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Abstract 

 Active polymeric materials that alter shape in response to an external stimulus offer 

unique avenues for the design and study of dynamic structures. This research focused on 

developing elastomeric polymer composites with multiple functionalities by exploring the design 

and properties for various applications including controlled drug delivery and shape memory.  

 The first part of this dissertation describes the fabrication and characterization of a soft, 

elastomeric polymeric composite with inherent shape memory properties capable of localized, 

long-term tunable drug release. In Chapter 2, the fibers were loaded with a hydrophilic drug 

model, Rhodamine B, and embedded within a siloxane-based elastomeric matrix to form a 

composite, which is critical to regulating water transport from the environment to the fibers to 

liberate the drug. In vitro drug release studies were conducted in PBS under physiological 

conditions to evaluate the effect of drug concentration, fiber size, fiber crystallinity, drug loading 

and the addition of the crosslinked siloxane. The effect of the microstructural properties of the 

fibrous phase on drug release were explored and tuned through thermal treatment of the 

composite.  

 The findings from Chapter 2 were then applied to Chapter 3 for the development of a 

vascular graft with controlled and sustained nitric oxide (NO) releasing capabilities and suitable 

mechanical properties for the prevention of restenosis. To avoid the unwanted systemic side 

effects associated with a free radical such as NO, our approach delivered NO locally by 

supplying it from the vascular graft material. It was found that reducing the tin catalyst used for 

crosslinking the silicone constituent significantly improved cell viability, however, the NO 

interacted with the catalyst activity, affecting the silicone crosslinking reaction. The NO-

releasing composite was demonstrated to be a strong chemottractant to endothelial cells.  



 The next part of this research focused on the development of a shape memory elastomeric 

composite featuring thermoplastic fibers imbibed by polyanhydride-based elastomer. It was 

determined in Chapter 4 that the polyanhydride elastomer is capable of dynamic covalent 

exchange reactions at elevated temperatures among the network chains that allowed near-

complete reconfiguration of the permanent shape in the solid state. Together, these features were 

combined to create a shape memory elastomer capable of arbitrary programming of both 

temporary and permanent shapes. The degradation properties of this composite were then studied 

in Chapter 5 under in vitro conditions, where it was revealed that the degradation rate of the PAH 

matrix was strongly influenced by the selection of the composition of polymeric fibrous phase. 

The degradation of this composite was found to occur as a modified surface to bulk degradation, 

although the PAH by itself erodes heterogeneously. A hydrophilic model drug was incorporated 

in the fibrous phases and used to study the in vitro controlled release properties of these 

composites, where drug release correlated with the matrix degradation. The shape memory 

properties of these polyanhdride-based compositions were also examined. 

 Lastly, Chapter 6 investigated the design, fabrication, and characterization of a polymeric 

composite composed of oriented semicrystalline polymeric fibers embedded within a crosslinked 

epoxy matrix. This anisotropy enabled the construction of complex three dimensional geometries 

featuring latent mechanical programming. Rather than relying on specific molds to manipulate a 

new shape, this system capitalized on strain conditioning to influence a new structure. 

Additionally, we found that by compressing the oriented fibers of each ply during composite 

cure, the composites constructed from such plies exhibited actuation.  



The shape memory composites studied in this dissertation demonstrated the potential be 

broadly applicable from drug releasing implants, tailorable degradability, and the self-assembly 

of complex shapes. Chapter 7 provides some recommendations for future directions. 
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over 48 h. The various conditions are (A) serum-reduced media, (B) media 

only, (C) DETANO in media, (D) PCL/PDMS, and (E) 

DETANO/PCL/PDMS composite. The cells were stained for nuclei (green) 

and cytoskeleton (red), and the arrow points to the open pores on the 

Transwell membrane. The scale bar represents 50 μm. 

Figure 4-1: (A) Differential scanning calorimetry (DSC) second heating curves, and (B) 

first cooling curves of (i) neat PAH elastomer, (ii) PAH/PCL PU composite, 

and (iii) electrospun PCL PU. 

Figure 4-2: Dynamic mechanical analysis (DMA) (A) storage modulus curves and (B) 

loss modulus curves of (i) neat PAH elastomer, (ii) PAH/PCL PU 

composite, and (iii) electrospun PCL PU.  
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Figure 4-3: (A) Differential scanning calorimetry first cooling and second heating 

results and (B) dynamic mechanical analysis of pTMPDAE-based 

elastomer. 

Figure 4-4: Representative engineering stress-strain curves of (i) PAH elastomer, (ii) the 

PAH-PCL PU composite, and (iii) electrospun PCL PU, where the 

composite and its components are shown in (A). More details of the  PAH 

elastomer and the composite are shown in (B). 

Figure 4-5: Shape reconfiguration as measured by stress relaxation. The relaxation 

modulus versus time are shown for: (A) varying the network composition at 

80 oC for (i) PAH and (ii) TMPDAE, and (B) varying reconfiguration 

temperatures for the PAH elastomer. 

Figure 4-6: Shape reconfiguration response of elastomers synthesized using: (a) 

anhydride (PAH) and (b) TMPDAE diene monomers, in the flat 

configuration (left) and resulting shape following shape reconfiguration at 

80 °C (right). 

Figure 4-7: Shape memory and reconfiguration behavior of PAH/PCL PU polyurethane 

composite. (A) Images of qualitative study demonstrating one way shape 

memory where (i) a temporary shape is fixed and then (ii) recovered to the 

original shape, followed by (iii) reconfiguration of the permanent shape; (iv) 

the reconfigured shape does not recover to the original geometry. (B) 

Quantitative shape memory and shape reconfiguration cycles for the 

PAH/PCL PU composite 
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Figure 4-8: Shape memory stress-temperature-strain plot for PAH/PCL PU composite. 

Figure 4-9: Stress relaxation results for PAH network showing (A) peak modulus 

dependence on temperature and (B) Arrhenius dependence of PAH 

relaxation time with associated activation energy of 7.7 kcal/mol.  

Figure 4-10: Isothermal tensile storage modulus of the PAH elastomer as temperature is 

increased in a stepwise manner.   

Figure 5-1: Effect of thermal treatment implemented to minimize shrinkage of 

electrospun.  PVAc fibers prior to composite fabrication. (A) The resulting 

composite (right) when no thermal treatment or PAH pre-cure is used in 

comparison to its original geometry (left) (B) Pre-curing the PAH monomer 

enabled the PVAc to maintain its fibrous phase within the composite, 

however significant shrinkage occurred (right). Distinct regions of excess 

PAH denoted by the blue arrow. (C) Comparison of the effect of heat 

treatment on electrospun PVAc following hydration in DI water revealed 

significantly less shrinkage for samples previously treated. The foil substrate 

shows the original size of the fiber mat. (D) The addition of a heat treatment 

and pre-cured PAH resulted in a composite with minimal shrinkage and 

conservation of its original geometry. The excess PAH is trimmed as part of 

the fabrication process. 
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Figure 5-2: (A) Thermal and (B) thermomechanical characterizations of the (i) PAH 

elastomer, (ii) electrospun PVAc (heat treated), (iii) PVAc/PAH composite 

(iv) PCL/PAH composite, (v) electrospun PCL, and (vi) electrospun PVAc 

(untreated). 

Figure 5-3: Scanning electron microscopy micrographs of (A) electrospun PCL and (B) 

electrospun PVAc following thermal treatment. The surface and cross-

section of PAH/PCL are shown in (C) and (D). The surface and cross-

section of PAH/PVAc are shown in (E) and (F). 

Figure 5-4 Representative tensile engineering stress-strain curves of both the composite 

and individual components for PAH/PCL and PAH/PVAc composites 

showing (A) the strain-to-failures and (B) the linear elastic regions for (i) 

electrospun PVAc (heat treated), (ii) electrospun PVAc (untreated), (iii) 

electrospun PCL, (iv) PCL/PAH composite, (v) PAH, and (vi) PVAc/PAH 

composite.  

Figure 5-5 Mass loss during in vitro degradation in PBS at 37 C for the PAH/PCL and 

PAH/PVAc composites.  

Figure 5-6: Morphological changes during degradation of  the PCL/PAH composite in 

PBS at 37 C at the A) surface and B) cross-section, revealed using scanning 

electron microscopy (SEM). 

Figure 5-7: Morphological changes during degradation of the PVAc/PAH composite in 

PBS at 37 C at the A) surface and B) cross-section, revealed using scanning 

electron microscopy (SEM).  
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Figure 5-8: Thermal properties of the PCL/PAH composite during degradation. Dotted 

line indicates crystallization temperature for electrospun PCL. 

Figure 5-9: Fraction of PCL in the PCL/PAH composite as a function of degradation 

time. 

Figure 5-10: Thermal characterization by DSC of the PVAc/PAH composite following 

different degradation times. The dotted lines denote the glass transitions for 

PAH and PVAc. 

Figure 5-11: Evolution of the glass transition temperature of the PVAc component of the 

PVAc/PAH composite at different stages of PAH degradation.  

Figure 5-12: Comparison of PCL and PVAc content during degradation of the PCL/PAH 

and PVAc/PAH composites, respectively. The fiber composition was 

calculated based on the relative melting or glass transition temperatures as 

determined by DSC. 

Figure 5-13: Comparison of PCL and PVAc content during degradation of the PCL/PAH 

and PVAc/PAH composites, respectively. The fiber composition was 

calculated based on the relative melting or glass transition temperatures as 

determined by DSC. 

Figure 5-14: Representative engineering stress-strain plots of PVAc/PAH at various 

degradation points of (i) as fabricated, t = 0, (ii) 10 h, (iii) 48 h, (iv) PAH for 

reference, and (v) as-fabricated heat-treated electrospun PVAc for reference. 
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Figure 5-15: In vitro release of hydrophilic model drug Rhodamine B from the PCL/PAH 

and PVAC/PAH composites with comparisons to (A) Rhodamine B release 

from fibers without the PAH matrix, and with mass loss results in (B) and 

(C).  

Figure 5-16: Qualitative demonstration of one way shape memory of the PVAc/PAH 

composite. 

Figure 5-17:  Shape memory stress-temperature-strain plot for the PVAc/PAH composite. 

Figure 5-18:  Preservation of arbitrarily deformed shapes during in vitro degradation of 

the PCL/PAH composite in PBS at 37 C. 

Figure 6-1: Representative SEM micrographs of the (A) aligned electrospun PCL fibers, 

(B) PCL/epoxy composite surface, (C) cross-section of the single-ply 

composite with fibers aligned longitudinally (0 to long dimension), (D) 

cross-section of the single-ply composite with fibers aligned perpendicular 

(90 to long dimension), and (E) cross-section of the cross-ply bilayer 

composite. The micrographs in (B) – (E) were visualized following removal 

of the PCL phase.  

Figure 6-2: DSC thermograms of (A) the crosslinked epoxy using different relative 

weight fractions of DGEBA and NDGE, and (B) the PCL/epoxy composite 

and its individual components.  

Figure 6-3: Thermomechanical characterization of the D41N59D230 epoxy/PCL cross-

ply(0) composite fabricated using a compression factor of 1.1 showing (A) 

the storage modulus and (B) the loss modulus and tan delta. 
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Figure 6-4: Triple shape memory quantification of the epoxy/PCL composite (A) single-

ply with fibers oriented parallel to the uniaxial strain (0), (B) single-ply 

with fibers oriented perpendicular to the uniaxial strain (90), and (C) the 

cross-ply(0) bilayer composite. The annotations denote the first fixed shape 

(F1), second fixed shape (F2) and the recovered shape (R). 

Figure 6-5: Example of mechanical shape programming sequence with shape recovery 

(shown for the cross-ply(0) composite)., where 0 refers to the layer 

containing longitudinally oriented fibers. 

Figure 6-6: Various fiber orientations between the top and bottom fibrous phases within 

the composite and resulting shapes. (Row A) original shape with fiber 

orientation depiction (blue = top layer/red = bottom layer) (Row B) and 

original shapes (Row C) temporary fixed shape 

Figure 6-7: Effect of strain during mechanical shape programming on the cross-ply(0) 

composite. 

Figure 6-8: DSC thermograms for epoxy/PCL cross-ply(0) composites fabricated using 

different compression factors. 

Figure 6-9: Upon increasing the compression factor (CF) of the fiber mats within the 

composites, the samples begin to immediately change shape when strips are 

cut from the parent composite batch. The fiber orientation is depicted such 

that the blue vertical lines are the top layer and the red horizontal lines 

indicate the bottom layer).  



xxxi 

 

Figure 6-10: Stress-free strain of single-ply oriented epoxy/PCL composites in response 

to heating and cooling for fiber alignment oriented (A) longitudinal and (B) 

perpendicular to the long axis. 

Figure 6-11: Actuation behavior of the epoxy/PCL bilayer composites upon thermal 

cycling with the cross-ply(0) sample showing the (A) testing set-up and (B) 

magnification of the samples during actuation. 

Figure 6-12: Actuation behavior of the epoxy/PCL bilayer composites upon thermal 

cycling with the cross-ply(45) sample showing the (A) testing set-up and (B) 

magnification of the samples during actuation. 

Figure 6-13: (A) Curvature of the cross-ply(0) bilayer epoxy/PCL composite after 10 

consecutive actuation cycles for the shape at room temperature (cooled) and 

the shape upon heating. (B) Representative photos of the shape change 

under cooling (left column) and heating (right column) conditions. The 

curvature of the heated activated shape was opposite to that of the cooled 

shape, as indicated by the negative curvature value. 

Figure 7-1: Cumulative release of RhB from PCL/Pellethane composite. RhB diffusion 

originated from the PCL matrix.  

Figure 7-2: Water uptake comparison between electrospun Pellethane and crosslinked 

silanol-terminated PDMS film following 24 h immersion in water. Sample 

size of three per group was used. The water uptake was calculated by 

dividing the difference in the mass of the wet and dried samples by the mass 

of the dried sample.  
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Figure 7-3: Results of hemolysis assay showing (A) photos of human blood clot 

formation over time comparing blood exposure to no samples (blood alone), 

the PCL/PDMS composite without drug, and the DETA-NO/PCL/PDMS 

composite, and (B) lysate absorbance values from the clotting assay.  

Figure 7-4: Feasibility of remolding PAH-based materials following grinding. (A) A 

crosslinked PAH film is cut into small cubes that are then compression 

molded into a single object, and (B) the PAH/PCL composite is grinded and 

then compression molded into a film.  

Figure 7-5: Healing potential of the PAH/PCL composite. A rectangular sample is 

fragmented into two pieces and then repaired back into a single piece 

following applying heat and pressure to the fractured surfaces under 

constant contact.  

Figure 7-6: Sequence for attaining degradation-induced shape recovery for the 

electrospun Pellethane fibers imbibed in PAH composite showing: (A) 

original shape, (B) arbitrarily thermally programmed shape, (C) degradation 

of the newly shaped composite (D) recovery of the original shape following 

PAH matrix degradation, and (E) retention of fibrous morphology following 

degradation of the PAH matrix. 
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Figure 7-7: Time lapsed mechanically programmed displacement of an object by the 

anisotropic PCL/epoxy composed of oriented PCL arranged orthogonally. A 

rectangular strip was topped with a glass cover slip and placed on a hot plate 

at 45 C. As the mechanically programmed shape was thermally activated, 

the sample began to curl and lift the glass slide in under 30 s. The schematic 

above demonstrates the thermally activated sequence of free-standing object 

displacement by the sample shown below. 
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Chapter 1 

Introduction and Scope of Dissertation   

 

1.1 Polymers and Composites 

1.1.1 Polymers 

 Polymers are non-metallic macromolecules composed of smaller repeating units that 

form long molecular chains resulting in characteristically high molecular weights.
1
  One may be 

more familiar with polymers in its final, processed form, colloquially known as plastics. 

Considering that plastics, and therefore polymers, affect daily life, these materials encompass all 

industries including automotive, textiles, food packaging, electronics, and biomedical, and are 

also produced naturally as part of hair, spider silk, starch, and even DNA. Accordingly, polymers 

comprise a significant subject of research.  

 Polymers are either semi-crystalline or amorphous, a classification that forecasts material 

design and processability. Amorphous polymers do not possess crystallizable regions in their 

molecular arrangement, which is principally due to structural hindrances of the atoms along the 

polymer backbone, or the presence of irregularly ordered side groups that can lead to a 

randomized molecular organization, thus preventing crystallization. Consequently, amorphous 

polymers do not exhibit a melting transition temperature, but instead a glass transition 

temperature (Tg), above which the onset of coordinated chain motion softens the polymer, 

resulting in rubbery to viscous flow behavior; below Tg the polymer vitrifies.
2
 Crystallization of 

polymers occurs when the polymer chains are packed favorably to produce distinct oriented, 

folded lamellae, such as when cooling a polymer from a melt through the melting transition 

temperature (Tm) to below the crystallization transition temperature (Tc). Given that polymer 
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chains are inherently long, any misalignment of the chain folding prevents this regular packing, 

resulting easily into intermediary amorphous regions. In semicrystalline polymers, these regions 

tend to exist between the crystallites and will also exhibit a Tg, in addition to Tm and Tc. 

Intrinsically, the motion of the polymer chains, such as those produced by thermal or mechanical 

stimuli, greatly influence crystallization, and thus ultimately the mechanical behavior, opacity, 

and thermal properties. While crystallization generally occurs during cooling, it may also result 

from solvent evaporation or tensile strain and is further affected by the rate of each these 

variables as well as its molecular architecture.
3,4

   

 Polymers are also classified as either thermoplastic or thermoset, based on their ability to 

be processed thermally. Thermoplastics are those polymers, either amorphous or semi-

crystalline, that can reversibly melt and re-solidify. These types of polymers can also completely 

dissolve in a compatible solvent, which is useful for cast molding or electrospinning. Typical 

thermoplastics include linear polymers or those with simple branching such as polyethylene, 

polypropylene, and polystyrene. Poly(ε-caprolactone) is another example of a semicrystalline 

thermoplastic, whereas poly(vinyl acetate) is an amorphous thermoplastic, both of which are 

studied in more detail in this work.  Thermosets are distinct from thermoplastics in that these 

polymers cannot reversibly become a liquid once solidified following the cross-linking reaction 

of their polymer or monomer precursors, which typically originate in liquid form. Unlike 

thermoplastics, thermosets will not dissolve in a compatible solvent, but instead will swell to a 

maximum expansion governed by the extension of its cross-links. Examples are vulcanized 

rubbers, polyimides, epoxies, and silicones, the latter two, which are studied and discussed in 

further detail in this dissertation. 
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 In any design of a polymeric material, it is important to consider the variables that affect 

the processability, manufacturablity, and final properties of the material. As mentioned above, 

the thermal properties such as the glass, melting and crystallization transition temperatures will 

influence the conditions which will enable microstructural as well as macrostructural changes to 

the polymer, which are critical for determining molding or end-use parameters. Other thermal 

considerations include the temperature at which the polymer degrades, which can lead to 

irreversible damage of the primary covalent bonds and cause failure. In processing the polymer, 

solvent selection is dependent on the chemical properties and molecular weight of the polymer, 

where it is often followed that “like dissolves like”, referring to the similar polarities between the 

polymer and the solvent. Molecular factors include molecular weight and 

hydrophilicity/hydrophobicity. If different polymers are combined at the molecular level, the 

miscibility and resulting morphology are important features to investigate. Other design 

parameters to consider are the mechanical properties such as the Young’s modulus, storage and 

loss moduli, and strain-to-failure, which indicate the elasticity and structural capacities, and are 

also affected by molecular weight, cross-link density, microstructure and morphology. 

1.1.2 Polymer Composites 

 Composites are a class of engineering materials fabricated from a combination of other 

chemically or physically distinct materials such as the coupling of metals, polymers, and/or 

ceramics.
5,6

 Akin to polymers, composites are found in all industries. Some familiar examples 

are the combination of cellulose fibers and lignin that produce wood, and the dispersion of gravel 

and sand in cement that becomes concrete. Composites are especially advantageous when a 

single material cannot meet specific design criteria or when designing such a material requires 



 4 

costly and complicated customization. The goal of composite material development is to achieve 

a set of properties that each material alone cannot provide, offering additional degrees of 

freedom to devise new material properties. Hence, composites accrue new properties not 

observed in either component in isolation, producing a superior material. A polymeric composite 

resolves a major problem within polymer engineering by overcoming the inherent poor 

mechanical properties of polymers compared to metals, while taking advantage of the plethora of 

properties that polymers have to offer.
7
 Additionally, there is a significant benefit and cost-

savings in the ability to use commercially available or existing materials to create new materials 

while avoiding the need to invent new chemistry. 

 Many polymeric composites consist of a matrix and a reinforcing component. The matrix, 

which generally constitutes the largest volume fraction, serves as a continuous phase that encases 

the reinforcing (or dispersed) phase that is typically composed of fibers or spheres or particles.
6
 

As a result of these physical differences, the microstructure of composites are heterogeneous 

with a discrete interface between the continuous and reinforcing phases, often termed interphase; 

here, the transfer of stress from the “weaker” matrix to the “stronger” fibers occurs.
8
 

Additionally, the matrix also provides a protective barrier to the fibrous phase from the external 

environment.
9,10

 Most polymer composites are fabricated from thermoset matrices since the low 

viscosity of these monomers enables ease of traditional molding and greater fiber wetting, 

although thermoplastics matrices have become increasingly utilized.
7
 Some specific variables 

that affect composite properties include fiber or particle size, distribution and orientation. The 

composition of materials as well as the processing methods is a source of study and challenge for 

advanced applications. 
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1.2 Multi-Functional Materials 

 Many materials possess only one function beyond load bearing and often necessitate 

complementary materials or additional components in order to accommodate growing complex 

design requirements. Consequently, many researchers have sought to develop multifunctional 

materials, as these materials can simultaneously perform more than one independent functional 

capability beyond structural, such as self-healing, stimuli-responsiveness, self-cleaning, 

biodegradability, conductivity, biocompatibility, and drug delivery, with some even inspired by 

biology.
11-17 

These types of materials differ from systems containing multiple components in that 

they are more efficient in weight and volume, given that these materials are typically single 

constituents or, in most cases, composites with integrated properties.
18

 Composite materials 

providing multifunctionality can be classified based on the dimensional scale at which 

integration between its constituents occur, ranging from coating or lamination between phases, to 

incorporation at the molecular level. 
19,19

 Polymer composite materials lend themselves well to 

achieving multifunctionality considering they are the result of the synergistic combination of 

differing properties into a single, new material. This demand for multifunctionality has even 

influenced the expanding development of polymer composite materials.
20

 

 As is the case for polymers, the development of multifunctional materials also spans 

many industries including energy storage, healthcare, automotive, communications, and 

consumer goods. For example, to address the multifaceted requirements in healthcare, Neffe et 

al. developed a smart polymer that is thermally deployable to allow for minimally invasive 

surgery, with controlled drug release for infection management, and biodegradability to avoid 

additional surgery for implant removal.
21

 Other examples include incorporating battery function 
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within load-bearing structures, transparent polymer nanocoatings for lenses or windows, wear- 

and scratch-resistance, self-healing materials, and shape memory polymers, which are covered in 

several review articles on the subject.
17,20,22-25 

The following sections briefly describe several 

material functions studied in this dissertation. 

1.2.1 Biocompatibility for Biomedical Applications 

 Given that biological tissues are essentially polymers or composites, it is a natural 

tendency to for many researchers to utilize polymer composite materials for biomedical use.
26,27

 

Since these materials must come into contact with living tissue, whether externally or internally, 

it is crucial that these materials exhibit biocompatibility. A material is considered 

biocompatibility when it does not trigger an adverse biological response from the host cells or 

tissues, whether locally or systemically, under specific circumstances.
28

 Additionally, the 

material must also perform as intended, such that it has a positive therapeutic effect, rather than 

exist simply a non-toxic placement in the body. As such, biocompatibility is affected by the 

biological site selection, the intended function of the material, device size, and treatment 

duration. Several properties make up biocompatibility such as cytotoxicity, hemocompatibility, 

surface compatibility, and mechanical compatibility; these properties are typically first studied in 

vitro to screen new materials.  In polymeric materials, biocompatibility is affected by mechanical 

properties, surface energy, hydrophilicity/hydrophobicity, surface and bulk chemical 

composition, and surface topography, to name a few.
29-31 

Since composites are composed of 

more than one material, it is not sufficient to know the biocompatibility of each material, but to 

demonstrate both as a system.  
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 Biocompatible materials may be classified as biomaterials when used to supplant or 

support the function of human tissues.
32

 One of the biggest challenges in biomaterials research is 

matching the properties of soft tissues such as skin, arteries, cartilage, muscles, organ walls, and 

tendons. Mechanical compatibility with the host tissue of a biomaterial or device is important to 

prevent complications such as stress-shielding or thrombosis.
33,34

 Most biomaterials are polymer-

based, due to their low cost versatility and low modulus.. Polymer composites, such as those 

reinforced with fibers, offer tailorable tensile strength and functional microstructural properties, 

and are closer to mimicking the complex structures of native tissues, where a combination of 

collagen, elastin and fibronectin provide elasticity and tensile strength.
35

 Nevertheless, polymers 

and their composites are still limited in soft tissue applications due to poor strength and 

elasticity.
36

 

1.2.2 Degradation 

Degradable polymers are used in many biomaterials applications such as degradable 

implants, resorbable sutures, and, as further discussed in Section 1.4, a mechanism to control 

drug delivery. These polymers also find utility in environmental applications, where degradable 

consumer goods such as packaging and diapers can reduce environmental impact. Degradable 

polymers contain labile bonds in their chemical structure that upon contact with an aqueous 

environment, undergo hydrolytic cleaving of their chains. Degradation of polymers is classified 

as either surface/heterogeneous or bulk/homogenous degradation. As depicted in Figure 1-1, 

surface degradation occurs when the material loss is localized at the surface and is quicker than 

the rate of water diffusion, resulting in the polymer maintaining its overall geometry during 

degradation.
37

 In contrast, bulk degradation loses material through its matrix as water penetrates 
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through to its interior, and does not maintain its shape during degradation; most polymers are 

bulk eroding.
38

 Typical degradable biomaterials are based on homopolymers or copolymers of 

poly(glycolic acid), poly(lactic acid), polyesters, and  polydioxanones, bacterial-derived 

polymers, polyanhydrides, or natural polymers.
39,40

 Several variables affect the degradation 

properties beyond chemical composition such as whether the degradation products are acidic and 

cause autocatalysis, addition of any drugs or excipients, and even size and shape in the case of 

surface erosion. Chapter 5 further discusses and studies degradation. 

1.2.3 Controlled Drug Delivery 

Drug delivery is the supply and introduction of drugs in the body to treat diseases and is 

one of the most rapidly growing areas of biomedical engineering, encompassing many 

disciplines. A controlled drug delivery system is one where an active molecule is combined with 

a material.
41 

Familiar examples of drug delivery systems include tablets, creams, aerosols, 

liquids, and injections. The ideal drug delivery system would administer a drug at an optimum 

concentration that maximizes the therapeutic outcome without side effects, and maintains this 

efficacious concentration range for the duration of the treatment time.
42

 Toxicity occurs when the 

drug concentration is above the maximum therapeutic range, whereas a concentration below is 

ineffective. The challenge with conventional drug delivery systems, such as ingesting a tablet or 

administering an injection, is that while this enables immediate delivery of a therapeutic dosage, 

multiple administrations are required to maintain its therapeutic effects, particularly for those 

with  chronic conditions, which can be unwieldy, painful, difficult to maintain, and/or expensive, 

and decrease patient quality of life.
43 

Consequently, the study and development of controlled (or 
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sustained or prolonged) drug delivery systems target minimizing dosing frequency by providing 

a therapeutic concentration for an extended period of time.
44

  

Drug release systems are designed and structured as reservoir, hydrogel or matrix 

delivery systems. Reservoir delivery systems are constructed by sandwiching the drug between 

two or more layers of membrane material, typically a non-degradable, hydrophobic polymer.
41

 

Diffusion of the drug through the polymer membrane determines the drug release rate. Hydrogel 

drug delivery systems utilize cross-linked water soluble polymers that contain entrapped drugs 

with a release rate are influenced by the degree of swelling and diffusion of drug through the 

material.
45

 In a matrix delivery system, which is studied in Chapters 2 and 5, drugs are either 

dissolved or dispersed throughout the polymer bulk and rate limited by diffusion. Generally, 

drug release rate is limited by drug diffusion through the polymer and is affected by the diffusion 

coefficient of the drug, the chemical and structural properties of the polymer.  

Drug release systems are also characterized by their drug release profiles, which quantify 

the amount of drug released over time and fall into three main categories: controlled release, 

burst release, or pulsatile (cyclic) release.
44

 Drug release profiles are influenced by the mode of 

drug release and preferably follow zero-order release kinetics in order to maintain a constant 

drug concentration; however, first-order or variable release kinetics are more common and may 

be more desirable in certain applications.
44,46

 Polymer composite materials are a logical choice 

for drug delivery systems as these systems enable custom material property combinations that 

would tailor controlled release. Some of the variables to consider studying drug release include 

drug loading efficiency, ratio of drug to polymer, mechanical properties, surface chemistry, 

morphology, and polymer crystallinity. Polymer degradation can serve as another way to control 
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drug release, with surface erosion widely studied for drug release, since drug release profiles 

tend to be more constant, though in reality, drug diffusion from the bulk can also occur 

independent of the erosion front.
41

 

1.2.4 Shape Memory 

 Shape memory polymers (SMPs) are a category of mechanically active smart materials 

that can memorize a programmed temporary shape and return to its pre-programmed shape in 

response to external stimuli such as heat
47

, electricity
48

, ultrasound
49

, solvent
50,51

 and 

irradiation
52-55

  Thermally induced shape memory is the most widely studied system. SMPs have 

strong potential in biomedical applications such as by allowing bulky devices to become 

deployable following implantation through small incisions, self-tightening sutures in compact 

areas, artificial muscles, self-anchoring stents, and adaptable surfaces to direct cellular traffic, to 

name a few.
56,57 

Other applications include actuators, sensors, dimmable windows,
58,59

 smart 

textiles,
60,61

 and self-peeling adhesives.
62

 Several review articles discuss this topic in depth.
55,63

 

 In order to exhibit shape memory, polymers must contain a combination of molecular 

features such as crosslinks (i.e. covalent, physical, or ionic), which serve to determine and 

“memorize” the original, permanent shape. These crosslinks are typically produced during 

fabrication in a stress-free state and contain some degree of extensibility to enable macroscopic 

shape shifting. The temporary shape “programming” (or “fixing”) of SMPs originates from the 

physical immobilization of the crosslinked network. Specifically, this is accomplished by 

exposing the deformed shape through a thermal transition to enable reversible crystallization or 

vitrification transitions for thermally triggered shape memory systems. The recovery of a fixed 

shape back to its original shape is achieved by exposure to a temperature exceeding its melting or 
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glass transition temperatures to enable the molecular mobility back to its permanent shape. An 

example of one way shape memory is presented in Figure 1-2.  

1.3 Shape Memory Elastomeric Composite 

To address the deficits of many soft smart polymer systems, the Mather Research Group 

previously developed a shape memory elastomeric composite (SMEC).
[Luo 2009] 

The goal of this 

composite was to develop a soft and elastic shape memory material by combining two 

commercially available polymers. Thermoplastic poly(ε-caprolactone) (PCL) was electrospun 

into a porous, non-woven fiber mat. The fibers were then embedded into Sylgard 184, a cross-

linked polydimethylsiloxane matrix, which imparted elasticity and infiltrated the free space 

between the fibers. This system showed excellent shape memory performance, where the 

crystallizable PCL served as the switching phase and the crosslinks of the PDMS would serve to 

“remember” the original shape. This composite is advantageous structurally in that the fibrous 

structure imparts greater strength compared to PDMS due to its load distribution. The versatility 

of this system is that the properties are customizable by simply adjusting the fiber to matrix ratio, 

cross-link density of the matrix, fiber morphology or substituting the fibers or matrix with a 

different polymer with different properties. All of this utilizes much simpler chemistries and 

even commercially available materials. Rodriguez et al. later introduced anisotropy into this 

SMEC system, substituting the fibrous semicrystalline PCL phase with fibrous amorphous 

poly(vinyl acetate) PVAc.
64

 They found that in the case of aligned fibers, shape fixing became a 

function of fiber angle orientation. Onyejekwe studied adding a drug, however undesirable 

shrinkage occurred and the biocompatibility properties were deficient.
65 

In all of these studies, 

controlled drug delivery, biocompatibility, or degradation were not introduced into this system.  
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Outside of our group, several researchers have developed SMPs with additional material 

functionalities, though only few exhibit soft and elastomeric properties. For example, a SMP was 

developed by Wischke et al. to deliver a variety of model drugs that released over several 

months; however the Young’s modulus was greater than that required for soft tissue applications 

such as vascular grafts.
54

 Other drug-releasing SMPs were developed with soft, elastomeric 

properties comparable to native arterial tissue, however these materials have a biodegradation 

profile that falls short of that required for certain vascular applications such as arteriovenous 

access grafts, where mechanical stability is required over years instead of days or weeks.
66

 For 

example, Serrano et al. developed polydiolcitrate based shape memory soft elastomeric films 

capable of controlled drug release of up to 30 days of hydrophobic model drugs, however these 

polymers degraded within two months.
66

 A similar degradation profile was achieved by Kashif et 

al. by using a blended PCL/POSS nanocomposite also capable of shape memory, with controlled 

drug release; however, like others, their modulus was too stiff for soft tissue applications.
67

 In 

addition, these SMP systems do not use commercially available materials and instead require 

laborious custom polymer syntheses. In another instance, Wang and coworkers recognized the 

limited available elastomeric shape memory materials and sought to develop a shape memory 

composite with thermally-trigged self-healing capabilities. This was accomplished by combining 

two commercially available non-degrading materials, however was focused on non-medical 

applications.
68

 

1.4 Scope of Dissertation 

 This dissertation examines the design, development and properties of electrospun 

composites for various applications such as controlled drug delivery and shape memory. In 
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Chapter 2, a hydrophilic drug model is incorporated into an electrospun polyester fiber mat and 

its drug releasing properties were studied relative to the microstructure of the fibers. The drug 

release from these fibers embedded into a siloxane elastomer was also investigated. Chapter 3 

examines the applicability of this composite for use as a biomimetic vascular graft with the 

incorporation of a nitric oxide donor in the fibrous phase. The nitric oxide releasing properties 

were investigated and its impact on cell migration was evaluated. The mechanical and 

biocompatibility properties were studied relative to the design requirements for this medical 

device. Additionally, it was discovered that the tin catalyst affected cell viability and a maximum 

concentration was determined that preserved the mechanical properties. In Chapter 4 (adapted 

from Lawton et al.
69

), a fully degradable shape memory elastomeric composite was developed 

with the ability to reconfigure its original, permanent shape. This composite was composed of a 

simple polyurethane electrospun fibers embedded in a cross-linked polyanhydride matrix. 

Chapter 5 studied the degradation behavior of the polyanhydride-based composite developed in 

Chapter 4, comparing two different fibrous compositions as well as the drug releasing 

properties. Anisotropy of the polyester fibrous phase was introduced into a cross-linked epoxy 

matrix in Chapter 6, where dormant mechanically programmed shapes were investigated and 

reversible actuation was explored. Finally, a summary of the findings and conclusions of this 

work are presented in Chapter 7 with suggested directions for continued research. Additional 

work is included in the Appendix of this dissertation. 
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Figure 1-1. Example of erosion mechanisms in degradable polymers where (A) bulk 

(homogenous) erosion occurs throughout the polymer and (B) surface (heterogeneous) erosion 

degrades at the surface, while the sample maintains its shape and properties but deceases in size. 
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Figure 1-2. One way shape memory depicted (A) quantitatively and (B) morphologically.
53,55
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Chapter 2 

Shape Memory Elastomeric Composite with  

Controlled Drug Release of a Hydrophilic Drug Model  

 

2.1 Synopsis 

 

 In this chapter the fabrication and characterization of an elastomeric polymeric 

construction with inherent shape memory properties capable of localized, long-term tunable drug 

release of a hydrophilic drug model is described. This assemblage was fabricated using an 

electrospinning process to produce a micro-fibrous framework. The fibers were doped with a 

hydrophilic drug model, Rhodamine B, and embedded within a siloxane based elastomeric 

matrix to form a composite, which is critical to regulating water transport from the environment 

to the fibers to release the drug. In vitro drug release studies were conducted in PBS under 

physiological conditions to evaluate the effect of drug concentration, fiber size, fiber 

crystallinity, drug loading and the addition of the siloxane. We found that the integration of this 

elastomer can control the initial burst release commonly observed in many drug delivery devices 

and extend drug release. The effect of the microstructural properties of the fibrous phase on drug 

release were explored and tuned through thermal treatment of the composite. 

