
Syracuse University Syracuse University

SURFACE SURFACE

Dissertations - ALL SURFACE

May 2018

Multi-type Fair Resource Allocation for Distributed Multi-Robot Multi-type Fair Resource Allocation for Distributed Multi-Robot

Systems Systems

Qinyun Zhu
Syracuse University

Follow this and additional works at: https://surface.syr.edu/etd

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Zhu, Qinyun, "Multi-type Fair Resource Allocation for Distributed Multi-Robot Systems" (2018).
Dissertations - ALL. 887.
https://surface.syr.edu/etd/887

This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for
inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact
surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F887&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=surface.syr.edu%2Fetd%2F887&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/887?utm_source=surface.syr.edu%2Fetd%2F887&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

ABSTRACT

Fair resource allocation is essential to ensure that all resource requesters acquire

adequate resources and accomplish tasks. We propose solutions to the fairness problem in

multi-type resource allocation for multi-robot systems that have multiple resource

requesters. We apply the dominant resource fairness (DRF) principle in our solutions to

two different systems: single-tasking robots with multi-robot tasks (STR-MRT) and

multi-tasking robots with single-robot tasks (MTR-SRT). In STR-MRT, each robot can

perform only one task at a time, tasks are divisible, and accomplishing each task requires

one or more robots. In MTR-SRT, each robot can perform multiple tasks at a time, tasks

are not divisible, and accomplishing each task requires only one robot.

We present centralized solutions to the fairness problem in STR-MRT. Meanwhile, we

model the decentralized resource allocation in STR-MRT as a coordination game between

the robots. Each robot subgroup is formed by robots that strategically select the same

resource requester. For a requester associated with a specific subgroup, a consensus-based

team formation algorithm further chooses the minimal set of robots to accomplish the

task. We leverage the Deep Q-learning Network (DQN) to support requester selection.

The results suggest that the DQN outperforms the commonly used Q-learning.

Finally, we propose two decentralized solutions to promote fair resource allocation in

MTR-SRT, as a centralized solution already exists. We first propose a task-forwarding

solution in which the robots need to negotiate the placement of each task. In our second

solution, each robot first selects resource requesters and then independently allocates

resources to tasks that arrive from the selected requesters. The resource-requester

selection phase of the latter solution models a coordination game that is solved by

reinforcement learning. The experimental results suggest that both approaches outperform

their baselines.

MULTI-TYPE FAIR RESOURCE ALLOCATION FOR DISTRIBUTED

MULTI-ROBOT SYSTEMS

by

Qinyun Zhu

B.E., Harbin Institute of Technology, 2009

M.S., Syracuse University, 2011

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer and Information Science and Engineering.

Syracuse University

May 2018

Copyright c© Qinyun Zhu 2018

All Rights Reserved

To my wife, Xue.

iv

ACKNOWLEDGMENTS

I would like to acknowledge all those friends who have shared their experience,

encouragement, and love, which supported me complete the work presented in this thesis.

First and foremost, I would like to express my deepest appreciation to my advisor Dr.

Jae C. Oh who provided unreserved supports. His patience and intelligent guidance

supported me through the long journey of my doctoral studies. Under his advisory, I built

up abilities in discovering and solving problems independently, which would benefit me

for lifetime.

I would also like to thank the committee for reading my dissertation and providing

insightful comments: Dr. Steve J Chapin, Dr. Thong Quoc Dang, Dr. Makan Fardad, Dr.

Sucheta Soundarajan, and Dr. Reza Zafarani. In addition, I am grateful to Dr. Roger Chen

and Dr. Kishan Mehrotra for their suggestions and comments on my dissertation work.

My lab mates gave me unforgettable help and friendship. In particular, Dr. Mahmuda

Rahman kindly offered advises and insightful comments on the writing and presentation

of my dissertation. Dr. Mina Jung also provided unreserved suggestions during my

preparation for the dissertation defense.

