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ABSTRACT 

 Post-translational modifications play a central role in controlling biological function and 

cell behavior through changes in protein structure, activity, and localization. Prenylation is one 

such modification wherein a 15- or 20-carbon isoprenoid group is attached to a cysteine residue 

near the C-terminus of a substrate protein by one of three enzymes: protein farnesyltransferase 

(FTase), protein geranylgeranyltransferase type I (GGTase-I) or protein 

geranylgeranyltransferase type II (GGTase-II, also known as Rab GGTase). These covalent 

modifications can aid in protein association with cellular membranes, with this localization 

necessary for function of many prenylated proteins. FTase and GGTase-I have been proposed to 

recognize a four amino acid “Ca1a2X” C-terminal sequence based on biochemical, structural, and 

computational studies of these enzymes. However, recent genetic screening studies in yeast 

suggest the potential for FTase to prenylate sequences of the form -C(x)3X, with four amino 

acids downstream of the cysteine residue to be prenylated. The work herein begins to define the 

sequence scope for this -C(x)3X motif, establishes the biological relevance of this new class of 

prenyltransferase substrates in cells, and supports future investigation of the impact of these non-

canonical prenylated proteins on cell behavior and biological function. 

 With the discovery of new -C(x)3X recognition motifs in prenylation, new methods with 

which to identify proteins capable of being prenylated are required.  To this end, we have 

explored the use of engineered FTase variants, specifically RL FTase, selected for the ability to 

prenylate substrate sequences that are unreactive with WT FTase. Combining this engineered 

FTase variant with functionalized FPP analogues yields a bioorthogonal selective technique for 

isolating target proteins, even in the presence of other prenyltransferase substrate proteins in cell 

lysates. The value of this method is demonstrated by selective pulldown of model fluorescent 



 

proteins in bacterial lysates in the presence of competitor proteins. The selectivity of FTase-

catalyzed prenylation and the minimal size of the C-terminal FTase recognition motif render this 

approach applicable to a wide range of target proteins.  

 A second quantitative method introduced here is Protein-Lipidation Quantitation (PLQ); 

a new method that can simultaneously measure the amounts of a non-lipidated substrate protein 

and its lipidated product in a cellular context. In PLQ, use of a fluorescent protein fused to the 

substrate under investigation allows for quantitative detection of both the non-lipidated substrate 

and the lipidated product. Upon prenylation in cells, the substrate and the product in these cell 

lysates are separated by surfactant-mediated capillary electrophoresis (CE) and quantitated by 

integrating fluorescence intensity over respective CE peaks. This work demonstrates the 

usefulness of PLQ both in principle and in application with its ability to confirm a link between a 

mutation in the p53 tumor suppressor gene and cellular prenylation activity. The quantitative 

capabilities of PLQ will allow researchers to address previously unanswered hypotheses 

regarding protein lipidation and its roles in cellular regulation and biological function. 
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Chapter 1: Introduction 

1.1 Post-translational modifications 

 It has been predicted that while the human genome consists of between 20,000-25,000 

genes, the human proteome contains a level of complexity far vaster than its genomic counterpart 

(Figure 1.1).1-2 The ability of single genes to encode for many distinct proteins demonstrates the 

importance of protein modifications in the cell. These modifications can occur during transcription 

through use of multiple promoter and termination sites, through mRNA splicing, or recombination, 

but can also occur after translation through post-translational modifications.3-4 

Post-translational modifications are the selective covalent changes to proteins which have 

crucial effects on protein structure, localization, stability, and protein-protein interactions. Protein 

lipidation is one specific PTM in which proteins are altered through the addition of one or more 

lipid groups to recognition motifs within the protein. Lipidation is often an important regulator of 

protein trafficking to cellular membranes but also has some roles in protein-protein interactions 

and stablility.5-7 Lipidation can occur in tandem with other modifications, such as proteolysis, or 

the addition of the lipids to amino acids. The various lipid groups involved in this modification 

include fatty acids, sterols, phospholipids, isoprenoids, and glycosylphosphatidylinositol (GPI) 

anchors.5 

Three types of lipid modification occur on the inner leaflet of the plasma membrane: 

palmitoylation, myristoylation, and prenylation (Figure 1.2). These PTMs aid in localizing 

modified proteins to the cytosolic side of the plasma membrane and play a significant role in 

protein trafficking and regulation.9 Palmitoylation is the formation of a thioester linkage between 

a cysteine residue and a palmitic acid containing a 16 carbon chain, although other amino acids, 
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Figure 1.1 The human proteome is much larger than the genome from which it originates. 

Post-translational modifications create more than 1 million molecularly distinct proteins from just 

20-25,000 genes. Representative modifications shown here are not represented with required 

amino acid motifs or downstream processing. 
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namely serine and threonine, are capable of undergoing the modification.7, 10-12 This lipidation is 

unique in that it is reversible through thioester hydrolysis, allowing for palmitoylation to play 

important roles in protein trafficking and stability.10, 13-15 Myristoylation occurs at an N-terminal 

glycine residue through the addition of a 14 carbon myristic acid moiety.9, 16-18 This occurs through 

the formation of an amide bond and plays a key role in protein signaling, with many kinases 

undergo N-myristoylation.19 Prenylation is the irreversible attachment of an isoprenoid chain 15- 

or 20-carbons in length. This modification is targeted to the C-terminal cysteine of a protein and 

is found to be widespread among yeast and mammals.5-6, 20-23 Prenylation traffics proteins to the 

plasma membrane where they are involved in cell signaling cascades and protein-protein 

interactions.9 

Two other types of lipid modification, glycophosphatidylinositol (GPI) anchors and 

cholesterol attachment, occur in the endoplasmic reticulum (ER) and Golgi lumen before 

trafficking of proteins to the outer leaflet of the plasma membrane (Figure 1.3).24-25 A GPI moiety 

is attached to the C-terminus of a protein through its ethanolamine functional group and is involved 

in cell signaling, prion disease, and protein incorporation into lipid rafts.24, 26-29 Cholesterol 

attachment to proteins also occurs at the C-terminus of proteins through an ester bond.25, 30-31 This 

modification is important in tissue repair, organ and stem cell development or maintenance, and 

mainly occurs in the Hedgehog protein family.30-32 
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Figure 1.2: Post-translational lipidation targeting proteins to the inner leaflet of the plasma 

membrane. Palmitoylation occurs on a cysteine residue through a thioester linkage; 

Myristoylation forms an amide bond to the N-terminal amino group of proteins; Prenylation has 

two subgroups of modification: farnesylation (15 carbons) and geranylgeranylation (20 carbons). 

It involves the formation of a thioester bond on a cysteine residue at the C-terminus. 
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Figure 1.3 Post-translational lipidation targeting proteins to the outer leaflet of the plasma 

membrane. (A) Glycophosphatidylinositol (GPI) anchors consist of an ethanolamine group, a 

sugar chain (D-mannose and D-glucosamine), and a phosphatidylinositol group. Mannose 

hydroxyl groups can also be various substitutions of long chain fatty acids.26 (B) A protein-

cholesterol ester bond.25   
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1.2 The prenylation pathway 

 Prenylation is a post-translational modification in which a hydrophobic isoprenoid, either 

a farnesyl or geranylgeranyl group, is transferred to the C-terminal cysteine of a target protein.6, 

20-22 Prenylation can be catalyzed by three different enzymes depending on the sequence to be 

prenylated and the isoprenoid substrate to be attached: protein farnesyltransferase (FTase), protein 

geranylgeranyltransferase type I (GGTase-I), and protein geranylgeranyltransferase type II 

(GGTase-II).33 FTase catalyzes the addition of a 15-carbon isoprenoid group from farnesyl 

pyrophosphate (FPP), while both GGTase-I and -II catalyze the addition of a 20-carbon isoprenoid 

group from geranylgeranyl pyrophosphate (GGPP).6, 20 GGTase-II is unique in that it can modify 

a variety of motifs from the Rab family of proteins including CC, CXC, CCXX, CCXXX, where 

C is a cysteine which undergoes modification.34-39 GGTase-II also requires a Rab escort protein in 

order to prenylate Rab proteins.40  

For several decades, the prenylation pathway has been defined to follow a specific set of 

modifications before the protein is trafficked to the cell membrane, with the first step comprising 

cysteine alkylation by the FPP or GGPP prenyl donor. FTase or GGTase-I catalyze the addition of 

the farnesyl or geranylgeranyl group via FPP or GGPP, respectively, to a cysteine near the protein 

C-terminus.6, 21 This cysteine is historically part of the Ca1a2X sequence, recognized by these two 

enzymes, in which ‘C’ is the cysteine to be prenylated, ‘a’ is any aliphatic amino acid, and ‘X’ is 

an amino acid which determines which type of isoprenoid will be attached to the substrate 

protein.20, 33, 41-42 FTase substrates typically have an X residue of serine, methionine, alanine, or 

glutamine while GGTase-I usually recognizes leucine or phenylalanine at the X residue position.6, 

43-46 Some substrates may also be recognized by both enzymes as targets for farnesylation and/or 

geranylgeranylation.21, 47-48  



7 
 

 Following addition of a farnesyl or geranylgeranyl group to the cysteine, most prenylated 

proteins then undergo two additional modifications before transport to the cell membrane. The last 

three amino acids of the Ca1a2X sequence are removed by the “CaaX” proteases Rce1p or Ste24p, 

with the resulting carboxylate undergoing methylation by the S-adenosylmethionine dependent 

isoprenylcysteine methyltransferase (ICMT) to form a prenylcysteine methyl ester C-terminus on 

the prenylated protein (Figure 1.4).49-58 All three modification steps are necessary for function of 

most prenylated proteins.50, 54-55 Recently, it has been found that certain proteins in yeast undergo 

prenylation but not proteolysis or methylation in what has been deemed the “shunt pathway”, with 

evidence of these processing steps actually being deleterious to the protein’s function.8 

Once processed, prenylated proteins are shuttled to the cell membrane by one of two 

proposed mechanisms. For example, the majority of small GTPases in the Ras family contain a 

second upstream C-terminal amino acid sequence which serves as a signal to aid in membrane 

association. The isoform K-Ras4B contains a polybasic region which acts as a localization signal 

with the amino acid sequence (KMSKDGKKKKKKSKTKCVIM).59-61 The positively charged 

lysine residues (bolded in sequence) aid in localization of K-Ras to the cell membrane via 

electrostatic interactions. A second upstream signal is observed in isoforms H-Ras and N-Ras 

where cysteine residues near the C-terminus under palmitoylation in the Golgi apparatus, 

increasing protein association with cell membranes.60-62 Palmitoylation results in a reversible 

thioester bond which it believed to act as an “on/off switch” to control membrane association of 

these proteins (Figure 1.5).63-64 
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Figure 1.4 The prenylation pathway. Modification steps observed within the prenylation 

pathway, including prenylation, proteolysis, and methylation. A shunt pathway for proteins 

undergoing only prenylation without subsequent proteolysis is evidenced in some proteins in 

yeast8 This figure has been reused with permission from reference 8 (Appendix V) 
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Figure 1.5 Processing and trafficking of prenylated proteins occurs at several locations 

within the cell. Prenylation occurs within the cytoplasm with subsequent proteolysis and 

methylation occurring at the rough endoplasmic reticulum. Trafficking of the processed 

proteins to the cell membrane can occur in one of two proposed ways. Yeast proteins which do 

not undergo processing remain in the cytoplasm via the shunt pathway. 
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1.3 Interactions and specificity between prenyltransferases and target proteins 

FTase and GGTase-I are similar in structure, both being heterodimeric metalloenzymes 

with their active site located at the interface of their α and β subunits (Figure 1.6).65 With a common 

α subunit, distinctions in their specificity arise from their different, homologous β subunits.66-67 

The proposed mechanism for both enzymes is alike in that the isoprenoid is proposed to bind first 

followed by the substrate to be prenylated. In FTase, the negatively charged diphosphate group of 

the isoprenoid is stabilized during catalysis through interaction with a bound Mg2+ ion (Figure 

1.7).66 In GGTase-I this ion is not present, with lysine 311β taking on the role of stabilization.66 

Both enzymes use a catalytic Zn2+ ion for activation of the cysteine to be prenylated through a 

lowering of the thiol group of cysteine to a pKa near physiological pH.66 This newly formed 

thiolate anion undergoes a nucleophilic attack on C1 of FPP or GGPP, forming a new thioether 

bond on the cysteine residue.68-69  

In addition to the interactions of the Zn2+ and Mg2+ ions described above, structural models 

of FTase and GGTase-I propose specific contacts within the active site with the cysteine and the 

carboxylate group of the Ca1a2X sequence that explain the apparent preference for the four-amino 

acid Ca1a2X substrate sequence (Figure 1.8).70  The Ca1a2X motif was first described more than 

30 years ago, when yeast mating factors, Ras GTPases, and nuclear lamins were found to be lipid-

modified.71-76 Since its description, studies of FTase and GGTase-I preference for amino acids 

within the Ca1a2X motif have focused on computational and biochemical techniques, such as single 

amino acid mutations at each position of the Ca1a2X sequence and mutations of FTase and 

GGTase-I to alter substrate selectivity.21, 47, 77 
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Figure 1.6 Structural homology of FTase and GGTase-I. (A) FTase with α subunit, 

red; and β subunit, blue; catalytic Zn2+, pink. (B) GGTase-I. The α subunit is shared with 

FTase; β subunit, purple. (C) Superposition of the β subunits of FTase and GGTase-I, 

blue and purple, respectively. This figure has been reused with permission from reference 

65 (Appendix VI). 
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Figure 1.7 The role of metal ions in farnesylation. Magnesium, Mg2+, ions serve to activate 

the pyrophosphate group on FPP as the leaving group while zinc, Zn2+, lowers the thiol pKa to 

activate the sulfur. (Sulfur of cysteine to be prenylated shown in red.) 
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Proteomic studies, bioinformatics analysis, and computational/docking approaches have 

also been commonly utilized to predict which Ca1a2X motifs likely serve as substrates for FTase 

and/or GGTase-I with sequences longer than four amino acids found to be consistently forbidden 

for recognition by the enzymes.78-81 These studies have led to our current understanding of 

prenyltransferase selectivity at each amino acid position within the Ca1a2X sequence but little to 

no work has been published on the length requirements for this motif. Despite this variety of 

approaches, there has been limited research on recognition sequences less than four amino acids 

in length (-CXX) and no published investigation into a motif longer than four amino acids (-

CXXXX).82 

 In building to our current understanding of the interactions between prenyltransferases and 

their substrate, crystallographic studies have provided evidence for specificity of FTase and 

GGTase-I to only accept four amino acid motifs, providing a “molecular ruler” of the size and type 

of amino acid which could be accepted at each position and generating a list of potential proteins 

in the human genome that are targets of prenylation.35, 70, 83-86 An example of these studies from 

Reid, T.S. et al. in 2004 provides a table of rules that govern the peptide specificity for FTase and 

GGTase-I through a study of several differing amino acid sequences. They describe the peptide 

binding site of the enzymes to be “rigid” with fixed anchor points at both the cysteine to be 

prenylated and at the “X” position through hydrogen bonding. While these structural studies 

provide a foundation for future biological studies of these enzymes, these studies were restricted 

to four amino acid peptides. 

Computational studies have also been designed to further understand the recognition, 

selectivity, and restrictions of the Ca1a2X box on FTase and GGTase-I.79-80 An example is 

illustrated by Maurer-Stroh in the development of the algorithm PrePS, a prenylation prediction 
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tool.80 PrePS uses experimentally derived motifs as well amino acids just upstream of the cysteine 

to be prenylated to predict the likelihood of a motif acting as a substrate for farnesylation or 

geranylgeranylation. Due to the experimentally based nature of the algorithm’s development, 

PrePS has the potential for many false negatives for a given set of motifs, restricting the number 

of motifs being determined likely as substrates for prenylation.   

A second computational approach by London and coworkers in 2011 involves a structure-

based modeling approach used to determine all potential Ca1a2X motifs that can undergo 

prenylation, including a new class of farnesylation targets.79 This tool known as FlexPepBind was 

derived from knowledge of the enzyme’s structure, using molecular dynamics, to determine 

binding energy of Cxxx substrates. FlexPepBind is a more powerful tool than PrePS as it has 

predicted novel substrates through docking of all possible Cxxx motifs into the active site and 

determining the minimal binding energy involved in the interaction.   

Yet another approach in investigating Ca1a2X motif specificity involves biochemical and 

cell-based studies, including single amino acid mutations at each position of the Ca1a2X sequence 

and reengineering of FTase and GGTase-I selectivity at the level of the enzyme.21, 43, 58, 72, 77, 87-92 

The first approaches to these biochemical studies employed radiolabeled 3H FPP and GGPP for 

protein labeling, as well as upstream precursors of these prenyl donors.93-95 In these studies, cells 

were grown in the presence of these radiolabeled compounds wherein the result was labeled 

prenylated proteins that could be harvested from cells. These original techniques, while 

fundamental to our understanding of prenylation, gave low yields of prenylated protein, were 

expensive, and time consuming.  
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Figure 1.8 Structural model of FTase recognition of a substrate sequence. The binding of 

tetrapeptide (green) into the active site involves coordination of the cysteine thiol group to the 

catalytic zinc ion (orange sphere) and hydrogen bonding between the C-terminus and FTase 

residues  (Q167) and (H149). (water, teal spheres) Image was generated from Protein Data Bank 

code 1TN8 using PyMOL reused with permission from reference 181 (Appendix V). 
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The use of reactivity series has also found use as a biochemical approach in identifying 

prenylation substrates. For example, Hougland and co-workers have used Ca1a2X peptide libraries 

of varying a1, a2, and X  positions to determine amino acid preferences at each position for FTase 

and GGTase-I.87, 91, 96 Their work revealed, for example, a preference against polar amino acids at 

the a2 position, as this position is buried within the active site, and the notion that some sequences 

may undergo what is called “single turnover” reactivity. Under single turnover conditions, enzyme 

concentration is greater than that of substrate (STO, [E]>[S]). This state removes competition of 

substrates for enzyme as there is sufficient enzyme to prenylate all the substrate molecules without 

the need for product release (turnover) from the enzyme so that more substrate can bind. This is 

opposed to the more biological “multiple turnover” reactivity (MTO, [E]<<[S]) in which product 

must be released from the active site of the enzyme in order for more substrate to be converted to 

product. If sufficient product formation is shown under STO conditions but not MTO conditions, 

this evidences an issue in product release for a given substrate and enzyme. The determination of 

sequence dependence on STO vs. MTO conditions provides new insight into potential regulation 

of these prenylated proteins in the cell.  

 In recent years, the use of functionally labeled prenyl donors has gained popularity in 

investigation of FTase and GGTase-I substrate specificity. For example, alkyne and azide-tagged 

FPP and GGPP analogues (Figure 1.9) have been used to determine potential substrates for 

prenylation in which the functional group incorporation into prenylated proteins allows for 

detection and isolation of these proteins using a variety of techniques, such as fluorescent labeling 

with TAMRA-azide, biotinylation with subsequent isolation using streptavidin beads, and MS 

analysis following isolation.97-108  
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Figure 1.9 Examples of FPP and GGPP analogues used in investigations of prenyltransferase 

substrate specificity An (*) denotes a GGPP analogue is also available and was not included here 

for space. This list of analogues is not exhaustive and are derived from the references provided. 
109-115 
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 Some specific examples include work by Spielman and coworkers in 2005 wherein an 

antibody-based detection of prenylated proteins from cells was achieved through use of an FPP 

analogue anilinogeraniol, AGOH (labeled in Figure 1.9).116 This alcohol precursor is 

diphosphorylated in cells to yield AGPP, which is then transferred to substrates in a reaction 

comparable to that of FPP. In tandem with anti-anilinogeranyl antibody (polyAG-Ab) the use of 

AGOH analogue was one of the early successes in non-natural prenyl group incorporation that did 

not utilize radiolabeled isoprenoid donors to identify prenylated proteins in cells. This work using 

AGOH and western-blot analysis gave insight into the prenylation state of multiple proteins, such 

as Q61L oncogenic H-Ras, as well as investigated the effect of several FTI and GGTIs, such as 

lovastatin.116-118 AGOH has since been examined in its role as an FTI itself in its ability to compete 

with endogenous FPP for substrate.109  

A second example of work with FPP and GGPP analogues comes from Alexandrov and 

coworkers in 2009 in which a biotin-labeled geranylpyrophosphate (BGPP, Figure 1.9) was 

utilized by both natural RabGGTase and mutant FTase or GGTase-I.115 Having all three enzymes 

at their disposal, this work demonstrated the identification and quantification of prenylation 

substrates and provided a more sensitive measure of the effect of prenyltransferase inhibitors on 

in vivo activity. An example from this work includes investigation of inhibitor BMS-3 which was 

confirmed to have no effect on GGTase-I in cells but was able to inhibit RabGGTase and FTase 

with a Ki of 7 and 50 nM, respectively.116, 119 This inhibition was monitored in a simple and quick 

fashion via blotting with streptavidin-HRP after exposing cells to BGPP and laid ground for some 

of the first work on in vivo quantitation of prenyltransferase inhibition.  

While the methods described above have provided invaluable insights into the structures, 

substrate specificity, and cellular recognition involved in prenylation, the best quantitative method 
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to understand of the role played by protein prenylation needs to simultaneously measure the 

amounts of both non-lipidated substrate and lipidated product. The BGPP analogue developed by 

Alexandrov provided a method for cellular quantitation of prenylated proteins, however, it could 

not simultaneously measure both substrate and product. Without the ability to measure modified 

and unmodified protein simultaneously, an accurate ratio between the two cannot be established. 

Many of these analogue methods also use gel electrophoresis/immunoblotting for their analysis 

with separation of proteins often being poor between substrate and product.   

Computational methods have also provided valuable information as to the interactions 

between prenyltransferases and substrates within the binding site necessary to understanding 

substrate specificity and prediction of new substrates. These methods rely on known prenylation 

substrates determined experimentally and are limited to Ca1a2X motifs. Any recognition sequence 

outside the classic Ca1a2X could yield a false negative as being a potential substrate for 

prenyltransferases.  

The importance of expanding our approaches to determining potential prenyltransferase 

substrates is highlighted in a study in which evidence for prenylation of non-canonical C(x)3X 

motifs was observed while studying the role of prenylation and its post-processing in the yeast 

heat-shock protein, Ydj1p, (see chapter 2).8 This protein is a type I Hsp40 co-chaperone which 

ensures proper folding and stability of proteins during times of stress and must be prenylated in 

order to perform this function.120-124 Unlike other proteins which undergo prenylation, Ydj1p does 

not undergo subsequent proteolysis and methylation and is therefore found in the cytosol rather 

than the cell membrane.8 This genetic screening provided the capability to investigate prenylation 

motifs compatible with yeast FTase directly without the requirement for downstream processing. 

During this investigation, a unique observation occurred in that C(x)3X sequences appended to 
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Ydj1p, a product of randomized screening, showed evidence of prenylation through a 

thermotolerant phenotype in yeast. This finding highlights the importance to develop new, 

sensitive techniques which accurately predict and analyze sequences outside the traditional CaaX 

box. 

The C(x)3X sequences emphasize the importance of developing new methods for studying 

prenylation. Use of fluorescence localization as a proxy for prenylation in cells would not be useful 

for prenylated proteins with a cytosolic role, for example, as the entire cell would exhibit 

fluorescence. Analogues could be useful in study of cytosolic prenylated proteins, however FPP 

and GGPP analogues like BGPP are bulky and can interfere with binding to the enzyme or do not 

bind with as high an affinity as natural substrates.115 The binding of BGPP was remedied through 

mutation of the FTase and GGTase-I, a cumbersome process that does not yield quick results. 

Turning to computational methods resolves the challenges of working in cells but it currently does 

not use sequences longer than four amino acids in its algorithms and are likely to reject sequences 

outside this range. The development of a method which not only identifies both substrate and 

product simultaneously while providing a quantitative separation of the two species would change 

the way current research is done to confirm and expand upon prenylation in cells.  
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1.4 Biological significance of prenylation 

 Prenylation plays an important role in cell signaling, growth, differentiation and 

proliferation, and cell migration.125-131 With prenylation being important in many cellular 

functions, these prenylated proteins can be found to play a role in a wide variety of diseases, the 

most prominent being cancer. The well-known GTPases H-Ras, K-Ras and N-Ras are involved in 

signal transduction and cell growth and have known oncogenic forms through amino acid 

mutations which keep the GTPase in an “always active” form, causing overgrowth of cells.118, 132-

134 Other proteins known to be prenylated, such as prelamin A, also play a role in diseases of cell 

growth and aging through an improper processing of the prenylated form of the protein.135-137 

These important roles in human disease have led to a robust interest in prenyltransferases as 

therapeutic targets for disease. Prenylation is not only an important modification in humans but 

also found in pathogenic organisms such as Plasmodium falciparum, Candida albicans, and 

Legionella pneumophila, in which prenyltransferase inhibitors are currently being investigated as 

potential therapeutics.138-140 A challenge in studying pathogenic prenylation is the identification of 

the proteins undergoing the modification. It is known, for instance, that FTIs show promise as 

potential antimalarial drugs, but identification of the proteins they specifically target has only 

recently undergone investigation.141-142 Recently, use of an alkyne FPP analogues and the 

algorithm PrePS identified several proteins which undergo prenylation in Plasmodium falciparum 

such as FYVE-containing coiled-coil protein (FCP) which may be the target of FTI therapeutics.141 

As discussed earlier, use of these techniques can be limiting in their ability to identify potential 

target proteins and highlights the biological significance in developing new methods to study 

prenylation. 



22 
 

Despite its involvement in regular cellular functions, the involvement of prenylation in cell 

growth affords its role in cancer as the most extensively studied disease related to this modification. 

The connection between cancer and prenylation can be found in studying the family of Ras GTPase 

proteins such as H-Ras, N-Ras, and K-Ras, as well as members of the Rap family of proteins.143-

148 These small, prenylated GTPases serve to proliferate a signal from primary messengers, such 

as growth factors, to enzymes responsible for the formation of a secondary signal in the cell, such 

as cyclic AMP. This secondary messenger then sets off a cascade of changes, often through a series 

of kinases.149-150 In order for GTPases to send a signal downstream of its effector, it must switch 

from an inactive GDP-bound form to an active GTP-bound form. In many types of cancer, Ras 

proteins are found to be “stuck” in their active GTP-bound form due to mutations in their genetic 

sequence.151 With the inability to terminate its signal to downstream kinases for cell growth and 

proliferation, oncogenic GTPases are a primary target in cancer research.  

With prenylation having a known role in cancer and tumor growth, several 

farnesyltransferase inhibitors (FTI) and geranylgeranyltransferase inhibitors (GGTI) have been 

explored as potential therapeutics.152-156 Despite the wide range of developed FTIs and GGTIs, all 

have shown limited use at a clinical level for treating cancer but are still used widely at the research 

level.152, 157-162 The low level of effectiveness for these inhibitors in cells and human patients stems 

from the observation that there is no correlation between inhibition of tumor growth and the 

mutations of Ras. While Ras is mutated and involved in cancer, the efficacy of these 

prenyltransferase inhibitors lie in their ability to inhibit multiple proteins.163-164 For instance, K-

Ras and N-Ras have been found to undergo geranylgeranylation when farnesyltransferase is 

subjected to an FTI.165 This realization highlights the importance of identifying other proteins that 
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undergo prenylation in order to design new, better therapeutic inhibitors or improve upon 

previously developed ones.  

 Hutchinson-Gilford Progeria Syndrome is another disease with connections to prenylation 

of protein prelamin A.166-167 In order for prelamin A to function properly, a processing step 

involving the removal of a 15-amino acid C-terminal peptide sequence by endoprotease 

ZMPSTE24 occurs after the prenylation and processing of the Ca1a2X C-terminus.168 In progeria, 

prelamin A cannot be cleaved by ZMPSTE24 and farnesylated prelamin A aggregates on the 

nuclear envelope giving the affected person the appearance of rapid aging. Those with progeria 

have significantly shortened life expectancies with many challenges.  

 Farnesylation was confirmed as the cause of prelamin A aggregation in 2005 wherein a 

missense mutation on WT lamin A to produce a C-terminal SSIL was used to block prenylation of 

the protein.169 No aggregation (nuclear blebbing) was seen with this mutation nor when the C-

terminus was mutated to CSIL, which favors geranylgeranylation. As progeria is a farnesylation-

specific disease, clinical trials for the use of FTIs as a therapeutic agent in humans began around 

2012, after promising results in cells and mice.170-175 The use of FTIs such as lonafarnib, 

pravastatin, and zoledronic acid increased life expectancy for children with progeria and improved 

their quality of life through measurement of weight gain and arterial density.169, 175-179 One 

successful trial showed an improvement of 71% in weight gain for patients either treated with 

lonafarnib alone or with combined FTI therapies, suggesting no real benefit from treatment with 

multiple FTIs.179  The use of FTIs was also shown to decrease neurological episodes such as 

seizures and headaches, of which these patients regularly suffer from.177 While FTIs are promising 

treatment for progeria, they only treat symptoms and prolong life; they do not cure it. Research is 
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turning to gene therapy through stem cells and CRISPR/Cas9 gene editing as a way to possibly 

cure those who suffer from the disease.180    

 

1.5 Importance and objectives 

 Prenylation is a vital modification in the normal functioning of many proteins within cells 

and also plays a role in a variety of diseases. With the estimation of over 1166 proteins in the 

human proteome containing a CaaX motif at their C-termini, having a clear representation of the 

actual number of proteins undergoing prenylation is an important step in understanding the roles 

played by prenylated proteins in the cell and in disease.181 As stated previously, current 

investigations into prenylation using structural, computational, and biochemical techniques have 

been restricted in their length of the Ca1a2X motif to four amino acids only. With recent evidence 

for prenylation of non-canonical C(x)3X motifs in yeast through the study of heat-shock protein, 

Ydj1p, it is important to study the potential of these longer 5 amino acid motifs acting as 

prenylation substrates in the human proteome.8  

 This work aims to define a new motif recognized by both yeast and mammalian FTase in 

which we provide biochemical characterization at the peptide and protein level. Through study of 

the sequences found in the yeast genetic screening, we can determine sequences within the human 

genome capable of undergoing prenylation with a C(x)3X C-terminus and provide evidence of 

biological relevance for this new recognition motif. The main objective of the work herein is to 

characterize, identify, and expand upon the list of proteins that can be potentially prenylated both 

in vitro and in mammalian cells using a C(x)3X C-terminal motif, breaking a decades-old dogma 

for this post-translational modification’s requirements. 

 The advent of this new research emphasizes the importance of developing new and more 

sensitive techniques to study prenylation, especially in the avenues of substrate identification, 
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specificity and quantitation at the cellular level. An ideal method for studying these areas should 

include the ability to clearly discern between substrate and product quantitatively, with minimal 

to no purification of cell lysates before analysis. This not only provides a method that is quick and 

easy to use, but also minimizes the loss of protein from the cells and therefore provides a more 

accurate picture of the total protein being studied. 

 One approach to effective protein isolation uses prenylation as a means of tagging any 

protein, not just ones which undergo prenylation, using the C-terminus CaaX motif as a tag. Herein 

we describe a means of using prenylation by a mutant farnesyltransferase (W102R W106L) to 

isolate protein using a non-natural CaaX sequence (-CVDS) and functionalized FPP analogue. 

Chemical labeling with a functionalized FPP analogue allows for immobilization of the target 

proteins via hydrazone ligation chemistry onto hydrazide beads prior to the release of the protein 

from the beads for analysis. Several labs have utilized the specificity of endogenous 

farnesyltransferase (FTase) in order to label proteins with FPP analogues with chemical reporter 

function groups.182-189 However, these methods are limited to use in bacteria due to competition 

between the functionalized prenylation reaction and the endogenous prenylation that occurs in 

mammalian cells. Use of a mutant FTase and non-natural CaaX sequence eliminates the issue of 

competition from natural proteins, allowing for biorthogonal labeling and isolation of targets from 

mammalian cells.  

 While biorthogonal labeling in cells provides a new means of which to isolate proteins of 

interest, it does not provide a means of quantitation for both unmodified substrate and modified 

product. To meet this need, our work turned to development of Protein-Lipidation Quantitation 

(PLQ), the first method to measure a quantitative level of substrate and product in a biologically 

relevant context.190 Through use of a fluorescent protein-target protein fusion and capillary 
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electrophoresis, PLQ is able to clearly separate lipidated product from its unmodified counterpart 

without need of prior purification from cell lysates. PLQ is applicable to multiple lipid donors and 

substrates and can be used to study prenylation’s role in a variety of cellular contexts, including 

the presence of oncogenic proteins. Development of this new technique provides a new way of 

studying a variety of lipidation modifications in a quantitative and biologically relevant manner 

not possible until now.  
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Chapter 2: Investigation of -C(x)3X sequence recognition by FTase and GGTase-I in vitro 

and in cell 

A portion of this chapter has been previously published in reference 58. Reprinted with permission 

from Blanden, M. J.; Suazo, K. F.; Hildebrandt, E. R.; Hardgrove, D. S.; Patel, M.; Saunders, W. 

P.; Distefano, M. D.; Schmidt, W. K.; Hougland, J. L., Efficient farnesylation of an extended C-

terminal C(x)3X sequence motif expands the scope of the prenylated proteome. The Journal of 

Biological Chemistry 2018, 293 (8), 2770-2785. Copyright 2017, Journal of Biological Chemistry  

 

Co-author contributions include:  KFS performed mass spectrometry and in-gel fluorescence 

analysis of in vitro farnesylated peptides and proteins, and proteomic analysis. ERH, DSH, WPS, 

MP, and WKS performed the yeast screens and yeast-based biological assays.  
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2.1 Introduction 

Protein lipidation (e.g. prenylation , palmitoylation, myristoylation) is a post-translational 

modification that plays a direct role in protein trafficking to cellular membranes, as well as protein-

protein interactions.1-10 One type of lipidation, prenylation, involves the covalent attachment of a 

hydrophobic isoprenoid group, either a 15-carbon farnesyl or 20-carbon geranylgeranyl group, to 

a cysteine thiol side chain near or at the C-terminus of certain proteins. This cysteine is part of a 

C-terminal CaaX recognition sequence recognized by protein farnesyltransferase (FTase) or 

protein geranylgeranyltransferase type I (GGTase-I).11-14 Geranylgeranyltransferase type II 

(GGTase-II) is a third enzyme of this class in which a cysteine present in a C-terminal CC or CxC 

motif can be recognized for prenylation. GGTase-II is also known as Rab GGTase.15-18 Cysteine 

prenylation alters the properties of proteins in several well-studied cases (e.g. Ras and Ras-related 

GTPases), resulting in protein association with cell membranes where these proteins are involved 

in cell signaling pathways.19-23  

The prenylation pathway, as previously described, consists of number of modification steps 

that can precede substrate protein localization to cellular membranes (Chapter 1, Figure 1.3). In 

The pathway begins with the enzymatic alkylation of a cysteine by FTase or GGTase-I with a 

farnesyl or geranylgeranyl group using farnesyl diphosphate (FPP) or geranylgeranyl diphosphate 

(GGPP), respectively. Following modification by FTase or GGTase-I, prenylated proteins CaaX 

often undergo additional modifications involving proteolysis and methylation of the CaaX 

sequence.24-28 Proteolytic removal of the last three -aaX amino acids by membrane-associated 

proteases Rce1p or Ste24p results in a C-terminal prenylcysteine residue bearing a negatively 

charged carboxylate group. This carboxylate is then methylated by the SAM-dependent enzyme 

isoprenylcysteine carboxyl methyltransferases (ICMT). These modification steps are necessary for 
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most prenylated proteins to function, although there can be some exceptions to the extent of and 

necessity for these modifications.29-30 Recently, a shunt pathway for prenylated proteins in yeast 

has been reported by Hildebrandt and coworkers in which the CaaX motif undergoes prenylation 

but no subsequent processing occurs. In this case, post-prenylation processing is not only not 

required, it is actually deleterious to protein function.31  

The CaaX motif classically thought of as being required for prenylation was first described 

over three decades ago when studies of yeast mating factor, Ras proteins, and nuclear lamins were 

being investigated for their ability to be palmitoylated.32-38 It was found that these different proteins 

all contained a similar C-terminal C-X-X-X motif to which a lipid was bound that was smaller 

than that of a palmitoyl group. Upon the discovery of an isoprenoid group as the lipid donor for 

this modification, it was determined that a four amino acid C-terminus was required for prenylation 

through a top-down approach, with all the proteins being studied for their ability to undergo 

prenylation having this same motif and a general acceptance of this requirement was established. 

While there were limited early investigations into shorter Cxx motifs,39 investigation of the CaaX 

sequence has predominately focused on amino acid selectivity within the motif and not studied for 

length requirements in recognition by FTase and/or GGTase-I. Biochemical studies which include 

single amino acid mutations at each position of the CaaX, random library screening, and in vivo 

studies all determined general rules for recognition and selectivity at each amino acid position for 

prenylation.14, 39-46 Crystallographic studies have provided further evidence for specificity of FTase 

and GGTase-I to only accept four amino acid motifs, providing a “molecular ruler” of the size and 

type of amino acid which could be accepted at each position and generating a list of potential 

proteins in the human genome that are targets of prenylation.47-48 These works have greatly 

influenced the understanding in how the CaaX motif interacts with prenyltransferases at each end 
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of the recognition sequence. An example of these studies from Reid, T.S. et al. in 2004 provided 

a table of rules that govern the peptide specificity for FTase and GGTase-I through a study of 

several differing amino acid sequences. This work describes the peptide binding site of the 

enzymes to be “rigid” with fixed anchor points at both the cysteine to be prenylated and at the “X” 

position through hydrogen bonding. Proteomics studies utilizing chemically modified prenyl 

donors, bioinformatics analysis, and computational/docking approaches have further extended our 

ability to identify and predict which CaaX motifs likely serve as substrates for FTase and/or 

GGTase-I.47, 49-52 An example of which is illustrated by London and coworkers in 2011 in which a 

structure-based modeling approach was used to determine all potential CaaX motifs that can 

undergo prenylation, including a new class of farnesylation targets. This tool known as 

FlexPepBind was derived from the structural features determined from previous crystallographic 

studies in which a four amino acid CaaX box was used. 

Recently, a novel thermotolerance screen for protein prenylation in yeast has expanded our 

capability to identify prenyltransferase substrate sequences in yeast through use of genetic 

screenings.31 This screen is based on the yeast protein Ydj1p, a type I Hsp40 co-chaperone that is 

required for high-temperature growth. This protein is a type I Hsp40 co-chaperone which ensures 

proper folding and stability of proteins during times of stress, such as elevated temperature, and 

must be prenylated in order to perform this function.53-57 Unlike other proteins which undergo 

prenylation, Ydj1p does not undergo subsequent proteolysis and methylation and is therefore 

found in the cytosol rather than the cell membrane.31 This unique property of Ydj1p allows for  

direct investigation of protein prenylation without the requirement for concurrent sequence 

compatibility with Rce1p or Ste24p for subsequent proteolysis. 
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The work herein supports the discovery of a five amino acid C(x)3X sequence motif 

recognized by both yeast and mammalian FTase orthologs.58 Multiple C(x)3X peptide sequences, 

originally identified by genetic screening in yeast, can be efficiently farnesylated in both peptide 

and protein substrates. We demonstrate that several additional C(x)3X sequences derived from 

human proteins are efficiently prenylated by rat FTase, and that a reporter protein terminating in a 

C(x)3X sequence exhibits sufficient reactivity to be farnesylated under biologically relevant 

conditions within a human cell. 
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2.2 Genetic screening in yeast suggests prenylation of C(x)3X sequences by yeast FTase 

 

Our investigation into the prenylation of C(x)3X sequences began in part by the observation 

that the CGGDD sequence of human annexin A2 has been identified as potentially prenylated in 

several studies using in vivo farnesylation probes.51, 59-62 This observation suggests prenylation 

and associated processing may be compatible with sequences of non-canonical length. To examine 

this possibility, we initially used yeast a-factor as a genetic reporter to identify whether C(x)3X 

sequences could serve to be recognized by farnesyltransferase. Farnesylated a-factor is a secreted, 

diffusible signaling molecule produced by MATa haploid yeast that temporarily triggers cell cycle 

G1 arrest in nearby MAT haploid yeast so that mating can occur; this arrest is enhanced in certain 

mutant backgrounds (e.g. MAT sst2-1).63 Using this a-factor induced growth arrest phenotype, a 

plasmid-based library of a-factor mutants with C-terminal C(x)3X sequences was produced to 

observe evidence of prenylation through the growth arrest assay. A plate containing a population 

of MATa colonies expressing mutants was printed onto a thin lawn of MAT sst2-1 yeast, the 

printed plate incubated for a period of time, and individual colonies surrounded by a zone of 

MAT growth inhibition, known as a halo, were scored as positive hits; associated plasmids were 

recovered and sequenced. We estimate 22.5% of the possible C(x)3X combinations were evaluated 

(i.e. ~40,000 colonies; see Section 2.10 for description of coverage estimate).64 With this limited 

coverage of the potential sequence space, the a-factor screen yielded two C(x)3X hits (Table 1). 