2.2 Introduction 

 
 The requirements for prosthetic implants are becoming increasingly more complex in 

order to meet the clinical demand of providing biomimetic materials. One approach has been the 

development of smart materials such as shape memory polymers (SMPs), which have been 

studied to address these needs by providing self-anchoring stents, minimally invasive surgery, 
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and even surfaces that can direct cellular traffic.
1,2 

SMPs are a category of materials that can 

memorize a temporary strain and return to its pre-programmed shape in response to external 

stimuli such as heat, electricity, ionic strength, and irradiation.
3-6 

While several groups have 

developed SMPs that can also provide drug delivery capabilities, only very few exhibit soft and 

elastomeric properties with a long-term, stable degradation profile. For example, a SMP was 

developed by Wischke et al. to deliver a variety of model drugs that released over several 

months, however the Young’s modulus was greater than that required for soft tissue applications 

such as vascular grafts.
78

 Another drug-releasing SMP was developed by Serrano et al., which 

exhibited soft, elastomeric properties comparable to native arterial tissue, however its 

biodegradation profile falls short of that required for certain vascular applications such as 

arteriovenous access grafts, where mechanical stability is required over years.
9 

 

 We have studied poly(ε-caprolactone)  (PCL) as a candidate for a drug carrier while 

imparting mechanical support and shape memory switching. PCL is a semicrystalline polyester 

currently approved by the Food and Drug Administration (FDA) for biomedical devices, with 

long term biodegradation of over two years.
10

  PCL is an attractive option for biomedical 

applications, particularly those requiring drug delivery,
11

 and many groups have studied PCL-

based fibers as a drug delivery vehicle; however typical release times are on the order of hours to 

a few days.
12-14

 Consequently, many efforts have been made to blend or chemically modify PCL 

with other components in an effort to improve the sustained drug release outcome, though these 

materials are limited to drug delivery only and do not also exhibit shape memory functionality.
15-

18
 



 24 

 Our group has previously studied PCL and its mechanisms in formulating SMPs.  We 

have been able to fabricate soft elastomeric composites with shape memory abilities by pairing 

PCL electrospun fibers with a crosslinked vinyl-terminated polydimethylsiloxane (PDMS) 

matrix.
19

 In this composite, the fibers serve as the shape fixing phase via crystallization while the 

elastomeric matrix memorizes the permanent shape through its crosslinks, while imparting 

elasticity.  The shape memory properties were previously studied in our group and are exploited 

for surgical applications in Chapter 3; however, this composite’s ability to store and release a 

hydrophilic model drug has not been previously studied. 

 We conceived that this PCL/PDMS composite can be useful for soft tissue biomedical 

applications requiring controlled drug release of a hydrophilic drug, such as vascular prosthetics, 

considering that these polymers are stable in aqueous media and no short term degradation is 

expected.
20

 By incorporating a drug in the fibrous phase and then adding an elastomeric barrier, 

we hypothesized that the elastomer will regulate water transport to the drug-loaded fibers and 

control burst release while extending the overall drug release. Rhodamine B (RhB) was selected 

as the hydrophilic model drug to study this drug delivery system since it was easily soluble in 

water and cost-effective to model hydrophilic drug release. In this chapter, the effects of drug 

loading, morphology, polymer matrix, on drug release properties were investigated.  

2.3 Materials and Methods 

2.3.1 Materials 

Poly(ε-caprolactone) (70,000 – 90,000 g·mol–1), Rhodamine B (RhB), chloroform, 

tetrahydrofuran (THF), dimethylformamide (DMF)  and dibutyltin dilaurate were purchased 



 25 

from Sigma Aldrich and used as received. Silanol–terminated polydimethylsiloxane (PDMS) 

(2000 cSt) and poly(diethoxysilane) were purchased from Gelest, Inc. 

2.3.2 Fabrication of RhB-Loaded Electrospun Fibers 

 Fibers were electrospun from PCL solutions ranging in concentration from 10 w/v % - 20 

w/v % homogenously mixed with RhB model drug, where higher concentrations of PCL were 

used to create larger fiber diameters. The RhB/PCL solutions were prepared by first adding 0.5 – 

1.5 wt % RhB relative to the total mass of PCL to a clean glass vial, followed by complete 

dissolution in a 4:1 THF:DMF solvent mixture. No RhB precipitation was observed in the 

polymer solution. The RhB/PCL solution was then transferred to a 10 ml syringe fitted with a 

blunt 22G needle tip. A syringe pump was used to supply a steady flow rate of 1.0 ml ∙ h
-1

 which 

was electrospun onto a grounded 50 mm diameter aluminum drum rotating at 400 rpm, at a 

distance of 7 cm from the needle tip to a negatively charged drum (-500 V) and an applied 

voltage of 11.5 kV. Following electrospinning, all fiber mats were dried at room temperature 

under vacuum (-30 mm Hg) for 48 h to remove any residual solvents prior to further use. 

2.3.3 Preparation of RhB-Loaded Fibrous Elastomeric Composite 

 A pre-polymer elastomer was prepared by mixing silanol-terminated 

polydimethylsiloxane (PDMS) with 3 wt% polydiethoxysilane (crosslinker) and 0.5 wt% 

dibutyltin dilaurate (catalyst). The electrospun RhB loaded PCL fiber mats were then coated by 

the PDMS mixture, followed by exposure to vacuum at room temperature for 15 minutes to 

enable thorough infiltration of PDMS within the fiber mat. Excess PDMS was removed from the 

surface using a spatula followed by a 72 h cure at room temperature in a desiccator. The 
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chemical structures of the composite components and PDMS crosslinking scheme are shown in 

Scheme 2-1. 

2.3.4 Morphological Characterization 

 A JEOL JSM-5600 scanning electron microscope (SEM) was used to visualize the 

samples with an accelerating voltage of 4 – 6 kV. Prior to imaging, samples were sputtered 

coated with gold for 45 s. Fiber diameter measurements were determined by taking a minimum 

of 50 measurements at five different locations using an image analysis software (version 1.46, 

National Institutes of Health). The average diameter and standard deviation were calculated 

using a minimum of 250 total measurements. Statistical significance was determined using a 

one-way analysis of variance (ANOVA) with a significance criterion of p < 0.05, using the 

Minitab software package. 

An Olympus BX51 optical microscope equipped with a hot-stage and temperature 

controller (Instec HCS402) was used to visualize the phase distribution of RhB in the PCL fibers. 

A RhB/PCL fiber mat sample was sandwiched between two glass slides and then placed on the 

hot stage maintained isothermally at 80 C to melt the fibers.  

The porosity (P),  of the electrospun fiber mats was calculated according to Eqn. 2-1 

below, where ρf is the measured density of the sample and ρ0 is the known density of pure PCL, 

which has a value in the literature of 1.145 g∙cm
-3

.
21 

The density of the fiber mat samples was 

determined by dividing the mass of the sample by its volume. A TA Instruments AR-G2 

rheometer fitted with parallel plates was used to measure the thickness of each sample for 

improved accuracy, given the compressible nature of the samples, where the slightest change in 

force can be readily detected to avoid deforming the sample during the measurement.  
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𝑃 (%) =  1 −
𝜌𝑓

𝜌0
 × 100 % (2-1) 

2.3 5 Thermal Characterization 

Differential Scanning Calorimetry (DSC) was performed using a Q200 manufactured by TA 

Instruments, Inc. Samples weighing 2.5 – 4.0 mg were sealed in Tzero aluminum pans and 

heated from -60C to 120C at 10C ∙ min
-1

. The melting enthalpy was calculated from the first 

heating cycle by integrating the melting peak, and was used to determine the crystallinity of PCL 

in the elastomeric composite in their as-manufactured state according to: 

𝐶(%) =  
∆𝐻𝑚

∆𝐻𝑓
0  × 100 % (2-2) 

where c is the degree of crystallinity, fH  is the heat of fusion measured by DSC and 
0

fH is 

the heat of fusion of crystalline PCL, with a literature value of 139 J ∙g
-1

.
22

 The melting enthalpy 

was calculated from the second heating cycle by integrating the melting peak, and was used to 

determine the fraction of PCL (𝑊𝑃𝐶𝐿) in the elastomeric composite by comparing the degree of 

crystallinity according to: 

𝑊𝑃𝐶𝐿(%) =  
∆𝐻𝑚

∆𝐻𝑚,0
 × 100 % (2-3) 

where Hm  is the melting enthalpy of the composite measured by DSC and Hm,o is the melting 

enthalpy of  pure electrospun PCL, as determined by DSC. 

 For completeness of materials characterization, the thermogravimetric analysis (TGA) 

was conducted by loading samples weighing 5 – 10 mg into a TA Instruments Q500 

thermogravimetric analyzer. The samples were heated to 600 C at 20 C min
-1

 under nitrogen 

purge.  
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2.3.6 In Vitro RhB Release 

  Rectangular samples of 1 cm x 2 cm were placed in a known volume (4 – 10 ml) of 

phosphate buffered saline (PBS, pH 7.4) in sealed glass vials. The vials were placed in a thermal 

shaker at 37C to simulate physiological conditions. At different time intervals, a 150 uL aliquot 

of the PBS media was sampled from the vial and the RhB concentration was measured in a 96-

well plate using spectrophotometry (Biotek® Synergy 2 Microplate Reader) at a wavelength of 

553 nm (peak absorbance for Rhodamine B). The concentration of RhB was determined using a 

standard curve. After each time point, the PBS media was completely replaced with fresh PBS of 

a known volume to simulate in vivo “sink” conditions. Three replicates at each time point were 

used and an average and standard deviation is reported. The cumulative amount of RhB released 

was calculated and plotted as a function of time.  

The theoretical total encapsulated moles of RhB in the fibers, 𝑛𝑇, was calculated for each 

sample according to Eqn. 2-4 below: 

𝑛𝑇  =  
𝑥𝑖𝑚𝑖

𝑀𝑅ℎ𝐵
  (2-4) 

where 𝑥𝑖   is the fraction the RhB mass relative to the PCL mass for sample i, mi is the mass of the 

electrospun fibers containing both PCL and RhB, and 𝑀𝑅ℎ𝐵 is the molecular weight of RhB, 

which is 479.01 g ∙ mol
-1

. The cumulative percent of RhB released (D) was calculated according 

to Eqn. 2-5 below: 

𝐷𝑅ℎ𝐵(%) =  
∑ 𝐶𝑖𝑉𝑖

𝑡
𝑖=1

𝑛𝑇
 × 100 % (2-5) 

where 𝐶𝑖   is the molar concentration of RhB at time point i, 𝑉𝑖 the volume of the release media 

relative at each time point, up to time t.  
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2.3.7 Thermal Treatment to Induce Crystallization 

 Fibrous samples were thermally treated prior to drug release by placing “webs” (non-

woven films) of them in an isothermal oven at 45 C for 10 days. These conditions were selected 

to remain below the melting transition of PCL to preserve the fibrous morphology. Prior testing 

indicated that this longer annealing time enabled considerable changes in the crystalline content. 

The composite samples were subjected to a stepped thermal treatment in an isothermal oven by 

first exposing to 90 C for 20 min, immediately followed by placing in another oven at 50 C for 

1 h. 

2.3.8 Mechanical Properties 

 Tensile mechanical properties were studied by punching samples into a dog bone 

geometry (ASTM Standard D638-03 Type IV, scaled down by a factor of 4), and loading onto a 

Test Resources Model 100P Universal Testing Machine equipped with a 24 N load cell. The 

samples were stretched at a rate of 33 μm s
-1

, and engineering stress-strain curves were used to 

determine Young’s modulus, strain-to-failure, and tensile strength. Five samples of each type 

were tested and an average and standard deviation are reported for each sample type. 

2.4 Results 

2.4.1 Fiber Characterization and Composite Morphology 

 The SEM micrographs in Figure 2-1 reveal that a range of increasing fiber diameters was 

produced by electrospinning with an increasing concentration of PCL in the solvent, as was 

expected. The surface of the fibers appeared smooth and did not appear altered by the presence 

of RhB. The resulting fiber diameters ranged from 0.23 μm ± 0.13 μm to 1.29 μm ± 0.63 μm. All 



 30 

fiber diameter populations shown in Figure 2-1 were statistically significantly different at the 95 

% confidence interval. The porosity of the fiber mats generally increased with increased fiber 

diameter, as was anticipated (not shown). Generally, an optimum porosity is necessary for 

controlled drug release, where if the samples are too porous, too much drug may be released too 

quickly.
23

 No obvious RhB crystals were observed on the surface for any of the fiber samples. 

Figure 2-2 shows that the RhB distribution in the fibers is heterogeneous, as evidenced by 

regions of light and dark pink, indicative of the immiscibility of RhB in PCL. The air bubbles in 

Figure 2-2 formed during melting of the fibers and originated from the empty voids originally 

between the fibers. Figure 2-3(A) shows the SEM micrographs of the surface of PCL fibers 

containing 0.5% RhB and post-infiltration of the PDMS elastomer. The cross-section of the 

composite, as seen in Figure2-3(B), reveals that the PDMS completely encapsulated the fibers, 

while occupying the voids within the fiber mat. Similar results were found for a higher 

concentration of RhB (not reported). 

2.4.2 In Vitro RhB Release from PCL fibers 

Figure 2-4A summarizes the RhB release from various fiber diameters of electrospun 

PCL. Surprisingly, there was no observed correlation between the size of the fiber and burst 

release, duration of release, and drug entrapment (unreleased drug), indicating that another factor 

influenced the drug release characteristics. The total amount of RhB released at 48 h relative to 

fiber diameter and sample porosity is compared in Figure 2-4B, where neither variable 

demonstrated an impact on RhB release. All samples showed a similar release pattern, with an 

initial burst release within the first 3 h, followed by a plateau of either no or very slow release. 

Only the smallest diameter sample of 0.23 μm ± 0.13 μm exhibited near complete release of 
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RhB, with the highest burst release of 93 % at 48 h, whereas the largest diameter of 1.29 μm ± 

0.63 μm showed the slowest and least amount of release at 45 % at 48 h; however, the 

correlation did not continue with the intermediate fiber diameters. 

2.4.3 Thermal Characterization and RhB Release 

A clear melting transition was observed for all RhB/PCL electrospun samples as was 

expected due to the semicrystalline nature of PCL as seen in Figure 2-5A. When compared with 

the results of Figure 2-4, described above, it was observed that the amount of RhB released 

increased with increasing melting temperature and enthalpy, as shown in Figure 2-5B and 

tabulated in Table 2-1. The relative degree of crystallinity based on the first heating cycle, 

showed a positive correlation with the amount of RhB release and no clear trend with fiber 

diameter. The variation seen here may be due to the differences in time on the bench at room 

temperature (aging time) before testing, which was not controlled in this study. This is 

particularly possible since PCL features a subambient glass transition temperature (Tg ~ -60 
o
C). 

The melting transition for RhB was not visible since it occurs at ~211 C, which is also its 

decomposition temperature and therefore its crystalline state in the fibers could not be 

determined thermally. 

2.4.4 RhB Release from Thermally Treated Fiber Mats 

 A separate series of experiments was conducted to promote crystallization, purposefully, 

and study the RhB release from PCL fibers at two drug concentrations, 0.5 % and 2.0 % RhB in 

PCL. In this study, the fiber diameters of the two samples were not significantly different, in 

order to isolate the PCL crystallization effect on drug release. The resulting fiber diameters were 
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1.3 μm ± 0.9 μm and 1.2 μm ± 0.4 μm for the 0.5 % RhB/PCL and 2.0 % RhB/PCL samples, 

respectively. Here, the electrospun fibers were placed in an isothermal oven for 10 days at 45 C 

to promote increasing completion of PCL crystallization while preventing melting of the fibers. 

The results in Figure 2-6 show that applying an annealing treatment to the fibers caused a 

decreasing shift in RhB release, which was more pronounced at the higher RhB concentration, 

where a total of only 25 % of RhB was released following annealing, compared to the 51% level 

for the as-electrospun case. In comparison, the low concentration samples showed only a ~10 % 

reduction of RhB release following crystallization. The DSC thermograms in Figure 2-6B 

verified that the thermal treatment did, indeed, increase crystallinity. It is further interesting to 

note that while the changes were slight, the influence on drug release was significant and 

opposite compared to the trend for as-electrospun samples where differences in crystallinity were 

accompanied by other sample variations. 

2.4.5 RhB Release from PCL/PDMS Composites 

 The RhB release from the PCL/PDMS composite is shown in Figure 2-7 for a 

concentration of 0.5 % RhB and compared to drug release from the parent fiber mat (no PDMS), 

as-electrospun. The PDMS matrix greatly extended the RhB release compared to the quick burst 

release detected for the fiber mats. By 24 h, the fibrous samples had completed release of 66 % 

of the total theoretical RhB concentration. While the fibrous samples contained, apparently, a 

significant amount of entrapped RhB, most of the observed release occurred within the initial 

two hours (60 %). In contrast, the 0.5 % RhB/PCL/PDMS composite extended the burst release 

from 2 h to 48 h and appeared to liberate more RhB from the fibers such that approximately 95 

% of the RhB was released after seven days with near completion at 14 days. We attributed this 
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behavior to the full wetting of the fibers by the PDMS, which created additional pathways for 

diffusion otherwise blocked by trapped air between the fibers. The release of RhB from the fiber 

mats can be followed visually over time by witnessing the color change, which begins a dark 

pink and gradually becomes white as the RhB is leached into the media that in turn absorb the 

pink color (Figure 2-8).  

2.4.6 RhB Release from Thermally Treated PCL/PDMS Composites 

 Following the results in the sections above, a separate series of experiments was 

conducted to investigate the effect of the crystalline properties of PCL on the release of RhB 

from the PCL/PDMS composite. Unlike the fibrous samples, complete melting of the PCL phase 

could be performed in the composite samples since the fibrous morphology would be preserved 

by the surrounding crosslinked PDMS matrix. Thus, a stepped thermal treatment of 90 C / 20 

min followed by 50 C / 1 h – melting the fibers – then cooling to room temperature for 15 min 

was implemented to induce complete recrystallization of the 0.5 % RhB/PCL/PDMS fibrous 

phase; for this experiment, the fiber diameter and fiber content were verified to be constant 

between samples. The resulting RhB release in Figure 2-9A shows that a 0.7 J/g increase (~18% 

increase) in first heat enthalpy of fusion produced a significant decrease in the RhB release from 

the more crystalline composite. In particular, 22 % less RhB was released at 48 h and this 

difference was generally maintained for the remaining four days of the testing period. These 

results are consistent with the thermally treated RhB/PCL fiber mats in Section 2.4.4, where a 

small increase in PCL crystallinity led to a marked decrease in RhB release. The DSC first heat 

thermograms in Figure 2-9B verify the increase in enthalpy of fusion for the melting peak 

following PCL stepped recrystallization. Interestingly, however, the melting point was lowered. 
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This decrease in the melting transition temperature may be due to the formation of more 

homogenously sized distribution of crystallites, and likely smaller average size, following 

recrystallization from the PCL melt, which is further evidenced by the narrower melting peak. 

Detailed x-ray scattering analysis is needed to verify this explanation. 

2.4.7 Mechanical Properties 

 The tensile mechanical properties for the composite are shown in Figure 2-10 and 

summarized in Table 2-2 and compared to its individual components. The addition of the RhB 

did not affect the mechanical properties in any significant manner (tensile data of samples with 

RhB not shown). The Young’s moduli and strain-to-failure of the composite samples ranged 

from 2.7 MPa ± 0.6 MPa to 5.0 MPa ± 0.6 MPa, and 460 % ± 60 % to 640 % ± 120 %, 

respectively, across varying weight fractions of PCL in the composite ranging from 5.9 wt% to 

15.6 wt% (Table 2-2). No correlation was observed between PCL fiber content in the composite 

and the Young’s modulus or strain-to-failure, where both features were between that of the 

cross-linked PDMS film and electrospun PCL, as was expected from a biphasic composite. Only 

the Young’s moduli for the composites containing 7.9 % and 8.5 % fibers showed a statistically 

significant difference (~ 1 – 2.3 MPa) from the rest of the groups. The composites containing 6.6 

% and 15.6 % were not statistically different from each other, but statistically different from the 

5.9 % and 11.4 % groups. The composite samples containing 5.9 % fibers showed a statistical 

increase in strain-to-failure from those groups containing 6.6 % and 7. 9 % fibers, which were 

not statistically different from each other; this difference was by approximately 160 – 180 % 

strain. We observed that the shape of the stress-strain curves of the composite appeared to evolve 

from one that is more linear (Figure 2-10A) to containing a toe region (Figure 2-10D-F).  
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Although the appearance of a toe region became more prominent with increasing PCL fiber 

content, the Young’s moduli and % elongation values did not appear to approach that of PCL 

during this growth. 

2.5 Discussion 

 The motivation of this study was to investigate the controlled release of a hydrophilic 

drug from a soft, elastomeric shape memory composite. Rhodamine B (RhB), was selected as the 

model drug since its hydrophilic character (solubility of ~8 mg/ml)
24

 is akin to another drug 

molecule we are also interested in studying. More specifically, the controlled release from a 

hydrophilic nitric oxide donor molecule incorporated into this composite is later examined in 

Chapter 3. The challenge with any nitric oxide donor is that drug release is typically indirectly 

measured and the nitric oxide itself is highly reactive; therefore the use of a model drug provides 

a low cost alternative to develop this material as a candidate for controlled release of nitric oxide 

as well as other hydrophilic drugs. The ease with which RhB release can be directly quantified 

and visually verified (Figure 2-8) is of great advantage for investigating the impact of different 

processing factors on the hydrophilic drug release from this composite, resulting in translatable 

findings. As such, we aimed to systematically study the effect of drug loading, fiber size, and 

crystallinity on drug release from our composite material. 

 It has been demonstrated that drug release can be extended by increasing the diameter of 

electrospun fibers,
25

 though for semicrystalline drug carriers, the dependence of drug release on 

vehicle size becomes more complex.
24 

In our investigation, the RhB release did not strongly 

correlate with fiber size (Figure 2-4), but showed a strong dependence on PCL crystallinity. For 

untreated electrospun fibrous samples, we observed an emerging trend where more RhB was 
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recovered for those samples exhibiting greater PCL crystallinity (Figure 2-5). We noted that the 

sample with the fastest drug release rate exhibited a double endothermic peak, indicating that in 

addition to greater crystallinity, the crystalline microstructure likely contained various lamellar 

thickness populations, though additional testing is required to determine the impact of crystallite 

polydispersity on drug release.
26,27 

The crystallinity of a polymeric vehicle is an important factor 

in drug delivery as it can limit the diffusion of water transport into the polymer bulk and hence, 

the drug release and drug retention within the fibers.
28

 Specifically, water transport through PCL 

occurs through the amorphous regions of the polymer, thus circumventing the crystalline areas, 

which has been used by others as a strategic advantage for controlled release.
13

 Nonetheless, the 

crystallinity of PCL is an important feature for the shape memory polymer feature of this 

composite.
19

 In light of these observations, we postulated that the growing crystalline front 

during electrospinning expelled the RhB toward the fiber surface during fiber formation, thereby 

enabling faster and more complete leaching of RhB. We did not directly observe RhB crystals on 

the fiber surface. This may be due to small crystal size, unresolved by light microscopy, or due to 

the drug being buried just beneath the surface and therefore easily accessible to the diffusing 

external aqueous media.  

 Polymer fibers have been shown to exhibit distinct morphological differences across the 

fiber cross-section, such that a “skin-core” structure is formed.
29,30

 In this configuration, the 

microstructure of electrospun semicrystalline fibers, such as PCL, tend to organize such that the 

amorphous phase is contained within the fiber core enveloped by a crystalline “skin” or sheath. 

Here, decreasing the fiber diameter results in increasing the crystallinity.
31 

We hypothesized that 

the addition of a hydrophilic molecule, such as RhB, to the PCL fiber would result in phase 
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separation, and drive the dispersion of RhB beneath this crystalline sheath toward an amorphous 

core, as depicted schematically in Figure 2-11. We further theorized that increasing this sheath 

thickness, such as by a post-electrospinning heat treatment, would reduce the rate and 

completeness of RhB release. Additionally, we postulated that the presence of trapped air 

between the fibers limited the diffusive pathways that promoted drug entrapment. 

 To test this hypothesis, we conjectured that by annealing the fiber mats, to just below the 

melting transition (to maintain the fibrous structure), the RhB release could be controlled by 

altering the PCL crystalline microstructure. Following heat treatment, the fiber mats showed an 

increase in the melting enthalpy for two different RhB concentrations. Consistent with our 

hypothesis, we observed that increasing the crystallinity of the RhB doped fibers substantially 

decreased both the immediate burst and overall drug release. This effect was more pronounced in 

the fibers containing a greater concentration of RhB, where not only was the total amount of 

RhB released halved, the increase in crystallinity following annealing was also greater, despite 

exhibiting a lower initial melting enthalpy. These results suggest that the fiber crystallinity is 

potentially a much greater influence on hydrophilic drug release from PCL than fiber diameter. 

Furthermore these results indicate that there must be a critical RhB concentration in the fibers 

below which the influence of thermally induced crystallization becomes negligible, and a high 

recovery of drug can be expected, similar to the effect of decreasing fiber diameter. A separate 

study would be required to determine this critical concentration by testing drug release from a 

series of RhB concentration in electrospun PCL. Considering that the polymer/drug solution is 

supplied as a single, homogeneous phase during electrospinning, we assumed the differences in 

the surface energy of hydrophilic (higher surface energy in air) RhB would likely position the 
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drug in the more amorphous core of the hydrophobic PCL fibers during phase separation. We 

suspected that the dispersion of RhB in the fiber core is more uniform at lower concentrations, as 

enhanced molecular dispersions between the drug and polymer tend to occur in the amorphous 

regions.
32

 We also note that any entrapped drug would be liberated long term (over two years) 

due to the hydrolysis and enzymatic degradation of the PCL chains in vivo, although partial 

release does not necessarily indicate inadequate bioactivity.
33,34

 

 The addition of the PDMS elastomeric matrix to the PCL fibers served to prolong and 

increase the totality of RhB release. Comparing the drug release of the composite to that of the 

bare fibers, sustained drug release was extended by approximately 16 days, where most of the 

RhB discharge occurred within approximately two hours. The PDMS matrix provided a 

diffusion-limited water transport from the external aqueous environment to the drug loaded 

fibers, thus preventing immediate dissolution of RhB to the aqueous media. Although PDMS is 

hydrophobic, it is also permeable to water.
35

 When compared to the fibrous samples, the PDMS-

based composite did not exhibit a quick, spontaneous release; rather a sustained initial release 

which was steadily extended from 2 h to 48 h. We observed that the final cumulative total RhB 

released was greater in the composite than in the fibrous samples. We hypothesized that the 

wetting of the fibers by PDMS displaced air that may otherwise block RhB release thus enabling 

further release of any RhB buried within the PCL fibers, though further investigation is merited. 

 Taking into account the large of effect of the PCL microstructure on RhB release, we 

contemplated complete recrystallization of PCL within the PCL/PDMS composite. This was 

possible since the crosslinked PDMS would retain the percolating channels of the electrospun 

fibers following melting of PCL, which is one of the central principles of imparting shape 
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memory behavior to this material. We observed that following slow recrystallization after 

complete melting of PCL, the RhB release was significantly less for the more crystalline 

samples, which was consistent with what we observed for the annealed fibrous study described 

above (Figure 2-6), consequently providing another strategy in addition to fiber diameter to 

control RhB release, and further supporting our skin-core microstructural assumption. 

 As has been studied in previously in our group, the combination of PCL and PDMS 

provide unique properties not present in either constituent alone. The percolating PCL fibers 

impart significant strength not present in the PDMS elastomer, which is ideal for load bearing 

applications, while the PDMS imparts elasticity, allowing for the ability to match the Young’s 

modulus of soft tissues such as skin, blood vessels, muscle and cartilage.
36

 The emergence of a 

toe region, which produced “J-shaped” stress-strain curves, is an interesting feature resonant of 

native soft tissues containing hierarchical components, differing from hard tissues.
37

 Analogous 

to our composite material, soft tissues are fiber-reinforced, composed primarily of collagen and 

elastin, which are the load-bearing and elastic components of soft tissues such as tendons, 

ligaments, arteries.
38,39

 Considering that the fibrous PCL phase is also load bearing, we postulate 

that at low strains the stress corresponds to macroscopic stretching of the PDMS crosslinks and 

slippage of the PCL fibers past each other in the toe region. Upon additional stress, the fibers 

begin to orient in the tensile direction and elongate, until plastic deformation sets in at higher 

strains and rupturing of the PDMS crosslinks, leading to ultimate failure. We observed that the 

toe region became more apparent with an increase in percentage of the PCL phase, where 

samples featuring 8 % or more of PCL exhibited this exponentially shaped curve. 
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2.6 Conclusions 

An elastomeric shape memory composite containing a hydrophilic model drug was 

successfully prepared by embedding drug loaded semicrystalline PCL fibers within a crosslinked 

PDMS elastomer. Controlled drug releasing properties were demonstrated, where it was 

determined that the crystallinity of the fibrous phase had a greater effect on drug release than did 

fiber diameter. The crystallization mechanism determined whether the microstructural properties 

increased or decreased drug release. We postulated that growing crystalline front during fiber 

pushed the drug toward the fiber surface leading to quicker and total release, whereas post-fiber 

formation crystallization was distinct and served to drive the hydrophilic drug toward more 

amorphous fiber core, away from the growing crystalline sheath. This migratory behavior of the 

hydrophilic drug within the hydrophobic semicrystalline PCL fibers was explained to be a result 

of phase separation. Moreover, the tensile mechanical properties demonstrated that this 

composite was an excellent candidate for soft tissue applications due to its elasticity, low 

modulus, and biomimetic multi-stage load bearing response typically associated with native soft 

tissues. 
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Scheme 2-1. Chemical structures of (A) poly(ε-caprolactone) and (B) Rhodamine B, and (C) 

synthesis of cross-linked silanol-terminated PDMS. 
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Figure 2-1. Scanning electron microscopy micrographs of PCL fibers containing 0.5 wt % RhB 

with an average fiber diameter of A) 0.23 μm ±  0.13 μm, B) 0.41 μm ± 0.23 μm, C) 0.50 μm ± 

0.24 μm, D) 0.61 μm ± 0.34 μm, E) 0.91 μm ± 0.40 μm, and F) 1.29 μm ± 0.63 μm.  Fiber 

diameter are reported as mean ± standard deviation for n > 250 fibers (p < 0.05). 
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Figure 2-2. Optical microscopy at two magnifications of 2 % RhB/PCL fibers melted at 80 C. 

Letters denote areas of light (L) and dark (D) pink regions indicating low and high 
concentrations of RhB.  White regions are air pockets formed during melting, as marked by an 

asterisk. 
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Figure 2-3. Representative scanning electron microscopy micrographs of RhB/PCL-PDMS 

composite showing the (A) surface and (B) cross-section. 
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Figure 2-4. (A) Cumulative RhB release from electrospun 0.5 % RhB/PCL fibers of various 

diameters and (B) a comparison of the cumulative RhB release at 48 h with fiber morphology. 
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Figure 2-5. First heat DSC thermograms of various fiber diameters of electrospun PCL 

containing 0.5% RhB in comparison to amount of RhB released at 48 h. 
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Table 2-1. DSC thermograms of various fiber diameters of electrospun PCL with 0.5 wt % RhB. 

 

Fiber 

Diameter 

(μm) 

RhB 

Release at 

48 h (%) 

H
m,1

a
 H

m,2

b
 T

m,1

a
 T

m,2

b
 H

c,1

a
 T

c,1

a
 χ

1

a
 

 
(%) (J/g) (J/g) (°C) (°C) (J/g) (°C) 

1.29 45.3 61.1 51.4 58.0 56.5 48.7 33.1 44.0 

0.41 50.7 68.5 52.9 60.8 57.7 50.3 32.2 49.3 

0.61 66.5 69.6 54.6 60.0 59.8 50.1 32.0 50.1 

0.50 79.4 69.9 50.2 60.9 57.7 51.2 32.3 50.3 

0.91 82.7 69.7 46.3 61.2 58.9 48.6 32.0 50.1 

0.23 93.3 72.4 54.3 60.7 58.6 52.5 31.7 52.1 
a
Determined from the first heating cycle. 

b
Determined from the second heating cycle. 
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Figure 2-6. (A) Controlled RhB release results and (B) thermal characterization comparing drug 

release performance following annealing of two concentrations of RhB electrospun in PCL 

fibers. 
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Figure 2-7. Comparison of RhB release from 0.5 % RhB/PCL (fibers only) and 0.5 % 

RhB/PCL/PDMS (composite) in PBS at 37 C for samples fabricated from the same parent fiber 
mat. 
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Figure 2-8. Representative samples of (A) 1.5 % RhB/PCL fiber mat and (B) 1.5 % 

RhB/PCL/PDMS composite after several time points of drug release in PBS at 37 C. Color loss 
is due to the release of RhB from the fibers into the surrounding media. 
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Figure 2-9. (A) Controlled RhB release results and the (B) corresponding thermal 

characterizations comparing drug release performance following thermal treatment of the 

PCL/PDMS composite. 
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Figure 2-10. Tensile  stress-strain curves for the PCL/PDMS composite at various fiber fraction 

values. 
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Table 2-2. Summary of tensile mechanical properties of the PCL/PDMS composite. 

 

Sample 
Fiber 

Content  
(%)

a

 

Young’s 

Modulus 
(MPa) 

Elongation 
(%) 

PCL/PDMS 5.9 2.7 ± 0.6 640 ± 120 
6.6 3.8 ± 0.9 460 ± 60 
7.9 5.0 ± 0.3 480 ± 70 
8.5 5.0 ± 0.6 580 ± 120 
11.4 3.4 ± 0.9 610 ± 110 
15.6 4.2 ± 0.6  500 ± 30 

Electrospun PCL 100 7.1 ± 2.9 1300 ± 140 
PDMS N/A 0.4 ± 0.01 330 ± 50 

  a
Determined by DSC 
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Figure 2-11. Phase separation between hydrophilic model drug Rhodamine B within the PCL 

fiber. 
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Figure 2-12. Thermogravimetric characterizations of the (i) 0.5 % RhB/PCL, (ii) 1.5 % 

RhB/PCL, (iii) PDMS, and (iv) 1.5 % RhB/PCL/PDMS composite. 
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Chapter 3 

Nitric Oxide Releasing Shape Memory Elastomeric Composite  

for Vascular Graft Applications 

 

3.1 Synopsis 

 

The development and characterization of a soft, elastomeric composite with controlled 

and sustained nitric oxide (NO) releasing capabilities for the prevention of restenosis is presented 

in this chapter. To avoid the unwanted systemic side effects associated with a free radical such as 

NO, our approach delivers NO locally to the injured site by supplying it from the vascular graft 

material. Under in vitro physiological conditions, the production of NO from the composite was 

studied for several weeks, demonstrating that the addition of elastomeric matrix PDMS and 

adjusting the drug content served to best produce controlled and sustained release. The 

composite material exhibited suture retention strength comparable to native human arterial tissue 

and sustained elevated internal pressures in excess of physiological levels. The performance of a 

vascular graft implant is also dependent on its biocompability. Accordingly, a cytocompability 

study was conducted on the NO-releasing composite materials developed in Chapter 2, 

revealing that reducing the tin catalyst used in crosslinking PDMS significantly improved cell 

viability; however, the NO interacted with the catalytic activity, influencing the silicone 

crosslinking reaction. The NO-releasing composite was a strong chemottractant to endothelial 

cells. This material is a good candidate for vascular prosthetics. 

3.2 Introduction 

 End-stage renal disease affected approximately 350 million people in 2013 in the United 

States alone.
1
 Given the limited availability of kidney transplants, hemodialysis is the most 
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common treatment for kidney failure in order to support the affected patient’s life. During 

hemodialysis,  blood is drawn from and returned to the patient through a vascular access site 

typically formed in the patient’s non-dominant upper extremity such as between the radial artery 

and cephalic vein in the wrist, where an arteriovenous (AV) graft is surgically implanted.
2
 The 

clinical gold standard for an AV access is to use an AV fistula, a surgically created direct 

connection between an artery and a vein; however, over 20% of hemodialysis patients, such as 

those who are diabetic or elderly, are not suitable candidates for AV fistulas due to inadequate 

diseased veins, and therefore synthetic grafts are the best option in these cases.
1,3

 

Current commercially available prosthetic AV grafts are typically composed of 

polyethylene terephthalate (Dacron®), or expanded polytetrafluoroethylene (PTFE) (Gore-

Tex®) and have a high rate of low patency for small diameter grafts (defined as sized at or below 

6 mm in diameter) due to the progression of thrombosis and neointimal hyperplasia. These 

complications result in a diminished average device lifespan of about two to three years for these 

devices.
4-7 

In turn, additional surgical interventions are required and associated treatments total in 

excess of $1 billion per year.
1
 More specifically, over 70% of AV graft failures are due to 

stenosis that evolve into thrombosis at or within 3 cm of the vein to graft anastomosis.
8
 The 

current clinical approach to mitigate these risks includes administration of anti-platelet and 

anticoagulation drug regimens such as dypiridamole, sulfinpyrazone, ticlopidina, combined 

aspirin and heparin, which have their own side effects and are not able to maintain full patency 

long-term, thus simply delaying graft failure.
9-11

 

Consequently, a great deal of research has been conducted to improve the performance of 

synthetic vascular grafts. For example, efforts have been made to immobilize heparin, a 
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commonly used anticoagulant, by such mechanisms as covalent bonding or surface adsorption, 

either as a polymeric surface coating or within the bulk of PTFE-based grafts; however, the 

results are a modest improvement at best.
12,13 

Other strategies include controlled release of anti-

proliferative agents from the graft material to limit smooth muscle cell migration and 

proliferation growth on the graft luminal surface that cultivates intimal hyperplasia. For example, 

Owen et al. developed an injectable thermosensitive degradable polymer gel that can be loaded 

with paclitaxel, dipyridamole, and/or sirolimus.
14

 While the advantage of this approach is that the 

drug can be replenished, it would require administering ultrasound-guided injections on a weekly 

basis, with a risk of the gel migrating from the targeted location. Furthermore, the results of this 

research did not show that neointimal hyperplasia in vivo was significantly reduced in the 

porcine model studied. Following a similar approach, Baek and coworkers found that dip coating 

ePTFE grafts with sirolimus still resulted in neointimal hyperplasia formation following 

implantation in pigs, though at a slower rate than the untreated control group.
15

 Others have tried 

directly seeding endothelial cells onto ePTFE grafts for enhanced performance, as yet another 

approach.
16-18

 While these modifications to PTFE show some potential, the long term clinical 

performance is unknown and expediently obtaining these cells on demand remains a challenge. 

