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Formal Verification of a Modern Boot loader ∗

Scott Constable Rob Sutton Arash Sahebolamri Steve Chapin
Department of Electrical Engineering and Computer Science

Syracuse University
Syracuse, New York, 13244-1200

Abstract

We introduce the Syracuse Assured Boot Loader Ex-
ecutive (SABLE), a trustworthy secure loader. A
trusted boot loader performs a cryptographic mea-
surement (hash) of program code and executes it un-
conditionally, allowing later-stage software to verify
the integrity of the system through local or remote
attestation. A secure loader differs from a trusted
loader in that it executes subsequent code only if
measurements of that code match known-good val-
ues. We have applied a rigorous formal verifica-
tion technique recently demonstrated in practice by
NICTA in their verification of the seL4 microkernel.
We summarize our design philosophy from a high
level and present our formal verification strategy.

1 Introduction

The United States Department of Defense Orange
Book defines the Trusted Computing Base (TCB)
of a computer system as the part of the computer
system “which contains all of the elements of the
system responsible for supporting the security pol-
icy and supporting the isolation of objects (code and
data) on which the protection is based” [15]. Hence,
on a typical x86 server the TCB or “trust bound-
ary” would encompass the hardware, firmware, boot

∗This research was supported in part by a subcontract
from Critical Technologies Inc., under United States Air
Force Research Laboratory (USAFRL) Information Direc-
torate prime contract #FA8750 13 C 0152, based upon US
Department of Defense (DoD) Small Business Innovation Re-
search (SBIR) topic #AF121-051, “Remote Attestation and
Distributed Trust in Networks (RADTiN)”

loader code, operating system, and web server soft-
ware. Such TCBs could easily comprise millions of
lines of code.

The surface area of the problem may be reduced
in two ways. The first and most obvious solution is
to shrink the TCB, either by reducing the amount of
code required to perform the desired tasks, or reduc-
ing the amount of code which needs to be trusted.
The latter can be accomplished by utilizing hard-
ware protections such as AMD SVM [5] and Intel
TXT [20], which effectively remove pre-operating sys-
tem software and firmware from the TCB. ARM
TrustZone [3] partitions system code into “normal
world” and “secure world” code, ideally to exclude
the normal world code from the TCB. More recently,
Intel SGX technology [2] introduced a hardware-
protected execution environment to shield arbitrary
code (e.g. system or application code) from the rest
of the system.

The second solution is to increase the trustworthi-
ness of code which must be a member of the TCB.
For instance, a program written in a memory-safe
language may be more trustworthy than a similar
program written in C. Stronger guarantees about the
trustworthiness of a program or system can be made
using formal methods. Substantial progress on pro-
ducing partially or fully verified operating systems,
microkernels, and hypervisors has been made in the
past decade [17, 23, 27].

SABLE is a trustworthy secure loader which ap-
plies both of these solutions to shrink the platform
TCB and improve the trustworthiness of platform
software. A trusted boot loader performs a crypto-
graphic measurement of program code and then ex-
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ecutes it unconditionally. Later-stage software may
opt to verify the integrity of the system through lo-
cal or remote attestation. A secure loader differs from
a trusted loader in that it executes subsequent code
only if measurements of that code match known-good
values.

Hence a secure loader must, by definition, prevent
the execution of untrusted code [30]. SABLE is able
to make this guarantee by utilizing the Trusted Plat-
form Module (TPM) [36] chip together with AMD
SVM on AMD platforms and Intel TXT on Intel
platforms. Via cryptographic hashing, the TPM can
“measure” code prior to its execution. Addition-
ally the TPM may “seal” data to a particular sys-
tem state, characterized by hash chain digests aggre-
gated in secure storage [30]. By joining these two
paradigms, SABLE satisfies the definition of a secure
loader.

Moreover we employ formal verification techniques
demonstrated in practice during the seL4 verifica-
tion effort [24]. In particular, we have implemented
SABLE in a manner which allows it to be trans-
lated into a monadic language that can be parsed
by a proof assistant. In this proof assistant, we con-
struct an abstract specification of SABLE’s imple-
mentation, and prove that the implementation ex-
hibits a subset of the behavior allowed by the ab-
stract specification. This rigorous verification effort
thus increases the trustworthiness of SABLE when
compared against other trusted software which has
only been penetration tested.

We have implemented SABLE to run on both the
AMD SVM and Intel TXT architectures. From the
user’s perspective, the behavior of SABLE on either
architecture is identical. Though the implementation
details do differ somewhat, for brevity we focus our
discussion in this paper on SABLE’s implementation
for AMD SVM.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the relevant background in trusted
computing and formal verification. Section 3 out-
lines the design of SABLE and its bilateral attesta-
tion protocol. Section 4 describes the implementa-
tion of SABLE. Section 5 details the formal methods
used to verify SABLE’s implementation. Sections 6
and 8 discuss related work and the work remaining to

be done to fully formally verify SABLE, respectively.
Section 7 discusses our reflection on the design and
verification process.

2 Background

2.1 Trusted Computing

According to the Trusted Computing Group (TCG),

Trust is the expectation that a device will
behave in a particular manner for a specific
purpose. A trusted platform should provide
at least three basic features: protected capa-
bilities, integrity measurement and integrity
reporting. [37]

SABLE serves as the software foundation for integrity
measurement and utilizes the protected capabilities
of the trusted platform. The following subsections
introduce these concepts. Integrity reporting may
be performed by the operating system or application
software which is outside the scope of this paper. De-
tails about integrity reporting with the TPM can be
found elsewhere [11, 31, 37, 44].