Last but not least, I am proud to acknowledge my wife Xue who continuously support

and encouraged me for years during my doctoral studies. It is impossible for me to

complete my doctoral degree without such understanding from my wife, parents and all

close family members.

v

TABLE OF CONTENTS

Page

ABSTRACT . i

LIST OF TABLES . ix

LIST OF FIGURES . x

1 Introduction . 1

1.1 Motivating Examples . 2

1.1.1 Single-Tasking Robots with Multi-robot Tasks (STR-MRT) . . . 2

1.1.2 Multi-tasking Robots with Single Robot Tasks (MTR-SRT) . . . 4

1.2 Problem Framework . 4

1.3 Thesis Statement and Overview of Dissertation 6

2 Related Work . 10

2.1 Fairness in Resource Allocation . 10

2.2 Coordination for Task Allocation in Multi-Robot Systems 14

3 Background . 16

3.1 Fair Multi-type Resource Allocation 16

3.1.1 Multi-type Resource Fairness 17

3.1.2 Dominant Resource Fairness (DRF) 19

3.2 Reinforcement Learning . 23

4 Fair Resource Allocation for Single-tasking Robots with Multi-robot Tasks Sys-
tems . 27

4.1 Overview . 27

4.2 Resource Fairness for Single-tasking Robots with Multi-robot Tasks Sys-
tems . 28

4.2.1 Formulation of Fair Resource Allocation 29

4.2.2 Fairness Properties . 32

vi

Page

4.3 Centralized Fair Resource Allocation 34

4.4 Centralized Task Team Formation . 35

4.5 Experiments . 39

4.5.1 Team Formation . 40

4.5.2 Centralized Fair Resource Allocation 41

4.6 Conclusion . 46

5 Distributed Fair Resource Allocation for Single-tasking Robots with Multi-robot
Tasks Systems . 48

5.1 Overview . 48

5.2 Distributed Fair Multi-type Resource Allocation 49

5.3 Task Team Formation . 53

5.3.1 Task Team Formation Plan . 54

5.4 Distributed Task Team Formation . 56

5.5 Resource Requester Selection Game 58

5.5.1 Formulation of Game . 58

5.5.2 Example . 60

5.6 Deep Reinforcement Learning for the Fair Resource Requester Selection
Game . 63

5.6.1 Deep Reinforcement Learning 64

5.6.2 Learning the Resource Requester Selection Game 65

5.7 Experiments . 66

5.7.1 Experimental Results . 68

5.8 Conclusion . 73

6 Distributed Fair Resource Allocation for Multi-tasking Robots with Single-robot
Tasks Systems . 74

6.1 Overview . 74

6.2 Fairness Resource Allocation Problem for Multi-tasking Robots with Single-
robot Tasks Systems . 76

6.2.1 Naive Distributed Dominant Resource Fairness 76

6.2.2 Dominant Resource Fairness in Heterogeneous Environments . . 79

vii

Page

6.3 Task-forwarding for Fair Resource Allocation 80

6.4 Distributed Fair Resource Allocation Game 83

6.4.1 Selection of Resource Requesters 85

6.4.2 Equality and Efficiency . 87

6.4.3 Resource Constraints . 90

6.4.4 The Coordination Game under Constraints 91

6.5 Solving the Fair Resource Allocation Game 93

6.5.1 Greedy Solution . 93

6.5.2 Learning the Game Solution 96

6.5.3 Joint Strategy Search . 97

6.6 Experiments . 98

6.6.1 Experiments of Task Assignment Approach 98

6.6.2 Experiments of Resource Requester Assignment Game 100

6.7 Conclusion . 106

7 Conclusion . 108

7.1 Future Work . 110

7.1.1 Dynamic Environment of Robots and Resource Requesters . . . 110

7.1.2 Heterogeneous Robot Collaboration within Task Teams 111

7.1.3 Robot Cloud System . 111

A Discussion of Fairness Properties for Single-tasking Robots with Multi-robot
Tasks Systems . 113

