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Abstract

In this dissertation, we study the thermal behavior of two-dimensional sheets

and ribbons. We study the effects of thermal fluctuations on the crumpling

transition of elastic sheets. Existing two-dimensional sheets have a crumpling

temperature which is very high and the crumpling transition has not been ob-

served experimentally. We propose a mechanism using which one can tune this

crumpling transition by changing the shape and geometry of the sheet. We per-

form extensive molecular dynamics simulations by perforating the sheet with

a dense array of holes and find that the critical temperature is a function of

the removed area. Lastly, we look at clamped thermalized ribbons and study

thermalized Euler buckling. Again, we perform molecular dynamics simulations

by clamping one end and allowing the other end to slide to get the projected

thermal length of the ribbon. We compress this system and observe a distinct

two-state dynamics of the center of mass along with thermalized Euler buckling.
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Chapter 1

Introduction

In this dissertation, we will deal with thin sheets. The mechanics of solid bodies under the

action of external forces is the subject of study in theory of elasticity [1]. The external force

applied to a specific area is called stress. The resulting deformation in the solid is called

strain. In the classical picture, where thermal fluctuations are ignored, a thin elastic plate

has two contributions to its energy, one due to bending and the other due to stretching. The

bending energy of the plate is characterized using the bending rigidity (κ) of the material

and the stretching energy by the Lamé coefficients (λ,µ) or more commonly by the Young’s

modulus (Y ) of the material. One can write the energy of the plate in the continuum limit

and then use the nonlinear strain matrix, along with external boundary conditions, and

the Airy stress function to obtain the Föppl-von Kármán equations which gives the shape

of the deformation of the thin plates under the action of external forces. However, in this

Föppl-von Kármán theory, the elastic constants of the material, namely κ, λ and µ, are

constant and do not change as a function of the length scale.

An interesting thing happens when contributions from thermal fluctuations are taken

into account. The elastic parameters mentioned above start running as a function of the

length scale l, or equivalently momentum q: κ(q), λ(q) and µ(q). This particular behav-

ior, attributed solely to thermal fluctuations, has been the basis of many theoretical and

numerical predictions from 1987 until today [2–19].

The free energy has contributions from a pure energy term and an entropy term. Thermal
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fluctuations become crucial when the entropy term dominates over the energy term. An easy

way to look at this is to imagine a two-dimensional lattice of connected nodes kept at room

temperature (kT ∼ 1/40eV ). The Boltzmann factor e−ε/kT comes out to be of the order

of 10−18, which is exceedingly small. Note that scale of ε here is ε ∼ eV for soft materials

like lipid bilayers. One might then argue that thermal fluctuations are of no significance.

But this deduction is not correct, since we only have half the picture .The effect of thermal

fluctuations is determined by the Boltzmann factor multiplied by the density of states. The

density of states for a fluctuating sheet is exponentially large since there are many nearly

degenerate configurations available. Hence, thermal fluctuations cannot be ignored.

Before we dive into discussing these results, a cursory look at polymers will help us get

a quick idea of the kind of order we might be interested to look at in a two-dimensional

material. A polymer is modeled as a one-dimensional chain of nodes. If we look at a

polymer subject to thermal fluctuations, the normal- normal correlation function which

measures the long range order in normals at large scales goes to zero [20, 21] as one increases

temperature. So at sufficiently large separations, this system is always disordered. An

immediate question one can ask is whether we can see an ordered phase if we go from a

polymer to a two-dimensional sheet or membrane? An ordered phase here would be a flat

phase with long range order in the normals, as opposed to a disordered crumpled phase

with no long range normal-normal order. Interestingly, there are different kinds of two-

dimensional sheets or membranes example liquid membranes [22], and elastic membranes

[2, 23]. Liquid membranes are governed by bending energy alone since they have vanishing

elastic moduli. Elastic membranes have both bending and elastic contributions to their free

energy.

We first look at examples of liquid membranes like red blood cells and microemul-

sions [26]. Fig. 1.1 and Fig. 1.2 shows electron micrograph images of an erythrocyte, or red

blood cell, cytoskeleton. The cell or plasma membrane of a red blood cell is composed of a

bilayer of amphiphilic molecules. Each amphiphilic molecule has one or more hydrophobic

hydrocarbon tails and a polar head. The topology of the cell is spherical and these cells

have very small shear modulus at the temperature levels of a living cell. Hence, these cells
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Figure 1.1: An electron micrograph of a portion of erthrocyte cytoskeleton. The skeleton has been
spread to a surface area nine to ten times as large as in its natural state [24].



4

Figure 1.2: Isolated RBC skeletons viewed under video-enhanced differential interference contrast
microscopy. A and B show different closeups [25].
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are ideal for studying a system which is purely bending driven as any shearing force will

tear the cell. These systems are studied by modeling the membrane as a triangular lattice

and using the Monge representation for the position. Normals to each triangular lattice

can be erected and the bending energy can be written simply by taking the dot product of

neighboring normals over the entire membrane, with bending rigidity acting as the coupling

constant. One can now estimate fluctuations in the normals by taking the dot product of

normals with the z-axis and passing to Fourier space. As shown in [27], the normal-normal

correlation in these liquid membranes depends logarithmically on the system size, and hence

diverges (goes to infinity) with the system size L. So, like polymers, one doesn’t find long

range order in normals. Peliti and Leibler [28] calculated the renormalized wave-vector-

dependent bending rigidity (κR(q)) and found that the thermal fluctuations soften these

liquid membranes and in fact, make the normal-normal divergence more severe. The correc-

tion to the bare bending rigidity is negative. The bending rigidity decreases as a result of

fluctuations. Even though we moved from a one-dimensional polymer to a two-dimensional

liquid membrane, we still do not get an ordered phase and one sees crumpling at finite

temperature.

We next consider elastic membranes with bending energy as well as a tethering potential

between nearest-neighbor vertices [2, 29]. Again one works with a triangular lattice to

discretize the membrane with each vertex having a fixed connectivity (six in this case). The

tethering potential essentially introduces stretching in the system, governed by the Lamé

coefficients λ and µ mentioned earlier. We now have two competing terms in the free energy

and the system tries to minimize the total energy by trading one for the other. Examples of

such systems are Boron Oxide B2O3 [30] and graphene [31]. Fig. 1.3 shows a planar section of

a B2O3 sheet and Fig. 1.4 shows an artist’s impression of single layer graphene. In this case,

thermal fluctuations will renormalize both the bending rigidity and the two dimensional

Young’s modulus. The Young’s modulus penalizes any membrane distortions that cause

non-zero Gaussian curvature and hence the system searches for low energy configurations

which are isometric. One can crumple a paper piece, which has almost infinite in-plane

elastic constants, to see that there are many low energy configurations available to the
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system. This particular assertion is important because graphene sheets, which are the core

of research presented in this dissertation, have a very high Young’s modulus. An important

dimensionless parameter in the context of two-dimensional sheets is the Föppl-von Kármán

number, which is the ratio of the stretching energy for a side (L) square sheet to the bending

energy of the sheet. The Föppl-von Kármán number for a 10µm× 10µm graphene sheet is

of the O(1012). This high number only exemplifies the idea that these sheets bend much

more easily than they stretch. Nelson and Kantor [2, 29] calculated the running of the

bending rigidity and found the corrections to the bare bending rigidity to be positive. So,

the presence of stretching energy has the effect of stiffening the membrane due to thermal

undulations. When this new renormalized bending energy is used to calculate the normal-

normal correlation one finds that the fluctuations are finite now. This is a clear indication

that the presence of stretching along with bending has a stabilizing effect on the long range

order of the normals. As opposed to liquid membranes described earlier, we now have

a two-dimensional system which shows evidence of long range order in normals at a low

temperature. But we know that entropy still favors a crumpled state at high temperature.

The finite normal-normal correlation indicates the presence of a low temperature flat phase.

Therefore, there should be a finite-temperature crumpling transition present in these elastic

systems. Subsequent computer simulations [7, 8, 32, 33] supported this result for elastic

membranes without self avoidance.

The crumpling transition has not been experimentally observed yet. In many materials,

the crumpling transition is very far from the experimentally accessible regime. Let’s look

at graphene, for example, which is an atomically thin sheet of connected carbon atoms and

provides a plausible testing bed for these experiments. The bending rigidity of graphene

κ ≈ 48kTR, where TR is the room temperature [9]. The crumpling temperature of graphene

comes out to be of order 104 − 105K, which is well beyond the melting point of graphene.

One can think of using a softer material to work around this problem. But unfortunately,

this doesn’t work either. Thermal fluctuations become important on scales q−1 larger than

the thermal length which is inversely proportional to the square root of Young’s modulus.

Softer materials have a low Young’s modulus which makes the thermal length for such
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Figure 1.3: A planar section of Boron Oxide B2O3 [30].

systems very large, they don’t see effects of thermal fluctuations. So, one is forced to work

with a material with high Young’s modulus, which in turn will give a small thermal length

and thermal fluctuations will set in quickly. For graphene, the thermal length is of the order

of 1A and thermal fluctuations become important quickly but still one has to deal with the

very high crumpling temperature. Clearly, this situation requires a means of lowering the

crumpling temperature to an experimentally viable regime.

Chapter 2 in this dissertation attempts to answer this long-standing problem by provid-

ing a mechanism for lowering the crumpling temperature of existing two-dimensional mem-

branes. Ideas from Origami(ori means “folding” and gami means “paper”) and kirigami(kiri

means “cut”) techniques traditionally used in making complex shapes and structure with
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Figure 1.4: Graphene is an atomic-scale hexagonal lattice made of carbon atoms - Wikipedia.
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paper are used to design new metamaterials from these two-dimensional membranes. Meta-

materials are materials which are engineered to have properties that are not found in nature.

Specifically, these techniques alter the shape, geometry, size, and orientation of the material

to engineer the elastic parameters (bending rigidity and Young’s modulus). Both mechani-

cal and electrical properties can be modified using this approach, though we will concentrate

only on the mechanical aspects. Recent work by Blees et al. [34], in addition to demonstrat-

ing a 4000-fold enhancement of the bending rigidity relative to its T = 0 value has shown

the potential of graphene as the raw ingredient of microscopic mechanical metamaterials.

Fig. 1.5 and Fig. 1.6 gives examples of such metamaterials which have been fabricated using

graphene and have generated renewed interest in looking at graphene as a base material for

designing metamaterials with engineered properties. Employing the principles of kirigami,

one can construct robust microstructures, thus providing an alternative route to tune me-

chanical properties, leaving graphene’s remarkable electrical properties essentially intact.

Similarly, it has been shown numerically that a simple cut in a ribbon causes thermal stiff-

ening [35]. Using these ideas as inspiration, we will show that perforating a two-dimensional

sheet paves the way for lowering the crumpling temperature in these systems.

