.90 

9/5-9/8/16 0.5 West F 3.08 

9/5-9/8/16 0.4 East F 3.08 

10/3-10/7/16 2.2 West F 3.20 

10/3-10/7/16 2.1 East F 3.20 

10/10-10/12/16 1.5 West F 2.25 

10/10-10/12/16 1.5 East F 2.25 

11/12-11/15/16 2.3 West F 3.00 

11/12-11/15/16 2.4 East F 3.00 

2/17-2/21/17 2.8 West F 3.00 

2/17-2/21/17 2.6 East F 3.00 

7/8-7/10/17 2.1 West F 2.08 

7/8-7/10/17 2.0 East F 2.08 

7/28-8/2/17 1.6 East F 5.10 

8/25-8/30/17 2.2 West F 5.07 

8/25-8/30/17 2.1 East F 5.07 

9/20-9/26/17 4.2 West F 5.96 

9/20-9/26/17 4.4 East F 5.96 

2/26-2/28/18 2.5 West F 2.07 

2/26-2/28/18 2.7 East F 2.07 

3/19-3/21/18 3.4 West F 1.90 

3/19-3/21/18 3.1 East F 1.90 

10/3-10/7/16 191.5 East NO3 3.20 

10/3-10/7/16 230.0 West NO3 3.20 

10/10-10/12/16 154.7 East NO3 2.25 

10/10-10/12/16 150.5 West NO3 2.25 
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11/12-11/15/16 92.2 West NO3 3.00 

11/12-11/15/16 101.6 East NO3 3.00 

2/17-2/21/17 215.5 West NO3 3.00 

2/17-2/21/17 232.0 East NO3 3.00 

7/28-8/2/17 227.7 East NO3 5.10 

8/25-8/30/17 128.7 East NO3 5.07 

8/25-8/30/17 136.5 West NO3 5.07 

9/20-9/26/17 383.1 East NO3 5.96 

9/20-9/26/17 379.6 West NO3 5.96 

2/26-2/28/18 279.2 West NO3 2.07 

2/26-2/28/18 294.3 East NO3 2.07 

3/19-3/21/18 109.4 West NO3 1.90 

3/19-3/21/18 110.3 East NO3 1.90 

9/5-9/8/16 87.8 West SO4 3.08 

9/5-9/8/16 76.3 East SO4 3.08 

10/3-10/7/16 83.3 West SO4 3.20 

10/3-10/7/16 71.1 East SO4 3.20 

10/10-10/12/16 77.8 West SO4 2.25 

10/10-10/12/16 80.9 East SO4 2.25 

11/12-11/15/16 85.4 West SO4 3.00 

11/12-11/15/16 90.0 East SO4 3.00 

2/17-2/21/17 800.7 West SO4 3.00 

2/17-2/21/17 820.4 East SO4 3.00 

7/8-7/10/17 67.4 West SO4 2.08 

7/8-7/10/17 79.3 East SO4 2.08 

7/28-8/2/17 133.7 East SO4 5.10 

8/25-8/30/17 104.7 West SO4 5.07 

8/25-8/30/17 103.1 East SO4 5.07 

9/20-9/26/17 184.2 West SO4 5.96 

9/20-9/26/17 179.0 East SO4 5.96 

2/26-2/28/18 732.3 West SO4 2.07 

2/26-2/28/18 796.6 East SO4 2.07 

3/19-3/21/18 586.0 West SO4 1.90 

3/19-3/21/18 507.9 East SO4 1.90 

 

 

Note: the above data were imported into R to conduct Wilcoxon rank-sum tests for each anion: 

West vs. East.  The tests failed to reject the null hypothesis for all anions (p>>0.05).  Fluxes are 

reported as µg F- m-2 day-1, µg Cl- m-2 day-1, µg SO4
2- m-2 day-1, and µg NO3

- m-2 day-1 
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Table A.2: Airborne Concentrations 