A.1 Sharing Incentives . 114

A.2 Envy-freeness . 116

A.3 Pareto-efficiency . 120

A.4 Strategy-proofness . 120

LIST OF REFERENCES . 122

VITA . 127

viii

LIST OF TABLES

Table Page

2.1 Comparison of fair multi-type resource allocation for different problems . . 12

2.2 Taxonomy of multi-robot systems for single resource requester. Task allocation
and scheduling problems in different types of systems can be formulated as
different classic theoretical problems. 14

4.1 Configurations of Synthetic Data Sets . 43

5.1 Utilization, Inequality(Gini) and Team contribution reward of different strate-
gies of resource agents. 60

6.1 Resource Allocation Results of 3 work coalitions in Experiment 1 102

ix

LIST OF FIGURES

Figure Page

1.1 STR-MRT: multiple robots provide multi-type resources to a single task; MTR-
SRT: each robot provides different types and amounts of resources to multiple
tasks. 2

2.1 Dominant resource share and aggregated resource share enable multi-type re-
source allocation in approaches for single type resource. 11

4.1 An example of resource utilization problem in robotic team for a task. The
left circle represents the task resource requirement. The task requires different
types of resources: extinguishers and cameras. The robotic team formed in the
figure, however, has one excess resourceone red extinguisher. 29

4.2 Three basic resource allocation cases for STR-MRT systems. When all types
of resources in the allocations are non-wasteful, the allocations are linear com-
binations of robot capacities. This situation has been discussed in previous
studies about DRF. When resource allocations are wasteful, there are two basic
cases: those in which every resource requester has the same dominant resource
type and those in which resource requesters have different dominant resources
types. 33

4.3 An example of centralized fair multi-type resource allocation. Different gray
represents different resource configurations of robots and different resource
requirements of resource requesters. At the beginning, all robots are in the pool
and do not work for any resource requesters. Then the centralized algorithm
allow robots forming task team for one resource requester at a time. 36

4.4 Resource utilizations using Best-fit and Random-fit algorithm 41

4.5 Team utilization increases with increase of Cosine similarity and decrease of
difference between task requirements and resource capacities of robots by us-
ing Best-fit method. Y-axes are difference or cosine similarity between task
requirements and resource capacities. X-axes are team utilization. 42

4.6 Team utilization increases with increase of Cosine similarity and decrease of
difference between task requirements and resource capacities of robots by us-
ing Random-fit method. Y-axes are difference or cosine similarity between
task requirements and resource capacities. X-axes are team utilization. . . . 43

x

Figure Page

4.7 Gini-coefficient and Team resource utilization of our approaches on different
datasets. 44

4.8 Resource utilization and task throughput on different datasets. 45

4.9 Maximal and minimal dominant resource shares on different datasets 46

5.1 An example of decentralized fair multi-type resource allocation that forms
4 task teams. Different gray represents different resource configurations of
robots or different resource requirements of resource requesters. Robots make
decisions and form teams for different resource requesters simultaneously. . 52

5.2 Internal state transitions of a resource agent. 53

5.3 Payoffs of Resource requester assignment game. The Nash equilibrium is
reached when both resource agents choose the resource requesters that max-
imizing resource utilization and equality. 61

5.4 Strategy selection from the view of p1. When p1 does not observe the selection
of p2, its optimal strategy is choosing u1. When p1 observes the selection of
p2, its optimal strategy is also choosing u1 62

5.5 Average Q values of the final strategies taken at the end of each episode. The x-
axis represents the training episode; the y-axis represents the average Q value. 68

5.6 Gini coefficient and utilization of experiments with 18 resource agents and 4
resource requesters. 68

5.7 Average team resource utilization and number of completed tasks in experi-
ments with 18 resource agents and 4 resource requesters. 70

5.8 Average Gini coefficient and utilization in experiments with 8 resource agents
and 4 resource requesters. 71

5.9 Average team resource utilization and number of completed tasks in experi-
ments with 8 resource agents and 4 resource requesters. 71