Cantilevers are long projecting beams fixed at one end used in the construction of bridges

and buildings. Recently, at the microscale cantilevers are being made by cutting graphene

sheets. These have now been studied experimentally in great detail with application in

microelectromechanical (MEMS) and nanoelectromechanical (NEMS) devices [36]. Also,

micro and nano-scale oscillators have been studied for a long time [37, 38] to explore

their mechanical response and energy dissipation mechanism. Given that these system sizes

are in the microscale the classical approach to bending is not adequate in understanding

their thermal response as thermal fluctuations will inadvertently play a significant role in

changing the bending rigidity of the beams as explained earlier. One other aspect which

has not been explored completely is characterizing the response of these cantilevers when

geometric changes are made to it.

In chapter 3, we explore the system dynamics of these microscale cantilevers as a function

of its aspect ratio (width/length). We find interesting results pertaining to the oscillatory
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Figure 1.5: a. Paper model of spring.
b and c. Grapehene spring [34].
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Figure 1.6: Graphene rectangular spring [34].
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motion of these systems, which can be tunned just by playing with the dimensions of

the cantilever beam. We also find evidence of thermal renormalization in these systems.

Incidentally, no thermal analogue of Euler buckling has yet been proposed where out of

plane buckling can be controlled by temperature alone. In this dissertation we will show

thermalized Euler buckling in these cantilever devices.

Finally, chapter 4 and 5 elaborate on the simulation and analysis methods used.
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Chapter 2

Thermal crumpling of perforated two

dimensional sheets

2.1 Introduction

In this chapter we propose a mechanism using which one can lower the crumpling transition

temperature for two dimensional sheets to an experimently accessible regime. We sucessfuly

show that the crumpling temperature can be significantly lowered by altering the geometry

and topology of the sheet. In particular, we perform extensive molecular dynamics sim-

ulations of crystalline membranes with dense periodic arrays of holes and determine the

dependence of the onset of crumpling on the degree of perforation. This work was done in

collaboration with David Yllanes, Mark Bowick and David Nelson which has been published

in Nature Communications [39]. My contribution was running simulations, writing code to

analyze the raw simulation data and plotting figures.

2.2 Model

We consider square sheets of size L× L, which for the purposes of computer simulation we

discretize with a tiling of equilateral triangles of side a = 1. We use a standard coarse-

grained model [40] to compute the elastic energy in the sheet, which is composed of a
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stretching and a bending term

H = Hstretch +Hbend. (2.1)

Stretching is modeled by considering each triangle side as a spring of elastic constant ε and

rest length a:

Hstretch =
1

2
ε
∑
〈i,j〉

(rij − a)2, (2.2)

where the sum is over all pairs of vertices joined by a triangle edge. The bending energy is

represented by a standard dihedral interaction between normals,

Hbend = κ̃
∑
〈α,β〉

(1− n̂α · n̂β). (2.3)

Here the sum is over all the pairs of triangles that share a side and n̂α is the unit normal

to triangle α. Note that placing a carbon atom at the center of each triangle provides an

approximate atomic model for the elastic modes of graphene on a dual lattice, as long as

we choose the bending rigidity and Young’s modulus correctly.

The elastic parameters ε and κ̃ are directly related to the continuum Young’s modulus

(Y0 = 2ε/
√

3) and bare bending rigidity (κ0 =
√

3κ̃/2). Normally, when performing a numer-

ical study (see, e.g., [7, 41]) one chooses natural units where ε = 1 and κ̃ is varied. To better

approximate the behavior of materials such as graphene or MoS2, however, we will instead

fix the ratio ε/κ̃ and vary temperature by changing the κ̃/kT ratio. For graphene at room

temperature κ̃/kT ≈ 48 [9]. Following [35, 42], we will use ε/κ̃ = 1440/a2. This corresponds

to a Young’s modulus about an order of magnitude lower than for real graphene [43, 44], in

order to facilitate equilibration in our computer simulations. We note, however, that this

choice should have only a minor effect on the onset of crumpling, since the degree of order in

the normals only depends on ε/κ̃ logarithmically [19]. For a sheet of length L/a = O(102),

corresponding to a patch of freely suspended graphene roughly 30nm on a side, these pa-
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Figure 2.1: Close ups of sections of the membrane for two different arrays of perforations. We begin by
considering a full triangulated sheet and then remove all the nodes in a radius R around its center. This
central hole is then repeated periodically throughout the membrane. In the figure the removed nodes are

represented by blue dots (Left: R = 1, Right : R = 2). In the rest of the paper we will consider patterns of
perforations with R = 1, 2 and varying spacing between holes (see Figure 8 in the Supplementary Material

for a full description of all our perforation patterns).
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κkT = 1.14 ~

κkT = 1.25 ~

Figure 2.2: Snapshots of thermalized configurations. We superimpose the configurations of a pristine
sheet (blue) and a perforated sheet with holes of size R = 2, in the pattern of Fig. 2.1-b (red) for two

values of the temperature (in units of the bending rigidity κ̃). In both cases the full sheet is well into the
flat phase, the thermal fluctuations causing just some wrinkling and oscillation. This 10% increase in
temperature, however, triggers a crumpling of the perforated sheet. Both systems have size L = 100a.

rameters result in a Föppl von Kármán number of vK = Y0L
2/κ0 ∼ O(107), similar to that

of a standard A4 sheet of paper.

2.2.1 Dense arrays of holes

We are interested in exploring the effect of a perforated geometry on the rigidity of elastic

membranes. To this end we shall compare the physics of the “full” or unperforated sheet

described above with that of a sheet with a dense array of holes. We begin by removing the

node i = 0 situated in the center of the sheet and all the nodes j such that r0j = |rj| < R.

We then repeat this operation periodically throughout the lattice to create a dense lattice

of perforations (see Fig. 2.1 and Supplementary Fig. 1). In this paper we consider arrays of

holes of size R = 1, 2 with varying spacing. We kept the radius of the hole small relative to

the length of the sheet to minimize finite-size effects.

As a first demonstration of the dramatic effect of these perforations, consider the pattern
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Figure 2.3: Radius of gyration as a function of κ̃/kT for several patterns of perforation. The black curve
is the baseline unperforated membrane, which crumples at the highest temperature, κ̃/kTc ≈ 0.18. The

red curves (A to D) are for triangular arrays of perforations of radius R = 2 with decreasing spacing
between individual holes. The blue curves (1 to 3) are arrays of perforations with radius R = 1. As the

spacing between holes is reduced, the crumpling temperature decreases. The full description of the
perforation patterns A–D and 1–3 is given in Supplementary Fig. 1. Data for systems of size L = 100a.
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of holes depicted in Fig. 2.1–right. Fig. 2.2 compares the equilibrium configurations of this

perforated sheet and those of the full membrane for two values of temperature that differ by

only 10%. In both cases, the full membrane is deep in the flat phase and exhibits smooth,

approximately flat configurations. The perforated sheet, on the other hand, experiences a

crumpling transition.

To characterize this transition it will be useful to consider the radius of gyration of the

sheet

R2
g =

1

3N

N∑
i=1

〈Ri ·Ri〉, Ri = ri − rCM, (2.4)

where rCM is the position of the center of mass and 〈O〉 represents a thermal average. In

the flat phase, R2
g ∼ L4/dH , with Hausdorff dimension dH = 2, while in the crumpled phase

R2
g ∼ log(L/a) (dH =∞). In the critical region, the Hausdorff dimension has been computed

with analytical methods (dH = 2.73 [5]) and with numerical simulations (dH = 2.70(2) [41]).

We have plotted Rg as a function of κ̃ for all our perforation patterns in Fig. 2.3. In blue

(red) we represent systems with arrays of holes of radius R = 1 (R = 2) and a decreasing

separation between holes. The black curve provides the baseline value of R2
g for the full

membrane. We are interested in computing the critical kTc/κ̃ for crumpling in each of these

geometries. This can be done by searching for the maximum in the specific heat of the

system, which can be computed as [45]

CV =
1

N

(
〈H2〉 − 〈H〉2

)
. (2.5)

Alternatively, we can consider the κ̃-derivative of R2
g, which can be evaluated as:

dR2
g

dκ̃
=
kT

κ̃

(
〈H〉〈R2

g〉 − 〈HR2
g〉
)
. (2.6)

We show these two quantities for two different perforation patterns in Fig. 2.4. In the

thermodynamic limit, the position of the peaks in CV and dR2
g/dκ̃ tend to the same kTc/κ̃

value. For our finite systems, we use the difference in these peak positions for our most



2.2 Model 19

 500

 1000

 1500

 2000

 1.6  1.7  1.8  1.9  2

 1.6

 2

 2.4

 2.8

 3.2Pattern D

d
R

2 g
/d
κ

C
V

 κ̃/kT

C
V

dR2
g/dκ

 0

 40000

 0.56  0.58

 20

 40

Pattern B

d
R

2 g
/d
κ

C
V

 κ̃/kT

Figure 2.4: Location of the crumpling temperature. We plot the specific heat CV (right axis) and
κ̃-derivative of the radius of gyration (left axis) as a function of κ̃/kT for our most perforated system
(corresponding to curve D in Fig. 2.3). The inset shows the analogous plot for a less perforated sheet

(corresponding to curve B in Fig. 2.3), with a much sharper transition (note the different vertical scales of
the axes). All error bars represent the standard error of the mean.

perforated membrane (the case where the peaks are most separated) as an estimate of our

systematic error in κ̃/kTc.

In principle, one could think that this Tc would depend in a complicated way on the par-

ticular spatial arrangement of the holes or on their individual sizes. Fortunately, the reality

is much simpler. Indeed, in Fig. 2.5 we have plotted the kTc/κ̃ for each of the curves in

Fig. 2.3 as a function of the fraction of removed area in the sheet. Given our discretization,

this areal fraction is most easily estimated by counting the fraction of remaining dihedrals

connecting adjacent triangles, after the holes have been made. As a function of this dimen-

sionless area fraction, all our Tc, including the one for the full membrane, fall on a single

smooth curve.
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Figure 2.5: Crumpling temperature kTc as a function of the fraction s of removed area. When plotted
against this parameter, the values of kTc for all eight curves in Fig. 2.3 collapse to a single smooth

function, independent of the size of the individual holes or their precise geometrical arrangement. The
curve is a fit to f(s) = A(1− s)c, with c = 1.93(4) and a goodness-of-fit estimator χ2/d.o.f. = 8.72/6

(d.o.f. = degrees of freedom). On the right-hand vertical axis we also plot the zero-temperature effective
bending rigidity in units of κ0 (red dotted line), which is simply linear in (1− s). The error bars represent

an estimate of our systematic error, as explained in the text.
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Figure 2.6: Peak of dR2
g/dκ̃ for our most perforated sheet and six system sizes L. Inset: scaling of the

height of the peak with an exponent θ = 4/dH + 1/ν = 2.88(7), from a fit with χ2/d.o.f. = 4.67/4. The
expected value for the crumpling transition [5] is θ ≈ 2.82. All error bars represent the standard error of

the mean.
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In fact, if we denote by s the fraction of removed area in the perforated sheet, we have

found that the following ansatz reproduces our results very accurately:

kTc/κ̃ = A(1− s)c. (2.7)

With our choice of parameters, we obtain a good fit with c = 1.93(4) and A ≈ 5.5. Notice,

in particular, that for our most perforated sheet (where about 70% of the area has been

removed), the value of kTc is reduced by a factor of 10 compared to the full membrane. Ex-

trapolating using Eq. (2.7), we find that removing 85% of the area in a graphene sheet would

bring the crumpling temperature down to about 1600 K. Thus creating “lacey graphene”

via, say, laser ablated holes that remove 85% of the carbon atoms could allow the crumpled

regime to be accessed experimentally. We note that the mechanical and electrical properties

of free-standing graphene springs with roughly 40% of the material removed were studied

in [34].