The two C(x)3X sequences were retested with other a-factor mutant sequences using the halo assay 

(Figure 2.1). The halos associated with the C(x)3X sequences were qualitatively smaller than that 

those associated with wild type a-factor (CVIA C-terminal sequence). Unexpectedly, the CGGDD 

sequence did not produce a halo; this was true even when encoding the mutant in an over-

expression vector. 
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Figure 2.1 Phenotypes and isoprenylation status of C(x)3X motifs identified by yeast-based 

screening. a) Plasmid-encoded a-factor C(x)
3
X variants were evaluated for their ability to 

produce a-factor in SM2331 (MATa mfa1 mfa2) using a spot halo assay. Strains were spotted 

onto YPD, cultured for 48 hours at 30 °C, and replica transferred onto a thin lawn of RC757 

(MATα sst2-1). Plates were imaged after 16 hours incubation at 30 °C.  The values represent 

the results of quantitative mating analyses and are reported as percent relative to control 

(CVIA). b) Plasmid encoded Ydj1p C(x)
3
X variants were evaluated for their ability to rescue 

growth of yWS304 (ydj1∆) at indicated temperatures. Each set of spots represents a 10-fold 

dilution series prepared from a saturated culture grown in selective media that was spotted onto 

YPD. Images are representative of data from 2 separate experiments in which at least 2 

replicates of each strain were evaluated. c) Immunoblot of lysates from strains containing the 

indicated Ydj1p C(x)
3
X variant. Farnesylated Ydj1p has increased mobility compared to 

unmodified Ydj1p. The strains used were yWS304 (WT) and yWS1632 (ram1); RAM1 encodes 

the FTase α subunit. This figure has been reused with permission from reference 58 (Appendix 

V). This data was collected and analyzed by our collaborator Walter K. Schmidt (University of 

Georgia). 
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2.3 C(x)3X peptide substrates are substrates for mammalian protein farnesyltransferase in 

vitro 

Evidence for the activity of Ydj1p with non-canonical C(x)3X sequences in yeast led to the 

design of an in vitro system to test the activity of these motifs in a reaction with synthetic peptides 

and using purified mammalian FTase and GGTase-I in cell-free prenylation assays. This system 

addressed the ambiguity presented by potential proteolysis by a carboxypeptidase in cells, 

producing a typical CaaX motif. Mammalian FTase was also used to test whether prenylation of 

these C(x)3X sequences was exclusive to yeast.  For these assays, fifteen C(x)3X sequences 

identified by yeast screening were synthesized as 6-mer peptides with each C(x)3X sequence 

preceded by a glycine residue. Each peptide was appended by an N-terminal dansyl fluorophore 

producing a peptide design of dns-GC(x)3X (Table 2.1). As demonstrated in previous studies using 

canonical CaaX sequence peptides, attachment of the environmentally sensitive dansyl 

fluorophore allows real-time monitoring of prenylation through dansyl group fluorescence 

enhancement upon addition of the hydrophobic farnesyl group on cysteine to monitor activity over 

time.65-68 Using this assay, incubation with purified rat FTase and FPP resulted in significant 

fluorescence enhancement (>5-fold, relative to negative “-FPP” control) with 5 of the 15 sequences 

(Figure 2.2 and Table 2.1). Among these sequences, two peptides (dns-GCMIIM and dns-

GCAVGP) exhibited a leveling off of fluorescence over time consistent with complete 

farnesylation within 4 hours. (Figure 2.2b). In contrast with GGTase-I and GGPP, none of the dns-

GC(x)3X peptides exhibited an increase in fluorescence as compared to controls, suggesting no 

geranylgeranylation activity. The annexin CGGDD sequence was also evaluated and observed to 

be unreactive under all conditions tested. 
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Table 2.1 Mammalian FTase reactivity with C(x)3X sequences derived from yeast mating 

and thermotolerance screening. 

a Activity in the fluorescence-based screening determined by >5-fold enhancement of prenylation 

reaction compared to a negative control reaction, as described in Experimental Procedures. 

 

 

 

 

 

 

 

 

Peptide sequence Reporter / source 

Fluorescence 

enhancement of 

dns-GC(x3)Xa 

HPLC detection of 

farnesylated 

dns-GC(x3)X 

CGGDD (59) - - 

CMIIM a-factor + + 

CVLMM a-factor not determined not determined 

CAVGP Ydj1 + + 

CAYVL Ydj1 + + 

CCAGH Ydj1 not determined not determined 

CFFYI Ydj1 + + 

CFNSL Ydj1 - + 

CIPVQ Ydj1 - + 

CLPIV Ydj1 - + 

CQGFL Ydj1 - + 

CSIQG Ydj1 + + 

CSRLQ Ydj1 - + 

CSSLQ Ydj1 - + 

CVSFG Ydj1 - + 

CWAGG Ydj1 - + 

CWGEV Ydj1 - + 

CWGGA Ydj1 - + 
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Figure 2.2 Dansyl-GC(x)3X peptides can be efficiently farnesylated by mammalian FTase. a) 

Fluorescence-based screening for FTase-catalyzed farnesylation of dns-GC(x)3X peptides. b) 

Farnesylation of dns-GCMIIM (top) and dns-GCAVGP (bottom) by FTase as monitored by 

fluorescence enhancement. Red trace, farnesylation reaction; blue trace, control reaction lacking 

FPP. c) Reverse phase HPLC analysis of FTase-catalyzed farnesylation of dns-GCMIIM (left) and 

dns-GCAVGP (right); substrate and farnesylated product peaks are labeled. Red trace, 

farnesylation reaction; blue trace, control reaction lacking FPP. d) ESI MS/MS analysis of 

farnesylated dns-GCMIIM (left) and dns-GCAVGP (right). Reactions were performed and 

analyzed as described in Section 2.10; tables of fluorescence screening data and ESI MS/MS ion 

assignments are included in Appendix I. This figure has been reused with permission from 

reference 58 (Appendix V) with ESI MS/MS analysis performed by Kial Suazo, Univeristy of 

Minnesota. 
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To confirm that the increase in dansyl fluorescence was due to prenylation, reverse-phase 

HPLC was used to directly detect product formation by monitoring a shift in retention time 

compared to the unmodified substrate. Under the same reaction conditions as the fluorescence 

plate reader assay, dns-GCGGDD was the only peptide which displayed no evidence of activity 

(Table 2.1 and Appendix I). As expected, dns-GCMIIM and dns-GCAVGP exhibited the complete 

or near complete disappearance of the substrate peak with a new product peak forming at 27 and 

25.5 min, respectively (Figure 2.2c). Also showing evidence of near-complete prenylation were 

dns-GCWGEV, and dns-GCQGFL. All other sequences presented varying levels of activity as 

evidenced by the prescence of both substrate and product peaks (Appendix I). Of note is the 

difference in sensitivity of the two methods used to determine peptide activity. Sequences that did 

not show an enhancement of the dansyl fluorophore and were comparable to their -FPP or -FTase 

control counterparts, were still found to be active when analyzing peptides via direct product 

detection using HPLC. These false negatives in the fluorescence assay highlighted the importance 

of confirming dns-GC(x)3X peptide reactivity by RP-HPLC. 

Farnesylation of dns-GCMIIM and dns-GCAVGP was further confirmed by ESI MS/MS, 

with peaks at 1104.4 Da and 940.5 Da for dns-GCMIIM and dns-GCAVGP, respectively, 

corresponding to their predicted masses when modified with a 205 Da farnesyl group. There was 

no detection of the non-farnesylated substrates (dns-GCMIIM, 899.5 Da; dns-GCAVGP, 735.3 

Da) (Figure 2.2d). The observed MS/MS fragments were consistent with the calculated a- and b-

type ions of the farnesylated peptides (Appendix I). In addition, the characteristic fragments from 

the loss of thiofarnesyl moiety (b3* and b4*) were detected. This is a result of the side chain 

cleavage between the cysteine β-carbon and sulfur atom, indicating the farnesyl group was indeed 

appended to cysteine.69 
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2.4 Steady-state kinetic analysis of dns-GC(x)3X peptide reactivity with FTase and the effects 

of FTase inhibition by tipifarnib 

While HPLC analysis was found to be more consistent in determining the reactivity of 

C(x)3X sequences with FTase, use of the fluorescent plate reader assay allowed for determination 

of steady-state kinetic analysis of the two peptides exhibiting the largest fluorescence enhancement 

upon farnesylation (Figure 2.3, Table 2.2). We compared the activities of dns-GCMIIM and dns-

GCAVGP with canonical sequences known to undergo prenylation such as dns-GCVLS derived 

from H-Ras.70 To study the effect of the additional amino acid in the C(x)3X motif on kcat, Km, or 

both parameters, the 5-mer peptides dns-GCMII and dns-GCAVG were also examined (Table 2.2). 

The dns-GCMIIM and dns-GCAVGP peptides exhibit similar values for kcat, with the Km for dns-

GCMIIM approximately 10-fold lower than that for dns-GCAVGP. Compared to dns-GCVLS 

derived from the sequence of H-Ras (kcat =   0.3 s-1, Km = 1.5 μM),70 kcat values for both dns-

GC(x)3X peptides are reduced ~30-fold while Km increases ~4-fold for dns-GCAVGP and 

decreases ~3-fold for dns-GCMIIM (Table 2.2). When compared to dns-GCMII and dns-GCAVG, 

kcat/Km was increased 25-fold for dns-GCAVG relative to dns-GCVAGP and, surprisingly, 

decreased 2-fold for dns-GCMII relative to its non-canonical counterpart, dns-GCMIIM (Table 

2.2). With this change in activity arising from both kcat and Km, it can be inferred that the last amino 

acid of these C(x)3X motifs affect both binding and catalytic turnover. Only dns-GCMII serves as 

a GGTase-I substrate with a kcat/Km value comparable to dns-GCMIIM with FTase (1.4 +/- 0.1 x 

104 M-1s-1, Table 2.2).  
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Figure 2.3 Steady state characterization of the reactivity of dns-GC(x)3X and dns-GCaaX 

peptides with FTase. a-d) Dependence of farnesylation activity on peptide substrate concentration 

catalyzed by FTase: a) dns-GCMIIM; b) dns-GCAVGP; c) dns-GCAVG; d) dns-GCMII; e) 

Dependence of geranylgeranylation activity on dns-GCMII peptide substrate concentration 

catalyzed by GGTase-I. The curve represents the best fit to the Michaelis-Menten equation. 

Reactions were performed and analyzed as described in Section 2.10. Error bars represent the 

standard deviation from a minimum of three replicates. This figure has been reused with 

permission from reference 58 (Appendix V). 
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Table 2.2 Steady-state kinetic parameters: peptide reactivity with mammalian FTase and 

GGTase-Ia 

 

 

 

There have been several studies in the development of inhibitors of FTase as a target of 

cancer treatment.71-72 One such inhibitor is Tipifarnib, currently under investigation as a  

  

 

Reactivity with FTase Reactivity with GGTase-I

k cat (s -1) Km (µM) k cat / Km (M-1s -1) k cat (s -1) Km (µM) k cat / Km (M-1s -1)

dns-GCVLSb 0.3 1.5 2 x 105 Not reported Not reported Not reported

dns-GCAVGP 0.009 ± 0.001 5.6 ± 1.0 1.6 ± 0.3 x 103 No activity No activity No activity

dns-GCAVG 0.14 ± 0.01 3.5 ± 0.3 4.0 ± 0.2 x 104 No activity No activity No activity

dns-GCMIIM 0.009 ± 0.001 0.5 ± 0.1 1.9 ± 0.6 x 104 No activity No activity No activity

dns-GCMII 0.040 ± 0.002 4.6 ± 0.6 8.6 ± 0.6 x 103 0.0070 ± .0003 0.50 ± 0.07 1.4 ± 0.1 x 104

a Steady-state parameters were determined at saturating FPP (10 μM) or GGPP (10 μM) and 

varying peptide concentrations under conditions described in the Experimental Procedures. 

Errors represent the standard deviation from a minimum of three replicates. 
b reference 69 
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There have been several studies in the development of inhibitors of FTase as a target of 

cancer treatment.71-72 One such inhibitor is Tipifarnib, currently under investigation as a  

treatment for acute myeloid leukemia and breast cancer in which prenylation of H-Ras plays a key 

role in tumor growth. Tipifarnib prevents the prenylation of the c-terminal motif through binding 

at the peptide substrate binding site of FTase. When treated with varying amounts of tipifarnib, 

prenylation was efficiently blocked for both dns-GCMIIM (IC50 = 23 +/- 7 nM) and dns-GCAVGP 

(IC50 = 41 +/- 13 nM, Figure 2.4). This suggests prenylation of these non-canonical C(x)3X 

sequences occurs through the same binding interaction as those sequences of the type CaaX with 

the potential to be targeted by the same inhibitors currently being studied for known sequences 

such as H-Ras. 
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Figure 2.4 Inhibition of FTase-catalyzed farnesylation of dns-GC(x)3X peptides by 

tipifarnib. a) dns-GCMIIM; b) dns-GCVAGP. Initial slopes were normalized to reactions 

without tipifarnib and IC50 values were calculated as described in Section 2.10. Error bars 

represent the standard deviation from a minimum of three trials. This figure has been reused 

with permission from reference 58 (Appendix V). 
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2.5 Prenylation of His6-eGFP-GCAVGP reporter protein with product detection through 

mass spectroscopy and alkyne functionalized FPP labeling 

The biological importance of the ability of FTase to prenylate C(x)3X sequences was 

examined in a more relevant context of a purified folded protein, eGFP-GCAVGP. We bacterially 

expressed this protein using an approach validated for detecting modification of eGFP fusion 

proteins bearing canonical CaaX sequences.73-74 Farnesylation of eGFP-CAVGP was assessed via 

LC/MS (Figure 2.5). In a reaction lacking the FPP co-substrate, only the eGFP-CAVGP protein is 

detected with a mass consistent with the expected unmodified protein weight (28205.1 Da). Upon 

incubation with both FTase and FPP, a new peak is detected in the chromatogram at longer 

retention time with a mass of 28408.6 Da. This increase is 205 Da is the consistent with the addition 

of a farnesyl group, providing evidence of successful farnesylation of a full length protein 

terminating in a C(x)3X motif. 

To further confirm FTase-catalyzed farnesylation of eGFP-CAVGP under in vitro 

conditions, we evaluated the ability of purified FTase to modify eGFP-CAVGP using a FPP 

analogue (C15AlkOPP) bearing an alkyne group to allow for post-prenylation protein labeling 

(Figure 2.5).69 Following eGFP-CAVGP incubation with C15AlkOPP in the presence of FTase, 

the modified protein was derivatized with TAMRA-azide using Cu-catalyzed alkyne-azide 

cycloaddition.75-76 A single bold band was seen in TAMRA fluorescence scanning at a size 

corresponding to 28.4 kDa, the size of farnesylated His6-eGFP-GCAVGP (Figure 2.5). The 

negative control gave no band upon fluorescence detection, while Coomassie staining presents one 

band in each positive and negative control samples indicating that the fluorescence in the 

prenylation reaction is due to modification with an alkyne farnesyl group.  
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Figure 2.5 A C(x)3X sequence is efficiently farnesylated in the context of a full length 

protein. a) LC/MS analysis of farnesylation of an eGFP reporter protein terminating in a 

C(x)3X sequence. LC chromatogram of in vitro farnesylation of eGFP-GCAVGP using purified 

FTase in the absence (panel i) or presence (panel ii) of FPP, with absorbance detected at 555 

nm. Negative absorbances are observed due to background fluorescence from eGFP. Peaks A 

(panel iii) and B (panel iv) have deconvoluted masses of 28205.1 Da and 28408.6 Da, 

respectively, that differ by 203.5 Da approximately corresponding to farnesyl modification 

(theoretical mass of farnesyl group: 205 Da). b) In-gel fluorescence scan (top) and Coomassie 

staining (bottom) of eGFP-GCAVGP subjected to in vitro prenylation using purified FTase in 

the presence or absence of C15AlkOPP, shown below. This figure has been reused with 

permission from reference 58 (Appendix V) with LC/MS and in-gel fluorescence scan 

performed by Kiall Suazo, University of Minnesota.  
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2.6 Expansion of the C(x)3X motif to proteins in the human proteome 

 To address the relevance of our findings to potential endogenous proteins within humans, 

we expanded our investigation to include C(x)3X sequences derived from the human proteome to 

explore the potential biological impact of this novel FTase substrate class. We began our study 

into the biological relevance of these finding in the human genome by searching for proteins 

containing a C(x)3X C-terminus motif. We approached identifying these sequence candidates 

through sequence randomization. Using Prosite and our most active sequences from the Ydj1p 

screening, we allowed for variability throughout the five amino acid motif one position at a time 

before increasing variability to two, then three positions at random (Scheme 2.1). We were careful 

to omit any sequence having more than one cysteine in the motif to eliminate classic four amino 

acid motif (example: CCIIM) or for prenylation by GGTase-II, which recognizes the sewuence 

motif CC or CxC in Rab proteins and other substrates.12 

The Prosite scan yielded 965 potential proteins in the human genome which contain a 

C(x)3X C-terminus. From our most active sequences in the Ydj1p screening (-CMIIM, -CAVGP, 

and -CWGEV) six proteins were chosen from over 260 potential targets similar to these sequences 

for characterization of their C(x)3X motifs (Table 2.3). This determination was based on the current 

literature of the proteins, their location within the cell, and their amino acid variability (or 

similarity) when compared to the Ydj1p sequences. These sequences were tested against the same 

fluorescence-based assay and product detection via HPLC as used in the yeast screening described 

above. Of these six sequences tested, half showed a detectable level of activity with FTase (Table 

2.3). Those two resembling -CAVGP, dns-GCQTGP and dns-GCSQGP, were found to be most 

active by exhibiting complete prenylation of the substrate peptide. One other sequence, dns-

GCFSKM, also exhibited reactivity with FTase as detected via HPLC.  As found previously in our 
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screening of sequences derived from YDj1p screening, none of these sequences was found to be 

active with GGTase-I (data not shown). While farnesylation of dns-GCQTGP and dns-GCSQGP 

was confirmed by HPLC, the fluorescence enhancements for these peptides upon prenylation were 

not sufficient to support steady state characterization.  
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Scheme 2.1 An example of introducing variability into C(x)3X sequences for Prosite 

Search “x” indicates position in which variability is allowed in the Prosite Search; “>” 

indicates the sequence must be C-terminal. 

CMIIM>

CMxIM>

CMxxM>

CxxxM>

CMxxx>
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Table 2.3 Mammalian FTase reactivity of C(x)3X sequences derived from the human 

genome using randomization of yeast screening hits 

Peptide Human protein name and gene 

identifier 

Fluorescence 

Enhancement assay 

HPLC detection of 

farnesylated peptide 

dns-CLLHP Ras association domain-containing 

protein 5 

INACTIVE INACTIVE 

dns-CSQGP Sushi, nidogen and EGF-like 

domain-containing protein 1 

ACTIVE ACTIVE 

dns-CQTGP Putative glycosylation-dependent 

cell adhesion molecule 1 

ACTIVE ACTIVE 

dns-

CSVKM 

Olfactory receptor protein INACTIVE INACTIVE 

dns-CFSKM sorting nexin 4 INACTIVE ACTIVE 

dns-CDREV Prostamide/prostaglandin F 

synthase 

INACTIVE INACTIVE 
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2.7 Use of fluorescence localization as a proxy for prenylation within HEK293 cells: C(x)3X 

sequences can be sufficiently prenylated in a biologically relevant context 

To be considered biologically relevant, proteins terminating in C(x)3X sequences must 

exhibit sufficient reactivity to be modified by endogenous FTase within an intact human cell. The 

minimum reactivity is estimated to be in the range of kcat/Km = 0.5-2 x 104 M-1s-1 when peptide 

reactivity is determined in an in vitro assay using purified FTase.77 The reactivity of the dns-

GCMIIM peptide with purified FTase (kcat/Km = 1.9 +/- 0.6 x 104 M-1s-1, Table 2.2) suggests the 

CMIIM sequence is sufficiently reactive to support protein farnesylation within mammalian cells. 

The apparent reactivity observed for this sequence within yeast cells further suggests the ability of 

this motif to be modified in a cellular setting. 

Using a pEGFP-KRas mammalian expression vector (Casey Lab, Duke University), the 

canonical motif -CVIM was modified to contain the four sequences above through PCR extension 

and subsequent ligation (Section 2.10).78 Cloning of negative controls in which the cysteine to be 

prenylated is replaced with a serine were also performed in the same way. Successful cloning was 

verified by sequencing (Genscript, Inc.) The use of an eGFP-KRas fusion protein serves as a proxy 

for directly measuring prenylation through visualization of eGFP fluorescence at the membrane 

(prenylated) or diffuse throughout the cell (not prenylated, or prenylated but not processed). 

Following transfection into HEK293 cells, eGFP-KRas-CMIIM displays membrane localized 

fluorescence consistent with reporter protein farnesylation (Figure 2.6a). Treatment with tipifarnib 

during transfection leads to diffuse eGFP-KRas-CMIIM fluorescence, as does mutation of the 

C(x)3X cysteine to a serine (eGFP-KRas-SMIIM). A reporter protein lacking the last residue of 

the CMIIM sequence (eGFP-KRas-CMII) also displays membrane localized fluorescence but is 

unaffected by tipifarnib treatment. This behavior is consistent with the reactivity of the CMII 
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sequence with GGTase-I (Table 2.2), which would lead to prenylation and membrane localization 

in the presence of tipifarnib. This result also indicates CMIIM is modified selectively by FTase in 

cells and is in fact the sequence being accepted by FTase, as proteolysis of CMIIM to CMII by 

endogenous proteases would result in recuse of prenylation by geranylgeranyltransferase-I. 

Overall, these studies support FTase-catalyzed lipidation of eGFP-KRas-CMIIM within the cell, 

indicating that C(x)3X sequences can be sufficiently reactive to support biologically relevant 

protein farnesylation. The ability of eGFP-KRas-GCMIIM to membrane localize in HEK293 cells 

may be due to its being studied in a yeast a-factor-based screening. This a-factor is known to 

undergo subsequent proteolysis and methylation in yeast which is also required for mammalian 

prenylated proteins to exhibit membrane localization.79  

The relative amount of fluorescence localization of eGFP-Kras-CMIIM in the absence and 

presence of tipifarnib was also quantified. For each sequence and condition, a minimum of n=50 

cells were counted and given the assignment of being membrane associated or diffuse. Upon 

addition of tipifarnib, membrane localization dropped from 84% membrane associated to only 2% 

membrane associated. A negative control of eGFP-KRas-SMIIM was also scored and found to 

have zero cells exhibiting membrane association (Figure 2.6b). 
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Figure 2.6 eGFP-KRas-CMIIM exhibits localization within a mammalian cell. a) 

Representative images of HEK293 cells transfected with eGFP-KRas-XMIIM or eGFP-KRas-

CMII reporter proteins in the absence or presence of tipifarnib (FTI); scale bar = 20 µm. b) Scoring 

of fluorescence patterns observed in HEK293 cells after transfection with eGFP-KRas reporter 

proteins; an asterisk (*) indicates no cells exhibited membrane associated fluorescence. This figure 

has been reused with permission from reference 58 (Appendix V). 
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2.8 Metabolic labeling of eGFP-KRas-CMIIM in HEK293 cells  

To provide definitive evidence that the eGFPKRas-CMIIM protein is farnesylated within 

human cells, the protein can be enriched through metabolic labeling with alkyne-modified FPP in 

HEK293 cells allowing subsequent conjugation with an affinity handle.80  To directly confirm 

prenylation of the eGFP-KRas-CMIIM reporter protein by endogenous FTase within a mammalian 

cell, transfected HEK293 cells were subjected to metabolic labeling using C15AlkOPP FPP 

analogue. Following transfection with eGFP-KRas-derived fusion proteins, cells were incubated 

with the C15AlkOPP FPP analogue for alkyne functionalization of the expressed protein. Cell 

lysates were derivatized with TAMRA-N3 followed by in-gel imaging of TAMRA fluorescence as 

described in section 2.5, with eGFP-KRas-CVIM serving as a positive control. A single major 

band at the expected size of this fusion protein (50 kDa) was observed, with this band absent in 

untransfected cells or transfected cells not treated with the C15AlkOPP FPP analogue (Figure 

2.7a). A similar predominant TAMRA-fluorescent band was observed at the expected size of 

eGFP-KRas-CMIIM in the presence of C15AlkOPP. This single bold band was not observed when 

the CMIIM sequence in the reporter was mutated to SMIIM, with the SMIIM sample resembling 

the negative control. The loss of reporter protein detection with the SMIIM sequence would be 

expected due to the lack of a cysteine at the farnesylation site. 

A quantitative analysis was performed on cell lysates obtained from eGFP-KRas-CMIIM- 

vs eGFP-KRasSMIIM-transfected cells grown in the presence of C15AlkOPP. Lysates were 

biotinylated with biotin-N3 followed by pull-down with avidin resin. Enriched proteins were 

digested, labeled with a tandem mass tag (TMT) and analyzed via LC-MSMS. A volcano plot 

generated after performing a two-sample t-test (FDR = 0.05, s0 = 0.5) across three replicates 

strongly indicates that eGFP-KRasCMIIM is enriched over eGFP-KRas-SMIIM, further 
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evidencing the in vivo farnesylation of this protein (Figure 2.7b). Parallel studies of eGFP-KRas 

reporter proteins terminating in other FTase reactive C(x)3X sequences failed to demonstrate 

metabolic labeling within transfected cells. This may reflect that the lower reactivity of these 

sequences (e.g. CAVGP is 10-fold less reactive than CMIIM, Table 2.2) is insufficient to support 

direct detection of transfected protein prenylation within cells by metabolic labeling or imaging 

methods.77 Nevertheless, these imaging, metabolic labeling, and quantitative proteomic studies 

support FTase-catalyzed lipidation of eGFP-KRas-CMIIM within the cell, indicating that a C(x)3X 

sequence can be sufficiently reactive to support biologically relevant protein farnesylation. 
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Figure 2.7 eGFP-KRas-CMIIM is efficiently modified by FTase within a mammalian cell. a) 

In-gel fluorescence scan (top) and Coomassie staining (bottom) of lysates from HEK293 cells 

transfected with eGFP-KRas reporter proteins and metabolically labeled with C15AlkOPP 

followed by conjugation of a TAMRA-N3 fluorophore. Cells were either non-transfected 

(HEK293) or transfected with eGFP-KRas-CVIM, eGFP-KRas-CMIIM, or eGFP-KRas-SMIIM 

reporter proteins in the absence or presence of C15AlkOPP. b) Volcano plot for TMT-labeled 

quantitative proteomic analysis of eGFP-KRasCMIIM- vs eGFP-KRas-SMIIM-transfected 

HEK293 cells treated with C15AlkOPP and enriched via biotin-avidin pull-down. A two sample 

t-test (FDR = 0.05, s0 = 0.5) from three replicates shows that GFP and KRas are statistically 

enriched in eGFP-KRas-CMIIM transfected cells. This figure has been reused with permission 

from reference 58 (Appendix V) with in-gel fluorescence and proteomic analysis performed by 

Kial Suazo, Univeristy of Minnesota. 
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2.9 Conclusions 

Protein prenylation by FTase and GGTase-I is an important post-translational modification 

involved in cell signaling and protein membrane localization. For several decades, a C-terminal 

CaaX sequence has served as the required recognition motif for a protein to be considered a 

substrate for prenylation. We have identified multiple C-terminal C(x)3X sequences representing 

a new class of substrates for FTase. While biochemical, structural, and computation studies have 

provided the essential foundation for the study of the modification, these C(x)3X substrates found 

to undergo prenylation broaden the range of FTase substrate selectivity and expand the list of 

potential prenylation targets within the human proteome.  

The ability of FTase to prenylate C(x)3X sequences was not anticipated through previous 

predictive studies. Multiple structural studies of FTase and GGTase-I complexes with peptide 

substrates supported substrate length selectivity defined by two contact points: 1) the distance 

between the coordination of the cysteine of the CaaX sequence to the catalytic zinc ion; and 2) 

multiple hydrogen bonds (both direct and water-mediated) between the C-terminal carboxylate of 

the CaaX sequence and residues in both subunits of FTase or GGTase I.48, 81-83 In turn, these contact 

points were considered in the FlexPepBind computational approach for predicting peptide 

sequence reactivity with FTase. FlexPepBind only predicts ~50% of the HPLC-verified FTase 

C(x)3X sequences as potential FTase substrates. The ability of FTase to accept the longer C(x)3X 

motif indicates that its active site is more flexible than the previously proposed more rigid model.  

The inability of GGTase-I to accept these C(x)3X substrates shows that it exhibits distinct 

length and/or sequence requirements, unlike its close relative FTase. Two enzymes thought to be 

so alike in their substrate requirements are now presenting an instance where they have distinct 

differences in substrate specificity. Future studies will work to define the sequence selectivity 
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within the C(x)3X sequence and explore the effect of changing the prenyl donor cosubstrate on 

C(x)3X substrate reactivity, for comparison to prenyl-donor dependent changes in peptide substrate 

selectivity seen with CaaX substrates.60, 84 These studies will provide functional insight into the 

interactions formed with these longer peptide sequences within the FTase active site. 

Understanding the active site adjustments required for FTase recognition and modification of 

C(x)3X sequences will be aided by structural and computational modeling studies of peptides from 

this new substrate class in complex with FTase. 

The ability of both mammalian and yeast FTase to farnesylate proteins with the longer 

C(x)3X motif has the potential to greatly expand the number of potential FTase substrates within 

the human and yeast proteomes. The human proteome is predicted to contain 1008 proteins 

terminating in C(x)3X sequences (as of June 2018, Appendix II). This prediction accounts for 

canonical prenylation motifs, such as CCxxX or CxC. Allowing cysteine residues in only the first 

position, 816 of these sequences contain only a single cysteine residue. This representation nearly 

matches that of CaaX sequences in the human proteome (1205 sequences; 1059 with a single 

cysteine). Biochemical and computational studies indicate that a large fraction of these CaaX 

sequences can serve as FTase substrates.43, 47 Logically then, it is possible that a fraction of these 

identified C(x)3X sequences could also be farnesylated. A similar proportion of proteins bearing 

C(x)3X and CaaX motifs are observed in the S. cerevisiae proteome, with 117 C(x)3X proteins (88 

with a single cysteine, Appendix III) and 120 CaaX proteins (101 with a single cysteine). Based 

on these numbers, inclusion of C(x)3X proteins doubles the potential scope of prenylation within 

the human and yeast proteomes. This idea of proteomic expansion could also have significance in 

pathogenic organisms that employ either endogenous or host-mediated farnesylation, such as 

Plasmodium falciparum, Candida albicans, and Legionella pneumophila.80, 85-89 Each of these 
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pathogenic organsims contain a small number of proteins bearing a C(x)3X motifs that may 

undergo prenylation by either pathogenic or host protein prenyltransferases (Appendix IV). 

Our expansion of the potential substrates recognized by FTase highlights the importance 

of continuing studies towards identifying additional new and biologically relevant protein 

substrates and determining their prenylation state within the cell. In particular, identification and 

isolation of endogenously prenylated C(x)3X proteins will be essential to understanding the impact 

of prenylation of non-canonical FTase substrates within the cell. Given the established 

involvement of prenylation in a range of disease states, our findings also carry the potential to 

establish a link between farnesylation of unanticipated protein targets and cellular dysfunction that 

could be exploited for treatment with the available range of potent farnesyltransferase inhibitors. 

Our findings further support the “shunt pathway” model for protein prenylation wherein a 

subset of farnesylated proteins can sidestep subsequent C-terminal processing steps.31 Such 

proteins with canonical CaaX motifs include Ydj1p, Rab38, Phk/, and G5.25, 31, 90-91 The 

majority of C(x)3X sequences described in this study were identified in yeast using a Ydj1p-based 

screen that discriminates for shunted sequences. While none of the Ydj1p screen-derived C(x)3X 

sequences exist in either the yeast or human proteomes, similar sequences do exist and are reactive 

for farnesylation as demonstrated by the human sequences examined in this work. The state of 

these substrates in a cellular context will also provide insight into the ability of the processing 

enzymes, Rce1 and ICMT to accept these C(x)3X motifs as substrates. Another avenue of study 

will be whether the ability for these new substrates to be prenylated, but perhaps not proteolytically 

processed, gives way for new roles of prenylated proteins outside of membrane localization in 

mammalian cells. After determination of how many naturally occurring C(x)3X proteins are 

prenylated, the determination of what fraction of these C(x)3X proteins are shunted away from 



83 
 

subsequent processing would provide insight into potentially new roles of prenylation in the cell. 

Identifying protein prenyltransferase C(x)3X protein substrates may require application of 

chemical biology, proteomics-based approaches or development of new analytical tools for 

detecting endogenously prenylated proteins, especially since traditional assays for detecting in vivo 

prenylation (e.g. fluorescence membrane localization) may not be relevant to shunted proteins 

regardless of their C-terminal motif. 
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2.10 Materials and Methods  

 

2.10.1 Miscellaneous Methods: All in vitro FTase and GGTase-I assays were performed at 25 

°C. All curve fitting was performed with KaleidaGraph (Synergy Software, Reading, PA). 

Geranylgeranyl diphosphate (GGPP) and farnesyl diphosphate (FPP) were purchased from 

Isoprenoids.com (Tampa, FL). Peptides were commercially synthesized (Sigma-Genosys, The 

Woodlands, TX) and exhibited >90% purity, as determined by HPLC or after semi-prep 

purification via HPLC. Peptides were solubilized in ethanol containing 10% (v/v) DMSO and 

stored at -20 °C. Peptide concentrations were determined spectrophotometrically using Ellman’s 

reagent. The isoprenoid analogue C15Alk-OPP was prepared as previously described.(73) 

 

2.10.2 Yeast strains and plasmids (These experiments were performed in the Schmidt 

laboratory, University of Georgia): The yeast strains used in this study were IH1793 (MAT 

lys1), RC757 (MAT sst2-1 rme his6 met1 can1 cyh2), SM2331 (MATa trp1 leu2 ura3 his4 can1 

mfa1 mfa2), yWS304 (MATa his3∆1 leu2∆0 met15∆0 ura3∆0 ydj1::KANR), and yWS1632 (MATa 

his3∆1 leu2∆0 met15∆0 ura3∆0 ram1::KANR) and have been previously described.31, 63, 92-93 These 

strains were routinely propagated at 30 °C (RC757, SM2331) or room temperature (yW304, 

yWS1632) on either YPD or appropriate selective media when transformed with plasmid pRS315 

(CEN LEU2), pSM1605 (2µ URA3 MFA1), pWS610 (CEN LEU2 MFA1), pWS612 (CEN LEU2 

MFA1-CASQ), pWS942 (CEN URA3 YDJ1), pWS1132 (CEN URA3 YDJ1-SASQ), pWS1246 

(CEN URA3 YDJ1-CTLM), and pWS1286 (CEN URA3 YDJ1-CVIA) have been previously 

described.31, 94-95 pWS705 (2µ URA3 MFA1-CGGDD), pWS1170 (CEN URA3 YDJ1-CVLMM), 

and pWS1488 (CEN URA3 YDJ1-CMIIM) were constructed by PCR-directed, recombination-

mediated plasmid construction.96 In brief, PCR products designed to amplify the 3´ ends of MFA1 
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and YDJ1 with encoding for desired C(x)3X motifs were used to gap repair plasmids pSM1605 

(2µ URA3 MFA1) and pWS1132 (CEN URA3 YDJ1-SASQ), respectively, as previously 

described.31, 94 These plasmids and others identified through our screening methods were 

introduced into strains via a lithium acetate-based transformation procedure.97 

 

2.10.3 Oligo design for generation of randomized C(x)3X sequences by PCR (These 

experiments were performed in the Schmidt laboratory, University of Georgia): Synthetic 

oligonucleotides were designed to PCR amplify the CaaX encoding region of YDJ1 and its 

5´untranslated region as encoded in pWS1132. The forward PCR oligo was designed to encode 

the C(x)3X sequences and was flanked on the 5´ end by 39 nucleotides homologous to the YDJ1 

gene immediately before the CaaX motif (to facilitate recombination), and 19 nucleotides 

homologous the UTR immediately after the stop codon (to facilitate PCR priming). The oligo used 

for generation of CGGDD was designed specifically. The oligo used to generate a library of C(x)3X 

sequences was synthesized to encode a cysteine codon followed by 4 random codons and a stop 

codon. To limit the complexity of the codons synthesized yet allow for all possible amino acids, 

only C, G and T were used at the wobble position of the (x)3 codons. To prevent formation of 

premature stop codon yielding a canonical length motif (i.e. Cxxx) that would lead to false 

positives, only A, C, and G were used at the first position of the X codon; this strategy 

unfortunately disallowed incorporation of Cys, Phe, Trp, and Tyr codons. 

 

2.10.4 a-factor mating pheromone screen, halo assay, and mating test (These experiments 

were performed in the Schmidt laboratory, University of Georgia): SM2331 yeast (MATa trp1 

leu2 ura3 his4 mfa1 mfa2) were co-transformed using a previously described PEG lithium-acetate 
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method with MluI and SphI digested pWS1024 (CEN LEU2 mfa1 V34TAG; amber mutation at a1 

position of CaaX motif) and PCR product engineered to encode 5-mer sequences. The 

transformation mix was plated on SC-leucine solid media and incubated at 30 °C for 72-96 hours. 

Estimates of colony numbers were determined, then colonies were replica plated onto a fresh SC-

leucine plate as well as a YPD plate containing a thin lawn of RC757 yeast (MAT sst2-1 rme his6 

met1 can1 cyh2) prepared in the presence of 0.071% TX-100 (final concentration in cell 

suspension prior to lawn preparation) and plates incubated at 30 °C for 16-20 hours. Colonies 

displaying a halo were identified, and the corresponding colony on the SC-leucine replicate plate 

was recovered. Expression of a-factor was confirmed by amplifying selected colonies in SC-

leucine liquid media and applying 20X concentrated spots of liquid culture onto RC757 lawns in 

the presence and absence of TX-100. Plasmids were isolated and sequenced from the strongest 

halo producing strains. 

A modified version of the halo assay was used to assess relative strength of a-factor 

production by the various a-factor CaaX mutants evaluated. Plasmid transformed MATa strains 

were cultured in appropriate selective media (SC-leucine or SC-uracil), spotted onto YPD, and 

incubated for 24-36 hours at 30 °C. The spots on the plate were replica transferred onto a thin lawn 

RC757 yeast (no TX-100), and plates were incubated at 30 °C for 16-20 hours. 

The quantitative mating test was performed essentially as previously described.31 In brief, 

the MATa strains were independently cultured to saturation in selective media, and the IH1793 

MAT lys1 strain was cultured in YPD. All strains were diluted to A600 ~1.0 using fresh culture 

media. Empirically determined dilutions were spread on SD and SC-lysine solid media; the former 

media is diploid selective while the latter is selective for MATa haploid cells and MATa cells that 

have undergone mating to form a diploid cell. The total count of colony forming units (CFUs) on 
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each media type was determined and used to calculate a mating frequency (i.e. diploid CFUs over 

total CFUs); this value was used to determine the percentage mating of each condition relative to 

the strain producing wildtype a-factor. 