2.1.1 Integrity Measurement

The TCG uses the term measurement to describe
a cryptographic hash operation [37]. Measurements
can, among other purposes, be used to verify the in-
tegrity of code/data or to attest to the integrity of a
particular system configuration. TPM chips contain
several Platform Configuration Registers (PCRs)
which store measurements in a digest. Measure-
ments, however, are not written directly into a PCR.
Rather, they are extended into a PCR in the following
manner:

PCRi,n+1 ← H(PCRi,n ||H(data))

where H is a cryptographic hash function, || is the
concatenation operator, and PCRi,n is the value
of the ith PCR after n extend operations on that
PCR [37]. Thus in each extend operation the cur-
rent value in the PCR is replaced by the hash of the
old value of the PCR concatenated with the hash of
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Figure 1: Trusted boot execution [37]

the new data. Because the PCRs are shielded by the
TPM and a narrow command interface, they form a
root of trust for measurement (RTM) for the system.

The PCR extension scheme allows one to chain
hashes in a sequence of arbitrary length, e.g. as a
digest of system or process execution. The common
application of this technique to trusted boot is as
follows. Some initial component known as the core
root of trust for measurement (CRTM) measures it-
self and the next component to be launched [37].
These measurements are extended into a PCR by
the CRTM. The next component in turn measures
its subsequent component(s), etc. When the oper-
ating system or hypervisor is finally launched, it is
then responsible for measuring each program and ex-
tending that measurement into a PCR before forking
a process for that program. Figure 1 illustrates this
procedure. Odd-numbered steps indicate measure-
ments, and even-numbered steps indicate the launch
of the next component.

Ideally, the OS/hypervisor would also store a more
verbose log of system execution, including the boot
components. For example, this log may contain the
name of each component/program, its version num-
ber, and its measurement. The TCG refers to this
kind of log as a stored measurement log (SML) [37].
A remote client could verify the integrity of a given
server by requesting the server’s SML and a signed
quote of the server’s PCR measurements. The client
would first verify that all of the software in the SML

is sufficiently trustworthy (i.e. known non-malicious).
Then the client would use the SML to compute the
hash digest(s) in the same manner and sequence as
the server software and the TPM, and compare the
result(s) against the server’s quoted PCR value(s).
Assuming that the PCR values can be transmitted to
the client with verifiable integrity1, these PCR val-
ues accurately characterize of the state of the server.
Thus the remote client is able to determine whether
or not the SML is an honest log of the server’s run-
ning software and firmware. A Linux platform which
uses this logging and reporting scheme was described
in [33].

In the TCG terminology, the boot protocol given
in Figure 1 uses a static RTM (SRTM) [37]. A SRTM
begins performing measurements as early in the boot
process as possible. For instance, on PC clients the
BIOS and firmware serve as the SRTM. The BIOS
must measure itself and extend the measurement into
PCR0. It must then measure ROM code and config-
urations, and initial program loader (IPL) code, then
extend the measurements into other PCRs [41]. The
IPL must then continue to maintain the trust chain.

Unfortunately, low-level software such as the BIOS
and UEFI are known to be susceptible to numer-
ous attacks [8, 26, 43], and thus are not infrequently
compromised. Moreover these components may be
regularly updated, hence their measurements would
change over time. This could make it difficult to keep
track of which measurements are “good” and which
are “bad.” Even the SRTM model itself has been suc-
cessfully compromised [10].

Another relevant concern to security experts is the
size of the TCB when the entire boot process is in-
cluded. If all of the code which is executed after
power-on must be measured, then the entire system
is the TCB. This is not desirable. To mitigate, the
TCG has introduced a second form of RTM: “A dy-
namic root of trust for measurement transitions from
an untrusted state to one that is trusted” [37, em-
phasis added]. In other words, in order to minimize

1TPM 1.2 provides the TPM Quote command [40], which
signs a set of PCR values using an Attestation Identity
Key (AIK) [37]. AIKs use Direct Anonymous Attestation
(DAA) [9], which allows the AIK’s signature to be validated
without revealing the identity of the platform owner.
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the TCB, the root of trust for measurement should
be established as late in the boot process as possi-
ble. This is the goal of the DRTM, also called a late
launch [20].

Both AMD and Intel have implemented DRTM
support in their recent x86 architectures. AMD’s
DRTM technology is called Secure Virtual Machine
(SVM)2 [5], and Intel’s is Trusted Execution Tech-
nology (TXT) [20]. These two implementations are
conceptually very similar. SVM provides a special
secure machine instruction, skinit, which triggers
the late launch. The analogous instruction on Intel’s
Trusted Execution Technology (TXT) architecture is
getsec[SENTER].

In brief, skinit takes as an argument a Secure
Loader (SL), and extends its hash into a PCR. This
establishes the CRTM. The SL is then executed un-
conditionally in solitary confinement. During execu-
tion, all but one CPU core is disabled, global inter-
rupts are disabled, hardware debugging is disabled,
and DMA is disabled [5]. The lone CPU core which
remains awake during an skinit is referred to as the
bootstrap processor (BSP). Whatever code was exe-
cuted before skinit has no bearing on the execution
of the system after the skinit instruction has been
invoked. As a consequence the size of the TCB is
substantially reduced.

2.1.2 Protected Storage

In addition to measurement and integrity reporting
capabilities, the TPM offers protected storage capa-
bilities. In particular, a small segment of protected
non-volatile memory is reserved for two notable keys.
The Endorsement Key (EK) is a key pair which is
pre-installed by the manufacturer; it is unique to each
TPM. When one takes ownership of the TPM, the
Storage Root Key (SRK) is generated by the TPM.
Neither of these keys may ever leave the TPM [36].

The EK is generally used for attestation purposes,
for instance to sign a report which lists the values
currently residing in a set of PCRs. Of greater rele-
vance to the SABLE project is the role of the SRK.
The two primary TPM mechanisms for providing se-

2AMD has recently re-branded SVM as “AMD-V.”

cure storage, binding and sealing, both employ the
SRK [36]. Performing a TPM Bind operation on some
data simply encrypts that data with the TPM’s pri-
vate SRK. Since the SRK, like the EK, is effectively
unique to each TPM, in essence this binds the data
to a particular TPM, and thus a particular machine.