Date Airborne Concentration Flow Meter Anion 

10/3-10/7/16 0.002 FR1 F 

10/3-10/7/16 0.023 FR1 Cl 

10/3-10/7/16 0.753 FR1 SO4 

10/3-10/7/16 0.679 FR1 NO3 

10/10-10/12/16 0.0009 FR1 F 

10/10-10/12/16 0.0010 FR2 F 

10/10-10/12/16 0.014 FR1 Cl 

10/10-10/12/16 0.009 FR2 Cl 

10/10-10/12/16 0.244 FR1 SO4 

10/10-10/12/16 0.232 FR2 SO4 

10/10-10/12/16 0.262 FR1 NO3 

10/10-10/12/16 0.271 FR2 NO3 

11/12-11/15/16 0.004 FR1 F 

11/12-11/15/16 0.004 FR2 F 

11/12-11/15/16 0.027 FR1 Cl 

11/12-11/15/16 0.023 FR2 Cl 

11/12-11/15/16 0.806 FR1 SO4 

11/12-11/15/16 0.809 FR2 SO4 

11/12-11/15/16 0.903 FR1 NO3 

11/12-11/15/16 0.895 FR2 NO3 

2/17-2/21/17 0.003 FR1 F 

2/17-2/21/17 0.003 FR2 F 

2/17-2/21/17 1.586 FR1 Cl 

2/17-2/21/17 1.456 FR2 Cl 

2/17-2/21/17 0.860 FR1 SO4 

2/17-2/21/17 0.789 FR2 SO4 

2/17-2/21/17 1.013 FR1 NO3 

2/17-2/21/17 1.059 FR2 NO3 

7/28-8/2/17 0.003 FR1 F 

7/28-8/2/17 0.002 FR2 F 

7/28-8/2/17 0.002 FL1 F 

7/28-8/2/17 0.001 FL2 F 

7/28-8/2/17 0.026 FR1 Cl 

7/28-8/2/17 0.024 FR2 Cl 

7/28-8/2/17 0.021 FL1 Cl 

7/28-8/2/17 0.025 FL2 Cl 

7/28-8/2/17 0.787 FR1 SO4 

7/28-8/2/17 0.802 FR2 SO4 

7/28-8/2/17 0.672 FL1 SO4 
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7/28-8/2/17 0.713 FL2 SO4 

7/28-8/2/17 0.258 FR1 NO3 

7/28-8/2/17 0.260 FR2 NO3 

7/28-8/2/17 0.202 FL1 NO3 

7/28-8/2/17 0.239 FL2 NO3 

8/25-8/30/17 0.0006 FR1 F 

8/25-8/30/17 0.0007 FR2 F 

8/25-8/30/17 0.0007 FL1 F 

8/25-8/30/17 0.0007 FL2 F 

8/25-8/30/17 0.056 FR1 Cl 

8/25-8/30/17 0.053 FR2 Cl 

8/25-8/30/17 0.054 FL1 Cl 

8/25-8/30/17 0.050 FL2 Cl 

8/25-8/30/17 0.480 FR1 SO4 

8/25-8/30/17 0.494 FR2 SO4 

8/25-8/30/17 0.409 FL1 SO4 

8/25-8/30/17 0.408 FL2 SO4 

8/25-8/30/17 0.298 FR1 NO3 

8/25-8/30/17 0.383 FR2 NO3 

8/25-8/30/17 0.242 FL1 NO3 

8/25-8/30/17 0.248 FL2 NO3 

9/20-9/26/17 0.0025 FR1 F 

9/20-9/26/17 0.0021 FR2 F 

9/20-9/26/17 0.0024 FL1 F 

9/20-9/26/17 0.0010 FL2 F 

9/20-9/26/17 0.024 FR1 Cl 

9/20-9/26/17 0.020 FR2 Cl 

9/20-9/26/17 0.024 FL1 Cl 

9/20-9/26/17 0.045 FL2 Cl 

9/20-9/26/17 1.947 FR1 SO4 

9/20-9/26/17 1.967 FR2 SO4 

9/20-9/26/17 1.903 FL1 SO4 

9/20-9/26/17 1.837 FL2 SO4 

9/20-9/26/17 0.481 FR1 NO3 

9/20-9/26/17 0.411 FR2 NO3 

9/20-9/26/17 0.457 FL1 NO3 

9/20-9/26/17 0.433 FL2 NO3 

2/26-2/28/18 0.0012 FR1 F 

2/26-2/28/18 0.0010 FR2 F 

2/26-2/28/18 0.157 FR1 Cl 

2/26-2/28/18 0.144 FR2 Cl 
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2/26-2/28/18 0.626 FR1 SO4 