 

2.10.5 Thermotolerance screen (These experiments were performed in the Schmidt 

laboratory, University of Georgia): yWS304 (MATa his3∆1 leu2∆0 met15∆0 ura3∆0 

ydj1::KANR) yeast was co-transformed using a previously described PEG lithium-acetate method 

with NheI digested pWS1132 (CEN URA3 YDJ1-SASQ) and PCR product engineered to encode 

randomized 5-mer sequences. A small portion of the transformation mix was plated on SC-uracil 

solid media and incubated at 25 °C for 96 hours to assess the total number of plasmids created by 

the transformation procedure. The remaining transformation mix was plated on YPD solid media 

and incubated at 40 °C for 96 hours. Colonies recovered by high temperature selection were re-

tested for thermotolerance as patches on YPD, and individual plasmids recovered and sequenced. 

The isolated plasmids were re-introduced into yWS304 to confirm plasmid-linked thermotolerance 

prior to detailed thermotolerance analysis. 

 

2.10.6 Thermotolerance assay (These experiments were performed in the Schmidt 

laboratory, University of Georgia): Saturated cultures grown in SC-uracil liquid media at room 

temperature were serially diluted into YPD and spotted onto YPD solid media (5 µl per spot) as 

previously described.31 Plates were incubated at various temperatures (25 °C, 37 °C, or 40 °C) for 

several days before plate imaging. Each experiment was performed at least twice on separate days, 

and each strain was evaluated in duplicate within each experiment. 
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2.10.7 Estimate of C(x)3X complexity in a-factor and thermotolerance screens (These 

experiments were performed in the Schmidt laboratory, University of Georgia): The 

estimated coverage of C(x)3X sequences evaluated was calculated using the GLUE-IT algorithm 

based on the number of colonies screened and the number and redundancy of the codons used for 

amino acid randomization.64 The number of colonies screened with the a-factor reporter was 

estimated by direct colony counts on all plates evaluated.  For the Ydj1p reporter, a known 

percentage of the transformation mix was plated onto SC-uracil solid media, and the number of 

colonies observed was used to determine the total number of colony-forming units (CFUs) in the 

rest of the transformation mixture.  The number of false positive colonies (i.e. background colonies 

containing re-circularized or uncut plasmid) were not counted toward the total number of CFUs; 

the false positive numbers were determined from transformation mixtures containing the linearized 

plasmids alone and typically yielded a smaller number of CFUs relative to co-transformed sample 

(typically <2%). 

 

2.10.8 Immunoblot analysis for protein prenylation in yeast (These experiments were 

performed in the Schmidt laboratory, University of Georgia): Whole cell lysates of mid-log 

yeast were prepared as previously described using alkaline hydrolysis and TCA precipitation.31, 98 

Samples and PageRuler size standards (Thermo Scientific, Waltham, MA) were separated by SDS-

PAGE (12.5%), transferred onto nitrocellulose, and blots incubated with rabbit anti-Ydj1p primary 

antibody (courtesy of Dr. Avrom Caplan) and HRP-conjugated donkey anti-rabbit secondary 

antibody (GE Healthcare, Chicago, IL). Immune complexes were detected by X-ray film after 

treatment of blot with HyGLO development solution (Denville Scientific, South Plainfield, NJ). 
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2.10.9 Image analysis for yeast assays and immunoblots (These experiments were performed 

in the Schmidt laboratory, University of Georgia): Plates and developed films were imaged 

using a flat-bed scanner (300 dpi; grayscale), and resultant TIFF image files manipulated with 

Photoshop (i.e. image rotation, image contrast adjustments, cropping) before final figure assembly 

using PowerPoint. Plates were scanned face down without lids using a black background. Films 

were scanned using a white background. For all plate scans, contrast settings were adjusted 

manually using the same settings for all images. For film scans, contrast settings were adjusted 

using Photoshop’s ‘Auto Contrast’ function. 

 

2.10.10 Activity screening of dns-GC(x)3X peptides by fluorescence-based prenylation assay: 

Prenylation of dansylated dns-GC(x)3X peptides was assessed by a time-dependent increase in 

fluorescence (λex 340 nm, λem 520 nm) upon prenylation of the dansylated peptide.42, 48, 65-67 Assays 

were performed at 25 °C in a 96-well plate (Corning, Corning, NY); Fluorescence was measured 

as a function of time in a Synergy H1 multimode plate reader (Biotek, Winooski, VT). Negative 

controls lacked the FPP or GGPP cosubstrate. 

 To determine if a given dns-GC(x)3X peptide is considered reactive with FTase or GGTase-

I, the observed fluorescence at time zero for each peptide was subtracted from the fluorescence at 

four time points (Ft – F0; t = 30, 60, 90, and 120 min) to determine the corrected fluorescence at 

each time point for both the reactions containing the FPP or GGPP prenyl donor and the negative 

control reactions lacking the prenyl donor cosubstrate. To be considered reactive, a peptide must 

exhibit at least a 5-fold enhancement of fluorescence in the FTase or GGTase-I reaction compared 

to the negative control [e.g. Corrected fluorescence (+FPP) / Corrected fluorescence (-FPP) > 5]. 

Fluorescence data and calculated fluorescence enhancements for reaction with FTase/FPP are 
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reported in Appendix I. No dns-GC(x)3X peptides exhibited detectable fluorescence enhancement 

in reaction with GGTase-I/GGPP. 

 

2.10.11 Activity screening prenylation of dns-GC(x)3X peptides via HPLC: Reverse phase 

HPLC analysis was performed on all dns-GC(x)3X peptides to confirm farnesylation (FPP and 

FTase) or geranylgeranylation (GGPP and GGTase-I. Reactions were prepared as described above 

for fluorescence-based activity screening and incubated at room temperature for 14 hours in low-

adhesion tubes wrapped in foil. Reactions were halted by addition of an equal volume of 20% 

acetic acid in isopropanol prior to analysis by HPLC (Zorbax Eclipse XDB-C18 column). Peptides 

and products were detected by fluorescence (λex = 340 nm and λem = 496 nm). In all cases, HPLC 

analysis indicates that the peak for the dns-GC(x)3X peptide shifts to a longer retention time upon 

farnesylation, whereas parallel reactions performed without FPP showed no change in peptide 

retention time. Representative HPLC traces are included in the Appendix I. Analogous reactions 

with GGTase-I and GGPP provided no evidence for geranylgeranylation of any dns-GC(x)3X 

peptides. 

 

2.10.12 Steady-state characterization of dns-GC(x)3X and dns-GCaaX peptides: Steady-state 

kinetics were determined as previously described for prenylation of dns-GC(x)3X and dns-GCaaX 

peptides by FTase or GGTase-I by monitoring the time-dependent increase in fluorescence (λex 

340 nm, λem 520 nm) upon prenylation of the dansylated peptide in a Synergy HI multimode plate 

reader (Biotek).44, 68, 99  
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2.10.13 Determination of tipifarnib inhibition of dns-GC(x)3X peptide farnesylation: Assays 

were performed as described above, with varying concentrations of tipifarnib (0-100 nM) included 

in the reaction. Initial slopes (fluorescence change per second) were determined for each reaction 

and normalized to the reaction without tipifarnib. Normalized slope values were plotted against 

tipifarnib concentration and analyzed using equation 1 to calculate IC50 values. 

 

(1)   

 

 

2.10.14 ESI-MS analysis of farnesylated dns-GC(x)3X peptides (ESI-MS experiments were 

performed in the Distefano laboratory, University of Minnesota): In vitro reactions with dns-

GC(x)3X peptides (5 µM) were prepared in prenylation buffer in the presence of 100 nm FTase 

and 10 µM FPP and incubated overnight at room temperature. Each reaction mixture was 

separately loaded onto a pre-conditioned and pre-equilibrated Sep-Pak reverse-phase C18 

cartridge (Waters Corp., Milford, MA) and washed with 0.1% TFA in H2O. A step-gradient elution 

was carried out with 6-mL volumes of 10% (CH3CN/H2O; 0.1% TFA), 35% (CH3CN/H2O; 0.1% 

TFA), and 100% CH3CN with 0.1% TFA. The 100% CH3CN fractions containing the modified 

peptides (confirmed by fluorescence under UV lamp) were evaporated and residues were 

redissolved in 30% CH3CN/H2O with 0.1% TFA. Samples were loaded to an LC column (Agilent 

Zorbax SB-C18, 5 µm x 150 mm x 0.5 mm) coupled to an ESI-MS/MS ion trap mass analyzer 

(Agilent 1100 Series LC/MSD). Runs were set to positive ion mode and CID MS/MS 

fragmentations were triggered at 1.5 V. The theoretical masses of farnesylated peptides and their 

fragments were calculated using Protein Prospector v 5.19.1 (http://prospector.ucsf.edu). 
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2.10.15 Construction of pJExpress414 plasmid encoding the His6-eGFP-GCAVGP reporter 

protein: A gene encoding the His6-eGFP-GCAVGP reporter protein was prepared by PCR using 

the pJExpress414-eGFP-CVIA vector as a template with the GCAVGP C-terminal sequence and 

HindIII restriction site encoded in the 3′ primer.100 PCR products were purified using the BioBasic 

Inc.(Amherst, NY) EZ-10 Spin Column PCR Purification Kit following the manufacturer’s 

instructions. Following digestion by NheI and HindIII, the His6-eGFP-GCAVGP insert was ligated 

into the pJExpress414 expression plasmid using the Quick Ligase kit (New England Biolabs, 

Ipswich, MA) per manufacturer instructions. Insert ligation was verified by analytical restriction 

digest and DNA sequencing (Genewiz, South Plainfield, NJ). 

2.10.16 Expression and purification of His6-eGFP-GCAVGP: Chemically competent BL21 

(DE3) E. coli (Z-competent, Zymo Research, Irvine, CA) were transformed with 

pJExpress414_His6-eGFP-GCAVGP per the manufacturer’s protocol. Following transformation 

and antibiotic selection, a colony from the transformation plate was inoculated into LB media (5 

mL) containing 100 µg / mL ampicillin. The culture was incubated with shaking (225 rpm) for 4 

hours at 37 °C and subsequently used to inoculate 1 L of prewarmed autoinduction media 

supplemented with 100 µg / mL ampicillin.101 Following overnight incubation at 28 °C with 

shaking, bacteria were harvested, lysed, and His6-eGFP-GCAVGP was purified as previously 

described.74 Protein concentration was measured using absorbance of eGFP at 488 nm (λ488 = 

55,000 M−1cm−1).102  

 

2.10.17 Farnesylation reactions with eGFP-GCAVGP (ESI-MS/MS and in-gel fluorescence 

labeling experiments were performed in the Distefano laboratory, University of Minnesota): 

Farnesylation of purified eGFP-GCAVGP was performed by incubation of purified eGFP-
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GCAVGP (5 µM) with 100 nM FTase, 10 µM FPP or C15AlkOPP, and 5 mM MgCl2 in reaction 

buffer (50 mM NaHEPPSO, 5 mM TCEP, pH 7.8) in a final volume of 2 mL (FPP, mass 

spectrometry analysis) or 500 µL (C15AlkOPP, TAMRA labeling and in-gel fluorescence 

analysis). Substrate protein was incubated in reaction buffer for 20 min prior to reaction initiation 

by addition of FTase and prenyl donor to reduce disulfide bonds. Reactions were incubated 

overnight at room temperature wrapped in foil, and then frozen for storage. In vitro reaction 

mixtures were concentrated by lyophilization and injected to an LC column (Agilent [Santa Clara, 

CA] Zorbax 300SB-C8, 3.5 µm x 100 mm x 0.3 mm) coupled to an ESI-MS/MS ion trap mass 

analyzer (Agilent 1100 Series LC/MSD. The proteins were eluted with buffer A (0.1% HCO2H in 

H2O) and buffer B (0.1% HCO2H in CH3CN) in the following gradient segments of buffer B: 2 

mins, 10%; 3 mins, 10-25%; 35 mins, 25-60%; 10 mins, 60-90%. The m/z values from protein 

fragments were deconvoluted to estimate parent protein masses. For in-gel fluorescence labeling, 

eGFP-GCAVGP from in vitro farnesylation reactions (+/- 10 µM C15AlkOPP) was precipitated 

out using a protein precipitation kit (ProteoExtract, Calbiochem, San Diego, CA). Protein pellets 

were redissolved in PBS + 1% SDS and 14 µg of the proteins were aliquoted and subjected to click 

reaction (25 µM TAMRA-N3, 1 mM TCEP, 0.1 mM TBTA, and 1 mM CuSO4) for 1 hour at room 

temperature. An aliquot (3.5 µg) from the click reactions were mixed with Laemmli loading buffer, 

boiled for 5 min, and loaded into a 15% SDS-PAGE gel. In-gel fluorescence was detected at 

542/568 excitation/emission wavelengths on a fluorescence scanner (Typhoon FLA 9500, GE 

Healthcare). Gels were stained with 1X Coomassie Blue and destained to visualize protein loading. 

 

2.10.18 Identification of human C(x)3X sequences: To identify human C(x)3X sequence 

candidates, we interrogated the Prosite database (http://prosite.expasy.org/scanprosite/) using 
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highly active sequences from the yeast studies (CAVGP, CMIIM, CWGEV) and allowing 

sequence variability at one, two, or three positions downstream of the cysteine residue. Sequences 

containing more than one cysteine were eliminated to avoid canonical four amino acid CaaX-

compliant motifs (example: CCIIM) or sequences potentially recognized by GGTase-II (examples: 

CC or CxC).(18,20,21)The candidate sequences were chosen based on previous studies of the protein 

bearing the C(x)3X sequences, their location within the cell (e.g. membrane associated), and the 

degree of sequence similarity to the parent C(x)3X sequence from the yeast studies. 

 

2.10.19 Construction of eGFP-KRas-C(x)3X reporter protein plasmids: Gene inserts encoding 

eGFP-KRas-XMIIM and eGFP-KRas-XMII reporter proteins were prepared by PCR using the 

pEGFP-KRas vector (Casey Lab, Duke University) as a template with the CMIIM, SMIIM, or 

CMII C-terminal sequences and KpnI restriction site encoded in the 3′  primers.78 PCR products 

were purified using the BioBasic Inc. EZ-10 Spin Column PCR Purification Kit following the 

manufacturer’s instructions. Following digestion by NheI and KpnI, the eGFP-KRas-XMIIM or 

eGFP-KRas-XMII insert was ligated into the pEGFP-KRas expression plasmid using the Quick 

Ligase kit (NEB) per manufacturer instructions. Insert ligation was verified by analytical 

restriction digest and DNA sequencing (Genewiz). 

 

2.10.20 Cell culture, transfection, and imaging: HEK293 cells (ATCC) was maintained in 75 

mL vented tissue culture flasks (Celltreat, Pepperell, MA), and were split upon reaching 80% 

confluency. Cells were grown in complete DMEM (DMEM supplemented with 10% fetal bovine 

serum (FBS) and 1% (v/v) penicillin-streptomycin [MediaTech, Manassas, VA]) in 5% CO2 at 37 

°C. Transfections and imaging were performed as previously described,77 in a single glass well 
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imaging dish (Corning) and allowed to adhere for 24 hours prior to addition of Turbofect 

transfection reagent (Thermo Scientific) according to the manufacturer’s protocol. Tipifarnib was 

added to a final concentration of 10 nM to the transfection mixture for those cells undergoing 

inhibitor studies. Following 36 hours of transfection, live cells were imaged at 63x magnification 

using a Zeiss (Jena, Germany) Axio Vert.A1 inverted fluorescence microscope with a 470/40 nm 

excitation filter, a 495 nm beam splitter and a 525/50 nm emission filter.  
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Chapter 3: Chemoenzymatic protein labeling and isolation from eukaryotic cell lysates using 

enzymes with reengineered substrate selectivity 

 

3.1 Introduction 

 Protein immobilization is a valuable tool for studying protein structure, function, and 

interactions within biological systems.1-5 Immobilization through bioorthogonal chemistry is 

particularly useful in its ability to isolate a protein of interest without interfering with native 

chemical processes in a cell. There are two main steps in the use of bioorthogonal chemistry to 

isolate proteins. First, the protein is modified by a chemical reporter probe in the cell followed by 

a chemical reaction between the functionalized protein and a chemically complementary secondary 

probe which allows for isolation. The most common example of bioorthogonal chemistry for 

protein modification is the Cu(I)-catalyzed “click” reaction (also known as the Huisgen 1,3-dipolar 

cycloaddition), but the utility of this approach is limited as the Cu(I) necessary for this reaction is 

toxic to cells (Figure 3.1a).6 Oxime and hydrazone reactions have found popularity due to their 

ability to selectively modify proteins in which aldehyde or ketone additions have been made to the 

proteins of interest for immobilization (Figure 3.1b-c). This approach, however, is limited in the 

number of N-termini which can be modified with a ketone or aldehyde functional group.7-12  

Another route for immobilization of proteins involves the use of enzymatic labeling with 

chemically modified groups. The use of enzymes for biorthogonal labeling solves several issues 

such as promiscuous substrate selectivity and eliminates the need to add non-natural functional 

groups to proteins for recognition by a secondary probe. An example of such an enzymatic reaction 

used for bioothogonal labeling is prenylation.13-16 Prenylation is a post-translational modification 

in which a hydrophobic isoprenoid, either a farnesyl or geranylgeranyl group, is transferred to the  
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Figure 3.1 A representation of chemical modifications commonly used in biorthogonal 

labeling of proteins. (a) Cu(I) catalyzed azide-alkyne cycloaddition reaction (b) oxime ligation 

(c) hydrazone ligation; R and R’ represent protein and/or probe used for isolation. 
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C-terminal cysteine of certain proteins.17-21 This cysteine is typically part of the CaaX sequence in 

which ‘C’ is a cysteine, ‘a’ is any aliphatic amino acid, and ‘X’ is an amino acid which determines 

which type of isoprenoid will be attached to the substrate protein. The prenylation pathway follows 

a specific set of modifications before the protein is transported to the cell membrane, with the first 

step comprising cysteine alkylation by the FPP or GGPP prenyl donor (Scheme 3.1). The first step 

involves the enzymes FTase or GGTase which catalyze the addition of a farnesyl or geranylgeranyl 

group, via FPP or GGPP, respectively. The CaaX sequence then undergoes a series of other 

modifications, including proteolysis and methylation, which lead to its final incorporation to the 

membrane. 

Several labs have utilized the specificity of farnesyltransferase (FTase) to label proteins 

with functionalized FPP.15, 22-28 These analogues include the addition of ketones and aldehydes to 

the end of the isoprenoid chain for use in hydrazone reaction which immobilize the protein onto 

hydrazide beads (Figure 3.2, Scheme 3.2). For example, Rashidian and coworkers in 2012 

developed an approach using protein prenyltransferase-catalyzed modification to label and 

immobilize green fluorescent protein (GFP) in E. coli lysates.15 The GFP to be isolated contained 

a C-terminal -CVIA recognition sequence to be prenylated by FTase in the prescence of an 

aldehyde functionalized FPP. Upon prenylation, GFP was captured using hydrazide beads and 

could be released from the beads using aniline as a catalyst, successfully isolating GFP from the 

lysate.  This technique requires no prior purification of the bacterial lysate and is useful in its 

ability to release the targeted protein from the hydrazide beads after capture, however, there are 

limitations to its usefulness. Methods such as these are limited to use in bacteria due to competition 

between the target prenylation reaction and the endogenous prenylation that occurs in mammalian 

cells and other eukaryotes.  
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Scheme 3.1 The prenylation pathway Prenylation consists of lipidation with an isoprenoid group 

followed by proteolysis and methylation.18-19, 21 Figure provided by Dr. James L. Hougland. 
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Figure 3.2 Functionalized FPP analogues for use in hydrazone ligation bead pulldown and 

isolation.15 (1) Strained alkene (2) Aryl ketone (3) Aryl aldehyde (4) Alkyl aldehyde 
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Scheme 3.2 Mechanism for hydrazide ligation. Prenylation is highly specific and can be used in 

a pulldown as a means for isolation when used in conjunction with hydrazone chemistry at the C-

terminus of proteins. Labeling with aldehyde functionalized FPP allows for isolation of fluorescent 

reporter proteins on hydrazide beads through the mechanism shown. 
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An ideal biorthogonal labeling system for proteins in cells would be one in which 

competition from endogenous reactions is limited or absent. One way in which this could be 

achieved is through alteration of enzyme substrate selectivity. For instance, it has been found that 

FTase can tolerate different mutations to its active site, with these mutations leading to differences 

in reactivity with natural and non-natural CaaX sequences.29 In this work by Hougland and 

coworkers in 2012, a study of the multiple interactions between the active site of FTase and 

selected peptide substrates were examined to determine the requirements for FTase discrimination 

against nonsubstrates in the cell. For example, through mutation of tryptophan 102 and 106 on the 

β strand of FTase, selectivity of Ca1a2X sequences can be altered through affecting interactions 

with the a2 position of the substrate (Figure 3.3a). One enzyme mutant of interest in the context of 

bioorthogonal labeling is W102R W106L FTase (referred to as RL FTase) which was found to 

more selectively prenylate the non-natural CaaX sequence –CVDS than the natural –CVLS 

sequence derived from H-Ras (Figure 3.3b).  

Using this engineered FTase variant with non-natural peptide selectivity in addition with 

the previously designed FPP derivatives, it is possible to bioorthogonally select and purify proteins 

of interest in the presence of other competing proteins in both bacterial and mammalian cells. 

Prenylation by farnesyltransferase can be combined with the immobilization capabilities of 

hydrazone ligation chemistry to isolate proteins through use of specific CaaX sequences.  

This work herein aims to demonstrate the expansion of a previously designed approach to 

bioorthogonal protein labeling, making it applicable across different systems, specifically in both 

bacterial and mammalian cells. Using the combined techniques of a selective modification, like 

prenylation, and an immobilization technique, such as a hydrazide bead pulldown, a new 

bioorthogonal pulldown technology can be used to isolate proteins of interest that may be difficult 
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to otherwise obtain. More specifically, isolation of proteins of interest can be achieved through use 

of site-specific modifications involving engineered FTase variants and functionalized FPP 

analogues with subsequent immobilization through hydrazone ligation chemistry. Modification of 

the specific protein of interest with a non-natural CaaX sequence can act as a C-terminal tag to 

allow for immobilization in the presence of natural, competing proteins in the cell, not recognized 

by RL FTase.  
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Figure 3.3 The FTase active site and its reactivity. (a) Structure of a peptide substrate bound to 

FTase with emphasis on interactions with the a2 binding pocket. The a2 residue of the peptide 

substrate (green) is surrounded by residues Trp-102β (orange), Trp-106β (red), and Tyr-361β (not 

shown) within the active site of FTase. The a2residue also contacts the isoprenoid tail of the FPP 

analogue inhibitor FPT-II (purple). The figure was derived from PDB ID 1D8D and adapted from 

Reid et al.30 (b) Initial velocity for reaction with dns-GCVDS is shown as determined by a 

fluorescence enhancement assay; squares, WT FTase; circles, W102R/W106L variant; triangles, 

W102L/W106L variant; inverted triangles, W106L/W106K variant. The “RL” FTase variant 

displays preference for noncanonical dns-GCVDS over the endogenous dns-GCVLS. These 

figures have been reused with permission from reference 29 (Appendix VII). 
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3.2 RL FTase farnesylation reactivity with dns–GCVDS and dns–GCVLS peptide substrates 

As stated in section 3.1, unpurified RL FTase in crude bacterial lysate shows minimal 

reactivity with a fluorescently labeled dns–GCVLS peptide substrate in comparison to reactivity 

with dns-GCVDS peptide in reaction with the natural FPP prenyl donor cosubstrate.29 This 

preference was found to hold true in reactions in which functionalized FPP analogues (Figure 3.2) 

were used in place of non-functionalized FPP prenyl donor, with the aryl aldehyde FPP (2) 

showing the greatest reactivity and discrimination between the two peptides (J. Hougland, 

unpublished data). However, once purified, RL FTase exhibited comparable reactivity with both 

the dns-GCVLS and dns– GCVDS peptide substrates (Figure 3.4). To determine the origin of this 

change in relative reactivity between reactions using purified enzyme and enzyme in crude lysates, 

components used to grow and lyse the bactreria in the original lysate studies were titrated into 

reactions using purified RL FTase to determine the impact of each component on enzyme substrate 

selectivity. Components included in these titrations were total bacterial lysate, ampicillin, luria 

broth (LB) media, and Fast Break lysis reagent (Promega). It was determined that Fast Break (FB) 

lysis reagent used to lyse cells in the original activity tests decreases reactivity of RL FTase with 

the dansyl–GCVLS peptide, while maintaining its reactivity with dns-GCVDS, as determined by 

HPLC analysis and product peak integration (Figure 3.5a). While the specific component of Fast 

Break (FB) reagent responsible for altering RL FTase selectivity remains unknown, this findings 

enables optimization of reaction conditions necessary for selective prenylation of –GCVDS tagged 

proteins in vitro using purified components. When WT FTase was tested under the same 

conditions, it was found that WT FTase reactivity with the dns-GCVLS peptide is not affected as 

greatly by FB lysis reagent as is the RL FTase (Figure 3.5b). 
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Figure 3.4 RL FTase reactivity with dns-GCVLS changes after purification of enzyme. (a) 

Reactivity of RL FTase with dns-GCVDS using purified RL FTase (red) or FTase in bacterial cell 

lysate (black); (b) Reactivity of RL FTase with dns-GCVLS using purified RL FTase (red) or 

FTase in bacterial cell lysate (black); Reactions conditions include 50 nM RL FTase (or 10 µL cell 

lysate), 3 µM peptide, 5 mM MgCl2, 50 mM NaHEPPSO (pH 7.5), and 5 mM TCEP.   
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Figure 3.5 Fast Break Reagent affects the farnesylation selectivity of the RL FTase variant. 

a) Effects of Fast Break lysis reagent on the activity of RL FTase with dns-GCVLS or dns-GCVDS 

and endogenous FPP. Varying amounts of reagent, 2, 5, and 10 uL, were titrated into a reaction of 

50 nM RL FTase, 3 µM peptide, and 20 µM FPP. Blue, 2 µL; Red, 5 µL; Green, 10 µL – Product 

peak shown at 23.5 min and 19.5 min for dns-GCVLS and dns-GCVDS, respectively. b) WT FTase 

activity with dns-GCVLS is not affected as greatly by addition of Fast Break reagent. In the 

presence of FB reagent, dns-GCVLS is still nearly all converted to product (product peak shown 

at 23.5 min) No product peak is detectable for WT FTase with dns-GCVDS (substrate peak shown 

at 3.5 min). 

  

Product peak with: Integration

2 uL Fast Break reagent 5.93

5 uL Fast Break reagent 3.85

10 uL Fast Break reagent 3.44

a) b)
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Characterization of the reactions catalyzed by purified RL FTase with dns-GCVLS and 

dns-GCVDS using either endogenous FPP or aryl aldehyde FPP (2) is aided by steady-state kinetic 

analysis of these reactions. Steady state characterization can be pursued using a previously 

developed fluorescence-based assay for FTase-catalyzed peptide prenylation which utilizes the 

environmentally sensitive dansyl fluorophore.13, 31-33 However, initial reactions using the FPP 

analogue (2) indicated that this analogue could not be successfully support this assay due to the 

low fluorescence enhancement obsereved upon peptide modification with this FPP analogue. 

Consequently, steady state kinetic parameters (kcat/Km) for reactions with FPP were determined for 

WT FTase with dns-GCVLS and for RL FTase with dns-GCVDS and dns-GCVLS (Table 1, 

Figure 3.6). In the presence of Fast Break reagent, steady state kinetic constants for prenylation of 

the dns-CVLS peptide by the RL FTase variant, as well as dns-CVDS peptide by WT FTase (both 

with and without Fast Break), could not be determined due to low or no evidence of reactivity. 

Catalysis of prenylation of the dns-GCVDS peptide by the RL FTase variant with the dns-CVDS 

peptide is comparable (within -4-fold) to that for dns-CVLS farnesylation cataltyzed by WT FTase, 

suggesting that the RL FTase is sufficiently active to allow CVDS prenylation in biological 

samples. 
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Table 3.1 Steady-state kinetics for farnesylation of dns-GCVLS and dns-GCVDS 

catalyzed by WT and RL FTases. 

 

Steady state reactions were performed under the following conditions:100 nM FTase , 10 

µM FPP, 0.5-10 µM peptide substrate (dns-GCVLS or dns-GCVDS), 5 mM MgCl2, 50 mM 

NaHEPPSO, 5 mM TCEP. “b.d.” denotes reactivity is below detectable limits.  
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a
)

b
)

c
)

d
)

e
)

Figure 3.6 Steady state characterization of the reactivity of dns-GCVxS peptides with RL 

or WT FTase. a-c) Dependence of farnesylation activity on peptide substrate concentration 

catalyzed by RL FTase with and without Fast Break: a) dns-GCVDS; b) dns-GCVDS with Fast 

Break; c) dns-GCVLS; . d-e) Dependence of farnesylation activity on peptide substrate 

concentration catalyzed by WT FTase with and without Fast Break: d) dns-GCVLS; e) dns-

GCVLS with Fast Break. The curve represents the best fit to the Michaelis-Menten equation. 

Reactions were performed and analyzed as described in Section 3.9.8. Error bars represent the 

standard deviation from a minimum of two replicates.  



125 
 

3.3 WT FTase and RL FTase-catalyzed prenylation of dns-GCVDS and dns-GCVLS 

peptides using an aryl aldehyde FPP analogue  

To determine conditions for prenylation of full length proteins using FPP analogue (2) WT 

FTase and RL FTase were used to explore prenylation of both the GCVDS and GCVLS peptides 

using either FPP or FPP analogue (2). No activity was observed for WT FTase-catalyzed 

prenylation of the dns–GCVDS peptide when monitored by HPLC, while the RL FTase catalyzed 

complete modification of the dns–GCVDS peptide under the same conditions using the FPP 

analogue (2) at varying concentrations between 10 - 70 µM (Figure 3.7a, 10 M FPP analogue (2) 

reaction shown). Under the same reaction conditions in the presence of the FB reagent, RL FTase 

catalyzed a low level of prenylation of the dns-GCVLS but did not completely modify this 

substrate (Figure 3.7b). To determine the optimum reaction time to maximize modification of the 

dns-GCVDS substrate while minimizing dns-GCVLS prenylation, a reaction time course was 

performed to monitor RL FTase-catalyzed prenylation of both peptide substrates with the FPP 

analogue (2). Prenylation of the dns-GCVLS substrate with FPP analogue (2) by the RL FTase is 

not detectible before approximately 3 hours reaction time as monitored by HPLC, whereas 

modification of the dns-GCVDS peptide is more rapid with evidence of prenylated product by 1 

hour (Table 3.2). This time course allows us to optimize our reaction time, increasing the amount 

of dns–GCVDS prenylated with FPP analogue (2) while minimizing prenylation of dns–GCVLS.  
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Figure 3.7 RL FTase-catalyzed prenylation of dns-GCVDS and dns-GCVLS in the presence 

of 10 M FPP analogue (2). (A) Prenylation reaction with dns-GCVDS; product peak is observed 
at 14.3 min retention time. (B) Reaction with dns-GCVLS; product preak is observed at 17.6 min 
retention time with unreacted peptide substrate detected at 6.6 min. 

 

 

A

B
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Table 3.2 Comparative extent of reaction for RL FTase-catalyzed prenylation with dns-

GCVDS and dns-GCVLS 

  

  

 

 
Dns-GCVDS reacts >90% with RL FTase and FPP analogue (2) within 5 hours while 

prenylation of dns-GCVLS is only detectible after 3 hours. “n.d.” denotes no detection of 

product peak. Reaction conditions: 100 nM FTase , 10 µM analogue (2), 3 µM peptide substrate 

(dns-GCVLS or dns-GCVDS), 5 mM MgCl2, 50 mM NaHEPPSO, and 5 mM TCEP. 
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3.4 Examining RL FTase selectivity between dns–GCVDS and dns– GCVLS peptide 

substrates in direct competition reactions  

While the studies described above provided insight into the substrate specificity of RL 

FTase in the presence of functionalized FPP and differing peptides, these reactions did not directly 

examine the ability of RL FTase to selectively catalyze  prenylation of the dns-GCVDS substrate 

in the presence of competing peptides. As these peptides have distinct retention times on HPLC in 

both their unmodified and prenylated forms, prenylation of both peptides can be monitored 

simultaneously in reactions containing both peptides in direct competition for prenylation by RL 

FTase. This competition experiment more closely resembles the reaction that will take place in 

cell lysates when attempting to isolate a protein of interest.  

In the presence of both peptides substrates at equal concentrations (3 M), RL FTase 

preferentially catalyzed prenylation of the dns-GCVDS peptide in the presence of FPP analogue 

(2). No prenylated product from reaction with the dns–GCVLS peptide was observed until after 8 

hours reaction time (Table 3.3). Modification of the dns–GCVDS peptide was observed within 30 

minutes (chromatograms for 30 min and 8 hour reaction time points provided in Figure 3.8). In 

competition for RL FTase, dns-GCVDS is more active than dns–GCVLS and an optimal 

incubation time for the prenylation reactions for isolation of target proteins was experimentally 

determined. 
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Table 3.3 Competition for farnesylation between dns-GCVDS and dns-GCVLS 

In competition, dns-GCVDS shows evidence of prenylation by RL FTase and aryl aldehyde FPP 

analogue as early as 30 min while dns-GCVLS prenylation is not observed until 8 hours. Reaction 

conditions: 100 nM FTase , 10 µM FPP analogue (2), 3 µM peptide substrate of each, dns-GCVLS 

and dns-GCVDS, 5 mM MgCl2, 50 mM NaHEPPSO, and 5 mM TCEP. 
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Figure 3.8 HPLC analysis of dns-GCVDS and dns-GCVLS direct competition prenylation 

reactions with RL FTase. Retention times are as follows: dns-GCVDS unreacted – 4.1 min (30 

min), 3.6 min (8 hours); dns-GCVLS unreacted – 7.3 min (30 min), 6.7 (8 hours); dns-GCVDS 

product – 14.6 min (30 min), 14.2 min (8 hours); dns-GCVLS product – 17.7 min (8 hours) Large 

peak at ~2 min is due to buffer and is present in buffer-only control injection. 
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3.5 Design and expression of fluorescent reporter proteins for validating FTase variant 

protein labeling 

To confirm the ability of engineered FTase variants to catatlyze modifications of folded 

proteins, TagRFP (red fluorescent protein) and eGFP (green fluorescent protein) fluorescent 

proteins were designed to serve as target and competitor proteins for RL FTase-catalyzed 

prenylation (Figure 3.9). Fluorescent proteins allow for facile visual monitoring of protein 

expression and for probe protein detection during and after protein pulldown. Use of both eGFP 

and TagRFP as target and competitor proteins, respectively, allows for a direct measure of not only 

the amount of target protein being immobilized (via fluorescence) but as an easy means of 

measuring the amount of any competitior protein which may be labeled and captured as well.  

To serve as probes for FTase activity, these proteins required addition of a C-

terminal“CaaX” motif through PCR and subsequent cloning. As stated previously, the engineered 

RL FTase variant recognizes a -GCVDS target sequence, and a –GCVLS sequence serves as a 

competitor sequence representing natural FTase substrates. As a negative control, a probe protein 

with a–GSVDS C-terminal sequence was also designed. In this protein, replacement of the “CaaX” 

motif cysteine with a serine blocks prenylation by removing the thiol sidechain required for the 

thioether bond present in prenylated proteins. The reporter protein sequences TagRFP-GCVDS, 

TagRFP-GCVLS, and TagRFP-GSVDS proteins were cloned into the CDFDuet-1expression 

vector, which contains a streptomycin resistance gene, while the eGFP-GCVDS protein was 

cloned into pJExpress-414 vector which carries ampicillin resistance. (Vectors were a gift from 

Mark DiStefano, University of Minnesota.) Use of these two expression vectors allows for probe 

protein expression in separate samples alone or as a co-expression within the same cells using 

simultaneous selection with both ampicillin and streptomycin. Each bacterial expression vector 
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also contains a 6x-HisTag upstream of each cloning site for future purification of the probe proteins 

proteins, if needed. The sequences of the final expression vectors were confirmed through DNA 

sequencing (GenScript, Inc). 
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Figure 3.9 Design of protein probes for bioorthogonal labeling using RL FTase and FPP 

analogues. The target protein was designed as eGFP while competitor and negative control 

sequences were designed into TagRFP.  
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3.6 Isolation of –GCVDS tagged protein on hydrazide beads from bacterial lysates via 

hydrazone ligations 

 Two approaches were used for isolation of C-terminally tagged -GCVDS proteins from 

bacterial lysates using RL FTase and FPP analogue (2). The first utilizes the pulldown of the 

aldehyde-functionalized proteins using hydrazide-functionalized agarose beads, as described in 

section 3.1.15 A general overview of the immobilization is provided in Scheme 3.3. 

 During the immobilization and release reactions, measurements of both UV-Vis 

absorbance (555 nm and 488 nm for TagRFP and eGFP, respectively) and fluorescence 

(excitation/emission wavelength of 555/585 or 488/515 for TagRFP and eGFP, respectively) were 

taken at each step during the procedure to track the fluorescent protein, determine potential protein 

loss, and observe evidence of immobilization/release from the hydrazide beads. Absorbance 

measurements of protein immobilized to the hydrazide beads were found to be non-reproducible 

due to settling of the beads and high background arising from light scattering. Initial 

immobilization attempts were performed using varying initial reaction volumes of 500 µL, 1 mL, 

or 10 mL prenylation reactions containing 2.5 µM of fluorescent protein in bacterial lysates based 

on UV-Vis absorbance of the lysate. These reactions are then concentrated to 500 µL, if necessary, 

before being run through a NAP-5 gravity flow desalting column (GE Healthcare) to remove 

excess FPP analogue (2) via gel filtration to avoid competition of protein immobilization to the 

hydrazide resin by free aldehyde analogue. It was found that 10 mL reaction volumes produced 

enough protein to efficiently track immobilization as described below. 
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Scheme 3.3 A general overview for the immobilization of aldehyde-functionalized 

prenylated proteins.  PB = phosphate buffer, KCl = 50 mM potassium chloride 
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Hydrazone bond formation between the prenylated protein and resin was catalyzed with the 

addition of m-phenylenediamine, consistent with literature reports.34 Protein immobilization by 

hydrazone formation was followed by washing of the column with phosphate buffer and KCl to 

remove nonspecifically bound protein, before removal the resin from the column for analysis and 

subsequent release of the immobilized protein.  

 While tracking fluorescence during the procedure, a small amount of fluorescence was 

detected on the hyrdrazide resin after immobilization. To confirm that these small fluorescence 

readings were evidence of protein immobilization, negative controls were performed through 

several different immobilization conditions in which WT FTase, endogenous FPP, or –GCVLS 

tagged protein replaced the use of RL FTase, aryl FPP analogue, or –GCVDS tagged protein, 

respectively. Under these conditions, no immobilization on hydrazide resin should be observed as 

indicated by presence of the target protein in the flow-through and PB or KCl washes with no 

fluorescence detection on the resin. UV-Vis and fluorescence data confirmed that all protein 

loaded onto the hydrazide resin was present in the flow-through or wash steps in these controls, 

with no protein being detected on the resin (Table 3.4).  

There was evidence of target protein immobilization using this method, as evidenced by a 

positive fluorescence reading at 555 nm when testing the resin for the presence of TagRFP. 

However, the technique was found inefficient with only about 50% of the total target protein found 

to be immobilized and released (Example #1, Table 3.5). Two hypotheses were tested as to why 

the immobilization was not more efficient. A second pulldown (Example #2, Table 3.5) tested the 

hypothesis that the amount of hydrazide resin used may not have a sufficient binding capacity to 

capture a large amount of the target protein. This theory was tested by doubling the amount of 

hydrazide resin used for immobilization, from 300 µL to 600 µL. A third pulldown (Example #3,  
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Table 3.4 Control experiments for protein immobilization using hydrazide resin 

 
Controls include (left to right): Use of WT FTase with TagRFP-GCVDS and aryl aldehyde FPP 

(2), RL FTase with FPP and TagRFP-GCVDS, and RL FTase with aryl aldehyde FPP (2) and 

TagRFP-GCVLS. Total protein amounts were calculated by first using Beer’s Law (ε=Abc) at 555 

nm for TagRFP to determine molar concentration. The concentration was then converted to total 

protein using the volume of the sample and the MW of TagRFP-GCVDS (28 kDa); n.d. = not 

determined 
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Table 3.5) tested the hypothesis that the reaction volume was too large for efficient prenylation. 