The functionality of TPM Bind is further enhanced
by TPM Seal. When data is sealed, it is both bound to
the platform by the SRK, and bound to a particular
system state, as given by a set of PCR values. The
TPM Seal command takes as parameters the data to
be encrypted and a set of PCR indices3 [30]. The
command outputs the cyphertext encrypted by the
SRK, as well as an integrity-protected list of PCR
indices and their corresponding values, as specified
during TPM Seal. Together, the cyphertext and PCR
list comprise an encrypted blob which may be passed
into the TPM Unseal command. The unsealing will
succeed if the PCR values given in the integrity-
protected list match the actual PCR values at the
time TPM Unseal is called [30]. If all of the values
match, then the TPM uses its private SRK to de-
crypt the data.

2.2 Data Refinement

Despite the assurances provided by secure hardware
and penetration testing, these alone may not be suffi-
cient for deployment in a security-critical setting. A
formalized, mathematical proof of a program’s cor-
rectness can be considered the strongest possible ar-
gument for that program’s trustworthiness. Until re-
cently, formal methods proved infeasible in the verifi-
cation of large and complex programs such as operat-
ing systems and hypervisors. An extensive overview
of the shortfalls and successes of verification efforts
in this area was cataloged by Klein [23].

Yet in recent years, the formal verification of
large-scale projects has become not only feasible,
but also time and cost efficient. The seL4 team
at NICTA prototyped, verified, and implemented a
high-performance microkernel in an estimated 20 per-

3The caller will specify whether (a) the data will be sealed
to the values currently residing in the given PCRs, or (b) the
data will be sealed to some hypothetical PCR values, which
the user must also provide as part of the call.
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son years [24]. Their final product has been proven
void of a number of common bugs and vulnerabili-
ties, such as buffer overflow attacks. Moreover the
seL4 microkernel’s performance is demonstrably on
par with that of several other high-performance mi-
crokernels in the L4 family [24].

The high-level verification technique used by the
seL4 team is known as data refinement [14, 25], which
can be summarized as follows. Define a concrete
event-driven system C in terms of its state transi-
tions as it reacts to events, e.g.

StepC :: event⇒ σC ⇒ σC set

We allow each state transition to produce a set of
output states so that we can model both failure (an
empty set) and non-deterministic behavior (a set with
cardinality greater than 1). Similarly, define StepA
over states σA for an abstract event systemA. Finally
define a global “observable” state σG which ideally
should be a generalization of both σC and σA, such
that system initialization and finalization functions

InitS :: σG ⇒ σS set,

F inS :: σS ⇒ σG

respectively, where S ∈ {C,A}. To simulate a finite
sequence of steps, we define a stepping function:

steps δ s events

:= foldl (λevent states. (δ event) “ states)

s events

where R “ S is the image of S under the relation R.
Finally we define a function to execute the system,
beginning and ending in global state(s):

execution S s events :=

FinS “ (steps StepS (InitS s) events)

Given the abstract system A and concrete system C,
we say that C refines A (denoted A v C) when

execution C g events ⊆ execution A g events

for all initial globals states g and event sequences
events. Hence, the execution of C (in terms of state

transitions) does not exceed the bounds of the exe-
cution of A. One useful corollary to data refinement
is that any Hoare triple of the form

{|P |}λs. execution S s events{|Q|}

which is valid for A must also be valid for C.

3 SABLE Overview

The primary goal of SABLE is to facilitate mutual
trust between the user and his or her system. SABLE
establishes this trust by implementing a bilateral at-
testation protocol, which requires the user and sys-
tem to exchange secrets during the boot. In order to
protect the secrets in memory, the bilateral attesta-
tion is performed after the DRTM instruction invo-
cation, and within the trusted execution environment
set up by the DRTM instruction.

SABLE’s execution proceeds in three stages: pre-
launch, launch, and post-launch, where the term
“launch” refers to invocation of the DRTM instruc-
tion. The pre-launch phase establishes communica-
tion with the TPM chip and enables the virtualiza-
tion capabilities of the CPU required for DRTM. It
also stops all application processors, leaving only the
primary “bootstrap” processor running.

The launch phase invokes the DRTM instruction.
In AMD SVM, the DRTM instruction is skinit. In
brief, skinit performs the following operations:

• Reinitialize the CPU in the same manner as the
INIT signal.

• Clear or reset all CPU registers except EAX and
EDX (which hold arguments for skinit), ESP,
and MSRs not related to security.

• Set up protections for the 64KB region con-
taining the secure loader (SL), including protec-
tion from direct memory access (DMA), isolation
from the PCI configuration space, and isolation
from any component (e.g. a graphics card) using
GART-translated addresses.

• Transmit the SL image to the TPM, which then
hashes the image and extends the hash into
PCR17.
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• Clear the global interrupt flag, thus disabling all
interrupts.

Further details about the behavior of skinit can be
found in the SVM architecture reference [5].

Each v1.2 TPM chip has at minimum 24 PCRs [38].
PCRs 0-15 are generally used for the SRTM model.
When the system is reset, these PCRs are all reset
to 0. PCRs 17-22 are reserved for the DRTM model.
On system reset they are reset to −1. The only way
to reset these PCRs to 0 is to invoke a DRTM in-
struction. PCR17 cannot be extended by software; it
can only be extended by the CPU, e.g. via skinit.
Hence a non-zero, non-negative-one value in PCR17
can be taken as evidence that the DRTM instruction
was invoked on the system and in the current boot
cycle, and by the SL whose measurement matches the
value in PCR17.

The post-launch stage proceeds in one of two direc-
tions: configuration or secure boot. When perform-
ing a secure boot, SABLE does the following:

1. Measure the additional boot modules that were
loaded by the generic boot loader that preceded
SABLE, and extend them into PCR19.

2. Read a sealed blob from a TPM NVRAM index.
The blob contains an encrypted “pass phrase,”
which can be interpreted by the user as evidence
that the boot components are valid.

3. The user is prompted to enter two passwords,
one to authorize use of the TPM’s storage root
key (SRK), and another to authenticate the
user4.

4. Issue a TPM Unseal command to unseal the blob
containing the encrypted pass phrase. SABLE
provides the measurements in PCRs 17 and 19
as well as the authorization passwords to satisfy
the access control policy on the sealed blob.