It is important to note that the observed kTc(s), (2.7), cannot be explained by the

effective elastic constants of the perforated sheets κeff(T = 0) and Yeff(T = 0). Indeed,

as we explain in Supplementary Note 1 , the T = 0 bending modulus of the perforated

sheet, κeff(T = 0), linearly decays with (1 − s). Therefore, if the onset of crumpling were

simply determined by κeff(T = 0), one would expect Tc to be a linear function of (1 − s).
Instead, as we obtained in Eq. (2.7), Tc ∼ (1−s)1.93, a result which indicates that non-trivial

thermal fluctuation effects are responsible. The effective Young’s modulus Yeff(T = 0), on

the other hand, has a complicated dependence on the details of the perforation pattern

(see Supplementary Note 1). However, Y only affects the crumpling temperature as a

logarithmic correction, see Eq. (2.9) below. Explaining the observed value of c = 1.93(4)

remains, therefore, a theoretical challenge.



2.3 Finite-size scaling 23

2.3 Finite-size scaling

We have seen that cutting holes in a membrane can induce crumpling at much lower

temperatures. We have yet to show, however, that this phenomenon quantitatively cor-

responds to the standard crumpling transition that has been extensively studied for full

sheets [5, 7, 14, 15, 29, 41, 45–51]. This can be accomplished by performing a finite-size

scaling (FSS) study [52] and finding the universality class of the phase transition. This

computation poses two difficulties: on the one hand our simulations cover a very wide range

of temperature, rather than concentrating all the numerical effort to increase the precision

at the critical region. On the other hand, the presence of the holes creates novel finite-

size effects. We begin by considering the FSS of the height of the peak in dR2
g/dκ̃, which

diverges as [41]

dR2
g

dκ̃

∣∣∣∣
max

∼ L4/dH+1/ν , (2.8)

where ν is the critical exponent describing a normal-normal correlation length that diverges

at the crumpling transition. When considering this equation, it is important to notice

that, while the exponent is universal, the algebraic prefactor is not and depends on all the

parameters. In particular, for a given finite size, the transitions in Fig. 2.3 seem to be of

varying sharpness. However, the values of the critical exponents for the sharpest looking

transition (the full membrane) are known from previous work. In the following, we will

perform the FSS analysis and a fit to (2.8) only for our most perforated membrane (the

rightmost curve in Fig. 2.3). If its critical exponents turn out to be compatible with those of

the full sheet, we can conclude that the intermediate curves will be in the same universality

class too.

Fig. 2.6 shows the results of this analysis. We obtain θ = 4/dH + 1/ν = 2.88(7), to be

compared with θ = 2.86(1) from a recent dedicated FSS study for the full membrane [41].

Extracting the values of dH and ν separately is more difficult. In principle, one could

compute ν by studying the drift in the position of the peak T
(L)
c ' T∞c + AL−1/ν , but this
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Figure 2.7: Crumpling of a thin frame. The top row shows the initial (T = 0) configuration for frames of
L = 100a and W = 24a, 12a, 6a, 3a (left to right). The bottom row shows thermalized configurations (for
κ̃ = 1.25kT and ε = 1800kT/a2) for each of these geometries, showing a clear crumpling as the frame
width W is reduced. Points A and B of the leftmost frame are used to define an order parameter for

crumpling in the text.

has very strong corrections to the leading scaling [41]. Alternatively, one could consider the

critical scaling of the specific heat (yielding α/ν and hence ν from hyperscaling), but in this

case one has to include an analytical contribution that introduces an extra fitting parameter:

CV = Ca +ALα/ν . Since, unlike for the full membrane [41], we have to discard sizes L < 50

due to finite-size effects, we do not have enough degrees of freedom to obtain a reliable

computation of ν. We have checked, however, that the value ν = 0.74 for the standard

crumpling transition is consistent with our data (see Supplementary Note 2). Using this

estimate of ν we obtain dH = 2.62(7). In short, the transition in these perforated membranes

is compatible with the universality class of the crumpling transition for pristine sheets, even

though its location is shifted downward in temperature by an order of magnitude.

Crumpling of thin frames

It is illuminating to consider what happens when all perforations are combined to create a

thin frame of width W and overall size L, e.g., a membrane interrupted by a single large

square hole. As shown in Fig. 2.7 (simulations at fixed temperature and L with varying

W ), there is now a striking crumpling transition as a function of hole size. As an order

parameter for this crumpling transition, imagine erecting the normal to these frames at the
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Figure 2.8: Scaling in thin-frame crumpling. We plot the radius of gyration for frames of different L and
W against `p/L, where the persistence length `p = 2WκR(W )/kT and the renormalized bending rigidity
κR(W ) are defined in (2.11). The curves for different system sizes collapse when plotted against this

scaling variable. The inset shows that neglecting thermal renormalization of the bending rigidity, that is,
considering `0p = 2Wκ0/kT , leads to a poorer collapse. In all these simulations we have used κ̃ = 1.25kT
and ε = 1800kT/a2. All error bars (not visible at this scale in most cases) represent the standard error of

the mean.
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points A = (W/2,W/2) and B = (L − W/2, L − W/2), where we use an xy-coordinate

system superimposed on the frame at T = 0 with origin at the lower left corner. Then, in

the flat phase of the frame (left side of Fig. 2.7, when the hole is small), we expect in the

limit of large frame sizes, 〈n̂A · n̂B〉 6= 0. Indeed, in the limit of a vanishingly small hole

(W → L/2), we expect [19]

〈n̂A · n̂B〉L = 1− kT

2πκ0

[
η−1 + log

(
`th

a

)
+ C

kT

κ0

(
`th

L

)η]
, (2.9)

where C is a positive constant of order unity, η ≈ 0.8 and the thermal length scale is

`th =

√
16π3κ2

0

3kTY0

. (2.10)

Thus limL→∞〈n̂A · n̂B〉L 6= 0, indicating that the normals on diagonally opposite corners are

correlated. In contrast, when the frame is crumpled (right side of Fig. 2.7, when the hole is

large), we clearly have limL→∞〈n̂A · n̂B〉 = 0. In the case of square frames, we can estimate

where the transition occurs by comparing the frame size L to the persistence length for thin

frames of width W [19].

`p =
2WκR(W )

kT
, κR(W ) = κ0

(
W

`th

)η
. (2.11)

Here κR(W ) is the thermally renormalized bending rigidity. Crumpling out of the flat

phase should occur when L > `p, which suggests a scaling form for the radius of gyration

of Eq. (2.4), namely,

R2
g = L2F (`p/L), (2.12)

This scaling ansatz (where crumpling is indicated by the behavior for small x, limx→0 F (x) ∼
x) is checked for a wide variety of frame dimensions L as a function of W in Fig. 2.8, which

shows excellent data collapse as L becomes large. Note that the collapse is not nearly so

good if one simply scales with a bare persistence length (inset), indicating that thermal
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fluctuations play an important role in our simulations. For this problem, it is known that

the crumpled phase is robust to distant self-avoidance [53]. Indeed, the crumpled phase

only swells slightly with a scaling function in Eq. (2.12) that behaves accordingly to F (x) ∼
x4/5 for small `p/L. Of course, considerably more work would be required to demonstrate

convincingly that there is a sharp phase transition in the thermodynamic limit. Here,

the nontrivial width-dependent scaling of the thermally renormalized persistence length in

Eq. (2.11) suggests that the appropriate limit is L,W →∞ , with fixed W (W/`th)η/L. In

short, this analysis suggests that there could be a novel transition for single frames, where

both a crumpled and flat phase would survive in a polymer-like large-size limit. Even if this

transition were simply a crossover, we expect a dramatic change in mechanical properties,

such as the response to bending, pulling and twisting, when the frame crumples [19].

We note finally that the crumpling temperature for unperforated membranes can be

estimated (up to logarithmic corrections) from Eq. (2.9) as kTc ≈ 2πηκ0, in approximate

agreement with the transition temperature associated with the black curve in Fig. 2.3.

2.4 Methods

Our simulations

We have simulated model (3.1) for sizes ranging from L = 25a to L = 150a with molecular

dynamics in an NV T ensemble, using a standard Nosé-Hoover thermostat [54, 55]. All

simulations were carried out with the help of the HOOMD-blue package [56, 57]. Smaller

sizes (up to L = 50a) were simulated on CPUs using a message-passing interface (MPI)

parallelization, while for larger systems we have used GPUs. We use a simulation timestep

of ∆t = 0.0025 (in natural units where a = m = kT = 1). We start with a flat sheet in

the xy-plane, and add a small random z component to all the nodes, in order to get the

molecular dynamics started. We then follow the evolution for 2× 108 timesteps, discarding

the first 10% for thermalization and using a jackknife procedure [52] to estimate statistical

errors. Converted into wall-clock time, 108 steps of a simulation of size L = 100a (with

11484 nodes, 34023 bonds and 33597 dihedral angles) require about 8 hours of execution



2.4 Methods 28

Initial configuration (T = 0) ~kT  = 0.5 κ ~kT  = 0.67 κ ~kT  =  κ

a b

Figure 2.9: Two-step crumpling transition in an anisotropic sheet. The zig-zag pattern of approximately
vertical struts reinforced by edge-sharing triangles make this structure more rigid in the vertical than in

the horizontal direction (see highlighted example in the figure). We show snapshots of thermalized
configurations for several temperatures. As T increases, the anisotropy in the pattern of perforations

makes the membrane first fold into a tight cylinder, before crumpling completely. This geometry
corresponds to the system labeled Pattern 3 in Fig. 2.3 and in Supplementary Fig. 1. The T = 0 snapshot
(a) is a close-up to a 30a× 30a section of the lattice, while the finite-temperature snapshots (b) show the

full 100a× 100a system.
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time on an NVIDIA Tesla K40. Our total simulation time has been the equivalent of ≈ 5

months of a single Tesla K40.

2.5 Conclusion and Discussion

We have studied the mechanics of thermalized membranes with a dense array of holes and

found that the perforations can bring the crumpling temperature into an experimentally

accessible regime. From Fig. 2.5, we have kTc/κ̃ ' A(1−s)1.93 for the crumpling temperature

as a function of the area fraction removed s, independent of the detailed arrangement and

size of our periodic lattice of holes. In addition, we have found that with an anisotropic

pattern of perforation one can induce a first partial crumpling at an even lower temperature.