The theory was tested by performing the reaction on a smaller scale with the same total protein 

through the use of 10 - 1 mL reactions in low-adhesion tubes before combining them into the 10 

mL total volume after overnight reaction. In all three trials under these differing conditions, 

immobilization and release of the aldehyde-functionalized TagRFP-GCVDS protein was observed 

via fluorescence (Table 3.5).  

When comparing the three different pulldown conditions, pulldown #2 results were 

comparable to those previously observed in pulldown #1 with a recovery of 0.04 mg protein. A 

small improvement in pulldown #3 was observed with recovery of 0.07 mg from an initial 0.31 

mg protein but much of the sample was still being lost after immobilization in the flow through.   

After evidence of successful isolation and release in pulldown #1 as reflected UV-Vis and 

fluorescence detection of TagRFP, it was decided to track UV-vis absorbance measurements at 

time points throughout pulldowns #2 and #3 that would monitor the progress of immobilization 

and release of the protein (Figure 3.10). A decrease in protein concentration in the supernatant was 

observed during the first thirty minutes of the two hour immobilization as the protein was isolated 

to the resin. Release of the protein was observed to occur more slowly over the course of 1-3 hours 

in both of the pulldown/release reactions monitored.  

 As a complement and verification for the spectroscopic measurements of protein release 

described above, the supernatant from the resin release reactions was analyzed by gel 

electrophoresis followed by Coomassie staining to detect total protein and anti-His6 Western 

blotting to specifically detect the target protein containing a His6 affinity tag. These analyses 

provided evidence of release of the immobilized protein, but the detection of released target 
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Table 3.5 Tracking of total protein throughout three pulldowns. 

 
Total protein amounts were calculated by first using Beer’s Law (ε=Abc) at 555 nm for TagRFP 

to determine molar concentration. The concentration was then converted to total protein using the 

volume of the sample and the MW of TagRFP-GCVDS (28 kDa); n.d. = not determined, n.a. = not 

applicable 
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protein was inconsistent between trials (Figure 3.11). Although UV-Vis absorbance and 

fluorescence readings provide evidence for successful release of protein in all three trials, , no 

bands consistent with the target protein were present in the “release” lane of the Coomassie stained 

gel or Western blot for pulldown #3. With these inconsistent results, the question arises as to 

whether the issue of immobilization and release lies in the immobilization of the protein on the 

resin or in the ability of RL FTase to prenylate a full length protein with enough efficiency to allow 

subsequent labeling and isolation. Chapter 4 answers the latter question through development of a 

new technique for detecting protein lipidation. This work aimed and was successful in showing 

successful and complete prenylation of eGFP-GCVDS by RL FTase under multiple conditions.  
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Figure 3.10 Monitoring of isolation and release of His6-TagRFP-GCVDS via UV-Vis 

absorbance at 555 nm over time. A. Pulldown #2, B. Pulldown #3; 1) immobilization, 2) 

release 
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Figure 3.11 Coomasie staining and anti-His  Western Blot analysis of hydrazide 

immobilization of His6-TagRFP-GCVDS. A) Pulldown #1, B) Pulldown #2, C) Pulldown #3 

(see Table 2) Legend: (C) His6-TagRFP control, (FT) flow-through after immobilization reaction,  

(PB) PB wash of resin, (KCl) KCl wash of resin, (R) supernatant after release of protein from 

resin. His6-TagRFP-GCVDS = 28 kDa 

 

  

 



143 
 

3.7 Streptavidin beads and biotin-hydrazide as an alternative pulldown system 

 While the use of hydrazide beads to isolate functionalized prenylated protein shows 

promising results, inconsistency between trials led us to another alternative method for use of 

biorthogonal selectivity and subsequent pulldown of target proteins. This alternative utilizes 

biotin-streptavidin interactions through use of a hydrazide-linked biotin and streptavidin beads 

(Scheme 3.4).  The interaction between biotin and streptavidin has one of the highest reported 

affinities with a Kd of ~10-14 M.35 While this interaction is a popular tool for protein isolation,36-38 

this high affinity leads to issues in retrieving proteins after binding to the streptavidin beads used 

for isolation. Using hydrazone ligation chemistry, functionalized protein with FPP analogues can 

be retrieved from streptavidin beads using hydroxylamine cleavage of the hydrazone bond. This 

will leave the hydrazide-biotin still bound to the streptavidin but release the protein with the FPP 

analogue “tag” intact. To release the immobilized protein, hydroxylamine is added to the resin to 

reverse the hydrazone bond via oxime formation with m-PDA being used as a catalyst.  

 As done previously for pulldowns with hydrazide beads, fluorescent fusion proteins 

TagRFP-GCVDS or eGFP-GCVDS were used to monitor and track pulldown and release of 

functionalized protein. Readings of both UV-Vis absorbance (555 nm and 488 nm for TagRFP and 

eGFP, respectively) and fluorescence (excitation/emission wavelength of 555/585 or 488/515 for 

TagRFP and eGFP, respectively) were taken at each step during the procedure to track the 

fluorescent protein, determine potential protein loss, and observe evidence of 

immobilization/release from the streptavidin beads (Scheme 3.5). Absorbance measurements of 

protein immobilized to the streptavidin beads were found to be non-reproducible due to settling of 

the beads and high background arising from light scattering, resulting in only fluorescence 

measurement being used for monitoring of bead-bound proteins. 
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Scheme 3.4 Hydrazide-biotin labeling of functionalized protein allows for isolation on 

streptavidin beads Hydrazide bond is shown in red and streptavidin bead is shown in blue.  
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Scheme 3.5 Immobilization of target proteins using aryl aldehyde FPP (2) and hydrazide-

biotin.  

  

 

 

1:10 addition of 50 mM hydrazide-biotin 
in DMSO to a final concentration of 5 mM

Incubate with mixing for 2 hours at room 
temperature, then analyze via SDS-PAGE 
and Streptavidin blot
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Using bacterial lysates, prenylation with FPP analogue (2) was performed as previously 

described above and as shown in the flow chart above. Biotinylation was performed using 1 mL 

total volume prenylation reactions with 2.5 µM of fluorescent protein based on UV-Vis absorbance 

of the lysate. For several trials of the biotin-streptavidin pulldown protocol, samples of TagRFP-

GCVDS were taken at each step in the biotinylation process for both fluorescence analysis as 

before and detection via SDS-PAGE gels using Coomassie stain and streptavidin-HRP blotting 

(Figures 3.12 and 3.13). In trial #1, TagRFP-GCVDS is present throughout the preparation and 

biotinylation process evidenced by bands at 28 kDa, visualized by Coomassie stain. Exposure of 

proteins to streptavidin-HRP after transfer from SDS-PAGE gels to a PVDF membrane and 

blocking with 3% BSA in TBST produces a band at the correct size in the biotinylation lane only. 

These two gels together provides evidence for retention of the target protein throughout 

prenylation with FPP analogue (2), NAP-5 desalting column, and biotinylation which resulted in 

the target protein biotinylated as evidence by lane 3 in the Streptavidin blot.  
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Figure 3.12 Results of TagRFP-GCVDS immobilization using biotin and streptavidin - Trial 

#1. SDS PAGE and Streptavidin blot analysis of TagRFP-GCVDS Lysate is bacterial lysate prior 

to prenylation, L) Ladder, 1) after overnight prenylation, 2) after elution on NAP-5 column, 3) 

after biotinylation. Red arrow denotes band believed to be biotinylated target protein. His6-

TagRFP-GCVDS = 28 kDa. Streptavidin-HRP = 1:10,000 dilution 
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Figure 3.13 Results of TagRFP-GCVDS immobilization using biotin and streptavidin - Trial 

#2. SDS PAGE and Streptavidin blot analysis of TagRFP-GCVDS Lysate is bacterial lysate prior 

to prenylation, L) Ladder, 1) bacterial lysate prior to prenylation, 2) after overnight prenylation, 3) 

after concentration to 500 uL, 4) after elution on NAP-5 column, 5) after biotinylation. It is unclear 

if either of the two bands in lane 5 are the target protein. His6-TagRFP-GCVDS = 28 kDa. 

Streptavidin-HRP = 1:20,000 dilution 
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In Trial #2, protein loss can be seen after elution from the NAP-5 column which coincides 

with loss of total protein in the fluorescence data of Table 3.2. Fortunately, sufficient protein is 

retained to visualize TagRFP-GCVDS before and after biotinylation. Unlike Trial #1, two bands 

are present in lane 5 of the Streptavidin blot for trial #2, which was performed with half the amount 

of Streptavidin-HRP as in Trial #1. The close proximity of the bands makes it difficult to determine 

which band represents an interaction with biotin or that biotinylation occurred in this trial. The 

appearance of two bands indicated that optimization of streptavidin blot conditions was needed 

before further analysis of biotinylated products during the streptavidin bead isolation and release 

of the target protein.  

In the two trials above, 3% BSA in TBST was used to block PVDF membranes before 

exposure to streptavidin-HRP as per the manufacturer’s recommendation. BSA is typically 

preferred over non-fat milk in streptavidin blots as it has been found that using the traditional non-

fat milk blocking procedure can result in non-specific binding of streptavidin to the membrane. 

The two blots above were also incubated with streptavidin-HRP overnight at room temperature as 

opposed to incubation at 4˚C. To optimize the results of streptavidin-HRP blotting, several changes 

to these conditions were explored. Blocking solution was changed to 10% non-fat milk (NFM) in 

TBST with rocking at room temperature for 3 hours. The 1:10,000 dilution of streptavidin-HRP 

was repeated as in Trial #1 with incubation at 4˚C overnight. As shown in Figure 3.14, optimization 

of these two conditions yields clean, single bands for both previously run trials at the expected size 

of TagRFP-GCVDS after adjustment of both the blocking solution and streptavidin-HRP 

incubation temperature. 
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Figure 3.14 Optimization of streptavidin blot detection of TagRFP-CVDS following 

functionalization with biotin hydrazide. Trials 1 and 2 above were analyzed under new 

conditions to yield single bands at the appropriate size. His6-TagRFP-GCVDS = 28 kDa. 

Streptavidin-HRP = 1:10,000 dilution 
 

  

55

40

35

25

Trial #1           Trial #2



151 
 

3.8 Conclusions 

 Prenylation presents a promising avenue for chemoselective protein immobilization. The 

use of a naturally occurring protein modification with the substrate specificity of a mutant enzyme 

would allow for precise protein immobilization with minimal endogenous protein interference 

during purification. While this technique has shown promising results, inconsistent success in 

release of immobilized protein makes this work difficult to bring to fruition at a usable level. With 

inconsistent results from both methods of protein isolation, the question is still raised as to whether 

or not these full length proteins are undergoing efficient prenylation with RL FTase and 

functionalized FPP. In Chapter 4 we describe a new technique for direct detection of full-length, 

prenylated proteins from both purified and cell lysate samples. This work confirms complete 

prenylation of our target proteins prior to immobilization and provides evidence that the issue of 

immobilization is not at the level of prenylation. 

 While this work describes a new avenue for bioorthogonal labeling of proteins in the 

presence of competitor proteins, further optimization with consistent results would be needed for 

this work to be considered at a level which is useful for protein research. Avenues of optimization 

include increasing the scale of total protein being used, altering the concentrations of m-PDA or 

hydroxylamine used in both the pulldown and release steps, and controlling for loss of protein 

during NAP-5 and concentration steps. If optimization is achieved, a target model protein should 

be chosen for isolation. The target protein should be one in which the C-terminal sequence can be 

varied to allow for the addition of the –GCVDS motif necessary for the chemoselective pulldown 

approach.  
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3.9 Materials and Methods 

3.9.1 Purification of RL FTase using FPLC: Chemically competent BL21(DE3) E. coli were 

thawed on ice for 15 minutes. An aliquot of each plasmid containing the RL FTase α and β subunit 

genes (100 ng) was added to the cells (50 L). Bacteria were incubated on ice for 30 min before 

heat shocking at 42⁰C for 10 seconds with subsequent incubation on ice for 5 min. An aliquot (50 

L) of cells were then plated on warm LB-Amp plates were incubated overnight at 37°C. A colony 

was chosen from the plate and inoculated into a 5 mL culture of LB media with ampicillin (final 

concentration 100 µg/mL). Cultures were incubated and shaken at 225 rpm for 4 hours at 37°C. 

Cultures were then added to 1L rich media (20 g tryptone, 10 g yeast extract, 5 g NaCl, 1% glucose, 

and 100 µg/mL ampicillin) and grown at 37°C with shaking (225 rpm) until an OD600 of between 

0.6-0.8 was reached as monitored using a NanoDrop 2000c spectrophotometer. Cultures were then 

induced with 0.5 mM IPTG. Cultures were grown 14 hours at 25⁰C with shaking (225 rpm). Cells 

were harvested by centrifugation and resuspended in 50 mL buffer (50 mM HEPES – pH 7.8, 10 

mM ZnCl2, 2 mM TCEP). Cell resuspension was incubated at 37°C for 45 min in the presence of 

0.625U/mL benzonase, 0.25 mg/mL lysozyme, and 17 µg/mL PMSF before incubation on ice. 

Lysis of cell culture was done using a Misonix Sonicator (Langford lab, Syracuse University) 

using 8 rounds of 30 seconds sonication with 30 seconds rest while on ice (pulse method). Lysates 

were centrifuged at 4°C and supernatant was transferred to a clean flask. At 4°C, precipitation of 

DNA was performed through addition dropwise of 1/10th volume of 10% (w/v) streptomycin 

sulfate. Precipitation was incubated for 30 min with gentle stirring. Precipitated DNA was then 

separated from the sample through centrifugation at 4°C before clarification of the final sample 

though filtration with a 0.45 µm filter.  
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The prepared sample was purified using a AKTAprime Plus FPLC, first on a 15 mL HiTrap 

DEAE FF column (GE Healthcare) using 75 mL running buffer (50 mM HEPES – pH 7.8, 10 µM 

ZnCl2, 2 mM TCEP) to equilibrate the column before addition of sample. A 30 mL wash was then 

done with running buffer before elution. Elution buffer (50 mM HEPES – pH 7.8, 10 µM ZnCl2, 

50 mM NaCl, and 2 mM TCEP) was used to elute the protein over the course of 300 mL elution 

with fractions containing protein then concentrated using a PALL Macrosep 10 MWCO 

concentrator to a volume of 2 mL following manufacturer’s protocol. Concentrated sample was 

then desalted using a 10 mL HiTrap desalting column (GE Healthcare) with running buffer 

following the AKTAprime Plus FPLC desalt application template. Desalted sample (15 mL) was 

then loaded onto a 15 mL HiTrap Q sepharose column (GE Healthcare) with an equilibration with 

75 mL running buffer before loading of the sample. The column was then washed with 30 mL 

running buffer before elution using 500 mL elution buffer into 7 mL fractions. The resulting 

product was then concentrated and desalted as described above before a final concentration was 

done to a volume of 2 mL. This sample was divided into 20 L aliquots before being flash frozen 

with liquid nitrogen and storage at -80°C. Enzyme concentration was measured using absorbance 

at 280 nm using a NanoDrop 2000c spectrophotometer. 

 

3.9.2 PCR mutagenesis of pJExpress-414_eGFP-GCVIA to eGFP-GCVDS: Forward and 

reverse primers for the isoleucine/alanine mutation to arginine/serine consisted of two point 

mutations and were synthesized by Integrated DNA Technologies. Primers were dissolved in 100 

L of ultra pure water and their concentrations were determined by UV absorbance of 260 nm 

using a NanoDrop 2000c spectrophotometer. The PCR reaction (50 L) contained 10x PFU Turbo 

buffer (5 L), 10mM dNTPs (1 L), reverse primer(125 ng), forward primer (125 ng), and 
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template plasmid (10 ng). The reaction was mixed and centrifuged before adding PFU Turbo DNA 

polymerase (1 L, 2.5U/L). PCR mutagenesis was performed on a BioRad MyCycler under the 

following thermal program: Initial denaturation (95˚C, 1 min.); eighteen cycles of denaturation 

(95˚C, 50s), annealing (60˚C, 50s), and extension (68˚C, 12min); final extension (68˚C, 12min); 

and a final hold (10˚C, ∞). The reaction was then digested with DpnI (1 L, 10U/L) for 1 hour 

at 37⁰C. 18 PCR mutagenesis reactions were transformed into chemically competent E.coli for 

plasmid isolation using the Z-competent transformation system (Zymo Research). Chemically 

competent DH5α E. coli were thawed on ice for 15 minutes. An aliquot of the PCR reaction (5 L) 

was added to DH5α cells (50 L) and incubated on ice for 30 min before plating cells on warm 

LB-Amp plates. Cells were incubated overnight at 37°C. Three colonies were chosen from the LB-

Amp plate and inoculated into separate 5 mL culture of LB media with ampicillin (final 

concentration 100 g/ml). Cultures were incubated overnight at 37°C with shaking (225 rpm). 

After incubation, glycerol stocks were made for each culture by adding 500 L of cultured cells 

into 500 L of 20% glycerol in water. These were stored at -80°C. The remaining plasmid DNA 

was then purified using BIO Basic Inc. EZ-10 Spin Column Plasmid DNA Minipreps Kit following 

the manufacturer’s protocol. Site mutation from the sequence IA to DS was verified using DNA 

sequencing (Genscript, Inc).  

 

3.9.3 PCR construction of TagRFP to include -GCVDS, -GCVLS, or -GSVDS C-terminal 

motifs and insertion into expression vectors: One round of PCR was performed for the extension 

of TagRFP in the TagRFP-N vector (Evrogen) with either –GCVDS, -GCVLS, or –GSVDS C-

terminal motifs in the 3’ primers along with HindIII restriction sites for CDF-Duet-1 cloning. The 

5’ primer included addition of the EcoRI restriction site for CDF-Duet-1 cloning For this PCR, 
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forward and reverse primers were designed by Dr. James Hougland and synthesized by Integrated 

DNA Technologies. Primers were dissolved in 100 L of ultra pure water and their concentrations 

were measured using a NanoDrop 2000c spectrophotometer at a UV absorbance of 260 nm. The 

PCR reaction (50 L) contained Standard OneTaq buffer (10 L), 10mM dNTPs (1 L), reverse 

primer (125 ng), forward primer (125 ng), and template plasmid (10 ng). The reaction was mixed 

and centrifuged before adding OneTaq DNA polymerase (0.25 L, 5U/L). PCR was performed 

on BioRad MyCycler under the following conditions: Initial denaturation (94°C, 1 min.); thirty 

cycles of denaturation (94°C, 30s), annealing (56°C, 1min.), and extension (68°C, 2min); final 

extension (68°C, 5min); and a final hold (10°C, ∞). After PCR, products were purified using BIO 

Basic Inc. EZ-10 Spin Column PCR Purification Kit following the manufacturer’s instructions. A 

double digestion (20 L) was then performed. The reaction consisted of 10x NEB buffer 4 (2 L), 

100x BSA (0.2 L), plasmid DNA or PCR product that will act as insert (3 g), and restriction 

enzymes depending on the vector being cloned into: EcoRI ( 1 L, 20 U/L) and HindIII (1 L, 

20U/L) for ligation into CDF-Duet-1. The reactions were mixed and centrifuged prior to adding 

enzymes and the reactions were incubated for 2 hours at 37⁰C. Digested DNA was then purified 

using 0.8% agarose gel (1x TAE buffer, 120 V). DNA was excised from the gel and purified using 

BIO Basic Inc. EZ-10 Spin Column DNA Gel Extraction Kit following the manufacturer’s 

instructions. Ligation reactions (40 L) contained: 2x quick ligase (20 L), vector DNA (200 ng), 

insert DNA 20 (85.7 ng), and quick ligase (1 L). Controls contained the same reaction 

components excluding the enzyme. The reaction was incubated at room temperature for 5 minutes 

then placed on ice before transformation. Chemically competent DH5α E. coli cells were thawed 

on ice for 15 minutes. An aliquot of the ligation reaction (5 L) was added to the cells (50 L) and 

kept on ice for 30 min. before plating. Cells were plated on prewarmed LB-Strep plates for CDF-
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Duet-1 vector ligations. Plates were then incubated overnight at 37⁰C. Three colonies were chosen 

from each plate and inoculated into separate 5 mL cultures of LB media with streptomycin (final 

concentration 100 g/mL). Cultures were incubated and shaken at 225 rpm overnight at 37°C. 

After incubation, glycerol stocks were made for each culture by adding 500 L of cultured cells 

into 500 L of 20% glycerol in water. These were stored at -80°C. The remaining plasmid DNA 

was then purified using BIO Basic Inc. EZ-10 Spin Column Plasmid DNA Minipreps Kit following 

the manufacturer’s protocol. Successful ligation was confirmed through an analytical digest (500 

ng scale) using EcoRI and HindIII restriction enzymes (0.5 L each) and the appearance of bands 

matching the size of the insert on 0.8% agarose gel (1x TAE buffer, 120V). 

 

3.9.4 Expression of eGFP and TagRFP proteins in BL21(DE3) cells: Vectors described above 

were transformed into competent E.coli for plasmid isolation using the Z-competent 

transformation system (Zymo Research). Chemically competent BL21(DE3) 21 E. coli were 

thawed on ice for 15 minutes. An aliquot of each plasmid (100 ng) was added to the cells (50 L). 

These were incubated on ice for 30 min before heat shocking at 42⁰C for 10 seconds with 

subsequent incubation on ice for 5 min. SOC media (950 L) was added to the cells and incubated 

at 37⁰C for 1 hour with shaking (225 rpm). An aliquot (50 L) of cells were then plated on warm 

LB-Strep plates (50 mg/mL streptomycin sulfate). Cells were incubated overnight at 37°C. A 

colony was chosen from each plate and inoculated into separate 5 mL cultures of LB media with 

streptomycin (final concentration 100 g/mL for both). Cultures were incubated and shaken at 225 

rpm overnight at 37°C. An aliquot of each culture (100 L) was inoculated into 10 mL of fresh 

LB media containing streptomycin (final concentration 100 g/mL) and incubated at 37⁰C with 

shaking (225 rpm) until an OD600 of between 0.6-0.8 was reached as monitored using a NanoDrop 
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2000c spectrophotometer. Cultures were then induced with 0.5 mM IPTG (10 L/mL of culture 

using a 500 mM IPTG stock solution). Cultures were then grown 14 hours at 28⁰C with shaking 

(225 rpm). Aliquots of 1 mL cultures were then harvested and stored at -80˚C. SDS-PAGE and 

Coomasie staining confirmed the expression of target proteins in cells.  

 

3.9.5 Titration of FB lysis reagent, ampicillin, and LB media into RL FTase reactions: Prior 

to reactions, dns-GCVDS or dns–GCVLS peptide (20 M) was incubated in the presence of 1x 

reaction buffer (50 mM NaHEPPSO – pH 7.8. 5 mM TCEP) and 5 mM MgCl2 (50 L total) for 

20 minutes. Additionally 0, 2, 5, 10, or 20 L of either FB lysis reagent (1/10th diluted stock), 

amipicillin, or LB media were titrated into these reactions. After incubation, reactions were 

initiated with a reaction mixture (50 L containing 100 nM RL FTase, 40 µM FPP, 5 mM MgCl2, 

and 1x reaction buffer and incubated at RT for 14 hours before adding an equal volume of 20% 

acetic acid in isopropanol to stop the reaction. Reactions (100 L) were analyzed via HPLC 

(Zorbax EclipseXDB-C18 column) using a linear gradient of 30:70 TFA in water 

(0.05%):acetonitrile (HPLC grade) to 0:100 TFA in water(0.05%):acetonitrile with a flow rate of 

1 mL/min over 30 min. The column was then equilibrated for 2 min back to the original 30:70 

ratio. Peptides and products were detected by fluorescence with excitation/emission of 340/496 

nm.  

3.9.6 Monitoring of RL FTase reactions with aryl aldehyde FPP analogue via HPLC: Prior 

to reactions, dns-GCVDS or dns–GCVLS peptide (6 M) was incubated in the presence of 1x 

reaction buffer (50 mM NaHEPPSO – pH 7.8. 5 mM TCEP), 1/10th diluted FB lysis reagent (10 

L) and 5 mM MgCl2 (50 L total) for 20 minutes in 0.65 mL low-adhesion eppendorf tubes. For 

titration of the aryl aldehyde analogue, reactions were initiated with a reaction mix (50 L) 
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containing 100 nM RL FTase or WT FTase, 5 mM MgCl2, 1x reaction buffer, and 10, 30, 70, or 

100 M aryl aldehyde analogue. Reactions were incubated at RT for 14 hours before adding an 

equal volume of 20% acetic acid in isopropanol. Reactions were analyzed via HPLC as outlined 

in section 3.9.5. For timed reactions between RL FTase, aryl aldehyde analogue, and either dns-

GCVLS or dns-GCVDS, reactions conditions were as described above with final concentrations 

of 50 nM RL FTase, 10 M aryl aldehyde analogue, 5 M dns-GCVLS or dns-GCVDS. Time 

points were taken at 10 and 30 min, and 1, 2, 3, and 5 hours. 

 

3.9.7 Competing reactions between dns-GCVDS and dns-GCVLS with RL FTase and aryl 

aldehyde analogue: Reactions conditions were as described in section 3.9.6 with a final 

concentration of 10 M aryl aldehyde analogue, 50 nM RL FTase and 3 M each of dns-GCVDS 

and dns-GCVLS. Reactions were run at RT and stopped using 20% acetic acid in isopropanol at 

time points of 30 min, 1 2, 3, 4, 5, 8, and 16 hours. After all time points had been taken, analysis 

using HPLC was done as described previously. 

 

3.9.8 Reactions for Steady-state analysis: Reactions consisted of a peptide mix of 0.5-3.0 µM 

dns-GCVDS or dns-GCVLS, reaction buffer (50 mM HEPPSO, pH 7.8 and 5 mM TCEP) and 10 

mM MgCl2 incubated for 20 min at RT to reduce disulfide bonds. To this mix was added an 

enzyme mix consisting of 100 nM RL FTase or 20 nM WT FTase, 10 μM FPP, and 10 mM MgCl2 

in reaction buffer at 25 °C in a low-adhesion Eppendorf tube. Fluorescence at 340/520 nm was 

measured as a function of time, over 2 hours, in a BioTek H1 Synergy plate reader from which the 

initial linear velocity (slope) as well as the reaction end point were determined. The total change 

in fluorescence (amplitude, amp) was divided by the initial concentration of peptide for each 
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reaction to yield a conversion factor (conv), changing relative fluorescence units to concentration 

of product. Velocity (µM product/sec) was determined through the equation V = slope/conv. The 

steady-state kinetics were determined from a fit of the Michaelis−Menten equation to the initial 

velocity divided by enzyme concentration (V/E) in the presence of saturating FPP. 

 

3.9.9 Pulldown of  TagRFP-GCVDS on hydrazide beads (10 mL scale): Several 1 mL aliquots 

(3 – 1.5 mL samples) of Bl21(DE3) cells containing TagRFP-GCVDS was thawed on ice. These 

aliquots were pelleted at 10,000xg for 2 min and all three pellets were resuspended in supernatant 

together as a 1 mL total sample. To 900 L of this cell suspension, 100 L of Fast Break lysis 

reagent was added and the mixture was moderately shaken for 15 min. The resulting lysate was 

centrifuged at 4°C and 1000xg for 5 min. The UV-Vis absorbance of the supernatant was measured 

on a NanoDrop 2000c spectrophotometer at 555 nm. An extinction coefficient (ε) of 100,000 was 

used for TagRFP. Fluorescence of 200 µL of this sample (excitation/emission of 555/585) was 

taken in a 96 well plate on a BioTek H1 Synergy plate reader. Prenylation was initiated  in a 10 

mL glass culture tube containing 200 nM RL FTase, 10 M aryl aldehyde analogue, 5 mM MgCl2, 

reaction buffer (50 mM NaHEPPSO – pH 7.8. 5 mM TCEP), and sufficient lysate supernatant to 

reach a final concentration of 1-2 M TagRFP-GCVDS. Supernatant containing the protein was 

incubated with reaction buffer for 20 min prior to initiation of the reaction to reduce disulfide 

bonds. The reaction was incubated for overnight at room temperature at a final volume of 10 mL. 

 The 10 mL sample was then concentrated to 500 µL, first using a 10K PALL 15 mL 

Macrosep concentrator (to 2 mL), followed by a PALL 1 mL Nanosep concentrator. Removal of 

excess FPP analogue (2) was done through use of a 0.5 mL illustra NAP-5 column (GE 

Healthcare). NAP-5 columns were equilibrated with 50 mM Tris-HCl (10 mL, pH 7.5) before 
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application of the 0.5 mL sample. Elution followed with 50 mM Tris-HCl (1.0 mL, pH 7.5) into a 

low-adhesion eppendorf tube. Concentration of the protein was calculated using UV-Vis 

absorbance of the eluent, fluorescence readings were also taken. The eluent was then added to the 

hydrazide beads. An aliquot (600 L) of Ultralink hydrazide resin slurry (Thermo Scientific) was 

added to a gravity column and allowed to settle for 15 min. Liquid present from the slurry was 

then drained from the column and the resin was washed with 0.1M phosphate buffer (3 x 500 L, 

pH 7). The bottom of the column was capped and more 0.1M phosphate buffer was added to the 

resin (300 L) in addition to the 1 mL prepared sample. Immobilization was initiated with m-

phenylenediamine (100 mM) to a final volume of 2 mL. The column was gently rocked at 25°C 

for 2 hours. The resin was then drained before being washed with 0.3M phosphate buffer, pH 7.3 

(3 x 300 µL), followed by 1M KCl in 50 mM Tris-Cl, pH 7.5 (3 x 300 L). Fluorescence was read 

on a BioTek Synergy H1 Microplate Reader using a 96-well transparent-bottom plate containing 

a 200 µL sample of the hydrazide resin. Blank control readings consisted of unreacted hydrazide 

beads washed with 1M KCl. UV-Vis absorbance and fluorescence of the flow through and 

phosphate buffer and KCl washes were also read. 

 

3.9.10 Release of immobilized protein from hydrazide resin using m-phenylenediamine: To 

immobilized resin (300 µL) was added a final concentration of 100 mM m-PDA and 200 mM 

hydroxylamine HCl. Phosphate buffer (0.3M, pH 7) was added to a final reaction volume of 1 mL 

in a low adhesion Eppendorf tube. The tube was incubated for 6 hours at RT with gentle shaking. 

The sample was spun down at 5000xg for 5 min and supernatant was analyzed by UV-Vis at 555 

nm and by fluorescence of 200 µL of the sample (excitation/emission of 555/585) taken in a 96 

well plate on a BioTek H1 Synergy plate reader. 
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3.9.11 SDS PAGE and anti-His Western blot analysis of proteins: For SDS PAGE and 

Coomasie blue staining: Each sample (15 L) was denatured by boiling at 95⁰C in 3x SDS sample 

buffer for 3 min. before loading each sample onto a 12% SDS-PAGE  gel. The gel was run at 150v 

for 1 hour.  

The gel was then visualized through Coomasie blue staining. The gel was rinsed in milli-Q water 

and covered in ~75 mL of destain solution (stock: 2L water, 1.6L MeOH, 0.4L acetic acid). Gels 

in this solution were then microwaved for 18 seconds. Destain solution was poured off and to the 

gels ~75 mL of Coomasie blue stain (stock: 0.25g Coomasie blue dye, 500 mL MeoH, 75 mL 

acetic acid) was added. The gel was microwaved for 30 seconds and then rocked in the stain for 5 

min. Coomasie blue stain was poured off and ~75 mL destain solution was added. The gel was 

rocked for 15 min before destain was poured off and fresh destain was added and rocked for 

another 15 min. After this incubation, destain was poured off and milli-Q water was added and the 

gel was rocked overnight. Gels were imaged on BioRad XRS+ gel imager.  

For anti-His Western blot analysis: Samples were run on a 12% SDS-PAGE gel until 

loading dye was removed, about 1 hour. Gels were transferred to PVDF membranes using the 

TransBlot Turbo RTA Transfer kit, following manufacturer’s instructions. Protein was transferred 

to the membrane using a BioRad TurboBlot with 3x 10 min transfers at 25 volts. Blocking was 

immediately performed using 30 mL of 10% nonfat milk in TBST. Membranes were rocked in 

blocking solution a minimum of 2 hours at room temperature. Blocking solution was then poured 

off the membranes and 10 mL of 1:60 HRP conjugated anti-His monoclonal antibody His-probe 

(H-3) (Santa Cruz Biotechnology, Inc.)  in TBST was added. The membrane was rocked overnight 
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prior to washing of membrane with 30 mL of TBST six times before incubation with SuperSignal 

West Pico Chemiluminescent Substrate (Thermo Scientific) and imaging.    

 

3.9.12 Biotinylation of TagRFP-GCVDS after functionalization with aryl aldehyde analogue: 

A 1 mL aliquot of Bl21(DE3) cells containing TagRFP-GCVDS was thawed on ice. To 900 L of 

these cells, 100 L of Fast Break lysis reagent was added and the mixture was moderately shaken 

for 15 min. The resulting lysate was centrifuged at 4°C and 1000xg for 5 min. The UV-Vis 

absorbance of the supernatant was measured on a NanoDrop 2000c spectrophotometer at 555 nm. 

This absorbance was converted to concentration in µM using Beer’s law, A = εbc, where A is the 

absorption, b is the path length of 1 cm, and c is the molar concentration. The extinction coefficient 

(ε) of 100,000 was used for TagRFP. Fluorescence of 200 µL of sample (excitation/emission of 

555/585) was taken in a 96 well plate on a BioTek H1 Synergy plate reader. Prenylation was 

initiated  in a 0.65 mL low-adhesion eppendorf tube containing 200 nM RL FTase, 10 M aryl 

aldehyde analogue, 5 mM MgCl2, reaction buffer (50 mM NaHEPPSO – pH 7.8. 5 mM TCEP), 

and enough lysate supernatant to reach a final concentration of 2.5 M TagRFP-GCVDS. 

Supernatant containing the protein was incubated with 1x reaction buffer for 20 min prior to 

initiation of the reaction to reduce disulfide bonds. The reaction was incubated for overnight at 

room temperature at a final volume of 1 mL. 

 The reaction was then concentrated to a volume of 500 L before addition of the sample 

to NAP-5 column. Removal of excess FPP analogue (2) was done through use of a 0.5 mL illustra 

NAP-5 column (GE Healthcare). NAP-5 columns were equilibrated with PBS (10 mL, pH 7.5) 

before application of the 0.5 mL sample. Elution followed with PBS (1.0 mL, pH 7.5) into a low-

adhesion eppendorf tube. Concentration of the protein was calculated using UV-Vis absorbance 
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of the eluent, fluorescence readings were also taken. 50 mM hydrazide-biotin in DMSO was then 

added to the eluent in a 1:10 ratio, giving a final concentration of 5 mM hydrazide-biotin. The 

sample was mixed for two hours at room temperature gently before being analyzed via SDS-PAGE 

gel and Streptavidin blots.   

 

3.9.13 Analysis via streptavidin HRP blot: Samples were run on a 12% SDS-PAGE gel until 

loading dye was removed, about 1 hour. Gels were transferred to PVDF membranes using the 

TransBlot Turbo RTA Transfer kit, following manufacturer’s instructions. Protein was transferred 

to the membrane using a BioRad TurboBlot with 3x 10 min transfers at 25 volts. Blocking was 

immediately performed using 30 mL of 3% BSA in TBST or 10% nonfat milk in TBST. 

Membranes were rocked in blocking solution a minimum of 2 hours at room temperature. Blocking 

solution was then poured off the membranes and a 1:10,000 dilution of Pierce High Sensitivity 

Streptavidin HRP in TBST was added (10 mL). The membrane was rocked overnight.  

 Following incubation, membranes were washed 6x in TBST, 5 min of rocking for each. 

Membranes were then treated with West Pico Chemi substrate kit following manufacturer’s 

instructions before imaging on a BioRad Imager with 500 sec exposure.   
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Chapter 4: Development of a quantitative method to analyze prenylation activity: Protein-

Lipidation Quantitation 

 

A portion of this chapter has been previously published in reference 80. Reprinted with permission 

(Appendix VIII) from Shala-Lawrence, A.; Blanden, M. J.; Krylova, S. M.; Gangopadhyay, S. A.; 

Beloborodov, S. S.; Hougland, J. L.; Krylov, S. N., Simultaneous Analysis of a Non-Lipidated 

Protein and Its Lipidated Counterpart: Enabling Quantitative Investigation of Protein Lipidation’s 

Impact on Cellular Regulation. Analytical Chemistry 2017, 89 (24), 13502-13507. Copyright 

2017, American Chemical Society 

 

Shala-Lawrence, A. and Blanden, M. J. contributed equally to the work.  

Co-author contributions include:  ASL, SMK, SSB, and SNK performed capillary electrophoresis 

and prepared electropherograms. SAG prepared mammalian cell lysates and conducted p53 

experiments.  
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4.1 Introduction 

Capillary electrophoresis (CE) is a separation technique first introduced in the 1960s in 

which target molecules are separated by travel through electrolytic solutions under the influence 

of an electric field.1-5 As the name suggests, CE is performed in small capillaries allowing 

separation of samples based on ionic mobility and non-covalent interactions. CE can also be used 

to focus, or separate and concentrate, analytes of a mixture by means of pH and conductivity 

gradients.6-7 

 While there are many ways in which to separate analytes in CE, the overall scheme is the 

same (Figure 4.1). After the sample to be analyzed is introduced into the capillary tube, analytes 

in the sample are moved by force of an electric field to a destination vial which is read by a detector. 

Ions within the sample move through the capillary at different rates in the same direction as they 

are affected by the electroosmotic flow caused by the electric field in the mobile phase. Upon 

reaching the detector, samples can be analyzed via UV-Vis absorbance or fluorescence and may 

also be coupled with mass spectroscopy.2, 5, 8-12 Separation and detection is rather quick, on the 

order of 3-30 minutes.5 

 The most commonly studied analytes by CE are nucleic acids, peptides, and small 

molecules. CE has a wide variety of uses including forensic DNA fingerprinting, pharmaceutical 

analysis, and testing for genetic abnormalities.13-21 One example of the analytical power of CE is 

in its use as a means of detection in infectious disease. This is done most commonly through 

detection of nucleic acids and recognition of sequences from specific proteins produced by the 

infectious agent.22 This is achieved through PCR-based techniques which amplify conserved or 

mutated gene sequences belonging to the microorganism prior to detection of that sequence using 

CE. 
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Figure 4.1 A general diagram of a capillary electrophoresis system. After sample injection, 

analytes flow from the anode to the cathode through an electric field before reaching a detector. 

Readout can be fluorescence or UV-Vis, for example. Separation of charged and neutral 

analytes are shown as boxes labeled +, -, and N for positive, negative and neutral, respectively. 

Circles shown in pink represent the positively charged cations present in the buffer solution.  
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In 2012, Sobral and coworkers developed a CE method called High Throughput Multiple 

Locus Variable Number of Tandem Repeat Analysis (MLVA-CE).22 This method uses several loci 

containing variable number tandem repeats (VNTR) in Staphylococcus aureus which are amplified 

through PCR and genotyped using CE to provide a quick identification of S. aureus in food sources 

that could cause food poisoning.23-24 MLVA-CE was able to successfully identify and separate all 

16 S. aureus VNTR DNA sequences from multiple sources. This one example highlights the ability 

to specialize CE for detection of a variety targets under a different means of separation. 