5. If the TPM Unseal operation succeeds, then the
access control policy was satisfied. Display the
pass phrase to the user, who is then prompted
to confirm that the pass phrase is correct. If the

4The use of an additional password for the user is necessary
in the common scenario where several users may share access
to the SRK.

user confirms, proceed to launch the next exe-
cutable module. Otherwise, the access control
policy failed, and the TPM will deliver an error
code specifying which criteria (e.g. a bad PCR
value) was not satisfied; inform the user of the
error and exit.

The configuration procedure is roughly the mirror
image of the secure boot. The user enters the neces-
sary passwords and creates a pass phrase for the given
sequence of modules. SABLE measures the mod-
ules and seals the pass phrase to these measurements
and the measurement of SABLE itself, then finally
stores the sealed blob into a fresh TPM NVRAM in-
dex. We used the term SABLE-Enabled Configura-
tion (SEC) to refer to a given sequence of modules
and a NVRAM index containing a secret bound to
those modules. A typical TPM 1.2 chip with 6KB
of NVRAM can support up to 18 SECs.

4 Implementation

Our approach to implementing SABLE was moti-
vated by our intention to formally verify the im-
plementation after development, and after testing
SABLE on hardware. We did our original develop-
ment testing of SABLE in the QEMU x86 CPU em-
ulator, together with a software TPM emulator. We
modified QEMU to emulate the skinit instruction.
We later continued development on an AMD laptop
with SVM and a TPM 1.2, and then on an Intel lap-
top with TXT and TPM 1.2.

In general, formally verifying a low-level language
like C is difficult. Unsafe casting, bit fields, unions,
heap memory, pointer arithmetic, inline assembly,
and other similar features are difficult to model and
verify without subjecting the input to some reason-
able constraints. For this reason, most of the (very
few) existing tools that can be used to verify C code
require that some proper subset of C be used.

The tool chain which we use to verify C code is
built on top of the Isabelle/HOL proof assistant.
Through a multi-step process, the tool chain trans-
lates the C input into another imperative language
which can be understood by the proof assistant,
and then abstracts this respresentation into a state
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monad. The state monad representation allows us
to model imperative (stateful) programs in a pure
functional (stateless) proof assistant language. More
details on this process are given in Section 5.

This tool chain does enforce several constraints on
its input. For example, it will refuse to process string
literals. The obvious workaround was to use the C
preprocessor to strip away string literals before pass-
ing the source code into the verification tool. The
most limiting constraint of the tool chain is that it
mandates that local variables be local in a literal
sense. That is, local variables may not be passed by
reference (e.g. with an &) as an argument to a func-
tion. Without this constraint, the verification tool
chain would have to treat local variables as part of
the program state. This in turn would make it dif-
ficult or impossible to practically model and verify
recursive functions, for instance. Moreover, by treat-
ing local variables as strictly local, the they can be
safely abstracted into lambda-bound variables, which
are much easier to reason about than static or heap
data.

In situations where pass-by-reference semantics
would normally be desirable, we must instead adopt
one of two alternatives. The first alternative is to pass
locals by value. However, if the variables are large
objects or buffers, this can cause computational over-
head. To make matters more difficult, SABLE must
fit entirely within a 64KB region of RAM. Minus the
code, heap, and data regions, we are left with only
about 8KB of RAM for the stack. So having multiple
copies of the same object simultaneously on the stack
should be avoided. And if an argument to a function
should be modified, this copy-by-value scheme will
not work, and the function may need to be substan-
tially refactored.

The second alternative is to use pass-by-value se-
mantics with (pointers to) heap-allocated data or
statically allocated data. In general, we use calls
to alloc() only when the size of a buffer cannot
be determined at compile time, e.g. when process-
ing responses from the TPM. We statically allocate
data which could reasonably be considered a part of
SABLE’s state, rather than a temporary value.

The structure of the AutoCorres monad also forced
us to reconsider the way in which we handle hard-

ware errors and software exceptions. AutoCorres uses
the type (’a, ’s) nd-monad to model stateful compu-
tations. This is a synonym for the expanded type
’s ⇒ (’a × ’s) set × bool, where x is the Cartesian
product of types. That is, an AutoCorres monadic
computation takes an input state, and returns a set
of return value and result state pairs; hence monadic
computations can be non-deterministic. The Boolean
is a flag which, when set, indicates that a catastrophic
error—one which should never be triggered—has oc-
curred, such as a failed assertion or a null-pointer
dereference. The monad can also model exception
throwing and handling with the addition of a sum
type: (’e + ’a, ’s) nd-monad. These computations
may yield either an exception of type ’e or a result
of type ’a. However, at the time of this writing the
AutoCorres tool cannot generate an abstraction of C
code to use this exception monad.

SABLE interfaces with multiple hardware compo-
nents during its execution, including the TPM, CPU,
keyboard, display port, and PCI configuration space.
Any of these components may fail or emit error codes,
from which SABLE cannot always recover. Hence
SABLE should be allowed to fail gracefully by sim-
ply sending the shutdown signal to the CPU when
such an error occurs. Unfortunately, there is no
trivial way to model this behavior with the given
(’a, ’s) nd-monad construct. The failure flag is re-
served only for catastrophic failures, which we must
prove the absence of. Hardware errors, on the other
hand, must be anticipated and either handled (e.g.
by retrying the operation) or should trigger a grace-
ful shutdown.