Indeed, see Fig. 2.9, a system where the perforations are asymmetric or arranged in such

a way that one of the membrane’s axes presents less bending resistance will first fold and

roll into a very tight cylinder, before crumpling completely. See reviews by Radzihovsky

and by Bowick in [32] for a discussion of two-stage crumpling. These observations provide a

potential method for bridging the gap between the theoretical expectations for the crumpling

transition and the experimentally accessible temperatures.

A subtle issue is our neglect of distant self-avoidance. The nearest-neighbor springs

in Eq. (3.1) embody an energy penalty of order εa2 when nearest-neighbor nodes overlap,

a number which greatly exceeds kT . Adding a hard sphere excluded volume interaction

between second-nearest neighbors would create an entropic contribution to κ̃ of order kT ,

which might produce a small shift in the crumpling temperature. The existence of a sharp

crumpling transition in unperforated membranes with distant self-avoidance remains unclear

at the present time [8, 58]. The presence of a lattice of large holes will certainly reduce

the effect of distant self-avoiding interactions, especially when the removed area fraction

becomes large. When distant excluded-volume interactions are non-zero but weak, theory

predicts a sharp transition between a low-temperature flat phase and a high-temperature

crumpled phase with a nontrivial fractal dimension dH ≈ 2.5 [33, 59], qualitatively similar

to the findings for perforated membranes presented here. In addition, we have argued for
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the existence of a sharp crumpling transition when all perforations are combined to create

a thin frame with a single large hole in the center of the membrane. In this case, it is

well known that the crumpled ring polymer phase survives the imposition of distant self-

avoidance [53]. We hope our results will stimulate allocation of resources (both experimental

and computational) that will allow investigations of distant self-avoidance in the presence

of a lattice of perforations. Even if distant self-avoidance smears out a sharp crumpling

transition, we nevertheless expect qualitatively different mechanical behavior in the regimes

identified here for thermalized kirigami sheets.
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Chapter 3

Anharmonic effects and buckling in

thermalized ribbons

3.1 Introduction

In this chapter, we conduct a detailed study of the thermalized ribbon clamped at both ends

by running extensive molecular dynamics simulations and tunning our system to a bending

dominated regime. In contrast to recent work [60] where thermal effects are neglected

while designing clamped resonators we propose a simple geometric tuneability incorporating

thermal fluctuations as a means to study the fundamental mode and anharmonic effects in

these clamped systems. We also propose a thermalized version of Euler buckling as an

easy means to achieve a two-state system whose temporal characteristics and responses are

controlled using external stress and geometry.

3.2 Model

We simulate ribbons of size L×W , which have been discretized using an equilateral trian-

gular lattice with each side a = 1. We use a standard coarse-grained model [40] to compute

the total energy in the ribbon. The total Hamiltonian of the system consists of a stretching
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and a bending term:

H = Hstretch +Hbend, (3.1)

Stretching in the system is modeled by imagining the triangle sides as springs of elastic

constant ε and rest length a:

Hstretch =
1

2
ε
∑
〈i,j〉

(rij − a)2, (3.2)

where the sum is taken over all pair of vertices with a triangle edge between them. The

bending energy is computed using the dihedral interaction between the normals:

Hbend = κ̃
∑
〈α,β〉

(1− n̂α · n̂β). (3.3)

where the sum is taken over all triangle pairs which share a common triangle edge and

n̂α is the normal to the triangle α.

The elastic parameters ε and κ̃ are directly related to the continuum Young’s modulus

(Y0 = 2ε/
√

3) and bare bending rigidity (κ0 =
√

3κ̃/2). Our goal is to study the geometric

dependence of thermalized ribbons, we fix the ratio ε/κ̃ = 1440/a2 [39] and vary the system

size parameters L and W . We choose κ̃/kT = 2.5 in these simulations to be far from the

crumpling regime which occurs around κ̃/kT ≈ 0.5 for these parameters [39]. For these

parameters a sheet of length L/a = O(102) and same W , results in a Föppl von Kármán

number of

vK = Y0L
2/κ0 ' O(107), (3.4)
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similar to that of a standard A4 sheet of paper.

Figure 3.1: Ribbon of dimension L = 70a, W = 17.3a discretized using a triangular lattice with each
edge length a = 1. The light green line segment depicts the backbone of the ribbon. Two columns of

nodes marked Red on the left and Violet on the right, denote the nodes which are clamped. Initially, we
clamp the Red nodes and allow the violet nodes to slide along the x-direction in the z = 0 plane. All other

nodes are free to move in the 3D Euclidean space. The x-position of violet nodes is then averaged over
several runs to get the projected thermalized length Lκ̃ of the ribbon at this temperature. Once we have
Lκ̃ we clamp the Violet nodes at this new position and rerun the simulations, to study long wavelength

behavior of thermalized ribbons in tension-free bending dominated regime.

AR = W/L (3.5)

We define the aspect ratio of the ribbon as the ratio between the width and length of the

ribbon Eq.(3.5). We simulate different aspect ratios of the ribbon, by fixing L and varying

W over a wide range. We repeat the same by changing L as well. The simulations are

carried out using molecular dynamics in an NV T ensemble, using a standard Nosé-Hoover

thermostat to keep a constant temperature of kT = 1. All the simulations were carried

out with the help of the HOOMD-blue package [56, 57]. We use a simulation timestep of

∆t = 0.002τ , where τ = a
√
m/kT is the reduced time unit (m = 1 is the vertex mass). We

follow the dynamics for 1 × 108 timesteps for multiple runs ( 10 runs for each parameter

set). We record system observables every 1 × 104 time steps. We discard the first half of

the simulation for thermalization and use a jackknife procedure [52] to estimate statistical

errors.
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Figure 3.2: Projected Thermalized Length Lκ̃ for ribbons versus rest length in the range L = 30a to
L = 100a. Clamping both ends of the ribbon with distance Lκ̃ between them ensures that there is no

tension in the system. Lκ̃ is plotted for tw0 aspect ratio’s AR=0.25 and AR=0.375. A straight line fit for
the two sets of data shows that they are parallel(see inset) and lower AR has a shorter Lκ̃ for the same

rest length of ribbon.

3.3 Tension free clamping of ribbons

We want to study dynamics of cantilevers clamped at both ends. Since clamping induces a

tension if the system is stretched or compressed we need to find the stress free state to study

the dynamics. We choose our simulation parameters to be close to graphene ε/κ̃ = 1440/a2

which makes bending easily compared to stretching.

We aim to extract the tension-free state of the clamped ribbon, for which the following

procedure is applied. The ribbons are initially clamped at one end and the other end is free

to slide in the x-direction in z = 0 plane as explained in Fig. 3.1. This is done to extract
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the projected thermalized length of the ribbon (we will call this Lκ̃ from here-on). At any

given temperature ribbons will experience thermal fluctuations which will reduce its length

when compared with its T = 0 rest length. Allowing the ribbon to slide in the x-direction

at one end allows the system to adjust to its natural length and we extract the projected

thermalized length (Lκ̃) by averaging the slider x-position over several runs as described in

Fig. 3.1. This procedure is done for various ribbon rest length’s ranging from L = 30a

to L = 100a and the projected thermalized length (Lκ̃) is extracted for each one as shown

in Fig. 3.2. Once we have found the projected thermalized length (Lκ̃) of the ribbon, we

clamp both ends of the ribbon with the distance between them equal to this new projected

length (Lκ̃) and we re-run the simulations again for all. From here on we will be double

clamping the ribbon.

3.4 Effects of double clamping

By double clamping at (Lκ̃), we intend to tune any induced tension out of our system. This

is important since we want to explore system dynamics in the bending dominated regime.

To verify, that we are indeed in a tension-free regime, we look at the height of the ribbon

averaged along the width of the ribbon (height of nodes along a column are averaged) in

the Fourier space. From theory, we know that the Fourier transform is as follows [19]:

〈|h̃(q)|2〉 = kBT/(σq
2 + κq4), (3.6)

where σ is the stress and κ is the bending rigidity.

We will compare two different clamping scenario’s:

• Ribbon clamped with the distance between the clamped ends equal to the T = 0

length of the ribbon. We will call this the rest length of the ribbon. At a non-zero

temperature this system is stretched.
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Figure 3.3: Top: Snapshots of the ribbon in Up and Down state. Bottom: Height of the ribbon is
averaged along the width (average height of nodes in a column in the y-direction) to get h(x). Fourier
transform of h(x) gives h̃(q) and this activity is done for all sanpshots over all runs, to evaluate |h̃(q)|2

with errors.
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Figure 3.4: Fitting |h̃(q)|2 obtained from clamping ribbon at its projected thermalized length Lκ̃ (violet)
and rest length (ribbon length when T=0 in blue) to the function 1/(Sq2 +Bq4). Rest length clamping

curve is dominated by q−2 stretching term whereas Lκ̃ clamping curve is dominated by q−4 bending term.
By clamping the ribbon at its Lκ̃ length we have successfully tuned any induced tension out of the system.

(S = σ/kT and B = κ/kT )
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• Ribbon clamped with the distance between the clamped ends equal to the projected

thermalized length Lκ̃.

Fig. 3.3 shows the height averaged along the width(x) of the ribbon h(x) for one snapshot

during the simulation and take its Fourier transform to get h̃(q). We calculate 〈|h̃(q)|2〉 from

simulation data for ribbons clamped at projected thermalized length (Lκ̃) and compare the

same with thermalized ribbons clamped at its rest length. As shown in Fig. 3.4, we find

that the ribbon clamped at Lκ̃ fits nicely to q−4 for long wavelengths which is the dominant

bending term in theoretical expression (Eq. (3.6)). On the other hand, the case where the

ribbon is double clamped at its rest length, stretching dominates and this can be seen from

the simulation data fitting to q−2. Hence, by double clamping at Lκ̃ we have successfully

tuned out any induced tension from the system and we are nicely poised to study the long

wavelength effects in this bending dominated regime.

Notice that the fitting parameter S (stretching coefficient) for the double clamped ribbon

at its rest length is positive. If one were to compress the system such that the new clamping

length is less than Lκ̃, this fitting parameter S should become negative. A plot of the fitting

parameter S versus the various compressed length should then cross zero at Lκ̃. We make

this consistency check next.

We double clamp the ribbon over a wide range of lengths (both compressed and stretched)

and perform the fitting procedure for each as done in Fig. 3.4. We track the stretching coef-

ficient S which should be positive for stretched cases and negative otherwise. The clamped

length at which S = 0 is the tuned length which exhibits zero induced tension. Tuned

length obtained in this method should match the projected thermalized length. Fig. 3.5

shows that this indeed is true.

3.4.1 Bending Rigidity renormalization

It has been shown in previous work [19] that bending rigidity for thermalized ribbons

renormalize depending on width given that width is much greater than the thermal length
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negative when compression crosses the projected thermal length of this system (marked by green point).
The inset shows a zoomed section of the plot near S = 0 which clearly shows the cross-over from positive
S (stretched case) to negative (compressed case). The green dot is obtained from the sliding procedure

explained in Fig. 3.1.
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scale of the system lth given by Eq. 3.7

lth =

√
16π3κ2

0

3kBTY0

, (3.7)

where κ0 is the bare bending rigidity and Y0 is the continuum Young’s modulus.