In addition, these strategies do not address incompatible mechanical properties that also often 

plague synthetic AV grafts.  

Compliance mismatch is a physical problem that also needs to be addressed concurrently 

with material thromboresistance for an artificial AV graft to successfully function long term. 

Current synthetic grafts are poorly matched to the native blood vessel, where the Young’s 

modulus of PTFE and Dacron® polyester grafts has been reported to be as high as approximately 
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0.5 GPa and 14 GPa, respectively, making them significantly stiffer than that of 0.12 – 3.7 MPa 

reported for native blood vessels.
19-23

 As a result, this critical compliance mismatch enables 

intimal hyperplasia and the ensuing turbulent flow, adding to the reduced graft patency.
24,25

 

Controlled delivery of nitric oxide (NO) from a synthetic graft can potentially resolve the 

issue of thrombogenicity of prosthetic vascular implants biomimetically. NO is a diatomic 

molecule naturally produced by endothelial cells (ECs) that is vital to maintaining vascular 

homeostasis and thromboresistance of the endothelium.
26

 Integration of NO into the vascular 

graft material has the added benefit of actively recruiting ECs, suppressing smooth muscle cell 

(SMC) proliferation and migration, and even inhibiting leukocyte chemotaxis, all which 

harmoniously work to impede thrombosis and neointimal hyperplasia.
9,27

 

Exogenous NO production can be replicated by incorporating NO donors into vascular 

graft materials; these donors are synthetic compounds that are capable of decomposing into NO 

under specific conditions.
28

 There are several classes of NO donors; however, the most studied 

are N-diazeniumdiolates and S-nitrosothiols due their ease of releasing NO under physiological 

conditions.
29,30 

N-diazeniumdiolates are synthesized by reacting primary, secondary amines, or 

polyamines with NO under high pressure, yielding two moles of NO per amine functional 

group.
9
 These types of donors dissociate into NO and its corresponding amine in the presence of 

water, as shown in Scheme 3-1, with its decomposition decreasing with increasing pH.
31

 The 

structure of an amine-functionalized NO donor molecule influences the half-life of the donor at 

physiological conditions, ranging from a few seconds to 20 h for diethylenetriamine nitric oxide 

adduct (DETA-NO).
32

 The other major class of NO donors, S-nitrosothiols, are synthesized by 

reacting a thiol with NO or nitrogen oxides
28,33

 which then release NO following exposure to 
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UV, heat, oxides, and transition metal ions.
34

 In light of the nature of the triggers for these types 

of NO donors, these substances are more useful for applications such as topical patches for 

wound healing or antimicrobial medical tubing, where external switching is advantageous
35

 

rather than as implants under aqueous flow conditions, unless further modification is done to 

incorporate the NO release trigger within the delivery vehicle.
36   

In general, use of any type of NO donor by itself does not provide long term efficacy due 

to its high reactivity in blood,
37

 and also does not provide targeted therapy. Given these limiting 

conditions, many researchers have studied incorporating these molecules into a polymeric 

vehicle to control the drug release properties. For example, Zhang et al. studied covalently bound 

NO donor to silicone rubber and demonstrated tunable release by altering the NO donor loading 

and polymer formulation.
38

 This silicone rubber exhibited in vitro NO release up to 20 d and had 

some improved thromboresistance in rabbit models, though these results still fall short of the 

long term patency goals of years. Another group investigated fabricating core-shell fibers where 

the outer “shell” layer of the polymer fibers was composed of either poly(ε-caprolactone) (PCL) 

or heparin and the inner “core” layer of the fibers were composed of a PCL/NO donor mixture, 

allowing for NO donor encapsulation and controlled NO release.
39

 The investigators showed that 

the NO release profile for the core shell samples exhibited a steadier release than the control 

groups containing only solid fibers. Additionally, it was found that NO release sustained for just 

55 h and involved a significant burst release, which is too short for significant therapeutic effect. 

Considering that near complete endothelialization of  prosthetic surfaces has been reported to 

vary between a period of 4 – 12 weeks, this time frame is too short to provide adequate 

therapy.
40-44 

Although that material demonstrated enhanced mouse fibroblast (3T3) proliferation 
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after several days, it would have been more significant to the intended application to study the 

NO release on human aortic endothelial cells (HAECs) proliferation and migration. Other 

researchers turned to making coatings for cardiovascular devices that would provide the same 

NO releasing benefit, with sustained release even up to 30 d
45

; however, these strategies didn’t 

address the physical/mechanical limitations of current implants that can also result in thrombosis 

and NO release is typically up until 24 h.
46

 

 Composite materials with drug releasing capabilities, such as the drug releasing 

PCL/PDMS composite introduced in Chapter 2, have the potential to meet these multifaceted 

demands for developing vascular grafts. In the Mather research group, controlled NO release was 

previously investigated by incorporating donor molecule DETA-NO into a composite composed 

of a commercially available polydimetheylsiloxane (PDMS) (Sylgard 184) and polyvinylacetate 

(PVAc).
47,48

 This combination of materials exhibited controlled NO release over several weeks; 

however the effect of NO donor loading in the composite was not studied. Furthermore, the 

focus of that research was the use of amorphous poly(vinyl acetate) as the fibrous phase, which 

led to significant shrinkage of the composite dimensions by up to 50% when hydrated, thus not 

making it an ideal candidate for use as vascular graft.
49

 In Chapter 2, a custom cross-linked 

PDMS chemistry was developed and combined with electrospun PCL fibers to form a composite 

that demonstrated mechanical properties suitable for vascular graft applications and controlled 

release of a hydrophilic model drug, which can mitigate these challenges. Therefore, the goal of 

this work was to investigate the ability of that PCL/PDMS composite to controllably release NO 

from a hydrophilic donor molecule. We further assessed the suitability of this composite’s 

mechanical properties in an application specific relevant manner by evaluating the suture 
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retention and burst pressure strengths. The cytocompatibility of the composite was studied with 

systematic improvements by altering the PDMS crosslinking chemistry. Lastly, the in vitro 

migratory responsiveness of endothelial and smooth muscle cells in the presence of the NO 

releasing composite was evaluated. 

3.3 Methods 

3.3.1 Materials 

Poly(ε-caprolactone) (70,000 – 90,000 g·mol
–
1), tetrahydrofuran (THF), anhydrous 

dimethylformamide, and dibutyl tin dilaurate were purchased from Sigma Aldrich and used as 

received. Dietheylenetriamine NONOate (DETA-NO) was purchased from Cayman Chemicals. 

Silanol–terminated polydimethylsiloxane (2000 cSt) and poly(diethoxysilane) were purchased 

from Gelest, Inc. 

3.3.2 Fabrication of NO-Loaded Electrospun Fibers 

NO-loaded fibers were prepared by first dissolving 13 w/v% PCL in 4:1 THF:DMF 

solvent mixture. NO donor compound DETA-NO was separately mixed with 0.2 ml anhydrous 

methanol per 10 mg DETA-NO until a homogenous suspension was observed. The DETA-NO 

suspension was then added to the PCL solution under constant stirring conditions, such that the 

targeted concentration of DETA-NO was obtained  relative to the mass of PCL in the final 

solution. The DETA-NO/PCL solution was then transferred to a 10 ml syringe fitted with a blunt 

22 gauge needle tip. A syringe pump was used to supply a steady flow rate of 1.0 ml ∙ h
-1

. The 

solution was electrospun onto a grounded 3 mm – 50 mm diameter aluminum drum rotating at 
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400 rpm, at a distance of 7 cm from the needle tip and an applied voltage of 11.5 kV. Following 

electrospinning, all fiber mats were dried at room temperature under vacuum (-30 mm Hg) for 48 

h to remove any residual solvents prior to further use and stored at -18 C in a dessicated 

container. 

3.3.3 Preparation of NO-Loaded Fibrous Elastomeric Composite 

 A pre-polymer elastomer was prepared by mixing silanol-terminated 

polydimethylsiloxane (ST-PDMS) with 3 wt% polydiethoxysiloxane (crosslinker) and 0.5 wt% 

dibutyl tin dilaurate (catalyst) similar to what was previously done by others.
50

 The electrospun 

drug-loaded PCL fiber mats were then coated by the PDMS mixture, followed by exposure to 

vacuum at room temperature for 15 min to enable thorough infiltration of PDMS within the fiber 

mat. Excess PDMS was removed from the surface using a spatula followed by a 72 h cure at 

room temperature in a desiccator.  

3.3.4 Morphology 

 A JEOL JSM-5600 scanning electron microscope (SEM) was used with an accelerating 

voltage of 4 – 6 kV. Samples were sputter-coated with gold 45 s prior to imaging. Fiber diameter 

measurements were determined by taking a minimum of 50 measurements at five different 

locations using ImageJ software (version 1.46, National Institutes of Health). The average 

diameter and standard deviation were calculated using a minimum of 250 total measurements. 

Statistical significance was determined using a one-way analysis of variance (ANOVA) with a 

significance criterion of p < 0.05, using the Minitab software package. 
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3.3.5 Thermal Characterization 

Differential scanning calorimetry (DSC) was performed using a Q200 manufactured by TA 

Instruments, Inc. Samples weighing 2.5 – 4.0 mg were sealed in Tzero aluminum pans and 

heated from -60C to 120C at 10C ∙ min
-1

. The melting enthalpy was calculated from the first 

heating cycle by integrating the melting peak, and was used to determine the crystallinity of PCL 

in the elastomeric composite according to: 

𝐶(%) =  
∆𝐻𝑚

∆𝐻𝑓
0  × 100 % (3-1) 

where c is the degree of crystallinity, fH  is the heat of fusion measured by DSC and 
0

fH is 

the heat of fusion of crystalline PCL, with a literature value of 139 J ∙g
-1

.
51

  

 The melting enthalpy was calculated from the second heating cycle by integrating the 

melting peak, and was used to determine the fraction of PCL (𝑊𝑃𝐶𝐿) in the elastomeric 

composite by comparing the melting enthalpies according to: 

𝑊𝑃𝐶𝐿(%) =  
∆𝐻𝑚

∆𝐻𝑚,0
 × 100 % (3-2) 

where Hm  is the melting enthalpy of the composite measured by DSC and Hm,o is the melting 

enthalpy of  pure electrospun PCL, as determined by DSC. 

3.3.6 In Vitro NO Release 

 Samples of 1 cm x 2 cm were placed in a known volume (4 – 10 ml) of phosphate 

buffered saline (PBS, pH 7.4) in sealed glass vials and placed in a thermal shaker at 37 C to 

simulate physiological conditions. Nitric oxide was indirectly measured using a commercially 

available Griess reagent assay (Promega Corp.), a widely used technique that 
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spectrophotometrically measures the concentration of nitrite in the media.
52

 Since NO reacts 

with oxygen in water to produce nitrite, a stable, non-volatile compound, the total nitrite in PBS 

was assumed to be due to NO decomposition from the donor compound, where one mole of 

DETA-NO can release two moles of NO (Figure 3-1). The Griess reagent assay process entails 

first diazotizing the nitrite in the sample buffer with 1% sulfanilamide in 5% phosphoric acid 

(SA) followed by azo coupling with aqueous 0.1% N-1-naphthylethylenediamine 

dihydrochloride (NED). The resulting chromophore formed by the reaction with NED has an 

absorbance maximum at 540 nm, which using a plate reader (Biotek® Synergy 2 Microplate 

Reader). The detection limit for the Griess assay is 125 pmol, which is well below the target NO 

(nitrite) release concentration. A calibration curve was first prepared for all measurements using 

known concentrations of nitrite. The NO flux from the samples was determined by converting 

the measured concentration value to into mass (moles) and dividing by the surface area of the 

sample and plotting versus time (min). The slope of a linear regression revealed the flux (mol 

cm
-2

 min
-1

).  All testing was conducted in triplicate at each time point, and an average and 

standard deviation are reported.  

3.3.7 Suture Retention Strength 

Suture retention strength of the composite was conducted in accordance with 

ANSI/AAMI/ISO 7198: 1998/2004 “Cardiovascular implants – Tubular vascular prostheses” 

standard using a tensile tester (Test Resources, Model 100P).
53

 Samples were cut into rectangles 

of 2.0 cm by 1.2 cm. One end was secured using a single throw of a commercially available 

monofilament polypropylene suture of size 5-0 looped once (5-0 Prolene, Ethicon, Piscataway, 

NJ) into a single loop at 2 mm from the edge and knotted a minimum of five times. The 
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unsutured end was fastened by the stage clamp while the opposing clamp mounted to transducer 

was gripped onto the knotted end of the suture. The suture was pulled from the sample at a rate 

of 50 – 120 mm ∙ min
-1

 until the suture completely ripped through the sample wall resulted in 

failure. The peak force required to pull the suture through the sample is reported as the suture 

retention strength (N). An average and standard deviation are reported for a total of five samples. 

3.3.8 Burst Pressure 

 Burst pressure testing was performed on tubular graft samples with an inner diameter of 6 

mm consistent with other studies.
53-55

 The graft tubes were each cut to a minimum length of 3 

cm, in accordance with ANSI/AAMI/ISO 7198,
 53

  and were fitted over a custom testing platform 

that allowed both ends to be secured, as shown in Figure 3-8A. The sample was pressurized with 

water and air bubbles expelled at room temperature using a syringe pump to supply water at 20 

mL min
-1

 until failure, as has been reported by others.
56,57

 The internal hydrostatic pressure was 

measured over time using an in-line pressure gage while the graft diameter was actively 

measured using a linear laser positioned at a fixed distance and projected onto a screen. The gap 

or shadow in the projected laser line due to the graft was used to determine the diameter (Figure 

3-8A). Prior to testing, a standard curve was constructed using known diameter measurements 

from which the actual external diameter calculated with an accuracy of 0.5 mm. All captured 

images were calibrated using reference lines of known dimension and analyzed using ImageJ 

software. The pressure at which the sample bursts was reported as the burst pressure. A sample 

size of three was used and an average and standard deviation are reported. The hoop stress (𝜎𝐻) 

for a thin-walled tube was calculated using Eqn. 3-3 below, where P, d, and t refer to the internal 
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pressure, tube diameter, and tube wall thickness, respectively. A thin wall assumption was used 

since the ratio of the radius to tube thickness was greater than ten. 

𝜎𝐻 =
𝑃𝑑

2𝑡
 (3-3) 

The compliance (C) was calculated using the burst pressure data and according to Eqn. 3-4 

below, where d0 refers to the initial, unpressurized diameter. 

𝐶 =
∆𝑑

𝑑∆𝑃
 (3-4) 

 

3.3.9 Kink Resistance 

A tubular PCL/PDMS sample was fitted over a flexible, kink-free wire support of 

diameter 5.9 mm. Shape fixing was conducted by heating the sample above the melting transition 

of PCL at 60 C and then deforming the sample into a bend of radius of 0.8 cm or until just 

before a kink formed, followed by quenching in a freezer at -18 C to recrystallize the PCL 

fibers. The sample was then removed from the wire support and a fixed shape was observed and 

the fixed bend radius was measured. Shape recovery was then triggered by placing the sample in 

an oven at 60 C to melt PCL, and enabling the PDMS crosslinks to recover the previously 

permanently memorized, strain-free shape. The radius of curvature of the recovered shape was 

then measured. A kink in the tube was defined visually as a large scale buckling in the outer 

surface of the tube wall at the point of bending.
58 

The radius of curvature of the fixed sample 

measured using ImageJ image analysis software and compared to the deformed sample before 

removal from the bent wire support. The fixing ratio, 𝑅𝑓, was calculated using Eqn. 3-5 below, 
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where 𝑟𝑑 is the radius of curvature of the targeted deformed shape (while on the wire support) 

and 𝑟𝑓 is the radius of curvature of the resulting fixed shape. 

𝑅𝑓(%) =
𝑟𝑑

𝑟𝑓
× 100% (3-5) 

The recovery of the straight tube was assessed according to the recovery ratio below: 

𝑅𝑟(%) =  (
𝑟𝑓 − 𝑟𝑟

𝑟𝑓 −  𝐿0
) × 100% (3-6) 

where L0 is the original length, and 𝒓𝒓 is the recovered length following heating. The reciprocal 

value of the radius of curvature was used to describe the curvature of the sample. The critical 

curvature is the curvature value limit before a kink will occur with increased bending. The 

critical curvature, shape fixing ratio and standard deviation of three samples per test group was 

reported. 

3.3.10 Cytotoxicity 

 Sample preparation was conducted according to ISO 10993-5 and ISO 10993-12, where a 

non-contact extraction-based method was used to determine cytocompatibility.
59,60

 Samples were 

cut into pieces in order to maintain an extraction ratio of 3 cm
2
 ∙ ml

-1
 of sample surface area to 

extract media. All samples were sterilized by ultraviolet light for 1 h per side. Sterilized samples 

were then incubated in media for a specified sample extraction time (24 – 72 h). Following 

extraction, the sample media was used to incubate L929 cells for 24 h at 37 C in 95% 

humidified air containing 5% CO2. Cytotoxicity was quantified using the CCK-8 assay to 

colorimetrically measure mitochondrial activity, an indicator of cell viability. The cell culture 

media was replaced with 100 uL of 10% (v/v) CCK-8 solution in media was incubated for 4 h. 
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The absorbance of the samples was measured at 450 nm using a plate reader (Biotek® Synergy 2 

Microplate Reader). Cell viability was calculated by dividing the absorbance values of the 

sample by the absorbance value of the positive control and reported as a percentage of the 

positive control. A minimum cell viability of 70% or greater was used to determine 

cytocompatibility.
58

 All testing was conducted in triplicate and a mean and a standard deviation 

are reported.   

3.3.11 Mechanical Characterization 

 Tensile mechanical properties was studied by punching samples into a dog bone 

geometry (ASTM Standard D638-03 Type IV, scaled down by a factor of 4), and loading onto a 

Test Resources Model 100P Universal Testing Machine equipped with a 24 N load cell. The 

samples were stretched at a rate of 33 μm s
-1

, and engineering stress-strain curves were used to 

determine Young’s modulus, strain-to-failure, and tensile strength. Five samples of each type 

were tested and an average and standard deviation are reported. 

3.3.12 Cell Migration Assay 

 The cell migration was performed in a modified Boyden chamber
61

 using 24-well 

Transwell plates (Corning™ Transwell, 8 μm pore size). All samples were sterilized by 

ultraviolet light for 1 h per side. Samples punched into 6.5 mm diameter discs were placed in the 

bottom compartment and allowed to soak in media for 48 h prior to cell seeding to ensure full 

water uptake through the sample and initiation of NO release. Bovine aortic endothelial cells 

(BAECs) or bovine smooth muscle cells (BSMCs) from passages 5 and 6, respectively, were 

cultured for 72 h prior to cell seeding. The cells were suspended in media containing 10% fetal 
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bovine serum (FBS), 1% GlutaMAX, and 1% penicillin/streptomycin and Dulbecco’s modified 

Eagle’s medium (DMEM). The Transwells were then seeded with 10,000 cells in the upper 

compartment and placing the sample in the bottom compartment with 600 uL of cell culture 

media. Both the cell culture media and a solution containing 10 μM of DETA-NO in media were 

used separately as positive controls. The DETA-NO control was prepared just prior to cell 

seeding due to its high reactivity and sterilized by filtration (0.20 μm, Corning®). Serum-

reduced media containing 1% FBS was used as the negative control. The assembled migration 

chambers were incubated for 48 h in a humidified incubator at 37 C with 5% CO2 to allow cells 

to migrate through the Transwell filter. After the migration period, the cells were fixed using 4% 

formaldehyde in PBS and stained with Alexa Fluor 647 conjugated phalladium (1:40 dilution, 

Life Technologies) for actin cytoskeleton visualization and Systox Green (1:10000 dilution in 

PBS, Life Technologies) for nucleus staining. Non-migrated cells in the seeding (upper) chamber 

were removed using a cotton swab, leaving only the migrated cells on the obverse filter surface 

for analysis. The stained cells were imaged using a Leica DMI 4000B inverted fluorescence 

microscope equipped with a Leica DFC 340FX camera using a 10X/0.22 NA objective. 

Pseudocoloring was applied to the images using ImageJ software. The total number of migrated 

cells from three representative areas per well were quantified using Automated Contour-based 

Tracking for In Vitro Environments (ACTIVE) software.
62,63 

Each assay test condition was 

conducted in triplicate wells, and an average and standard deviation are reported.  
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3.4 Results 

3.4.1 Fabrication 

 PCL fiber mats containing DETA-NO were prepared by electrospinning with an average 

fiber diameter of 0.91 μm  ± 0.51 μm and 0.46 μm ± 0.24 μm for fiber mats loaded with 0.5% 

and 1.5% DETA-NO, respectively. No drug crystals or particle aggregation were observed on the 

fiber surfaces, though it may be too small for the SEM resolution limit of the equipment used 

(Figure 3-1A-B).The fiber mats were then successfully imbibed with PDMS, which occupied the 

interstitial space between the PCL fibers, as shown in Figure 3-1C-D. Tubular composite 

samples (Figure 3-1E) were also fabricated by electrospinning the fibers onto a smaller diameter 

mandrel and were used for burst pressure and shape memory kink testing.  

3.4.2 Thermal Characterization 

 The thermal properties of the NO releasing PCL/PDMS composites are presented in 

Figure 3-2 and Table 3-1, and compared with their respective components. Both composites are 

composed of mostly PDMS, comprising approximately 8 – 10% based on a comparison of the 

melting enthalpies between the fibers and the composites in the second heating cycle. Some 

variation in the local composition of the composite was expected given that the PDMS 

deposition and infiltration process is manually performed. The melting endotherm of DETA-NO 

was not visible in the thermograms. 
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3.4.3 NO Release 

The in vitro cumulative drug release profiles of the PCL/PDMS composites doped with 

two NO donor concentrations were compared to NO release from the non-encapsulated fibers 

and presented in Figure 3-3. Consistent with the drug delivery results in Chapter 2, the addition 

of the crosslinked PDMS elastomeric matrix to the PCL fibers served as a water-regulating 

composite that suppressed the initial burst release for 0.5% DETA-NO/PCL/PDMS composite, 

which was reduced from approximately 12% to 9% drug release within the first 3 h. The burst 

release was not substantially different between the 1.5% DETA-NO/PCL/PDMS composite and 

its corresponding fiber mat, since both exhibited a 4 % cumulative release by 3 h. 

Notwithstanding quantitative differences attributed to DETA-NO loading, both composites 

continued releasing NO long after the fibrous samples stopped and with greater total NO 

released, also consistent with the drug delivery results in Chapter 2.  

In general, increasing the concentration of the NO donor in the samples resulted in 

decreased total NO released over time on a percentage basis, by approximately 16% of 

theoretical stored NO between composites, and 11% for the fiber mats. After 72 d, the 0.5% 

DETA-NO/PCL/PDMS composite had released approximately 27% of the theoretical NO, 

whereas the 1.5% DETA-NO/PCL/PDMS composite had released approximately 12%. Both 

composites also showed drastically reduced release rates at that time point. In contrast, both fiber 

mat samples no longer released significant amount of drug after approximately 2 – 3 d, with total 

concentrations well below their respective composite analogs, totaling to 86% and 94% 

unreleased drug remaining for the 0.5% DETA-NO/PCL and 1.5% DETA-NO/PCL samples, 
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respectively. These trends are consistent with what was observed for Rhodamine B release from 

the same materials discussed in Chapter 2. 

To assess the physiological relevance of these NO release results, the profile values were 

converted into flux values by plotting the NO release (mol ∙ cm
-2

), normalized by the sample 

surface area, alongside the release time (in minutes), and divided into four stages, each 

composed of a linear trend. The slope of best-fit linear regression of each stage revealed the flux 

in Figures 3-4 and 3-5.  The flux values both NO concentrations in the composite were observed 

to progressively decrease over time, as tabulated in Table 3-2, however, both composites 

exhibited sustained NO release for over eight weeks.  

3.4.4 Suture Retention 

 The suture retention strength of the DETA/NO-PCL-PDMS composite was quantified 

according to ANSI/AAMI/ISO 7198
64

 using a single throw of 5-0 Prolene sutures using a tensile 

tester as shown in Figure 3-6. The suture retention strength was 2.0 N ± 0.4 N for the composite 

when tested at 50 mm ∙ min
-1

. This average value reduced slightly when tested at faster speeds, 

resulting in suture retention strengths of 1.6 N ± 0.4 N and 1.7 N ± 0.4 N for pull speeds of 100 

mm ∙ min
-1 

and 120 mm ∙ min
-1

, respectively (Figure 3-7 and Table 3-3). These differences due 

to pull speed were not statistically significantly different at the 95% confidence interval. 

3.4.5 Burst Pressure 

 The burst pressure of the PCL/PDMS composite was tested using a custom testing 

platform shown in Figure 3-8.  The average burst strength was 1508 mm Hg ± 284 mm Hg, 

which was over 12 times greater than the physiological pressure of human arteries of 120 mmHg 
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which was specified by ANSI 7198.
41

 The estimated hoop stress (Eqn. 3-3) based on the burst 

pressure value was 11,310 mm Hg (1.5 MPa), which was slightly lower than average tensile 

strength of the PCL/PDMS composite of approximately 7 MPa reported in Chapter 2. The 

resulting compliance, based on the burst pressure data was determined to be approximately 0.028
 

% mm Hg
-1

 ± 0.005
 
% mm Hg

-1
, which was lower than the value of approximately 0.44

 
% mm 

Hg
-1

 reported for the saphenous vein.
65

 Since compliance is dependent on sample thickness, a 

reverse calculation (assuming a Young’s modulus of 3.85 MPa reported in Chapter 2) estimated 

that decreasing the sample thickness to between 0.1 to 0.2 mm would achieve the literature 

reported value for saphenous veins. The failure of the composite sample under high hydrostatic 

pressure progressed as localized plastic deformation, where whitening (akin to crazing of 

amorphous polymers undergoing fracture) of the composite was observed at the site where water 

leaked from the graft sample, as shown in Figures 3-8B and 3-9B. A linear relationship was 

observed between the internal pressure and diameter expansion until the diameter expansion was 

approximately 130 – 150% of its original diameter, at which point continued inflation did not 

substantially increase the internal pressure before failure occurred.  

3.4.6 Kink Resistance 

 The results of fixing tubular samples of the composite into a kink-free, looped shape of 

varying tube diameters and wall thickness are presented in Figures 3-10 and 3-11. The two wall 

thicknesses tested for 3 mm graft samples were: 0.19 mm ± 0.05 mm (“thin”) and 0.34 mm ± 

0.07 mm (“thick”). The two wall thicknesses for the 6 mm graft samples were: 0.17 mm ± 0.09 

mm (“thin”) and 0.47 mm ± 0.01 mm (“thick”). The permanent (original) shape of this sample 

was a straight tube, which was then deformed into a kink-free bend as described in Section 3.3.9. 
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All samples exhibited full shape recovery within seconds of stress-free exposure to 60 C in an 

isothermal oven, as can be seen in Figure 3-10. For two graft sizes, the critical curvature 

increased when the wall thickness was increased, particularly for the 6 mm graft, as shown in 

Figure 3-11A. The 6 mm graft displayed some wrinkling on the surface when the wall thickness 

was decreased. Reducing the clearance between the fixing wire support and the sample aided in 

limiting wrinkle formation; however some wrinkle formation occurred for the 3 mm grafts with 

thicker walls. These wrinkles were local surface features much smaller than the tube diameter, 

unlike a kink, which is a large-scale occlusion of the tube lumen, caused by mechanical buckling 

during tube flexure. The shape fixing ratio, presented in Figure 3-11B, increased for both the 3 

mm and 6 mm samples when the wall thickness decreased.  

3.4.7 Cytotoxicity 

 The cell viability results of the NO releasing composite and its individual components 

shown in Figure 3-12(A). The electrospun PCL, both with and without DETA-NO, 

demonstrated cytocompatibility at 125% ± 20% and 124% ± 11%, respectively, with no 

significant difference due to the addition of DETA-NO after 24 h of material extraction. 

Additional extraction time in media slightly decreased viability to 96% ± 0.2% for electrospun 

PCL and 92% ± 0.1% electrospun PCL with DETA-NO, which was well above the 70% 

threshold for cytocompatibility. When PCL was combined with PDMS to form the composite, 

the resulting cell viability was 22% ± 3% cell at 24 h, which was not significantly different than 

cast PDMS films, which had a cell viability of 23% ± 3.   

 Based on the above results, it was hypothesized that the source of toxicity was residual 

tin catalyst (DBTDL) used to synthesize crosslinked PDMS. To test this hypothesis, PDMS was 
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then synthesized using different concentrations of DBTDL. The resulting cell viability in Figure 

3-12(B) showed that increasing the DBTDL concentration from 0.25% up to 1% resulted in poor 

cell viability ranging from 25% ± 7% to 39% ± 6%, with slightly greater viability at lower 

catalyst concentration. Cell viability significantly improved to 98% ± 9% when PDMS was 

synthesized using 0.1% DBTDL. These findings were then used to improve the 

cytocompatibility of the NO-releasing composite by crosslinking PDMS using a lower DBTDL 

level; however, it was discovered that while the SMEC containing 0.1% DBTDL had no issues 

curing, the addition of DETA-NO prevented complete cure of the PDMS, even after 14 d at 50 

C, which is more than sufficient to crosslink PDMS (data not shown). Figure 3-12(C) shows 

the cell viability results of drug-loaded and neat composite at different DBTDL concentrations. 

Consistent with the cell viability results for PDMS in Figure 3-12(B), only the composite 

containing 0.1% catalyst was similarly cytocompatible with a cell viability of 94% ± 11%. Since 

the DETA-NO containing composite could not be tested using a DBTDL concentration of 0.1% 

due to poor cure, only the cell viability results for DBTDL concentrations of 0.25%  and 0.5% 

are shown.  The cell viability significantly improved when DETA-NO was added to the 

composite by up to 60% for the composite containing 0.25% DBTDL, and 26% for composite 

containing 0.5% DBTDL.  Based on these results, it was postulated that DETA-NO possibly 

counteracted the catalytic activity of DBTDL, which may explain why at very low levels of 

DBTDL, the DETA-NO releasing composite was unable to cure even at aggressive conditions. 

Furthermore, this may explain why these samples exhibited better cytocompatibility at higher 

concentrations compared to the composite without DETA-NO. The DETA-NO/SMEC 

containing 0.25% was determined to be cytocompatible based on a cell viability of 73% ± 6% 
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relative to the positive control. Given that reducing the catalyst concentration further affected the 

ability for PDMS to cure, this DBTDL composition (0.25%) was selected for chemotaxis studies 

described in Section 3.3.10.  

 Figure 3-12(D) showed that the cell viability for DETA-NO concentrations of 0.1 μM  to 

100 μM in cell media was significantly greater than 70%, with values ranging from 94% ± 19% 

to 117% ± 18%, indicating cytocompatibility and even cell growth; only a DETA-NO 

concentration of 1000 μM showed strong cytotoxicity, which was comparable to the negative 

control. Based on these results, a 10 μM DETA-NO solution was selected to use as a second 

positive control in the chemotaxis study described in Section 3.4.10. The tensile testing results in 

Figure 3-13 and Table 3-4 showed no significant differences in the mechanical properties of the 

crosslinked PDMS at catalyst concentrations between 0.1 wt% to 1.0 wt%. 

3.4.8 Migration Assay 

 The in vitro migration of BAECs and BSMCs was evaluated in the presence of the 0.5% 

DETA-NO/PCL/PDMS composite and summarized in Figure 3-14. Following 48 h of cell 

migration, there was significantly greater cell migration toward the NO-releasing PCL/PDMS 

composite, which was not significantly different than the DETA-NO positive control for both 

cell types. The BSMCs also migrated in response to NO, independent of NO source, whether 

from the composite or positive control, though with highly variable results, as indicated by the 

large error bars for the BSMCs in Figure 3-14. The PCL/PDMS composite without drug 

exhibited significantly less BAEC and BSMC migration than the doped composite. The least 

overall amount of migration activity was observed for both the media and the serum-reduced 

media controls, with no significant difference in cell count between the two media conditions. In 
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general, there was no statistical difference between the cell migration populations of the BAECs 

and the BSMCs in all the test conditions, as both cell types migrated in similar patterns. The 

morphology of the migrated BAECs and BSMCs shown in Figures 3-15 and 3-16 were 

consistent healthy ECs and SMCs. 

3.5 Discussion 

 PCL and PDMS have each been widely studied for use in medical devices owing to their 

excellent biocompatibility properties.
66,67

 The combination of these two materials to form a drug-

releasing elastomeric composite with controlled release of a hydrophilic model drug was studied 

in Chapter 2. This chapter served to further study this composite material for a vascular graft 

application, this time incorporating an NO-releasing molecule, considering that the composite 

also demonstrated good mechanical properties to substitute human blood vessels, as discussed in 

Chapter 2.  

 In healthy blood vessels, the endothelial lining of the luminal surface of prevents 

restenosis due to the continuous EC release of NO that provides a non-thrombogenic blood-

contacting surface.
68 

To mimic this effect, DETA-NO was selected as the NO donor to integrate 

into the PCL/PDMS composite due to its relatively long half-life of 20 h in aqueous solution at 

37 C. The addition of the PDMS elastomeric matrix served to sustain NO release due to its 

water-regulating properties, while although hydrophobic, is semi-permeable to water.
69

 The 

spontaneous release initially observed within the first few hours is likely due to NO donor 

readily accessible at the surface and was greatly reduced by the addition of the PDMS matrix, 

which served to shield the NO donor from instant dissociation in water. We attribute subsequent 

release of NO donor to diffusion from the bulk of the PCL fibrous framework. We had 
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hypothesized that increasing the NO donor concentration would increase both the total amount 

released (on a percentage basis) and the accompanying release rate; however, the opposite trend 

occurred. This result occurred despite the composite with lower drug loading exhibited slightly 

more PCL crystallinity and larger fiber diameters, both which may act as a hindrance to drug 

release as was determined in Chapter 2. We surmise that this may be due to added entrapment 

of drug within the fiber core. This type of indirect correlation between drug loading and release 

has been observed in other controlled drug release systems, particularly in drug encapsulated 

micro- and nanospheres, where it was suggested that above a particular concentration the drug 

dispersion throughout the polymer matrix becomes heterogeneous, thus impeding release.
70-73

 In 

systems where drug has poor miscibility in the polymeric carrier, the drug may be crystalline or 

appear as aggregates, rather than exist as a molecular dispersion within the matrix, and may 

require an additional step of first being dissolved by the external aqueous environment prior to 

beginning diffusion out of the polymer, thus resulting in reduced release at higher loading.
74 

The 

crystallinity of PCL would also provide domains that would impede water penetration and thus 

drug diffusion out, which is what we found in Chapter 2, where the PCL/PDMS composite also 

showed less release as the loading of a hydrophilic model drug Rhodamine B increased.  

Considering that a suspension of DETA-NO in PCL was electrospun, the resulting fibers likely 

did not contain uniform drug dispersion throughout the cross-section and this is more evident as 

the concentration is increased.
 

Since the solubility of the DETA-NO solution in the 

electrospinning solution was limited, it is likely that phase separation between DETA-NO and 

PCL occurred while the electrospinning solvent evaporated during fiber formation and that the 

recrystallization of PCL during this stage further encased the drug within the fiber core. This was 
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supported by the observation that the 0.5% DETA-NO samples were slightly more crystalline 

than the 1.5% samples and still released more, further supporting the notion that the observed 

drug release pattern was a result of phase separation. Additionally, the differences in total drug 

release between the fibrous samples and the composites was consistent with that observed in 

Chapter 2, where the composite samples released more total drug. We postulate that this 

difference may be due to trapped air in the fiber mats that may block drug diffusion into the 

aqueous media, which is not present in the composite, where PDMS wets the surfaces of fiber 

and media, displacing the air that may otherwise block release. 