 Despite the diversity of this technique, there are several limitations. Separation in these 

capillaries is extremely sensitive to changes in pH and ionic strength of the mobile phase, 

sometimes causing inconsistent results. The size of the molecules is also a factor, with large 

molecules exhibiting poor separation. The work herein aims to develop a new CE method entitled 

Protein-Lipidation Quantitation (PLQ), which eliminates the limitation of analyzing large 

biomolecules through the detection and quantification of the modification state of a full length, 

lipidated protein compared to its unmodified counterpart. This method builds upon one variant of 

CE termed Micellar Electrokinetic Capillary Electrophoresis (MEKC).25 To design this new 

technique, the reality in the challenges of studying protein lipidation need to be understood and 

met with solutions as described below. 

Posttranslational modification of proteins, such as phosphorylation, glycosylation, 

ubiquitination, nitrosylation, methylation, acetylation, and lipidation, play important roles in 

cellular function and biological regulation.26-27  Among this wide range of protein modifications, 

protein lipidation plays a unique and essential role in regulating protein localization and trafficking 

within the cell by directly mediating protein-membrane interactions (see Chapter 1).  There are 

several distinct lipidation modifications, such as N-terminal myristoylation, palmitoylation, 
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prenylation of cysteine sidechain thiols, and attachment of glycophosphoinositol (GPI) groups.28-

43 However, the significance of each of the diverse lipid modifications, as well as the mechanism 

by which lipidation controls function and activity of the proteins, remain topics of intense study.  

One central challenge in studying protein lipidation has been the difficulty in measuring 

the distribution and relative populations of precursor and lipidated forms of proteins.  The lack of 

a quantitative method that could simultaneously measure the amounts of both protein forms has 

complicated quantitative analysis of the regulation, functional impact, and biological requirement 

for protein lipidation.  To date, analytical methods used to study protein lipidation have focused 

primarily on identifying lipidated proteins.44-46  In terms of protein prenylation, the earliest studies 

utilized metabolic labeling with radioactive prenyl donors or biosynthetic precursors, separating 

the prenylated product from the excess lipid donor by gel electrophoresis followed by detection by 

autoradiography.34, 47-50  Subsequent studies have employed chemically modified FPP and GGPP 

analogues containing groups allowing for protein detection by bioorthogonal chemical tagging or 

affinity detection.51-60  Proteins labeled with these analogues can be detected using either gel 

electrophoresis and/or mass spectrometry following affinity-based pulldown protein isolation.51, 

61-62  Prenylation of specific proteins can be detected within the cell using fluorescent fusion 

proteins and microscopic imaging to detect the lipidated product based on protein localization to 

cellular membranes.56, 63-66  Each of the above methods has only limited quantitative capabilities 

for measuring protein prenylation and none of them can efficiently quantitate the unmodified 

substrate. Some prenylated proteins such as H-Ras exhibit a mobility shift on gel electrophoresis 

following prenylation pathway modifications,67-68 although this behavior is considered highly 

ambiguous amongst naturally occurring prenylated proteins.  In these cases, simultaneous 

detection of both the precursor and modified forms of the prenylated protein can be achieved by 
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separation with SDS-PAGE and detection by Western blot analysis.69-70 Known limitations of 

Western blot analysis make this method only semi-quantitative. 

A quantitative understanding of the role played by protein lipidation in cells requires a 

method that measures both unmodified substrate (S) and modified product (P); an approach which 

the aforementioned techniques fall short of. In designing a suitable method, we determined three 

requirements that should be met by the approach. The first is its ability to detect both S and P with 

a known relation between their signal/concentration ratios. This allows for direct quantitation. The 

second is its ability to discriminate between signals for S and P clearly from each other. Third, for 

biological application, it should be able to examine crude cell lysates as to avoid bias of S or P 

from use of sample purification. The methods listed above find difficulty in satisfying the ability 

to identify unmodified substrate and those that do, cannot effectively separate the two species.  

In exploring analytical methods that satisfy all three requirements for efficiently separating 

the prenylated and non-prenylated forms of a protein, we can draw inspiration from the proposed 

role of protein lipidation modifications in increasing protein association with cellular membranes. 

Micellar Electro-Kinetic Chromatography (MEKC) utilizes detergent or lipid micelles to provide 

molecular separation during capillary electrophoresis (Figure 4.2).
71-73  In MEKC, a detergent such 

as SDS is used to form micelles in the running buffer with which the analyte can interact. Micelles 

with or without interacting analyte travel quite slowly through the capillary tube as compared to 

free analyte or buffer. This is due to an electrophoretic mobility caused by the drag associated with 

the viscosity and charge of the micelle as it moves through the electric field within capillary. This 

electrophoretic mobility is counter to the electroosmotic flow (EOF) of the capillary resulting in 

micelle-associated analytes exhibiting a slower overall velocity towards the cathode.  
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Figure 4.2 Micellar Electrokinetic Chromatography. Analytes (A) are distributed based on 

their hydrophobicity, with those associated with micelles reaching the detector later than 

unassociated analytes. Circles shown in pink represent the positively charged cations present 

in the buffer solution.  
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This technique has been used to separate peptides and small molecules based on 

hydrophobicity-dependent partitioning into the detergent micelles,74-76 and has been used to 

separate short farnesylated peptides from the non-lipidated precursor.77-78 An example from 

Berezovski and coworkers in 2002 demonstrated separation of unmodified and farnesylated small 

peptides labeled with 2’,7’-difluorofluorescein (dff) for fluorescence detection. The samples were 

analyzed using CE in the presence and absence of SDS micelles, with addition of SDS as used in 

MEKC providing the best resolution between substrate and modified product (Figure 4.3). This 

technique was applied further in using the ability of MEKC to measure the rate of accumulating 

product to determine kinetic parameters of the farnesylation of the pentapeptides.78 

As with any analytical technique, MEKC has experimental limitations. It has generally 

been considered not applicable for full-length protein separation due to the inability of a protein to 

fit within the hydrophobic micelle interior without denaturation.79-80  This work was motivated by 

our insight that the unique chemical characteristics of protein lipidation modifications may allow 

us to leverage MEKC as a method to separate and identify lipidated proteins. To examine the 

applicability of MEKC for analysis of protein lipidation, we used fluorescent reporter proteins 

(eGFP and TagRFP) which have been designed to become substrates of protein farnesyltransferase 

(FTase) and protein geranylgeranyltransferase type I (GGTase-I) through cloning at their C-

terminus (See Chapter 3).  The use of fluorescent proteins allows simultaneous detection of the 

lipidated and non-lipidated forms of the reporter proteins. We found that MEKC utilizing SDS 

micelles can rapidly and efficiently separate a farnesylated protein from the non-farnesylated 

precursor. The efficiency of this separation is dependent on protein charge, with eGFP separating 

more efficiently than the more negatively charged TagRFP.  
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We foresee that PLQ will facilitate transformation of protein-lipidation studies towards 

quantitative analysis of in vivo protein modifications and may prove extendable to the analysis of 

a wide range of different protein lipidation modifications. PLQ has the advantage of both positively 

and negatively charged proteins reaching the detector due to the presence of a strong 

electroosmotic flow (EOF). It also allows for separation of two analytes with similar charge-to-

size ratios through addition of a pseudo-stationary phase (micelles) to the running buffer. 

Specifically, addition of suspended molecules to the buffer can introduce a shift in an analyte’s 

electrophoretic mobility through preferential analyte binding. PLQ was inspired by an insight that 

an ionic surfactant could serve as a pseudo-stationary phase for separation of P and S through 

binding of the lipid moiety of P. While this approach as been achieved using small lipidated 

peptides, our fine tuning of the stationary and mobile phases using differing concentrations of SDS 

achieves enhancement of full-length protein separation.   
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Figure 4.3 CE separation of a farnesylated peptide (peak 1) from the parent unmodified 

peptide (peak 2). The reaction mixture contained 0.8 M dff-GCVIA, 20 M FPP and 46 nM 

PFTase after 48 h incubation at 30˚C in the enzymatic buffer. Running buffers: (A) 25 mM 

borax, pH 9.1; (B) 50 mM borax, 20 mM β-cyclodextrin, pH 9.5; (C) 50 mM TES, 50 mM 

SDS, pH 7.3; (D) 25 mM borax, 25 mM SDS, pH 9.3. This figure has been reused with 

permission from reference 78 (Appendix IX). 
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4.2 PLQ separation of lipid modified fluorescent proteins from their unmodified 

counterparts 

To validate PLQ as a potential method for spearation, we chose purified enhanced green 

fluorescent protein (eGFP) fused with a GCVDS peptide to permit modification by protein 

farnesyltransferase (FTase) using a farnesyl diphosphate (FPP) lipid donor (see section 4.7 and 

Chapter 3 for design and cloning of this protein). The use of a fluorescent protein grants the ability 

to detect substrate and produce via a readout of fluorescence at the detector. The GCVDS motif 

was chosen as part of an ongoing study into a bioorthogonal substrate-enzyme relationship in 

which a mutant FTase lipidates a noncanonical prenylation motif (see Chapter 3).81  

In order to achieve sufficient separation of substrate and product in PLQ, an appropriate 

surfactant, along with its ideal concentration, must first be determined. This was achieved through 

testing of different surfactants at varying concentrations for their ability to separate a mixture of 

the purified, unmodified eGFP-GCVDS and its farnesylated product. Nonionic surfactants were 

tested and did not introduce noticeable mobility shift. We began tests of anionic surfactants with 

sodium dodecyl sulfate (SDS) because it has been previously used in CE as a pseudo-stationary 

phase for small-molecule separation.82 The concentration of SDS was kept well below that 

typically used for protein denaturation (∼70 mM SDS, with sample heating to 100 °C and addition 

of reducing agents). To determine optimum SDS conditions, the mixture of farnesylated and non-

farnesylated eGFP were analyzed at SDS concentrations ranging from 0 to 25 mM at pH 9.2 

(Figure 4.4). The maximum resolution was achieved with SDS concentration in a range of 15 to 

25 mM, with the electropherograms being exhibiting reproducibility in this range. As expected, 

the farnesylated product migrated slower in agreement with our model in which a negatively 

charged surfactant should slow down migration of P during PLQ analysis (Figure 4.5). 
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Figure 4.4 Influence of changing SDS concentration on separation of the farnesylated 

and non-farnesylated eGFP. All of the experiments were conducted in a buffer containing 

25 mM borax at different concentrations of SDS (indicated at left) and pH of 9.2. For clarity 

of presentation, 3-min time offsets and 5-unit signal offsets units are applied. This figure has 

been reused with permission from reference 80 (Appendix VIII) with CE analysis performed 

by Krylov and coworkers, York Univeristy. 
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The composition of the run buffer was then optimized with regards to SDS concentration, pH, and 

ionic strength to achieve maximum resolution between peaks of S and P. This optimized buffer 

(20 mM SDS, 25 mM sodium tetraborate, pH 9.2) facilitated baseline separation of farnesylated 

and nonfarnesylated eGFP-GCVDS (Figure 4.6a). A test of the ability of PLQ to separate S and P 

efficiently at a biological level required analysis of crude bacterial cell lysate containing both 

eGFP-GCVDS and its farnesylated product. We observed high-quality separation 

undistinguishable from that of purified S and P (Figure 4.6a). We found that farnesylation did not 

affect relative fluorescence intensity of eGFP-GCVDS, and the presence of 20 mM SDS (optimal 

concentration) did not change fluorescence from eGFP-GCVDS above normal experiment-to-

experiment variation. This important observation defines PLQ as quantifiable with accurate 

signal/concentration ratios for both S and P, not influenced by the surfactant or buffer. This allows 

simple quantitation of S and P concentrations in the sample based on areas of the corresponding 

peaks, with absolute quantitation possible through use of an internal standard.  

To determine if PLQ-based separation was farnesylation specific or applicable to a wider 

variety of lipid moieties, we next explored a different lipid donor by replacing FPP with 

geranylgeranyl diphosphate (GGPP). The substrate of lipidation was eGFP fused with the GCVLL 

peptide sequence with the enzyme geranylgeranyltransferase type I (GGTase-I) used to 

geranylgeranylate eGFP-GCVLL. Separation was achieved for nongeranylgeranylated and 

geranylgeranylated eGFP-GCVLL without reoptimization of the conditions used for farnesylation 

(Figure 4.6b). 
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Figure 4.5 Conceptual illustration of PLQ. (a) Nonlipidated fusion protein (S) and its 

lipidated product (P) with an anionic (for example) surfactant bound to a lipid moiety of the 

latter. (b) S and P in a capillary filled with the surfactant in the run buffer (not shown), an 

electric field and EOF. Both S and P are propelled toward the cathode by EOF, however, the 

charge added to P by the lipid-bound surfactant makes its resulting velocity (vP) different 

(smaller in our example) than that of S (vS). (c) Schematic dependence of fluorescence signal 

on time for the separated S and P. Areas of peaks are proportional to the respective 

concentrations. This figure has been reused with permission from reference 80 (Appendix VIII).  
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Figure 4.6 PLQ separation of various prenylation constructs. (a) S, eGFP-GCVDS; P; 

farnesylated eGFP-GCVDS. Top trace, purified S and P in 50 mM NaHEPPSO pH 7.8 and 5 

mM TCEP; bottom trace, S and P present in the crude bacterial cell lysate. The run buffer was 

25 mM Borax, 20 mM SDS at pH 9.2. (b) S, eGFP-GCVLL; P, geranylgeranylated eGFP-

GCVLL. Purified S and P were in 50 mM NaHEPPSO pH 7.8 and 5 mM TCEP; run buffer was 

25 mM Borax, 20 mM SDS at pH 9.2 (c) S, TagRFP-GCVDS; P, farnesylated TagRFP-

GCVDS. Purified S and P were in 50 mM Na-HEPPSO pH 7.8 and 5 mM TCEP; run buffer 

was 25 mM sodium tetraborate, 20 mM SDS at pH 10.0. This figure has been reused with 

permission from reference 80 (Appendix VIII) with CE analysis performed by Krylov and 

coworkers, York Univeristy. 
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To determine if PLQ is applicable to different full length proteins, eGFP was replaced with 

red fluorescent protein (TagRFP) while maintaining the GCVDS farnesylation motif. With 

differing isoelectric points of 5.8 and 7.1 for eGFP and TagRFP, respectively (determined using 

ExPASy Bioinformatics Resource Portal), a reoptimization of pH was needed for maximum 

resolution between the S and P forms of TagRFP-GCVDS and was achieved at pH 10.0 (Figure 

4.6c). Interestingly, the need to optimize pH based on different protein suggests that while the lipid 

moiety directly interacts with SDS micelles during separation as expected, there is some indirect 

interaction of the fluorescent protein itself with the micelle. Through adjustment of the buffer pH 

we can minimize this interaction and measure separation based solely on the presence or absence 

of lipid modification.  
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4.3 PLQ separation of unmodified and farnesylated eGFP-HRas from mammalian cell lysate 

 To investigate the biologically relevant use of PLQ, the short C-terminal peptide appended 

to eGFP in previous samples was replaced with full length human HRas, a well-studied protein 

which undergoes farnesylation.83-85 In cells, eGFP-HRas is readily prenylated by endogenous 

FTase, providing us with a product but potentially no unmodified substrate from which to separate 

it from. In order to generate an unmodified form of eGFP-HRas with which to analyze separation 

between S and P, the FTase inhibitor tipifarnib was used to block prenylation in one sample of 

HEK293 cells.86 The cell lysate prepared from cells treated with tipifarnib produced two prominent 

peaks less than 1 minute apart (Figure 4.7, lower curve). The cell lysate prepared from cells grown 

without the FTase inhibitor presented a new peak corresponding to the farnesylated protein and 

the decreased 2 peaks associated with the substrate (Figure 4.7, upper curve). Separation of S from 

P for this larger size fusion protein (54 kDa) required reoptimization of conditions, with the 

optimum separation achieved at a higher ionic strength of the SDS-containing run buffer: 50 mM 

instead of 25 mM sodium tetraborate. Quantitative features of PLQ allowed us to determine the 

level of lipidated substrate in the presence of inhibitor being below the limit of detection while in 

the absence of inhibitor it grew to 58%, which demonstrates the ability of PLQ to accurately 

determine the fraction of a given protein within a cell that undergoes lipid modification.  

PLQ is sensitive to a wide range of protein concentrations making it widely applicable in 

research. The commercial instrument used in this study supports a limit of detection below 10 pM 

and a linear dynamic range of at least 3 orders of magnitude. Importantly, all quantitative 

characteristics are retained in the analysis of crude cell lysates since the cell debris is fully 

separated from the fluorescent analytes and does not affect detection. The quantitative 

characteristics are also independent of the substrate protein nature because they are defined by the  
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fluorescent properties of GFP or RFP which do not change significantly upon fusion to a substrate 

protein and are not greatly affected by substrate lipidation. We confirmed that PLQ satisfied the 

requirements necessary to produce a quantitative analysis of protein modification while also 

showing that PLQ is robust to changes in lipid donor, fluorescent protein, and lipid acceptor with 

minimal reoptimization. These findings emphasize the practicality of PLQ approach and suggest 

that PLQ implementation with a fluorescent fusion protein and SDS-mediated CE as a stationary- 

phase-free column separation method is a robust approach for investigating protein lipidation in 

biologically relevant contexts. 
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Figure 4.7 PLQ analysis of endogenous farnesylation of eGFP-HRas fusion protein. The 

lower curve corresponds to sampling cell lysate prepared from HEK293 cells grown in the 

presence of a FTase inhibitor and shows peaks generated by the nonfarnesylated eGFP-HRas. 

The upper trace corresponds to sampling cell lysate prepared from HEK293 cells grown without 

inhibition of FTase and shows the peak of farnesylated eGFP-HRas at the right and peaks of 

nonfarnesylated eGFP-HRas at the left. The run buffer was 50 mM sodium tetraborate, 20 mM 

SDS at pH 9.2. Percentile shows concentrations of nonfarnesylated and farnesylated eGFP-

HRas calculated from the areas of corresponding peaks. This figure has been reused with 

permission from reference 80 (Appendix VIII) with mammalian lysates prepared by 

Soumyashree Gangopadhyay, Syracuse University, and CE analysis performed by Krylov and 

coworkers, York Univeristy. 
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4.4 PLQ analysis of the impact of p53 mutation on cellular prenylation activity 

The most commonly mutated gene in cancer is p53, a tumor suppressor gene which codes 

for a protein responsible for regulation of the cell growth cycle.87-90 The majority of p53 mutations 

are found to be single amino acid missense mutations affecting the DNA binding domain of the 

protein.91 It was recently reported that the presence of mutated in the MDA-231 breast cancer cell 

line is associated with prenylation-dependent changes in cell morphology and growth.90 

Prenylation is suggested in this study to be impacted by the mutated p53 in the breast cancer cells. 

Our ability to separate nonprenylated and prenylated proteins using PLQ provides an ideal 

approach to directly probe the impact of the presence of mutated p53 on cellular protein 

prenylation and to test PLQ as a valuable tool in discerning prenylation’s role in disease states.  

To examine the influence of a p53 mutation on prenylation activity, we used the MDA-

231shp53 cell line which has been engineered to express a doxycycline (Dox)-inducible short 

hairpin RNA (shRNA) silencing of the endogenous mutant p53 gene.90 MDA231shp53 cells were 

transfected with an RFP-tagged substrate for GGTase-I in the presence and absence of Dox (Figure 

4.8a). Crude lysates from these cells were analyzed by PLQ using conditions optimized for 

TagRFP-containing fusion protein substrates. In the presence of Dox (when mutated p53 was 

silenced), the peak of the geranylgeranylated form of the TagRFP substrate was below the limit of 

detection, confirming that less than 5% of the substrate was prenylated (Figure 4.8b). In contrast, 

in the absence of Dox (when mutated p53 was expressed), the peak corresponding to the 

geranylgeranylated product of TagRFP indicated that more than 95% of the substrate was 

prenylated. Control experiments using HEK293 cells indicate that Dox treatment alone does not 

influence protein geranylgeranylation in the absence of the mutated p53 gene (Figure 4.9). This 

study demonstrates that silencing of mutant p53 expression exhibits a functional effect on cellular 



189 
 

GGTase-I activity similar to that of direct inhibition of cellular FTase activity by FTase inhibitor 

treatment with Tipifarnib. These findings support the proposed model wherein p53 mutations lead 

to altered cellular prenylation activity and suggests that altered protein prenylation may play a 

direct role in cellular changes involved in development of cancer cells. 
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Figure 4.8 PLQ analysis of the impact of p53 mutation on cellular prenylation activity. 

(a) Schematic representation of cellular model for testing the impact of mutant p53 expression 

on protein prenylation. (b) PLQ analysis of cell lysates prepared from cells grown in the 

absence (top trace) and presence (bottom trace) of Dox. This figure has been reused with 

permission from reference 80 (Appendix VIII) with samples prepared by Soumyashree 

Gangopadhyay, Syracuse University, and CE analysis performed by Krylov and coworkers, 

York Univeristy. 



191 
 

 
 

Figure 4.9 Control experiments with HEK293 cells in the absence of mutated p53 gene. The 

upper trace shows signal of geranylgeranylated product of TagRFP-link(HRas)-CVLL expressed 

in HEK293 cells in the absence of doxycycline. The bottom trace shows the same peak of 

geranylgeranylated product expressed in HEK293 cells in the presence of doxycycline, which 

indicates that doxycycline treatment alone does not influence protein geranylgeranylation in the 

absence of the mutated p53 gene. This figure has been reused with permission from reference 80 

(Appendix VIII) with samples prepared by Soumyashree Gangopadhyay, Syracuse University and 

CE analysis performed by Krylov and coworkers, York University.  



192 
 

4.5 Conclusions 

 Protein-Lipidation Quantitation is the first successful approach for simultaneous analysis 

of substrate and product levels for full length proteins capable of undergoing lipidation. We have 

been able to demonstrate its practical execution with multiple fluorescent fusion proteins as 

substrates in an SDS-mediated CE as a stationary-phase-free column separation method. This 

method is applicable not only to purified sample but also in crude cell lysates without any sample 

purification, emphasizing its value in providing a snapshot of the extent of lipidation of target 

proteins in a cell. PLQ provides a powerful complement to While fluorescence microscopy is 

valuable for determining the ability for a protein to be lipidated, PLQ offers a complementary 

picture of the extent of lipidation in a quantitative manner. Used together, the change in protein 

cellular localization upon lipidation can be combined with an accurate assessment in the extent of 

protein lipidation potentially at both the single-cell and population scales. The combined use of 

PLQ and microscopy will uniquely enable researchers to identify and study proteins in which the 

role of lipidation is not to enhance plasma localization, for example, Ydj1p heat shock protein 

recently reported on by Hildebrant and co-workers.92 With this shunt pathway for prenylated 

proteins, as described in Chapter 2, membrane-localized fluorescence analysis will not provide a 

complete picture of the prenylated proteome. In the growing field of protein lipidation, the 

quantitative capabilities of PLQ will allow researchers to formulate and address quantitative 

questions that were once too difficult to answer. PLQ thus promises to become a powerful tool in 

studies of roles of protein lipidation in cellular regulation and biological function. This work also 

adds lipidation to a set of postrtranslational modifications of proteins (PEGylation, glycosylation, 

carbonylation, phosphorylation) for which CE analyses have been developed.93-96 
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4.6 Materials and Methods 

4.6.1 Miscellaneous: Fused silica capillary (75 μm inner diameter, 360 μm outer diameter) was 

purchased from Molex (Phoenix, AZ). All chemicals were obtained from SigmaAldrich (Oakville, 

ON, Canada) unless otherwise stated. Disodium Tetrborate (borax) was purchased from EMD 

(Toronto, ON, Canada). All solutions were made using deionized Mili-Q water filtered through 

0.22 μm Millipore filter (Millipore, Nepean, ON, Canada). 

 

4.6.2 Design of pJExpress414 plasmid containing His6-eGFP-GCVDS or His6-eGFP-

GCVLL: For the eGFP-GCVDS reporter protein, site directed mutagenesis of the plasmid 

pJExpress_eGFP-GCVIA59 was used to prepare an eGFP reporter protein with a C-terminal -

GCVDS sequence. PCR reactions contained final concentrations of 1 Pfu Turbo buffer, 10 mM 

dNTPs, reverse primer (125 ng), forward primer (125 ng), template plasmid (10 ng), and Pfu Turbo 

DNA polymerase (1 µL, 2.5 U/µL). PCR mutagenesis was performed under the following thermal 

program: Initial denaturation (95C, 1 min.); eighteen cycles of denaturation (95C, 50 s), 

annealing (60C, 50 s), and extension (68C, 12 min); final extension (68C, 12 min); and a final 

hold (10C, ∞). The reaction was then digested with DpnI (1 µL, 10 U/µL) for 1 h at 37C. PCR 

mutagenesis reactions were transformed into chemically competent E.coli for plasmid isolation 

using the Z-competent transformation system (Zymo Research). An aliquot of the PCR reaction (5 

µL) was added to DH5α cells (50 µL) and incubated on ice for 30 min before plating cells on warm 

LB-Amp plates. Cells were incubated overnight at 37°C. Colonies were chosen from the LB-Amp 

plate and inoculated into separate 5 mL culture of LB media with ampicillin (final concentration 

100 µg/mL). Cultures were incubated overnight at 37°C with shaking. The plasmid DNA was then 

purified using BIO Basic Inc. EZ-10 Spin Column Plasmid DNA Minipreps Kit following the 
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manufacturer’s protocol. Mutations were verified by commercial DNA sequencing (Genewiz). 

The gene for the His6-eGFP-GCVLL reporter protein was prepared by above protocol using 

appropriately designed mutagenic primers. Mutations were verified by commercial DNA 

sequencing (Genewiz). 

 

4.6.3 pCDF-Duet-1 plasmid containing the His6-TagRFP-GCVDS reporter protein: A gene 

encoding the His6-TagRFP-GCDVS reporter protein was prepared by PCR using the TagRFP-N 

vector97 (Evrogen) as template with the –GCVDS C-terminal sequence and HindIII restriction site 

present in the 3’ primer. The PCR reaction (50 L) contained final concentrations of 1x Standard 

OneTaq buffer, 10 mM dNTPs, reverse primer (125 ng), forward primer (125 ng), template 

plasmid (10 ng), and OneTaq DNA polymerase (0.25 µL, 5 U/µL). PCR was performed S3 under 

the following conditions: Initial denaturation (94°C, 1 min); thirty cycles of denaturation (94°C, 

30 s), annealing (56°C, 1 min), and extension (68°C, 2 min); final extension (68°C, 5 min); and a 

final hold (10°C, ∞). PCR products were purified using BIO Basic Inc. EZ-10 Spin Column PCR 

Purification Kit following the manufacturer’s instructions. Following digestion by EcoRI and 

HindIII, the His6-TagRFP-GCDVS insert was ligated into the pCDF-Duet-1 expression plasmid. 

Insert ligation was verified by analytical restriction digest and DNA sequencing (Genewiz). 

 

4.6.4 Expression and purification of RL FTase and GGTase-I: Wild-type (WT) rat GGTase-I 

and W102R W106L rat FTase variants were expressed in BL21(DE3) Escherichia coli (E. coli) 

employing previously described pET23a-based GGTase-I and variant FTase vectors, with 

expression and purification using previously reported protocols with the following changes to 

protein expression.98-100 Initial cultures were added to 1 L rich media (20 g tryptone, 10 g yeast 
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extract, 5 g NaCl, 1% glucose, 0.5 mM IPTG and 100 µg/mL ampicillin) and grown at 28°C with 

shaking for 18 hours. Upon purification, enzyme concentration was measured by active-site 

titration using dansylated peptides, as described previously.101 

 

4.6.5 Expression and purification of His6-eGFP-GCVxx and His6-TagRFP-GCVDS: 

proteins: Chemically competent BL21 (DE3) E. coli were transformed with reporter protein 

expression vectors (pJExpress414-eGFP-GCVDS, pJExpress414-GCVLL, or CDF-Duet-

1_TagRFP-GCVDS). Following transformation and antibiotic selection, a colony from the 

transformation plate was inoculated into LB media (5 mL) containing either 100 µg/mL ampicillin 

(for pJExpress414 vectors) or 100 µg/mL streptomycin (for CDF-Duet-1 vector). Cultures were 

incubated and shaken at 225 rpm for 4 h at 37°C. Each culture was then transferred to 1 liter of 

prewarmed auto-induction media (10 g tryptone, 5 g yeast extract, 20 mL 50 5052 media [25% 

glycerol, 10% lactose, 2.5% glucose], 25 mM Na2HPO4, 25 mM KH2PO4, 50 mM NH4Cl, 5 mM 

Na2SO4, 2 mM MgSO4, 200 µL trace metals [50 µM FeCl2, 20 µM CaCl2, 10 µM MnCl2, 10 µM 

ZnCl2], 100 µg/mL ampicillin or streptomycin.7 Expression cultures were incubated for 19 h at 

37˚C with shaking. Cells were harvested by centrifugation and resuspended in 50 mL resuspension 

buffer (20 mM NaH2PO4, 500 mM NaCl, and 10 mM imidazole). Bacterial cell suspensions were 

lysed by sonication, clarified by centrifugation, and purified by affinity chromatography using a 

Ni-NTA HisTrap column (GE S4  Healthcare). Fractions containing the fluorescent protein were 

combined and concentrated using a centrifugal concentrator. Concentrated samples were buffer 

exchanged to 50 mM Tris buffer (pH 7.5), divided into 20 µL aliquots, and flash frozen with liquid 

nitrogen for storage at −80°C. Protein concentrations were determined using molar absorptivities 
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of eGFP at 488 nm of 488 = 55,000 M−1cm−1 and of TagRFP at 555 nm of 555 = 100,000 M−1 

cm−1 , respectively.59, 97  

 

4.6.6 Farnesylation of purified His6-eGFP-GCVDS and His6-TagRFP-GCVDS proteins: 

Farnesylation of purified fluorescent proteins was performed by incubation of the appropriate 

substrate protein (His6-eGFP-GCVDS or His6-TagRFP-GCVDS, 2.5 µM) with 200 nM FTase, 10 

µM of Farnesyl pyrophosphate (FPP), and 5 mM MgCl2 in reaction buffer (50 mM NaHEPPSO, 

5 mM TCEP, pH 7.8) in a final volume of 0.5 mL. Substrate proteins were incubated in reaction 

buffer for 20 min prior to reaction initiation by addition of FTase and FPP to reduce disulfide 

bonds. Reactions were covered with foil and incubated overnight at room temperature.  

 

4.6.7 Geranylgeranylation of purified His6-eGFP-GCVLL: Geranylgeranylation of purified 

His6-eGFP-GCVLL fluorescent proteins was performed MgCl2 in reaction buffer (50 mM 

NaHEPPSO, 5 mM TCEP, pH 7.8) in a final volume of 0.5 mL. The substrate protein was 

incubated in reaction buffer for 20 min prior to reaction initiation by addition of GGTase-I and 

Geranylgeranyl pyrophosphate (GGPP) to reduce disulfide bonds. Reactions were covered with 

foil and incubated overnight at room temperature.  

 

4.6.8 Farnesylation of His6-eGFP-GCVDS in bacterial lysates: A frozen 1 mL aliquot of BL21 

(DE3) cells expressing His6-eGFP-GCVDS was thawed on ice. Bacterial cells in suspension (900 

mL) were lysed by addition of 100 mL of Fast Break lysis reagent (Promega) followed by moderate 

shaking for 15 min at room temperature. The resulting lysate was clarified by centrifugation (1,000 

 g, 5 min). The concentration of the His6-eGFPGCVDS in the clarified lysate was determined by 



197 
 

absorbance of eGFP at 488 nm of 488 = 55,000 M−1cm−1). Farnesylation of His6-eGFP-GCVDS 

in crude lysate was performed by incubation of sufficient lysate supernatant to reach a final 

concentration of 2.5 M protein with 200 nM RL FTase, 10 M FPP, 5 mM MgCl2, reaction buffer 

(50 mM NaHEPPSO, 5 mM TCEP, pH 7.8) in a final volume of 0.5 mL. Supernatant containing 

the protein was incubated with 1 reaction buffer for 20 min to reduce disulfide bonds prior to 

initiation of the reaction. Reactions were incubated for overnight at room temperature. 

 

4.6.9 Preparation of HEK293 cells expressing eGFP-HRas (There experiments were 

performed Soumyashree Gangopadhyay, Syracuse University): The mammalian cell line 

HEK293 (ATCC) was maintained in 75 mL vented tissue culture flasks (Celltreat), and were split 

upon reaching 80% confluency. The cells were grown in complete DMEM (Dulbecco's Modified 

Eagle's Medium supplemented with 10% fetal bovine serum (FBS) and 1% (v/v) penicillin-

streptomycin (MediaTech)) in a humidified atmosphere with 5% CO2 at 37°C. For expression of 

the eGFP-HRas reporter protein, 9 × 104 cells were placed in 2 mL of complete DMEM per well 

of a tissue culture treated 6-well plate (Corning) (total of 5 wells). The cells were incubated 18-20 

hours prior to transfection. The DNA-transfection reagent complex was prepared by incubating 4 

µg of the reporter protein expression plasmid pEGFP-HRas (Casey laboratory, Duke University) 

and 9 µL of the Turbofect transfection reagent (Thermo Scientific) in a total volume of 500 µL 

supplement free DMEM for 15 minutes at room temperature.102 The cells were then transfected 

with the prepared DNA-transfection reagent complex by drop wise addition into the wells of a 6-

well tissue culture plate. A parallel set of wells was treated with the FTase inhibitor tipifarnib at a 

concentration of 500 nM. Following transfection for 24 h, live cells were imaged using a Zeiss 

Axio Vert.A1 inverted fluorescence microscope with a 470/40 nm excitation filter, a 495 nm beam 
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splitter and a 525/50 nm emission filter to verify fluorescent protein expression and analyze 

fluorescence localization behavior in presence and absence of tipifarnib. The cells were then 

scraped and resuspended in phosphate buffered saline (PBS) followed by centrifugation to harvest 

the cell pellet. The cell pellets were stored at −80°C. 

 

4.6.10 Creation of pCAF mammalian expression plasmid containing the TagRFP-

link(HRas)- CVLL reporter protein: A gene encoding the Tag RFP-link(HRas)-CVLL reporter 

protein was prepared by PCR mutagenesis by mutating the terminal serine residue of the 

previously reported TagRFPlink(HRas)-CVLS reporter protein to a leucine residue to obtain the 

pCAF1-TagRFP-link(HRas)-CVLL vector.63 In the Tag RFP-link(HRas)-CVLL reporter protein, 

the 15 amino acids of HRas upstream of the farnesylation site within Hras and a C-terminal -

GCVLL sequence are fused to TagRFP (-KLNPPDESGPGCMSCGCVLL). Primers were 

dissolved in ultra-pure water and concentrations were measured by UV absorbance at 260 nm (1 

OD = 33 µg/mL). The PCR mutagenesis reaction (50 µL) contained 10 x Pfu reaction buffer (5 

µL), pCAF1-TagRFPlink(HRas)-CVLS template plasmid (10 ng), forward primer (125 ng), 

reverse primer (125 ng), 10 mM dNTPs, and Pfu Turbo DNA polymerase (1 L, 2.5 U/L ). PCR 

mutagenesis was performed using the following temperature program: Initial denaturation (95°C, 

1 min); 18 cycles of denaturation (95°C, 50 sec); annealing (60°C, 50 sec) and extension (68°C, 

12 min) followed by final extension (68°C, 12 min). Following PCR, reactions were treated with 

DpnI (1 µL, 10 units/µL) and incubated at 37°C for 1 hour. Z-competent DH5α E. coli cells (Zymo 

Research) were thawed on ice for 10 minutes and then transformed with 5 µL of the PCR reaction 

following which the cells were plated on pre-warmed LB-Amp plates and incubated overnight at 

37°C. Two colonies were picked from each plate and inoculated into LB media (5 mL) containing 
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100 µg/mL ampicillin and incubated with shaking (225 rpm) overnight at 37°C. Following 

overnight growth, a 10% glycerol stock was prepared stored at -80°C. Plasmid DNA was purified 

from the remaining saturated culture using EZ-10 spin column DNA purification kit (BioBasic) 

per the manufacturer’s protocol. The mutations were confirmed by DNA sequencing (Genscript). 

 

4.6.11 Preparation of MDA-231shp53 cells expressing TagRFP-link(HRas)-CVLL in the 

presence and absence of doxycycline (There experiments were performed Soumyashree 

Gangopadhyay, Syracuse University): The mammalian cell line MDA-231shp53 (CUNY-

Hunter College, New York) was maintained in 75 mL vented tissue culture flasks (Celltreat), and 

were split upon reaching 80% confluency.90 The cells were grown in complete DMEM in a 

humidified atmosphere with 5% CO2 at 37°C. For doxycycline treatment, doxycycline (6 µg/mL) 

was added to the 75 mL culture flask and the cells were incubated as described above. The cells 

were grown in the presence of doxycycline for at least 8 days to ensure suppression of mutant p53 

expression. For expression of the reporter protein, 1 × 105 cells were placed in 2 mL of complete 

DMEM per well (5 total wells) of a tissue culture treated 6-well plate (Corning). For the 

doxycycline treated cells, 6 µg/mL doxycycline was added to each well prior to transfection. Both 

doxycycline treated and untreated cells were incubated 18- 20 h prior to transfection. The DNA-

transfection reagent complex was prepared by incubating 1 µg of the pCAF1-TagRFP-link(Hras)-

CVLL reporter protein plasmid and 2 µL of the XtremeGENE HP transfection reagent (Roche) in 

a total volume of 100 µL supplement free DMEM for 30 min at room temperature. The cells were 

then transfected with the prepared DNA-transfection reagent complex by drop wise addition into 

the wells of a 6-well tissue culture plate. Upon 24 h transfection, live cells were imaged using a 

Zeiss Axio Vert.A1 inverted fluorescence microscope with a 545/525 nm excitation filter, a 565 
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nm beam splitter, and a 605/70 nm emission filter to verify fluorescent protein expression. The 

cells were then scraped and resuspended in PBS, followed by centrifugation to harvest the cell 

pellet. The cell pellets were stored at −80°C. 

 

4.6.12 Control experiments with HEK293 cells expressing TagRFP-link(HRas)-CVLL 

(There experiments were performed Soumyashree Gangopadhyay, Syracuse University): 

The mammalian cell line HEK293 (ATCC) was maintained in 75 mL vented tissue culture flasks 

(Celltreat), and were split upon reaching 80% confluency. The cells were grown in complete 

DMEM penicillin-streptomycin (MediaTech)) an in a humidified atmosphere with 5% CO2 at 

37°C. For expression of the reporter protein, 1 × 105 cells were placed in 2 mL of complete DMEM 

per well of a tissue culture treated 6-well plate (Corning) (5 total wells). For the doxycycline 

treated cells, 6 µg/mL doxycycline was added to each well prior to transfection. Both doxycycline 

treated and untreated cells were incubated 18-20 h prior to transfection. The DNA-transfection 

reagent complex was prepared by incubating 4 µg of the pCAF1-TagRFP-link(Hras)-CVLL 

reporter protein plasmid and 9 µL of the Turbofect transfection reagent (Thermo Scientific) in a 

total volume of 500 µL supplement free DMEM for 15 min at room temperature. The cells were 

then transfected with the prepared DNA-transfection reagent complex by drop wise addition into 

the wells of a 6-well tissue culture plate. Upon 24 h transfection, live cells were imaged using a 

Zeiss Axio Vert.A1 inverted fluorescence microscope with a 545/525 nm excitation filter, a 565 

nm beam splitter and a 605/70 nm emission filter to verify fluorescent protein expression. The 

cells were then scraped and resuspended in PBS followed by centrifugation to harvest the cell 

pellet. The cell pellets were stored at −80°C. 
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4.6.13 Preparation and analysis of proteins by capillary electrophoresis (Capillary 

electrophoresis experiments were performed in the Krylov laboratory, York University): 

Prior to the CE experiments, HEK293 and MDA-231 shp53 cells were centrifuged for 2 

min at ∼13000 × g (Eppendorf 5417R centrifuge with F45−30−11 rotor (Fisher scientific, PA, 

USA)) at 4 °C and the supernatant was collected. The obtained supernatant as well as purified 

proteins were diluted with the sample buffer consisting of 50 mM HEPES sodium salt 

(NaHEPPSO), 10 mM MgCl2, 5 mM tris(2-carboxyethyl)- phosphine hydrochloride (TCEP), and 

10 mg/mL bovine serum albumin (BSA) at pH 7.8. The BSA was added to reduce adsorption of 

the proteins onto capillary surface. 