Thermal length scale for the material parameters used by us gives lth ∼ a where a is the

lattice spacing.

The persistence length of thermalized ribbons is dependent on width W as shown in

Eq.(3.8).

lp =
2WκR(W )

kBT
, (3.8)

The renormalized bending rigidity depends on width as per Eq.(3.9).

κR(W ) = κ0(W/lth)
η, (3.9)

where exponent η ≈ 0.80− 0.85 for thermalized sheets.

To study the effects of renormalized bending rigidity on our clamped ribbons we look at

the average square height of the center of mass (CM) of the system as a function of persis-

tence length. We first look at a naive picture, where we don’t account for renormalization.

The naive persistence length using bare bending rigidity comes out as Eq.(3.10).

l0p =
2Wκ0

kBT
, (3.10)

where we have used the bare bending rigidity κ0 instead of κR(W ).

We note here that it is it difficult to extract η from this data. Fig. 3.6 shows a poor
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collapse when renormalization is not taken into account. But Fig. 3.7 where we have used

η = 0.8 by hand shows a better collapse. This gives some evidence that η 6= 0 and that

there is some thermal renormalization taking place.

3.4.2 Two State System

We will now look closely at the oscillatory motion of the system which has been double

clamped at its Lκ̃ length. We first track the height(z-coordinate) of the center of mass

(CM) of the system as a function of the simulation time MD steps (hCM(t)). As can be

seen from Fig. 3.8, the CM of the system exhibits two distinct states Up and Down (above

and below the z = 0 plane). Top panel of Fig. 3.3 shows snapshots from the simulation of

the ribbon in Up and Down state.

3.4.3 Time Autocorrelation function

One can now extract the average time the systems CM spends in the Up/Down state. First,

we look at the time height auto-correlation function of the CM (hCM(t)).

C(t) = 〈hCM(t)hCM(t+ ∆t)〉, (3.11)

ρ(t) = C(t)/C(0), (3.12)

For sufficiently long times the autocorrelation function ρ(t) given by Eq. (3.11) & (3.12)

decays exponentially [52].

ρ(t) ∼ exp (−t/τac), (3.13)
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Figure 3.8: Top: Height time series of CM of ribbon hCM (t) (L = 70a, W = 34.6a). First 10% of data is
discarded to allow for equilibration. A filter is applied to extract the time spent by CM in the Up/Down

state. Bottom: CM height time series for (L = 70a, W = 69a) corresponding AR∼ 1. Two states are
distinctly visible in this case. Both ribbons are clamped at their projected thermalized length Lκ̃.
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where τac measures the slowest time scale in the system. In this case, it measures the time

taken by the CM to overcome the energy barrier in going from the Up state to Down state

or vice versa. In other words, τac measures the average time the systems CM spends in the

Up/Down state.

Several aspect ratio’s are probed by fixing L = 70a and changing the W of the ribbon.

We fit this simulation data to a decaying exponential Eq. (3.13) to extract the τac. Fig. 3.9

depicts the data for various aspects ratio’s, showing a dramatic increase in τac as the aspect

ratio of the system tends to one (W comparable to L). So, ribbons with AR∼ 1 tend to

spend a considerable amount of time in Up/Down state, indicating that the energy barrier

required to flip states in this system is very high compared to systems with AR< 1. A

look at the bottom panel of Fig. 3.8 which corresponds to hCM(t) for a single run for the

parameter set in yellow in the top panel shows that the time spent in Up/Down state has

definitely increased. Details, of the fitting procedure can be found in the Appendix 3.6.

3.4.4 Integrated Survival Time

The above method is dependent on a fitting range and it is not easy to get three decades of

data for ρ(t) in Eq. (3.12) for all aspect ratio’s (difficulty increases as AR tends to values

greater than 1, as shown by the yellow plot in top panel Fig. 3.9). As AR∼ 1 the system

starts showing metastability by staying Up or Down for durations comparable to simulation

run time. Measuring τac using the fitting procedure becomes difficult.

Instead, we adopt a more direct method for capturing the system’s CM Up/Down time.

We first filter the height time series of the CM hCM(t) of the ribbon from simulation data as

shown in the top Fig. 3.8. Using this filtering process we are able to extract the individual

Up/Down times in each run which we will now define as the survival time of the system.

We will work with simulation data for the parameter set (L = 70a,W = 34.6a, κ̃/kT =

2.5) to explain this procedure in detail. Fig. 3.8 shows a time series for L = 70a and W =

34.6a where we have discarded top 10% to account for equilibration time. We do this for

all the runs and bin these individual survival times to generate the probability distribution.
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Figure 3.10: Post filtering the CM height time series into Up and Down survival times from multiple
runs (10 runs for each parameter set),probability distribution function (PDF) is generated. Top: Shows

the PDF to be a Poisson distribution for ribbon of dimensions L = 70a and W = 34.6a for one run.
Middle: Cumulative Distribution Function (CDF) for the above PDF. Bottom: Complementary

Cumulative Distribution Function(CCDF=1-CDF) is generated from CDF. Area under this curve is
defined as the Integrated Survival Time, since

∫∞
0
exp(−x/τ)dx = τ . Note that the error bars, in this

case, are generated using bootstrap method [52] since the underlying distribution is not gaussian.
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If there is an energy barrier associated with the Up/Down transition, survival times will be

Poisson distributed. If it is a Poisson distribution, 1−CDF= exp(−t/τsurvival),where CDF

is the Cumulative Distribution Function and τsurvival is the survival time in the Up/Down

state.

∫ ∞
0

exp(−t/τsurvival)dt = τsurvival, (3.14)

Integrating (1−CDF) will give τsurvival as shown in Eq. 3.14 which we define as the Inte-

grated Survival Time. Top and middle panel of Fig. 3.10 show the PDF and CDF for ribbon

survival times. Inset in the third panel shows CCDF (1-CDF) plotted against binned time in

semi-log plot which fits a straight line showing its decaying exponentially as per Eq. (3.13).

Since the underlying distribution is not gaussian we cannot use Jack Knife for error es-

timation. Instead, we use bootstrap [52] method, by generating bootstrap samples with

randomly selecting with repetition from the pool of observed survival times. This process

gives us the integrated survival time for a given set of parameters along with the error. Us-

ing this procedure Integrated Survival Time is estimated for different geometric dimensions

of ribbon to study the two state and buckling phenomenon in detail. In Appendix. 3.7 we

show that Integrated Survival Time computed using this process agrees with τac calculated

using the autocorrelation function in Sec.3.4.3

We now study the oscillatory behavior of ribbons of different ARs by changing system

size L. Fig. 3.11 shows the integrated survival time τsurvival jumps sharply as the AR

approaches values near 1. Inset shows that τsurvival at a fixed AR increases for larger system

sizes. So, just by playing with the geometric dimensions of the ribbon one can derive

completely different oscillatory behavior from these thermally driven clamped systems.

3.4.5 Thermalized version of Euler buckling

In classical plate theory when a plate is compressed it buckles and moves out of the plane.

It remains in this state as long as the compressive stress is present and reverts back to flat
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compression and at a fixed relative compression is greater for the longer ribbon. The ribbons studied here

all had fixed aspect ratio of 0.25.



3.4 Effects of double clamping 51

 0

 300

 600

 900

 1200

 1500

 1800

-1 -0.5  0  0.5  1  1.5  2

τ
su

rv
iva

l

(Lκ~ -Lc)/(L0-Lκ~ )

Integrated survival time for Aspect Ratio 0.25

L=70a
L=60a
L=50a
L=40a
L=30a

Figure 3.13: τsurvival as a function of relative compression but fixed AR=0.25. Notice, that τsurvival
takes off for cases where the ribbon is compressed beyond its Lκ̃. Looking at relative compression values at
0.5, τsurvival for longer ribbons is higher, indicating τsurvival may diverge for sufficiently longer ribbons.
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Figure 3.14: Comparing integrated survival time for ribbons with AR 0.25 and 0.375. Clearly,
AR=0.375 ribbons exhibit persist in Up/Down state longer than ribbons with lower AR.
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state once the stress is removed (given that the compressive forces were not so high as to

induce permanent bent deformation). Looking at the result from our previous discussion

in Section 3.4.4, one sees indications of Euler buckling in double clamped ribbons at Lκ̃

for higher aspect ratio’s. So, it should be possible to induce thermalized Euler buckling

in system sizes with lower aspect ratio by applying compressive stress and clamping the

system at a length lower than its projected thermalized length Lκ̃.

RC = (Lκ̃ − Lc)/(L0 − Lκ̃), (3.15)

Compression = Lκ̃ − Lc, (3.16)

where Lc is the distance between clamped ends of the ribbon after some compression, L0 is

the rest length of the ribbon and Lκ̃ is the projected thermalized length.

We work with two fixed ARs and define relative compression (RC) given by Eq.3.15.

Several runs are made for different system sizes for the two fixed aspect ratio’s (AR =

0.25 and AR = 0.375). Positive compression values represent compression and negative

values represent stretching in the system. RC = 0 means we are clamped at the projected

thermalized length (Lκ̃) of the ribbon.

We first look at the average square height of the system CM 〈h2
CM〉/a2 against RC.

Fig. 3.12 shows that when the system is compressed beyond its projected thermalized length

Lκ̃ there is an immediate jump in the average square height of the system CM which

increases further if the compression is increased. This is akin to what one sees in the

classical Euler buckling where the out of plane deflection of the CM of the system increases

as the compressive stress is increased. On the contrary, the average height square for the

strctched case is almost zero as one would expect.

We will need to further show that once the CM of the system deflects significantly out
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of the plane on compression it does so as long as the system is compressed. To do that,

we compute the integrated survival time τsurvival of the system as a function of relative

compression. Fig. 3.13 shows that the τsurvival increases for all system sizes as one increases

compression. Concentrating on a fixed relative compression one sees that systems with

larger L have a higher τsurvival. In Fig. 3.11 comparing the two aspect ratio’s shows that

τsurvival is greater for the larger aspect ratio.

3.5 Conclusion and Discussion

Our results demonstrate the importance of system geometry in thermalized ribbons. Just

by playing around with the system sizes one can build a thermally induced two state sys-

tem with control over the duration of the states. Here we have shown that the projected

thermalized length is the relaxed stress-free state for these thermalized ribbons and this pro-

vides an approach to experimentalist to tune out induced tension in systems like graphene

cantilevers.

We have also shown that ribbons undergo a thermalized version of Euler buckling and

external stresses in addition to system AR can be used to get different oscillatory behavior

from these thermally driven systems.

3.6 Appendix A

As mentioned in the section on two states, we use time auto-correlation function of the

CM height time series to evaluate the survival time of the system in Up/Down state. We

record the CM height time series for each run for a given set of parameters and take the

Fourier transform of CM height time series hCM(t) minus the average height for that run.