 NO release of the native endothelium has been reported to be within 0.05 – 0.1 nmol cm
-2

 

min
-1

.
75

 The 0.5% DETA-NO/PCL/PDMS composite was found to release within this order of 

magnitude during the first 3 d in PBS at 37 C (Figure 3-4 and Table 3-2). The initial burst and 

ensuing NO release during this period may be critical to preventing restenosis by SMC migration 

and proliferation, which can occur approximately 24 h following surgical intervention that 

triggers vascular injury, with maximum activity at 48 h.
76

 The subsequent long-term sustained 

NO release is necessary for continued suppression of SMC proliferation while supporting 

endothelialization for ultimately building confluency, which generally occurs within of 4 – 12 

weeks following implantation.
40-44

 Host body responses to synthetic vascular grafts occur 

immediately upon contact with blood, beginning with  protein adsorption, platelet adhesion 

within several hours, followed by EC and SMC migration.
77,78

 It has been reported that up to 

18% of synthetic vascular grafts for dialysis fail due to thrombosis within the first 3 weeks;
79

 

ideally, a vascular graft would last for the life of the patient with no need for additional surgeries 

to replace with another graft, though such a synthetic option currently does not exist. Compared 
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to those options, our composite material is an improvement since it has demonstrated the 

potential for continuous mediation of EC advancement through NO release for over two months. 

Although the NO flux in the later stages (Table 3-2) was found to be below NO release by native 

endothelial cells, this can potentially be improved by implementing a thermal treatment to the 

composite to reduce the PCL crystallinity, as determined in Chapter 2, and may even be 

sufficient when combined with the endothelial cell based NO release. 

 In order to be successful as a vascular graft implant, the material must be able to support 

sutures under tension during and after surgery. The suture retention strength is an indicator of 

anastomotic strength, which is can also be affected by suture needle thickness, needle shape, and 

the material and thickness of the suture; these factors are typically not controlled or 

standardized.
80,80

 The suture retention strength of human saphenous veins using the same suture 

has been reported to be 1.92 N ± 0.02 N, which was comparable to that for our composite 

material.
81,81

 Generally, researchers use an approximate value of 2.0 N as the minimum 

acceptable strength for prosthetic vascular graft materials, though the testing tensile speeds used 

are not standardized in the field.
82-85 

Since the ANSI procedure calls for a wide range of 50 –  

200 mm ∙ min
-1

, our composite was tested at three different speeds, with no statistical significant 

difference in the suture retention strength between the speeds, though the strength decreased 

slightly with increasing pull speed. We postulated that this strength can be improved by 

optimizing the volume fraction and crystallinity of PCL fibers in the composite. 

 Healthy human arteries can withstand systolic blood pressures of approximately 120 mm 

Hg.
86 

Our PCL/PDMS composite material demonstrated an average burst pressure of 1508 mm 

Hg ± 284 mm Hg,  which was more than twice that of the currently acceptable commercial 
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options, such as non-elastomeric ePTFE which has a reported burst pressure of ~ 600 mm Hg,
21

  

and over 12 times greater than blood pressure. Although the clinical requirement for vascular 

graft prosthetics is approximately 2000 mm Hg (38.7 psi), this is in order to ensure that it 

performs beyond any expected physiological thresholds and is based on the incredible burst 

strength of the human saphenous vein, but is also in great excess of systolic pressure, as has been 

pointed out by others.
57,87

. Burst pressure strength of graft materials have been shown to be 

dependent on the rate of inflation, where higher inflation rates lead to lower burst pressure 

results.
88

 In this study, the PCL/PDMS composite material was tested using an aggressive rate 

and was still able to achieve a high value, which demonstrated the robustness of this material. 

The nonlinear behavior of the graft under high pressures was suggestive of irreversible plastic 

deformation and has been referred to as the aneurysmal point in the vascular graft.
88

The point of 

failure of the graft consistently occurred central to the clamped areas and presented as small 

punctures or slits in the material, surrounded by “crazed” (or whitened) areas (Figure 3-9B). 

Unlike other vascular substitutes, our samples did not exhibit perspiration of water during 

pressurization,
88

 indicating good adhesion between the fibrous and elastomeric phases during 

dilation since no pores were formed. It is likely that any minor defect in the fiber/matrix 

distribution from the manual fabrication process attributed to a compromised region for stresses 

to concentrate; optimizing the graft fabrication and testing at a lower inflation rate would likely 

improve the burst strength and reduce the variation in the average values. Burst pressure is also 

inherently higher for smaller diameters and greater wall thicknesses, and considering that we 

only tested the largest diameter for a small graft, we anticipate that the strength will only 
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improve. In any case, our composite greatly exceeded physiological pressures and showed great 

potential to meet the preferred clinical target and is an adequate substitute for blood vessels. 

 Kink resistance of the composites was studied to assess the potential to form a loop for 

precision surgical placement as is typical of many arteriovenous procedures.
89

 Failure to prevent 

kinking of the graft during surgical placement can impede blood flow and lead to graft failure. In 

this work, the shape memory properties of the PCL/PDMS composite were exploited to provide 

tailorable loop configurations, which were quantified by measuring the bend radius before a kink 

appeared with additional applied stress. The larger graft size was prone to surface wrinkling as 

the wall thickness decreased. For both sizes, increasing the wall thickness improved kink 

resistance by enabling tighter loops to be formed without kink development. It is likely that the 

thicker tube walls resisted the wall thinning associated with tube bending that predisposes it to 

wrinkling and kinking.
90

 Reducing the clearance between the fixing wire support and the sample 

aided in limiting wrinkle formation; however some wrinkle formation occurred for the smaller 

grafts with thicker walls. These particular wrinkle formations (Figure 3-10H) were local surface 

features on the outer surface of the bend, much smaller than the diameter, and unlike a kink, 

which is a large-scale occlusion of the tube lumen caused by mechanical buckling during tube 

flexure.  This wrinkling behavior dependence on thickness and diameter are consistent with what 

has been reported for bending hollow aluminum alloy tubes.
90

 We also observed that the fixing 

ratio for tube bending was improved for samples with thinner walls, regardless of diameter. We 

postulate that this may be due to an imbalance of contributing forces between the fixing fibrous 

and elastomeric phases, and that future optimization of these volume fractions can improve this 

result. Unlike other biomedical materials, this graft material will maintain its looped 
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configuration upon release of the load due to its inherent shape memory effect, thereby being 

more likely to maintain its shape during the desired application. The looped formation can be 

reformed by simply heating the sample above 60 C to recover its original straight shape, and the 

shape programming cycle can be reactivated as needed. The programming temperatures are well 

above physiological temperatures and accidental recovery of the shape will not occur post-

implantation. 

 Many polymers commonly used for biomedical applications, such as polyurethanes and 

silicones, rely on the use of heavy metal catalysts such as DBTDL or stannous octoate in their 

syntheses or crosslinking reactions.
91 

Given that these organotin catalysts are known to be 

cytotoxic, some researchers have sought to avoid employing these types of catalysts
92,93 

while 

others have demonstrated cytocompatibility of their materials.
94 

More specifically, the 

polycondensation or room temperature vulcanization of siloxanes frequently utilize organotin 

catalysts such as DBTDL.
50,95,96 

In this study, we identified that the cytotoxicity of the tin 

catalyst could be mitigated by reducing the concentration of the catalyst in the cross-linking 

reaction of PDMS, as demonstrated in Figure 3-12(B); this approach has been similarly 

employed by others. For example, Zhang and coworkers developed an NO-releasing silicone 

rubber that employed comparable polycondensation chemistry to crosslink PDMS, using 

DBTDL as the catalyst.
38

 While they determined that catalyst levels of 0.03% to 0.5% was 

sufficient to cure PDMS, no cytotoxicity was reported in this study. It is also unlikely that they 

would have observed any NO interference with PDMS curing since the films were cured prior to 

diazeniumdiolation of the pendant amine groups. In another study, Pretti and coworkers studied 

the ecotoxicology of PDMS coatings, also synthesized using similar chemistry.
97

 Here, they 
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compared a tin catalyst (dibutyltin diacetate) to a bismuth-based one (bismuth neodecanoate) and 

found that  after 14 d of leaching in seawater, only the tin-based crosslinked PDMS exhibited 

toxicity to the marine organisms studied using a concentration of 0.1%. In contrast, Zhu et al. 

developed a PDMS-based polyurethane copolymer membrane that showed good cell viability 

using 0.1 wt% DBTDL as the catalyst concentration, which was consistent with our results.
94

 In 

our study, we also observed that the addition of NO donor DETA-NO to the composite appeared 

to interfere with the PDMS crosslinking reaction at a very low catalyst concentration, such that 

only those composites fabricated without the NO donor were able to cure at this concentration. 

We hypothesized that the NO donor may be poisoning enough of tin catalyst to prevent the 

crosslinking reaction at low catalyst concentrations. Furthermore, since the NO-releasing 

composite became more cyctocompatible with the addition of DETA-NO, we also postulated 

that the NO possibly counteracts the catalytic activity of DBTDL. In light of this, a catalyst 

concentration of 0.25 wt% was selected for further cell culture testing of the NO releasing 

composite due to the favorable cytocompatible results and ability to cure. Additionally, the 

mechanical properties of PDMS at varying catalyst concentrations showed no compromise in 

strength or elasticity. 

 The ability of the NO-releasing composite material to attract endothelial cells and deter 

smooth muscle cell migration was evaluated in vitro using a modified Boyden chamber 

migration assay. Following vascular surgery, SMCs  migrate  from the cut edges of the adjacent 

artery and are available to participate in the neointima formation along the luminal surface of a 

synthetic graft, whereas in native vessels, the ECs are already present to repair the endothelium, 

thus preventing undesired SMC luminal proliferation.
98

 We separately tested the migration of 
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BAECs and BSMCs in the presence of the NO releasing PCL/PDMS composite, using a 48 h 

migration period as had been done by others.
99

 The strikingly strong endothelial cell chemotactic 

response to the NO releasing PCL/PDMS compared to the undoped PCL/PDMS composite and 

control groups demonstrated the ability of the composite to provoke a positive biological 

response and thus the potential to generate new endothelial lining on the synthetic surface in 

vivo. To our surprise, the BSMC responded similarly to the BAECs, where BSMC migration was 

also promoted by the NO releasing PCL/PDMS composite. This effect has been observed before 

by others, where vascular smooth muscle cell (VSMC) chemotaxis was found to be highly 

dependent on NO donor concentration. In that study, Seymour et al. had hypothesized that the 

combination of DETA-NO with a statin would provide an additive inhibitory effect on vascular 

VSMC migration
.100

 Instead, they observed that the NO donor counteracted the statin activity 

and VSMC chemotaxis was increased at high concentrations of DETA-NO. Their findings 

confirmed a previous study, where the same authors had observed VSMC stimulation at high 

concentrations of DETA-NO over long term exposure (> 18 h).
101 

Interestingly, our selected 

DETA-NO concentration was well below what Seymour et al. had observed to stimulate VSMC 

migration; however, the duration of exposure to DETA-NO in our study was considerably longer 

than what the authors examined (48 h versus 20 h) and may have also contributed to SMC 

stimulation. An improvement on this assay would be to co-culture the ECs and SMCs into a 

single migration assay to better simulate physiological conditions, as the presence of ECs may 

aid in preventing or considerably reducing SMC proliferation.
76

 The graft produces a favorable 

environment for endothelialization. Overall, the results of this migration study demonstrated that 

the NO release from the composite (Figure 3-4) sufficed to stimulate the endothelial cell 
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migration necessary for luminal surface remodeling and may even be too high given that smooth 

muscle cells were negatively stimulated. Since this was conducted in vitro, it is also possible that 

the required concentration of exogenous NO may be different to induce a similar in vivo 

biological reaction.
99

  

3.6 Conclusions 

 An elastomeric shape memory composite comprised of electrospun PCL embedded 

within a crosslinked PDMS elastomer and doped with an NO donor drug was successfully 

prepared and demonstrated controlled release of NO for over ten weeks. Increasing the DETA-

NO concentration escalated the phase separation effect between the DETA-NO drug and the 

PCL fibers and resulted in reduced drug release as more drug molecule was trapped within fiber 

interior. This composite exhibited good suture retention comparable to native blood vessels and a 

burst pressure strength that exceeded commercially available options. The NO-releasing 

composite demonstrated good cytotoxicity when using a reduced concentration of the the tin 

catalyst used to crosslink the PDMS matrix, with no impact on the tensile mechanical properties. 

The addition of the NO donor compound counteracted both the catalytic activity and cell toxicity 

caused by the catalyst. Lastly, the NO-releasing composite promoted significant endothelial cell 

migration. We expect that this composite material is a good candidate for blood vessel 

prosthetics such as AV or bypass grafts where long term mechanical and anti-thrombogenic 

properties are desired. 
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Scheme 3-1. The decomposition of diethylenetriamine nitric oxide donor (DETA-NO) upon 

exposure to water. 
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Figure 3-1. SEM micrographs of electrospun DETA-NO loaded PCL fibers showing the (A) 0.5 

% DETA-NO/PCL fiber mat,  (B) the 1.5 % DETA-NO/PCL fiber mat, (C) the fiber mat surface 

following following PDMS infiltration, (D) the cross-section of the DETA-NO/PCL/PDMS 

composite, (E) the composite in tubular form, and (F) the cross-section of the tubular composite. 

The micrographs in C - D are shown for 0.5% DETA-NO donor concentration. 
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Figure 3-2. DSC thermograms comparing melting transitions of NO releasing PCL/PDMS 

composite and fibrous components at two NO donor concentrations. Solid lines denote second 

heating cycle and dashed lines denote first heating cycle. 
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Table 3-1. Thermal properties of the NO releasing PCL/PDMS composite and fibrous 

components at two NO donor concentrations. 

 

 
H

m,1

a
 

(J/g) 

H
m,2

b 

(J/g) 

T
m,1

a
  

(°C) 

T
m,2

b 
 

(°C) 

χ
1

a 

 
 

(%) 

PCL Content
b
 

 
(%) 

0.5 % DETA-NO/PCL/PDMS 7.9 5.0 59.7 55.5 5.7 10.0 

1.5 % DETA-NO/PCL/PDMS 6.1 4.0 60.7 55.6 4.4 7.9 

0.5 % DETA-NO/PCL 57.9 50.0 56.5 55.9 N/A N/A 

1.5 % DETA-NO/PCL 62.2 56.6 57.4 56.1 N/A N/A 
a
Determined from the first heating cycle. 

b
Determined from the second heating cycle. 
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Figure 3-3. (A) Overall cumulative NO profiles comparing electrospun fibers and as fibers 

embedded in the PDMS matrix for two NO donor concentrations. The plots in (B) and (C) are 

magnified views of (A). 
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Figure 3-4. (A) Cumulative NO release of 0.5% DETA-NO/PCL/PDMS composite divided into 

five stages. A magnified view of the release pattern in stages I and II are shown in (B). A linear 

regression (dashed line) was used to calculate the flux in each of NO release phase.  
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Figure 3-5. (A) Cumulative NO release of 1.5% DETA-NO/PCL/PDMS composite divided into 

five stages. A magnified view of the release pattern in stages I and II are shown in (B). A linear 

regression (dashed line) was used to calculate the flux in each of NO release phase.  
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Table 3-2. Linear regression parameters of NO release profiles used to calculate the flux. 

 

Sample   

Slope of Cumulative 

Release vs. Time 

(mol ∙ cm
-2

 ∙ min
-1

) 

Y-Intercept  

(mol ∙ cm
-2

) 

R-squared 

(%) 

0.5% DETA-NO/PCL/PDMS 

Stage I 10
-10

 0 94.2 

Stage II 8 x 10
-12

 5 x 10
-9

 91.9 

Stage III 8 x 10
-13

 9 x 10
-9

 95.9 

Stage IV 5 x 10
-14

 2 x 10
-8

 99.6 

1.5% DETA-NO/PCL/PDMS 

Stage I 4 x 10
-10

 0 94.2 

Stage II 3 x 10
-11

 2 x 10
-8

 91.2 

Stage III 9 x 10
-13

 3 x 10
-8

 95.7 

Stage IV 2 x 10
-13

 6 x 10
-8

 97.8 
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Figure 3-6 (A) Suture retention testing set-up and  (B) representative force-displacement plot for 

the composite using a tensile speed of  50 mm ∙ min
-1

. The suture retention strength is denoted by 

an asterisk. 
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Figure 3-7 Average suture retention strength for the composite at three different tensile speeds. 
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Table 3-3 Average suture retention strength for the composite at three different tensile speeds. 

 

# Samples Tensile Speed (mm/min) Peak Strength (N) 

17 50 2.0 ± 0.4 

6 100 1.6 ± 0.4 

8 120 1.7 ± 0.2 
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Figure 3-8 (A) Burst pressure testing set-up and (B) representative images of sample dilation 

and failure. 
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Figure 3-9 Results of burst pressure testing showing (A) representative pressure-diameter and 

hoop stress displacement curves and (B) representative sample following high pressure burst 

failure. The arrow indicates the area where point of failure occurred. 
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Figure 3-10 Kink-free bends for surgical placement using thermal shape programming feature 

showing (A) the radius measurement and the (B) supporting substrate used to fix a looped shape. 

Representative fixed shapes are shown for the 6 mm graft in (C) and (D), with respective 

recovered shapes in (E) and (F). Representative fixed shapes for the 3 mm graft are shown in (G) 

and (H), with respective recovered shapes in (I) and (J). The wall thickness classification is 

denoted on the photos. 
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Figure 3-11 Results of kink resistance testing demonstrating (A) the critical curvature, which 

was the curvature value limit before a kink will occur with increased bending, and (B) shape 

fixing ratio dependence on graft tube wall thickness and diameter. 
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Figure 3-12. Cell viability of L929 fibroblast cells cultured in extracts from (A) the NO 

releasing PCL/PDMS composite and its components at different extraction times, (B) the PDMS 

elastomer with various catalyst concentrations, (C) the composite, both with and without NO 

donor, fabricated using different PDMS catalyst concentrations (% w/w), and (D) varying 

concentrations of the NO donor DETA-NO in cell culture media. The results for (B) – (D) were 

measured following 24 h of incubation in media. The results of the doped composite in (C) 

containing 0.1 % DBTDL could not be tested due to NO donor interference with PDMS 

crosslinking. All testing was conducted in triplicate. Dashed line indicates acceptable 

cytocompatibility level of 70 %.  
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Figure 3-13. Mechanical properties of crosslinked PDMS using different concentrations of 

DBTDL catalyst showing (A) representative engineering tensile stress-strain curves,  (B) 

Young’s moduli, and (C) strain-to-failure. 
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Table 3-4. Summary of mechanical properties of PDMS crosslinked using different DBTDL 

concentrations. 

 

DBTDL 

Concentration 

(wt %) 

Young’s Modulus 

(MPa) 
Strain-to-Failure  

(%) 

0.1 0.41 ± 0.02 316 ± 30 

0.5 0.37 ± 0.01 309 ± 40 

1.0 0.40 ± 0.02 333 ± 139 
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Figure 3-14. Effect of NO release from the 0.5 % DETA-NO/PCL/PDMS composite on BAEC 

and BSMC migration. Comparisons were made to the positive controls (media and DETA-NO in 

media) and negative control (serum-reduce media). The data shown are the mean and standard 

deviation of three experiments. 

  

M
edia

 (S
eru

m
-re

duce
d)

M
edia

DETA-N
O

 (1
0 µ

M
)

PCL/P
DM

S

0.5
 %

 D
ETA-N

O
/P

CL/P
DM

S

N
o
. 

o
f 

M
ig

ra
te

d
 C

e
lls

0

100

200

300

400

500

600

700

BAECs

BSMCs



 122 

 

 

 

 

 

 

 

 

 

 

Figure 3-15. Representative micrographs of stained BAECs on the lower surface of the 

Transwell membrane taken with fluorescence microscope (10 X magnification). The cells visible 

on this surface are a result of migration over 48 h. The various conditions are (A) serum-reduced 

media, (B) media only, (C) 10 μM DETA-NO in media, (D) PCL/PDMS, and (E) 0.5 % DETA-

NO/PCL/PDMS composite. The cells were stained for nuclei (green) and cytoskeleton (red), and 

the arrow points to the open pores on the Transwell membrane. The scale bar represents 50 μm. 
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Figure 3-16. Representative micrographs of stained BSMCs on the lower surface of the 

Transwell membrane taken with fluorescence microscope (10 X magnification). The cells visible 

on this surface are a result of migration over 48 h. The various conditions are (A) serum-reduced 

media, (B) media only, (C) DETA-NO in media, (D) PCL/PDMS, and (E) DETA-

NO/PCL/PDMS composite. The cells were stained for nuclei (green) and cytoskeleton (red), and 

the arrow points to the open pores on the Transwell membrane. The scale bar represents 50 μm. 
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Chapter 4 

Anhydride-Based Reconfigurable Shape Memory  

Elastomeric Composite1 

4.1 Synopsis 

Soft shape memory polymers typically embody a permanently memorized geometry that 

cannot be altered, and therefore a new sample must be fabricated each time a new structure is 

required. In this chapter, a shape memory elastomeric composite featuring thermoplastic fibers as 

a fixing phase and a polyanhydride-based elastomer as the permanent, elastic phase is developed 

and characterized. It was discovered that the elastomer is capable of dynamic covalent exchange 

reactions at elevated temperatures (T > 50 °C) among the network chains that allowed near-

complete reconfiguration of the permanent shape in the solid state. Together, these features were 

combined to create a shape memory elastomer capable of arbitrary programming of both 

temporary and permanent shapes. 

4.2 Introduction 

Shape memory polymers (SMPs) are mechanically active materials featuring at least two 

primary attributes: “memory” of a stress-free permanent configuration (or shape) and 

“programming” of a temporary shape through a combination of heating and molding.
1
 

Deployment from the programmed to permanent shapes is triggered by heat, light, solvent-

exposure, or other means. At the molecular and nanoscale levels, memory is afforded by 

crosslinks (covalent or physical) established at a stress-free state during processing, while 

                                                 
1 The work in this chapter was originally published in Lawton, M. I., Tillman, K. R. & Mohammed, H. S. 

Anhydride-based reconfigurable shape memory elastomers. ACS Macro Letters 5, 203 (2016). 
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programming (or “fixing”) is accomplished by kinetic trapping of a deformed and stressed shape 

by means of crystallization, vitrification, secondary crosslinking, or even plastic deformation. 

These physical transformations act to immobilize the constituent network chains, translating to 

macroscopic shape fixing. There are four (4) major classifications of such SMPs were identified 

and the interested reader is referred to that paper
2
 and other recent reviews

3-7
 for more details. 

The systems described above achieve shape fixing in a manner that engenders high 

macroscopic stiffness due to the positive impact of either vitrification or crystallization on 

modulus. Soft shape memory with lower tensile modulus even in the fixed state is needed for 

SMPs to be useful as seals, gaskets, stamps, and some surgical devices. Addressing this need, 

many have reported on liquid crystalline elastomers,
8,9

 POSS-grafted biopolymers,
10,11

 PEO-

based epoxy networks,
12

 and hydrogen-bonded networks
13

 that have both softness and shape 

memory. Alternatively, soft shape memory polymers, or SM elastomers, can be achieved by an 

elastomeric composite approach wherein an elastomer is reinforced with a percolating fixing 

phase.
14

 Such shape memory elastomeric composites (SMECs) can be achieved by imbibing an 

electrospun fixing phase with an elastomeric matrix precursor, followed by crosslinking of the 

matrix,
15

 or by dual-electrospinning of a fixing polymer and a thermoplastic elastomer.
16

 This 

SMEC approach to soft shape memory is applied in the present work. 

Reports of soft shape memory polymers to date have all featured a permanent, 

memorized shape whose geometry either cannot be altered (covalent networks) or cannot be 

altered without traversing a fluid state by remolding (thermoplastic SMPs).  As a practical 

matter, this leads to shapes that are usually limited to flat films – a natural geometry for casting 

and molding processes. To prepare an SMP article with a new configuration or with a non-flat 
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shape, a new sample must be made and this is both time-consuming and inefficient. Thus, we 

were motivated for the present work to design a covalently bonded elastomeric matrix for use in 

a SMEC configuration capable of permanent shape reconfiguration by facile thermomechanical 

means. Such a matrix composition would allow for fine-tuning of sample geometry, prototyping 

of devices, recycling, versatility in shape memory “target” shape, and possibly self-healing.  

In contemplating the dynamic covalent chemistry needed for the envisioned soft 

reconfigurable SMP, we considered the recent advances in the fields of self-healing polymers
17,18 

and photo-responsive polymers.
19

 In one class of self-healing polymers, reversible covalent 

bonds have been exploited to reform bonds following crack-induced damage to the materials. 

Wudl and colleagues pioneered use of Diels-Alder chemistry in this manner, utilizing 

diene/dienophile pairs; e.g., furan/maleimide, that proved to be very effective in allowing bond 

reconfiguration and crack-rebonding by application of heat during external crack closure. 

Meanwhile, Bowman and colleagues have reported on photoactive “covalent adaptive networks” 

that undergo interchange reactions during exposure to light, reconfiguring the deformed 

networks toward a stress free state apparently without macroscopic fluidization. This general 

concept was appealing to us for our purposes, but the requirement of light illumination during 

processing was deemed to be cumbersome and limiting. 

In separate studies, Shipp et al. introduced biodegradable elastomers utilizing thiol-ene 

“click” chemistry and incorporating hydrolytically labile anhydride groups.
20

 For our present 

study, we postulated that the anhydride groups of the elastomeric matrix might enable desired 

exchange reactions for thermal reconfiguration based on limited (and often old) literature that 

indicated such exchange reactions occur in solution, though no prior report testing this notion in 
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solid or rubbery materials could be found to support our conjecture.
21-25

 In this report, we present 

the synthesis and characterization of a new soft, shape memory elastomer that is thermally 

reconfigurable, termed Re-SMEC.  

4.3 Methods 

4.3.1 Materials  

 4-Pentenoic anhydride (PNA), pentaerythritol tetrakis(3-mercaptopropionate) (PETMP), 

azobisisobutyronitrile (AIBN), chloroform, N,N-dimethylformamide (DMF), trimethylolpropane 

diallyl ether (TMPDAE), 1,6-hexanedithiol (HDT), 1-hydroxycyclohexyl phenyl ketone (99%), 

anhydrous dichloromethane (DCM), anhydrous diethyl ether (≥99%, DEE), and tetrahydrofuran 

(HPLC-grade, ≥99.9%, THF).were purchased from Sigma-Aldrich and used as received. 

Thermoplastic polyurethane PCL (PCL PU) was synthesized using 3,4-dihydroxy-1-butene 

(DHB), hexamethylene diisocyanate (HDI), toluene and poly(ε-caprolactone) diol (Mn ~2000 g 

mol
-1

), which were purchased from Sigma-Aldrich and dried prior to synthesis. Tin-POMS was 

used as a catalyst and purchased from Hybrid Plastics and dried prior to use. 

4.3.2 Thiol-ene Elastomer Syntheses 

PAH was synthesized by reacting PNA with PETMP using a stoichiometry of one allyl 

per thiol functional group, and 1 wt% AIBN, and cast on glass slides with a 0.25 mm Teflon 

spacer, followed by UV cure for 30 min. Similarly, TMPDAE-based elastomer was reacted with 

PETMP using the same stoichiometry and concentration of AIBN. Poly(TMPDAE) was UV 

cured for 1 h followed by a thermal post-cure at 70 C for 1 h to be consistent with the 

conditions to cure the PAH/PCL PU composite. 
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 4.3.3 Polycaprolactone Polyurethane Synthesis 

 PCL-based polyurethane (PCL PU) was synthesized by Wenbin Kuang, a graduate 

student in the Mather Research Group. PCL diol was combined with HDI as the urethane linker 

and small molecule DHB (molar ratio of 3:6:2.1) with 1 wt% tin POMS catalyst and was reacted 

in toluene under nitrogen at 100 C for 12 h. The polymer was then precipitated in excess hexane 

and washed with DI water several times and vacuum dried at room temperature prior to use.  

4.3.4 Electrospinning 

The PCL PU of Section 4.3.3 was electrospun from a 20% (w/v) solution prepared by 

dissolving 2 g PCL PU in chloroform/DMF (volume ratio = 2:1). PCL PU fibers were produced 

using a flow rate of 1 mL h
-1

, a voltage of 16 kV, and a needle to collector distance of 12 cm 

onto a rotating and translating cylindrical collector with a diameter of 5 cm. 

4.3.5 PAH/PCL PU Composite Fabrication 

The polyanhydride monomer was applied onto the surface of the electrospun PCL PU 

fiber mat and vacuum was utilized at room temperature for complete infiltration of the monomer 

into the PCL PU fiber mat, followed by removal of excess monomer on the surface.  PAH/PCL 

PU was photocured for 30 min exposed on both surfaces using a 365 nm (2.5 W) ultraviolet light 

source at a distance of 15 cm from the sample to the light source. This irradiation cure step was 

followed by a thermal post-cure at 70 C for 1 h to complete cure of the PAH matrix, as the PCL 

PU fibers can prevent the absorption of UV below the surface. 
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4.3.6 Morphology 

 A JEOL JSM-5600 scanning electron microscope (SEM) was used with an accelerating 

voltage of 4 – 6 kV. Samples were either sputtered with gold or gold palladium for 9 – 45 s prior 

to imaging. 

4.3.7 Differential Scanning Calorimetry 

 A TA Instruments Q200 differential scanning calorimeter (DSC) was used to study the 

melting and glass transitions and enthalpies. All samples were first cooled to -60 C, followed by 

heating at 10 C min
-1

 to 100 C. Only the second heating cycles are reported to remove any 

effect from variable thermal histories. The glass transition was selected from the inflection point 

of the step transition, and the maxima were taken as the melting transition point. The melting 

enthalpy was calculated from the second heating cycle by integrating the melting peak, and used 

to determine the fraction of PCL in the elastomeric composite by comparing the degree of 

crystallinity according to: 

𝐶(%) =  
∆𝐻𝑓

∆𝐻𝑓0
 × 100 % (4-1) 

where c is the degree of crystallinity, Hf   is the heat of fusion measured by DSC and Hfo is the 

heat of fusion of  pure electrospun PCL, as determined by DSC. 

4.3.8 Thermomechanical Characterization 

 A TA Instruments Q800 dynamic mechanical analyzer (DMA) was used in 

multifrequency strain mode to measure the storage and loss moduli and tan delta. All samples 
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were first cooled to -60 C, followed by heating at 10 C min
-1

 to 90 C. Samples were cut into 

rectangular strips, maintaining a ratio of length to width of 5:1.  

4.3.9 Tensile Testing 

 A Test Resources mechanical tester equipped with a 24 N (5.6 lbf) load cell was used in 

the tensile mode to generate stress-strain curves. Samples were punched by a dog bone cutter 

(ASTM D63 Type IV, scaled down by a factor of 4) and were stretched at a rate of 33 μm s
-1

 

until failure, at room temperature.  

4.3.10 Stress Relaxation 

 A TA Instruments Q800 dynamic mechanical analyzer (DMA) was used in stress 

relaxation mode to measure the iso-strain, time dependent response at a constant temperature. 

The stress relaxation time reported was zeroed to when the stress is applied. Strain values of 1 – 

5% were used. The data was fit to a conventional Arrhenius equation to describe the temperature 

dependence of stress relaxation is expressed in Eq 4-2 below, where τ is the stress relaxation 

time, τ0 is the reference time, Ea is the activation energy of the reaction, A is the reaction factor, 

R is the gas constant, and T is the absolute temperature (K).
26

 Eq 4-2 was rearranged to calculate 

the activation energy from the slope, as shown in Eq 4-3. 

𝜏 (𝑇) =  𝐴𝑒−𝐸𝑎/𝑅𝑇 (4-2) 

ln 𝜏 = 𝑙𝑛 𝜏0 +
𝐸𝑎

𝑅𝑇
 (4-3) 
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4.3.11 Qualitative Shape Memory and Reconfiguration Testing 

 A rectangular strip was deformed by wrapping in foil and arbitrarily molding the foil into 

a wave pattern then placing in water heated to 40 C to melt the PCL PU fibers; the sample was 

held submerged for 1 min, followed by immediate quenching in an ice bath for several seconds 

to recrystallize PCL PU to set the temporary, fixed shape. This fixed shape was then placed back 

in the warm water to examine recovery, qualitatively. In a separate experiment designed to 

mechanically program the permanent shape, the permanent shape of a Re-SMEC was 

reprogrammed by deforming and fastening the sample around a cylindrical rod and placed in an 

oven at a higher temperature of 80 C for 20 min followed by cooling to RT. The reconfigured 

shape was tested for permanency by placing in the warm water bath for 20 min and observing 

whether any shape change occurs. A new shape memory cycle was conducted again using same 

methods described here, using a different temporary shape. The cumulative exposure of the 

sample to the water bath was kept to less than 1.5 h, to prevent significant degradation of the 

samples.
27

 

4.3.12 Quantitative Shape Memory and Reconfiguration Testing 

 The shape memory and permanent shape reconfiguration of the composite were 

quantified using the DMA. The DMA was used in controlled force mode to stretch a dog bone 

sample at 40 C to a 15% strain by ramping the force at 0.05 N min
-1

. The temperature was then 

decreased at 3 C min
-1

 to -40 C and held isothermal for 10 min to fix the temporary shape. The 

force was then unloaded at 0.25 N min
-1

 until it reached the preload force of 10
-3

 N. The 

permanent shape was recovered by heating at 2 C min
-1

 to 40 C, and holding isothermal for 10 



 

132 

min. The permanent shape was then reprogrammed by changing the DMA mode to stress 

relaxation and holding a strain of 5.0 % and an isothermal temperature of 90 C for 5 min 

followed by a recovery time of 20 min. To run a second shape memory cycle, the DMA was 

immediately switched back to controlled force mode and a new shape memory cycle was 

executed using the parameters described above. To test consecutive shape memory cycles 

without shape reconfiguration, the DMA was set to the controlled force mode and the shape 

memory cycle described above was repeated three times. The degree of shape fixing (Rf) and the 

degree of shape recovery (Rr) were quantified for each cycle using the following equations: 

𝑅𝑓(%) =  (
𝜀𝑓𝑖𝑥𝑒𝑑

𝜀𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑
) × 100 % (4-1) 

𝑅𝑟(%) =  (
𝜀𝑓𝑖𝑥𝑒𝑑 −  𝜀𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑

𝜀𝑓𝑖𝑥𝑒𝑑 −  𝜀0
) × 100 % (4-2) 

where ε0 is the original strain (at the beginning of each cycle), εdeformed is the deformed strain that 

occurs after cooling while still under a load, εfixed is the fixed strain that results following 

unloading, and εrecovered is the recovered strain following heating. 

4.4 Results   

4.4.1 Thiol-ene Elastomer Synthesis 

 Similar to a previous report, the polyanhydride elastomer (PAH) was synthesized using 

commercially available materials to yield a crosslinked, degradable polyanhydride (Scheme 4-

1A).
28

 Using the same materials and methods, another diene monomer, trimethylolpropane 

diallyl ether (TMPDAE), was substituted to yield a non-anhydride elastomer for comparison of 

shape reconfiguration performance (Scheme 4-1B). 
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4.4.2 PAH/PCL-PU Composite Fabrication and Morphology 

 Poly(ε-caprolactone)-based polyurethane (PCL PU) was synthesized as shown in Scheme 

4-1B to serve as the shape fixing phase via crystallization with a resulting molecular weight of 

157,000 g mol
-1

, as determined by gel permeation chromatography (data not shown). This PCL 

PU was electrospun to create a nonwoven fiber mat and the reactive PAH monomer mixture was 

then imbibed into the PCL fiber mat and cured as shown in Scheme 4-1C. The morphology of 

the PAH/PCL composite was observed using scanning electron microscopy (SEM), where the 

electrospun PCL exhibited a fibrous morphology (Scheme 4-1D) that was completely infiltrated 

by PAH, as indicated by the absence of cavities (Scheme 4-1E). 

4.4.3 Thermal Properties 

 The thermal properties of the composite were characterized using differential scanning 

calorimetry (DSC). A comparison of the second heating and first cooling cycles of electrospun 

PCL PU and neat PAH shows that the thermal transitions of both components are also detected 

in the composite at the same temperatures as in the individual components, with electrospun PCL 

PU exhibiting a relatively low melting transition at 30.3 C  (Figure 4-1A,B). By dividing the 

enthalpy of fusion of the composite by the enthalpy of fusion of electrospun PCL PU, it was 

estimated that the composite contained 23% PCL. The thermal properties of the PAH and 

pTMPDAE elastomers are shown in Figure 4-1 and Figure 4-3A, respectively. Based on these 

data, the glass transition temperatures for PAH and pTMPDAE were determined to be -31.5 C 

and -21.0 C, respectively. 
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4.4.4 Thermomechanical Properties 

 The thermomechanical properties of the composite were characterized using dynamic 

mechanical analysis (DMA). Consistent with DSC results, the tensile storage modulus of the 

composite exhibited transitions corresponding to its individual components (Figure 4-1A). 