Our approach was to implement SABLE to use
return-style exceptions, with considerable help from
the C preprocessor. For example, in Listing 1 we
have a function, read passphrase(), taken verba-
tim from the SABLE source code. The RESULT (T)

is a preprocessor-facilitated type constructor which,
given some type T, yields a type which can hold
either an exception or a value of type T. So
read passphrase() can either return (throw) an ex-
ception, or a value of type TPM STORED DATA12. The
driver function TPM NV ReadValue() can also throw
exceptions. When a function makes a call to a callee
and the callee throws an exception, the caller is

7



1 static RESULT_(TPM_STORED_DATA12) read_passphrase(UINT32 index) {

2 const OPTION(TPM_AUTHDATA) nv_auth = {. hasValue = false};

3 RESULT_(HEAP_DATA) val =

4 TPM_NV_ReadValue(index , 0, 400, nv_auth , NULL);

5 THROW_TYPE(RESULT_(TPM_STORED_DATA12), val.exception );

6
7 return (RESULT_(TPM_STORED_DATA12 )){

8 .exception.error = NONE ,

9 .value = unpack_TPM_STORED_DATA12(val.value.data ,

10 val.value.dataSize )};

11 }

Listing 1: C implementation of read passphrase()

obliged by convention to either catch (and optionally
handle) the exception, or throw the exception to its
own caller. This latter behavior is typical in SABLE,
because most exceptions stem from hardware issues,
and thus must be fatal. The function in Figure 2 does
not know how to handle any exceptions potentially
thrown by TPM NV ReadValue(), so it simply throws
the exception to its caller. The THROW TYPE(T, e)

macro returns an exception of type T if e is an ex-
ception. If the call to TPM NV ReadValue() succeeds,
then read passphrase() returns the null exception
NONE, with the unpacked data structure containing
the passphrase data that was read from the TPM’s
non-volatile memory.

At the root of SABLE’s call graph is a function
which uses a CATCH ANY() macro to catch any excep-
tion which was thrown and uncaught during execu-
tion. It is this function which performs the grace-
ful shutdown in the case of an uncaught exception.
This design also granted us one additional notewor-
thy benefit. Because SABLE runs on bare metal,
there is no operating system underneath to produce
and pretty-print stack traces in the event of a catas-
trophic failure. Our THROW() macros build a stack
trace by recording source code information at each
level of the call graph into a linked list. If the root
function catches an exception, it then pretty-prints
the call stack before the graceful shutdown. We of-
ten found this feature to be useful for debugging.

Abstract

AutoCorres

Simpl C Sources
Isabelle/HOL

Figure 2: SABLE verification development cycle

5 Formal Verification

All of our formal verification has been done in the
Isabelle/HOL proof assistant. Isabelle’s efficacy in
software verification has already been demonstrated
by the seL4 team [24]. Our verification process fol-
lows a strategy based on their approach.

Figure 2 provides an overview of the SABLE de-
velopment and verification process. We developed
SABLE in an iterative process, gradually adding new
features to the C implementation and penetration
testing them. The effort to formally verify SABLE
is shown on the left side of the figure. White boxes
indicate layers of abstraction, and the green arrows
are correspondence proofs.
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d e f i n i t i o n
NV ReadValue : : ”NV ReadValue in ⇒

( ’ a NV ReadValue out ) tpm monad”
where

”NV ReadValue com ≡ unknown”

Listing 2: Under-specified abstract specification of
TPM NV ReadValue

We use a parsing tool to translate the SABLE
source code into Simpl [34], an imperative program-
ming language built into Isabelle/HOL. We then use
the AutoCorres tool [18] to automatically abstract
the Simpl code into a monadic representation with
an abstracted heap model [19]. Moreover, the Auto-
Corres tool automatically verifies the translation by
generating correspondence proofs for each translated
function, over each step of the translation process.

We produce the abstract, behavioral specification
of SABLE one function at a time. The abstract spec-
ification is minimal in the sense that it captures only
enough detail about SABLE’s behavior that is re-
quired in order to describe the security properties we
later hope to prove about SABLE. It is also non-
deterministic, in that each abstract function may
transform one state and one sequence of inputs into
a set of (state× output) pairs. The proofs of cor-
respondence between abstract specification functions
and AutoCorres-generated functions must be written
manually in the proof assistant.

5.1 Modeling SABLE

We use under-specification to model the low-level
operations performed by our TPM driver and the
TPM itself. Listing 2 shows the abstract specifica-
tion of TPM NV ReadValue, the command which tells
the TPM to read data from a specified index in TPM
NVRAM. NV ReadValue in and NV ReadValue out
are record-style structures which describe the input
arguments and output values, respectively, to the
command. These roughly correspond to the com-
mand and response values described in the TPM
specification [40], but with low-level details, such as
parameter sizes, abstracted away.

d e f i n i t i o n
r e a d p a s s p h r a s e : :

” nat ⇒
( s t r i n g TPM.STORED DATA) E monad”

where
” r e a d p a s s p h r a s e i

≡ TPM NV ReadValue i 0 None”

Listing 3: Abstract spec of read passphrase()

The TPM itself is modeled with full non-
determinism. That is, the TPM’s state is not explic-
itly modeled; nor are its commands. The tpm monad
uses a unit (empty) state and an exception type lifted
from the TPM specification. When the TPM driver
invokes a TPM command, the command is lifted
into the caller’s monad, which does model CPU and
memory state. This separation implies that TPM
operations cannot affect the state of the CPU and
memory (including SABLE), except for the value(s)
returned by the operation. The unknown value in
Listing 2 models full non-determinism by returning
the universal set of values for the inferred type. In
this case, TPM.NV ReadValue will return an arbitrary
value of type (’a NV ReadValue out), where ’a is the
type of the value to be read, e.g. a string. Or,
TPM.NV ReadValue could return an arbitrary TPM
error, since tpm monad also models exceptions.

Functions in SABLE are modeled with greater de-
terminism. The abstract specification of the SABLE
function which reads the passphrase from TPM
NVRAM is shown in Listing 3. It simply calls the
TPM NV ReadValue function, which is the abstract
representation of our C API function of the same
name. It takes the function parameters and mar-
shals them into a buffer that is transmitted to the
TPM, then processes the response buffer and unmar-
shals the results, returning them to the caller. The C
implementation of read passphrase needs to perform
additional unmarshalling on the data returned from
the API call, but this modeling technique allows us to
abstract away these mundane details. The next sec-
tion explains why this simplification does not violate
correspondence between the layers of abstraction.
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corres RS RR P P ′ ≡
λm m′. ∀(s, s′) ∈ RS . P s ∧ P ′ s′

−→ (∀(r′, t′) ∈ mResult (m′ s′).