5.10 Average performances for different number of robots and 4 resource requesters
in experiments using linear combination dataset. 72

6.1 Example 6.1: Two resource agents allocate resources by using the naive dis-
tributed DRF for one resource requester with a demand of [2 CPU, 1 GB] and
another resource requester with a demand of [1 CPU, 2 GB]. Each applies DRF
to its available local resources, which results in a non-optimal allocation where
3 CPU and 3 GB are wasted in the system. 77

6.2 Example 6.1: The possible optimal allocation for one resource requester with
a demand of [2 CPU, 1 GB] and one resource requester with a demand of [2
CPU, 1 GB] where no resources are wasted in the system 78

xi

Figure Page

6.3 Example 6.2:The optimal allocation of resource agents for a resource requester
with demands of [2 CPU, 1 GB] and a resource requester with demands of [1
CPU, 2 GB]. No resource is wasted . 85

6.4 Example 6.2:Resource agents allocate resources using naive distributed DRF
for a resource requester with demands of [2 CPU, 1 GB] and a resource re-
quester with demands of [1 CPU, 2 GB]. Here, 3 CPU and 3 GB are wasted. 86

6.5 Example 6.2:A possible combination of resource requesters for the resource-
providing agents. Agent 1 receives tasks only from resource requester u1,
which has task demands of [2 CPU, 1 GB], and agent 2 receives tasks only
from resource requester u2, which has demands of [1 CPU, 2 GB]. Then, both
agents apply DRF to their available local resources. Using this approach, only
1 CPU and 2 GB are wasted . 88

6.6 Constrained Graph: the dotted edges indicate the availability of a resource
agent for a resource requester; the resource agents serving a given group of
resource requesters are in the same work coalition 91

6.7 Fairness and Efficiency of Different Resource Allocation Algorithms 99

6.8 Performance comparison among reinforcement learning (RL), greedy ap-
proach (GD), random exploration (RD), and naive DRF extension (NV), show-
ing the average Gini-coefficient, resource utilization and utility values of 2,000–
2,500 time steps in 100 simulations and the throughput (task executed per time
step). The 10 resource agents have a wide variety of resource configurations,
and the 4 resource requesters have different task demands. 102

6.9 Performance comparison among reinforcement learning (RL), greedy ap-
proach (GD), random exploration (RD), and naive extension of DRF (NV),
showing the average Gini-coefficient, resource utilization and utility values of
2,000-2,500 time steps in 100 simulations and the throughput (task executed
per time step). The 10 Resource agents have the same resource configuration,
and the 4 resource requesters have differing task demands. 103

6.10 Performance comparison among reinforcement learning (RL), greedy ap-
proach (GD) and random exploration (RD), showing the average Gini-coefficient,
resource utilization and utility values of 2,000–2,500 time steps in 100 simula-
tions and the throughput (task executed per time step) 104

6.11 Performance trends of simulation 3: one work coalition of 10 resource agents
is fixed in this simulation. The x-axis is the ratio of resource requesters to re-
source agents. Therefore, 0.5 means there are 5 resource requesters in the sim-
ulation, while 10 means there are 100 resource requesters in the simulation.
The performance values are averages of 10 runs 105

xii

Figure Page

A.1 When the requested resources of two resource requesters are linear combina-
tions of the capacities of resource agents, these two resource requesters will
not envy each other. 115

A.2 Resource requesters have the same dominant resource, R2. Their dominant re-
source allocations are both 0.5–the exact amount they need. Thus, their dom-
inant resource allocations are non-wasteful. Even if they cannot utilize all the
allocated resources of type R2, they do not envy each other. 117

A.3 Resource requesters have different dominant resource and their dominant re-
source allocations are non-wasteful. 118

xiii

1

1. INTRODUCTION

A robot is a programmable machine capable of executing a complex series of actions.