CE experiments were carried out with MDQ-PACE instrument (Sciex, formerly 

BeckmanCoulter, Caledon, ON, Canada) using laser-induced fluorescence (LIF) detection with 

excitation at 488 nm and emission at 520 and 610 nm for the detection of eGFP and TagRFP 

derivatives, respectively. Fused silica capillaries with total length of 84 cm were preconditioned 

by sequential washing with 100 mM HCl, 100 mM NaOH, Milli-Q water and run buffer each for 

2 min at 30 psi (206.84 kPa). In a beginning of each experiment capillaries were rinsed with each 

of the following solutions: 100 mM HCl, 100 mM NaOH Milli-Q water for 2 min at 30 psi (206.84 

kPa) and with run buffer for 2 min at 40 psi (275.79 kPa). The samples were injected into the 

capillary by 1 psi (6.89 kPa) pressure pulse of 28 s. Electrophoretic separation was carried out with 

a positive electrode at the injection end of the capillary, with electric field strength of 297 V/cm. 
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Chapter 5: Conclusions and Future Work 

  

 

5.1 Summary 

 Prenylation is an important post-translational lipidation involved in cell signaling and 

growth through changes in protein structure, localization, and function.1-8 For over 3 decades, the 

four amino acid, C-terminal “CaaX” box motif has been thought of as the required recognition motif 

for prenylation through study of yeast mating factors and lamins.1, 3, 6, 8-15 Study of what makes a 

protein a target for prenylation by FTase and GGTase-I has focused mainly on amino acid 

selectivity within these four amino acids. Through biochemical, crystallographic, and 

computational work, general rules for this selectivity and the proposed contacts within the enzyme’s 

binding site have greatly increased our understanding of prenylation but have restricted 

investigation to the CaaX box motif.5, 11, 16-29  

 Recently, yeast genetic screening involving the Hsp40 co-chaperone Ydj1p revealed that 

yeast FTase could efficiently prenylate C(x)3X sequences.30 This finding led us to use fluorescent-

based biochemical and cell-based studies at both the short peptide and full-length protein level to 

determine that mammalian FTase can in fact recognize and prenylate a five amino acid recognition 

motif. A search of the human genome using Prosite results in 1008 (as of June 2018) proteins ending 

in a C(x)3X sequence with the potential to undergo prenylation, nearly doubling the number of 

proteins that can be explored not only in humans, but also species such as yeast.. With previous 

studies and current computational prediction models restricted to four amino acids, innovative 

approaches to determining the role of this novel selectivity will need to be addressed for such as 

large scale of potential proteins.  

 This finding increases our understanding of the impact prenylation has within cells and 

raises many new questions concerning the role of these C(x)3X proteins. With FTase and GGTase-
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I showing a stark difference in their acceptance of these longer sequences, a question is raised as to 

why these “sister” enzymes present such a dissimilarity in their flexibility for substrates. Alongside 

the question of how FTase recognizes these sequences, is the consideration of the biological role of 

C(x)3X proteins. The potential for a shunt pathway in humans, as seen with yeast, would define a 

new cytosolic role for prenylation in mammalian cells.31  

 The new method protein-lipidation quantitation (PLQ) may prove useful in studying 

lipidation at a quantitative level for these new C(x)3X sequences in cells.32 The ability of PLQ to 

quantify both unmodified substrate and product rapidly in small quantities gives an opportunity to 

examine C(x)3X motifs in relation to endogenous FTase in a biological setting. PLQ sample 

preparation is minimal due to its ability to examine crude cell lysate and would allow for quicker 

sample analysis than other traditional methods. While a powerful tool, there is limitation in the 

cloning of these human proteins to eGFP or TagRFP to allow for detection by PLQ - how best to 

address this restraint remains unclear.  
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5.2 Future Directions 

5.2.1 Investigation of FTase vs GGTase-I in C(x)3X substrate selectivity 

 Perhaps the most surprising finding after determining the ability of FTase to prenylate a 

C(x)3X sequence is the inability of GGTase-I to accept any of the sequences tested.30 These two 

enzymes recognize the same classic CaaX motif with variations in the amino acids they accept and 

the type of isoprenoid group to be attached, a chain of 15 carbons for FPP vs 20 carbons for 

GGPP.3, 33-34 FTase or GGTase-I present both distinctions and similarities in amino acid preference 

in the “X” position of the prenylation motif with FTase accepting X = M, Q, S, T, and A and 

GGTase-I most efficiently prenylating sequences of X = I or L.1 The difference in activities for 

these two enzymes lies in their active site with the active site of FTase consisting of amino acids 

W102, W106, and Y361 as compared to T49, F53, and L320 for GGTase-I (See Chapter 1). These 

closely related enzymes have the ability to cross-talk in cells, with one enzyme taking up the role 

of prenylating certain sequences when the other is inhibited.35 An example of this is seen with the 

protein KRas, which has shown to be geranylgeranylated in the presence of FTase inhibitors. 

Despite the evidence in their similarities and its larger active site, not one C(x)3X sequence tested 

was found to be accepted by GGTase-I.  

 To begin understanding this difference between the enzymes, one of the next goals in this 

research is to determine the crystal structure of FTase interacting with C(x)3X motifs. The ability 

to prenylate these large sequences suggests a flexibility within the FTase active site not currently 

predicted through computational studies or found in GGTase-I. Understanding the contact points 

and spacing of amino acids within the FTase binding site will provide insight into why GGTase-I 

in much stricter in its substrate selectivity. To obtain these crystal structures, a high-yielding 

“single-band” purification of FTase is necessary and work has begun on optimizing that process.  
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5.2.2 Identification of endogenous C(x)3X proteins and the potential of a human shunt 

pathway 

Considering activity of both Cxxx and C(x)3X sequences in yeast and humans, this newly 

discovered activity of non-canonical sequences nearly doubles the number of proteins that can be 

potentially prenylated within cells even when removing sequences containing other cysteines 

within the motif. Through our Prosite search it was found that 1008 human proteins (accessed June 

2018) follow a C-terminal C(x)3X sequence with 816 of those sequences containing no other 

cysteine other than that required for prenylation. (See Appendix II) This is comparable to the 1205 

potential Cxxx proteins in the human genome. The same can be said for yeast in which 120 proteins 

contain a canonical Cxxx motif. It was found that 117 proteins containing C-terminal C(x)3X 

sequences are also possible targets of prenylation with 88 of those containing no other cysteine 

within the sequence. (See Appendix III) Many of these yeast proteins remain uncharacterized. 

These numbers underscore the importance of exploring and characterizing more C(x)3X proteins, 

especially in the human genome, to determine their prenylation state within the cell.  

 The original C(x)3X sequences identified for analysis from yeast used a screening that 

discriminates for proteins that are prenylated but not proteolyzed. This raises the question as to 

whether all C(x)3X sequences that serve as prenyltransferase substrates are unable or resistant to 

undergo subsequent processing. This possibility makes analysis of C(x)3X sequences through 

fluorescence microscopy difficult as membrane localization can no longer be used as a proxy for 

prenylation. Regardless of the challenges this creates, implications of this newly discovered 

C(x)3X sequence reactivity opens a door to the potential of alternate uses of a farnesyl group 

beyond serving as a membrane anchor in prenylation, with the possible existence and role of a 

“shunt pathway” in mammalian cells.31 



220 
 

 An ultimate goal in examining these human C(x)3X proteins is to find one which undergoes 

endogenous prenylation. Due to the number of potential proteins to test, this objective presents a 

“needle in a haystack” obstacle. While the current use of HPLC to identify potential proteins is 

overall quick, production of the peptides required to test all 1008 sequences is costly and time 

consuming. In addition to this initial hurdle, the next steps of cloning, transfection, imaging, and 

metabolic labeling of the proteins whose sequences produce a product peak on HPLC is even more 

of a financial and time-intensive obstacle than the initial screening.  

 A reasonable way to tackle the number of potential sequences is to use an approach similar 

to how we originally chose our six human proteins for an initial screening (see Chapter 2).30  While 

it does not solve the concern of how many sequences there are to be tested, it may provide the best 

option for finding a protein sooner. The first option is to reduce the potential complexity of proteins 

being examined by choosing proteins which are produced from genes that do not produce C(x)3X 

C-termini upon splicing. Protein splice variants are produced during regulation of gene expression 

and allow for a single gene to produce several functional proteins. For example, the protein 

Serine/threonine-protein kinase Chk2 ends in “CAAVL” and contains six splice variants 

(Appendix II).36 Choosing this protein for study may prove problematic at the cellular level where 

gene regulation will affect which and how many variants of this one protein we are examining.  

 Another way to take the first step in eliminating and/or finding potential C(x)3X human 

proteins which undergo prenylation is through a “sub-family” approach. Upon examination of the 

protein list generated from Prosite, some C-terminal sequences are conserved across a related 

family of proteins. For example, there are nine distinct cAMP-responsive element modulator 

proteins all ending in the sequence “CHKVE”(Appendix II).37 This conservation may be important 
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to the proteins’ function and can be used as a guided approach to selecting the first series of C(x)3X 

sequences to be studied. 

 For yeast and other species, the smaller proteome makes for an easier target to finding 

target proteins. Future work could include pathogenic organisms that employ either endogenous 

or host-mediated farnesylation, such as Plasmodium falciparum, Candida albicans, and Legionella 

pneumophila which have two, ten, and fourteen proteins ending in C(x)3X, respectively (Appendix 

IV).23, 38-43  

 

5.2.3 Expansion of PLQ to include other classes of lipidation 

 As was discussed earlier in section 5.1, PLQ could prove useful in determining the ability 

of C(x)3X proteins to undergo prenylation in cells without using fluorescence membrane 

localization as the only readout. Besides this directly related work, there is much that can be 

explored further with PLQ including the examination of how other lipid modifications fare with 

this new method.  

 Palmitoylation, myristoylation, and GPI anchors are also important in protein trafficking 

for cell signaling. The strength of PLQ as a new research method will lie in its ability to be used 

for multiple lipidation states. Proteins which undergo prenylation are also commonly 

palmitoylated upstream of the C-terminus While the role of this palmitoylation has been discerned 

as significant for membrane localization, the extent of palmitoylation needed for efficient 

localization and its details are still investigated.11, 44-47 PLQ could be useful for these types of 

investigations after determining the protocol modifications, if any, necessary to separate these 

other types of lipidation.  
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Table S1 Fluorescence screening data for dns-GC(x)3X peptides. 

 
 

Table S2 Summary of fragments and assignments from ESI-MS analysis of dns-GCMIIM 

and dns-GCAVGP. 
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Figure S2 HPLC analysis of dns-GC(x)3X peptide farnesylation by FTase. Farnesylation 

reactions were performed in the presence (+, red trace) and absence (-, blue trace) of 10 µM FPP. 

All reactions contained 3 µM peptide substrate and 100 nM FTase as described in Experimental 

Procedures. The peak observed at short retention time is due to the reaction buffer, with an identical 

retention time and intensity in the +FPP and -FPP samples. a) dns-GCWGEV; b) dns-GCSSLQ; 

c) dns-GCSRLQ; d) dns-GCIPVQ; e) dns-GCGGDD; f) dns-GCAYVL; g) dns-GCFFYI; h) dns-

GCFNSL; i) dns-GCLPIV; j) dns-GCQGFL; k) dns-GCSIQG; l) dns-GCVSFG; m) dns-

GCWAGG; n) dns-GCWGGA; o) dns-GCLLHP; p) dns-GCSQGP; q) dns-GCQTGP; r) dns-

GCSVKM; s) dns-GCFSKM; t) dns-GCDREV 
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Cxxxx 

CREHT 5-hydroxytryptamine receptor 1E 365 0 

CLWNT 5-hydroxytryptamine receptor 3D 454 3 

CLWNT 5-hydroxytryptamine receptor 3E 456 4 

CGFNL Putative ankyrin repeat domain-containing protein 30B-like 251 0 

CDAEV DNA dC->dU-editing enzyme APOBEC-3H 200 0 

CDSVD Alpha/beta hydrolase domain-containing protein 4 342 0 

CDTVD 1-acylglycerol-3-phosphate O-acyltransferase ABHD5 349 0 

CKRNN Acetyl-coenzyme A transporter 1 549 0 

CSTAN Neuronal acetylcholine receptor subunit alpha-7 102 0 

CLTIQ Acetyl-coenzyme A synthetase, cytoplasmic 701 1 

CSRYW Adrenocorticotropic hormone receptor  297 0 

CQEEP Adenylate cyclase type 10 372 0 

CILLL Alcohol dehydrogenase 6 375 0 

CFPWG Afadin 1612 0 

CNGTI Adhesion G-protein coupled receptor F1 218 0 

CFEVE Type-1 angiotensin II receptor 359 0 

CTFLP Aryl hydrocarbon receptor repressor  701 2 

CRFVT Aldehyde dehydrogenase family 8 member A1 160 0 

CMEDK ALK and LTK ligand 2 91 0 

CGGND Annexin A11 505 1 

CGGDD Annexin A2 339 1 

CGGDD Annexin A3 323 0 

CGGDD Annexin A4 319 1 

CGEDD Annexin A5 320 0 

CGGED Annexin A6 673 1 

CSIEA Bis(5'-nucleosyl)-tetraphosphatase [asymmetrical] 147 0 

CPKLS Apolipoprotein D (Apo-D) 189 0 

CKNGN Rho guanine nucleotide exchange factor 28 1651 0 

CSPRA Rho guanine nucleotide exchange factor 10-like protein 1067 0 

CVHDS cAMP-regulated phosphoprotein 21 108 0 

CSLLL Arylsulfatase B 413 0 

CTLVL Acid sphingomyelinase-like phosphodiesterase 3b 455 0 

CLAPR Protein asteroid homolog 1 520 0 

CLVVR Putative Polycomb group protein ASXL1 1541 1 (see below) 

CVLSR Putative Polycomb group protein ASXL1 479 SPLICE OF ABOVE 

CLVVR Putative Polycomb group protein ASXL2 1435 1 

CLVVR Putative Polycomb group protein ASXL3 2248 0 

CTVNI Phospholipid-transporting ATPase ID 387 0 
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CKLAS Probable phospholipid-transporting ATPase IIB  1147 1 

CTRKI A disintegrin and metalloproteinase with thrombospondin motifs 18 1221 0 

CPGRQ A disintegrin and metalloproteinase with thrombospondin motifs 4  846 0 

CGGDD Putative annexin A2-like protein 339 0 

CLYKN 5-azacytidine-induced protein 2 392 1 (see below) 

CSLFA 5-azacytidine-induced protein 2 243 SPLICE OF ABOVE 

CMTSQ Beta-1,4 N-acetylgalactosaminyltransferase 1 533 1 

CTTDE Transcription regulator protein BACH1 736 0 

CDAFL Barrier-to-autointegration factor 89 0 

CKKDH B-cell scaffold protein with ankyrin repeats 785 3 

CPRPL Breast carcinoma-amplified sequence 4 203 0 

CISVF B-cell CLL/lymphoma 9-like protein 1395 0 

CTEKP Class E basic helix-loop-helix protein 22 381 0 

CHEKP Class E basic helix-loop-helix protein 23 225 0 

CSRNP BTB/POZ domain-containing protein 1 385 0 

CYLVK Coiled-coil domain-containing protein 144A 691 0 

CYLVK Coiled-coil domain-containing protein 144A 1154 0 

CQYLD Glycoprotein-N-acetylgalactosamine 3-beta-galactosyltransferase 1 309 0 

CRRVI Monofunctional C1-tetrahydrofolate synthase, mitochondrial 275 0 

CLVAR Putative inactive cytochrome P450 2G1 146 0 

CSLQQ Uncharacterized protein C1orf109 113 0 

CITTL Voltage-dependent L-type calcium channel subunit alpha-1D 2161 2 

CVHAL Voltage-dependent L-type calcium channel subunit alpha-1F 1977 5 

CPRLV Cadherin-18 574 0 

CLLVY Cadherin-23 530 0 

CAGDN Calbindin 261 1 

CPKLK Calpain-13 423 0 

CFSVL Calpain-2 catalytic subunit 700 1 

CVWII F-actin-capping protein subunit alpha-3 299 0 

CMSLL Carboxypeptidase O 374 0 

CLHWP Putative uncharacterized protein PQLC2L 118 0 

CENDG Coiled-coil domain-containing protein 178 867 2 

CVHWD Coiled-coil domain-containing protein 191 514 0 

CMTWN C-C motif chemokine 4-like 47 0 

CMTWN C-C motif chemokine 4-like 52 0 

CSPDD Coiled-coil domain-containing protein 85B 202 0 

CRIQR Coiled-coil domain-containing protein 34 373 0 

CRTSV Endosialin 757 1 

CTSEI ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1  300 0 

CREPG Cyclin-dependent kinase 10  272 0 
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CGAHL Cyclin-dependent kinase 10 154 0 

CSSDA UPF0461 protein C5orf24 155 0 

CRDKR Centrosomal protein of 126 kDa 1117 0 

CNNQY Centromere protein I  756 0 

CSMDD Ceramide synthase 6 384 1 

CVEIT Cilia- and flagella-associated protein 46 247 0 

CWFHK Uncharacterized protein C7orf69 122 0 

CKKAI Putative uncharacterized protein C8orf49 230 0 

CTEPE Chromodomain-helicase-DNA-binding protein 7 1138 0 

CAAVL Serine/threonine-protein kinase Chk2 543 6 

CEAGP Chordin 86 0 

CTSGH Uncharacterized protein encoded by LINC01561 128 0 

CRRAY Uncharacterized protein C11orf53 236 0 

CEFPF C-type lectin domain family 11 member A 323 0 

CFRDE C-type lectin domain family 4 member M 399 3 

CDSDL Claudin-23 292 0 

CHWKS Clavesin-1 167 0 

CHSIA Uncharacterized protein C15orf41 281 1 

CMRRT Collagen alpha-1(IV) chain  1669 0 

CMKNL Collagen alpha-2(IV) chain  1712 0 

CVKYS Collagen alpha-4(IV) chain 1690 0 

CMKRT Collagen alpha-5(IV) chain 1685 1 

CMKSL Collagen alpha-6(IV) chain 1691 1 

CRYFT Acetylcholinesterase collagenic tail peptide 455 4 

CPSAS Uncharacterized protein C16orf95 158 0 

CFIPV Cytochrome P450 2C8  490 1 

CFIPV Cytochrome P450 2C9 490 0 

CFIPV Cytochrome P450 2C18 490 1 

CFIPV Cytochrome P450 2C19 490 0 

CAVPR Cytochrome P450 2D6 497 1 

CAVPR Putative cytochrome P450 2D7 515 0 

CLRPR Cytochrome P450 2F1 491 0 

CAERR Vitamin D 25-hydroxylase 501 0 

CGTSS Uncharacterized protein C17orf53 647 1 

CTTGF Complement component receptor 1-like protein 181 0 

CTTGF Complement component receptor 1-like protein 444 0 

CHKSD Cyclic AMP-responsive element-binding protein 1  327 1 

CHKVE cAMP-responsive element modulator 285 0 

CHKVE cAMP-responsive element modulator 102 0 

CHKVE cAMP-responsive element modulator 112 0 
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CHKVE cAMP-responsive element modulator 248 0 

CHKVE cAMP-responsive element modulator 299 0 

CHKVE cAMP-responsive element modulator 236 0 

CHKVE cAMP-responsive element modulator 348 0 

CHKVE cAMP-responsive element modulator 120 0 

CHKVE cAMP-responsive element modulator 108 0 

CLSGL Corticotropin-releasing factor-binding protein  322 0 

CIDVR COP9 signalosome complex subunit 9  252 0 

CYNNY Versican core protein 3370 0 

CPRLA Putative uncharacterized protein encoded by LINC00313 77 0 

CVLHE Cell cycle regulator of non-homologous end joining 69 0 

CRRKK Beta-defensin 103 67 0 

CRQRI Beta-defensin 105 78 0 

CSPKA DAN domain family member 5 189 0 

CRIWR Cynein assembly factor with WDR repeat domains 1 415 0 

CFPFS DDB1- and CUL4-associated factor 4-like protein 1 396 0 

CFSYG DDB1- and CUL4-associated factor 4-like protein 2 395 0 

CYSYS DDB1- and CUL4-associated factor 4 495 3 

CWLLR Glutamate decarboxylase 1 224 0 

CTRVD Neutrophil defensin 4 97 0 

CLPEK DEP domain-containing protein 4 294 0 

CTVDV Microprocessor complex subunit DGCR8 773 1 

CTRPA Homeobox protein DLX-5 191 0 

CQDGY Dentin matrix acidic phosphoprotein 1  513 1 

CLSLL Dipeptidase 1 411 0 

CHRHL Dipeptidase 2 258 0 

CAVKS DNA polymerase alpha catalytic subunit 1462 0 

CFSLP Dipeptidyl peptidase 4 766 0 

CKEFS Down syndrome cell adhesion molecule 1571 0 

CSSSK Protein ripply3 190 1 

CSRLI Desmoglein-3 999 0 

CLEQQ Probable E3 ubiquitin-protein ligase DTX2 622 1 

CQLDD Dynein heavy chain 12, axonemal  3092 2 

CALDY Dynein heavy chain 1, axonemal  4330 1 

CQLDN Dynein heavy chain 3, axonemal  4116 0 

CQLSE Dynein heavy chain 6, axonemal  4158 1 (see below) 

CGLSS Dynein heavy chain 6, axonemal  592 SPLICE OF ABOVE 

CQLNS Dynein heavy chain 7, axonemal  4024 1 

CEKDD Dihydrofolate reductase 2, mitochondrial 187 0 

CMAAG Emopamil-binding protein-like 97 0 
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CTEEE EGF-like repeat and discoidin I-like domain-containing protein 3  480 1 

CKTLM EF-hand domain-containing family member B 833 1 

CKKDS Epidermal growth factor-like protein 7 273 0 

CTYGS Epidermal growth factor receptor 628 0 

CFVPQ Elafin, Elastase-specific inhibitor 117 0 

CVTVM ETS domain-containing protein Elk-4 405 0 

CVLTL ELMO domain-containing protein 3 185 0 

CTQQL Endogenous retrovirus group K member 25 Env polyprotein 661 0 

CVYLH Ephrin type-A receptor 7 449 0 

CLTSG Ephrin type-B receptor 4 414 0 

CPKAF Receptor tyrosine-protein kinase erbB-3 331 0 

CPLPL Exocyst complex component 1-like 172 0 

CFKFI Exostosin-like 3  919 0 

CKRRG Eyes absent homolog 4 452 0 

CFWWI Protein FAM196B 535 0 

CVPSS Protein FAM32A 107 0 

CQAQD Protein FAM57B 274 1 

CQTLI Protein FAM92A 271 0 

CPGKF Fatty-acid amide hydrolase 2 532 0 

CPAGS Fanconi anemia core complex-associated protein 20 170 0 

CSRLF F-box only protein 3 471 0 

CRSGE F-box/LRR-repeat protein 5 691 1 

CPPRS F-box/WD repeat-containing protein 5 377 0 

CSLNG Forkhead-associated domain-containing protein 1  1453 0 

CAKKL Four and a half LIM domains protein 1 280 0 

CAKKL Four and a half LIM domains protein 1 309 0 

CAKKL Four and a half LIM domains protein 1 296 0 

CKALA Protein flightless-1 homolog 1269 2 

CLMLW Fibronectin type III domain-containing protein 5 153 0 

CSRKL FRAS1-related extracellular matrix protein 1 2179 2 

CIWEF Fascin-3  498 0 

CLVIE F-box/LRR-repeat protein 16 479 1 

CHSDT Frizzled-6 706 1 

CLWDG Glucose-6-phosphatase 2 102 0 

CLAFL Putative uncharacterized protein GAFA-1  74 0 

CGSRK Glutamine amidotransferase-like class 1 domain-containing protein 

1  

220 1 

CLWSH N-acetylgalactosamine-6-sulfatase 522 0 

CEPHF Glycerophosphodiester phosphodiesterase 1 331 0 

CGSSN Gem-associated protein 2  44 0 
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CLHKE GTP cyclohydrolase 1 feedback regulatory protein 84 1 

CYIFD Gamma-glutamyl hydrolase 318 0 

CTYFF Glycosyltransferase 1 domain-containing protein 1  152 0 

CQTGP Putative glycosylation-dependent cell adhesion molecule 1  47 0 

CESAF Probable G-protein coupled receptor 150 434 0 

CENNA Probable G-protein coupled receptor 171 319 0 

CVTLA G-protein coupled receptor 35 309 1 

CPKGK G-rich sequence factor 1 480 1 

CDYGL Glutathione S-transferase omega-1 241 2 

CPEPT Solute carrier family 2, facilitated glucose transporter member 5 244 0 

CHLYE Hepatitis A virus cellular receptor 2  142 0 

CSDDT Pseudouridine-5'-phosphatase 208 0 

CSEGK Hepatocyte growth factor 210 0 

CKEMV Homeodomain-only protein 94 0 

CKEMV Homeodomain-only protein 112 0 

CYFYQ Hornerin 2850 0 

CDMQK Hippocalcin-like protein 4  191 0 

CYAEN Hyaluronan and proteoglycan link protein 2 340 0 

CYRQH Hyaluronan and proteoglycan link protein 3 360 0 

CVVHA Hermansky-Pudlak syndrome 3 protein 890 0 

CPKGD Homeobox protein Hox-D9 352 0 

CMLGQ Glucokinase 465 2 

CKAKM Interleukin-12 receptor subunit beta-1  662 0 

CSHHL Interleukin-15 receptor subunit alpha 267 4 

CVEIP Interleukin-22 receptor subunit alpha-2 263 1 

CRSVS Insulin growth factor-like family member 1 110 0 

CQHIP Interleukin-19 207 0 

CPTSI Interleukin-31 receptor subunit alpha 662 0 

CPTSI Interleukin-31 receptor subunit alpha 681 0 

CLAKK Importin subunit alpha-8 516 0 

CMYRA Integrator complex subunit 14 86 0 

CTGGQ Interferon regulatory factor 7 164 0 

CVQGI Iron-sulfur cluster assembly 2 homolog, mitochondrial 60 0 

CATST Intestine-specific homeobox 245 0 

CLKQH Izumo sperm-egg fusion protein 4 232 1 

CSKDR Dyslexia-associated protein KIAA0319 1072 3 

CTMKS UPF0258 protein KIAA1024 916 0 

CGNGP Kynurenine--oxoglutarate transaminase 1  250 0 

CGKDS Potassium channel subfamily K member 17  332 0 

CQKRQ Lysine-specific demethylase 4C 1056 0 
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CREQK Killer cell immunoglobulin-like receptor 3DS1 382 0 

CSRHN Kinesin-like protein KIF19 998 0 

CLGSN Kinesin-like protein KIF6 814 2 

CWQRR Kinesin-like protein KIFC2 838 0 

CSPAN Thymidine kinase, cytosolic 234 0 

CFGLS Kinesin light chain 4 315 0 

CVSDS Kelch domain-containing protein 8A 350 0 

CVYNV Kelch-like protein 23 558 0 

CLTKM Kelch-like protein 40  621 0 

CPVRQ Kinase non-catalytic C-lobe domain-containing protein 1 1141 0 

CHFYH Kinetochore scaffold 1 2342 1 

CVSLL Keratin-associated protein 10-4 401 0 

CKKER KRAB domain-containing protein 4 171 1 

CRTKY Keratin, type II cuticular Hb4 600 0 

CLSVD Ribosomal protein S6 kinase beta-2 154 0 

CTVLF Putative uncharacterized protein KTN1-AS1 53 0 

CASWQ Laminin subunit gamma-3  1575 0 

CHSVH Putative L-type amino acid transporter 1-like protein IMAA 180 0 

CVAFD Galectin-1 135 0 

CPPPE Late cornified envelope-like proline-rich protein 1 98 0 

CDLTV Leptin receptor 1165 0 

CLGHY Legumain 433 1 

CEAVL Lipase member M 423 1 

CGGRH Hormone-sensitive lipase 1076 1 

CGLSR Leucine-rich repeat protein 1 146 0 

CTDSS Low-density lipoprotein receptor-related protein 5 1615 0 

CTDSS Low-density lipoprotein receptor-related protein 6 1613 0 

CIYFV Leucine-rich repeat-containing protein 9 1111 0 

CTAKE Latent-transforming growth factor beta-binding protein 2  1821 0 

CAEEN Leucine zipper protein 1 1076 0 

CDNFK DNA helicase MCM9  391 0 

CAFLS MDS1 and EVI1 complex locus protein 169 0 

CLSAA Mediator of RNA polymerase II transcription subunit 15  788 1 

CLSAA Mediator of RNA polymerase II transcription subunit 15 677 0 

CLARR MICAL-like protein 2 680 0 

CIMNW Misshapen-like kinase 1  1332 4 

CTKHY Mitochondrial Rho GTPase 1 247 0 

CAESV Mitochondrial Rho GTPase 2 213 0 

CVNRT MMS19 nucleotide excision repair protein homolog 318 0 

CLTFI 2-acylglycerol O-acyltransferase 3  341 0 
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CWLRD Mitochondrial-processing peptidase subunit beta 489 0 

CFALE Mitochondrial carrier homolog 1 389 2 

CLSDA Myotubularin-related protein 5 1868 2 

CISDA Myotubularin-related protein 13 1849 0 

CQMSL Mucin-17 4361 0 

CGTTA Musculin (Activated B-cell factor 1) 206 0 

CPLGA Matrix remodeling-associated protein 8 450 0 

CTPAL Myomegalin 2346 1 

CSWGK Myozenin-3 87 0 

CHHGY NEDD4-binding protein 2-like 1 243 0 

CFLSS N-alpha-acetyltransferase 16, NatA auxiliary subunit 429 0 

CLYLA Putative uncharacterized protein encoded by LINC00301 95 0 

CALQA Nuclear cap-binding protein subunit 1  790 0 

CLSEP Neurochondrin 729 2 

CGSQG Nck-associated protein 5-like 1330 1 

CPVSV Sodium/potassium/calcium exchanger 1 1099 2 

CPVSI Sodium/potassium/calcium exchanger 2 661 1 

CREDD Sodium/potassium/calcium exchanger 4 622 3 

CSIFI Nuclear receptor coactivator 7 102 0 

CLVFE NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 4 120 0 

CYRIF Serine/threonine-protein kinase Nek4 781 0 

CTASS Serine/threonine-protein kinase Nek7 302 0 

CRPSL Serine/threonine-protein kinase Nek9  979 0 

CLQNN Protein kinase C-binding protein NELL1 810 1 

CLQEL Protein kinase C-binding protein NELL2 816 3 

CSFPL Neuferricin 264 1 

CSPWH Neurofascin 619 0 

CIEQK Nidogen-1 1247 1 

CLNDR Substance-P receptor 311 0 

CKHKL NKG2-A/NKG2-B type II integral membrane protein 233 1 

CKHKL NKG2-C type II integral membrane protein 231 0 

CTVEM NLR family CARD domain-containing protein 3 1065 2 

CHPRR Glutamate receptor ionotropic, NMDA 2A 1281 0 

CRKMK Polynucleotide 5'-hydroxyl-kinase NOL9 702 0 

CFQLP Nuclear pore-associated protein 1 1156 0 

CRAAA Neuropeptides B/W receptor type 1 (G-protein coupled receptor 7) 328 0 

CSEER Nephronectin  565 4 

CRQIN Neuronal pentraxin-1 432 0 

CVVHS Neurexin-3 1392 0 

CSKLN NUAK family SNF1-like kinase 1 661 0 
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CSKLT NUAK family SNF1-like kinase 2 628 0 

CLLFS Nuclear mitotic apparatus protein 1 1776 0 

CILVR Nuclear mitotic apparatus protein 1  1763 0 

CPLET NXPE family member 3  559 0 

CPLSS Olfactory receptor 10H3  316 0 

CPPSS Olfactory receptor 10H4 316 0 

CDRSI Olfactory receptor 2AT4 320 0 

CQWKI Olfactory receptor 51A2 313 0 

CQRKI Olfactory receptor 51A4 313 0 

CFWKD Olfactory receptor 51G1 321 0 

CGNIP Olfactory receptor 52R1 315 0 

CLAVK Olfactory receptor 5AL1 328 0 

CRRGS Putative uncharacterized protein OBSCN-AS1 158 1 (see below) 

CGTQA Putative uncharacterized protein OBSCN-AS1 113 SPLICE OF ABOVE 

CVLEH Odorant-binding protein 2a  170 1 

CVPEH Odorant-binding protein 2b 170 0 

CPVLS Obscurin-like protein 1 1543 0 

CGEKG Mu-type opioid receptor 128 0 

CSGKM Olfactory receptor 2L3 312 0 

CSVKM Olfactory receptor 2L8 312 0 

CSKLN Olfactory receptor 4A8 315 0 

CKIAV Olfactory receptor 5M10  315 0 

CNIFV Olfactory receptor 8K3  312 0 

CPDIY Oxysterol-binding protein-related protein 2 480 1 

CPDIF Oxysterol-binding protein 1 807 0 

CPNIF Oxysterol-binding protein 2 916 5 

CTWAK Protein OSCP1 223 0 

CGGTA Protein odd-skipped-related 2 276 0 

CIAGL 3-oxoacyl-[acyl-carrier-protein] synthase, mitochondrial  459 1 

CLFRK Proline-rich protein 23D1 279 0 

CLFRK Proline-rich protein 23D2 279 0 

CDEHP Pannexin-3 392 0 

CLKRQ Monocyte to macrophage differentiation factor 2 193 0 

CLKTL Partitioning defective 6 homolog beta 115 0 

CNEDL Prostate and testis expressed protein 1 126 1 

CNFKL Prostate and testis expressed protein 3  98 0 

CVVFS PAX3- and PAX7-binding protein 1 815 0 

CTFQG Proprotein convertase subtilisin/kexin type 5  913 0 

CLLAG Proprotein convertase subtilisin/kexin type 6 969 1 

CSWPL Programmed cell death protein 1 288 0 
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CDREV Prostamide/prostaglandin F synthase 198 3 

CSALG PHD finger protein 12 704 0 

CKKSK PHD finger protein 7 381 1 

CVSVS Phosphatidylinositol 4-phosphate 5-kinase type-1 gamma 700 0 

CSFIW GPI ethanolamine phosphate transferase 463 0 

CSFIW GPI ethanolamine phosphate transferase 2 341 0 

CTHSP phospholipase A2 inhibitor &  Ly6/PLAUR domain-containing protein 204 2 

CQYNS Pituitary homeobox 1 314 0 

CWIIK Pleckstrin homology domain-containing family S member 1 465 0 

CIRLK Prokineticin receptor 1 (PK-R1) (G-protein coupled receptor 73) 393 0 

CIRLK Prokineticin receptor 2  (G-protein coupled receptor 73-like 1) 384 0 

CVWQG Phospholipase D4 506 0 

CYSEA Plexin-D1 1925 0 

CDFFL Polyamine-modulated factor 1-binding protein 1  1022 0 

CGQLE Peptidyl-prolyl cis-trans isomerase A 165 1 

CGEYV Peptidyl-prolyl cis-trans isomerase E 301 0 

CGQLS Peptidyl-prolyl cis-trans isomerase F, mitochondrial  207 0 

CVAHS Protein phosphatase 1 regulatory subunit 32 425 0 

CYRSV Pre-mRNA-processing factor 40 homolog B 195 0 

CFMPN Melanoma antigen preferentially expressed in tumors 509 0 

CRKDE Probable histone-lysine N-methyltransferase PRDM7 407 0 

CREDE Histone-lysine N-methyltransferase PRDM9 894 0 

CQIDE Phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 2  984 0 

CLAQK Prokineticin-2 129 1 

CASLS Proline-rich protein 5-like 368 2 

CMTEQ Prostaglandin-H2 D-isomerase  190 0 

CNRTG Receptor-type tyrosine-protein phosphatase eta  539 0 

CDIDI Securin 202 0 

CLISS Regulator of G-protein signaling 7-binding protein 257 0 

CLLHP Ras association domain-containing protein 5  336 0 

CESLV Ras association domain-containing protein 10 507 0 

CPSQA Putative uncharacterized protein encoded by RBM12B-AS1 102 0 

CFIPP RNA-binding protein 34 225 0 

CGPQR ATP-dependent DNA helicase Q5 991 1 

CEELG ATP-dependent DNA helicase Q5 410 SPLICE OF ABOVE 

CKFKN Lithostathine-1-alpha 166 0 

CKFKN Lithostathine-1-beta 166 0 

CKFTD Regenerating islet-derived protein 3-alpha 175 0 

CKFKD Regenerating islet-derived protein 3-gamma 175 1 

CKYRP Regenerating islet-derived protein 4  158 0 
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CRGAE N-acylglucosamine 2-epimerase 427 0 

CRVQP Resistin  108 1 

CLLRG All-trans-retinol 13,14-reductase 481 0 

CSDDA RNA exonuclease 4 422 1 

CQVLH Replication factor C subunit 4 303 0 

CLKKN Rab11 family-interacting protein 1 142 0 

CRNNI Regulator of G-protein signaling 1 169 0 

CRIQQ Blood group Rh(D) polypeptide 493 0 

CGERS egulating synaptic membrane exocytosis protein 4 269 1 

CVLVA 60S ribosomal protein L27a 148 0 

CAHKS 60S ribosomal protein L28 169 0 

CVGSS Zinc finger protein Rlf 1914 0 

CPTLK RING finger protein 214 703 1 

CEQAV E3 ubiquitin-protein ligase RNF43 783 2 

CHPLW RING finger and transmembrane domain-containing protein 2 321 0 

CGSKL Probable ribonuclease 11 199 0 

CKIPY 60 kDa SS-A/Ro ribonucleoprotein  534 0 

CGVES Reactive oxygen species modulator 1 59 0 

CLFLS Regulation of nuclear pre-mRNA domain-containing protein 2 152 0 

CLLMR Ras-related GTP-binding protein B 374 0 

CFTSE Receptor-transporting protein 4 246 0 

CVYYW Protein RUBCNL-like 635 0 

CLGAQ Mitochondrial RNA pseudouridine synthase RPUSD4 377 1 

CPDRP Protein S100-A2 98 0 

CQPPE Multidrug and toxin extrusion protein 1 586 0 

CNVTS Orphan Na- and Cl-dependent neurotransmitter transporter NTT5 736 0 

CLGPK SUMO-activating enzyme subunit 1  346 1 (see below) 

CPLPS SUMO-activating enzyme subunit 1  299 SPLICE OF ABOVE 

CARRN Scaffold attachment factor B2 115 0 

CQLLN Protein transport protein Sec24D 1032 1 

CFPNS Semaphorin-5B 1151 2 

CRLGV Semaphorin-6B 677 0 

CPVPV tRNA-splicing endonuclease subunit Sen54  177 0 

CKLTV Sentrin-specific protease 3 574 0 

CRLMD Sentrin-specific protease 5 755 1 

CPTAE Neuronal-specific septin-3 358 0 

CSTGN Sperm-associated antigen 11B 103 1 

CGNTH Beta-sarcoglycan  318 1 

CLKAP SH2 domain-containing protein 1A 128 1 

CGPVP Protein shisa-like-2A 190 0 
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CDGAT Alpha-2,8-sialyltransferase 8B 375 0 