Specifically, the composite exhibited a drop in storage modulus around -30 C that can be 

attributed to the glass transition of PAH, as can be seen from the loss modulus maximum in 

Figure 4-2B, and a second storage modulus drop around 30 C attributed to the melting of PCL 

PU, which was used for exploiting shape memory. The storage modulus of the PAH/PCL PU 

samples was observed to be between that of its components, PCL and PAH, for T < Tm. 

4.4.5 Mechanical Properties 

 Uniaxial tensile mechanical properties at room temperature were determined by 

performing tensile testing on dog bone samples. The resulting engineering stress-strain curves 

shown in Figure 4-4 and summarized in Table 4-1 reveal that the composite mechanical 

properties are between that of the individual components. The Young’s modulus of the 

PAH/PCL PU composite was 5.6 MPa ± 1.4 MPa and was not significantly different from that of 

the PAH elastomer, at 4.5 MPa ± 0.5 MPa. The strain-to-failure of 160 % ± 40 % and tensile 

strength of 4.2 MPa ± 0.9 MPa of the composite increased dramatically, compared to PAH alone, 

which was 25 % ± 5 % and 1.1 MPa ± 0.1 MPa, respectively.  

4.4.6 Stress Relaxation 

The shape reconfiguration potential of the polyanhydride elastomer component prior to 

the addition of PCL was investigated by studying its stress relaxation response for a range of 
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temperatures. Figure 4-5 shows that only the PAH elastomer exhibited stress relaxation, whereas 

the elastomer lacking anhydride groups, such as when substituting PAH with pTMPDAE 

(Scheme 4-1A), it featured no time-dependent reduction in stress. Stress relaxation testing was 

also conducted at increasing temperatures for the same sample of PAH, which revealed that 

stress relaxation occurred a meaningful (and increasing) rate for temperatures above 40 C, with 

stress decaying exponentially for all temperatures (Figure 4-5B). Increasing the temperature 

enabled faster completion of shape reconfiguration, from approximately 9 min at 90 C to greater 

than 4 h at 50 C.  

4.4.7 Qualitative Shape Reconfiguration 

To examine the shape reconfiguration of the PAH elastomer qualitatively, samples of the 

PAH- and TMPDAE-based elastomers were heated and deformed around a cylindrical rod and 

the resulting shape was observed. As shown in Figure 4-6, only the anhydride-based (PAH) 

elastomer maintained the newly configured curved shape, whereas the TMPDAE-based 

elastomer returned immediately to its original, flat shape upon removal of the load.  

4.4.8 Qualitative Shape Memory and Reconfiguration 

 The top row of Figure 4-7A demonstrates that the composite can exhibit basic one way 

shape memory behavior, beginning as a flat strip programmed into a serpentine form at 40 °C, 

which then recovers back to its original flat form upon being thermally trigger. The ability of this 

composite to reconfigure its shape is demonstrated in the bottom row of Figure 4-7A, where the 

composite is heated to 80 C while deformed into a circular bend, that does not recover to its as-

cured flat shape under the same conditions used to trigger shape recovery (Figure 4-7A iii – iv). 
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The newly reconfigured permanent shape can undergo additional shape memory cycles, which 

are demonstrated by again heating to 40 C and deforming indiscriminately into a coil that is 

then recovered to the reconfigured permanent, circular shape.  

4.4.9 Quantitative Shape Memory and Reconfiguration 

 The shape memory and reconfiguration cycles were quantified and shown in Figures 4-

7B and Figure 4-8.  Figure 4-7B first demonstrates one way shape memory by programming a 

temporary elongated shape and recovering to its as-fabricated length. The permanent shape was 

then reconfigured to a new length by implementing a stress relaxation cycle (between time 

markers 105 min and 125 min); this was followed by another one way shape memory cycle, 

which was recovered to the reconfigured length. The results in Figure 4-8 verify that the 

composite is capable of traditional one-way shape memory, repeatable for three consecutive 

cycles. Based on this, the shape fixing ratios were determined to be 87 %, 86 %, and 86 % for 

cycles 1, 2, and 3, respectively, and did not significantly diminish with each additional cycle. 

The additional elongation of the sample upon cooling during the fixing cycle is likely due to PCL 

crystallization.
29

 The shape recovery ratios were calculated to be 84 %, 93 %, and 78 % for 

cycles 1, 2, and 3, respectively. While these recovery ratios are modest in quality, the results 

indicate, collectively, significant and reproducible shape memory behavior in addition to the new 

reconfigurability. 
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4.5 Discussion 

   In this chapter, we identified the dynamic covalent bond exchange properties of a 

cross-linked polyanhydride elastomer and its temperature dependence, and subsequently used 

these features to develop a reconfigurable shape memory elastomeric composite (Re-SMEC).  

 Embedding the PCL PU fibers within a cross-linked PAH elastomeric matrix resulted in a 

composite with thermal and mechanical properties between its individual components, as 

expected, with the exception of Young’s modulus, which was similar to that of the PAH 

elastomer. This is not surprising, given that the composite was determined to be composed of 

approximately 87% PAH. The PAH elastomer has a lower strain-to-failure than would be 

expected from other soft elastomers such as PDMS (see Chapter 3); however, the addition of the 

PCL PU fibers significantly improved these properties six-fold, expanding this material’s 

potential applications. 

 The time- and temperature-dependent relaxation properties of the polyanhydride 

elastomer component, prior to combining with PCL to form a composite, were studied and 

compared with pTMPDAE, a similarly structured cross-linked thiol-ene elastomer lacking the 

anhydride bridging group needed for bond reconfiguration reactions. As shown in Figure 4-5A, 

only the PAH elastomer exhibited stress relaxation, whereas pTMPDAE featured no time 

dependent reduction in stress. This supports our hypothesis that the bond reconfiguration in the 

solid state of the PAH elastomer is due to dynamic covalent exchange reactions involving the 

anhydride groups, as depicted by following the color-coded elements in Scheme 4-2 We 

postulate that this mechanism may be concerted or involve a free acid group. To our knowledge, 

exchange reactions of anhydride groups have been reported to occur for small molecules in the 
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liquid state.
21-25

 About six decades ago, Hurd et al. studied using a ketene agent to prevent mixed 

anhydrides from exchanging during purification, thus simplifying the process.
25 

More recently, 

Tarcha et al. found that sebacic anhydride had a tendency to disproportionate into methacrylic 

anhydride and oligomers of poly(sebacic acid)  during storage, while in the liquid state, and this 

reaction can be stabilized by decreasing the temperature.
22

 These studies all involved anhydride 

monomers in liquid form and not polymerized anhydride in the solid state.  

 As seen in Figure 4-5B, the temperature dependence of the PAH tensile stress relaxation 

was found to enable faster completion of shape reconfiguration at higher temperatures, as is 

evidenced by the significant change in relaxation time from 4 h to 9 min. Arrhenius’ law is often 

used to provide insight into the temperature dependence of chemical reactions such as 

polymerizations, diffusion of molecules and degradation, to name a few. We observed that the 

temperature dependence of the associated relaxation time of the PAH elastomer followed an 

Arrhenius behavior, with an activation energy of 7.7 kcal/mol (Figure 4-9). This activation 

energy is lower than what has been observed in other exchange reaction systems, allowing for 

more efficiency and responsiveness in the design of a smart material. For transesterification-

based exchange reactions, others have reported activation energies within the range of 19 – 33 

kcal/mol.
30-32

 Denissen et al. reported a relatively low activation energy of 14 kcal/mol for their 

vinylogous polyurethane vitrimers, with quick stress relaxation times of 550 s to 85 s, though 

these were at high temperatures of 130 C to 170 C.
33

 At temperatures of 180 – 210 C, Aden et 

al. observed activation energies of 11 kcal/mol of the ester-ester exchange of poly(ethylene 

terephthalate) using a ethyl benzoate catalyst
34 

It was also observed that the initial modulus of 

PAH increased slightly with temperature (Figure 4-10). While a theory for elasticity of 
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thermally reconfigurable networks has not yet been developed, to our knowledge, we attribute 

this observation to the prediction from conventional rubber (entropy) elasticity theory that the 

elastic modulus increases proportionally with temperature as E ~ nkT, where n is the crosslink 

density. 

 To visually demonstrate the shape reconfiguration of the PAH elastomer, a qualitative 

shape reconfiguration test was conducted and compared with similarly synthesized pTMPDAE 

elastomer. The deformed shape following thermally activated stress and strain around a 

cylindrical rod is shown in Figure 4-6. Interestingly, only the anhydride-based (PAH) elastomer 

maintained the newly configured curved shape, whereas the TMPDAE-based elastomer returned 

immediately to its original, flat shape upon removal of the load, as expected of an elastomer. 

Moreover, when the deformed PAH was heated back to 80 C in the stress-free state, it did not 

return to its original shape, but remains deformed (not shown), further supporting that this new 

shape is permanent, as a result of the rearrangement of the anhydride bonds.  

 In light of these thermally reconfigurable properties, a shape memory system was then 

designed with thermal triggers below 50 C as this would prevent overlap of operating regimes 

with the PAH shape reconfiguration that was shown to occur above this temperature. To 

fabricate a shape memory composite capable of permanently changing its original shape, a low-

melting poly(ε-caprolactone)-based polyurethane (PCL PU) was synthesized to serve as the 

shape fixing phase via crystallization (Scheme 4-1B). A shape reconfiguration temperature of 80 

C was selected due to the reasonably short time requirement. The top row of Figure 4-7A 

demonstrates that the composite can exhibit basic one way shape memory behavior, and the 
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ability of this composite to reconfigure its shape is demonstrated in the bottom row of Figure 4-

7A, and was demonstrated to undergo additional shape memory cycles.  

 This shape memory observation was also quantified (Figure 4-7B) where a stress 

relaxation cycle was implemented to produce a reconfigured shape between shape memory 

cycles. Like other shape memory systems, the permanent shape for this composite is established 

by the polyanhydride crosslinks, which served to recall the permanent shape, and is governed by 

the geometry under which it was polymerized.
35

 Unlike other systems, this original shape can be 

reprogrammed by rearrangement of these crosslinks so that the shape memory performs relative 

to this newly reconfigured permanent shape. While others have developed reconfigurable shape 

memory systems, few are biocompatible and to our knowledge, none are fully biodegradable 

which can be used to tailor geometry-specific implantable medical devices capable of controlled 

drug delivery.
 36-38

 Additionally, this composite enables shape recovery to occur at physiological 

temperatures, which can potentially be used for designing medical devices that require this action 

in the body and with timed degradation. 

4.6 Conclusions 

 In conclusion, a new shape memory composite with the ability to reconfigure its 

permanent shape was developed. This biocompatible and fully degradable composite provides 

benefits over other reconfigurable systems in that this material can also provide temporary shape 

programming and recovery without interference with its permanent reconfiguration encoding. 

Additionally, since shape memory occurs at physiological temperatures, the potential exists for 

many biomedical applications such as degradable implants with deploying mechanisms, self-

healing applications, and dynamic surfaces for tissue engineering. 
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Figure 4-1. (A) Differential scanning calorimetry (DSC) second heating curves, and (B) first 

cooling curves of (i) neat PAH elastomer, (ii) PAH/PCL PU composite, and (iii) electrospun 

PCL PU. 
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Figure 4-2. Dynamic mechanical analysis (DMA) (A) storage modulus curves and (B) loss 

modulus curves of (i) neat PAH elastomer, (ii) PAH/PCL PU composite, and (iii) electrospun 

PCL PU.  
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Figure 4-3. (A) Differential scanning calorimetry first cooling and second heating results and 

(B) dynamic mechanical analysis of pTMPDAE-based elastomer. 
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Figure 4-4. Representative engineering stress-strain curves of (i) PAH elastomer, (ii) the PAH-

PCL PU composite, and (iii) electrospun PCL PU, where the composite and its components are 

shown in (A). More details of the  PAH elastomer and the composite are shown in (B). 
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Table 4-1. Summary of mechanical properties for the PAH/PCL PU elastomeric composite. 

 

Sample 
Young's Modulus 

(MPa) 

Strain-to-Failure 

(%) 

Tensile Strength 

(MPa) 

PAH 4.6 ± 0.5 26 ± 5 1.1 ± 0.1 

PCL PU 1.1 ± 0.4 1400 ± 70 17.6 ± 1.7 

Composite 5.6 ± 1.4 160 ± 40 4.2 ± 0.9 
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Figure 4-5. Shape reconfiguration as measured by stress relaxation. The relaxation modulus 

versus time are shown for: (A) varying the network composition at 80 
o
C for (i) PAH and (ii) 

TMPDAE, and (B) varying reconfiguration temperatures for the PAH elastomer. 
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Figure 4-6. Shape reconfiguration response of elastomers synthesized using: (a) anhydride 

(PAH) and (b) TMPDAE diene monomers, in the flat configuration (left) and resulting shape 

following shape reconfiguration at 80 °C (right).  

A

B
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Figure 4-7.  Shape memory and reconfiguration behavior of PAH/PCL PU polyurethane 

composite. (A) Images of qualitative study demonstrating one way shape memory where (i) a 

temporary shape is fixed and then (ii) recovered to the original shape, followed by (iii) 

reconfiguration of the permanent shape; (iv) the reconfigured shape does not recover to the 

original geometry. (B) Quantitative shape memory and shape reconfiguration cycles for the 

PAH/PCL PU composite. 
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Figure 4-8. Shape memory stress-temperature-strain plot for PAH/PCL PU composite.  
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Scheme 4-2.  Dynamic covalent exchange activated thermally and involving rearrangement of 

adjacent anhydride groups.  

 
  





 

156 

 

 
 

 
  

Temperature (
o
C)

30 40 50 60 70 80 90 100

D
o
 (

M
P

a
)

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

1000/T(K)

2.7 2.8 2.9 3.0 3.1 3.2 3.3

lo
g
(r

e
la

x
a

ti
o

n
 t

im
e

)

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

Ea = 7.69 kcal/mol

A 

B 



 

157 

Time (min)

0 100 200 300 400

T
e

n
s
ile

 S
to

ra
g

e
 M

o
d

u
lu

s
 (

M
P

a
)

0

2

4

6

8

10

T
e

m
p

e
ra

tu
re

 (
o
C

)

30

40

50

60

70

80

90

100

 
 

Figure 4-10. Isothermal tensile storage modulus of the PAH elastomer as temperature is 

increased in a stepwise manner.  
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Chapter 5 

Biodegradable Shape Memory Elastomeric Composites  

with Controlled Release of a Model Drug 

5.1. Synopsis 

The degradation and drug release properties of polyanhydride (PAH) based elastomeric 

shape memory composites developed in Chapter 4 were studied. Under in vitro physiological 

conditions, the degradation rate of the PAH matrix was strongly influenced by the selection of 

the polymeric fibrous phase. Based on the gravimetric, thermal and morphological properties, 

degradation was significantly faster for the composite containing poly(-caprolactone) (PCL) 

fibers compared to composites with poly(vinyl acetate) (PVAc) fibers. An erosion mechanism 

was found to occur as a modified surface to bulk degradation in the composite, although the 

PAH by itself erodes heterogeneously. A hydrophilic model drug was incorporated in the fibrous 

phases and used to study the in vitro controlled release properties of these composites. For the 

PCL-based composite, drug release correlated with PAH matrix degradation. In contrast, the 

drug release for the PVAc-based composite proceeded more steadily and slowly increased over 

time, which was attributed to plasticization by PAH degradation products and water. Lastly, the 

shape memory properties were examined for both composites. The PCL/PAH composite was 

capable of preserving arbitrary fixed shapes during and for months after matrix degradation. 

While the PVAc/PAH composite could not maintain a fixed shape in aqueous media due to 

significant shrinkage, it proved capable of one way shape memory independent of the 

reconfiguration properties of the PAH matrix. 

 

5.2. Introduction 

 Degradable materials generally have two major applications: (1) ecological, where a  

biodegradable packaging can minimize the environmental impact of consumer products, and (2) 
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biomedical, where, for example, a resorbable prosthesis eliminates the need for retrieval 

surgeries and circumvents long-term foreign responses.
1,2

 These multifaceted, broad range of 

applications for degradable materials translates to complex requirements for device development, 

ranging from rapid degradation for short-term use to long-term maintenance of mechanical 

integrity, among other prerequisites. In the biomedical domain, degradable materials are required 

to subsist in the relatively aggressive environment of the human body, while also providing 

organ function, or substituting for or repairing a specific tissue. Biodegradation is required to 

occur in such a manner that degradation matches the material replacement by native cells.
3
 

Ideally, the material should promote cell attachment and proliferation, with means for cellular 

nutrient and waste transport that facilitates tissue regeneration, and the degradation rate of a 

material must be engineered to accommodate this.
4
 Aside from tailoring the degradation rate, 

other factors must be considered when designing biodegradable materials such as material 

processability, mechanical properties, shelf life, biocompatibility during degradation with safe 

elimination from the body, as well as material properties during degradation.
5
 The challenges 

with developing degradable biomaterials are that degradation is also dependent on morphology, 

hydrophilicity, crystallinity, additives (such as drugs, salts or plasticizers) molecular weight, size, 

shape, and whether degradation was studied in vivo or in vitro.
6-8

 Consequently, the advancement 

of degradable materials is dependent on multiple research fronts and disciplines.
 

 Degradation of a polymeric material proceeds according to two main mechanisms: 

surface/heterogeneous or bulk/homogenous degradation. The mechanisms of degradation are 

generally either hydrolytic, enzymatic, or oxidative in nature. These materials are discernable by 

their hydrolyzable bonds, with the chemical interaction between the labile bond and water 
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dictating the hydrolysis rate.
9
 Polymers that undergo surface erosion maintain their geometry 

during degradation while the material loss occurs at the surface, where it is exposed to its 

environment; the material loss generally proceeds at a constant rate. A bulk eroding polymer 

loses material through its matrix as water penetrates through its volume, and its erosion rate 

depends on the amount of available material at a given time point.
10

 Typical  degradable 

biomaterials are based on homopolymers or copolymers of poly(glycolic acid), poly(lactic acid), 

polyesters, and  polydioxanones, bacterial-derived polymers, polyanhydrides, or natural 

polymers.
11,12

  

 As mentioned earlier, biomaterials are tasked with meeting complex, application-driven 

requirements for placement in dynamic environments. As such, it is not adequate for a material 

to solely possess tunable degradability, since this will still fall short of meeting other constraints. 

Supplementing these materials with additional functionality such as mechanical toughness, shape 

memory for minimally invasive surgery, and controlled drug release for infection management, 

can greatly extends its scope to numerous applications, which is why many researchers 

endeavored to achieve these goals, as revealed by several review articles.
13-14

 Neffe et al. 

recognized this technological gap, and sought to combine three functions into one material by 

cross-linking drug-loaded oligo[(ε-hydroxycaproate)-co-glycolate]dimethacrylates.
15 

By varying 

the glycolate and n-butylacrylate content, the degradation rate of this copolymer was greatly 

varied. Serrano et al. developed a degradable shape memory elastomer capable of both controlled 

release and tunable degradation by synthesizing cross-linked polydiolcitrate polyesters.
16

 

Through alteration of the molar ratio of hydroxyl to carboxyl groups in the synthesis reaction, as 

well as by the addition of a hydrophilic monomer, the authors were able to shift the degradation 
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from approximately 90% to 40% degraded at 8 w, and show good shape memory with drug 

release of a model molecule up to approximately 20 d. Nagahama et al. synthesized custom 

cross-linked branched oligo(caprolactone) networks also capable of one way shape memory and 

controlled drug release.
17

 The polymer degradation was tuned by the addition of ε-caprolactone 

monomer during synthesis to influence crystallinity in the sample. The degradation of these 

materials was slow, with the samples retaining over 96% of its initial weight for 120 d, at which 

point the different degradation profiles became apparent. The authors demonstrated controlled 

drug release; however the release rate was not different between differing samples. These 

studies, like others,
 18-19

 achieved multifunctional degradable materials that rely on customized 

chemical synthesis methods, which are time-consuming, specific, and more expensive for scale-

up and manufacturing. Zhang et al. observed this challenge and aimed to address the need for a 

more cost-effective multifunctional material by combining commercially available materials to 

create a shape memory composite with tunable degradation.
20

 The authors showed that a 

combination of poly(lactic acid) fibers and a cross-linked poly(trimethlylene carbonate) matrix 

exhibited good shape memory and a high mechanical moduli, which is not suitable for tissue 

engineering of soft tissues.  Moreover, this study did not examine or verify the claim of tunable 

degradation of these materials and therefore it is unclear how it performs as a multifunctional 

biomaterial. As such, there remains an opportunity to develop a more cost-effective, 

manufacturing-friendly multifunctional material with tailorable degradation, particularly with 

low moduli. 

 Another approach to meet the challenging requirement of multifunctionality is to blend 

existing materials to form composites. Polymeric composites offer versatility of material 
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properties and hold the potential of designing materials that meet multiple requirements. 

Composites have an added commercial benefit in that the simple regulation of the ratio of its 

individual components, such as homopolymers, results in a diversity of material properties. The 

blending of polymers to form a composite is scalable and cost-effective, particularly when using 

commercially available materials, and even more so if the material has been previously used in 

FDA-approved devices.  On the other hand, composite materials introduce challenges of 

reproducibility of microstructure and often a large impact of the fiber/matrix interface on 

macroscopic properties. Our research strategy in this chapter was based on the integration of 

commercially available biocompatible materials to form multifunctional, degradable composites. 

 One polymer of interest to us was poly(-caprolactone) (PCL), a degradable, 

semicrystalline polyester with proven biocompatibility that has been widely studied as a platform 

for new products due to its ease of manufacture, and long-term degradability. PCL has been 

studied extensively in vivo and is FDA approved for use in a number of biomedical devices 

including sutures and drug delivery vehicles
.21,22

 PCL is commercially available in a range of 

molecular weights, and easy to manufacture given its ability to dissolve in many common 

organic solvents and its relatively low melting transition of approximately 54 – 60 C for melt 

processing. Degradation of PCL occurs after about 2 - 4 y via hydrolysis of the ester groups and 

occurs in two main stages beginning with a reduction in molecular weight, which is likely 

dominated by bulk erosion that can be accelerated in the presence of lipase.
4,23,24

 PCL by itself, 

however, does not meet many biomedical needs beyond biocompatibility. To extend its range of 

application, many have combined it with another polymer or material.
25-26
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 In Chapter 4 we presented a study of the shape memory and shape reconfiguration 

properties of a new elastomeric composite that combined PCL with cross-linked polyanhydride 

(PAH). However, the degradation properties of this new composite had not been investigated. 

PAH is a hydrophobic polymer that undergoes surface erosion by hydrolysis of the anhydride 

groups. Further, it is distinguished from other materials undergoing hydrolytic reactions, such as 

esters and amides, in that it has a much shorter half-life due to the relative instability of the 

anhydride linkage in many types of aqueous environments.
27

 PAH has been demonstrated to be 

biocompatible and has been approved in some forms by the FDA in devices to treat brain 

cancer.
28,29 

Due to these properties, PAH-based materials are primarily studied for drug delivery 

applications given their predictable degradation profile. The PAH used in this studied was 

developed by the Shipp et al., where a thiol-ene chemistry was used to create cross-linked, 

elastomeric polyanhydrides with tailorable properties and was shown to undergo in vitro surface 

degradation over a period of approximately three days.
30

  

 Prior work in the Mather research group focused on developing soft, elastomeric shape 

memory composites using electrospun fibers with a distinct thermal transition embedded in an 

elastomeric matrix. Both Luo et al. and Robertson et al. developed shape memory composites 

combining electrospun PCL embedded in a non-degradable matrix such as  polydimethylsiloxane 

or a polyurethane, each termed a shape-memory elastomeric composite (SMEC).
31,32

 These 

composites were limited to shape memory and the drug-releasing properties of these composite 

configurations were not studied. In the present work, we utilized a degradable elastomeric 

matrix, where we sought to understand the influence of the fiber hydrophobicity on matrix 

degradation. We hypothesized that embedding a semicrystalline, hydrophobic percolating fibrous 
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phase, such as PCL, will increase the degradation rate of the surrounding PAH matrix relative to 

using another polymer, such as polyvinyl acetate (PVAc), due to the decreased water interaction 

with PCL relative to PVAc, therefore enabling greater aqueous availability for PAH degradation. 

We anticipated that by substituting the fibrous phase with another polymer in the composite, the 

degradation rate and drug release from the fibers could be modulated. We also examined the 

mechanical and shape memory properties during degradation. 

   

5.3. Materials and Methods 

5.3.1 Materials 

 Poly(ε-caprolactone) (PCL) (Mn ~80,000 g mol
-1

), 4-Pentenoic anhydride (PNA), 

pentaerythritol tetrakis(3-mercaptopropionate) (PETMP), azobisisobutyronitrile (AIBN), 

chloroform, N,N-dimethylformamide (DMF), phosphate buffered saline (pH of 7.4), and 

tetrahydrofuran (HPLC-grade, ≥99.9%, THF) were purchased from Sigma-Aldrich and used as 

received. Poly(vinyl acetate) (PVAc, Mn ~350,000 g mol
-1

) was purchased from Scientific 

Polymer Products and was used as received. 

5.3.2 Electrospinning of PCL 

 Poly(ε-caprolactone) (PCL) was electrospun from a 20% (w/v) solution prepared by 

dissolving 2 g PCL in THF/DMF (volume ratio = 2:1). PCL fibers were produced using a flow 

rate of 1 mL h
-1

, a voltage of 11 kV, and a needle to collector distance of 7 cm onto a grounded 

rotating and translating collector. Following electrospinning, the PCL fiber mat was vacuum 

dried at room temperature for 24 h.  
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5.3.3 Electrospinning and Thermal Treatment of PVAc 

 Poly(vinyl acetate) (PVAc) was electrospun from a 20% (w/v) solution prepared by 

dissolving 2 g of PVAc in methanol/DMF (volume ratio  = 7:3). PVAc fibers were produced 

using a flow rate of 1.0 mL h
-1

, a voltage of 11 kV, and a needle to collector distance of 7 cm 

onto a grounded rotating and translating collector. Following electrospinning, the PVAc fiber 

mat was vacuum dried at room temperature for a minimum of 24 h. The PVAc fiber mat was 

maintained secured on the aluminum foil substrate used in electrospinning, which was used to 

aid in anchoring the fibers during thermal treatment to relieve residual stresses incurred during 

electrospinning. A post-electrospinning thermal treatment of 50 C for 24 h, while the fiber mat 

remained constrained on the aluminum foil used to deposit fibers during electrospinning, was 

implemented to minimize fiber shrinkage. 

5.3.4 PAH Monomer Preparation 

 The polyanhyride (PAH) monomer preparation and synthesis conditions are the same as 

those used in Chapter 4 of this thesis and described in Section 4.3.2. 

5.3.5 PCL/PAH Composite Fabrication 

 The methods of vacuum infiltration of electrospun PCL with PAH monomer and curing 

are the same as those used in Chapter 4 of this thesis and detailed in Chapter 4.3.5. 

5.3.6 PVAc/PAH Composite Fabrication  

 To minimize shrinkage of the PVAc fibers upon contact with the PAH monomer or 

water, as a result of residual stresses accrued during the electrospinning process, the PAH 
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monomer was allowed to slowly pre-cure for 19 h – 20 h at 1.6 C (in a standard refrigerator) 

prior to vacuum infiltration of the PAH monomer into the PVAc fiber mat. It was determined 

that slowly pre-curing the PAH monomer under refrigeration combined with thermally treating 

the PVAc fibers enabled reproducible fabrication of the PVAc/PAH composite. The PVAc/PAH 

was photocured for 30 min exposed on both surfaces using a 365 nm (2.0 mW cm
-2

) ultraviolet 

light source at a distance of 15 cm from the sample to the light source. Although the former step 

led to complete matrix cure, the irradiation cure step was followed by a thermal post-cure at 70 

C for 1 h to be consistent with PCL/PAH curing conditions. 

5.3.7 Thermal Characterization  

 Differential scanning calorimetry (DSC) was performed using a TA Instruments Q200 

apparatus. Samples weighing 2 – 5 mg were sealed in Tzero aluminum pans and were from -60 

C to 120 C at 10 C
.
min

-1
. The characteristic thermal transitions for all samples were 

determined using the second heat for glass transition or first heat for crystallization. The glass 

transition was selected from the inflection point of the step transition, and the maxima were 

taken as the crystallization transition point.  

 For the PCL/PAH composite, the crystallization enthalpy (Hc) was used to determine 

PCL content of the composite, as it is directly related to crystallinity. The crystallization enthalpy 

was calculated from the first heating cycle by integrating the crystallization peak, and used to 

determine the fraction of PCL in the elastomeric composite by comparing the degree of 

crystallinity according to: 
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𝑊𝑃𝐶𝐿(%) =  
∆𝐻𝑐

∆𝐻𝑐,0
 × 100 % (5-1) 

where c is the degree of crystallinity, Hc  is the heat of crystallization of the composite 

measured by DSC and Hc,o is the heat of crystallization of  pure electrospun PCL, which was 

determined by DSC to be 60.6 J g
-1

. 

 For the PVAc/PAH composite, the change in heat capacity at Tg (Cp) was used to 

determine the PVAc content of the composite, as it is directly related to its glass transition. The 

heat capacity was calculated from the step change using the TA Instruments Universal Analysis 

software (version 4.5A) during the second heating cycle, and used to determine the fraction of 

PVAc in the elastomeric composite by comparing the degree of amorphousness according to: 

𝛼𝐴(%) =  
∆𝐶𝑝

∆𝐶𝑝,0
 × 100 % (5-2) 

where αA is the percentage of material (PVAc) having the Tg under isolated analysis, Cp, is the 

change in heat capacity of the composite measured by DSC, and Cp,o is the heat capacity change 

of the corresponding pure electrospun PVAc, which was determined by DSC to be 0.62 J g
-1

°C
-1

. 

5.3.8 In Vitro Degradation  

 The in vitro degradation of the PAH-based composites was carried out by cutting samples 

into 1 cm x 1 cm squares and immersing separately in phosphate buffered saline (PBS, pH of 

7.4). All samples were placed in an isothermal shaker (New Brunswick Scientific, Model C24) 

under a constant temperature of 37 C and agitating at 60 rpm for up to 14 days. A minimum 

ratio of 2 mg of sample per mL of PBS was used and the acidity of the dissolution media was 

monitored daily and changed every few days to maintain a pH of 7.4. At a scheduled time point, 
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three samples were removed from PBS, rinsed with DI water and dried at room temperature in 

vacuo. The mass loss was calculated by comparing the mass at a given time point (Mt) with the 

initial mass (M0) prior to degradation, as shown in Eqn. 5-3 below. Each mass loss determination 

was conducted in triplicate and an average and standard deviation are reported. 

𝑀 (%) =  100 % × (1 −
𝑀0 − 𝑀𝑡

𝑀0
) (5-3) 

The thermal, morphological, and mechanical properties of the samples were also evaluated at 

different degradation times using DSC, SEM, and tensile testing. The composition of the samples 

during degradation was analyzed by comparing the DSC thermograms of the degraded samples 

to that of its individual, unaltered components, as detailed in Section 5.3.7. 

5.3.9 Mechanical Properties 

 Tensile mechanical properties was studied by punching samples into a dog bone 

geometry (ASTM Standard D638-03 Type IV, scaled down by a factor of 4), and loading onto a 

Test Resources Model 100P Universal Testing Machine equipped with a 24 N load cell. The 

samples were stretched at a rate of 33 μm s
-1

, and engineering stress-strain curves were used to 

determine Young’s modulus, strain-to-failure, and tensile strength. Five samples of each type 

were tested and an average and standard deviation are reported. 

5.3.10 Morphology 

 The surface features of the samples were microscopically visualized using a JEOL JSM 

5600 scanning electron microscope (SEM) and an accelerating voltage of 5 kV. The samples 

were sputter coated with gold for 45 s prior to imaging. 
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5.3.11 Qualitative Shape Memory 

 

 Shape memory was performed for the PVAc/PAH composite only, as the glass transition 

temperature of the composite (~30 C) enabled one way shape memory without activation of the 

PAH reconfiguration, unlike the PCL/PAH composite (Tm ~ 60 C), as discussed in Chapter 4. 

A rectangular strip was deformed into a temporary shape by wrapping around a Teflon rod of 

known diameter and securing in place by wrapping in foil. The sample was then placed in an 

isothermal oven at 45 C for 10 min followed by immediate placement in a freezer (-18 C) for 

10 min; the sample was then removed from the rod to observe the fixed shape.  Shape recovery 

was triggered by placing the sample in the isothermal oven at 45 C in the stress-free state.  

5.3.12 Quantitative Shape Memory 

  

 The shape memory of was quantified using the DMA based on a four-step sequence.
33

 

The DMA was used in controlled force mode to stretch a dog bone sample at 40 C to a 15% 

strain by ramping the force at 0.02 N min
-1

. The temperature was then decreased at 3 C min
-1

 to 

0 C and held isothermal for 5 min to fix a temporary shape. The force was then unloaded at 0.05 

N min
-1

 until it reached the preload force of 10
-3

 N. The permanent shape was recovered by 

heating at 10 C min
-1

 to 40 C, and holding isothermal for 5 min. The shape memory loop 

described above was repeated three times. The degree of shape fixing (Rf) and the degree of 

shape recovery (Rr) were quantified for each cycle using the Eqns. 5-4 and 5-5 below, where ε0 

is the original strain (at the beginning of each cycle), εdeformed is the deformed strain that occurs 

after cooling while still under a load, εfixed is the fixed strain that results following unloading, and 

εrecovered is the recovered strain following heating. 
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𝑅𝑓(%) =  (
𝜀𝑓𝑖𝑥𝑒𝑑

𝜀𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑
) × 100 % (5-4) 

𝑅𝑟(%) =  (
𝜀𝑓𝑖𝑥𝑒𝑑 −  𝜀𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑

𝜀𝑓𝑖𝑥𝑒𝑑 −  𝜀0
) × 100 % (5-5) 

5.3.13 Fixed Shape during Degradation 

Here, we sought to measure the ability of the composites to retain a fixed shape during 

degradation. For that, samples were prepared by arbitrarily deforming a rectangular strip into a 

spiral, a curve or a wave pattern. The samples thus deformed were placed in an isothermal oven 

at 70 C and held there for 10 min, melting the constituent PCL crystals, followed by transferring 

to freezer maintained at -18 C for 10 min, recrystallizing the PCL to fix the temporary shape. 

The newly fixed shape was then placed buffered PBS at 37 C, agitated at 60 rpm, as described 

in Section 5.3.8, to begin in vitro degradation and photographed at different time points for 

visual assessment and comparison to the original fixed shape and equilibrium (flat) shape. Shape 

fixing during degradation was not performed on the PVAc/PAH samples since the PVAc shrinks 

considerably upon PAH degradation and subsequent exposure to water and therefore cannot 

maintain a fixed shape while immersed in water. 

5.3.14 In Vitro RhB Release 

Controlled drug release of hydrophilic model drug Rhodamine B (RhB) from the PAH-

based samples was conducted using the methods established in Chapter 2 (Section 2.3.6). 
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5.4. Results 

5.4.1 Fabrication of PAH-based composites 

 The fabrication process of PAH-based composites followed a similar method used for the 

fabrication of the PCL-PU/PAH composite discussed in Chapter 4, using either commercially 

available PCL or PVAc electrospun into fibers. Scheme 5-1 summarizes the chemical structures 

for the PAH, PCL, and PVAc components. The cross-linking of the PAH elastomer proceeded 

using same scheme as in Chapter 4, using the vacuum infiltration process previously described 

to combine the fibers with the monomer to form a composite; only the PVAc-based composite 

required an additional thermal treatment to prevent significant shrinkage during the PAH curing 

step, as a result of residual stresses accrued during the electrospinning process. Figure 5-1 

summarizes the effect of applying a thermal treatment to electrospun PVAc, where significant 

shrinkage occurs without heat treatment following exposure to water (Figure 5-1C), and 

dissolution of the PVAc fibers occurs when combined with PAH monomer (Figure 5-1A). It was 

determined that slowly pre-curing the PAH monomer under refrigeration combined with 

thermally treating the PVAc fibers enabled reproducible fabrication of the PVAc/PAH composite 

with visually distinct phases. 

 The thermal and thermomechanical properties of PAH-based composites are presented in 

Figure 5-2, and compared with their respective individual components. Figure 5-2A shows that 

both composites display two distinct thermal transitions corresponding with their individual 

components. The PCL/PAH composite shows a melting transition at 54.3 C and a glass 

transition temperature of -21.4 C; the melting temperature of electrospun PCL, itself was 54.8 
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C, and the glass transition of neat PAH was -21.2 C. Using Eqn. 5-1, the PCL/PAH composite 

contained approximately 18% PCL. The PVAc/PAH exhibited glass transition temperatures of    

-31.3 C and 30.1 C; the glass transition temperature of neat electrospun PVAc was 44.7 C. 