We then take the square of the modulus of the Fourier transform |h̃(q)|2 and apply inverse

Fourier transform (Weiner-Khinchin theorem) to get the time autocorrelation. Error bars

are estimated using Jack Knife procedure by computing autocorrelation for multiple runs

and using them to build jack knife blocks. Autocorrelation is normalized using C(0).
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Figure 3.15: Ribbon of rest length L = 70a and W = 34.6 is clamped at its projected thermalized length
Lκ̃ and its Up/Down survival time evaluated using the autocorrelation of height time series. In this

semi-log plot, we fit a straight line and survival time in, this case is, 25.837 MD time steps.
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Figure 3.16: Comparing the two methods for survival time estimation

For sufficiently, long times the autocorrelation function C(t) decays exponentially [52].

Hence, we next fit the time autocorrelation in a semi-log plot to a straight line in the range

which has the least slope (slowest time scale of the system). The range is chosen by eye

(in this case we fit between 10 and 60)and so the procedure is not systematic. The process

outcome is depicted in Fig.3.15 for a system of size L = 70a and W = 34.6a.

3.7 Appendix B

To show that the Integrated Survival Time estimated in Sec.3.4.4 is equivalent to the auto-

correlation method of Sec.3.4.3. We compare τac and τsurvival in Fig. 3.16. τac/τsurvival turns

out to be around 0.5 as per definition.
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Chapter 4

Simulation methods

4.1 Introduction

In this chapter, we discuss the simulation methods used to study the thermalized sheets

and ribbons. In particular, we discuss Molecular Dynamics simulation and derive the force

experienced by each node in a triangulated sheet. The simulation itself is applied using

both CPU and GPU code. In-house GPU code was written in CUDA C to apply custom

boundary conditions to thermalized ribbons like sliding in the x-direction. Subsequently,

a new release of HOOMD-Blue enabled features for applying custom boundary conditions

and it was used to run the simulations in both CPU and GPUs. Computing facility for the

research group namely the SMATTER cluster was used to run most of the CPU simulation

runs. GPU runs were made with the help of David in his NVIDIA Tesla K80 graphics card

and Cierzo supercomputer in Spain. Simulation output was visualized using VMD (Visual

Molecular Dynamics) [61]. Finally, we also take a Monte Carlo approach to generate the

dynamics of the thermalized sheet using the Metropolis algorithm.

4.2 Molecular Dynamics

As mentioned in previous chapters the thermalized sheets are modeled using coarse-graining

approach using a triangular lattice of equilateral triangles of side length a = 1. In this sec-
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Figure 4.1: Neighboring triangular plaquettes with indexed lattices

tion, we derive the force at each lattice site. Thermalized elastic sheets experience stretching

and bending forces. Stretching force will be modeled using a ball spring model and bending

force will be evaluated using the angle between two neighboring triangular plaquettes.

4.2.1 Derivation of Bending Force

Bending force at each lattice point is derived by taking the negative derivative of the bend-

ing energy at each lattice point. Looking at Fig.4.1 one will notice that for each pair of

neighboring triangles, the nodes fall into two categories, they are either lying on the com-

mon edge or they don’t. So, while deriving the bending force contribution at a particular

node we will need to consider both this scenarios.

EBend = k̃(1− cos ΘIJ) (4.1)

where ΘIJ is the angle between the normal’s on the two triangular faces and k̃ is the

bending rigidity.

Fig.4.1 illustrates the two triangular faces and their respective normals. Bending force

has two contributions depending on whether the lattice site where force is being calculated
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lies on the common edge or not. We will derive each separately and bring them together in

the end.

Bending Force Term I

First, force is calculated for lattice site k by wiggling it and holding other three lattice sites

i,j and l stationary.

~Fk = −∇k

∑
IJ

k̃(1− cos ΘIJ) (4.2)

~Fk = −k̃∇k

∑
IJ

(1 +
~rjk × ~rik
| ~rjk × ~rik|

· ~rjk × ~rlk
| ~rjk × ~rlk|

) (4.3)

where ~rjk = ~rj − ~rk

~Fk = −k̃∇k

∑
IJ

~rjk × ~rik
| ~rjk × ~rik|

· ~rjk × ~rlk
| ~rjk × ~rlk|

(4.4)

Using identity,

∇(~a ·~b) = (∇~a) ·~b+ ~a · (∇~b) (4.5)

Note that ∇~a is a rank 2 tensor.

Notation:

• Indicies i,j,k and l label the lattice sites.

• Greek letters α, β and γ will be used to label the tensor indicies i.e. the respective

x,y and z components of a vector.

• ∇k~a amounts to taking the derivative ( ∂
∂Xα

)aβ where Xα ≡ rkα.
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Comparing Eqn.4.4 and Eqn.4.5, a =
~rjk× ~rik
| ~rjk× ~rik|

and b =
~rjk× ~rlk
| ~rjk× ~rlk|

Looking at rank 2 tensor from Eqn.4.4:

∂aβ
∂rkα

=
| ~rjk × ~rik|∂( ~rjk× ~rik)β

∂rkα
− ( ~rjk × ~rik)β

∂| ~rjk× ~rik|
∂rkα

| ~rjk × ~rik|2
(4.6)

Next we will take the derivatives of terms in numerator of the Eqn.4.6 starting with

∂( ~rjk× ~rik)β
∂rkα

.

∂( ~rjk × ~rik)β
∂rkα

=
∂εβµν( ~rjk)

µ( ~rik)
ν

∂rkα
= εβµν

∂( ~rjk)
µ

∂ ~rkα
( ~rik)

ν + εβµν
∂( ~rik)

ν

∂ ~rkα
( ~rjk)

µ (4.7)

Eqn.4.7 can be further simplified by observing that

∂( ~rjk)
µ

∂ ~rkα
= −δµα (4.8)

∂( ~rik)
ν

∂ ~rkα
= −δνα (4.9)

∂( ~rjk × ~rik)β
∂rkα

= −εβµνδµα ~rikν − εβµνδνα ~rjkµ = −εβαν ~rikν − εβµα ~rjkµ (4.10)

Simplifying
∂| ~rjk× ~rik|
∂rkα

appearing in Eqn.4.6 using Levi-Civita formulation of vector cross

product by introducing new indices θ adn φ.

( ~rjk × ~rik)η = εηθφ ~rjk
θ ~rik

φ (4.11)
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∂| ~rjk × ~rik|
∂rkα

=
∂
√

( ~rjk × ~rik)η( ~rjk × ~rik)η

∂rkα
=

∂( ~rjk× ~rik)η
∂rkα

( ~rjk × ~rik)
η + ( ~rjk × ~rik)η

∂( ~rjk× ~rik)η

∂rkα

2| ~rjk × ~rik|
(4.12)

Plug Eqn.4.10 and Eqn.4.11 into Eqn.4.12 to further simplify.

∂| ~rjk × ~rik|
∂rkα

= −(
(εηαφ ~rik

φ + εηθα ~rjk
θ)( ~rjk × ~rik)

η + ( ~rjk × ~rik)η(ε
ηαφ( ~rik)φ + εηθα( ~rjk)θ)

2| ~rjk × ~rik|
)

(4.13)

=
−2(εηαφ ~rik

φ + εηθα ~rjk
θ)( ~rjk × ~rik)

η

2| ~rjk × ~rik|
=
−(εηαφ ~rik

φ + εηθα ~rjk
θ)( ~rjk × ~rik)

η

| ~rjk × ~rik|
(4.14)

Putting Eqn.4.10 & Eqn.4.14 back into Eqn.4.6.

∂aβ
∂rkα

= −(εβαν ~rik
ν + εβµα ~rjk

µ)

| ~rjk × ~rik|
+

(εηαφ ~rik
φ + εηθα ~rjk

θ)( ~rjk × ~rik)
η( ~rjk × ~rik)β

| ~rjk × ~rik|3
(4.15)

First term in Eqn.4.5 can now be written down as follows:

(∇~a)·~b = −(εβαν ~rik
ν + εβµα ~rjk

µ)( ~rjk × ~rlk)
β

| ~rjk × ~rik|| ~rjk × ~rlk|
+

(εηαφ ~rik
φ + εηθα ~rjk

θ)( ~rjk × ~rik)
η( ~rjk × ~rik)β( ~rjk × ~rlk)

β

| ~rjk × ~rik|3| ~rjk × ~rlk|
(4.16)

Similarly, one obtains the equation for ~a · (∇~b) by interchangign node index from

i↔ l. Using Eqn.4.16, we can now write down the complete expression for Eqn.4.3 which

we do next.
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Figure 4.2: Neighboring triangular plaquettes with indexed lattices

Completing the equation one gets acceleration at lattice site k as

( ~Fk)α = k̃(
(εβαν ~rik

ν + εβµα ~rjk
µ)( ~rjk × ~rlk)

β

| ~rjk × ~rik|| ~rjk × ~rlk|
+

(εβαν ~rlk
ν + εβµα ~rjk

µ)( ~rjk × ~rik)
β

| ~rjk × ~rik|| ~rjk × ~rlk|

−( ~rjk × ~rik)β( ~rjk × ~rlk)
β(εηαφ ~rik

φ + εηθα ~rjk
θ)( ~rjk × ~rik)

η

| ~rjk × ~rik|3| ~rjk × ~rlk|

−( ~rjk × ~rlk)β( ~rjk × ~rik)
β(εηαφ ~rlk

φ + εηθα ~rjk
θ)( ~rjk × ~rlk)

η

| ~rjk × ~rlk|3| ~rjk × ~rik|
)

(4.17)

Eqn.4.17 is expression for the first bending contribution to force when node k in Fig.4.1

is wiggled keeping other nodes fixed.

Bending Force II

The second contribution comes from wiggling lattice site l and holding other lattice sites i,j

and k stationary. Note that this time the wiggled lattice site l doesn’t lie on the

common edge of the two triangles.
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~Fl = −∇l

∑
IJ

k̃(1− cos ΘIJ) = −k̃∇l

∑
IJ

( ~rjk × ~rik) · ( ~rjk × ~rlk)

| ~rjk × ~rik|| ~rjk × ~rlk| (4.18)

Using the identity Eqn.4.5 we get

~Fl = −k̃((∇l~a) ·~b+ ~a · (∇l
~b)) (4.19)

Define:

• We identify aβ ≡ ( ~rjk× ~rik)β
| ~rjk× ~rik|

and bβ ≡ ( ~rjk× ~rlk)β
| ~rjk× ~rlk|

.

• ∇l~a→ ∂aβ
∂Xα

where Xα ≡ rlα

• we are wiggling lattice point l keeping other lattice sites fixed.

Expanding
∂aβ
∂rlα

we get Eqn.4.20

∂aβ
∂rlα

=
| ~rjk × ~rik|∂( ~rjk× ~rik)β

∂rlα
− ( ~rjk × ~rik)β

∂| ~rjk× ~rik|
∂rlα

| ~rjk × ~rik|2
(4.20)

Again we will look at the terms in the numerator of (∇l~a) ·~b.