∃(r, t) ∈ mResult (m s).

(t, t′) ∈ RS ∧ RR r (r′, t′))

∧ ¬mFail (m′ s′)

Figure 3: Correspondence definition in Isabelle/HOL

5.2 Correspondence

For each function in the abstract specification,
we prove that it corresponds to the AutoCorres-
abstracted implementation function which it is sup-
posed to model. Correspondence is a concept that
was first applied to verify seL4 [25]. It is similar
to the technique of forward simulation [14], except
that it can be recursively applied over monads using
a splitting rule. Both correspondence and forward
simulation imply data refinement [25].

Our definition of correspondence is similar to the
definitions used to verify seL4. It establishes a rela-
tionship between monadic functions in our abstract
specification and monadic functions generated by Au-
toCorres. The definition is given in Figure 3.

The m and m′ functions are corresponding monads
in the abstract spec and AutoCorres output, respec-
tively. RS is a relation defined over abstract and
AutoCorres states and RR is a relation defined over
the monads’ return values. P and P ′ are precondi-
tions which may constrain the input states and/or
monadic function arguments. Hence, the definition
states that for all input states s and s′ which sat-
isfy the state relation and the preconditions, the fol-
lowing hold. First, for each possible output pair of
return value r′ and state t′ from the computation
m′ s′, there exists a corresponding output pair r and
t from the computation m s such that the state rela-
tion holds for t and t′ and the return relation holds
for r and the pair (r′, t′). Second, the AutoCorres
computation must not fail. The return relation must
also accommodate the AutoCorres state because a re-
turn value r′ may involve a pointer to a value on the
heap or in static memory; these are captured as part
of the AutoCorres state t′. In our abstract specifica-

{|P |} a {|Q|} {|P ′|} c {|Q′|}
corres RS R′R P P ′ a c∧

r r′. corres RS RR

(Q r) (λs′. r′ r (r′, s′) ∧Q′ r′ s′) (b r) (d r′)

corres RS RR P P ′ (a >>= (λr. b r)) (c >>= (λr′. dr′))

Figure 4: Correspondence splitting rule

tion, there is no concept of a pointer.
All of our correspondence proofs follow a sim-

ple pattern. Given an AutoCorres-generated com-
pound statement c >>= d and a compound state-
ment a >>= b in the abstract specification, we apply
a splitting rule (Figure 4) which allows us to prove
correspondence separately for c and a, and then for
d and b. The >>= operator is a monadic bind for
(’e + ’a, ’s) nd-monad, which we described in Section
4.

Given abstract and AutoCorres-generated func-
tions fA and fAC , respectively, we recursively apply
this splitting process to their ASTs, until we are left
with only atomic statements or nullary return state-
ments, similar to no-ops. At this point, we unfold the
definition of correspondence for each pair of atomic
or nullary return statements, and use the proof as-
sistant’s built-in theorem provers5 to automatically
discharge the proof goal. The most difficult part of
this entire process is choosing the correct precondi-
tions P and P ′ for each splitting step.

Lemma 1 illustrates the typical format for one
of our correspondence proofs. This lemma estab-
lishes correspondence between the abstract specifi-
cation of read passphrase() shown in Listing 3 and
AutoCorres-generated representation of the C imple-
mentation given in Listing 1:

Lemma 1. The abstract function read passphrase
corresponds to the generated read passphrase’:

∀i. corres (R STORED DATA rel string rel) > >
(read passphrase i) (read passphrase’ (of nat i))

Proof. By recursively applying the correspondence
splitting rule, and the definition of correspon-
dence.

5We use the Z3 [13] and CVC4 [7] theorem provers.
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The R STORED DATA rel is a type-parameterized
relation defined over data of variable size stored on
the heap, in this case a string. Counterintuitively, the
input states and data do not require any constraints.
One might expect that the NVRAM index i should be
bounded according to the size of the TPM’s NVRAM.
We do not enforce this constraint because the value of
i is configured by the user, and thus may be invalid.
If the value of i is invalid, the TPM will return an
error. Thus our proof must demonstrate that both
abstraction layers will equivalently handle this error
if it is issued by the TPM. In other words, the precon-
dition constraints must only preclude states and/or
input values which the functions in question should
not be expected to handle.

The correspondence splitting rule does not always
precisely fit a desired proof goal. For example, the
monadic definition of read passphrase is not com-
pound (there is no >>= in the definition). How-
ever, the AutoCorres-generated read passphrase’ is
compound. To apply the splitting rule, we first ap-
ply one of the monadic identities to expand the non-
compound expression into one that is compound:

f v ≡ (return v) >>= f (1)

f ≡ f >>= return (2)

In this example, we use the second identity rule. The
return corresponds to an additional unmarshalling op-
eration performed by the read passphrase’.

The top-level lemma for SABLE proves correspon-
dence for trusted boot(), the function which man-
ages the bilateral attestation described in Section 3.
It directly calls read passphrase(), among other
routines:

Lemma 2. The abstract function trusted boot cor-
responds to the generated trusted boot’:

∀i. corres (λr (r′, t′).RESULT rel r r′) > >
(trusted boot i) (trusted boot’ (of nat i))

6 Related Work

The first boot loader to implement the TCG platform
was Trusted GRUB [1]. Trusted GRUB is a patch

added to GRUB which hashes both GRUB and the
boot modules loaded by GRUB, and extends them
into one or more PCRs. Because Trusted GRUB is
built on top of GRUB, it has the advantage of being
able to load a wide variety of operating systems and
other system software. However, it is also encum-
bered by a fairly large TCB: the entire GRUB boot
loader.

The Open Secure LOader (OSLO) [22] attempted
to rectify this issue by using DRTM with a minimal
SL. Unlike Trusted GRUB, OSLO does not literally
load boot modules from disk. Instead, OSLO is it-
self loaded as a boot module (e.g. by GRUB). When
OSLO is launched it invokes the skinit instruction
to reset the CPU state, then it hashes the boot mod-
ules. Despite having “secure” in its name, OSLO is
in fact only a trusted loader because it will uncon-
ditionally launch the hypervisor or OS. It does not
validate any of the PCR values after measurements
after been taken.