Using Eqn. 5-2, the PVAc/PAH composite comprised of approximately 16% PVAc. Given, 

however, the evident plasticization of PVAc by PAH monomers, this estimate of PVAc 

incorporation level is dubious. Figure 5-2B shows that at 25 C, the PCL/PAH and PVAc/PAH 

had a storage moduli of 14.9 MPa and 304.1 MPa, respectively. The storage modulus for 

electrospun PVAc decreased from 491 MPa to 408 MPa at 25 C following heat treatment, 

which we attributed to a lower of the molecular orientation in the constituent fibers. Both 

composites showed the presence of a rubbery plateau between 50 C and 80 C, which is due to 

the presence of PAH.  

 The morphologies of both the surface and cross-sections are shown in Figure 5-3, which 

verified complete infiltration of the PAH through the thickness of both samples, as presented in 

Figures 5-3B and 5-3E, where the surfaces are smooth, likely due to film formation of PAH. 

The cross-sections of both composites, as shown in Figures 5-3C and 5-3F, reveal an absence of 

voids due to the PAH occupying the space between the fibers. In addition, the electrospun PVAc 

maintained a fibrous morphology following thermal treatment (Figure 5-3D). 

 The mechanical properties of the PAH-based composites are summarized as engineering 

stress-strain curves in Figure 5-4 and Table 5-1. The average Young’s modulus for the 

PCL/PAH composite was 7.5 MPa ± 0.9 MPa, which is slighter greater than that of PAH of 4.5 

MPa ± 0.4 MPa and not significantly different than that of electrospun PCL at 7.1 MPa ± 3.0 

MPa. The strain-to-failure of the composite was determined to be 80% ± 40% and was 
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significantly less than that of electrospun PCL of 1300% ± 140% and much closer to that of PAH 

at 30% ± 5% indicating that the crosslinked PAH dominated the mechanical properties and 

limited the composite elongation before failure, as it comprised approximately 83% of the 

composite and testing was conducted above the PVAc glass transition temperature. 

 Applying a thermal treatment to the electrospun PVAc fibers resulted in a significant 

increase in Young’s modulus for the PAH composite, from 63.5 MPa ± 11.3 MPa to 157.1 MPa 

± 15.2, with no significant difference in strain-to-failure. This increase in elastic modulus was 

discernible when handling the sample. The PVAc/PAH composite exhibited a Young’s modulus 

of 2.9 MPa ± 0.5 MPa, which was significantly less than each of the PAH and PVAc individual 

components, indicating a potential interaction between the two components. The strain-to-failure 

of PVAc/PAH was 60% ± 7% and was slightly greater than that of PAH and PVAc, although 

these were not statistically significantly different (p > 0.05).  

5.4.2 In Vitro Degradation Mass Loss 

 The mass loss profiles of the PAH-based composites in PBS at 37 C are shown in 

Figure 5-5. The composites exhibited distinct degradation rates. The PCL-based composite 

showed the greatest mass loss within the shortest time period. Specifically, within the first 10 h, 

PCL/PAH rapidly lost about 55% of its original mass, whereas the PVAc/PAH lost only 13% of 

its original mass during this time. The mass loss for PCL/PAH ceased at about 24 h, with no 

significant decrease in mass from 24 h to 14 d and remaining at 29.0% ± 1.4%. The mass 

remaining for PCL/PAH at time points 24 h, 48 h, 72 h, 4 d, and 14 d were not significantly 

different. In contrast, the PVAc/PAH composite lost mass more steadily, reaching about 50% 
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mass loss between 48 h and 72 h. The PVAc/PAH mass loss rate followed a decreasing 

exponential pattern, and approached a % mass remaining of 25.6% ± 3.7% at 20 d.  

5.4.3 Morphology  

The surfaces and cross-sections of the composites were examined following different 

degradation times using scanning electron microscopy. As shown in Figure 5-6A, after 5 h of 

degradation, the smoothness of the surface manifested into wrinkled features, which appear 

consistent with the surface topology of the underlying PCL fibers.  The formation of craters and 

pores appeared after approximately 24 h of degradation and progressed into connected channels 

by 48 h. The cross-sections shown in Figure 5-6B revealed that degradation initially occurred at 

the surface and that by 24 h, channels formed on the surface, and traveled through the cross-

section. By 72 h, the PCL fibers became exposed at both the surface and cross-section, with 

small, random regions of PAH matrix becoming visible on the fibers. The PAH matrix was no 

longer visually evident past 96 h. The dense horizontal linear artifact noticeable in both the 72 h 

and 96 h micrographs was an artifact from the sectioning process of the samples with a razor 

blade. Visually, the PCL/PAH samples maintained their macroscopic size and shape throughout 

degradation with no notable swelling or other geometrical changes. 

As shown in Figure 5-7, the PVAc/PAH composite degraded at a slower rate than the 

PCL/PAH composite. No significant changes to the surface are visualized within the first 10 h of 

degradation, where the surface appeared smooth. The micrograph shown in Figure 5-7A at 10 h 

reveals a crater consistent with a bubble formed at the surface during the cross-linking of PAH. 

At 24 h, cracks and wrinkles began to form on the surface, and by 48 h, pores were formed that 

became interconnected channels by 72 h of degradation. Like the PCL-based composite, the 
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PVAc fibers became noticeable at 72 h, as seen on the both the surface and cross-sections 

(Figure 5-7A,B); however, unlike PCL/PAH, a predominantly fibrous morphology does not 

occur until 8 d instead of 72 h. The change in fiber morphology when compared to the original 

(as electrospun) may be due shrinkage that occurred – driven by the PVAc fibers undergoing 

hydration-triggered contraction
34

 as the PAH degraded and no longer provided mechanical 

support. In contrast to the PCL/PAH composite, the PVAc/PAH samples began to visibly shrink 

and lose their rectangular geometry during degradation, folding onto itself after 24 h of 

degradation; it was also observed that at this degradation time, the samples became tacky. 

Interestingly, the PVAc/PAH composites continued to contain PAH, even after 14 d of 

immersion in an aqueous solution, as indicated by the DSC data in Table 5-3, and discussed 

further in the next section. 

5.4.4 Thermal Properties 

Differential scanning calorimetry was used to determine the changes in thermal 

properties, and by inference composition, the PAH-based composites during degradation. 

Figures 5-8 and 5-9, and Table 5-2 summarize the changes in crystallization enthalpy for the 

PCL/PAH composite at various degradation times. Over the course of the degradation period, the 

peak area corresponding to PCL crystallization increased, indicating an increase in crystallinity 

due to the increasing fraction of PCL in the composite, as the PAH degradation products receded 

into the buffered media.  A rapid growth in the crystallization enthalpy is apparent at 10 h and 48 

h, where the PCL fraction quadruples. The glass transition of PAH is no longer evident after 24 

h, and the PCL Tc shifts by about 2 C and became aligned with that of electrospun PCL (Tc ~ 32 

C). After 48 h, the increase in melting enthalpy became significantly slower, particularly 
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between 4 and 14 d, when there was less than a 4% increase in PCL content. By the 14 d, the 

sample had become composed of approximately 96% PCL, indicating the presence of a small 

amount of residual PAH. Using DSC to determine the thermal transitions may be more sensitive 

to compositional changes than by calculating the mass loss. Although mass loss data in Figure 5-

5 showed no significant degradation beyond 24 h, the micrographs in Figure 5-6 and the 

thermograms in Figure 5-8 both support that this is closer to 4 d.  

A comparison of the heat capacity changes at Tg of the PVAc component was used to 

calculate the fraction of PVAc in the composite using Eqn. 5-2, and the results are summarized 

in Figure 5-10 and Table 5-3. Figure 5-11 plots the time-evolution in glass transition 

temperature (Tg) corresponding to PVAc phase in the composite, along with mass loss due to 

PAH degradation. As shown in Figures 5-10 and 5-11, the initial Tg of the PVAc component in 

the composite, prior to degradation, was approximately 30 C, which is about 15 C lower than 

that of pure electrospun PVAc (Tg ~ 45 C), indicating that the PAH may have had a plasticizing 

effect on the PVAc fibers. During degradation, the PVAc Tg remained stable until about 24 h, 

when it decreased rapidly from 20.3 C and continued to rapidly decrease between 24 h and 72 h. 

After 72 h, the Tg increased from 0.9 
o
C to 29.5 C at 96 h, after which it continued to increase, 

but at a much slower rate from 29.5 C to 36.7 C at 14 days. We attributed the Tg recovery to 

the degradation of the PAH within the PVAc fibers, which would also be limited by diffusion of 

the degradation products from the fibers. At 14 d, the remaining mass approached 20% PVAc, 

which was slightly more than the 16% fraction determined by DSC in the composite prior to 

degradation. Both of these results indicate that at 14 d, some residual PAH remains. A 

comparison of the rate of increasing fiber content during degradation for both the PCL/PAH and 
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PVAc/PAH composites are plotted in Figure 5-12, showing that the PAH matrix degraded faster 

for the PCL/PAH composite than the PVAc/PAH composite. 

5.4.5 Tensile Mechanical Properties 

The tensile mechanical properties were measured at different degradation time points.  

Figure 5-13 and Table 5-4 summarize the mechanical properties for the PCL/PAH composite at 

various degradation times. During degradation, the Young’s modulus steadily decreased, from a 

starting modulus of 7.5 MPa ± 0.9 MPa to its lowest at 2.2 MPa ± 0.8 MPa at 48 h. The modulus 

did not significantly change between 48 h and 96 h. After 8 d, it began to steadily increase and 

recover to that of electrospun PCL. By 14 days, the modulus was not significantly different than 

electrospun PCL, with a modulus of 7.7 MPa ± 3.0 and 7.1 MPa ± 3.0, respectively. The strain-

to-failure of the composite was initially significantly lower than that of electrospun PCL at 80% 

± 40% compared to 1300% ± 140% and approached this value during degradation. The strain-to-

failure was similar to that of PCL after 14 days at around 1200% ± 30%.   

The mechanical properties of the PVAc/PAH composite shown in Figure 5-14 could not 

be studied beyond 48 h of degradation due to poor mechanical integrity. The average value 

calculated for the Young’s modulus and strain-to-failure at 48 h reported in Table 5-5 was based 

on two samples instead of five since the remaining samples were unable to be tested. 

5.4.6 In Vitro Drug Release 

 
The in vitro cumulative drug release profiles of both PCL/PAH and PVAc/PAH 

composites loaded with 0.5% RhB entrapped in the fibers are summarized in Figure 5-15. The 

release profile for the PCL/PAH shown in Figure 5-15B did not follow a two stage pattern, with 
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an initial burst release of approximately 9% within 6 h; this was followed by a period of steady 

release between 6 h and 5 d, which released another 10%. At this point, a second burst release 

was observed between 5 d and 8 d, which released the greatest amount of drug at an additional 

~50%. This was followed by another period of steady release that liberated an additional 7% 

drug over the next 7 d. The total drug release was approximately 65% for 15 d, with no 

significant change after 15 d. In comparison, the RhB-loaded PCL fibers with no matrix (control 

sample), as shown in Figure 5-15A, exhibited a two-step release profile, with a single release at 

2 h that released 60% of the drug, and a short, steady release until approximately 48 h, with 67% 

total released.  

 Unlike the PCL/PAH composite, the PVAc/PAH sample, as shown in Figures 5-15A 

and 5-15C, exhibited biphasic drug release with an initial burst release of approximately 20% 

within 6 h, followed by a steady additional 30% release of RhB over 30 d. As shown in Figure 

5-15C, RhB release increased with additional degradation of the PAH matrix.  In contrast, the 

RhB-loaded PVAc fibers alone, without the PAH matrix, showed an initial burst release of 

approximately 18% after 6 h, followed by an additional 12% of RhB released steadily for a 

period of approximately 7 d, where no significant RhB release was observed between 7 days and 

17 days. A total of approximately 31% of RhB was released from the PVAc fiber mat without 

PAH (control sample), whereas a total of approximately 52% of RhB was released from the 

PVAc/PAH composite, which appeared to continue to release past 30 days.  

5.4.7 Shape Memory   

The qualitative and quantitative shape memory properties of the PVAc/PAH composite 

are shown in Figures 5-16 and 5-17, respectively. The fixing and recovery ratios are summarized 
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in Table 5-6 and were calculated using Eqns. 5-4 and 5-5. The PVAc/PAH exhibited excellent 

shape fixing for all cycles, with 99% retention of the induced strain following load release. The 

shape programming temperature was 40 C, which was above the PVAc/PAH composite 

temperature and below the reconfiguration temperature for PAH. The shape recovery improved 

from 74% in the first cycle to 90% for the second cycle. The qualitative shape memory in Figure 

5-16 revealed that the PVAc/PAH composite showed good shape fixing and recovery 

performance, with a fixing ratio of 92% and a recovery ratio of 100%. The shape memory results 

are not shown for the PCL/PAH composite, as these samples exhibited poor shape memory since 

the shape fixing and recovery mechanism is by way of the PCL melting transition of ~55 – 60 C 

and overlaps the temperature range at which the PAH crosslinks are rearranged, as discussed in 

Chapter 4. As a result, the composite can only be remolded into new permanent shapes. 

5.4.8 Fixed Shape Preservation during Degradation 

  

The PCL/PAH composite demonstrated the ability to retain a temporary shape during 

degradation, as shown in Figure 5-18. The composite was deformed into three different arbitrary 

shapes and showed excellent shape fixing after four months of immersion in PBS at 37 C. It 

was observed that within the first 24 h of in vitro degradation, some slight retraction of the shape 

occurred and no further change in the shape dimensions occurred between 24 h and 4 months. 

The PCL/PAH composite became more opaque as degradation of the PAH matrix progressed, 

leaving a solid white sample, which is characteristic of pure PCL.  
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5.5. Discussion 

 

 To compose a biodegradable elastomeric shape memory composite, crosslinked PAH and 

semicrystalline PCL were combined using commercially available materials. This study 

examined the degradation of the PCL/PAH composite and the effect of the composition of the 

fibrous component on degradation and drug release of a model compound by substituting PCL 

with PVAc.  

 The mass loss data reveal that changing the fiber composition from PCL to PVAc, both 

hydrophobic polymers, had influenced the degradation of the surrounding PAH matrix. Although 

PAH is also hydrophobic, it is composed of moisture-sensitive anhydride linkages that 

hydrolytically cleave into water-soluble products with a relatively high hydrolysis rate on the 

time scale of hours-to-days compared to other polyanhydrides.
35 

By shifting the relative 

hydrophobicities of the fibers percolating through the PAH matrix, we hypothesized that this 

would affect PAH degradation due to differences in water accessibility within the internal 

structure of the composite, where the more hygroscopic PVAc would readily attract water 

compared to PCL. It is for this reason that PVAc was selected as an alternative material to PCL 

as the fibrous phase since its relatively polar carboxyl groups impart more moisture-sensitivity 

than PCL, with the ability to sorb ambient water, which would also impact its Tg  and thus chain 

mobility.
36,37

  PVAc has been reported by others to absorb up to 4 wt% water, whereas PCL is 

known to absorb less than 0.5 wt% water after 12 days immersed.
38,39  

 
Interestingly, the gravimetric data revealed that degradation of the PCL/PAH composite 

occurred much faster than the PVAc/PAH sample, losing approximately 55% percent of its 

original mass within 10 h, compared to PVAc/PAH, which took 5 – 6 times longer to attain a 
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similar result. Overall, the degradation of the PCL-based composite appeared to occur in two 

main stages, beginning with crater formation at the surface that progressed into pores by 24 h, 

which coincided with a rapid loss of mass and the majority of the composite erosion. During the 

second stage, the mass loss rate drastically decreased between 24 h and 14 days, while the pores 

at the surface appeared to develop into channels through the thickness of the sample, as shown in 

Figure 5-6; these channels continued to enlarge and evolve into the free space between the PCL 

fibers during this secondary stage of erosion. Here, a drastic increase in the strain-to-failure of 

the composite also occurred, which is consistent with removal of a substantial mass of the PAH 

matrix to liberate PCL fiber mobility. This type of degradation is an alteration from the surface 

erosion that is characteristic of the PAH matrix, which then advanced to bulk degradation. The 

crater morphology during the first stage enabled direct contact and thus concentration of the 

buffer solution into the volume of the composite, establishing a route for the degradation front to 

advance through the sample bulk. As the degradation of PAH proceeded, the crystallization 

endotherm of PCL became more prominent in the DSC thermograms shown in Figure 5-8. 

Between the mass loss and morphological micrographs, it appeared that degradation of 

PCL/PAH was complete and matrix-free by 4 days; however, an evaluation of the relative 

crystallization enthalpies of PCL revealed that residual PAH remained in the composite, with 

approximately 4% remaining after 14 days. This extended degradation suggests that there may be 

regions of PAH that begin to degrade later and are likely in the form of a sheath surrounding the 

PCL fibers, which would be consistent with the fibrous morphology at this stage. The tensile 

Young’s modulus and strain-to-failure do not fully recover before 14 days of degradation, further 

indicating the presence of PAH within the composite not detected gravimetrically or visually by 
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SEM, as it is continuing to restrict PCL fiber mobility. There is no contribution from PCL 

erosion since it degrades considerably slower.
4
 

 Unlike the PCL/PAH composite, we contemplated that the PVAc fibers were plasticized 

by PAH based on macroscopic observations during fabrication, where a thermal treatment was 

necessary to relieve residual stresses incurred during electrospinning to prevent shrinkage, 

coupled with the observed apparent dissolution of the non-heat treated PVAc fibers into the PAH 

monomer (Figure 5-1). The thermal characterization at different degradation times further 

supported this postulation, showing that the glass transition (Tg ) of PVAc in the composite was 

significantly decreased by almost 15 C prior to the degradation study, suggesting a molecular 

interaction between the heat-treated PVAc fibers and the PAH matrix.  

 The degradation of the PVAc/PAH composite appeared to proceed in three regimes, and 

unlike the PCL/PAH composite, the glass transition did not positively correlate with degradation 

time. Phase I occurred between 0 and 10 h, and degradation was rapid and dominated by the 

erosion of PAH at the surface, since there was no substantial change in Tg  of PVAc or surface 

morphology. Phase II ensued from 10 h to 72 h, and is marked by a significant drop in Tg and the 

formation of larger pores and channels. The continued shift in the Tg of PVAc was most likely 

due to the plasticizing effect of absorbed water as more fibers were exposed to the buffer 

solution through the growing population of pores and channels during this period. We 

hypothesized that the PAH as a matrix is severely interrupted, as was the case with PCL/PAH 

composite at this degradation time; here, the remaining material was likely PVAc fibers 

containing plasticizing PAH. It is during Phase III that we postulated that the degradation of 
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PAH continued mostly within the fibers, albeit at a much slower rate and limited by diffusion, 

which would explain the continuing decrease in mass and the recovery of the PVAc Tg .  

 Although initially the PVAc/PAH composite showed similar mechanical properties as 

that of PAH film, the tensile Young’s modulus displayed a recovering trend toward that of 

electrospun PVAc during degradation. Interestingly, the strain-to-failure was substantially 

increased such that it was approximately six-fold greater than either the PAH or PVAc 

components individually, which we postulated may be due to rubber toughening by the PAH. As 

the PVAc/PAH samples degraded, excessive shrinkage occurred, which made it difficult to study 

the mechanical properties beyond 48 h. This shrinkage was likely caused by additional relaxation 

of the fibers during plasticization by water, where amorphous PVAc enabled greater access of 

water through the structure. 

 The drug release of the PCL/PAH composite did not follow a typical biphasic pattern and 

instead manifested as two burst release intervals with periods of sustained release following each 

burst. The small initial burst release was likely due to the liberation of RhB molecules adsorbed 

previously to the surface that stemmed from migration during composite fabrication, when the 

PCL fibers were wetted by the PAH monomer. During this early burst release, 15% of the mass 

of the composite had eroded; however, given that only 9% of drug released, compared to ~60% 

from the control (PCL fibers without PAH) during the same time frame, we surmised that there 

was sufficient PAH shielding underlying fibers. The second and final burst release occurred 

beginning at 4 d and lasted for 3 d; it was at this point that a very high rate of drug release 

commenced, and during when most of the drug was released. This drug release behavior 

correlated with the disappearance of the continuous PAH matrix through the structure which led 
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to near full exposure of the PCL fibers, as visualized by SEM, and signified that the drug release 

here was primarily erosion-mediated rather than diffusionally controlled. The period of 

continual, steady RhB release that followed the second burst release, beginning at 8 d, was slow 

and likely due to diffusion of RhB from the fibers to the media. Since this release was controlled, 

unlike that of original PCL fiber control, this further suggested that there remained a PAH 

coating around the fibers. This observation was consistent with the degradation thermal 

properties (Table 5-2) and mechanical data (Table 5-4), which indicated that residual PAH 

remaining after 4 d, as the behavior of the material during this time was not that of pure 

electrospun PCL. A total of 67% of RhB was released from the PCL/PAH composite and this 

was likely due to drug trapped in the fibers, as has been previously observed by others.
40,41  

 

Amorphous polymers offer an advantage over semicrystalline polymers in that there are 

no crystallites that can possibly impede drug loading.
42

 Unlike the PCL/PAH composite, the 

PVAc/PAH sample exhibited biphasic drug release with the initial burst release of 20% of RhB, 

followed by a slow, steady release at a slower rate, beyond when significant PAH has degraded. 

The initial burst release was likely due to a combination of eroded PAH (15% mass reduction) 

and diffusion of surface adsorbed drug. The drug release appeared to continue to steadily release 

past 30 d, a further indication that residual PAH remained in the composite imparting an 

additional diffusional barrier to RhB; this is consistent with our hypothesis that additional PAH 

remained in the fibers beyond 14 d. 

 One-way shape memory was possible for the PVAc/PAH composite due to the 

plasticization of the PVAc fibers by the PAH monomer during composite fabrication. This 

resulted in a decrease in the glass transition temperature to ~ 45 C and thus enabled the shape 
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fixing and recovery temperature triggers to occur sufficiently below the shape reconfiguration 

regime of PAH, which would have inhibited the recovery of the original shape due to the 

rearrangement of the  PAH cross-links during shape fixing.
43 

It is for this very reason that the one 

way shape memory performance was poor for the PCL/PAH composite, since the required 

thermal trigger was above 55 C and resulted in overlapping permanent and fixed shapes; a 

modification would be necessary to the PCL thermal transition, which was further discussed in 

Chapter 4. The macroscopic shape memory of the PVAc/PAH composite is demonstrated in 

Figure 5-16, and also showed excellent shape fixing and recovery properties, with 92% of the 

induced curve retained upon release of the applied load and full recovery of its length upon 

heating. The shape memory measured thermomechanically in tension revealed consistent Rf 

values of 99% over three consecutive cycles. The shape recovery ratio of the initial cycle was 

mediocre at 76%, but improved to 90% after the first cycle. This difference between the first and 

second cycle may be due to relaxation effects of PVAc.  Since the elastomeric component was 

composed of crosslinked PAH, this composite would also be capable of reprogramming its 

permanent shape, as discussed in Chapter 4. Unlike other fiber reinforced shape memory 

systems, complex geometries could be fabricated without requiring a new sample to be 

manufactured each time, as had been proposed by others.
20

 

 Finally, the PCL/PAH composite offered a way to maintain a fixed, temporary shape 

during degradation. This was possible since the fibrous PCL framework was remained following 

PAH degradation, serving as structural support. This feature may be useful in situation-specific 

applications where a customized, complex geometry is essential, even after significant 

degradation. Shape retention during degradation was previously studied by Knight et al., where a 
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biodegradable copolymer of poly(lactide) and glycolide was synthesized with polyhedral 

oligosilsesquioxane (POSS) in the backbone.
44

 In their study, it was found that the samples had 

to be annealed to enable sufficient crystallization for good shape fixing. The samples, however, 

began recovering slowly during degradation, with approximately 20% recovered length within 

two weeks and 50% recovered by four weeks. In contrast, by isolating the fixing mechanism to a 

separate phase with a significantly slower degradation rate, our composite was capable of 

maintaining a high degree of deformation over a significant period of time; it is likely that this 

shape retention could extend on the order of two years, when the PCL fibers begin to degrade.  

5.6. Conclusions 

 A fully biodegradable shape memory elastomeric composite was developed using 

electrospun fibers embedded in a degradable, crosslinked polyanhydride matrix. The degradation 

of the polyanhydride matrix was dependent on the composition of the fibrous phase, where 

erosion proceeded more rapidly when the composite contained the more hydrophobic PCL fibers 

compared to hygroscopic PVAc, since PVAc competed with the degrading PAH for water. The 

presence of a fibrous structure permeating through the PAH film altered the erosion dynamics 

from heterogeneous to homogenous. PAH continued to remain on the fibers as a protective 

sheath for both composite compositions. It was found that the PVAc fibers were plasticized by 

the PAH, which remained in the fibers, and this resulted in prolonged degradation and enhanced 

the duration of sustained drug delivery of a hydrophilic model drug. The addition of a drug to a 

material would be advantageous for infection management following surgical intervention or 

minimizing thrombosis on the surface of an implant. This composite has the potential to possess 

these properties in addition to tailorable degradation, reconfigurable shape memory, and long-
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term shape retention and can provide an enabling technology with broad biomedical applications 

such as smart implants and tissue engineering scaffolds. 
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Scheme 5-1. (A) Synthesis of polyanhydride elastomer, and chemical structures of (B) poly(ε-

caprolactone) and (C) poly(vinyl acetate). 
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Figure 5-1. Effect of thermal treatment implemented to minimize shrinkage of electrospun.  

PVAc fibers prior to composite fabrication. (A) The resulting composite (right) when no thermal 

treatment or PAH pre-cure is used in comparison to its original geometry (left) (B) Pre-curing 

the PAH monomer enabled the PVAc to maintain its fibrous phase within the composite, 

however significant shrinkage occurred (right). Distinct regions of excess PAH denoted by the 

blue arrow. (C) Comparison of the effect of heat treatment on electrospun PVAc following 

hydration in DI water revealed significantly less shrinkage for samples previously treated. The 

foil substrate shows the original size of the fiber mat. (D) The addition of a heat treatment and 

pre-cured PAH resulted in a composite with minimal shrinkage and conservation of its original 

geometry. The excess PAH is trimmed as part of the fabrication process. 
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Figure 5-2. (A) Thermal and (B) thermomechanical characterizations of the (i) PAH elastomer, 

(ii) electrospun PVAc (heat treated), (iii) PVAc/PAH composite (iv) PCL/PAH composite, (v) 

electrospun PCL, and (vi) electrospun PVAc (untreated). 
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Figure 5-3. Scanning electron microscopy micrographs of (A) electrospun PCL and (B) 

electrospun PVAc following thermal treatment. The surface and cross-section of PCL/PAH are 

shown in (C) and (D). The surface and cross-section of PVAc/PAH are shown in (E) and (F). 
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Figure 5-4. Representative tensile engineering stress-strain curves of both the composite and 
individual components for PCL/PAH and PVAc/PAH composites showing (A) the strain-to-

failures and (B) the linear elastic regions for (i) electrospun PVAc (heat treated), (ii) electrospun 

PVAc (untreated), (iii) electrospun PCL, (iv) PCL/PAH composite, (v) PAH, and (vi) 

PVAc/PAH composite. 
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Table 5-1. Summary of tensile engineering stress-strain curves for the PCL/PAH and 

PVAc/PAH composites and individual components. 

  

 
Young’s Modulus 

(MPa) 
Strain-to-Failure 

(%) 

PAH 4.5 ± 0.4 30 ± 5 

Electrospun PCL 7.1 ± 3.0 1300 ± 140 

Electrospun PVAc (Untreated) 63.5 ± 11.3 30 ± 10 

Electrospun PVAc (Heat Treated) 157.1 ± 15.2 40 ± 10 

PCL/PAH Composite 7.5 ± 0.9 80 ± 40 

PVAc/PAH Composite 2.9 ± 0.5 60 ± 7 
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Figure 5-5. Mass loss during in vitro degradation in PBS at 37 C for the PCL/PAH and 

PVAc/PAH composites. 
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Figure 5-6. Morphological changes during degradation of  the PCL/PAH composite in PBS at 37 

C at the A) surface and B) cross-section, revealed using scanning electron microscopy (SEM). 
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Figure 5-7. Morphological changes during degradation of the PVAc/PAH composite in PBS at 

37 C at the A) surface and B) cross-section, revealed using scanning electron microscopy 
(SEM). 
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Figure 5-8. Thermal properties of the PCL/PAH composite during degradation. The dotted line 

indicates the crystallization temperature for electrospun PCL. 
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Figure 5-9. Fraction of PCL in the PCL/PAH composite as a function of degradation time. 
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Table 5-2. Fraction of PCL in the PCL/PAH composite as a function of degradation time. 

 

Degradation Time (h) H
c
 (J/g) T

c
 (C) Amount of PCL(%) 

0 9.4 28.8 18.3 

5 11.3 27.9 21.9 

10 13.7 27.3 26.5 

24 32.1 28.7 62.2 

48 41.1 31.9 79.7 

74 38.7 38.7 74.9 

100 47.5 31.8 92.1 

336 49.5 32.0 95.8 

PCL Fiber Mat 51.6 31.9 100.0 
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Figure 5-10. Thermal characterization by DSC of the PVAc/PAH composite following different 

degradation times. The dotted lines denote the glass transitions for PAH and PVAc. 
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Table 5-3. Fraction of PVAc in the PVAc/PAH composite as a function of degradation time. 

 

Degradation Time (h) T
g
 (PVAc) C

p
 (PVAc) % PVAc 

Electrospun PVAc 44.7 0.473 100 

0 30.1 0.076 16 

5 38.8 0.081 17 

10 37.4 0.074 16 

24 20.3 0.159 34 

48 13.0 0.145 31 

72 0.9 0.182 38 

96 29.5 0.282 60 

150 30.4 0.240 51 

192 30.9 0.350 74 

336 36.7 0.314 66 
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Figure 5-11. Evolution of the glass transition temperature of the PVAc component of the 

PVAc/PAH composite at different stages of PAH degradation. 
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Figure 5-12. Comparison of PCL and PVAc content during degradation of the PCL/PAH and 

PVAc/PAH composites, respectively. The fiber composition was calculated based on the relative 

melting or glass transition temperatures as determined by DSC. 

 

 

  

Degradation Time (days)

0 2 4 6 8 10 12 14

%
 F

ib
e
r 

C
o

n
te

n
t 

in
 C

o
m

p
o
s
it
e

(B
a

s
e

d
 o

n
 D

S
C

)

0

20

40

60

80

100

% PCL

% PVAc



 

207 

 
 

Figure 5-13. Representative engineering stress-strain plots of PCL/PAH at various degradation 

points of (i) as fabricated, t = 0, (ii) 10 h, (iii) 48 h, (iv) 72 h, (v) 96 h, (vi) 8 days, (vii) 14 days, 

and (viii) as-fabricated electrospun PCL for reference. 
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Table 5-4. Mechanical properties of PCL/PAH composite after different degradation times. 

 

Degradation Time Young’s Modulus 

(MPa) 
Strain-to-Failure 

(%) 

0 7.5 ± 0.9 80 ± 40 
10 h 4.6 ± 0.9 150 ± 25 
48 h 3.0 ± 0.5 1000 ± 170 
72 h 2.2 ± 0.8 950 ± 170 
96 h 2.2 ± 1.5 900 ± 190 

8 days 4.2 ± 1.5 640 ± 85 
14 days 7.7 ± 3.0 1200 ± 30 

Electrospun PCL 7.1 ± 3.0 1300 ± 140 
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Figure 5-14. Representative engineering stress-strain plots of PVAc/PAH at various degradation 

points of (i) as fabricated, t = 0, (ii) 10 h, (iii) 48 h, (iv) PAH for reference, and (v) as-fabricated 

heat-treated electrospun PVAc for reference. 
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Table 5-5. Mechanical properties of PVAc/PAH composite after different degradation times. 

 

Degradation Time Young’s Modulus  

(MPa) 
Strain-to-Failure  

(%) 
0 2.9 ± 0.5 60 ± 7 

10 h 45.3 ± 3.2 140 ± 45 
48 h 49.2 ± 22.5 300 ± 220 

Electrospun PVAc (Heat Treated) 157.1 ± 15.2 40 ± 10 
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Figure 5-15. In vitro release of hydrophilic model drug Rhodamine B from the PCL/PAH and 

PVAC/PAH composites with comparisons to (A) Rhodamine B release from fibers without the 

PAH matrix, and with mass loss results in (B) and (C). 
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Figure 5-16. Qualitative demonstration of one way shape memory of the PVAc/PAH composite. 
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Figure 5-17. Shape memory stress-temperature-strain plot for the PVAc/PAH composite. 
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Table 5-6. One way shape memory fixing and recovery ratios for the PVAc/PAH composite. 

 

Cycle R
f
 (%) R

r
 (%) 

1 99 76 
2 99 90 
3 99 ND 

*ND denotes no data available. 

 
 

  



 

216 

 
 

Figure 5-18. Preservation of arbitrarily deformed shapes during in vitro degradation of the 

PCL/PAH composite in PBS at 37 C. 
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Chapter 6   

Latent Mechanical Programming of a Shape Memory Composite  

with Reversible Anisotropic Actuation 

 

6.1 Synopsis 

In this chapter, the design, fabrication, and characterization of a polymeric composite 

composed of oriented semicrystalline polymeric fibers embedded within a crosslinked epoxy 

matrix is presented. While this composite inherently exhibits triple shape memory, as our group 

has presented in the past, we observed that introducing anisotropy enabled the construction of 

complex three dimensional geometries featuring latent mechanical programming. Rather than 

relying on specific molds to manipulate a new shape, this system instead capitalized on an 

induced strain to influence a new structure attained by strain conditioning above a transition 

temperature followed by cooling. The new geometry was then activated by strain-free exposure 

to this temperature, which was dictated by the orientation of the fibers across the bilayer cross-

section. We investigated the effect of programming these new shapes by varying the fibrous 

phase orientation through multilayer laminates and studied the curvature, thermomechanical, 

shape memory, and microstructural properties of the composites. Additionally, we found that by 

compressing the oriented fibers of each ply during composite cure, the composites constructed 

from such plies exhibited actuation into anisotropically induced shapes. The new composite 

materials can have broad applications in artificial muscles, hinges, sensors, and robotics, to name 

a few.  
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6.2 Introduction 

 Anisotropy is found in both natural and synthetic materials and can have significant 

effects on material properties. In the construction, automotive and aerospace sectors, anisotropy 

is engineered into laminated composites in order to tailor load bearing properties, typically by 

specific layering of oriented laminates.
1-4

 In nature, biological materials such as wood,
5
 tendons,

6
 

blood vessels,
7
 sea shells,

8
 and cortical bone

9
 contain hierarchical structures that exhibit 

anisotropy that serve to maximize mechanical functionalities. As a result, incorporating oriented 

properties into composite materials has served as a great inspiration for composite material 

design as evidenced by the abundance of review articles, with only a few referenced here.
10-14

 Of 

particular interest to many are the natural anisotropic architectures within botanical materials that 

form complex 3D geometries.
15

 One specific example is the curling of pine cone scales in 

response to dehydration, which has been artificially mimicked by constructing bilayers 

containing materials that respond anisotropically to humidity.
16

 In another example, the twisting 

of orchid seed pods as a result of fibrous layers oriented ~45 relative to the long axis had been 

imitated by orienting stretched latex sheets at a diagonal.
17

  

 Active materials such as shape memory polymers have broad applications in many fields 

due to the low cost and ease of being able to create and retain articles that undergo simple 

temporary shape changes, yet can be returned to their original form by environmental trigger.
18,19

 

These materials are seemingly a natural candidate for developing complex 3D geometries 

resulting from anisotropy; however only few studies have used this approach to produce such 

complex shapes. Lee et al. formed a variety of coil-based shapes by orienting the nematic 

domains within a crosslinked liquid crystalline polymer that are then thermally triggered.
20

 In the 
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Mather research group, Robertson et al. introduced mechanically programming complex shapes 

from anisotropic soft, elastomeric shape memory composites.
21 

This was accomplished by 

layering amorphous composites composed of oriented electrospun poly(vinyl acetate) embedded 

within a Sylgard 184 silicone matrix. The composite laminates were fabricated into bilayers at 

differing orientations relative to each other. By uniaxially straining the bilayer composite, 

spontaneous room temperature curling of the samples resulted upon release of the load. While 

that system was capable of attaining 3D shape changes by mechanical (rather than thermal) 

programming, circumventing one way shape memory cycling, it was limited to immediate 

curling upon load release. The present investigation combines thermal triggering with 

mechanical programming.  

 We were interested in not only producing both complex shapes but also controlling when 

this spontaneous shape change occurred. As such, our goal was to introduce anisotropy into a 

similarly fibrous thermoset composite system, where the mechanically programmed shape 

remained dormant at room temperature until thermally prompted. We theorized that a composite 

material exhibiting thermal transitions above room temperature would serve to suspend a 

mechanically programmed shape until ready for deployment. Accordingly, we also hypothesized 

that these dormant mechanically programmed shapes could be tailored by the lay-up design 

wherein distinct layers featured orientation differences relative to each other and to the direction 

of mechanical programming.  In order to design such a material, we turned to a versatile material 

combination where electrospun semicrystalline PCL was embedded within a crosslinked epoxy 

matrix, which had been previously developed for triple shape memory in the Mather research 

group.
22

 This particular composite was attractive due to an easily tunable glass transition 
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temperature through the addition reaction blend of two diepoxides, aromatic bisphenol A 

diglycidyl ether (DGEBA) and aliphatic diepoxide (neopentyl glycol diglycidyl) (NDGE), with a 

flexible diamine, Jeffamine D230.
23 

Additionally, we observed that incorporating compressive 

stresses into the fibrous phase during fabrication led to unique reversible actuation that was 

unanticipated based on prior studies that demonstrated the effect for crystallizable networks
24

 of 

which this is not one. 