∂( ~rjk × ~rik)β
∂rlα

=
∂εβµν( ~rjk)

µ( ~rik)
ν

∂rlα
= εβµν

∂( ~rjk)
µ

∂rlα
( ~rik)

ν + εβµν( ~rjk)
µ∂( ~rik)

ν

∂rlα
= 0 (4.21)

∂| ~rjk × ~rik|
∂rlα

=
∂
√

( ~rjk × ~rik)η · ( ~rjk × ~rik)η

∂rlα
= 0 (4.22)

Eqn.4.22 is simplified by using Eqn.4.21. So, (∇l~a) · ~b = 0. Next, we will look at the

term ~a.(∇l
~b) where bβ =

( ~rjk× ~rlk)β
| ~rjk× ~rlk|

.
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∂( ~rkj × ~rlk)β
∂rlα

=
∂εβµν( ~rjk)

µ( ~rlk)
ν

∂rlα
= εβµν

∂( ~rkj)
µ

∂rlα
( ~rlk)

ν + εβµν( ~rjk)
µ∂( ~rlk)

ν

∂rlα

= εβµν( ~rjk)
µδνα = εβµα( ~rjk)

µ

(4.23)

∂| ~rjk × ~rlk|
∂rlα

=
∂( ~rjk × ~rlk)η

∂rlα

( ~rjk × ~rlk)
η

| ~rjk × ~rlk|
=
εηµα( ~rjk)

µ( ~rjk × ~rlk)
η

| ~rjk × ~rlk|
(4.24)

Solving for
∂bβ
∂rlα

using Eqn.4.23and Eqn.4.24.

∂bβ
∂rlα

=
εβµα( ~rjk)

µ

| ~rjk × ~rlk|
− ( ~rjk × ~rlk)βεηµα( ~rjk)

µ( ~rjk × ~rlk)
η

| ~rjk × ~rlk|3
(4.25)

Solve for ~a · (∇l
~b). This leads to writing the acceleration (~Fl)α from this contribution.

(~Fl)α = −k̃~a · (∇l
~b) = − k̃εαβγ( ~rjk × ~rik)

β( ~rjk)
γ

| ~rjk × ~rlk|| ~rjk × ~rik|
+
k̃( ~rjk × ~rlk) · ( ~rjk × ~rik)εαβγ( ~rjk × ~rlk)

β( ~rjk)
γ

| ~rjk × ~rlk|3| ~rjk × ~rik|
(4.26)

Total bending force

The calculations in this Secs.4.2.1 gives the total force each node experiences because of

bending. Sum of Eqn.4.17 and Eqn.4.26 represents this net force on the lattice node. The

equations are complicated and considerable care has to be taken when implementing them

in a computer simulation.
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4.2.2 Derivation of bond harmonic force

The bond-harmonic energy between two nodes is modeled using a ball spring model. The

bond harmonic energy itself is given by the

Estretch =
1

2
ε(rij − a)2 (4.27)

where i,j runs overall bonds and a is the rest bond length (no stretching).

Estretch =
1

2
ε(
√

(Xi,α −Xj,α)2 − a)2

~astretch = − 1

m
∇Estretch =

−ε
2m

∂(
√

(Xi,α −Xj,α)2 − a)2

∂Xi,α

astretch,α =
−ε(rij − a)(Xi,α −Xj,α)

mrij

(4.28)

The bond harmonic force at each node is given by the Eqn.4.28.

4.2.3 Noose Hoover Algorithms

Noose Hoover [62] heat bath provides an efficient method for constant-temperature molecu-

lar dynamics simulations. This algorithm entails solving the Velocity Verlet equations using

Newton Raphson method [63]. This approach of evolving the NVT system is irreversible.

vi(t+ ∆t) = vi(t+
∆t

2
) + (

fi(t+ ∆t)

mi

− ζ(t+ ∆t)vi(t+ ∆t))
∆t

2

ζ(t+ ∆t) = ζ(t+
∆t

2
) + (

∑
i

miv
2
i (t+ ∆t)− gT )

∆t

2Q

(4.29)

The index i runs over all the lattice sites. ζ is the thermodynamic friction coef-

ficient, which characterizes the Noose Hoover heat bath. In both, the equations above

vi(t+ ∆t) and ζ(t+ ∆t) appear on the right and left-hand sides, therefore these equations
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cannot be integrated exactly. The Newton -Raphson scheme is used to solve these equations

numerically.

4.3 CUDA C GPU implementation

In the previos Sec.4.2 we derived the forces that act at each lattice point. As one can see

from the expressions for computation of forces Eqn.4.17 and Eqn.4.26 are complicated and

as such the computation cost for each term in CPU time will be considerable. This means

computation time will increase with the number of nodes and by extension the system size.

The equations of motion in the velocity verlet algorithm 4.2.3 and the force equations

(Eqn.4.17 and Eqn.4.26) depend on the node positions at time ti for evaluating positions at

time ti+1. In a conventional sequential CPU code, one would need to visit each node, evolve

using the EOM and in the end, when all nodes have been visited the system evolves to its

next configuration. Computation cost will be considered in this method for large systems

with many nodes.

Modern NVIDIA GPUs provide an alternative to increasing speed of code execution. GPUs

are suited for computations which support parallel computations. In our case, the time

evolution of nodes is independent of each other in the sense that EOMs for the nodes are

independent of each other. Hence, our system of equations 4.2.3 supports parallelization.

CUDA C [64] is a programming language which enables GPU coding and exploits GPU

computing power for increasing computation speed. The general framework of the coding

language treats variables for the CPU and GPU separately. GPU variables cannot be

accessed by CPU and vice versa. The framework allows for copying of data between GPU

and CPU variables and this allows for data transfer between the two as and when required.

Programming functions in CUDA C are called kernels [64].

4.3.1 Kernels

A typical C function allows performing a set of instructions only once when they are called.

By definition they allow a single thread execution. On the other hand, kernels are executed
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N times in parallel by N different CUDA threads. We exploit this feature while coding

MD for thermalized elastic sheets with N nodes.

A CUDA thread is associated with each node which executes its time evolution. All the N

threads work in parallel and update the position of N nodes in the end. The GPU variable

holding the position data for nodes has to be chosen carefully. GPU provides two types of

memory shared and global. Shared memory is limited in size but access is fast as opposed

to the global memory which can accommodate a very large array but data fetching is slow.

The tradeoff is similar to the one experienced in RAM swaps where stack variables can be

accessed quickly as opposed to heap variables. Heap allows to store very large arrays but

call stack size is limited to 8Mb in a Linux system.

The time evolution proceeds much faster as the evolution of all nodes occurs concurrently.

Each node maintains its own position, velocity, and accelaration variables. One needs to take

care to wait for an adequate amount of time before moving to the next step, as all threads

should complete processing before moving on. Also, GPU simulation does not increase speed

for all system sizes, in fact for smaller system sizes, it is slower compared to CPU. A major

factor in speed throughput is the system size and how many CUDA threads are launched.

If the number of threads fills all Algorithm Units in a GPU chip, the simulation will run

most efficiently. Therefore, while launching a GPU code significant effort should be given to

work with a system size which provides adequate number of parallel thread launches [65].

4.4 HOOMD Blue package

HOOMD-blue [66] is a general purpose Molecular Dynamics toolkit. It can be used to run

MD simulations in both CPU and GPUs. The initial starting conditions and boundary

conditions can be supplied using a high-level python script. The intricate details of force at

each node, heat bath and evolution itself is handled completely by the HOOMD software.

Major advantages of using HOOMD-Blue package are:

• Fast prototyping, to quickly check a new system or existing system with new boundary

condition.
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• Scalable can be used in CPU as well as GPU clusters.

• Easy to initialize and supply conditions using a python script.

• Installation is straightforward using conda [67].

• Documentation has illustrated examples to apply boundary conditions.

• A well maintained Hoomd User Google group where questions are answered by devel-

opers of HOOMD-blue.

4.5 Visual Molecular Dynamics package

VMD [61] is a visualization program for displaying, animating, and analyzing raw data file

generated from various other simulation software. VMD can be used in Linux, Mac OS

and Windows systems. Installation is straightforward for Linux systems but may require

some modifications for Mac OS which is case specific. In our case, we use VMD to load

and visualize the trajectory files (with .gsd extension) which we get from our HOOMD-blue

simulation. VMD does not support GSD file systems out of the box since, GSD files are

a fairly new addition to HOOMD-blue. But thankfully, a GSD plugin for VMD has been

written which one has to download and install separately [68].

4.6 Monte Carlo Implementation

The Monte Carlo method is used widely not only in Physics but also in Chemistry, Biology

and Finance. It is a sampling technique which is used to calculate thermodynamic variables

of the form

〈O〉 =

∑
ν Oe−βT∑
ν e−βT

, (4.30)
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where ν runs over all possible configurations that the system can take at a given temper-

ature T. For example, an Ising model consisting of N lattice sites will have 2N possible

configurations. In our case of membranes, each vertex can move arbitrarily in the embed-

ded 3D euclidean space and hence the number of available configurations is infinite. Even

using a very powerful computer it will not be possible to run through all the configurations

that are available to the system. So to solve this problem one uses Monte Carlo method to

approximate 〈O〉 by using random samples of the configuration weighted by the Boltzmann

factor.

4.6.1 Metropolis method

In this method successive configurations available to the system are treated as states in a

Markov process. So, state at time t+1 is constructed from the previous state at time t via

a transition probability W(x(t) →W(x(t+1)). If we look at two states at time t and t
′

then

the principle of detail balance has to be fulfilled [69].

Peq(xt)W(xt → xt′ ) = Peq(xt′ )W(xt′ → xt), (4.31)

where Peq(xt) is the probability equilibrium distribution.

In our membrane simulations we perform Monte Carlo simulations as described below:

• Choose any random vertex and move it by a small amount δ.

• Compute the change in energy of the membrane before and after the movement.

Evaluate the energy difference ∆Hδ.

• Accept this movement with a probability

p = min(1,exp(−β∆Hδ)) (4.32)
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Eqn.4.32 satisfies detailed balance Eqn.4.31.
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Chapter 5

Simulation Data Analysis

5.1 Introduction

In this chapter, we discuss the various analysis techniques used to analyze the data. First

and foremost thing in any simulation is to arrive at the equilibration point beyond which

any meaningful recording of observables can be made. We will look at how to check for

equilibration and how to estimate the number of steps required to get enough data for

analysis. Error estimation is an integral part of data analysis and we will go in depth to

understand Jack knife and Bootstrap method of obtaining the errors.

5.2 System Equilibriation time

When performing monte carlo or molecular dynamics simulations one has to check for ther-

malization of the system. One can ask questions like, how long should one run a simulation?

At what interval should one record simulation data so that they are uncorrelated? How

much data be discarded when evaluating average values? At which point hss the system

reached thermalization? To answer these questions we will look at the time autocorrelation

for a given system observable [52]. The equilibrium normalized autocorrelation function is

defined as below:
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COO(t) ≡ 〈OsOs+t〉β − 〈O〉2β, (unnormalized), (5.1)

ρOO(t) ≡ CO(t)

CO(0)
, (normalized), (5.2)

For long enough simulation run times, ρOO(t) will decay exponentially. From the autocor-

relation function, one can extract two characteristic times which have different significance:

5.2.1 Integrated autocorrelation time

The integrated autocorrelation time is given by the area under the autocorrelation function.