2/26-2/28/18 0.557 FR2 SO4 

2/26-2/28/18 0.809 FR1 NO3 

2/26-2/28/18 0.821 FR2 NO3 

3/19-3/21/18 0.0038 FR1 F 

3/19-3/21/18 0.0033 FR2 F 

3/19-3/21/18 1.287 FR1 Cl 

3/19-3/21/18 1.065 FR2 Cl 

3/19-3/21/18 0.364 FR1 SO4 

3/19-3/21/18 0.344 FR2 SO4 

3/19-3/21/18 0.836 FR1 NO3 

3/19-3/21/18 0.826 FR2 NO3 

 

Note: airborne concentrations of inorganic anions expressed as µg F- m-3, µg Cl- m-3,                  

µg SO4
2- m-3, and µg NO3

- m-3.  During sampling, each filter was connected to a flow meter 

designated FR1, FR2, FL1, or FL2.  The airborne concentrations were averaged for each anion 

and experiment to obtain the values in Table 2.3. 
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Table A.3: East-West Flux Differences 

Experiment Date F Cl SO4 NO3 

9/5-9/8/16 0.0937 NA 0.1395 NA 

10/3-10/7/16 0.1867 0.0959 0.1589 0.1824 

10/10-10/12/16 0.0332 NA 0.0391 0.0280 

11/12-11/15/16 0.0677 0.0045 0.0517 0.1222 

2/17-2/21/17 0.0426 0.0540 0.0236 0.0738 

7/8-7/10/17 0.0154 0.2880 0.1627 NA 

7/28-8/2/17 NA NA NA NA 

8/25-8/30/17 0.0613 0.0446 0.0153 0.0586 

9/20-9/26/17 0.0384 0.1696 0.0287 0.0089 

2/26-2/26/18 0.0909 0.0410 0.0841 0.0528 

3/19-3/21/18 0.0915 0.0484 0.1429 0.0080 

AVE 0.0721 0.0933 0.0846 0.0669 

Grand Average 0.0791       

 

Note: the formula used to compute the difference between the flux to the east disk and the flux to 

the west disk was ABS((X1-X2)/(0.5*(X1+X2))) where X1 = flux from west disk and X2 = flux 

from east disk.  The values reported in the table are therefore expressed as fractions of the 

average of the 2 values.  Multiplying each value by 100 yields the percent difference.  The 

differences for each anion were then averaged.  The percent differences of these values are 

included in Chapter 2.  The Grand Average is an average of all values in the table. 
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Table A.4: Disk Sample/Blank Ratios 

S/B  F Cl SO4 NO3 

9/5-9/8/16  7.40 2.90 8.70 1.71 

10/3-10/7/16  16.00 12.60 29.20 22.60 

10/10-10/12/16  6.60 1.86 9.80 11.60 

11/12-11/15/16  9.47 4.29 13.08 6.40 

2/17-2/21/17  14.25 92.75 137.15 17.06 

7/8-7/10/17  24.00 14.70 28.20 2.93 

7/28-8/2/17  14.70 26.70 54.90 24.00 

8/25-8/30/17  19.50 45.90 47.70 40.50 

9/20-9/26/17  14.40 10.20 13.50 15.60 

2/26-2/26/18  12.60 117.30 45.00 29.70 

3/19-3/21/18  18.97 58.83 44.58 24.05 

  Average 14.35 35.28 39.25 17.83 

        Grand Ave 26.68 

 

Table A.5: Air Filter Sample/Blank Ratios 

S/B  F Cl SO4 NO3 

10/3-10/7/16  Inf 32.25 561.97 78.30 

10/10-10/12/16  12.28 Inf Inf 134.17 

11/12-11/15/16  15.11 18.21 590.15 86.41 

2/17-2/21/17  34.00 776.98 166.61 48.12 

7/8-7/10/17  1.72 2.97 157.39 2.31 

7/28-8/2/17  29.58 68.41 1428.45 43.82 

8/25-8/30/17  8.54 Inf Inf 69.91 

9/20-9/26/17  220.20 54.28 3216.81 76.74 

2/26-2/26/18  2.13 Inf 20.14 25.93 

3/19-3/21/18   5.02 99.02 27.01 45.73 

 