CSPSV Small integral membrane protein 28 152 0 

CPVGN NAD-dependent protein deacetylase sirtuin-7 183 0 

CLHKK SLIT and NTRK-like protein 2 733 0 

CRRLT Schlafen family member 12 578 0 

CNSEL Secreted Ly-6/uPAR-related protein 1 103 0 

CSSMS Mothers against decapentaplegic homolog 2 467 1 

CSSVS Mothers against decapentaplegic homolog 3 425 3 

CFFLR Schlafen family member 12-like 588 1 

CSQGP Sushi, nidogen and EGF-like domain-containing protein 1  1324 0 

CFSKM Sorting nexin-4 450 1 

CRYVF Sterol O-acyltransferase 1  550 2 

CVMSV Sorcin 198 1 

CRVHG Spermatogenesis-associated protein 2-like protein 152 0 

CQEAV Serpin A9  201 0 

CPLDV Spermatogenesis-associated protein 7  599 2 

CLMEN Snurportin-1 360 0 

CLLHH Spermatogenesis-associated protein 3 192 0 

CHIPN Serine palmitoyltransferase 3  175 0 

CGQAD Steroid receptor-associated and regulated protein 169 0 

CYGGL Succinate-semialdehyde dehydrogenase, mitochondrial 535 1 

CVDYL Suppressor of tumorigenicity 7 protein-like  555 0 

CVDYL Suppressor of tumorigenicity 7 protein-like  538 0 

CLDQE StAR-related lipid transfer protein 13 687 0 

CRYPD Metalloreductase STEAP2 454 0 

CRYAF Serine/threonine-protein kinase 4 462 0 

CKQPG Surfeit locus protein 2 256 0 

CASYL Nesprin-2  285 0 

CVVHI TP53-target gene 3 protein 102 0 

CVQTS Thymosin beta-15A  45 0 

CVQTS Thymosin beta-15B 45 0 

CRVPG TANK-binding kinase 1-binding protein 1 222 0 

CVLDL F-box-like/WD repeat-containing protein TBL1Y  522 0 

CSLMQ Transcription elongation factor A protein 3  154 0 

CKAYS Tectonic-2 697 1 

CLGSP Transcription elongation factor, mitochondrial 171 0 

CPSQQ Testis-expressed protein 45 505 0 

CVQRE Acetyl-CoA acetyltransferase, cytosolic 397 1 

CHVRR Acetyl-CoA acetyltransferase, mitochondrial 162 0 

CWPDP Threonine synthase-like 2 384 0 
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CMLLN Transketolase-like protein 1 596 2 

CSDPI Transmembrane protein 108 487 0 

CKTVI Transmembrane protein 220 160 1 

CLKGD Transmembrane protein 241 123 0 

CIEEI Transmembrane protein 17 198 0 

CRSGV Tropomodulin-1  359 1 

CLGPP Tumor necrosis factor receptor superfamily member 25 253 0 

CPQNR DNA topoisomerase 3-alpha  1001 2 

CLKLA Trafficking protein particle complex subunit 12 735 0 

CVKDR Trafficking protein particle complex subunit 13 309 0 

CHPDT Tryptophan 5-hydroxylase 1 466 0 

CAPFP Putative protein TPRXL 258 0 

CAERM Triggering receptor expressed on myeloid cells 1 225 0 

CPPSS E3 ubiquitin-protein ligase TRIM22  498 1 

CPPSS Tripartite motif-containing protein 34 488 0 

CHGSK Tripartite motif-containing protein 77 450 0 

CSPSS Tripartite motif-containing protein 5 493 0 

CEEGG Transient receptor potential cation channel subfamily M member 1 300 0 

CLPGT Taste receptor type 1 member 1 480 0 

CAGLG Tuberin 239 0 

CYRDF Testis-specific gene 10 protein 698 0 

CMGWW Translocator protein 2 70 0 

CLKKL Tetratricopeptide repeat protein 13 860 1 

CKLAF Putative tetratricopeptide repeat protein 41 1053 0 

CRPTS Tubby-related protein 3 170 0 

CAFMK T cell receptor alpha variable 38-1 116 0 

CAYRS T cell receptor alpha variable 38-2/delta variable 8 116 0 

CAMRE T cell receptor alpha variable 14/delta variable 4 116 0 

CALSE T cell receptor alpha variable 19  116 0 

CAVRD T cell receptor alpha variable 3 114 0 

CLVGD T cell receptor alpha variable 4 109 0 

CIVRV T cell receptor alpha variable 26-1  109 0 

CILRD T cell receptor alpha variable 26-2 109 0 

CASSL T cell receptor beta variable 13 124 0 

CASSQ T cell receptor beta variable 14 115 0 

CASSQ T cell receptor beta variable 16 115 0 

CASSP T cell receptor beta variable 18 115 0 

CASSI T cell receptor beta variable 19 14 0 

CASSE T cell receptor beta variable 2 115 0 

CASSQ T cell receptor beta variable 3-1 114 0 
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CASSQ T cell receptor beta variable 4-1 114 0 

CASSQ T cell receptor beta variable 4-2 114 0 

CASSQ T cell receptor beta variable 4-3 114 0 

CASSL T cell receptor beta variable 5-1 114 0 

CASSL T cell receptor beta variable 5-4 114 0 

CASSL T cell receptor beta variable 5-5 114 0 

CASSL T cell receptor beta variable 5-6 114 0 

CASSL T cell receptor beta variable 5-8 114 0 

CASSE T cell receptor beta variable 6-1 114 0 

CASSY T cell receptor beta variable 6-2 114 0 

CASSY T cell receptor beta variable 6-3 114 0 

CASSD T cell receptor beta variable 6-4 114 0 

CASSY T cell receptor beta variable 6-5 114 0 

CASSY T cell receptor beta variable 6-6 114 0 

CASSY T cell receptor beta variable 6-8 113 0 

CASSY T cell receptor beta variable 6-9 114 0 

CASSL T cell receptor beta variable 7-2 115 0 

CASSL T cell receptor beta variable 7-4 115 0 

CASSL T cell receptor beta variable 7-6 115 0 

CASSL T cell receptor beta variable 7-7 115 0 

CASSL T cell receptor beta variable 7-8 115 0 

CASSL T cell receptor beta variable 7-9 115 0 

CASSV T cell receptor beta variable 9 114 0 

CASSE T cell receptor beta variable 10-1 114 0 

CASSE T cell receptor beta variable 10-2 114 0 

CAISE T cell receptor beta variable 10-3 114 0 

CASSL T cell receptor beta variable 11-1 115 0 

CASSL T cell receptor beta variable 11-2 115 0 

CASSL T cell receptor beta variable 11-3 115 0 

CASSL T cell receptor beta variable 12-4 115 0 

CASGL T cell receptor beta variable 12-5 115 0 

CSKVN Thioredoxin domain-containing protein 16 825 0 

CGRPS TYMS opposite strand protein 123 0 

CPSVG tRNA wybutosine-synthesizing protein 2 homolog 448 0 

CLRIF NEDD8-conjugating enzyme UBE2F 120 0 

CTEDK (E3-independent) E2 ubiquitin-conjugating enzyme 1292 0 

CMHTN Ubiquitin carboxyl-terminal hydrolase 15 981 2 

CKSEE Ubiquitin carboxyl-terminal hydrolase 30 517 0 

CSSAV Basic helix-loop-helix domain-containing protein USF3 2245 0 

CGTDD Transcription cofactor vestigial-like protein 4 41 0 
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CSNTF Protein virilizer homolog 1147 0 

CDIQK Visinin-like protein 1 191 0 

CGMPE Synaptic vesicular amine transporter 209 0 

CSLSW Pantetheinase 513 0 

CIIMT Vascular non-inflammatory molecule 2  195 0 

CREMK Visual system homeobox 1  280 0 

CHVRG WD repeat-containing protein 26 216 0 

CMSIL WAP four-disulfide core domain protein 10A 79 0 

CMSIL Protein WFDC10B 73 1 

CKKYH WAP four-disulfide core domain protein 6 131 0 

CYNTG Whirlin  345 0 

CYRIA WW domain-containing oxidoreductase 311 0 

CSQAS Xaa-Pro aminopeptidase 3 507 2 

CSRPT Transmembrane protein LOC653160 218 0 

CPVIT Putative uncharacterized protein FLJ45035 140 0 

CVAAL YjeF N-terminal domain-containing protein 3 299 1 

CSDNV Putative uncharacterized protein FLJ43343 128 0 

CNFLT Putative uncharacterized protein FLJ46792 126 0 

CADSF Putative uncharacterized protein FLJ45275, mitochondrial 168 0 

CTAAG Putative uncharacterized protein FLJ42384 140 0 

CSLWR Putative uncharacterized protein FLJ40606 135 0 

CSVFL Putative uncharacterized protein FLJ39060 123 0 

CGKAF Putative zinc finger protein 355P  428 0 

CGEAK Zinc finger and BTB domain-containing protein 40 1239 0 

CRRVQ Zinc finger CCHC domain-containing protein 24 241 0 

CHMAL Palmitoyltransferase ZDHHC17 216 0 

CRRKR Zinc finger MYND domain-containing protein 11 602 2 

CPTDL RING finger and CHY zinc finger domain-containing protein 1 75 0 

CEHFS Zinc finger protein 407 1660 0 

CIDTP Zinc finger protein 433 673 1 

CAGEK Zinc finger protein 492 531 0 

CQATM Zinc finger protein 680 123 0 

CFTNK Putative protein ZNF720 178 0 

CAKAF Zinc finger protein 729 1252 0 

CGWAR Zinc finger protein 839 811 2 

CVIIP Zinc finger protein 24 193 0 

CGKDF Putative zinc finger protein 56  161 0 

CAGEK Zinc finger protein 98 572 0 

CGRHS Tight junction protein ZO-2 993 0 

CQMPF Protein zyg-11 homolog A 759 1 
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CWPRS Zinc finger ZZ-type and EF-hand domain-containing protein 1 811 0 

CCxxx 

CCLGM AP-3 complex subunit mu-2 273 0 

CCSRK Biliverdin reductase A  296 0 

CCVLV Calpain-8  703 0 

CCSVK COBW domain-containing protein 1  113 0 

CCNWA Acidic mammalian chitinase 476 2 

CCTWN Chitotriosidase-1 466 2 

CCCIF Chondroitin sulfate glucuronyltransferase  666 0 

CCSEN utative uncharacterized protein encoded by LINC00469 141 0 

CCSGC Cysteine-rich C-terminal protein 1 99 0 

CCVIS Cysteine-rich tail protein 1 144 0 

CCCPR Cysteine and tyrosine-rich protein 1 64 0 

CCLQQ Beta-defensin 110 67 0 

CCKKP Beta-defensin 4A  64 0 

CCGHS Protein FAM107A 135 0 

CCVIL F-box/LRR-repeat protein 2  423 1 

CCPFP L-fucose kinase 1084 1 

CCIIL F-box/LRR-repeat protein 20 436 1 

CCTKF Neuronal membrane glycoprotein M6-b 265 2 

CCVVQ Type I inositol 1,4,5-trisphosphate 5-phosphatase 412 0 

CCSYA Immunoglobulin lambda variable 2-23 113 0 

CCCKK Mucolipin-3 553 1 

CCVSD Metastasis-associated protein MTA3 594 0 

CCACV Protein myomaker 221 0 

CCWPS Sialidase-4 484 2 

CCSEA Neuropilin-2 931 2 

CCVVM Paralemmin-2 379 1 

CCAVM Paralemmin-3 673 0 

CCSIM Paralemmin-1 387 1 

CCVVN Nuclear pore membrane glycoprotein 210 967 0 

CCLLM Protein phosphatase 1 regulatory subunit 16A 528 0 

CCRIS Protein phosphatase 1 regulatory inhibitor subunit 16B 567 1 

CCSSG Ras-related protein Rab-21 225 0 

CCISL Ras-related protein Rab-25 213 0 

CCNFN Ras-related protein Rab-30 203 0 

CCSFM Ras-related protein Rab-37 223 3 

CCQNI Ras-related protein Rab-11A 216 0 



Appendix II: Table of Human C(x)3X Sequences  
 
 

253 
 

C-terminus Protein Name Size 

(aa) 

Number of 

splice variants 

CCQNL Ras-related protein Rab-11B 218 0 

CCHLT Resistin-like beta 111 0 

CCKVL Rho-related GTP-binding protein RhoB 196 0 

CCSII Rho-related GTP-binding protein RhoJ 214 1 

CCLIT Rho-related GTP-binding protein RhoQ 205 0 

CCVAH Zinc finger protein SNAI2 268 0 

CCPGP Zinc finger protein SNAI3  292 0 

CCHVI SNF-related serine/threonine-protein kinase 765 0 

CCSSK Syntaxin-19 294 0 

CCIHF Putative tripartite motif-containing protein 49B 452 0 

CCIHF Putative tripartite motif-containing protein 49C 452 0 

CCVHL Tripartite motif-containing protein 49D 452 0 

CCIHF Tripartite motif-containing protein 49 452 0 

CCSHF Tripartite motif-containing protein 51 452 1 

CCVIL Ubiquitin-like protein 3 117 0 

CCYQN Vascular non-inflammatory molecule 3  207 0 

CCAIM Synaptobrevin homolog YKT6 198 1 

CCYVA Zinc finger protein 64 homolog, isoforms 3 and 4 415 0 

CxCxx 

CGCLG Artemin  220 2 

CACFL Barrier-to-autointegration factor-like protein 90 1 

CSCLR BSD domain-containing protein 1 474 0 

CSCLR BSD domain-containing protein 1 353 0 

CSCLR BSD domain-containing protein 1 99 0 

CKCWS Cytidine and dCMP deaminase domain-containing protein 1  99 0 

CVCDD Uncharacterized protein C20orf24 (Rab5-interacting protein) 87 0 

CSCGG Ephrin type-B receptor 2 1055 0 

CLCNT Fc receptor-like protein 3 742 0 

CTCIF Interleukin-17B 180 0 

CQCKI Keratin-associated protein 5-10 202 0 

CQCKI Keratin-associated protein 5-11 156 0 

CQCKI Keratin-associated protein 5-1 278 0 

CQCKI Keratin-associated protein 5-2 177 0 

CQCKI Keratin-associated protein 5-3 238 0 

CQCKI Keratin-associated protein 5-4 288 0 

CQCKI Keratin-associated protein 5-5 237 0 

CQCKI Keratin-associated protein 5-6 129 0 

CQCKI Keratin-associated protein 5-7 165 0 
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CQCKI Keratin-associated protein 5-8 187 0 

CHCVH Putative L-type amino acid transporter 1-like protein MLAS 180 0 

CSCCA Metallothionein 1H-like protein 1 61 0 

CTDEE Mitogen-activated protein kinase kinase kinase 4  1608 1 

CSPVG Membrane-spanning 4-domains subfamily A member 6A 141 0 

CKIEF Microtubule-associated protein 1A  2803 1 

CKIEL Microtubule-associated protein 1B 2468 0 

CKVEF Microtubule-associated protein 1S 1059 1 

CLFHA Methionine adenosyltransferase 2 subunit beta 259 0 

CEFPI Mannose-binding protein C  248 0 

CFTLP Metallo-beta-lactamase domain-containing protein 2  199 0 

CRTSD Muscleblind-like protein 1 342 0 

CLCRL Malectin 292 0 

CSCCA Metallothionein-1A 61 0 

CRCCA Metallothionein-1B  61 0 

CSCCA Metallothionein-1E 61 0 

CSCCD Metallothionein-1F 61 0 

CSCCA Metallothionein-1G 62 1 

CSCCA Metallothionein-1H 61 0 

CSCCA Metallothionein-1L 61 0 

CSCCA Metallothionein-1M 61 0 

CSCCA Metallothionein-1X 61 0 

CSCCA Metallothionein-2 61 0 

CSCCQ Metallothionein-3 68 0 

CSCCP Metallothionein-4 62 0 

CKCSC Noggin 232 0 

CNCCR Neuropeptide FF receptor 2 (G-protein coupled receptor 74) 132 0 

CGCGG Persephin 156 0 

CGCCS Rho GTPase-activating protein 19 517 0 

CPCQL Protein shisa-5  118 0 

CPCLK Syntaxin-11 287 0 

CRCGP SURP and G-patch domain-containing protein 1 222 0 

CPCPC Transmembrane protein 138 177 0 

CVCKL Transmembrane protein 39A 146 0 

CDCVD Twisted gastrulation protein homolog 1 75 0 

CHCSS Putative uncharacterized protein LOC151760 199 0 

CxxCx 

CFSCN Putative ATP-binding cassette sub-family C member 13 274 1 
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CVGCS Bromodomain-containing protein 4 794 0 

CGRCP Coiled-coil domain-containing protein 43 154 0 

CWPCW Protein C19orf12 107 0 

CAKCI Putative uncharacterized protein encoded by ERC2-IT1 136 0 

CLYCV Gamma-tubulin complex component 3  824 0 

CVLCR Probable G-protein coupled receptor 141 305 0 

CTGCL Guanylate cyclase activator 2B 112 0 

CQNCH RanBP-type and C3HC4-type zinc finger-containing protein 1 510 1 

CLLCN LON peptidase N-terminal domain and RING finger protein 3 610 0 

CKDCL Alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase A 741 0 

CQGCL Alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase B  792 2 

CEQCC Membrane-spanning 4-domains subfamily A member 5  200 0 

CSICC PACRG-like protein 248 2 

CALCA Slit homolog 1 protein 1534 0 

CLACS Slit homolog 3 protein 1523 2 

CGPCR Transcription factor 7  383 0 

CGPCR Transcription factor 7  268 0 

CFGCT Putative tripartite motif-containing protein 64B 449 0 

CFGCT Tripartite motif-containing protein 64C 450 0 

CFGCT Tripartite motif-containing protein 64 449 0 

CLACV Tubulin polyglutamylase TTLL13P 459 0 

CYYCH Zinc finger MYM-type protein 2 462 0 

CxxxC 

CNVLC ADAMTS-like protein 1 683 0 

CRSRC Calpain-10 544 0 

CRSRC Calpain-10 513 0 

CSVGC Coiled-coil domain-containing protein 47 480 0 

CYDIC Uncharacterized protein C12orf74 190 0 

CKNFC CCR4-NOT transcription complex subunit 4 767 0 

CEPSC Cartilage acidic protein 1 661 0 

CRDRC Zinc finger protein DPF3 195 0 

CPHPC Peptidyl-prolyl cis-trans isomerase FKBP1B 80 0 

CRRTC Immunoglobulin-like and fibronectin type III domain-containing 

protein 1 

605 0 

CRRTC Keratin-associated protein 11-1 163 0 

CRSTC Keratin-associated protein 13-2 175 0 

CYSSC Keratin-associated protein 21-1 79 0 

CEPTC Keratin-associated protein 1-3 177 0 

CEPTC Keratin-associated protein 1-4 121 0 
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CEPTC Keratin-associated protein 1-5 174 0 

CEPRC Keratin-associated protein 3-1 98 0 

CGSSC Keratin-associated protein 4-1 146 0 

CAMNC Protein lin-54 homolog 749 3 

CQRDC Arachidonate 5-lipoxygenase 533 0 

CLDKC Volume-regulated anion channel subunit LRRC8B 803 0 

CTFFC RNA-binding protein MEX3B 158 0 

CQAWC Male-specific lethal 3 homolog 416 0 

CDFFC NACHT, LRR and PYD domains-containing protein 7 980 2 

CLFLC Olfactory receptor 2AJ1 328 0 

CRLRC 39S ribosomal protein L4, mitochondrial  263 0 

CQISC Sodium-dependent noradrenaline transporter  628 0 

CETGC Structural maintenance of chromosomes flexible hinge domain-

containing protein 1 

762 0 

CQIRC Taste receptor type 2 member 50 299 0 
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CHYEF Aberrant microtubules protein 1 123 

CIFTY Actin-like protein ARP8 881 

CKKSR Protein ASG7 209 

CKKSR Protein ASG7 209 

CISEE Metal homeostasis factor ATX2 313 

CKPTY Barrierpepsin 587 

CKKMT Putative uncharacterized protein BUD26 95 

CASTD Pre-mRNA-splicing factor BUD31 157 

CVVFT Calnexin homolog 502 

CRRHM Anaphase-promoting complex subunit CDC23 626 

CHMQE Anaphase-promoting complex subunit CDC27 758 

CKQKR S-phase entry cyclin-6 380 

CHFTQ GTP-binding protein CIN4 191 

CLEDH Cobalt uptake protein COT1 439 

CRKRE Probable S-adenosylmethionine-dependent methyltransferase CRG1 291 

CAKPF Exosome complex component CSL4 292 

CPITA Protein ECM13 257 

CALVA Putative glucokinase-2  500 

CHLPV Probable folylpolyglutamate synthase 430 

CLYEL Galactokinase 528 

CLYEQ Protein GAL3 520 

CKAAE E3 ubiquitin-protein ligase HEL1 551 

CALVA Glucokinase-1 500 

CVLDA Dihydroxy-acid dehydratase, mitochondrial 585 

CDGKV J protein JJJ2 584 

CDGKV J protein JJJ2 583 

CGTPK Protein LDB17 491 

CLSFM Protein LIN1 340 

CDTGH M1-1 protoxin 316 

CKDNS Mitochondrial intermembrane space cysteine motif-containing protein MIX23 196 

CKNTV E3 ubiquitin-protein ligase linker protein MMS1 1407 

CGLIL MIOREX complex component 8  314 

CLHMP N-alpha-acetyltransferase 40  285 

CTYKI Nucleoporin NUP145 1317 

CFYKE Nucleoporin NUP170 1502 

CQAFM Nucleoporin NUP85 744 

CIDLL Ornithine aminotransferase 424 
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CADIF Oxysterol-binding protein homolog 1 1188 

CGDIF Oxysterol-binding protein homolog 2 1283 

CRSLW Peroxisomal coenzyme A diphosphatase 1, peroxisomal 340 

CSSKD Peroxisomal membrane protein PEX25 394 

CRIIV Peroxisomal membrane protein PEX34 144 

CKKKL Transcriptional regulatory protein PHO23 330 

CGQQN Orotidine 5'-phosphate decarboxylase  267 

CFERD 25S rRNA 490 

CLREQ DNA repair and recombination protein RDH54  924 

CLREQ DNA repair and recombination protein RDH54  924 

CLREQ DNA repair and recombination protein RDH54  924 

CLREQ DNA repair and recombination protein RDH54  924 

CLREQ DNA repair and recombination protein RDH54  958 

CPITQ DNA-directed RNA polymerases I and III subunit RPAC1  335 

CNEYI Chromatin structure-remodeling complex subunit RSC7 435 

CIFGK 37S ribosomal protein SWS2, mitochondrial 143 

CRFGG Protein SWT21 357 

CRFGG Protein SWT21 357 

CRFGG Protein SWT21 357 

CRFGG Protein SWT21 357 

CRFGG Protein SWT21 357 

CRFGG Protein SWT21 357 

CLPDE Uncharacterized oxidoreductase TDA5 326 

CLSLS Vacuolar basic amino acid transporter 4 768 

CEAIL Vacuolar protein sorting-associated protein 13 3144 

CWRGT Putative uncharacterized protein YBL006W-A 49 

CAGGM Uncharacterized protein YBR056W-A 66 

CLLNM Putative uncharacterized protein YBR226C 136 

CAIYP Uncharacterized protein YCR108C 63 

CKDFI Uncharacterized protein YDR124W 324 

CFEDG Uncharacterized protein YDR209C 137 

CSTAT Putative uncharacterized protein YDR445C 135 

CFNGE Putative uncharacterized protein YDR521W 111 

CNVYI Uncharacterized protein YER078W-A 54 

CGRTQ Putative uncharacterized membrane protein YFL021C-A 284 

CTIFS Uncharacterized protein YGR146C-A 53 

CGNYF Uncharacterized protein YGR122W 402 

CTSDD Uncharacterized protein YGL015C 130 

CLYSI Uncharacterized protein YGL193C 103 

CKNIT Uncharacterized protein YHR125W 101 

CTDAP Uncharacterized oxidoreductase YJR096W  282 
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CLMFS Putative uncharacterized protein YJL169W 122 

CRDLA Uncharacterized protein YLR163W-A 37 

CLKAR Uncharacterized protein YLR255C 117 

CSGTS Putative uncharacterized protein YLR399W-A 34 

CEFIL Uncharacterized protein YMR134W 237 

CYYIL Putative uncharacterized membrane protein YML031C-A 111 

CIPFK Uncharacterized protein YOR376W-A 51 

CIRGA Uncharacterized membrane protein YOR376W 122 

CVLII Putative uncharacterized protein YPL238C 129 

CLGNL Protein ZPS1 249 

CCxxx 

CCFFN Transcriptional regulatory protein EDS1 919 

CCFFN Transcriptional regulatory protein EDS1 919 

CCFFN Transcriptional regulatory protein EDS1 919 

CCFFN Transcriptional regulatory protein EDS1 919 

CCFFN Transcriptional regulatory protein EDS1 919 

CCFFN Transcriptional regulatory protein EDS1 919 

CCTLM Guanine nucleotide-binding protein subunit gamma 110 

CCSGK Copper metallothionein 1-1 61 

CCSGK Copper metallothionein 1-2 61 

CCIIC Ras-like protein 1 309 

CCIIS Ras-like protein 2 322 

CCIIL GTP-binding protein RHO2 192 

CCTVM Flavoprotein-like protein YCP4 247 

CCDVF Cysteine-rich and transmembrane domain-containing protein YDR034W-B 51 

CCISK Putative uncharacterized protein YHR180C-B 34 

CCIIM Synaptobrevin homolog YKT6 200 

CxCxx 

CFCCC Casein kinase I homolog 3 524 

CQCNK SEH-associated protein 4 1038 

CHCTT Uncharacterized protein YJL077W-A 28 

CVCTQ Putative uncharacterized membrane protein YPR170C 111 

CxxCx 

CWWCR Aquaporin-like protein 2 149 

CWWCR Aquaporin-like protein 2 149 

CWWCR Aquaporin-like protein 2 149 

CWWCR Aquaporin-like protein 2 149 

CWWCR Aquaporin-like protein 2 149 

CHLCV Uncharacterized protein YMR122C 124 

CVFCV Uncharacterized protein YPR064W 139 
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CFRRC Putative uncharacterized protein YNL097W-A 51 

CRRNC Uncharacterized protein YPL277C 487 
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Plasmodium falciparum 

CFFIM 25 kDa ookinete surface antigen 217 

CQIEG Putative phosphatidylethanolamine-binding protein 190 

Candida albicans 

CYVLV Candidapepsin-9 544 

CNMIH Hypha-specific G1 cyclin-related protein 1 785 

CLGQN Adenylate kinase 249 

CQGQI Mediator of RNA polymerase II transcription subunit 8  239 

CNDHQ Mitogen-activated protein kinase MKC1 509 

CTRIE Protein OS-9 homolog 258 

CTATD Pre-mRNA-splicing factor SLU7 350 

CCVIV Ras-like protein 1 290 

CCVIV Ras-like protein 1 288 

CCVIV Ras-like protein 1 290 

Legionella pneumophila 

CLSSL ATP-dependent dethiobiotin synthetase BioD 212 

CLSSL ATP-dependent dethiobiotin synthetase BioD 212 

CLSSL ATP-dependent dethiobiotin synthetase BioD 212 

CLSSL ATP-dependent dethiobiotin synthetase BioD 212 

CDSHR 30S ribosomal protein S18 75 

CDSHR 30S ribosomal protein S18 75 

CDSHR 30S ribosomal protein S18 75 

CDSHR 30S ribosomal protein S18 75 

CGVIK Superoxide dismutase [Cu-Zn] 162 

CGVIK Superoxide dismutase [Cu-Zn] 162 

CIRKG Thiopurine S-methyltransferase  221 

CIRKG Thiopurine S-methyltransferase  221 

CIRKG Thiopurine S-methyltransferase  221 

CPQCQ Ferric uptake regulation protein 136 
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whole or in part, in a new work or works, also as described on the Order Confirmation. “User”, 

as used herein, means the person or entity making such republication. 

2. The terms set forth in the relevant Order Confirmation, and any terms set by the Rightsholder 

with respect to a particular Work, govern the terms of use of Works in connection with the 

Service. By using the Service, the person transacting for a republication license on behalf of the 

User represents and warrants that he/she/it (a) has been duly authorized by the User to accept, 

and hereby does accept, all such terms and conditions on behalf of User, and (b) shall inform 

User of all such terms and conditions. In the event such person is a “freelancer” or other third 

party independent of User and CCC, such party shall be deemed jointly a “User” for purposes of 

these terms and conditions. In any event, User shall be deemed to have accepted and agreed to all 

such terms and conditions if User republishes the Work in any fashion. 

3. Scope of License; Limitations and Obligations. 
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3.1 All Works and all rights therein, including copyright rights, remain the sole and exclusive 

property of the Rightsholder. The license created by the exchange of an Order Confirmation 

(and/or any invoice) and payment by User of the full amount set forth on that document includes 

only those rights expressly set forth in the Order Confirmation and in these terms and conditions, 

and conveys no other rights in the Work(s) to User. All rights not expressly granted are hereby 

reserved. 

3.2 General Payment Terms: You may pay by credit card or through an account with us payable 

at the end of the month. If you and we agree that you may establish a standing account with 

CCC, then the following terms apply: Remit Payment to: Copyright Clearance Center, 29118 

Network Place, Chicago, IL 60673-1291. Payments Due: Invoices are payable upon their 

delivery to you (or upon our notice to you that they are available to you for downloading). After 

30 days, outstanding amounts will be subject to a service charge of 1-1/2% per month or, if less, 

the maximum rate allowed by applicable law. Unless otherwise specifically set forth in the Order 

Confirmation or in a separate written agreement signed by CCC, invoices are due and payable on 

“net 30” terms. While User may exercise the rights licensed immediately upon issuance of the 

Order Confirmation, the license is automatically revoked and is null and void, as if it had never 

been issued, if complete payment for the license is not received on a timely basis either from 

User directly or through a payment agent, such as a credit card company. 

3.3 Unless otherwise provided in the Order Confirmation, any grant of rights to User (i) is “one-

time” (including the editions and product family specified in the license), (ii) is non-exclusive 

and non-transferable and (iii) is subject to any and all limitations and restrictions (such as, but 

not limited to, limitations on duration of use or circulation) included in the Order Confirmation 

or invoice and/or in these terms and conditions. Upon completion of the licensed use, User shall 

either secure a new permission for further use of the Work(s) or immediately cease any new use 

of the Work(s) and shall render inaccessible (such as by deleting or by removing or severing 

links or other locators) any further copies of the Work (except for copies printed on paper in 

accordance with this license and still in User's stock at the end of such period). 

3.4 In the event that the material for which a republication license is sought includes third party 

materials (such as photographs, illustrations, graphs, inserts and similar materials) which are 

identified in such material as having been used by permission, User is responsible for 

identifying, and seeking separate licenses (under this Service or otherwise) for, any of such third 

party materials; without a separate license, such third party materials may not be used. 

3.5 Use of proper copyright notice for a Work is required as a condition of any license granted 

under the Service. Unless otherwise provided in the Order Confirmation, a proper copyright 

notice will read substantially as follows: “Republished with permission of [Rightsholder’s 

name], from [Work's title, author, volume, edition number and year of copyright]; permission 

conveyed through Copyright Clearance Center, Inc. ” Such notice must be provided in a 

reasonably legible font size and must be placed either immediately adjacent to the Work as used 

(for example, as part of a by-line or footnote but not as a separate electronic link) or in the place 

where substantially all other credits or notices for the new work containing the republished Work 

are located. Failure to include the required notice results in loss to the Rightsholder and CCC, 

and the User shall be liable to pay liquidated damages for each such failure equal to twice the use 

fee specified in the Order Confirmation, in addition to the use fee itself and any other fees and 

charges specified. 
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3.6 User may only make alterations to the Work if and as expressly set forth in the Order 

Confirmation. No Work may be used in any way that is defamatory, violates the rights of third 

parties (including such third parties' rights of copyright, privacy, publicity, or other tangible or 

intangible property), or is otherwise illegal, sexually explicit or obscene. In addition, User may 

not conjoin a Work with any other material that may result in damage to the reputation of the 

Rightsholder. User agrees to inform CCC if it becomes aware of any infringement of any rights 

in a Work and to cooperate with any reasonable request of CCC or the Rightsholder in 

connection therewith. 

4. Indemnity. User hereby indemnifies and agrees to defend the Rightsholder and CCC, and their 

respective employees and directors, against all claims, liability, damages, costs and expenses, 

including legal fees and expenses, arising out of any use of a Work beyond the scope of the 

rights granted herein, or any use of a Work which has been altered in any unauthorized way by 

User, including claims of defamation or infringement of rights of copyright, publicity, privacy or 

other tangible or intangible property. 

5. Limitation of Liability. UNDER NO CIRCUMSTANCES WILL CCC OR THE 

RIGHTSHOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL OR 

INCIDENTAL DAMAGES (INCLUDING WITHOUT LIMITATION DAMAGES FOR LOSS 

OF BUSINESS PROFITS OR INFORMATION, OR FOR BUSINESS INTERRUPTION) 

ARISING OUT OF THE USE OR INABILITY TO USE A WORK, EVEN IF ONE OF THEM 

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. In any event, the total 

liability of the Rightsholder and CCC (including their respective employees and directors) shall 

not exceed the total amount actually paid by User for this license. User assumes full liability for 

the actions and omissions of its principals, employees, agents, affiliates, successors and assigns. 

6. Limited Warranties. THE WORK(S) AND RIGHT(S) ARE PROVIDED “AS IS”. CCC HAS 

THE RIGHT TO GRANT TO USER THE RIGHTS GRANTED IN THE ORDER 

CONFIRMATION DOCUMENT. CCC AND THE RIGHTSHOLDER DISCLAIM ALL 

OTHER WARRANTIES RELATING TO THE WORK(S) AND RIGHT(S), EITHER 

EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES 

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. ADDITIONAL 

RIGHTS MAY BE REQUIRED TO USE ILLUSTRATIONS, GRAPHS, PHOTOGRAPHS, 

ABSTRACTS, INSERTS OR OTHER PORTIONS OF THE WORK (AS OPPOSED TO THE 

ENTIRE WORK) IN A MANNER CONTEMPLATED BY USER; USER UNDERSTANDS 

AND AGREES THAT NEITHER CCC NOR THE RIGHTSHOLDER MAY HAVE SUCH 

ADDITIONAL RIGHTS TO GRANT. 

7. Effect of Breach. Any failure by User to pay any amount when due, or any use by User of a 

Work beyond the scope of the license set forth in the Order Confirmation and/or these terms and 

conditions, shall be a material breach of the license created by the Order Confirmation and these 

terms and conditions. Any breach not cured within 30 days of written notice thereof shall result 

in immediate termination of such license without further notice. Any unauthorized (but 

licensable) use of a Work that is terminated immediately upon notice thereof may be liquidated 

by payment of the Rightsholder's ordinary license price therefor; any unauthorized (and 

unlicensable) use that is not terminated immediately for any reason (including, for example, 

because materials containing the Work cannot reasonably be recalled) will be subject to all 

remedies available at law or in equity, but in no event to a payment of less than three times the 
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Rightsholder's ordinary license price for the most closely analogous licensable use plus 

Rightsholder's and/or CCC's costs and expenses incurred in collecting such payment. 

8. Miscellaneous. 

8.1 User acknowledges that CCC may, from time to time, make changes or additions to the 

Service or to these terms and conditions, and CCC reserves the right to send notice to the User 

by electronic mail or otherwise for the purposes of notifying User of such changes or additions; 

provided that any such changes or additions shall not apply to permissions already secured and 

paid for. 

8.2 Use of User-related information collected through the Service is governed by CCC’s privacy 

policy, available online 

here:http://www.copyright.com/content/cc3/en/tools/footer/privacypolicy.html. 

8.3 The licensing transaction described in the Order Confirmation is personal to User. Therefore, 

User may not assign or transfer to any other person (whether a natural person or an organization 

of any kind) the license created by the Order Confirmation and these terms and conditions or any 

rights granted hereunder; provided, however, that User may assign such license in its entirety on 

written notice to CCC in the event of a transfer of all or substantially all of User’s rights in the 

new material which includes the Work(s) licensed under this Service. 

8.4 No amendment or waiver of any terms is binding unless set forth in writing and signed by the 

parties. The Rightsholder and CCC hereby object to any terms contained in any writing prepared 

by the User or its principals, employees, agents or affiliates and purporting to govern or 

otherwise relate to the licensing transaction described in the Order Confirmation, which terms 

are in any way inconsistent with any terms set forth in the Order Confirmation and/or in these 

terms and conditions or CCC's standard operating procedures, whether such writing is prepared 

prior to, simultaneously with or subsequent to the Order Confirmation, and whether such writing 

appears on a copy of the Order Confirmation or in a separate instrument. 

8.5 The licensing transaction described in the Order Confirmation document shall be governed 

by and construed under the law of the State of New York, USA, without regard to the principles 

thereof of conflicts of law. Any case, controversy, suit, action, or proceeding arising out of, in 

connection with, or related to such licensing transaction shall be brought, at CCC's sole 

discretion, in any federal or state court located in the County of New York, State of New York, 

USA, or in any federal or state court whose geographical jurisdiction covers the location of the 

Rightsholder set forth in the Order Confirmation. The parties expressly submit to the personal 

jurisdiction and venue of each such federal or state court.If you have any comments or questions 

about the Service or Copyright Clearance Center, please contact us at 978-750-8400 or send an 

e-mail to info@copyright.com. 

v 1.1 
Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or +1-
978-646-2777. 

 

 

javascript:void(0)
mailto:customercare@copyright.com


Appendix VI: Reprint permission for reference 65, chapter 1 

 

 
 

267 
 

ELSEVIER LICENSE 

TERMS AND CONDITIONS 
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This Agreement between Melanie J Blanden ("You") and Elsevier ("Elsevier") consists of your 

license details and the terms and conditions provided by Elsevier and Copyright Clearance 

Center. 
License Number 
4366670904617 
License date 
Jun 12, 2018 
Licensed Content Publisher 

Elsevier 
Licensed Content Publication 
Elsevier Books 
Licensed Content Title 
The Enzymes 
Licensed Content Author 
Michael A. Hast,Lorena S. Beese 

Licensed Content Date 
Jan 1, 2011 

Licensed Content Pages 
23 
Start Page 
235 

End Page 
257 
Type of Use 
reuse in a thesis/dissertation 
Intended publisher of new work 
other 
Portion 

figures/tables/illustrations 
Number of figures/tables/illustrations 

1 
Format 
both print and electronic 
Are you the author of this Elsevier chapter? 
No 

Will you be translating? 
No 
Original figure numbers 
Figure 1 
Title of your thesis/dissertation 
Thesis 

Publisher of new work 
Syracuse University 

Author of new work 
James L. Hougland 
Expected completion date 
Aug 2018 
Estimated size (number of pages) 

1 
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Requestor Location 
Melanie J Blanden 
5591 Thompson Rd 

 
 
Syracuse, NY 13214 
United States 
Attn: 
Publisher Tax ID 

98-0397604 
Total 

0.00 USD 
Terms and Conditions 

INTRODUCTION 

1. The publisher for this copyrighted material is Elsevier.  By clicking "accept" in connection 

with completing this licensing transaction, you agree that the following terms and conditions 

apply to this transaction (along with the Billing and Payment terms and conditions established by 

Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your Rightslink account 

and that are available at any time at http://myaccount.copyright.com). 

GENERAL TERMS 

2. Elsevier hereby grants you permission to reproduce the aforementioned material subject to the 

terms and conditions indicated. 

3. Acknowledgement: If any part of the material to be used (for example, figures) has appeared 

in our publication with credit or acknowledgement to another source, permission must also be 

sought from that source.  If such permission is not obtained then that material may not be 

included in your publication/copies. Suitable acknowledgement to the source must be made, 

either as a footnote or in a reference list at the end of your publication, as follows: 

"Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of 

chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE 

SOCIETY COPYRIGHT OWNER]." Also Lancet special credit - "Reprinted from The Lancet, 

Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with permission from 

Elsevier." 

4. Reproduction of this material is confined to the purpose and/or media for which permission is 

hereby given. 

5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be 

altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions 

and/or any other alterations shall be made only with prior written authorization of Elsevier Ltd. 

(Please contact Elsevier at permissions@elsevier.com). No modifications can be made to any 

Lancet figures/tables and they must be reproduced in full. 

6. If the permission fee for the requested use of our material is waived in this instance, please be 

advised that your future requests for Elsevier materials may attract a fee. 

7. Reservation of Rights: Publisher reserves all rights not specifically granted in the combination 

of (i) the license details provided by you and accepted in the course of this licensing transaction, 

(ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions. 