Robots provide hardware resources such as sensors, actuators, central processing units

(CPUs), and memory to fulfill resource requests; in other words, these devices act as

resources to accomplish tasks. For example, robots in a car factory are equipped with

sensors and mechanical arms to assemble cars, and the robots in Amazon’s warehouses

have sensors, lifters, and motors so they can locate, transport, and deliver items to target

locations.

In multi-robot systems, robots utilize their resources to accomplish complicated tasks

collectively. Multi-robot systems have advantages over single-robot systems because they

can offer greater efficiency and can enhance task completion [10][4][11][18], in terms of

sensing [48] and fault-tolerance capabilities [39].

A resource requester is a software agent that interfaces with a human user to provide

access to robotic resources. Resource requesters may call upon various types of robotic

resources for their tasks. When a resource requester needs resources to execute a task, it

submits a resource demand to a multi-robot system. Then, the multi-robot system can

allocate robots with the desired resources to the resource requester, allowing the resource

requester to execute the task.

When a multi-robot system serves multiple resource requesters simultaneously, the

robots in the system should ideally respond in a way that is both fair and efficient. This

2

Fig. 1.1.: STR-MRT: multiple robots provide multi-type resources to a single task;
MTR-SRT: each robot provides different types and amounts of resources to multiple tasks.

dissertation considers the problems related to multi-type resource fairness (defined in

Chapter 3) for two types of multi-robot systems: single-tasking robots with multi-robot

tasks (STR-MRT) and multi-tasking robots with single robot tasks (MTR-SRT). In these

multi-robot systems, each robot provides one or more types of resources. Figure 1.1

illustrates the difference between STR-MRT and MTR-SRT regarding the relationships

between the tasks and the robots. In STR-MRT systems, a single robot can work on one

task at a time, and multiple robots can work on the same task collaboratively. In

MTR-SRT systems, a single robot can work on multiple tasks simultaneously; however,

the MTR-SRT system does not assign more than one robot to any given task.

1.1 Motivating Examples

1.1.1 Single-Tasking Robots with Multi-robot Tasks (STR-MRT)

In the United States, wildfires consume approximately eight million acres per year [1].

According to a 2013 FBI report, 410.3 violent crimes occur for every 100,000 inhabitants

in metropolitan areas. A task that addresses a fire or a criminal incident may have several

3

different subtasks, such as locating a fire or crime scene, applying fire-extinguishing

agent, arresting a criminal, or helping victims. An expert can tackle a subtask, and a task

is successfully accomplished when each of its subtasks has been completed by an expert.

However, it is both expensive and risky to send human experts to address such incidents.

A multi-robot system, equipped with an appropriate combination of resources, could be

dispatched to attend to these incidents more efficiently, saving costs and saving lives. In

such a system, each robot behaves as an expert and can address one specific subtask. For

instance, in a multi-robot system, scout robots have advanced sensors, firefighter robots

have fire extinguishers, police robots have weapons, and emergency care robots have the

appropriate medical equipment. Human users for the resource requesters would be located

in different areas in the vicinity of the multi-robot system. Although these users may need

to address different types of incidents, they can share and utilize the same pool of rescue

robots in the multi-robot system. For example, a user in a forested area may typically

request tasks that require robots with advanced sensors and firefighter robots. The

multi-robot system would then dispatch robots equipped with advanced sensors to detect

the location of the forest fire and robots with fire-fighting equipment to extinguish it. A

user in a metropolitan area might typically request advanced sensor robots, police robots,

and emergency care robots. These robots would then perform the appropriate tasks, such

as locating criminals, protecting victims, and giving victims immediate emergency care

when required. To execute each of these specific tasks collaboratively, robots equipped

with different resources must form a single team in which each robot is responsible for a

specific subtask. Additionally, the system would allocate robotic resources to each user

4

based on demand and resource usage patterns, forming cohorts that would fairly and

efficiently meet the needs of the users.