6.3 Methods 

6.3.1 Materials 

Poly(ε-caprolactone) (70,000 – 90,000 g·mol–1), bisphenol A diglycidyl ether (DGEBA), 

neopentyl glycol diglycidyl (NDGE), Jeffamine 230, tetrahydrofuran (THF), and 

dimethylformamide (DMF) were purchased from Sigma Aldrich and used as received. 

6.3.2 Electrospinning 

Fibers were electrospun using a solution of 20 w/v % PCL dissolved in a 4:1 THF:DMF 

solvent mixture. The PCL solution was then transferred to a 10 ml syringe fitted with a blunt 

22G needle tip. A syringe pump was used to supply a steady flow rate of 1.0 ml
.
h

-1
, which was 

electrospun onto a grounded 50 mm drum using a distance of 7 cm between the needle tip and 

the drum (-500 V), and an applied voltage of 11.5 kV. To achieve oriented fibers, the drum was 

rotated at 5000 rpm. Typically drum rotations below 800 rpm result in randomly oriented fibers. 

Following electrospinning, all fiber mats were dried at room temperature under vacuum (-30 mm 

Hg) for 48 h to remove any residual solvent prior to further use. 
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6.3.3 Anisotropic Composite Fabrication 

The epoxy monomers were prepared by melting DGEBA at 80 C followed by vigorous 

mixing with NDGE and Jeffamine D230 (Scheme 6-1), which resulted in a low viscosity fluid. 

The weight fractions of the NDGE and DGEBA were selected to achieve a target glass transition 

temperature of ~35C,according to the Gordon-Taylor equation and prior model-fitting for this 

same system.
22

 The nomenclature used herein to refer to the epoxy formulation is DXNYD230. 

This refers to the weight percentage of DGEBA relative to NDGE as DX, and NDGE as NY, X 

and Y summing to 100. The designation “D230” denotes the Jeffamine 230 crosslinker with 

stoichiometric equivalence of amine protons (4 per D230 molecule) and epoxide rings (two each 

for DGEBA and NGDE). For example, D41N59D230 refers to crosslinked epoxy synthesized 

using 41 wt% DGEBA and 59 wt% NDGE.  

The cross-ply bilayer composite was prepared by layering two electrospun PCL fiber 

mats, one on top of the other as depicted in Scheme 6-2. The assembly was arranged with the 

aligned fibers orthogonal between top and bottom layers, yielding a “cross-ply” porous 

construction. Once this was arranged, the fiber mats were secured together using binder clips and 

infiltrated with the epoxy monomer as an assembly, followed by vacuum infiltration at RT to 

remove any trapped air within the fiber mats. This assembly was then clamped between two 

glass slides using a  spacer with variable thickness, arranged as a frame defining the composite 

perimeter, as shown in Scheme 6-3. The composite was next cured for four days at 45 C. This 

relatively low cure temperature was selected to preserve the PCL fiber morphology, as it is 

below the PCL melting transition. A spacer was used to control the sample thickness and a 

compression factor was quantified (CF), using a range from 1 to 2.6, according to: 
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𝐶𝐹 =  
𝑛 ∗ (𝑡𝐹𝑖𝑏𝑒𝑟 𝑚𝑎𝑡 )

𝑡𝑆𝑝𝑎𝑐𝑒𝑟
,   (6-1) 

where t is the thickness of the individual fiber mat or the thickness of the spacer and n is the 

number of fiber mats or plies used. 

In a similar manner, single-ply laminae were prepared by infiltrating aligned PCL fiber 

mats with the epoxy monomer, followed by vacuum infiltration at RT to remove any trapped air 

within the fiber mats. This was then clamped between two glass slides with a spacer and cured 

for four days at 45 C.  

6.3.4 Thermal Analysis 

 Differential scanning calorimetry (DSC) was performed using a Q200 manufactured by 

TA Instruments, Inc. Samples weighing 2.5 – 4.0 mg were sealed in Tzero aluminum pans and 

heated from -60 C to 120C at 10 C ∙ min
-1

. The melting enthalpy was calculated from the 

second heating cycle by integrating the melting peak, and was used to determine the fraction of 

PCL in the elastomeric composite by comparing the melting enthalpies according to: 

𝑊𝑃𝐶𝐿 (%) =  
∆𝐻𝑚

∆𝐻𝑚,0
 × 100 % (6-2) 

where Hm  is the melting enthalpy of the composite measured by DSC and Hm,o is the melting 

enthalpy of  pure electrospun PCL, which was 48.0 J g
-1

, as determined by DSC. 

6.3.5 Morphology 

 Scanning electron microscopy (SEM) was used to determine the study the morphology of 

the composite. All samples were sputter coated with gold for 45 s prior to SEM. A JEOL JSM-

5600 SEM was used with an accelerating voltage of 4 – 6 kV. ImageJ software (version 1.46, 
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National Institutes of Health) was used to measure PCL fiber diameter. Fiber diameter 

measurements were determined by taking a minimum of 50 measurements at 5 different 

locations well separated in the composites. The average diameter and standard deviation were 

calculated using a minimum of 250 total measurements.  

 The cross-sections of the samples were obtained by cryogenically fracturing then solvent-

etching the composites. A dogbone shaped sample prepared by punching with a die, followed by 

immersion in liquid nitrogen (to embrittle the specimens), followed by fracturing of the narrow 

section by manual flexure. The cross-section surface was then treated with THF overnight to 

remove the PCL phase so that the morphology of the oriented PCL fibers could be clearly 

distinguished – as cavities – from the epoxy matrix. 

6.3.6 Thermomechanical Characterization 

 A TA Instruments Q800 dynamic mechanical analyzer (DMA) was used in 

multifrequency strain mode to measure the storage and loss moduli and tan delta. Samples were 

cut into rectangular strips from the cross-ply composite orientation, maintaining a ratio of length 

to width of 5:1. All samples were first cooled to -60 C, followed by heating at 10 C min
-1

 to 90 

C as the tensile storage and loss moduli were measured at a frequency of 1 Hz. 

6.3.7 Quantitative Triple Shape Memory 

The triple shape behavior of the anisotropic composite was quantified using the DMA. 

Samples were similarly prepared as those for thermomechanical characterization in Section 

6.3.6. The DMA was used in controlled force mode to stretch a dog bone sample at 75 C to a 

10% strain (or 5% for the cross-ply sample) by ramping the force at 0.05 N min
-1

; this 
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temperature was above both the PCL melting and epoxy glass transitions. The temperature was 

then decreased at 3 C min
-1

 to 0 C and held isothermal for 10 min to fix the first temporary 

shape. The sample was then heated at 3 C min
-1

 to 45 C (below PCL Tm and above epoxy Tg) 

and held isothermal for 5 min. The force was then unloaded at 0.25 N min
-1

 until it reached the 

preload force of 10
-3

 N. The second temporary shape was programmed by then ramping the force 

at 0.05 N min
-1

 to a strain of 30% (or 10% for the cross-ply sample), followed by cooling at 3 C 

min
-1

 to 0 C and held isothermal for 10 min to fix the second temporary shape. The force was 

then unloaded at 0.25 N min
-1

 until it reached the preload force of 10
-3

 N. Finally, the permanent 

shape was recovered by heating at 1 C min
-1

 to 80 C (or to 60 C for the cross-ply sample), and 

holding isothermal for 10 min. The cross-ply samples utilized a reduced strain and melting 

temperature protocol due to failure at larger values.  

The degree of shape fixing (Rf) and the degree of shape recovery (Rr) were quantified for 

each sample using the following equations: 

𝑅𝑓(%) =  (
𝜀𝑓𝑖𝑥𝑒𝑑

𝜀𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑
) × 100 % (6-3) 

𝑅𝑟(%) =  (
𝜀𝑓𝑖𝑥𝑒𝑑 −  𝜀𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑

𝜀𝑓𝑖𝑥𝑒𝑑 −  𝜀0
) × 100 % (6-4) 

 
where ε0 is the original strain (at the beginning of each cycle), εdeformed is the deformed strain that 

occurred after cooling while still under a load, εfixed is the fixed strain that resulted following 

unloading, and εrecovered is the recovered strain following heating. 
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6.3.8 Latent Triggering of Mechanically Programmed, Anisotropic Shape Change 

Rectangular samples of 2.5 cm by 0.3 cm were cut from the cross-ply composite 

fabricated using a CF of 1.1; i.e., with minimal compression. The samples were cut at different 

angles according to Scheme 6-4, resulting in a variation of the cross-ply fiber orientation relative 

to the long dimension of the sample. For example, samples were cut such that a cross-ply(0) 

sample contained one surface with fibers oriented longitudinally and the opposing surface with 

fibers perpendicular to the long dimension. Samples cut with a 45 angle contained a cross-hatch 

pattern of fibers, relative to the rectangular cut out shape, and is hereafter referred to as cross-

ply(45). The thermomechanically activated shape changed proceeded by securing the sample 

onto a custom manual stretcher and placing in an isothermal oven at 70 C for 10 min to melt the 

PCL phase. While the PCL was melted, the sample was then stretched to strains of 10 %, 20 %, 

30 %, or 40 % and immediately placed in an isothermal oven at 45 C to recrystallize PCL above 

the epoxy Tg for 30 min, followed by cooling to room temperature. The sample was then 

unclamped and a temporary shape (generally flat) was observed. The mechanically programmed 

shape change was then activated by heating to a temperature between Tg of the epoxy but below 

Tm of PCL. This was accomplished by placing the unconstrained sample in an isothermal oven at 

45 C for 10 min, followed by room temperature cooling to observe the programmed shape 

change. Shape recovery was then triggered heating above both Tg of the epoxy and Tm of PCL. 

This was accomplished by placing the unconstrained sample in an isothermal oven at 70 C for 

10 min. The radius of curvature and pitch were measured at each stage to characterize the latent 

shape change and its dependence on the magnitude of strain during shape programming for a 

strain of 10% to 50%. 



 226 

6.3.9 Reversible Anisotropic Actuation 

Rectangular samples from the cross-ply composite were fabricated using a CF of 2.6 and 

prepared at differing cutting angles according to Scheme 6-4. Reversible actuation was activated 

by placing the unconstrained sample into a heated water bath at 75 C until a shape change 

appeared and had completed. The sample was then removed from the water bath and cooled to 

room temperature (~ 21.8 C to 22.5 C) on the bench top, in response to which that samples 

were observed to reverse the heat-induced shape change to a great extent. This was repeated for 

10 consecutive cycles and the radius of curvature was measured for each cycle.  

The thermal expansion and contraction of a single-ply composite was quantified using the 

DMA of rectangular strips containing fibers oriented either parallel (0) or perpendicular (90) to 

the tensile axis. The DMA was used in controlled force mode to heat a rectangular sample to 75 

C at a rate of 3 C min
-1

 followed by an isothermal hold for 3 min. The sample was then cooled 

to 0 C at a rate of 3 C min
-1

 and then held isothermally for 5 min.  

6.4 Results 

6.4.1 Composite Fabrication and Morphology 

The electrospun fibers were generally oriented in the same direction, as shown in Figure 

6-1A, with an average fiber diameter of 1.3 μm ± 0.5 μm. Following infiltration of the epoxy 

matrix, the surface of the composite appeared to contain a smooth layer of epoxy as shown in 

Figure 6-1B. Two cross-sections of the single-ply composite, taken perpendicularly from each 

other, are shown in Figures 6-1C and D. These micrographs verified both complete infiltration 

of the epoxy matrix, and fiber orientation relative to each ply. The PCL phase had been 
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successfully removed by solvent etching, leaving behind a “negative” morphology within the 

epoxy phase. The circular cavities shown in the micrographs are indicative of the fibers aligned 

in the direction toward the observer, while horizontal channels are a result of the fibers parallel 

to the surface. The cross-ply morphology is similarly shown in Figure 6-1E, confirming good 

coupling of the fibrous bilayers with complete epoxy infiltration with no epoxy rich layer 

between the two fiber mats to interfere with the anisotropic shape effect discussed later. 

Moreover there was no surface rich material observed that could potentially introduce bias any 

resulting programmed shapes in the bilayer.  Superimposing the fiber mats prior to the addition 

of the epoxy matrix served to reduce the interface between the two layers. This allowed both 

fiber mats to be secured within a single epoxy matrix rather than gluing both laminates together, 

which can interfere with the composite properties or provide a site for delamination. 

6.4.2 Thermal Analysis 

Figure 6.2 and Table 6-1 summarize the data obtained by DSC for the crosslinked epoxy 

with different targeted glass transitions temperatures, as well as the cross-ply composite in 

comparison with its individual components. The DSC results in Figure 6-2A show that by 

systematically decreasing the DGEBA weight fraction in the epoxy formulation, the Tg of the 

crosslinked epoxy decreased accordingly and was consistently within 8 C of the predicted Tg 

from the Gordon-Taylor equation.
22

 As shown in Figure 6-2B, the epoxy Tg and the PCL Tm 

remained unchanged when combined in composite form, indicating minimal mixing of the two 

components. The addition of epoxy to the PCL fiber mat did not significantly alter the properties, 

which was consistent with a prior report from the Mather Research Group.
22

 Based on the 

relative enthalpies, the D41N59D230_PCL composite contained 15 % PCL. The PCL Tg was not 
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measured but is known to be ~ -60 C.
25 

The D41N59D230 epoxy formulation was selected in 

order to maximize the temperature interval between the epoxy Tg and PCL Tm, while maintaining 

the former above room temperature. 

6.4.3 Thermomechanical Properties 

 The thermomechanical properties of the D41N59D230_PCL cross-ply(0) composite were 

characterized using dynamic mechanical analysis (DMA) and shown in Figure 6-3. The 

composite exhibited a much lower glass transition than measured by DSC of 12.0 C, though the 

melting transition was 58.1 C, as based on the loss modulus maxima. The storage modulus of 

the cross-ply(0) composite was approximately 100 MPa at 25 C. 

 6.4.4 Quantitative Triple Shape Memory 

The triple shape memory properties of the cross-ply(0) and the individual oriented single-

ply samples were quantified using the DMA and the results are shown in Figure 6-4. The 

samples were temporarily fixed into two elongated shapes with different lengths, as indicated by 

the letters “F1” and “F2” in Figure 6-4, where F2 was more elongated than F1. The recovered 

shape is denoted by the letter “R” in Figure 6-4. These results validated that the oriented 

composites maintained their triple shape memory properties. The cross-ply(0) samples utilized a 

reduced strain and melting temperature protocol due to failure at larger values. The shape fixing 

and recovery ratios were calculated according to Eqns. 6-3 and 6-4 and summarized in Table 6-

2. Overall, the single-ply composite, whether unidirectional or cross-ply, exhibited good shape 

fixing, with excellent shape fixing results for the single layer samples with the fibers oriented in 



 229 

the tensile direction. The recovery ratio was slightly lower than expected, albeit still good 

(~90%), and was slightly lower when the fibers were oriented longitudinally.  

6.4.5 Latent Anisotropic Shape Change 

The mechanical shape programming of the epoxy/PCL composite was the result of a 

mismatched alignment of fiber oriented laminae constructed in a cross-ply arrangement relative 

to the long dimension of a rectangular sample strip, where an external tensile mechanical stress 

was directed parallel to the long dimension. This mechanical programming and shape memory 

cycle sequence are outlined in Figure 6-5 and the resulting programmed shapes are summarized 

in Figure 6-6. The sense of curvature and twisting actuation relative to fiber alignment 

distribution (top and bottom layers) was made possible by labeling of the samples with indication 

of fiber orientation of the top and bottom layers. Following recrystallization of PCL and 

vitrification of epoxy, the cross-ply samples remained elongated and flat upon release of the 

uniaxial tensile load. Upon heating to 45 C, which was above the epoxy Tg and below the PCL 

Tm, the sample activated to the mechanically programmed shape of a circular bend, with the outer 

radius containing the longitudinally oriented fibers (capable of holding a PCL-fixed strain), and 

the inner radius comprising the fibers oriented perpendicular to the long dimension (relatively 

less capable of holding a PCL-fixed strain). A left-handed twist was formed for the cross-

ply(45). When the cross-ply alignment was rotated 67.5cross-ply(67.5)), an angle between the 

cross-ply and the twist, the result was a hybrid shape comprising a twisted bend, where, similar 

to the cross-ply, the outer radius was composed of fibers oriented parallel to the long dimension. 

The effect of the magnitude of strain on the resulting programmed shape is summarized 

in Figure 6-7 for the cross-ply(0) oriented bilayer composite. It was observed that increasing the 
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magnitude of strain resulted in larger curvature, as expected from the increasing strain gradient, 

as recovered, through the thickness of the specimens. Programming strains beyond 40% could 

not be obtained due to fracture of samples. The cross-ply(45) samples showed a similar trend, 

where the degree of twisting increased with increased magnitude of strain, however the degree of 

pitch was difficult to characterize since the samples did not undergo complete twisting for the 

lengths tested. The pitch was estimated by extrapolating to a full rotation of the programmed 

shape and was estimated as 40 cm for a 10% strain and 11 cm for a strain of 40%. These pitch 

approximations were based on samples with an original width of 0.3 cm; the sample widths were 

reduced following tensile straining to approximately 0.25 cm for a 10% strain, and 0.21 cm for a 

40 % strain. 

6.4.6 Reversible Anisotropic Actuation 

The method for controlling the clamping force during composite fabrication, as outlined 

in Scheme 6-3, following fiber infiltration with epoxy monomer, was postulated to increase fiber 

stress, volume fraction, orientation, or all of these. By using a spacer to control the thickness of 

the composite during curing, any lateral gradients of the factors postulated above were 

minimized. Further, decreasing the spacer height introduced compressive forces onto the layered 

fiber mats, which were wetted by the epoxy monomer; this was easily observable by the ensuing 

increase in area occupied by the fibers mats during clamping and described by the CF value (Eq. 

6-1). Consequently, decreasing the thickness beyond that already occupied by the fiber mats led 

to an increase in the PCL content of the composites, which was quantified by comparing the 

relative melting endotherms using Eq. 6-2, measured by DSC. Figure 6-8 further shows that as 

the CF value of the composite increased, the peak corresponding to the PCL melting endotherm 
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increased, indicating an increase in the PCL composition. These results are summarized in Table 

6-3, which show that the PCL content ranged from 4% to 28% for the lowest to high CF values 

tested. It was also observed that when increasing the CF value to 2.6, samples deformed (curling, 

twisting or both) immediately upon being cut into a narrow rectangular strip from the larger 

parent composite sample. This is shown in Figure 6-9, which reveals that this behavior did not 

occur at a lower CF value. This deformed original shape was dependent on the orientation of the 

fibers across the bilayers, as observed in Section 6.4.5 above, with the exception that a bend or 

twist formed in the opposite direction as that of the programmed shape, and to a substantially 

smaller degree. For example, the as-cut strip was curled such that the inner radius comprised of 

fibers oriented longitudinal to the long dimension, rather than perpendicular. This slightly 

distorted original shape remained as the recoverable shape during actuation. We attribute this 

phenomenon to tensile stresses that exist in the constituent fibers during cure (which transpired 

below Tm) whose through-thickness gradient can distort slender samples for which the stresses 

are off-axis from principle directions of the specimen. 

We suspected that reversible curvature and twisting actuation in the laminated 

composites might occur due to through-thickness gradients of anisotropic thermal expansion 

coefficient. Thus, free-standing thermal expansion/contraction measurements were conducted on 

single-ply composites oriented in the longitudinal and transverse directions and over a 

temperature range spanning both Tg and Tm. The results are presented in Figure 6-10, which was 

conducted for the first heating cycle. The longitudinally (0) oriented sample exhibited a 6% 

tensile contraction upon melting of the PCL phase, which was mostly recovered with a slight 

elongation upon cooling that was likely due to PCL crystallization. This elongation may be due 
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to the preload tension of the clamps on the samples that is released upon melting of the PCL 

phase. In contrast, the orthogonally oriented sample (90) exhibited a 3.7% expansion in tensile 

strain over a small temperature change, which then slowly returned upon cooling. As shown in 

Figure 6-10, these changes in tensile length occurred above the melting transition for PCL, 

indicating that this observed tensile contraction or elongation may be the result of the relieving 

of PCL stresses during melting.  A future study should also measure the changes in tensile strain 

during the second heating cycle, since this initial influence of PCL tensile stresses would only 

occur in the first heating cycle and any anisotropic thermal expansion effects would be isolated 

in the subsequent heating cycles. 

The actuation of the bilayer composite was conducted by cyclically exposing the sample 

to isothermal water-baths held at temperatures above (Thigh = 75 
o
C) and below (Tlow = 21 

o
C) the 

PCL melting transition and is portrayed in Figures 6-11 for the cross-ply(0) and in Figure 6-12 

cross-ply(45) samples. Following an initial exposure to heat (> PCL Tm, the cross-ply sample 

began to bend in the direction opposite that which occurred during cutting of the specimens as 

described in reference to Figure 6-9 above. In particular, heating caused curling toward the 

longitudinally oriented layer. Then, upon cooling to room temperature, the sample cooled away 

the longitudinally oriented layer.  Successive actuation cycles advanced with the sample quickly 

bending in the inverted, as-cut shape upon re-immersion in a hot bath (> PCL Tm), and returning 

to the mechanically programmed shape at room temperature. In each cycle, the sample curled 

toward the longitudinal layer upon heating and in the opposite direction – toward the 

perpendicular layer upon cooling.  
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Reversible twisting was observed during thermal cycling of the cross-ply(45) sample. 

The sample began the cycle with an as-cut inverted left-handed (flattened) twist at room 

temperature that reversed in its twisting sense to an right-handed twisted ribbon after one cycle 

of heat heating (> PCL Tm) and cooling back to room temperature. Thereafter, this shape 

remained the equilibrium, “return” shape at room temperature. Actuation proceeded by the 

sample reversibly twisting between a right-handed ribbon in hot water (> PCL Tm), and the left-

handed ribbon (as mechanically programmed) upon cooling to room temperature. Both the cross-

ply(0) and cross-ply (45) were observed to reversibly actuate for at least 10 consecutive cycles, 

which was counted as beginning after the initial heat exposure (Cycle 0), which was distinct 

from all subsequent cycles. The radius of curvature was measured for the cross-ply sample for 10 

cycles and is summarized in Figure 6-13, where no significant loss of shape was observed by the 

tenth cycle, although more repetitions should be conducted. The reversible twisting was not 

quantified due to technical limitations related to characterizing the complex shapes formed. 

6.5 Discussion 

In this chapter, we systematically altered the microstructure of an epoxy/PCL bilayer 

composite to influence the shape change outcome. The newly generated shapes were investigated 

and their dependences on the introduced strain and relative fiber orientations between laminae 

were studied. Additionally, an apparently new  mechanical actuation mechanism for reversible 

curling and twisting of strips was discovered and characterized in a proof-of-concept manner. 

To introduce anisotropy into a reinforced shape memory composite aligned electrospun 

PCL fibers were embedded within a crosslinked epoxy matrix. Two fiber mats were layered with 

orthogonal orientations between the plies prior to infiltration with the epoxy monomer. This 
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yielded bilayer composites with anisotropic properties in each layer and orientational 

orthogonality through the thickness. Further, variation in the principle axis of a parallelepiped 

strip and the orientation directions was accomplished. By assembling fibrous preforms before 

epoxy infiltration (rather than assembling plies already infiltrated with epoxy) use of an adhesive 

tie layer between the two laminae was obviated. This, in turn, prevented delamination and 

preserved pristine shape changing mechanics unaltered by the intervening layer. The angle 

formed between the fiber direction of the top and bottom fiber layers was systematically varied. 

The crosslinked epoxy was customized to target a glass transition temperature between room 

temperature and the PCL melting transition by adjusting the weight fractions of the reactants 

according to the Gordon-Taylor equation previously used to fit data for the same system, similar 

to prior work studied within the Mather research group.
22

 We hypothesized that positioning the 

glass transition within this range would enable typical temporary shape fixing of the composite, 

while the mechanically programmed shape remained dormant. The resulting thermal properties 

revealed distinctly separate thermal transitions without overlap of the thermal regimes.  

The mechanical shape programming of the epoxy/PCL composite was the result of a 

mismatched alignment of oriented laminae constructed in a cross-ply arrangement relative to the 

long dimension of the a rectangular sample strip, where an external tensile mechanical stress was 

directed parallel to the long dimension. The phenomena of introducing mismatched strain into e 

bending or wrinkling is well known
.26 

This mismatching was maximal for the cross-ply(0) and 

triggered under a temperature change, where differences in the coefficient of thermal expansion 

(CTE) led to reversible bending or twisting of the composite. By introducing a uniaxial stress 

into two or more mismatched layers restricted by each other, residual stresses are introduced in 
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the layers that are then relieved by morphing into non-flat, 3D structures.
27 

Possessing this shape 

change provides an advantage over previous approaches in that it broadens the applicability to 

include on-demand usability.  

Unlike other anisotropic bilayer systems, the mechanical shape change in the PCL/epoxy 

composite remained dormant until thermally triggered and was also capable of retaining an 

arbitrary temporary shape until such activation, in part due to its inherent triple shape memory 

property.
22

 A temporary shape was established by first melting the fibrous phase and uniaxially 

straining the composite. Subsequent slow recrystallization of the fibers while maintaining the 

epoxy above its Tg was then followed by room temperature vitrification of the matrix to stabilize 

the fixed shape. In this temporary fixed state, the crystallized PCL fibers and vitrified epoxy 

(mainly the latter) maintained an arbitrary temporary shape, which was an elongated strip in this 

study; however, unlike traditional shape memory, internal directional stresses were stored in the 

composite as a result of the orthogonal anisotropy between the laminae. A mechanically 

programmed bend was then activated by thermally triggering the epoxy phase at a temperature 

between Tg and Tm in order to maintain the crystallized form of PCL. By doing so, we postulated 

that the compliant state of the epoxy, which was the abundant weight fraction of the composite, 

permitted relief of the internal stresses by allowing a curl to form preferentially toward the layer 

containing fibers perpendicular to the long axis. We surmised that this fiber arrangement caused 

local shrinkage of the epoxy near the fibers on the inside of the bend, through biased recovery of 

the epoxy strain, and that the outer surface exerted tensile strain. The extent of this bending was 

found to depend on the magnitude of strain imposed during temporary shape fixing, as 

manifested in the radius of curvature, where increasing the strain increased the curvature. Upon 
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further heating to temperature above both the epoxy Tg and fiber Tm, the sample recovered back 

to its original flat 2D shape and length, as was expected of a shape memory polymer.  

In addition to the bending behavior of the composite, mechanical programming of a twist 

was also achieved. Twisting of the bilayer composite was the result of orienting the cross-ply 

fiber arrangement 45 relative to the long axis of the sample. The twist shape was mechanically 

programmed in the same manner described above for the bend shape, and remained dormant 

until heat exposure. Upon thermal activation, the top and bottom lamellar residual stresses were 

relieved in opposing orthogonal directions, thus forming a twist.
28

 Additional angles were also 

investigated (Figure 6-6), where an angle between the 90 and 45 relative to the long axis of the 

sample showed an evolving shape hybrid of a bend and twist, revealing the potential for other 

complex shapes such as helices or combinations of bends and twists, which will be further 

studied in the future. Although not investigated in this study, we surmised that the handedness of 

the twist can be switched by mirroring the cutting angle of the cross-ply relative to the sample 

dimensions. 

The reversible actuation behavior of the mechanically programmed geometries was 

achieved by incorporating additional internal stresses into the anisotropic bilayer composite 

during fabrication. More specifically, external compressive forces, as defined by CF (Eqn. 6-1), 

were imposed on the fibrous laminae by increasing the clamping force used to construct the 

composite (Scheme 6-4). A slip condition between the PCL fiber/epoxy monomer liquid 

assembly and the mold surfaces was evident, facilitating stretching of the PCL fibers while the 

assembly was squeezed and prior to the crosslinking reaction. Furthermore, we postulated that 

the residual stresses incurred during the epoxy crosslinking reaction likely contributed to 
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additional compression at the fiber interface due to chemical shrinkage.
29

 We hypothesized that 

the epoxy CTE was greater in the direction orthogonal to the PCL fibers, with no strong 

dependence on PCL melting or crystallization. These combined effects on the fibrous phase 

promoted the internal stresses that served to further strain and align the percolating channels 

occupied by the fibers within the epoxy matrix. Consequently, the restricted geometry of these 

channels  likely supported the crystal orientation recovery, and may even serve as a template for 

oriented recrystallization during thermal cycling.
30

 Moreover, it has been reported in the 

literature that polymer crystal nucleation tends to proceed parallel to the surface of the substrate, 

which would be the strained anisotropic channels, in our case.
31

 We attributed the cyclic melting 

and cooling of the PCL crystalline domains within the anisotropic channels as driving the 

actuation, where upon melting of the PCL crystals, directional contraction occurred, whereas 

during cooling, the confined recrystallization induced anisotropic expansion. This 

recrystallization within conflicting pathways among the bilayers led to reversible restoration of 

the mechanically programmed bend or twist observed in the non-actuating samples above.  

The concept of reversible actuation directed by anisotropic crystallizable domains was 

previously investigated by Behl et al. in semicrystalline copolymers exhibiting very broad 

melting transitions (~Tm over 65 C);
32

 however, in contrast to our system, the actuation in 

those copolymers was controlled by polymer chain expansion during melting and contraction 

during crystallization. Bothe et al., on the other hand, developed a polyurethane elastomer that 

exhibited this very phenomena in the crystalline domains, which was applied to thermally 

triggered actuation.
33 

That system, however, was limited to simple bidirectional shape change 

and required thermomechanical training of the polymer before actuation can be stimulated. Other 
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examples using this type of driving mechanism use shape memory materials that are also limited 

to simpler shape changes.
34

 Unlike other systems, the PCL used in this composite was not 

crosslinked,
35

 and complete melting of the fibrous phase was established through exposure well 

above Tm. This provision further confirmed that partial melting was not driving actuation as had 

been observed in other crystallizable thermosets exhibiting reversible actuation.
36

 The reversible 

actuation for the PCL/epoxy composite was found to proceed over multiple cycles without 

diminishing curvature and appeared to be limited by the elected the number of testing cycles 

(Figure 6-12). Additional studies on the crystalline morphologies and actuation properties 

should be investigated in future work. 

6.6 Conclusions 

 In this work, mechanically programmable 3D shapes were produced by introducing 

anisotropy into an epoxy/PCL bilayer composite. These mechanically programmed shapes 

remained dormant until thermally triggered. The prominence of these shapes depended on the 

magnitude of the imposed strain used to program these shapes. We also demonstrated reversible 

thermal actuation of the composite between its equilibrium and mechanically programmed 

shapes around the PCL melting transition. This actuation behavior was activated upon the 

increase of stored stresses of the fibrous phase imparted during composite fabrication. We 

hypothesized that this actuation was driven by the melt-induced expansion and oriented 

recrystallization generated contraction of the PCL crystalline domains within the composite. 
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Scheme  6-1.  The chemical structures of the epoxy components and PCL used to fabricate the 

PCL/epoxy composite. 
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Scheme 6-2.  Fabrication of the bilayer anisotropic epoxy-PCL composite by (A) first 

electrospinning aligned PCL fibers followed by (B) infiltration of aligned PCL fiber mats in the 

cross-ply(0) orientation. 
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Scheme  6-3. Method for controlling clamping force by varying the spacer thickness during 

epoxy/PCL composite fabrication. 
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Scheme 6-4. Various cutting angles (top row) of rectangular samples (bottom row) used to 

mechanically program 3D shapes. The blue lines correspond to the fiber direction of the top layer 

and the red lines were maintained on the bottom layer.  
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Figure 6-1. Representative SEM micrographs of the (A) aligned electrospun PCL fibers, (B) 

PCL/epoxy composite surface, (C) cross-section of the single-ply composite with fibers aligned 

longitudinally (0 to long dimension), (D) cross-section of the single-ply composite with fibers 

aligned perpendicular (90 to long dimension), and (E) cross-section of the cross-ply(0) bilayer 
composite. The micrographs in (B) – (E) were visualized following removal of the PCL phase. 
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Figure 6-2.   DSC thermograms of (A) the crosslinked epoxy using different relative weight 

fractions of DGEBA and NDGE, and (B) the PCL/epoxy composite and its individual 

components. 
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Table 6-1.  Thermal transitions of the different crosslinked epoxy formulations, the epoxy/PCL 

composite and the electrospun PCL component. All measurements were taken from the second 

heating cycle. NM denotes not measured and N/A means not applicable. 

 

Formulation Target T
g
 (C) T

g
 (C)  T

m
 (C) 

D55N45D230 45 38.2 N/A 

D48N52D230 40 31.9 N/A 

D41N59D230 35 27.2 N/A 

D41N59D230_PCL (Cross-ply(0)) 35 27.9 55.7 

Electrospun PCL N/A NM 56.1 
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Figure 6-3.  Thermomechanical characterization of the D41N59D230 epoxy/PCL cross-ply(0) 

composite fabricated using a compression factor of 1.1 showing (A) the storage modulus and (B) 

the loss modulus and tan delta. 
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Figure 6-4.  Triple shape memory quantification of the epoxy/PCL composite (A) single-ply 

with fibers oriented parallel to the uniaxial strain (0), (B) single-ply with fibers oriented 

perpendicular to the uniaxial strain (90), and (C) the cross-ply(0) bilayer composite. The 

annotations denote the first fixed shape (F1), second fixed shape (F2) and the recovered shape 

(R). 
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Table 6-2.  Fixing and recovery ratios for the triple shape memory quantification of the 

epoxy/PCL composite as single-ply with fibers oriented parallel to the uniaxial strain (0) or  

perpendicular to the uniaxial strain (90), and the cross-ply(0) bilayer composite. 
 

 

Sample R
f,1

 (%) R
f,2

 (%) R
r
 (%) 

0 Fiber Alignment (Single-ply) 99.8 99.6 79.0 

90 Fiber Alignment (Single-ply) 90.8 97.1 87.4 

Cross-ply(0)  (Bilayer) 92.8 95.6 87.8 
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Figure 6-5.  Example of mechanical shape programming sequence with shape recovery (shown 

for the cross-ply(0) composite)., where 0 refers to the layer containing longitudinally oriented 
fibers. 
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Figure 6-6. Various fiber orientations between the top and bottom fibrous phases within the 

composite and resulting shapes. (Row A) original shape with fiber orientation depiction (blue = 

top layer/red = bottom layer) (Row B) and original shapes (Row C) temporary fixed shape 
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Figure 6-7. Effect of strain during mechanical shape programming on the cross-ply(0) 

composite. 
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Figure 6-8. DSC thermograms for epoxy/PCL cross-ply(0) composites fabricated using different 

compression factors. 
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Table 6-3. Thermal characterizations for epoxy/PCL composites fabricated using different 

compression factors. NM denotes not measured and N/A means not applicable. 

 

Compression Factor Tg (C) Tm (C) H (J/g) Amount of PCL (%) 

0.29 27.8 55.6 1.8 4% 

1.12 27.9 55.7 7.6 15% 

2.60 29.5 55.7 13.7 28% 

Epoxy 27.1 N/A N/A N/A 

PCL Fibers NM 56.1 49.7 100% 
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Figure 6-9.  Upon increasing the compression factor (CF) of the fiber mats within the 

composites, the samples begin to immediately change shape when strips are cut from the parent 

composite batch. The fiber orientation is depicted such that the blue vertical lines are the top 

layer and the red horizontal lines indicate the bottom layer)  
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Figure 6-10. Stress-free strain of single-ply oriented epoxy/PCL composites in response to 

heating and cooling for fiber alignment oriented (A) longitudinal and (B) perpendicular to the 

long axis. 
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Figure 6-11. Actuation behavior of the epoxy/PCL bilayer composites upon thermal cycling with 

the cross-ply(0) sample showing the (A) testing set-up and (B) magnification of the samples 

during actuation. 
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Figure 6-12. Actuation behavior of the epoxy/PCL bilayer composites upon thermal cycling with 

the cross-ply(45) sample showing the (A) testing set-up and (B) magnification of the samples 

during actuation. 
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Figure 6-13. (A) Curvature of the cross-ply(0) bilayer epoxy/PCL composite after 10 

consecutive actuation cycles for the shape at room temperature (cooled) and the shape upon 

heating. (B) Representative photos of the shape change under cooling (left column) and heating 

(right column) conditions. The curvature of the heated activated shape was opposite to that of the 

cooled shape, as indicated by the negative curvature value. 
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Chapter 7   

Conclusions & Future Work 

 

7.1 Overall Conclusions  

 This dissertation examined the design, development and characterization of electrospun 

shape memory polymeric composites with tailorable properties for various applications. Several 

features were designed into these composites including one way shape memory, controlled drug 

delivery, reconfigurable shape memory, degradation, latent mechanical programming and 

reversible actuation.  