8. License Contingent Upon Payment: While you may exercise the rights licensed immediately 

upon issuance of the license at the end of the licensing process for the transaction, provided that 

you have disclosed complete and accurate details of your proposed use, no license is finally 

effective unless and until full payment is received from you (either by publisher or by CCC) as 

http://myaccount.copyright.com/
mailto:permissions@elsevier.com
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provided in CCC's Billing and Payment terms and conditions.  If full payment is not received on 

a timely basis, then any license preliminarily granted shall be deemed automatically revoked and 

shall be void as if never granted.  Further, in the event that you breach any of these terms and 

conditions or any of CCC's Billing and Payment terms and conditions, the license is 

automatically revoked and shall be void as if never granted.  Use of materials as described in a 

revoked license, as well as any use of the materials beyond the scope of an unrevoked license, 

may constitute copyright infringement and publisher reserves the right to take any and all action 

to protect its copyright in the materials. 

9. Warranties: Publisher makes no representations or warranties with respect to the licensed 

material. 

10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and their 

respective officers, directors, employees and agents, from and against any and all claims arising 

out of your use of the licensed material other than as specifically authorized pursuant to this 

license. 

11. No Transfer of License: This license is personal to you and may not be sublicensed, assigned, 

or transferred by you to any other person without publisher's written permission. 

12. No Amendment Except in Writing: This license may not be amended except in a writing 

signed by both parties (or, in the case of publisher, by CCC on publisher's behalf). 

13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any 

purchase order, acknowledgment, check endorsement or other writing prepared by you, which 

terms are inconsistent with these terms and conditions or CCC's Billing and Payment terms and 

conditions.  These terms and conditions, together with CCC's Billing and Payment terms and 

conditions (which are incorporated herein), comprise the entire agreement between you and 

publisher (and CCC) concerning this licensing transaction.  In the event of any conflict between 

your obligations established by these terms and conditions and those established by CCC's 

Billing and Payment terms and conditions, these terms and conditions shall control. 

14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described in 

this License at their sole discretion, for any reason or no reason, with a full refund payable to 

you.  Notice of such denial will be made using the contact information provided by you.  Failure 

to receive such notice will not alter or invalidate the denial.  In no event will Elsevier or 

Copyright Clearance Center be responsible or liable for any costs, expenses or damage incurred 

by you as a result of a denial of your permission request, other than a refund of the amount(s) 

paid by you to Elsevier and/or Copyright Clearance Center for denied permissions. 

LIMITED LICENSE 

The following terms and conditions apply only to specific license types: 

15. Translation: This permission is granted for non-exclusive world English rights only unless 

your license was granted for translation rights. If you licensed translation rights you may only 

translate this content into the languages you requested. A professional translator must perform all 

translations and reproduce the content word for word preserving the integrity of the article. 

16. Posting licensed content on any Website: The following terms and conditions apply as 

follows: Licensing material from an Elsevier journal: All content posted to the web site must 

maintain the copyright information line on the bottom of each image; A hyper-text must be 

included to the Homepage of the journal from which you are licensing 

at http://www.sciencedirect.com/science/journal/xxxxx or the Elsevier homepage for books 

at http://www.elsevier.com; Central Storage: This license does not include permission for a 

http://www.sciencedirect.com/science/journal/xxxxx
http://www.elsevier.com/
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scanned version of the material to be stored in a central repository such as that provided by 

Heron/XanEdu. 

Licensing material from an Elsevier book: A hyper-text link must be included to the Elsevier 

homepage at http://www.elsevier.com . All content posted to the web site must maintain the 

copyright information line on the bottom of each image. 

 

Posting licensed content on Electronic reserve: In addition to the above the following clauses 

are applicable: The web site must be password-protected and made available only to bona fide 

students registered on a relevant course. This permission is granted for 1 year only. You may 

obtain a new license for future website posting. 

17. For journal authors: the following clauses are applicable in addition to the above: 

Preprints: 

A preprint is an author's own write-up of research results and analysis, it has not been peer-

reviewed, nor has it had any other value added to it by a publisher (such as formatting, copyright, 

technical enhancement etc.). 

Authors can share their preprints anywhere at any time. Preprints should not be added to or 

enhanced in any way in order to appear more like, or to substitute for, the final versions of 

articles however authors can update their preprints on arXiv or RePEc with their Accepted 

Author Manuscript (see below). 

If accepted for publication, we encourage authors to link from the preprint to their formal 

publication via its DOI. Millions of researchers have access to the formal publications on 

ScienceDirect, and so links will help users to find, access, cite and use the best available version. 

Please note that Cell Press, The Lancet and some society-owned have different preprint policies. 

Information on these policies is available on the journal homepage. 

Accepted Author Manuscripts: An accepted author manuscript is the manuscript of an article 

that has been accepted for publication and which typically includes author-incorporated changes 

suggested during submission, peer review and editor-author communications. 

Authors can share their accepted author manuscript: 

• immediately 

o via their non-commercial person homepage or blog 

o by updating a preprint in arXiv or RePEc with the accepted manuscript 

o via their research institute or institutional repository for internal institutional uses 

or as part of an invitation-only research collaboration work-group 

o directly by providing copies to their students or to research collaborators for their 

personal use 

o for private scholarly sharing as part of an invitation-only work group on 

commercial sites with which Elsevier has an agreement 

• After the embargo period 

o via non-commercial hosting platforms such as their institutional repository 

o via commercial sites with which Elsevier has an agreement 

In all cases accepted manuscripts should: 

• link to the formal publication via its DOI 

http://www.elsevier.com/
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• bear a CC-BY-NC-ND license - this is easy to do 

• if aggregated with other manuscripts, for example in a repository or other site, be shared 

in alignment with our hosting policy not be added to or enhanced in any way to appear 

more like, or to substitute for, the published journal article. 

Published journal article (JPA): A published journal article (PJA) is the definitive final record 

of published research that appears or will appear in the journal and embodies all value-adding 

publishing activities including peer review co-ordination, copy-editing, formatting, (if relevant) 

pagination and online enrichment. 

Policies for sharing publishing journal articles differ for subscription and gold open access 

articles: 

Subscription Articles: If you are an author, please share a link to your article rather than the 

full-text. Millions of researchers have access to the formal publications on ScienceDirect, and so 

links will help your users to find, access, cite, and use the best available version. 

Theses and dissertations which contain embedded PJAs as part of the formal submission can be 

posted publicly by the awarding institution with DOI links back to the formal publications on 

ScienceDirect. 

If you are affiliated with a library that subscribes to ScienceDirect you have additional private 

sharing rights for others' research accessed under that agreement. This includes use for classroom 

teaching and internal training at the institution (including use in course packs and courseware 

programs), and inclusion of the article for grant funding purposes. 

Gold Open Access Articles: May be shared according to the author-selected end-user license 

and should contain a CrossMark logo, the end user license, and a DOI link to the formal 

publication on ScienceDirect. 

Please refer to Elsevier's posting policy for further information. 

18. For book authors the following clauses are applicable in addition to the above:   Authors are 

permitted to place a brief summary of their work online only. You are not allowed to download 

and post the published electronic version of your chapter, nor may you scan the printed edition to 

create an electronic version. Posting to a repository: Authors are permitted to post a summary 

of their chapter only in their institution's repository. 

19. Thesis/Dissertation: If your license is for use in a thesis/dissertation your thesis may be 

submitted to your institution in either print or electronic form. Should your thesis be published 

commercially, please reapply for permission. These requirements include permission for the 

Library and Archives of Canada to supply single copies, on demand, of the complete thesis and 

include permission for Proquest/UMI to supply single copies, on demand, of the complete thesis. 

Should your thesis be published commercially, please reapply for permission. Theses and 

dissertations which contain embedded PJAs as part of the formal submission can be posted 

publicly by the awarding institution with DOI links back to the formal publications on 

ScienceDirect. 

  

Elsevier Open Access Terms and Conditions 

You can publish open access with Elsevier in hundreds of open access journals or in nearly 2000 

established subscription journals that support open access publishing. Permitted third party re-

use of these open access articles is defined by the author's choice of Creative Commons user 

license. See our open access license policy for more information. 

http://www.crossref.org/crossmark/index.html
http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
http://www.elsevier.com/about/open-access/open-access-policies/oa-license-policy
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Terms & Conditions applicable to all Open Access articles published with Elsevier: 

Any reuse of the article must not represent the author as endorsing the adaptation of the article 

nor should the article be modified in such a way as to damage the author's honour or reputation. 

If any changes have been made, such changes must be clearly indicated. 

The author(s) must be appropriately credited and we ask that you include the end user license 

and a DOI link to the formal publication on ScienceDirect. 

If any part of the material to be used (for example, figures) has appeared in our publication with 

credit or acknowledgement to another source it is the responsibility of the user to ensure their 

reuse complies with the terms and conditions determined by the rights holder. 

Additional Terms & Conditions applicable to each Creative Commons user license: 

CC BY: The CC-BY license allows users to copy, to create extracts, abstracts and new works 

from the Article, to alter and revise the Article and to make commercial use of the Article 

(including reuse and/or resale of the Article by commercial entities), provided the user gives 

appropriate credit (with a link to the formal publication through the relevant DOI), provides a 

link to the license, indicates if changes were made and the licensor is not represented as 

endorsing the use made of the work. The full details of the license are available 

at http://creativecommons.org/licenses/by/4.0. 

CC BY NC SA: The CC BY-NC-SA license allows users to copy, to create extracts, abstracts 

and new works from the Article, to alter and revise the Article, provided this is not done for 

commercial purposes, and that the user gives appropriate credit (with a link to the formal 

publication through the relevant DOI), provides a link to the license, indicates if changes were 

made and the licensor is not represented as endorsing the use made of the work. Further, any new 

works must be made available on the same conditions. The full details of the license are 

available at http://creativecommons.org/licenses/by-nc-sa/4.0. 

CC BY NC ND: The CC BY-NC-ND license allows users to copy and distribute the Article, 

provided this is not done for commercial purposes and further does not permit distribution of the 

Article if it is changed or edited in any way, and provided the user gives appropriate credit (with 

a link to the formal publication through the relevant DOI), provides a link to the license, and that 

the licensor is not represented as endorsing the use made of the work. The full details of the 

license are available at http://creativecommons.org/licenses/by-nc-nd/4.0. Any commercial reuse 

of Open Access articles published with a CC BY NC SA or CC BY NC ND license requires 

permission from Elsevier and will be subject to a fee. 

Commercial reuse includes: 

• Associating advertising with the full text of the Article 

• Charging fees for document delivery or access 

• Article aggregation 

• Systematic distribution via e-mail lists or share buttons 

Posting or linking by commercial companies for use by customers of those companies. 

  

20. Other Conditions: 

  

v1.9 
Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or +1-
978-646-2777. 

http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by-nc-sa/4.0
http://creativecommons.org/licenses/by-nc-nd/4.0
mailto:customercare@copyright.com
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American Society for Biochemistry and Molecular Biology LICENSE 

TERMS AND CONDITIONS 

Jun 12, 2018 

 

 
 

This is a License Agreement between Melanie J Blanden ("You") and American Society for 

Biochemistry and Molecular Biology ("American Society for Biochemistry and Molecular 

Biology") provided by Copyright Clearance Center ("CCC"). The license consists of your 

order details, the terms and conditions provided by American Society for Biochemistry and 

Molecular Biology, and the payment terms and conditions. 

All payments must be made in full to CCC. For payment instructions, please see 

information listed at the bottom of this form. 

License Number 4366780316330 

License date Jun 12, 2018 

Licensed content publisher American Society for Biochemistry and Molecular Biology 

Licensed content title Journal of biological chemistry 

Licensed content date Jan 1, 1905 

Type of Use Thesis/Dissertation 

Requestor type Author of requested content 

Format Print, Electronic 

Portion chapter/article 

The requesting 
person/organization is: 

Melanie J Blanden 

Title or numeric reference of 
the portion(s) 

Figure 1, Figure 5a 

Title of the article or chapter 

the portion is from 

Expansion of protein farnesyltransferase specificity using 

"tunable" active site interactions: development of bioengineered 
prenylation pathways 

Editor of portion(s) N/A 

Author of portion(s) N/A 

Volume of serial or monograph. N/A 

Page range of the portion 
 

Publication date of portion N/A 

Rights for Main product 

Duration of use Life of current and all future editions 

Creation of copies for the 
disabled 

no 

With minor editing privileges no 

For distribution to Worldwide 
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In the following language(s) Original language of publication 

With incidental promotional use no 

The lifetime unit quantity of 
new product 

Up to 499 

Title Thesis  

Instructor name James L. Hougland  

Institution name Syracuse University  

Expected presentation date Aug 2018  

Billing Type Invoice  

Billing Address Melanie J Blanden 
5591 Thompson Rd 
 
 
Syracuse, NY 13214 

United States 
Attn: Melanie J Blanden 

 

Total (may include CCC user 
fee) 

0.00 USD  

Terms and Conditions  

TERMS AND CONDITIONS 

The following terms are individual to this publisher: 

None 

Other Terms and Conditions: 

STANDARD TERMS AND CONDITIONS 

1. Description of Service; Defined Terms. This Republication License enables the User to 

obtain licenses for republication of one or more copyrighted works as described in detail on 

the relevant Order Confirmation (the “Work(s)”). Copyright Clearance Center, Inc. 

(“CCC”) grants licenses through the Service on behalf of the rightsholder identified on the 

Order Confirmation (the “Rightsholder”). “Republication”, as used herein, generally means 

the inclusion of a Work, in whole or in part, in a new work or works, also as described on 

the Order Confirmation. “User”, as used herein, means the person or entity making such 

republication. 

2. The terms set forth in the relevant Order Confirmation, and any terms set by the 

Rightsholder with respect to a particular Work, govern the terms of use of Works in 

connection with the Service. By using the Service, the person transacting for a republication 

license on behalf of the User represents and warrants that he/she/it (a) has been duly 

authorized by the User to accept, and hereby does accept, all such terms and conditions on 

behalf of User, and (b) shall inform User of all such terms and conditions. In the event such 

person is a “freelancer” or other third party independent of User and CCC, such party shall 

be deemed jointly a “User” for purposes of these terms and conditions. In any event, User 

shall be deemed to have accepted and agreed to all such terms and conditions if User 

republishes the Work in any fashion. 

3. Scope of License; Limitations and Obligations. 

3.1 All Works and all rights therein, including copyright rights, remain the sole and 

exclusive property of the Rightsholder. The license created by the exchange of an Order 
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Confirmation (and/or any invoice) and payment by User of the full amount set forth on that 

document includes only those rights expressly set forth in the Order Confirmation and in 

these terms and conditions, and conveys no other rights in the Work(s) to User. All rights 

not expressly granted are hereby reserved. 

3.2 General Payment Terms: You may pay by credit card or through an account with us 

payable at the end of the month. If you and we agree that you may establish a standing 

account with CCC, then the following terms apply: Remit Payment to: Copyright Clearance 

Center, 29118 Network Place, Chicago, IL 60673-1291. Payments Due: Invoices are 

payable upon their delivery to you (or upon our notice to you that they are available to you 

for downloading). After 30 days, outstanding amounts will be subject to a service charge of 

1-1/2% per month or, if less, the maximum rate allowed by applicable law. Unless 

otherwise specifically set forth in the Order Confirmation or in a separate written agreement 

signed by CCC, invoices are due and payable on “net 30” terms. While User may exercise 

the rights licensed immediately upon issuance of the Order Confirmation, the license is 

automatically revoked and is null and void, as if it had never been issued, if complete 

payment for the license is not received on a timely basis either from User directly or 

through a payment agent, such as a credit card company. 

3.3 Unless otherwise provided in the Order Confirmation, any grant of rights to User (i) is 

“one-time” (including the editions and product family specified in the license), (ii) is non-

exclusive and non-transferable and (iii) is subject to any and all limitations and restrictions 

(such as, but not limited to, limitations on duration of use or circulation) included in the 

Order Confirmation or invoice and/or in these terms and conditions. Upon completion of 

the licensed use, User shall either secure a new permission for further use of the Work(s) or 

immediately cease any new use of the Work(s) and shall render inaccessible (such as by 

deleting or by removing or severing links or other locators) any further copies of the Work 

(except for copies printed on paper in accordance with this license and still in User's stock 

at the end of such period). 

3.4 In the event that the material for which a republication license is sought includes third 

party materials (such as photographs, illustrations, graphs, inserts and similar materials) 

which are identified in such material as having been used by permission, User is 

responsible for identifying, and seeking separate licenses (under this Service or otherwise) 

for, any of such third party materials; without a separate license, such third party materials 

may not be used. 

3.5 Use of proper copyright notice for a Work is required as a condition of any license 

granted under the Service. Unless otherwise provided in the Order Confirmation, a proper 

copyright notice will read substantially as follows: “Republished with permission of 

[Rightsholder’s name], from [Work's title, author, volume, edition number and year of 

copyright]; permission conveyed through Copyright Clearance Center, Inc. ” Such notice 

must be provided in a reasonably legible font size and must be placed either immediately 

adjacent to the Work as used (for example, as part of a by-line or footnote but not as a 

separate electronic link) or in the place where substantially all other credits or notices for 

the new work containing the republished Work are located. Failure to include the required 

notice results in loss to the Rightsholder and CCC, and the User shall be liable to pay 

liquidated damages for each such failure equal to twice the use fee specified in the Order 

Confirmation, in addition to the use fee itself and any other fees and charges specified. 
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3.6 User may only make alterations to the Work if and as expressly set forth in the Order 

Confirmation. No Work may be used in any way that is defamatory, violates the rights of 

third parties (including such third parties' rights of copyright, privacy, publicity, or other 

tangible or intangible property), or is otherwise illegal, sexually explicit or obscene. In 

addition, User may not conjoin a Work with any other material that may result in damage to 

the reputation of the Rightsholder. User agrees to inform CCC if it becomes aware of any 

infringement of any rights in a Work and to cooperate with any reasonable request of CCC 

or the Rightsholder in connection therewith. 

4. Indemnity. User hereby indemnifies and agrees to defend the Rightsholder and CCC, and 

their respective employees and directors, against all claims, liability, damages, costs and 

expenses, including legal fees and expenses, arising out of any use of a Work beyond the 

scope of the rights granted herein, or any use of a Work which has been altered in any 

unauthorized way by User, including claims of defamation or infringement of rights of 

copyright, publicity, privacy or other tangible or intangible property. 

5. Limitation of Liability. UNDER NO CIRCUMSTANCES WILL CCC OR THE 

RIGHTSHOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL 

OR INCIDENTAL DAMAGES (INCLUDING WITHOUT LIMITATION DAMAGES 

FOR LOSS OF BUSINESS PROFITS OR INFORMATION, OR FOR BUSINESS 

INTERRUPTION) ARISING OUT OF THE USE OR INABILITY TO USE A WORK, 

EVEN IF ONE OF THEM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH 

DAMAGES. In any event, the total liability of the Rightsholder and CCC (including their 

respective employees and directors) shall not exceed the total amount actually paid by User 

for this license. User assumes full liability for the actions and omissions of its principals, 

employees, agents, affiliates, successors and assigns. 

6. Limited Warranties. THE WORK(S) AND RIGHT(S) ARE PROVIDED “AS IS”. CCC 

HAS THE RIGHT TO GRANT TO USER THE RIGHTS GRANTED IN THE ORDER 

CONFIRMATION DOCUMENT. CCC AND THE RIGHTSHOLDER DISCLAIM ALL 

OTHER WARRANTIES RELATING TO THE WORK(S) AND RIGHT(S), EITHER 

EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED 

WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR 

PURPOSE. ADDITIONAL RIGHTS MAY BE REQUIRED TO USE ILLUSTRATIONS, 

GRAPHS, PHOTOGRAPHS, ABSTRACTS, INSERTS OR OTHER PORTIONS OF THE 

WORK (AS OPPOSED TO THE ENTIRE WORK) IN A MANNER CONTEMPLATED 

BY USER; USER UNDERSTANDS AND AGREES THAT NEITHER CCC NOR THE 

RIGHTSHOLDER MAY HAVE SUCH ADDITIONAL RIGHTS TO GRANT. 

7. Effect of Breach. Any failure by User to pay any amount when due, or any use by User 

of a Work beyond the scope of the license set forth in the Order Confirmation and/or these 

terms and conditions, shall be a material breach of the license created by the Order 

Confirmation and these terms and conditions. Any breach not cured within 30 days of 

written notice thereof shall result in immediate termination of such license without further 

notice. Any unauthorized (but licensable) use of a Work that is terminated immediately 

upon notice thereof may be liquidated by payment of the Rightsholder's ordinary license 

price therefor; any unauthorized (and unlicensable) use that is not terminated immediately 

for any reason (including, for example, because materials containing the Work cannot 

reasonably be recalled) will be subject to all remedies available at law or in equity, but in 

no event to a payment of less than three times the Rightsholder's ordinary license price for 
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the most closely analogous licensable use plus Rightsholder's and/or CCC's costs and 

expenses incurred in collecting such payment. 

8. Miscellaneous. 

8.1 User acknowledges that CCC may, from time to time, make changes or additions to the 

Service or to these terms and conditions, and CCC reserves the right to send notice to the 

User by electronic mail or otherwise for the purposes of notifying User of such changes or 

additions; provided that any such changes or additions shall not apply to permissions 

already secured and paid for. 

8.2 Use of User-related information collected through the Service is governed by CCC’s 

privacy policy, available online 

here:http://www.copyright.com/content/cc3/en/tools/footer/privacypolicy.html. 

8.3 The licensing transaction described in the Order Confirmation is personal to User. 

Therefore, User may not assign or transfer to any other person (whether a natural person or 

an organization of any kind) the license created by the Order Confirmation and these terms 

and conditions or any rights granted hereunder; provided, however, that User may assign 

such license in its entirety on written notice to CCC in the event of a transfer of all or 

substantially all of User’s rights in the new material which includes the Work(s) licensed 

under this Service. 

8.4 No amendment or waiver of any terms is binding unless set forth in writing and signed 

by the parties. The Rightsholder and CCC hereby object to any terms contained in any 

writing prepared by the User or its principals, employees, agents or affiliates and purporting 

to govern or otherwise relate to the licensing transaction described in the Order 

Confirmation, which terms are in any way inconsistent with any terms set forth in the Order 

Confirmation and/or in these terms and conditions or CCC's standard operating procedures, 

whether such writing is prepared prior to, simultaneously with or subsequent to the Order 

Confirmation, and whether such writing appears on a copy of the Order Confirmation or in 

a separate instrument. 

8.5 The licensing transaction described in the Order Confirmation document shall be 

governed by and construed under the law of the State of New York, USA, without regard to 

the principles thereof of conflicts of law. Any case, controversy, suit, action, or proceeding 

arising out of, in connection with, or related to such licensing transaction shall be brought, 

at CCC's sole discretion, in any federal or state court located in the County of New York, 

State of New York, USA, or in any federal or state court whose geographical jurisdiction 

covers the location of the Rightsholder set forth in the Order Confirmation. The parties 

expressly submit to the personal jurisdiction and venue of each such federal or state court.If 

you have any comments or questions about the Service or Copyright Clearance Center, 

please contact us at 978-750-8400 or send an e-mail to info@copyright.com. 

v 1.1 

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or 

+1-978-646-2777. 
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JOHN WILEY AND SONS LICENSE 

TERMS AND CONDITIONS 
Jun 12, 2018 

 

 
 

This Agreement between Melanie J Blanden ("You") and John Wiley and Sons ("John Wiley and 

Sons") consists of your license details and the terms and conditions provided by John Wiley and 

Sons and Copyright Clearance Center. 
License Number 
4366781489474 

License date 
Jun 12, 2018 
Licensed Content Publisher 
John Wiley and Sons 

Licensed Content Publication 
Electrophoresis 
Licensed Content Title 
Measuring the activity of farnesyltransferase by capillary electrophoresis with laser‐induced 

fluorescence detection 
Licensed Content Author 
Maxim Berezovski, Wei‐Ping Li, C. Dale Poulter, et al 

Licensed Content Date 

Oct 8, 2002 

Licensed Content Volume 
23 
Licensed Content Issue 
19 
Licensed Content Pages 
6 

Type of use 
Dissertation/Thesis 
Requestor type 
University/Academic 
Format 
Print and electronic 

Portion 

Figure/table 
Number of figures/tables 
1 
Original Wiley figure/table number(s) 
Figure 3 
Will you be translating? 

No 
Title of your thesis / dissertation 
Thesis 
Expected completion date 
Aug 2018 
Expected size (number of pages) 
1 

Requestor Location 

Melanie J Blanden 
5591 Thompson Rd 
 
 
Syracuse, NY 13214 
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United States 
Attn: 
Publisher Tax ID 
EU826007151 

Total 
0.00 USD 
Terms and Conditions 

TERMS AND CONDITIONS 

This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or one 

of its group companies (each a"Wiley Company") or handled on behalf of a society with which a 

Wiley Company has exclusive publishing rights in relation to a particular work (collectively 

"WILEY"). By clicking "accept" in connection with completing this licensing transaction, you 

agree that the following terms and conditions apply to this transaction (along with the billing and 

payment terms and conditions established by the Copyright Clearance Center Inc., ("CCC's 

Billing and Payment terms and conditions"), at the time that you opened your RightsLink 

account (these are available at any time at http://myaccount.copyright.com). 

 

Terms and Conditions 

• The materials you have requested permission to reproduce or reuse (the "Wiley 

Materials") are protected by copyright.  

• You are hereby granted a personal, non-exclusive, non-sub licensable (on a stand-alone 

basis), non-transferable, worldwide, limited license to reproduce the Wiley Materials for 

the purpose specified in the licensing process. This license, and any CONTENT (PDF 

or image file) purchased as part of your order, is for a one-time use only and limited 

to any maximum distribution number specified in the license. The first instance of 

republication or reuse granted by this license must be completed within two years of the 

date of the grant of this license (although copies prepared before the end date may be 

distributed thereafter). The Wiley Materials shall not be used in any other manner or for 

any other purpose, beyond what is granted in the license. Permission is granted subject to 

an appropriate acknowledgement given to the author, title of the material/book/journal 

and the publisher. You shall also duplicate the copyright notice that appears in the Wiley 

publication in your use of the Wiley Material. Permission is also granted on the 

understanding that nowhere in the text is a previously published source acknowledged for 

all or part of this Wiley Material. Any third party content is expressly excluded from this 

permission. 

• With respect to the Wiley Materials, all rights are reserved. Except as expressly granted 

by the terms of the license, no part of the Wiley Materials may be copied, modified, 

adapted (except for minor reformatting required by the new Publication), translated, 

reproduced, transferred or distributed, in any form or by any means, and no derivative 

works may be made based on the Wiley Materials without the prior permission of the 

respective copyright owner.For STM Signatory Publishers clearing permission under 

the terms of the STM Permissions Guidelines only, the terms of the license are 

extended to include subsequent editions and for editions in other languages, 

provided such editions are for the work as a whole in situ and does not involve the 

separate exploitation of the permitted figures or extracts,You may not alter, remove 

http://myaccount.copyright.com/
http://www.stm-assoc.org/copyright-legal-affairs/permissions/permissions-guidelines/
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or suppress in any manner any copyright, trademark or other notices displayed by the 

Wiley Materials. You may not license, rent, sell, loan, lease, pledge, offer as security, 

transfer or assign the Wiley Materials on a stand-alone basis, or any of the rights granted 

to you hereunder to any other person. 

• The Wiley Materials and all of the intellectual property rights therein shall at all times 

remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or their 

respective licensors, and your interest therein is only that of having possession of and the 

right to reproduce the Wiley Materials pursuant to Section 2 herein during the 

continuance of this Agreement. You agree that you own no right, title or interest in or to 

the Wiley Materials or any of the intellectual property rights therein. You shall have no 

rights hereunder other than the license as provided for above in Section 2. No right, 

license or interest to any trademark, trade name, service mark or other branding 

("Marks") of WILEY or its licensors is granted hereunder, and you agree that you shall 

not assert any such right, license or interest with respect thereto 

• NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR 

REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY, EXPRESS, 

IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS OR THE 

ACCURACY OF ANY INFORMATION CONTAINED IN THE MATERIALS, 

INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF 

MERCHANTABILITY, ACCURACY, SATISFACTORY QUALITY, FITNESS FOR A 

PARTICULAR PURPOSE, USABILITY, INTEGRATION OR NON-INFRINGEMENT 

AND ALL SUCH WARRANTIES ARE HEREBY EXCLUDED BY WILEY AND ITS 

LICENSORS AND WAIVED BY YOU.  

• WILEY shall have the right to terminate this Agreement immediately upon breach of this 

Agreement by you. 

• You shall indemnify, defend and hold harmless WILEY, its Licensors and their 

respective directors, officers, agents and employees, from and against any actual or 

threatened claims, demands, causes of action or proceedings arising from any breach of 

this Agreement by you. 

• IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR ANY 

OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY SPECIAL, 

CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR PUNITIVE 

DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN CONNECTION WITH 

THE DOWNLOADING, PROVISIONING, VIEWING OR USE OF THE MATERIALS 

REGARDLESS OF THE FORM OF ACTION, WHETHER FOR BREACH OF 

CONTRACT, BREACH OF WARRANTY, TORT, NEGLIGENCE, INFRINGEMENT 

OR OTHERWISE (INCLUDING, WITHOUT LIMITATION, DAMAGES BASED ON 

LOSS OF PROFITS, DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS 

OF THIRD PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN 

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION 

SHALL APPLY NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE 

OF ANY LIMITED REMEDY PROVIDED HEREIN.  
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• Should any provision of this Agreement be held by a court of competent jurisdiction to be 

illegal, invalid, or unenforceable, that provision shall be deemed amended to achieve as 

nearly as possible the same economic effect as the original provision, and the legality, 

validity and enforceability of the remaining provisions of this Agreement shall not be 

affected or impaired thereby.  

• The failure of either party to enforce any term or condition of this Agreement shall not 

constitute a waiver of either party's right to enforce each and every term and condition of 

this Agreement. No breach under this agreement shall be deemed waived or excused by 

either party unless such waiver or consent is in writing signed by the party granting such 

waiver or consent. The waiver by or consent of a party to a breach of any provision of 

this Agreement shall not operate or be construed as a waiver of or consent to any other or 

subsequent breach by such other party.  

• This Agreement may not be assigned (including by operation of law or otherwise) by you 

without WILEY's prior written consent. 

• Any fee required for this permission shall be non-refundable after thirty (30) days from 

receipt by the CCC. 

• These terms and conditions together with CCC's Billing and Payment terms and 

conditions (which are incorporated herein) form the entire agreement between you and 

WILEY concerning this licensing transaction and (in the absence of fraud) supersedes all 

prior agreements and representations of the parties, oral or written. This Agreement may 

not be amended except in writing signed by both parties. This Agreement shall be 

binding upon and inure to the benefit of the parties' successors, legal representatives, and 

authorized assigns.  

• In the event of any conflict between your obligations established by these terms and 

conditions and those established by CCC's Billing and Payment terms and conditions, 

these terms and conditions shall prevail. 

• WILEY expressly reserves all rights not specifically granted in the combination of (i) the 

license details provided by you and accepted in the course of this licensing transaction, 

(ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions. 

• This Agreement will be void if the Type of Use, Format, Circulation, or Requestor Type 

was misrepresented during the licensing process. 

• This Agreement shall be governed by and construed in accordance with the laws of the 

State of New York, USA, without regards to such state's conflict of law rules. Any legal 

action, suit or proceeding arising out of or relating to these Terms and Conditions or the 

breach thereof shall be instituted in a court of competent jurisdiction in New York 

County in the State of New York in the United States of America and each party hereby 

consents and submits to the personal jurisdiction of such court, waives any objection to 

venue in such court and consents to service of process by registered or certified mail, 

return receipt requested, at the last known address of such party. 
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WILEY OPEN ACCESS TERMS AND CONDITIONS 

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription 

journals offering Online Open. Although most of the fully Open Access journals publish open 

access articles under the terms of the Creative Commons Attribution (CC BY) License only, the 

subscription journals and a few of the Open Access Journals offer a choice of Creative Commons 

Licenses. The license type is clearly identified on the article. 

The Creative Commons Attribution License 

The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and 

transmit an article, adapt the article and make commercial use of the article. The CC-BY license 

permits commercial and non- 

Creative Commons Attribution Non-Commercial License 

The Creative Commons Attribution Non-Commercial (CC-BY-NC)License permits use, 

distribution and reproduction in any medium, provided the original work is properly cited and is 

not used for commercial purposes.(see below) 

Creative Commons Attribution-Non-Commercial-NoDerivs License 

The Creative Commons Attribution Non-Commercial-NoDerivs License (CC-BY-NC-ND) 

permits use, distribution and reproduction in any medium, provided the original work is properly 

cited, is not used for commercial purposes and no modifications or adaptations are made. (see 

below) 

Use by commercial "for-profit" organizations 

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes requires 

further explicit permission from Wiley and will be subject to a fee. 

Further details can be found on Wiley Online 

Library http://olabout.wiley.com/WileyCDA/Section/id-410895.html 

 

 

Other Terms and Conditions: 

 

 

 

v1.10 Last updated September 2015 
Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or +1-
978-646-2777. 
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http://creativecommons.org/licenses/by-nc-nd/3.0/
http://olabout.wiley.com/WileyCDA/Section/id-410895.html
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Melanie J. Blanden 
5591 Thompson Rd., Syracuse NY 13214 

Email: mjdecker@syr.edu 

 

Education 

2011-present Syracuse University, Ph.D. Candidate, Chemistry Department, College of Arts of 

Sciences, Syracuse, NY 

 Thesis Title: Redefining the scope of Prenylation: Discovery of “forbidden” 

substrate recognition and development of methods ultilizing prenylated 

proteins, Supervised by Dr. James Hougland 

  

2011-2013 M.Phil. Chemistry, Syracuse University, Syracuse, NY 

2007-2011 B.Sc. Forensic Science, Bay Path University, Longmeadow, MA   

 

Research Experience 

2011-Present      Graduate Assistant (Chemistry) Syracuse University  

                        Supervisor: Dr. James Hougland 

Summary – Discovery and characterization of lipidation for non-canonical protein 

sequences in vitro and in mammalian cells. Investigated protein isolation techniques 

using bioorthogonal chemistry of engineered enzymes in bacterial and mammalian cells. 

Developed new method for studying protein modifications from cells.  

 

Summer 2010     Intern (Bioinformatics and Integrative Genomics)  

                            Harvard- MIT Health Sciences and Technology (Cambridge, MA) 

                            Supervisors: Dr. Susanne Churchill and Dr. Robert Plenge 

 Summary – Evaluated Rheumatoid Arthritis biomarkers in human patient samples. 

Techniques used include isolation of white blood cells from patient blood samples, 

qPCR, DNA isolation from white blood cells, and statistically evaluating antibody 

levels and single nucleotide polymorphisms as risk factors for developing rheumatoid 

arthritis. 

 

Teaching Experience 

2018-Present Assistant Professor of Chemistry (tenure track) Utica College 

Summary – Responsibilities include teaching four lectures or laboratories each semester 

in both biochemistry and general chemistry sequences. Courses taught include 

Biochemistry I/II lecture, Biochemistry lab, General Chemistry I lecture, and General 

Chemistry I/II lab. Research with undergraduate students in biochemistry.  

 

 

2017-2018 One Year Assistant Professor of Chemistry Utica College 

Summary – Responsibilities include teaching four lectures or laboratories each semester 

in both biochemistry and general chemistry sequences. Courses taught include 

Biochemistry I/II lecture, Biochemistry lab, General Chemistry I lecture, and General 

Chemistry I/II lab.  
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Summer 2016 Instructor (Organic Chemistry Lab I) Syracuse University 

Summary – Taught lecture, designed lab protocols, report templates, quizzes, and 

exams. Held studentled discussions sections for review of lecture material. Supervised 

teaching assistants in running lab experiments and grading reports 

 

Summer 2014 Research Experience for Undergrate Students (REU) Research Mentor Syracuse 

University 

  Supervisor: Dr. James Hougland 

Summary –Advised summer student on experimental design, biochemical lab 

techniques, and scientific communication skills. Techniques included mammalian tissue 

culture, protein purification via FPLC, in vitro reactions from cell lysate, fluorescent plate 

reader methods, bacterial cloning, and protein gel analysis. This research culminated in a 

poster and oral presentation to the Syracuse University community. 

 

2013-present Teaching Assistant (Chemistry) Syracuse University 

Classes – General Chemistry I, Organic Chemistry I, Organic Chemistry Lab I/II, 

Prep & Analysis of Proteins and Nucleic Acids (Lab) 

Summary: Lecture course responsibilities included teaching of multiple weekly 

recitation classes, office hours, proctoring and grading of exams, and one-on-one 

mentorship. Laboratory course responsibilities included preparation and ordering of 

materials, maintenance of equipment, testing the validity of experiments prior to class, 

assisting and guiding students during laboratory, office hours, holding lecture-style study 

sessions, and grading of lab reports, quizzes, and exams.  

 

2013-2014 Undergraduate Student Research Mentor Syracuse University 

  Supervisor: Dr. James Hougland 

Summary – Training and guidance of a sophomore undergradate student in biochemistry 

lab                                                         techniques, experiments, and scientific 

writing/presentations. Techniques mentored include protein purification via FPLC, 

bacterial cloning, DNA and protein gel analysis, PCR, HPLC analysis and basic lab 

maintenance and solution making 

 

2009-2011          Undergraduate Teaching Assistant (Organic Chemistry I/II Lecture and Lab) 

 Bay Path University 

                            Supervisor: Dr. Hsiang-Ching Kung 

Summary – Taught weekly lecture recitations and supervised laboratory sections. 

Prepared laboratory          materials and graded lab quizzes. Formatted, typed, and graded 

lecture exams. 

 

2008-2010          Student Tutor The Bashevkin Center for Academic Excellence - Bay Path University 

                           Classes: General Chemistry I/II, Organic Chemistry I/II, Statistics, Calculus I 
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Summary – Nominated by course instructor. Individual tutoring sessions with 

undergraduate students several days per week. Duties include review of lecture material, 

exam preparation, guidance in study methods, and homework help.                                                                                                      

 

Awards and Honors:  

      Best Graduate Student Poster Presentation – 1st place, FASEB Science Research Conference 2017 

William D. Johnson Award for Outstanding Graduate Teaching Assistant 2017 

ACS Division of Biological Chemistry Travel Award 2016 

Syracuse University Graduate Student Organization Travel Award 2015/2016 

GAANN Fellowship 2011-2012 

Syracuse University STEM Fellowship 2012 – 2014 

 

 

 

 

Publications: 

Zhang, Yi, Blanden, Melanie J., Sudheer, Ch., Gangopadhyay, Soumyashree A., Rashidian, Mohammad, 

Hougland, James L., and Distefano, Mark D. Simultaneous Site-Specific Dual Protein Labeling Using 

Protein Prenyltransferases Bioconjugate Chem., 2015, 26 (12), 2542–2553 

 

Shala-Lawrence, Agnesa*, Blanden, Melanie J.*, Krylova, Svetlana M., Gangopadhyay, Soumyashree A., 

Beloborodov, Stanislav S., Hougland, James L., and Krylov, Sergey N.  Simultaneous Analysis of a Non-

Lipidated Protein and Its Lipidated Counterpart: Enabling Quantitative Investigation of Protein 

Lipidation’s Impact on Cellular Regulation Anal Chem., 2017, 89 (24), 13502-13507 

 

Blanden, Melanie J.,  Suazo, Kiall F., Hildebrandt, Emily R., Hardgrove, Daniel S., Patel, M., Saunders, 

William P., Distefano, Mark D., Schmidt, Walter K., and Hougland, James L.  Efficient farnesylation of 

“forbidden” C-terminal C(x)3X sequences expands the scope of the prenylated proteome J. Biol. Chem., 

2018, 293 (8), 2770-2785 

 

Oral Presentations: 

Blanden, Melanie J.,  Suazo, Kiall F., Hildebrandt, Emily R., Hardgrove, Daniel S., Patel, M., Saunders, 

William P., Distefano, Mark D., Schmidt, Walter K., and Hougland, James L.  Efficient farnesylation of 

“forbidden” C-terminal C(x)3X sequences expands the scope of the prenylated proteome FASEB Science 
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