The Trusted Boot (tboot) [4] loader, despite having
“trusted” in its name, is in fact a secure loader. Un-
like OSLO, tboot supports the Intel TXT platform.
It achieves secure boot using a launch control policy
(LCP)6 [29], which allows execution to continue af-
ter DRTM invocation if and only if the PCR values
match the known good values specified by the launch
control policy.

None of the aforementioned loaders has been for-
mally verified to any extent. To the authors’ knowl-
edge, no other loader has been formally verified
to establish security properties. Das Barman and
Mukhopadhyay used a model checker to verify a com-
munication protocol between two loaders used in the
A380 airplane. But their analysis was focused on
safety, not security [12].

The SABLE formal verification effort follows a sim-
ilar process to that of the seL4 microkernel verifica-
tion [24], with two noteworthy distinctions. First, the
seL4 team began by building a model “executable
specification” of seL4 in the Haskell programming
language, and testing it on a CPU emulator [16]. Sec-
ond, the manual seL4 correspondence and refinement
proofs extend all the way down to the implementation

6LCP is a feature that is only available on Intel TXT.
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level. In verifying SABLE, we were able to use the
newer AutoCorres tool to first produce a monadic ab-
straction of the implementation, with automatically
generated correspondence proofs.

One other noteworthy project is Flicker [28].
Flicker is a minimal TCB which uses a DRTM in-
struction to allow user space processes to temporar-
ily construct a trusted execution environment called
a Piece of Application Logic (PAL). Instead of in-
voking the DRTM instruction during boot, Flicker
invokes the instruction on demand from the operat-
ing system, and on behalf of an application. The code
running within the PAL is effectively given the same
hardware protections as SABLE.

7 Discussion

7.1 Minimizing the TCB

The primary motivation of the x86 DRTM model is
to allow systems programmers to reduce the size of
the TCB[22]. Since trust and security do not depend
on whatever has executed prior to the DRTM instruc-
tion, we allow a generic and versatile boot loader (e.g.
GRUB or GRUB2) to perform most of the actual
boot loading. This entails reading the Master Boot
Record (MBR), loading the hypervisor and modules
into memory, and building metadata structures for
the loaded boot components. Many of the details of
boot loading are complex and low-level, and thus not
easily amenable to formal verification. Excluding this
code from SABLE and our TCB was thus desirable.

The exclusion of any and all unnecessary compo-
nents from our secure loader makes it, by definition,
minimal. We only require the features which ensure
that our loader is secure, and that the operating sys-
tem’s integrity can be verified. These features are
outlined above in Section 3, and they mostly involve
interaction with the TPM. SABLE’s implementation
currently contains just under 4,000 (LoC). By con-
trast, as of this writing GRUB2 contains roughly
300,000 LoC. Thus by adding SABLE to the TCB
and removing GRUB2 from the TCB–and other com-
ponents like the BIOS–we do substantially reduce the
size of the TCB.

7.2 Verification Effort

Thus far, we have successfully proved correspon-
dence for the most high-level functions in SABLE’s
call graph, those which manage SABLE’s bi-
lateral attestation protocol. This includes the
read passphrase() funtion describd in Section 4,
and the trusted boot() function, which is the root
of SABLE’s call graph after the DRTM instruc-
tion has been invoked. A sizable portion of the
work to verify correspondence for these functions
was dedicated to writing relations between types (in-
cluding TPM structures) used by SABLE, and ab-
stract representations of those types expressed in Is-
abelle/HOL. We also found it helpful to prove several
lemmas to sidestep boilerplate reasoning about those
relations. We have so far written 29 such relations
and 13 lemmas about them. Since many other func-
tions in SABLE use these same types, we expect the
required effort for the remaining functions to be less
than it was for the functions already verified (e.g. in
terms of person hours per LoC).

The verification effort has so far entailed more than
400 lines of proof (LoP), and has not yet revealed any
bugs or vulnerabilities. However, it has prompted us
to refactor or rewrite each of the C functions we have
verified to clarify their behavior and make their im-
plementation more concise. For instance, prior to
the verification effort we would often declare a struc-
ture, and then initialize its fields one-by-one. This
increased the complexity of the AutoCorres output,
and thus required us to make more splits in our cor-
respondence proofs than were actually necessary. An
elegant alternative was to use the C99 [21] designated
initializer and compound literal features, which ini-
tialize a (possibly temporary) structure with its dec-
laration. The NICTA C parser is aware of these
constructs, and AutoCorres treats them as ordinary
type constructors. We use both of these techniques
in read passphrase(), as shown in Listing 1.

8 Future Work

SABLE itself has no interesting security properties.
SABLE merely exchanges information with the user,
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and then interfaces with the TPM. This sequence of
steps and their significant aspects are captured by
the abstract specification, which is in turn refined
by the SABLE source code. However, if we rea-
son about SABLE in conjunction with the TPM, the
CPU, and the PCI configuration space, then we can
begin to formulate meaningful security properties of
the system. We are currently planning to build a
rudimentary model of the TPM, sufficient to capture
the functionality required by SABLE. Only then can
we state and prove formal security properties, such
as “SABLE will allow the boot to proceed only if the
measured boot components have the correct SHA1
hashes, and the user enters the correct authorization
data.”