 In Chapters 2 and 3, a drug molecule was combined with PCL and then electrospun into 

fibers that were then embedded within a PDMS matrix. The in vitro controlled release 

characteristics of two different hydrophilic drugs in PBS under physiological conditions were 

investigated. In both chapters, the addition of the PDMS elastomer served to control the initial 

burst release as well as extend and improve overall drug release. Chapter 2 demonstrated 

controlled release of a hydrophilic model drug, Rhodamine B, and it was ascertained that the 

crystallinity of the fibers had a greater effect on the drug release than did the size of the fibers, 

such that the crystallization mechanism guided drug release. We attributed this behavior to phase 

separation of the hydrophilic drug within the hydrophobic PCL fiber that either expelled the drug 

to the fiber surface during fiber formation or toward the fiber core during post-electrospinning 

crystallization. Furthermore, we postulated that the addition of the PDMS elastomer displaced air 

occupying the voids within the fiber mats, thus enabling further release of buried drug due to 

additional aqueous contact with the fibers. The tensile mechanical properties of this composite 
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demonstrated usefulness for soft material applications owing to its elasticity, low modulus, and 

multi-stage load bearing response typically associated with native soft tissues. 

 Encouraged by the results in Chapter 2, the work in Chapter 3 extended the 

development of the PCL/PDMS composite for use as a small diameter synthetic vascular graft. A 

nitric oxide (NO) releasing donor compound was added to the PCL fibrous phase and controlled 

release of NO was demonstrated for over ten weeks. Here, it was observed that increasing the 

concentration of the hydrophilic NO donor molecule reduced drug release on a percentage basis, 

which we attributed to the phase separation effect between the drug and the PCL fiber carrier. 

This composite exhibited good suture retention characteristics that were comparable to native 

blood vessels, and a burst pressure strength that exceeded commercially available options. The 

NO-releasing composite also demonstrated good cytotoxicity when using a reduced 

concentration of the tin catalyst employed to crosslink the PDMS matrix, with no impact on the 

tensile mechanical properties. The addition of the NO donor compound counteracted both the 

catalytic activity and cell toxicity caused by the catalyst. The NO-releasing composite also 

promoted significant endothelial cell migration, which was revealed using an in vitro chemotaxis 

assay. We expect that this composite material is a good candidate for blood vessel prosthetics 

such as AV or bypass grafts where long term mechanical and anti-thrombogenic properties are 

desired. 

 In Chapter 4, a new shape memory composite was developed by substituting the PDMS 

component with a crosslinked PAH to make a fully degradable and biocompatible composite. 

We determined that coupling these materials in this manner gave rise to reconfigurable shape 

memory such that the original shape can be permanently altered due to dynamic covalent 
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exchange between the anhydride groups. The use of a PCL thermoplastic urethane enabled one 

way shape memory to be implemented without interference with the permanent reconfiguration 

programming, owing to its relatively low melting point. Additionally, since shape memory 

occurs at physiological temperatures, the potential exists for many biomedical applications such 

as degradable implants with deploying mechanisms, self-healing applications, and dynamic 

surfaces for tissue engineering. 

 The degradation properties of the reconfigurable composite developed in Chapter 4 were 

explored in Chapter 5, where two different electrospun fiber compositions were separately 

embedded in crosslinked PAH. The degradation of the polyanhydride matrix was dependent on 

the composition of the fibrous phase, where erosion proceeded more rapidly when the composite 

contained the more hydrophobic PCL fibers compared to hygroscopic, amorphous PVAc, since 

PVAc competed with the degrading PAH for water. The presence of a fibrous structure 

infiltrating through the PAH film altered the erosion dynamics from heterogeneous to 

homogenous. PAH continued to remain on the fibers as a protective sheath for both composite 

compositions. It was determined that the PVAc fibers were plasticized by the PAH, which 

remained in the fibers, and this resulted in prolonged degradation and enhanced the duration of 

sustained drug delivery of hydrophilic model drug Rhodamine B. The drug releasing properties 

of this composite would be advantageous for infection management following surgical 

intervention or minimizing thrombosis on the surface of an implant. This composite possesses 

tailorable degradation, reconfigurable shape memory, controlled drug release, and long-term 

shape retention and can thus provide an enabling technology with broad biomedical applications 

such as smart implants and tissue engineering scaffolds. 
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 Lastly, in Chapter 6, mechanically programmable 3D shapes were produced by 

introducing anisotropy into an epoxy/PCL bilayer composite. These mechanically programmed 

shapes remained dormant until thermally triggered. The distinction of these shapes depended on 

increasing the magnitude of the imposed strain used to program these shapes. Reversible thermal 

actuation of the composite was also demonstrated between its equilibrium and mechanically 

programmed shapes around the PCL melting transition. This actuation behavior was activated 

upon the increase of stored stresses of the fibrous phase imparted during composite fabrication. 

We hypothesized that this actuation was driven by the melt-induced expansion and oriented 

recrystallization-generated contraction of the PCL crystalline domains within the composite. The 

new composite materials can have broad applications in artificial muscles, hinges, sensors, and 

robotics. 

7.2 Future Directions  

7.2.1 Shape Memory Elastomeric Composite with Controlled Drug Release of a Hydrophilic 

Drug Model 

 The drug releasing SMEC system developed and characterized in Chapter 2 focused 

only on release of a hydrophilic model drug. This particular composite system lends itself well to 

studying other types of drug molecules by mixing with PCL prior to electrospinning. The drug 

releasing capabilities of this composite can be expanded to include release of other water-soluble 

drugs with varying hydrophilicities such as acetaminophen, an anti-inflammatory agent. 

Additional work can also be conducted using hydrophobic drugs such as dexamethasone and 

ketoprofen, both of which are useful anti-inflammatory agents. Even more interesting would be 

the ability to release two drugs, each with independent release. This can be achieved by co-
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spinning two PCL solutions, each containing a different drug followed by imbibing with the 

siloxane matrix. This approach would promote controlled mixing of the drug populations and 

even mediate gradient concentrations through the fiber mat cross-section. For example, a 

combination of two anticancer drugs, doxorubicin hydrochloride and paclitaxel can provide an 

enhanced therapeutic effect.
1
 We anticipate slower or more incomplete release of hydrophobic 

drugs in the PCL/PDMS composite due to the greater solubility between the drug and the 

composite materials. To account for this, the hydrophilicity of the fibrous phase can be adjusted 

by substituting with electrospun PCL copolymerized with poly(ethylene glycol) (PEG) and a 

chain extender to create a PCL-PEG multi-block copolymer thermoplastic polyurethane (TPU). 

This TPU has been previously developed in the Mather Research group for shape memory.
2
 PEG 

is a widely studied hydrophilic biocompatible polymer that can be used to conduct a series of 

PCL-PEG compositions with gradually increasing PEG content until a desired drug release rate 

is reached. Considering that PEG is also crystalline, competing crystallization patterns between 

PCL and PEG may yield interesting interactions with the encapsulated drug than was reported in 

Chapter 2. Furthermore, more than one fibrous composition can be co-spun such that 

differences in hydrophobicity would gate drug release such that in the case of a single drug, one 

polymer can provide immediate drug release while the other can engage in late stage drug 

release. 

 Alternatively, co-spinning of PCL with Pellethane 5863−80A (Lubrizol), an aromatic 

polyether thermoplastic polyurethane elastomer could allow for a variety of drug releasing 

options. This SMEC was previously developed for its shape memory properties, however, drug 

release was not studied.
3
 Here, Pellethane would replace PCL as the fibrous phase while 
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electrospun PCL would become the matrix following hot pressing the fiber mat above the PCL 

melting transition. Some initial work was conducted that supported the feasibility of this system, 

as shown in Figure 7-1, where controlled release of RhB was observed. Additional work is 

required to study the weight fraction, microstructural and morphological effects of this 

composite composition in comparison to the PDMS-based one. Pellethane was determined to 

absorb considerably more water than PDMS, as shown in Figure 7-2. As such, we expect that 

RhB release would be quicker; however, the crystalline PCL matrix could counter that quicker 

release by providing a physical barrier to water uptake to the Pellethane channels due to its poor 

water absorption properties. In a separate study, the drug can be added to the Pellethane phase 

rather than the PCL matrix. Additionally, another way to combine Pellethane with PCL would be 

by coaxial electrospinning of these polymers, which to our knowledge, has not been done before. 

In this arrangement, PCL can contain RhB and serve as the core that is encapsulated in a 

Pellethane sheath, rather than in a non-porous matrix. Beyond drug release, this composite 

morphology can potentially lead to interesting mechanically properties since it would retain a 

fully fibrous format and thus be a good candidate for tissue engineering applications.  

7.2.2 Nitric Oxide Releasing Shape Memory Elastomeric Composite for Vascular Graft 

Applications 

 The application of the drug release SMEC system in Chapter 2 was also studied specific 

to vascular graft development. As suggested in Section 7.2.1, dual spinning of an additional 

fibrous population containing another drug can yield some useful effects. Specific to this 

endeavor, other drugs shown to aid in preventing thrombosis such as heparin or an antiplatelet 

agent such as aspirin can be electrospun in combination with electrospun DETA-NO/PCL or 
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similar material to extend drug release benefits. Aspirin has been studied for this application in 

combination with electrospun PCL and demonstrated a promising reduction in  platelet adhesion, 

however, the effect was short term of up to ~ 2 d.
4
 Additional application specific evaluations 

could be considered for the DETA-NO/PCL/PDMS composite such as hemocompatibility 

assessment. An initial study was conducted in collaboration with Dr. Eric Finkelstein and REU 

student Emily Mihalko. PCL/PDMS samples both with and without DETA-NO were placed in 

contact with whole human blood and the clotting time and hemolysis assays were evaluated 

according to established protocols.
5
 Figure 7-3 reveals promising results, where the NO 

releasing samples showed a slight reduction in clotting compared to the control groups. This 

work can be expanded by adjusting the DETA-NO concentration and conducting a platelet 

adhesion assay according to methods prescribed in the literature.
6,7

 Lastly, further optimization 

of the in vitro chemotaxis study in Chapter 3, can be conducted utilizing a co-culture of both the 

smooth muscle cells and endothelial cells to better simulate in vivo conditions and capture any 

synergistic effects between the two cell populations and NO releasing materials. Also, 

considering that NO is a natural antimicrobial, the antimicrobial activity of the NO-releasing 

PCL/PDMS composites can be studied to assess the infection resistant potential of this 

composite.
8
 

7.2.3 Anhydride-Based Reconfigurable Shape Memory Elastomeric Composite 

The results in Chapter 4 indicated that the reconfigurable nature of the PAH anhydride 

groups may be exploited for developing re-moldable thermoset materials and self-healing of 

cracks or fractures through heating of select PAH surfaces. Figure 7-4A shows the potential of 

remolding crosslinked PAH cubical pellets into a larger object. This was accomplished by 
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applying a force and heat above the reconfiguration temperature in a mold substrate. Additional 

work to further this concept would include optimizing the molding process to improve the 

moldability of small features as well as characterization of the material properties following 

molding. Similarly, in Figure 7-4B, the PAH/PCL Re-SMEC exhibited similar abilities, with the 

ability to be recycled following grinding into a film. The resulting morphology would no longer 

contain percolating fibers. The newly blended, molded material morphology would need to be 

investigated alongside the post-molding mechanical and shape memory properties. The effect of 

the volume fraction of PCL should be determined, where it is anticipated that an upper limit 

could be reached such that the presence of PCL may interfere with shape memory if the PAH 

continuity through the sample volume is significantly disrupted. Figure 7-5 further shows 

healing potential of a composite containing PAH, where two fragmented pieces of the PCL/PAH 

composite are repaired following coupling of the pieces under pressure and heat. The reverse 

plasticity shape memory should be quantified and optimized by varying the relative fractions of 

the composite constituents or composition of the fibrous phase. Additionally, the shape memory 

of an embossed surface can be studied to determine the minimum resolution and its dependence 

on the PAH fraction in the composite. The degradability of an embossed feature in the surface 

may be useful for studying cell-material interactions under dynamic surfaces or even altered drug 

releasing properties through the increased macroscopic surface areas. 

7.2.4 Biodegradable Shape Memory Elastomeric Composites with Controlled Model Drug 

Release of a Model Drug 

Additional degradation work can be conducted to complete the degradation of the 

PCL/PAH composite through enzymatic degradation of PCL, which would also liberate any 
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remaining drug molecules. The substitution of Pellethane as the fibrous phase in combination 

with the PAH matrix could prompt a different type of shape memory effect in a fully elastomeric 

composite. Specifically, the PAH matrix can be used to fix a temporary shape through the 

thermally reconfigurable bond exchange mechanisms, while the Pellethane fibers would serve to 

remember the original/permanent shape. Shape recovery would then proceed by degradation of 

the PAH using methods described in Chapter 5. A feasibility study was conducted, in 

collaboration with Tackla S. Winston, that revealed the possibility of this type of shape memory, 

as depicted in Figure 7-6, where a rectangular strip of electrospun Pellethane imbibed by PAH 

was shaped into a curl and the original flat geometry was recovered following degradation of the 

PAH matrix. While immersed in PBS at 37 C, the curled shape unfolded back into the 

rectangular strip within 24 h, while the composite visually reverted to the original opaqueness of 

the electrospun Pellethane fiber mat. SEM of the degraded composite verified the preservation of 

the Pellethane fibrous morphology as well as the absence of the PAH matrix following a 24 h 

degradation induced shape recovery cycle. Additional work to complete this investigation 

includes quantification of a temporary shape over degradation time (i.e. radius of curvature 

evolution for a curled shape), effect of fiber volume fraction, mechanical and thermal 

characterizations as well as thermomechanical quantification of the new composite and 

controlled drug release can be explored. We also anticipate that quick drug release for a 

hydrophilic drug would occur due to the combined effects of PAH degradation and the greater 

water absorption properties for Pellethane, as described in Section 7.2.1. 
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7.2.5 Latent Mechanical Programming of a Shape Memory Composite with Reversible 

Anisotropic Actuation 

 The programmed shapes studied in Chapter 6 were fabricated using a bilayer composite 

containing a cross-ply orientation that was varied relative to the direction of mechanical strain. 

Future work can include varying the orientations of the fibers with respect to each other as well 

as combining additional anisotropic lamina for multilayer composites with a goal of producing 

latent programming of complex shapes.  Complex shapes can also result from gradient 

mechanical programming of the bilayer composites at different orientations. With the innate 

delayed shape triggering only activated by temperature, a temperature gradient can also be 

introduced such that the hotter end of a strip will express a tighter curl or twist that would 

gradually decrease in magnitude until it reaches the position below the thermal activation 

temperature. Since the epoxy/PCL composite is a tough material (Appendix A1), it has the 

potential to apply a force and manipulate an external object such as by pushing or lifting. We 

would expect the direction and range of motion to depend on the programmed shape. Figure 7-7 

demonstrates the ability of a flat strip to lift a 20 mm x 20 mm glass cover slip upon thermal 

activation into the bend shape. Further studies are needed to quantify the mass ratio limit that this 

composite can displace an object and the ability to tune that limit. Moreover, the thermally 

reversible actuation mechanisms can also be engaged to manipulate external objects. The 

development of more complex shapes as described above will also enable more complex 

actuation movement. Lastly, the shape dependence on the fiber orientations and mechanical 

programming can be modeled to predict the resulting shapes. 
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Figure 7-1. Cumulative release of RhB from PCL/Pellethane composite. RhB diffusion 

originated from the PCL matrix. 
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Figure 7-2. Water uptake comparison between electrospun Pellethane and crosslinked silanol-

terminated PDMS film following 24 h immersion in water. Sample size of three per group was 

used. The water uptake was calculated by dividing the difference in the mass of the wet and dried 

samples by the mass of the dried sample. 
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Figure 7-3. Results of hemolysis assay showing (A) photos of human blood clot formation over 

time comparing blood exposure to no samples (blood alone), the PCL/PDMS composite without 

drug, and the DETA-NO/PCL/PDMS composite, and (B) lysate absorbance values from the 

clotting assay. 
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Figure 7-4. Feasibility of remolding PAH-based materials following grinding. (A) A crosslinked 

PAH film is cut into small cubes that are then compression molded into a single object, and (B) 

the PAH/PCL composite is grinded and then compression molded into a film. 
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Figure 7-5. Healing potential of the PAH/PCL composite. A rectangular sample is fragmented 

into two pieces and then repaired back into a single piece following applying heat and pressure to 

the fractured surfaces under constant contact. 
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Figure 7-6. Sequence for attaining degradation-induced shape recovery for the electrospun 

Pellethane fibers imbibed in PAH composite showing: (A) original shape, (B) arbitrarily 

thermally programmed shape, (C) degradation of the newly shaped composite (D) recovery of 

the original shape following PAH matrix degradation, and (E) retention of fibrous morphology 

following degradation of the PAH matrix. 
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Figure 7-7.  Time-lapsed mechanically programmed displacement of an object by the 

anisotropic PCL/epoxy composed of oriented PCL arranged orthogonally. A rectangular strip 

was topped with a glass cover slip and placed on a hot plate at 45 C. As the mechanically 
programmed shape was thermally activated, the sample began to curl and lift the glass slide in 

under 30 s. The schematic above demonstrates the thermally activated sequence of free-standing 

object displacement by the sample shown below. 
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Appendix 1 

Properties and Ballistic Performance of Epoxy-Based  

Thermoset-Thermoplastic Composites 
 

A1.1 Background       

An epoxy/(poly(ε-caprolactone) (PCL) composite previously developed by the Mather 

research group for triple shape memory properties has the potential to provide suitable 

mechanical properties with self-healing ballistic damage.
1-3 

We contemplated that the addition of 

the more ductile, semicrystalline PCL phase to a brittle epoxy matrix may support energy 

dissipation during high strain rate impact, thus improving fracture resistance. Moreover, the 

temperature dependent moduli of this composite can be tuned through facile adjustment of the 

glass transition temperature of the epoxy phase was considered a practical utility.  We were 

interested in studying the method of integrating PCL into the epoxy matrix as it can institute 

profoundly diverse structural characteristics. Given these possibilities, we were motivated to 

study the effect of varying the microstructural properties of the epoxy/PCL composite by altering 

the formulation and fabrication scheme such as by polymerization-induced phase separation 

(PIPS) or fibrous PCL coupled with epoxy imbibing. 

A1.2 Experimental Methods 

Materials 

Poly(ε-caprolactone) (43,000 – 50,000 g·mol
–1

) was purchased from Polysciences. 

Jeffamine D230 was purchased from Huntsman. Diglycidyl ether of bisphenol A (DGEBA) and 

neopentyl glycol diglycidyl (NDGE), poly(propylene glycol) bis(2-aminopropyl ether) 
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(Jeffamine® 230), tetrahydrofuran (THF), and dimethylformamide (DMF) were purchased from 

Sigma Aldrich. All materials were used as received.  

 

Fabrication of Polymerization-Induced Phase Separation (PIPS) Composite 

The mass ratios of the epoxy components were calculated according to a targeted glass 

transition temperature guided by the Gordon Taylor relation and prior model-fitting for this same 

system.
2
 The Jeffamine D230 was calculated for stoichiometric equivalence of amine protons 

(four per D230 molecule) and epoxide rings (two each for DGEBA and NGDE). The PIPS 

composite was prepared by first melting DGEBA at 80 C in an isothermal oven and combined 

with NDGE and PCL in a three-neck flask. The components were then stirred using an overhead 

motorized mixer (~150 rpm) at 60 C under a nitrogen purge until a homogenous transparent 

mixture was observed. This was followed by degassing of the mixture under vacuum before 

cooling to 40 C under continuous stirring. At this stage, the Jeffamine 230 was added and 

allowed to continue stirring under vacuum until homogenous, for approximately 10 min. The 

mixture was then immediately casted in stainless steel molds (6 in. x 6 in. x 0.25 in.) previously 

treated with Frekote 55NC release agent and pre-heated to the selected cure temperature; this 

was immediately followed by degassing under vacuum. The epoxy/PCL mixture was then cured 

at either 80 C for 4 h, 90 C for 4 h, 100 C for 4 h, 130 C for 2 h, 150 C for 30 min. All 

batches were then post-cured at 120 C for 2 h followed by 150 C for 2 h. The nomenclature 

used herein to refer to the PIPS formulation is DXNYD230/PCLMWk(Z), X and Y summing to 

100. This describes the weight fraction of DGEBA relative to NDGE as DX, and NDGE as NY. 

The designation “D230” denotes the Jeffamine 230 crosslinker. The terms “MW” and “Z” denote 



 283 

the molecular weight and wt% of PCL relative to the epoxy. For example, 

D41N59D230/PCL45k(20) refers to crosslinked epoxy synthesized using 41 wt% DGEBA, 59 

wt% NDGE and 20 wt% PCL. The chemical structures are presented in Scheme A1-1. 

 

Fabrication of Laminated Electrospun PCL/Epoxy Composite 

 PCL fibers were electrospun (Scheme A1-2A) using a customized electrospinning system 

(Spraybase®, Profector Life Sciences, Dublin, Ireland). A 35 w/v % solution was prepared by 

dissolution of PCL in THF:DMF (4:1) and then transferred to the syringe ejection system 

equipped with three emitters, each fitted with blunt 22G needle tips. The needle tips were 

adjusted to a distance of 7 cm from the receiving drum and the PCL was electrospun at a rate of 

1 ml h
-1

 onto the drum rotating at 250 rpm with an applied voltage of 6.5 kV. Following 

electrospinning, the fiber mats were dried at room temperature under vacuum overnight to 

remove any residual solvents. The dried fiber mats were then cut into two squares of 5.375 in. x 

5.375 in. and separately imbibed with an epoxy monomer mixture prepared using 55 wt % 

DGEBA, 45 wt % NDGE and stoichiometric Jeffamine D230 (described above), followed by 

exposure to vacuum at room temperature to complete infiltration of the monomer within the fiber 

mats by air removal (Scheme A1-2B). Excess monomer was manually removed from the 

surfaces and the two fiber mats were superimposed and fitted in an unheated stainless steel 

molds (6 in. x 6 in. x 0.25 in.) pre- treated with Frekote 55NC release agent. The sample was 

cured then at 40 C for 48 h (below PCL melting transition) followed by a post cure of 90 C for 

24 h.  
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Cryogenic Treatment 

 Small-scale samples for x-ray diffraction and thermal characterizations were 

cryogenically treated by exposure to -60 C for 5 min. Larger samples prepared for ballistics 

testing were cryogenically treated to induce crystallization of the PCL phase by placing in a 

freezer at -30 C, which is above the PCL glass transition temperature, for approximately 72 h.  

 

Scanning Electron Microscopy (SEM) 

 The morphology of the various formulations and cure conditions were assessed using 

SEM. All samples were sputter-coated (Denton Desk-5) with gold-palladium for 45 s using a 

current of 45 mA. A Hitachi S-4700 SEM was used to visualize the surfaces using an 

accelerating voltage of 1.0 kV. ImageJ software (version 1.46r, National Institutes of Health) 

was used to measure PCL fiber diameter. Fiber diameter measurements were determined by 

taking a minimum of 50 measurements at five different sites. The average diameter and standard 

deviation were calculated using a minimum of 250 total measurements. 

 The cross-sections of the samples were obtained by cryogenically fracturing then solvent 

removal of the PCL phase from the composite. A dogbone shaped sample was prepared and 

immersed in liquid nitrogen followed by fracturing of the narrow section. The cross-section 

surface was then treated with THF overnight to remove the PCL phase by molecular dissolution.  

 

Thermal Characterization 

 Differential scanning calorimetry (DSC) was performed using a Discovery DSC 

manufactured by TA Instruments, Inc. Samples weighing 2.5 – 4.0 mg were sealed in Tzero 

aluminum pans and heated and cooled from -60 C to 120 C at 10 C ∙ min
-1

 for each cycle. 
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Thermomechanical Characterization 

 A TA Instruments Q800 dynamic mechanical analyzer (DMA) was used in the 

multifrequency strain mode to measure the storage and loss moduli and tan delta. Samples were 

cut into rectangular strips, maintaining a 5:1 ratio of length to width. All samples were first 

cooled to -60 C and held isothermally for 5 min followed by heating at 3 C min
-1

 to 100 C. 

 

X-Ray Diffraction 

 The crystalline structural properties of the composites were studied using both wide angle 

and small angle x-ray scattering (WAXS and SAXS). Wide-angle (WAXS) and small-angle 

(SAXS) x-ray scattering experiments were conducted to ascertain the molecular and nano-scale 

ordering and orientation of the various crosslinked polymeric samples. For this purpose, a 

Rigaku S-MAX3000 pinhole camera system was utilized, with a Micromax-007HF rotating 

anode source operating with Cu Kα emission (λ = 1.5406), voltage of 40 kV and current of 20 

mA. Wide-angle scattering patterns were collected at a sample-detector distance of 117 mm, as 

calibrated using corundum (NIST SRM 676a) and using Fujifilm image plates (CR HR-V) with a 

Raxia-Di Image Plate reader at a scan resolution of 100 μm. Small angle scattering patterns were 

collected at a sample-detector distance of 1525 mm, as calibrated using silver behenate, on a 2D 

Multiwire Area Detector. Exposure times were 900 s for WAXS patterns and 600 s for SAXS 

patterns. 
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Ballistics Testing 

 Ballistic testing was conducted according to a previously established protocol.
4
 The 

sample was cut into squares of 62.5 mm x 62.5 mm x 6.4 mm (total of 12 per test group) and 

clamped between two aluminum plates with a circular aperture diameter of 50.8 mm. A witness 

plate composed of aluminum foil with a 0.0108 mm thickness was placed at a distance of 50.8 

mm behind the target. A stainless steel ball bearing (Type 302) with a diameter of 5.56 mm and a 

mass of 0.69 g was discharged from a 22 caliber gas gun. The speed of the projectile was 

measured using a Doppler radar (BR-3502, Infinition, Inc.). Ballistic failure was defined as 

either when the projectile or a fraction of the sample penetrated the witness plate; therefore, 

ballistic failure can manifest without projectile penetration. The impact velocities were recorded 

and used to calculated the V50 ballistic limit, which represents the projectile velocity at which 

there is a 50 % probability for target failure. This value was calculated by taking the average of 

the top three highest passing and lowest failed impact velocities. The kinetic energy was then 

calculated from the V50 value (KE = 0.5 m 𝑉50
2 , where m is the mass of the projectile) and is 

reported.  

A1.3 Preliminary Results 

The morphological effect of increasing the PCL concentration in the PIPS blend 

composite was examined in Figure A1-1.  At PCL concentrations of 20% and below, the 

microstructure comprised of a percolating epoxy rich matrix with regularly dispersed PCL 

droplets, which appeared to generally increase in diameter as the PCL fraction was increased. 

This microstructure was substantially altered when the PCL concentration was increased to 25 

%, where the morphology of both phases became heterogeneous such that both the PCL and 
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epoxy mutually formed droplets and interconnected capillaries.  At 30 % PCL, the epoxy 

transitioned into regularly dispersed spheres embedded within a continuous PCL matrix.  

A cure study was conducted by varying the initial curing profile and maintaining the 

same post-cure conditions and formulation (D55N45D230/PCL45k(20)). The resulting PIPS 

composites exhibited increasing optical clarity as the cure temperature was increased, with 

apparent translucence occurring for cure temperatures of 100 C to 150 C (Figure A1-2).  Cure 

temperatures greater than 150 C resulted in visual degradation of the samples and were not 

studied further. This change in opacity was accompanied by a shift in morphology shown in 

Figure A1-3, from a distinct two phase microstructure containing spherical particles, which then 

appeared to coalesce when the cure temperature was increased to 100 C and above. At higher 

cure temperatures, the morphology was smooth and homogenous, with no clear difference 

between curing at 130 C and 150 C. This was suggestive of PCL arrest in the amorphous state 

during higher epoxy crosslinking temperatures.  This postulation was further supported by the 

thermal analyses in Figure A1-4, where PCL was markedly more crystalline for the cooler 

curing conditions below 100 C; this microstructural state persisted even pursuant to a second 

heating cycle (FigureA1-4C), where the melting endotherm was substantially smaller and 

broader for the amorphous PCL, asserting that PCL may be suppressed from fully recrystallizing. 

Consequently, we hypothesized that a more aggressive crystallization protocol would enable 

PCL recrystallization and initiate nanoscale domains for high performance impact protection. A 

cure temperature of 130 C was thus selected for further study due its ease of fabrication and 

reproducibility, with no significant difference in properties compared to the composite cured at 

higher temperatures. Figure A1-5 summarizes the thermomechanical analyses, exposing that the 
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glass transition temperature decreased as the curing temperature was increased. The target Tg was 

45 C, which was attained using the original cure profile (80 C). We attributed this 

plasticization effect to the highly dispersed PCL within the epoxy matrix, which while in an  

amorphous state, mediated greater epoxy chain mobility. 

Cryogenically treating the D55N45D230/PCL45k(20) PIPS samples cured at 130 C 

corroborated our hypothesis when a significant increase in crystallization materialized, as 

revealed by the DSC thermograms in Figures A1-6 and A1-7. This observation demonstrated 

high reproducibility across several synthesis batches. A comparison of the samples by WAXS 

(Figure A1-8) verified the amorphous nature of PCL at greater curing temperatures which then 

became more crystalline following cryogenic exposure by observing that the ring pattern 

becomes sharper and additional peaks are liberated in the scattering profile (Figure A1-9). The 

SAXS data in Figures A1-10 and A1-11 similarly confirm these elucidations, indicating long 

range order of the cryogenically induced PCL lamellae formation. 

The ballistic performance presented in Figures A1-12 and A1-13 was significantly 

improved by the addition of PCL to the epoxy matrix, in comparison to the neat epoxy, which 

resulted in complete penetration of the projectile with radial cracks. A comparison of the 

epoxy/PCL PIPS compositions showed that increasing glass transition, by addition of the 

aromatic diepoxide (DGEBA), aided in withstanding greater impact; however, this gain in KE50 

was also made by simply curing the composite at a higher temperature. Interestingly, these 

higher cure samples had a tendency to capture the projectile without crack initiation. The highest 

KE50 value (V50 of 293 m s
-1

) of this series was attained by the cryogenically treated, high cure 

sample, though this provided only a marginal improvement beyond the untreated samples. 
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Further investigation is warranted to gain additional insight into the fraction mechanism 

differences relative to the microstructural properties observed in this work. 

Lastly, a fiber reinforced epoxy matrix was prepared by combining two layers of 

electrospun non-woven PCL fibers within the crosslinked epoxy. The electrospun PCL fibers 

were randomly oriented with an average fiber diameter of 2.4 μm ± 0.8 μm (Figure A1-14) and a 

resulting thickness of ~ 2.8 mm. Preliminary ballistics testing conducted on a limited number of 

samples revealed complete penetration of the projectile with radial cracking and fragmental 

delamination between the fiber mats (Figure A1-15); we postulated that this failure was likely 

due to entrapped air pockets between laminae, which can be improved through optimization of 

the fabrication process. The estimated KE50 value was 16 kg m
2
 s

-2
 (based on a V50 ~ 215 m s

-1
), 

though more trials were needed to support this calculation. These results were a slight 

improvement over the neat epoxy samples, though not as resilient as those prepared by PIPS.  

A1.4 Conclusions & Future Directions 

 

In this work, the effect of the microstructural properties of an epoxy/PCL composite on 

ballistic performance was investigated. Increasing the weight fraction of PCL in the PIPS blend 

was shown to impart significant morphological changes. We determined that increasing the 

temperature of the cure of this epoxy/PCL PIPS composite affected optical clarity and 

considerably inhibited the formation of crystalline domains, while also having a plasticizing 

effect.  The addition of PCL to the crosslinked epoxy significantly improved ballistic 

performance, where samples formulated with a greater glass transition temperature, and those 

processed with highly dispersed PCL cryogenically induced crystallized domains showing 

greatest improvements. The ballistic results for electrospun PCL imbibed within crosslinked 
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epoxy were not as satisfactory as the blended samples; however, additional process optimization 

is merited. The thermally triggered self-healing of the blends can be studied to ensure 

preservation of mechanical properties following impact by a ballistics projectile. The cure effect 

described here can also be investigated for other PIPS formulations, with determination of 

rheological constraints. Transmission electron microscopy can be employed to examine the 

morphological transitions affected by curing parameters in greater detail. Finally, 

characterization of the mechanical properties such as tensile stress-strain and fracture toughness 

can be conducted. 
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Scheme A1-1.  Chemical structures used to synthesize epoxy-PCL composites. 
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Scheme A1-2.  (A) Electrospinning of PCL and (B) subsequent preparation of epoxy imbibed 

laminated PCL fiber mats . 
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Figure A1-1. Microstructure of varying PCL concentration in D
62

N
38

D230/PCL45k as revealed 

by SEM of both (A) as fabricated and (B) post-etching of PCL, for (i) 10 %, (ii) 15 %, (iii) 

20  %, (iv) 25 %, (v) 30 %. The scale bar represents 5 μm. 
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Figure A1-2. Photographs of cure temperature effect on appearance of D55N45D230/PCL45k(20)  

for an initial cure temperature  of (A) 80 °C, (B) 90 °C, (C) 100 °C, (D) 130 °C.   

  



 296 

 

 
 

Figure A1-3. Microstructure of D
55

N
45

D230/PCL45k(20) cross-sections as revealed using SEM 

for initial cure temperature  of: (A) 80 °C, (Bi) 90 °C, (C) 100 °C, (D) 130 °C, (E) 150 °C . The 

scale bar represents 50 μm. 

 

  



 297 

Temperature (
o
C)

-60 -40 -20 0 20 40 60 80 100

H
e
a
t 

F
lo

w
 (

E
x
o
 U

p
)

0.05 W/g

80
o
C

90
o
C

100
o
C

130
o
C

150
o
C

1
st
 Cool

10 
o
C / min

(A)

Temperature (
o
C)

-40 -20 0 20 40 60 80

H
e

a
t 

F
lo

w
 (

E
x
o
 U

p
)

80 
o
C 

90 
o
C

100 
o
C

130 
o
C 

150 
o
C 

0.2 W/g
10 

o
C / min

1
st
 Heat

D55N45D230_PCL45k(20)
(B)



 298 

 
 

 

Figure A1-4. DSC characterization of D55N45D230/PCL45k(20) at various cure temperatures 

demonstrating that PCL becomes more amorphous with increased cure temperature for the (A) 

first cool, (B) first heat, (iii) second heat cycles. 
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Figure A1-5. DMA characterization of D55N45D230/PCL45k(20) showing (A) the storage 

moduli, (B) loss moduli at various cure temperatures. The plot is (C) shows that the glass 

transition temperature decreased with increased cure temperature.  
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Figure A1-6. DSC first and second heat characterizations of D55N45D230/PCL45k(20) (A) 

before and (B) after cryogenic treatment and demonstrating reproducibility across synthesis 

batches. 
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Figure A1-7. DSC first cooling characterizations of D55N45D230/PCL45k(20) (A) before and 

(B) after cryogenic treatment and demonstrating reproducibility across synthesis batches. 
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Figure A1-8. Microstructure of D
55

N
45

D230/PCL45k(20) as revealed using WAXS for the 

composite (A) as-cured and (B) cryogenically treated, for an initial cure temperature of: (i) 80 

°C, (ii) 90 °C, (iii) 100 °C, (iv) 130 °C, (v) 150 °C.   
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Figure A1-9. WAXS diffractograms revealing crystalline peaks for the 

D55N45D230/PCL45k(20) the composite comparing both as-cured (black trace) and cryogenically 

treated (red trace), for an initial cure temperature of: (i) 80 °C, (ii) 90 °C, (iii) 100 °C, (iv) 130 

°C, (v) 150 °C.   
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Figure A1-10. Effect of post-cure cryogenic treatment of D
55

N
45

D230/PCL45k(20) as revealed 

using SAXS for the composite (A) as-cured and (B) cryogenically treated, for an initial cure 

temperature of: (i) 80 °C, (ii) 130 °C.   
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Figure A1-11. WAXS diffractograms comparing crystalline peaks for the 

D
55

N
45

D230/PCL45k(20) before and after cryogenically treatment. 
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Figure A1-12. Ballistic results of the D
55

N
45

D230 D
62

N
38

D230 formulations synthesized with 

and without 20 % PCL at two different cure temperatures. The cryogenically treated sample is 

also included for comparison.  
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Figure A1-13. Photographs following ballistic testing of D55N45D230/PCL45k(20) for cure at 

(A) at 130 °C, (B) 130 °C post-cryo, (C) 80 °C, and (D) untreated neat epoxy, cured at 80 °C. 
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Figure A1-14. SEM micrograph of  (A) electrospun PCL45k and (B) resulting fiber diameter 

distribution. 
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Figure A1-15. Photographs following ballistic testing of laminated epoxy/PCL composites 

prepared using electrospun PCL fibers for the same sample group with the reverse side of the top 

row shown in the bottom row. 
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