Note: For Table A.4 and Table A.5, values highlighted in yellow indicate S/B ratios <5.  A value 

of “Inf” means that the S/B = infinity because all field blanks were below detection limits and 

were set equal to zero. 
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Table A.6: Avg. Disk Blank compared to Sample 3 

Date Sample Type Anion  Mass (µg) 

9/5-9/8/16 West3 F 0.18 

9/5-9/8/16 East3 F 0.20 

9/5-9/8/16 Blank F 0.30 

9/5-9/8/16 West3 SO4 38.26 

9/5-9/8/16 East3 SO4 30.95 

9/5-9/8/16 Blank SO4 43.86 

9/5-9/8/16 West3 Cl NA 

9/5-9/8/16 East3 Cl NA 

9/5-9/8/16 Blank Cl NA 

9/5-9/8/16 West3 NO3 NA 

9/5-9/8/16 East3 NO3 NA 

9/5-9/8/16 Blank NO3 NA 

10/3-10/7/16 West3 F 1.59 

10/3-10/7/16 East3 F 1.25 

10/3-10/7/16 Blank F 0.66 

10/3-10/7/16 Blank Cl 15.23 

10/3-10/7/16 West3 Cl 15.01 

10/3-10/7/16 East3 Cl 23.25 

10/3-10/7/16 Blank SO4 10.47 

10/3-10/7/16 West3 SO4 24.98 

10/3-10/7/16 East3 SO4 22.07 

10/3-10/7/16 Blank NO3 37.72 

10/3-10/7/16 West3 NO3 65.59 

10/3-10/7/16 East3 NO3 48.51 

10/10-10/12/16 Blank F 0.79 

10/10-10/12/16 West3 F 0.96 

10/10-10/12/16 East3 F 1.05 

10/10-10/12/16 Blank Cl NA 

10/10-10/12/16 West3 Cl NA 

10/10-10/12/16 East3 Cl NA 

10/10-10/12/16 Blank SO4 25.03 

10/10-10/12/16 West3 SO4 17.83 

10/10-10/12/16 East3 SO4 22.93 

10/10-10/12/16 Blank NO3 39.62 

10/10-10/12/16 West3 NO3 46.08 

10/10-10/12/16 East3 NO3 56.76 

11/12-11/15/16 Blank F 1.12 

11/12-11/15/16 West3 F 1.35 

11/12-11/15/16 East3 F 1.17 
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11/12-11/15/16 Blank Cl NA 