It may seem counterintuitive for us to focus lastly
on this verification step. But empirically the seL4
team has demonstrated that proving correspondence
is far more effective at identifying bugs and vulner-
abilities than an analysis specifically focused on ab-
stract security properties. For example, the seL4 cor-
respondence and refinement proofs revealed 150 bugs
in their abstract specification, and 144 bugs in their
C source code [24]. The proofs that seL4 enforces in-
tegrity and authority confinement prompted no fur-
ther revisions to either the abstract model or the C
source [35]. Our plan going forward is to work down-
wards through the call graph, until we reach functions
that are too dependent on hardware to reason about,
without modeling that hardware. We will simply as-
sume correspondence for these functions. With these
correspondence proofs complete, we will be able to
prove the master theorem as a corollary:

Theorem. SABLE’s implementation C refines its
abstract specification A:

A v C

The TPM 1.2 specification [39] on which SABLE
is currently based has been superseded by the TPM
2.0 specification [42]. We are in the process of up-
dating SABLE with a TPM 2.0 driver and new func-
tionality to take advantage of the improved security
capabilities of TPM 2.0. One disadvantage of the
SABLE design for TPM 1.2 is that the access control
policy for the SEC secrets is extremely brittle. Any

update to any of the boot components thus requires
the SEC to be completely reconfigured. This is not
specifically a limitation of SABLE; it is a limitation
of the access control policies that can be applied to
sealed data on TPM 1.2. The TPM 2.0 introduces
flexible security policies [6], which allow an autho-
rized user to issue updates to the security policy of a
TPM entity such as a sealed data blob or NVRAM
index. SABLE on TPM 2.0 will allow the SEC owner
to sign updated PCR values and produce an autho-
rization ticket which can vouch for the validity of
the updated values. The TPM can then validate the
ticket, and approve an unseal operation for the new
PCR values.

Verification is also posing an additional challenge
for our effort to port SABLE to TPM 2.0. Our ten-
tative redesign will no longer use TPM NVRAM to
store the SEC secrets. Instead, they will be passed in
encrypted form to SABLE as a boot module. Much of
the verification that we have completed for SABLE
on TPM 1.2 focused on the routines which handle
NVRAM storage. These proofs required roughly 50-
100 person hours to complete. None of these proofs
can be reused for our new implementation. Thus
from a formal verification standpoint—with manu-
ally written proofs—the cost of a design change is
very high.

We are also currently working to formally verify
SABLE’s heap allocator. This is being done as a sep-
arate and independent project [32], which could even-
tually be used by other trusted systems software. Our
goal is to first prove that, for a call to alloc() which
returns a non-null pointer, the returned pointer refer-
ences a memory region which (a) is within the bounds
of the heap, (b) does not overlap another live memory
region on the heap, and (c) is correctly aligned for the
type of the object(s) whose allocation was requested.
Our second goal is to build a separation logic-based
interface in Isabelle/HOL on top of the alloc() and
free() functions, as abstracted by AutoCorres. This
interface would allow a proof engineer to use a verifi-
cation condition generator to automatically discharge
proof goals involving calls to alloc() and free().

The effort to verify the heap allocator has already
revealed two bugs in our implementation. Our for-
mula to convert bytes to heap blocks was suscepti-
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ble to unsigned integer overflow. In this case, the
heap might allocate fewer bytes than what was re-
quested by the caller. The second bug was a loop
termination condition which used a < instead of a <=

to compare two values. Consequently, alloc() could
allocate memory beyond the end of the heap.

One more feature we are currently working to im-
plement is to allow SABLE to generate a full disk
encryption (FDE) key. This will allow SABLE to be
a secure loader in the most literal sense of the defi-
nition. With this extension, SABLE will use a com-
bination of the pass phrase and a user counter sign
(another password) to generate the FDE key, e.g. us-
ing a standard cryptographic key derivation function.
Thus each SEC would guard a disk partition by en-
crypting it using the FDE key. The guarded partition
could only be unlocked by satisfying the security pol-
icy of the SEC through SABLE.

9 Conclusion

In this paper we presented SABLE, a modern boot
loader designed to be secure and formally verifiable.
SABLE uses a bilateral attestation protocol between
the user and the TPM chip to establish mutual trust.
Our implementation can operate on both the AMD
SVM and Intel TXT architectures. SABLE was also
designed and implemented to be amenable to for-
mal verification with the aid of a proof assistant, Is-
abelle/HOL. The constraints on program input man-
dated by the verification tool chain required us to
employ some unconventional strategies when we im-
plemented SABLE. Finally, we discussed our divide-
and-conquer approach to verifying SABLE using a
technique to establish correspondence between an ab-
stract model of SABLE and the C implementation of
SABLE. The verification effort is extremely labor in-
tensive; we have completed several correspondence
proofs, and hope to complete the remainder of them
in the near future.
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Tim King, Andrew Reynolds, and Cesare
Tinelli. Cvc4. In Ganesh Gopalakrishnan and
Shaz Qadeer, editors, Computer Aided Verifica-
tion, pages 171–177, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[8] Oleksandr Bazhaniuk, Yuriy Bulygin, Andrew
Furtak, Mikhail Gorobets, John Loucaides, Alex
Matrosov, and Mickey Shkatov. Attacking and
Defending BIOS in 2015. in ReCon, Montreal,
Canada, June 2015.

[9] Ernie Brickell, Jan Camenisch, and Liqun Chen.
Direct anonymous attestation. In Proceedings
of the 11th ACM Conference on Computer and

14

http://trousers.sourceforge.net/grub.html
http://trousers.sourceforge.net/grub.html
https://software.intel.com/en-us/sgx/details
https://software.intel.com/en-us/sgx/details
https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone
https://sourceforge.net/projects/tboot/
https://sourceforge.net/projects/tboot/


Communications Security, CCS ’04, pages 132–
145, New York, NY, USA, 2004. ACM.

[10] John Butterworth, Corey Kallenberg, Xeno Ko-
vah, and Amy Herzog. Problems with the Static
Root of Trust for Measurement. in BlackHat,
Las Vegas, Nevada, July 2013.

[11] David Challener, Kent Yoder, Ryan Catherman,
David Safford, and Leendert Van Doorn. A
Practical Guide to Trusted Computing. IBM
Press, first edition, 2007.

[12] Kuntal Das Barman and Debapriyay Mukhopad-
hyay. Model checking in practice: Analysis of
generic bootloader using spin. In Michael Butler,
Michael G. Hinchey, and Maŕıa M. Larrondo-
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