1.1.2 Multi-tasking Robots with Single Robot Tasks (MTR-SRT)

Unlike robots in an STR-MRT system, the robots in an MTR-SRT system can execute

multiple tasks that demand multi-type resources. An MTR-SRT task cannot be divided

into several subtasks; it must be accomplishable in its entirety by one robot. A multi-robot

system that provides computational resources such as CPU and memory is one example of

an MTR-SRT system. Suppose a resource requester wants robots to address classification

tasks. Therefore, this resource requester submits the tasks, each of which demands 1 CPU

and 2 GB of memory. Another resource requester submits tasks to acquire robots to

process and route streams of location data. Each of these tasks demands 2 CPUs and 1 GB

memory. This situation is similar to that of a computer cluster providing resources for

multiple resource requesters, except that stationary computers cannot move around like

robots.

1.2 Problem Framework

In our problem formulation, resource requesters (such as the human users in the

motivating examples) submit their task demands to multi-robot systems. The goal of fair

multi-type resource allocation is to identify a resource division that not only satisfies the

resource requesters fairly but also effectively maximizes the number of tasks executed for

every resource requester.

5

The assumptions for both STR-MRT and MTR-SRT systems regarding fair multiple

type resource allocations in this dissertation are consistent with prior studies in this field

[20][53][40] and are as follows.

• A resource requester asks for the exact amount of resources needed for its task at the

time of each request: no more and no less.

• Each resource requester continues to submit resource requests to robots until no

more system resources are available.

• The resource demands of different tasks from the same resource requester are

identical.

The problem of fair multi-type resource allocation for an STR-MRT system consists of

two parts. First, the system must divide the group of robots and allocate the subgroups

among the resource requesters in a manner that considers fairness. Second, the robots

allocated to a given resource requester must find a way to form task teams that best meet

the resource demands of the resource requester’s tasks. The fair multi-type resource

allocation problem is more challenging for STR-MRT than the original fair multi-type

resource allocation problem proposed by Ghodsi [20]. In an STR-MRT system, the robots

in a team may possess more resources than are actually required for a task because the

system cannot split the resources of a single robot and assign that robot to multiple tasks.

However, resources wasted during allocation can compromise the fairness and efficiency

of a multi-robot system.

In contrast, because robot resources can be split in MTR-SRT and allocated to

multiple tasks, the resources allocated to a task can exactly match the demands of that

6

task; therefore, the tasks do not waste allocated resources. Consequently, for MTR-SRT,

we can make the same assumption, namely that resource allocations for resource

requesters are not wasteful as in the original fair multi-type resource allocation problem.

Because each robot in an MTR-SRT system can accommodate multiple tasks, the major

challenge is to find a combination of tasks that maximizes a robot’s resource utilization

while preserving resource fairness for resource requesters in the system.

Details relating to the problem formulation of fair resource allocation are presented in

Chapters 4, 5 and 6.

1.3 Thesis Statement and Overview of Dissertation

This dissertation addresses the following research question. How can a multi-robot

system (either STR-MRT or MTR-SRT) with multi-type resources fairly satisfy multiple

resource requesters? All of our proposed solutions leverage the principle of dominant

resource fairness (DRF) [20] to maximize the resource fairness among resource

requesters. A dominant resource is the bottleneck resource of a resource requester; in

other words, the dominant resource consumes the largest percentage of that resource in the

system among the resources allocated to the resource requester. For example, suppose a

required resource allocation is [1 CPU, 2 GB memory], and the system has [10 CPU, 10

GB memory]. The allocation consumes 10% of the available CPU resources and 20% of

the memory resources in the system. Therefore, in this example, memory consumes the

highest percentage; therefore, memory is the dominant resource. For STR-MRT, we

propose both centralized and decentralized solutions to solve the problem of fair

7

multi-type resource allocation. For MTR-SRT, we develop decentralized solutions to

solve this problem: a centralized solution for a similar system already exists [53]. The key

to improving fairness in DRF-based resource allocation for MTR-SRT is to have a global

view that considers the total resources allocated to each resource requester in the system

instead of the local resource allocations of each robot. In addition, searching for fair

resource allocations by reinforcement learning methods can effectively improve resource

allocation fairness for decentralized resource allocations in both STR-MRT and

MTR-SRT systems. Our thesis statement is given below.