11/12-11/15/16 West3 Cl NA 

11/12-11/15/16 East3 Cl NA 

11/12-11/15/16 Blank SO4 30.24 

11/12-11/15/16 West3 SO4 28.08 

11/12-11/15/16 East3 SO4 13.85 

11/12-11/15/16 Blank NO3 58.15 

11/12-11/15/16 West3 NO3 52.42 

11/12-11/15/16 East3 NO3 47.37 

2/17-2/21/17 Blank F 0.83 

2/17-2/21/17 West3 F 0.64 

2/17-2/21/17 East3 F 1.15 

2/17-2/21/17 Blank Cl 275.71 

2/17-2/21/17 West3 Cl 607.58 

2/17-2/21/17 East3 Cl 1527.05 

2/17-2/21/17 Blank SO4 20.86 

2/17-2/21/17 West3 SO4 95.07 

2/17-2/21/17 East3 SO4 214.98 

2/17-2/21/17 Blank NO3 54.95 

2/17-2/21/17 West3 NO3 39.41 

2/17-2/21/17 East3 NO3 150.28 

7/8-7/10/17 Blank F 0.23 

7/8-7/10/17 West3 F 0.49 

7/8-7/10/17 East3 F 0.47 

7/8-7/10/17 Blank Cl 7.05 

7/8-7/10/17 West3 Cl 5.01 

7/8-7/10/17 East3 Cl 4.77 

7/8-7/10/17 Blank SO4 6.96 

7/8-7/10/17 West3 SO4 6.32 

7/8-7/10/17 East3 SO4 7.16 

7/8-7/10/17 Blank NO3 35.35 

7/8-7/10/17 West3 NO3 22.26 

7/8-7/10/17 East3 NO3 10.56 

7/28-8/2/17 Blank F 0.64 

7/28-8/2/17 West3 F NA 

7/28-8/2/17 East3 F 0.84 

7/28-8/2/17 Blank Cl 8.58 

7/28-8/2/17 West3 Cl NA 

7/28-8/2/17 East3 Cl 9.37 

7/28-8/2/17 Blank SO4 11.64 

7/28-8/2/17 West3 SO4 NA 
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7/28-8/2/17 East3 SO4 44.15 

7/28-8/2/17 Blank NO3 48.09 

7/28-8/2/17 West3 NO3 NA 

7/28-8/2/17 East3 NO3 57.04 

8/25-8/30/17 Blank F 0.76 

8/25-8/30/17 West3 F 0.93 

8/25-8/30/17 East3 F 1.17 

8/25-8/30/17 Blank Cl 9.47 

8/25-8/30/17 West3 Cl 7.99 

8/25-8/30/17 East3 Cl 10.01 

8/25-8/30/17 Blank SO4 13.57 

8/25-8/30/17 West3 SO4 15.68 

8/25-8/30/17 East3 SO4 18.43 

8/25-8/30/17 Blank NO3 20.78 

8/25-8/30/17 West3 NO3 17.95 

8/25-8/30/17 East3 NO3 32.18 

9/20-9/26/17 Blank F 2.56 

9/20-9/26/17 West3 F 2.14 

9/20-9/26/17 East3 F 2.09 

9/20-9/26/17 Blank Cl 57.60 

9/20-9/26/17 West3 Cl 103.34 

9/20-9/26/17 East3 Cl 47.57 

9/20-9/26/17 Blank SO4 120.82 

9/20-9/26/17 West3 SO4 53.92 

9/20-9/26/17 East3 SO4 52.77 

9/20-9/26/17 Blank NO3 210.76 

9/20-9/26/17 West3 NO3 52.20 

9/20-9/26/17 East3 NO3 58.49 

2/26-2/28/18 Blank F 0.65 

2/26-2/28/18 West3 F 0.81 

2/26-2/28/18 East3 F 1.14 

2/26-2/28/18 Blank Cl 25.16 

2/26-2/28/18 West3 Cl 51.60 

2/26-2/28/18 East3 Cl 89.39 

2/26-2/28/18 Blank SO4 43.45 

2/26-2/28/18 West3 SO4 63.53 

2/26-2/28/18 East3 SO4 160.01 

2/26-2/28/18 Blank NO3 25.72 

2/26-2/28/18 West3 NO3 31.41 

2/26-2/28/18 East3 NO3 48.62 

3/19-3/21/18 Blank F 0.44 
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3/19-3/21/18 West3 F 0.83 

3/19-3/21/18 East3 F 0.77 

3/19-3/21/18 Blank Cl 296.14 

3/19-3/21/18 West3 Cl 469.01 

3/19-3/21/18 East3 Cl 501.23 

3/19-3/21/18 Blank SO4 28.83 

3/19-3/21/18 West3 SO4 66.32 

3/19-3/21/18 East3 SO4 61.25 

3/19-3/21/18 Blank NO3 11.45 

3/19-3/21/18 West3 NO3 7.81 

3/19-3/21/18 East3 NO3 10.25 

 

Note: order of “Sample Type” changes but has no effect on calculations in R.  A value for the 

sample type “Blank” is the average mass in the blanks (computed as average of the 6 blanks 

from both disks); a value for “West3” is the mass in the third (or final) sample collected from the 

west disk; and a value for “East3” is the mass in the third (or final) sample collected from the 

east disk.  The masses are expressed as µg F-, µg Cl-, µg SO4
2-, and µg NO3

-. 