τint,O =
1

2
+
∞∑
t=1

ρOO(t), (5.3)

The integrated autocorrelation time measures the effective number of independent measure-

ments for an observable O for which we have recorded N data points. Which means we

will have N/τint,O independent measurements. Put differently, τint,O is the time between two

independent measurements.

5.2.2 Exponential time

The exponential time is obtained by fitting the autocorrelation function to an exponential

decay function. The exponential autocorrelation time is the time one has to wait before the

system thermalizes.

τexp,O = lim
t→∞

sup
1

−log|ρOO(t)| (5.4)
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The exponential time gives the point at which the system thermalizes. If ndis represents

the number of data points we discard to account for thermalization, ndis = 20τexp,O will be

more than enough to make a correct discard. In our simulation, we have discarded the first

half of the data recorded which is well beyond the thermalization point of the system.

5.3 Error Estimation

We start by explaining the two methods of obtaining errors in observable data in our sim-

ulations. We record data at fixed intervals in our simulation and we end up with a time

series of system observable. Even though one can ascertain the interval at which the data

is independent for a given set parameter by evaluating the time autocorrelation function

as explained in Sec. 5.2.1, its cumbersome to do so for each and every parameter set. So,

we fix the time interval of data recording (10000 steps) in these simulations, and use error

estimation techniques namely Jack Knife and Bootstrap to get rid of any correlation or bias

in the data.

5.3.1 Jack Knife

Jack Knife error estimation works by blocking the observable data [52]. Say, we have R

observable data (〈O(1)〉β, 〈O(2)〉β, ....., 〈O(R)〉β) and we want to report the average and error

in f(〈O(1)〉β, 〈O(2)〉β, ....., 〈O(R)〉β).

• Estimate f(〈O(1)〉β, 〈O(2)〉β, ....., 〈O(R)〉β) using the standard formula to evaluate the

average, which is sum total of all recordings of f divided by the number of total

recordings.

• Next, for each of the observable data above (〈O(1)〉β, 〈O(2)〉β, ....., 〈O(R)〉β) form block

data, using large enough block size b. Go from set of N data, to a set of N/b data

blocks each of size b:
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Ob,i =
1

b

bi∑
t=(i−1)b+1

Ot, (5.5)

• Then use the blocked data to form Jack-Knife blocks as follows:

O
(r)
JK,b,i =

1
N
b
− 1

∑
j 6=i

O
(r)
b,j , r = 1, 2, ..., R. (5.6)

Use the Jack Knife blocks for individual observable data to generate Jack Knife blocks

for f :

fJK,b,i = f(O
(1)
JK,b,i, O

(2)
JK,b,i, ......., O

(R)
JK,b,i) (5.7)

• The (square) error in f goes as below:

∆2
f = (

N

b
− 1)[

b

N

N/b∑
i=1

f 2
JK,b,i − (

b

N

N/b∑
i=1

fJK,b,i)
2], r = 1, 2, ..., R. (5.8)

The Jack knife blocking takes into account any correlations within the data, since all jack

knife blocks are allowed to fluctuate against each other. In our simulations, we have multiple

runs for the same parameter set (10 runs) in most cases, so we do not need to make separate

blocks, each run data acts as a block data set and can be used to form the Jack knife blocks.

5.3.2 Bootstrap

In bootstrap, we resample the N data points. We go from one data set of N points to Nboot

data sets each containing N points. We achieve this by performing random (Monte Carlo)
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sampling of the original set of N points. Repetition of data points within a new sampled

data set is allowed [70].

• Imagine we start withN data points for an observable x. We perform random sampling

and obtain Nboot datasets as mentioned above. For each bootstrap data set the average

will be given by

xBα =
1

N

N∑
i

ni,αxi, (5.9)

where ni,α is the number of times xi is repeated in a bootstrap sample.

• We next compute the bootstrap average of the mean of x and the bootstrap variance

in the mean by averaging over all the bootstrap data sets.

xB =
1

Nboot

Nboot∑
α=1

xBα , (5.10)

(xB)2 =
1

Nboot

Nboot∑
α=1

[(xBα )2], (5.11)

• The bootstrap error estimate is then given by

σx =

√
N

N − 1
((xB)2 − (xB)2), (5.12)

We have used bootstrap method while estimating errors in the Cumulative Distribution

Function in the analysis of thermalized Euler buckling.
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[19] A. Košmrlj and D. R. Nelson, Phys. Rev. B 93, 125431 (2016).

[20] P. D. de Gennes, Scaling concepts in Polymer Physics (Cornell University Press, Cor-

nell, Ithaca, 1979).

[21] Y. Oono, Adv. Chem. Phys. 61, 301 (1985).

[22] P. D. de Gennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974).

[23] Y. Kantor and D. R. Nelson, Phys. Rev. Lett. 58, 2774 (1987), URL https://

journals.aps.org/prl/abstract/10.1103/PhysRevLett.58.2774.

[24] T. J. Byers and D. Branton, PNAS 82(18), 6153 (1985), URL https://doi.org/10.

1073/pnas.82.18.6153.

[25] C. F. Schmidt, K. Svoboda, N. Lei, I. Petsche, L. Berman, C. Safinya, and G. Grest,

Science 259, 952 (1993), URL https://d2ufo47lrtsv5s.cloudfront.net/content/

259/5097/952.

https://link.aps.org/doi/10.1103/PhysRevB.87.104112
https://link.aps.org/doi/10.1103/PhysRevB.87.104112
https://link.aps.org/doi/10.1103/PhysRevE.91.022132
https://link.aps.org/doi/10.1103/PhysRevE.91.022132
https://link.aps.org/doi/10.1103/PhysRevLett.116.015901
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.58.2774
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.58.2774
https://doi.org/10.1073/pnas.82.18.6153
https://doi.org/10.1073/pnas.82.18.6153
https://d2ufo47lrtsv5s.cloudfront.net/content/259/5097/952
https://d2ufo47lrtsv5s.cloudfront.net/content/259/5097/952


Bibliography 78

[26] P. G. De Gennes, The Journal of Physical Chemistry 86 (13), 2294 (1982).

[27] D. R. Nelson, Defects and Geometry in Condensed Matter Physics (Cambridge Uni-

versity Press, Cambridge,UK, 2002).

[28] L. Peliti and S. Leibler, Phys. Rev. Lett. 54, 1690 (1985), URL https://doi.org/10.

1103/PhysRevLett.54.1690.

[29] Y. Kantor and D. R. Nelson, Phys. Rev. A 36, 4020 (1987), URL https://link.aps.

org/doi/10.1103/PhysRevA.36.4020.

[30] M. J. Aziz, E. Nygren, J. F. Hays, and D. Turnbull, J. Appl. Phys 57, 2233 (1985),

URL https://aip.scitation.org/doi/abs/10.1063/1.334368.

[31] M. I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge University Press,

New York, 2012).

[32] D. Nelson, T. Piran, and S. Weinberg, Statistical Mechanics of Membranes and Surfaces

(World Scientific, Singapore, 2004), 2nd ed.

[33] Y. Kantor, M. Kardar, and D. R. Nelson, Phys. Rev. A 35, 3056 (1987), URL https:

//link.aps.org/doi/10.1103/PhysRevA.35.3056.

[34] M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang,

A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, et al., Nature 524, 204 (2015).

[35] E. Russell, R. Sknepnek, and M. J. Bowick (2015), arXiv:1512.04670.

[36] C. Chena, D. H. Zanette, D. A. C. S. Shaw, and D. Lpez, Nature Communications 8

(2017).

[37] V. B. Braginsky, V. Mitrofanov, V. I. Panov, and C. Eller, University of Chicago Press

(1985).

[38] M. Dykman, OUP Oxford (2012).

https://doi.org/10.1103/PhysRevLett.54.1690
https://doi.org/10.1103/PhysRevLett.54.1690
https://link.aps.org/doi/10.1103/PhysRevA.36.4020
https://link.aps.org/doi/10.1103/PhysRevA.36.4020
https://aip.scitation.org/doi/abs/10.1063/1.334368
https://link.aps.org/doi/10.1103/PhysRevA.35.3056
https://link.aps.org/doi/10.1103/PhysRevA.35.3056
arXiv:1512.04670


Bibliography 79

[39] D. Yllanes, S. S. Bhabesh, D. R. Nelson, and M. J. Bowick, Nature Communications

8 (2018), URL https://www.nature.com/articles/s41467-017-01551-y.

[40] H. S. Seung and D. R. Nelson, Phys. Rev. A 38, 1005 (1988).

[41] R. Cuerno, R. Gallardo Caballero, A. Gordillo-Guerrero, P. Monroy, and J. J. Ruiz-

Lorenzo, Phys. Rev. E 93, 022111 (2016).

[42] M. J. Bowick, A. Kosmrlj, D. R. Nelson, and R. Sknepnek, Phys. Rev. B 95, 104109

(2017), arXiv:1608.04197.

[43] C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008), ISSN 0036-8075.

[44] H. Zhao, K. Min, and N. R. Aluru, Nano Letters 9, 3012 (2009), pMID: 19719113.

[45] R. G. Harnish and J. F. Wheater, Nuclear Physics B 350, 861 (1991), URL http:

//www.sciencedirect.com/science/article/pii/055032139190166U.

[46] E. Guitter, F. David, S. Leibler, and L. Peliti, Phys. Rev. Lett. 61, 2949 (1988), URL

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.61.2949.

[47] R. L. Renken and J. B. Kogut, Nuclear Physics B 342, 753 (1990), ISSN 0550-3213,

URL http://www.sciencedirect.com/science/article/pii/055032139090336C.

[48] J. Wheater, Nuclear Physics B 458, 671 (1996), ISSN 0550-3213, URL http://www.

sciencedirect.com/science/article/pii/0550321395005447.

[49] D. Espriu and A. Travesset, Nuclear Physics B 468, 514 (1996), ISSN 0550-3213.

[50] H. Koibuchi, N. Kusano, A. Nidaira, K. Suzuki, and M. Yamada, Phys. Rev. E 69,

066139 (2004), URL https://link.aps.org/doi/10.1103/PhysRevE.69.066139.

[51] J.-P. Kownacki and D. Mouhanna, Phys. Rev. E 79, 040101 (2009).

[52] D. J. Amit and V. Martin-Mayor, Field Theory, the Renormalization Group, and Crit-

ical Phenomena (World Scientific, Singapore, 2005), 3rd ed.

https://www.nature.com/articles/s41467-017-01551-y
arXiv:1608.04197
http://www.sciencedirect.com/science/article/pii/055032139190166U
http://www.sciencedirect.com/science/article/pii/055032139190166U
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.61.2949
http://www.sciencedirect.com/science/article/pii/055032139090336C
http://www.sciencedirect.com/science/article/pii/0550321395005447
http://www.sciencedirect.com/science/article/pii/0550321395005447
https://link.aps.org/doi/10.1103/PhysRevE.69.066139


Bibliography 80

[53] P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press,

Ithaca, 1979).
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