In R, pairwise Wilcoxon signed-rank tests were conducted for each anion: Blank vs. West3 and 

Blank vs. East3.  The tests were conducted with and without Bonferroni corrections; both tests 

failed to reject the null hypothesis for all anions (p>0.05).   
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Table A.7: Fraction of Mass in first sample (each sample is blank corrected) 

Experiment Date F Cl SO4 NO3 

 W E W E W E W E 

9/5-9/8/16 1.00 1.00 1.00 1.00 1.00 1.00 NA NA 

10/3-10/7/16 0.91 0.93 1.00 0.95 0.95 0.96 0.97 0.98 

10/10-10/12/16 0.95 0.93 NA NA 1.00 1.00 0.98 0.96 

11/12-11/15/16 0.89 0.93 NA NA 0.96 1.00 1.00 1.00 

2/17-2/21/17 0.98 0.85 0.95 0.90 0.91 0.85 1.00 0.87 

7/8-7/10/17 0.85 0.91 0.99 1.00 0.97 0.97 NA NA 

7/28-8/2/17 NA 0.87 NA 0.93 NA 0.83 NA 0.91 

8/25-8/30/17 0.93 0.87 0.99 0.96 0.95 0.93 0.99 0.94 

9/20-9/26/17 0.98 0.87 0.97 1.00 1.00 1.00 1.00 1.00 

2/26-2/26/18 0.89 0.79 0.93 0.90 0.90 0.82 0.94 0.85 

3/19-3/21/18 0.82 0.83 0.95 0.94 0.91 0.87 0.98 0.96 

         

Analyte F Cl SO4 NO3 

Disk W1 E1 W1 E1 W1 E1 W1 E1 

µ 0.92 0.89 0.97 0.97 0.96 0.94 1.00 0.97 

Median 0.92 0.87 0.98 0.95 0.96 0.96 0.99 0.96 

σ 0.059 0.057 0.026 0.061 0.048 0.085 0.074 0.099 

         

Average of W1, E1 0.90 0.97 0.95 0.99 

 

Note: Each value is the fraction of the total mass deposited to each disk in the first sample.  On 

average, the volume of sample 1 comprises 41% of the total volume in all three samples 

collected from each disk. 
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Table A.8: Analytical Detection Limits 

Date-F µ σ LOD LOQ  Date-Cl µ σ LOD LOQ 

161010 0.016 0.019 0.073 0.206  161010 0.038 0.010 0.069 0.140 
161026 0.035 0.013 0.073 0.160  161026 0.053 0.054 0.216 0.595 
161116 0.023 0.010 0.031 0.102  161116 0.050 0.036 0.109 0.363 
161202 0.102 0.002 0.109 0.124  161202 0.021 0.005 0.036 0.070 
161209 0.008 0.001 0.011 0.019  161209 0.047 0.023 0.115 0.273 
161212 0.004 0.004 0.013 0.043  161212 0.039 0.010 0.030 0.101 
170301 0.003 0.002 0.008 0.019  170301 0.235 0.015 0.279 0.382 
170308 0.09 0.017 0.140 0.257  170308 0.047 0.006 0.065 0.105 
170728 0.011 0.006 0.027 0.066  170728 0.065 0.050 0.216 0.568 
170805 0.041 0.022 0.106 0.259  170805 0.083 0.037 0.194 0.451 
170808 0.016 0.011 0.048 0.121  170808 0.044 0.010 0.074 0.143 
170923 0.063 0.024 0.135 0.303  170923 0.075 0.045 0.211 0.529 
171006 0.006 0.003 0.015 0.037  171006 0.027 0.004 0.040 0.071 
171007 0.011 0.005 0.027 0.064  171007 0.026 0.004 0.037 0.064 
171008 0.007 0.002 0.015 0.031  171008 0.026 0.005 0.040 0.073 
180303 0.195 0.001 0.198 0.206  180303 0.685 0.086 0.942 1.541 
180326 0.088 0.003 0.097 0.120  180326 0.062 0.023 0.131 0.290 

           
Date-
SO4 µ σ LOD LOQ  

Date-
NO3 µ σ LOD LOQ 

161010 0.034 0.008 0.057 0.111  161010 0.014 0.008 0.037 0.090 
161026 0.013 0.011 0.047 0.126  161026 1.813 0.006 1.832 1.876 
161116 0.015 0.011 0.032 0.106  161116 0.025 0.012 0.035 0.116 
161202 0.003 0.002 0.008 0.021  161202 2.210 0.000 2.210 2.211 
161209 0.017 0.006 0.035 0.078  161209 0.033 0.009 0.059 0.122 
161212 0.017 0.004 0.013 0.045  161212 0.009 0.007 0.021 0.069 
170301 0.182 0.045 0.315 0.627  170301 0.362 0.026 0.439 0.619 
170308 8E-04 0.001 0.003 0.007  170308 0.001 0.001 0.003 0.007 
170728 0.034 0.023 0.102 0.262  170728 0.037 0.039 0.154 0.426 
170805 0.12 0.021 0.183 0.331  170805 0.064 0.013 0.103 0.194 
170808 0.088 0.029 0.175 0.378  170808 0.034 0.014 0.075 0.171 
170923 0.039 0.023 0.109 0.273  170923 0.064 0.040 0.184 0.463 
171006 0.008 0.003 0.018 0.040  171006 0.001 0.001 0.004 0.010 
171007 0.013 0.003 0.023 0.048  171007 0.003 0.001 0.006 0.013 
171008 0.012 0.003 0.022 0.045  171008 0.001 0.000 0.002 0.005 
180303 0.035 0.018 0.089 0.216  180303 1.049 0.038 1.163 1.429 
180326 0.048 0.015 0.094 0.202  180326 0.035 0.023 0.102 0.260 

 

Note: Calculations for each analytical run were computed using the mean and standard deviation 

of concentrations (in µmol/L) of 10 water blanks ran immediately after each calibration.  The 

date of the run is listed as “YYMMDD” where YY = year, MM = month, and DD = day.   
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Table A.9: SO4
2- Precipitation Concentrations 

Date # samples Cave (µg/L) 

4/4/2017 3 314.0 

4/15/2017 1 2142.1 

6/4/17 (Period 1) 3 366.7 

6/4/17 (Period 2) 3 154.0 

6/4/17 (Period 3) 3 579.0 

6/4/17 (Period 4) 3 674.3 

6/4/17 (Period 5) 3 537.9 

6/4/17 (Period 6) 3 756.9 

6/4/17 (Period 7) 3 1201.5 

6/6/17 (Period 1) 3 45.7 

6/6/17 (Period 2) 3 75.0 

7/10/2017 3 611.5 

7/12/17 (Period 1) 3 754.6 

7/12/17 (Period 2) 3 261.1 

7/13/17 (Period 1) 3 84.2 

7/13/17 (Period 2) 3 226.9 

7/20/2017 3 867.4 

8/3/2017 1 2863.2 

8/4/2017 (Period 1) 2 380.1 

8/4/17 (Period 2) 2 398.2 

9/2/17 (Period 1) 3 177.8 

9/2/17 (Period 2) 3 42.6 

9/3/17 (Period 1) 3 618.6 

9/29/2017 3 728.1 

10/9/2017 3 93.4 

 Average 598 

 Standard Deviation 654.5 

 

Note: These values are precipitation concentrations of SO4
2- (expressed as µg SO4

2-/L) for 25 

separate sets of samples.  Some samples were collected during the same storm but in separate 

intervals—these are designated as “Period 1,” “Period 2,” etc.  In general, the value reported in 

the third column is an average of 3 samples, and the standard deviation of each value is much 

smaller than the average.  
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Standard deviation of the dry deposition velocity 

Error propagation is used to derive the standard deviation of the dry deposition flux, the standard 

deviation of the airborne concentration, and the standard deviation of the dry deposition velocity.  

For example, the uncertainty in the standard deviation of the dry deposition velocity is a function 

of the uncertainties of the flux and the airborne concentration: 

σv
2		=		 �∂V

∂F
�2

σF
2  		+		 �∂V

∂c
�2

σc
2 

where σv = standard deviation of the deposition velocity, σF = standard deviation of the flux, σc = 

standard deviation of the airborne concentration.  The standard deviation of the dry deposition 

velocity is therefore:   

σv		=		�σF
2

µ
c
2
		+		 µF

2σc
2

µ
c
4

 

where µF = average flux, µc = average airborne concentration, and all σ terms are the same as 

above.   
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