Applying the principle of dominant resources to multi-type resource allocation with a

global view in a centralized fashion or with reinforcement learning in a decentralized

fashion improves multi-type resource fairness among resource requesters for both

STR-MRT and MTR-SRT systems compared to the random allocation and equal allocation

of resources.

In Chapter 2, we provide an overview of the related work on fair resource allocation

and task allocation in multi-robot systems. In Chapter 3, we introduce the fundamental

concepts of multi-type resource fairness and reinforcement learning. In Chapter 4, we

describe the fair multi-type resource allocation problem for STR-MRT systems. Because a

resource requester can receive excessive resources in the STR-MRT system and because

the resources that satisfy a requester are demanded resources that the resource requester

will utilize, our resource allocation algorithm for STR-MRT calculates the dominant

utilized resources rather than dominant allocated resources as the allocation criterion. We

develop a centralized dominant utilized resource fairness algorithm and a centralized

heuristic-based task-team formation. Each of our simulations tests three algorithms: the

8

dominant utilized resource fairness algorithm, a random resource allocation algorithm,

and an equal allocation of resources algorithm. In addition, each simulation is based on

one of three different situations of resource allocation in an STR-MRT system. The

experimental results show that allocation based on dominant utilized resource fairness

outperforms the other two approaches in terms of fairness in all three situations.

In Chapter 5, we develop a decentralized solution for fair multi-type resource

allocation for STR-MRT. The solution consists of two phases: selection of a resource

requester and task team formation. The first phase is modeled as a coordination game in

which the goal is to select a resource requester. To search for the optimal strategies of

robots in the game, we develop a solution based on deep reinforcement learning.

Compared to traditional tabular reinforcement learning and other equal allocation

approaches, our approach shows strong empirical results in all three allocation cases.

After each robot has selected a resource requester, the second phase begins: task team

formation. That is, a subset of the robots that chose the same resource requester will form

an optimal task team. We propose a consensus-based mechanism that allows these robots

to reach an agreement regarding team formation in a decentralized manner.

Chapter 6 proposes two approaches for decentralized resource allocation for the

MTR-SRT system. First, we propose a decentralized task-forwarding approach to assign

tasks to robots in MTR-SRT systems. Robots accept one task at a time from a resource

requester and forward the tasks among the robots to find an assignment that maximizes the

dominant resource fairness. After a task has been assigned to a robot, the robots can

accept another task submitted by the resource requesters. This decentralized algorithm

yields performance similar to that of a centralized approach with some overhead of task

9

forwarding and outperforms a naive extension of DRF in distributed heterogeneous

environments. We published the results of this study in [58].

Another approach for fair resource allocation in an MTR-SRT system is a coordination

game. In this game model, the robot strategies involve selecting multiple resource

requesters. That is, the individual strategy of a robot consists of a non-empty set of

selected resource requesters that the robot serves, which is different than selecting a single

resource requester as in the requester selection game for the STR-MRT. A joint strategy in

the game is the collection of the individual strategies of all the robots. The utility of robots

results in outcomes that maximize the equality of dominant resources and resource

utilization. Therefore, the problem at the center of this work is to find a joint strategy that

maximizes the robotic utilities in the system. We develop a reinforcement learning

approach and a heuristic-based greedy approach to search for an optimal joint strategy.

Our results show that the reinforcement learning approach outperforms the heuristic-based

greedy approach, random allocation, and the naive extension of DRF. We published the

formulation of this resource allocation game and the results of this work in [57][59].

10

2. RELATED WORK

In this chapter, we briefly review the work in the following related fields: fair resource

allocation and task allocation in multi-robot systems. Our work mainly relies on the

studies in fair multi-type resource allocation, but the extant studies focus on cases

involving computer clusters. In the field of multi-robot systems, researchers have

discussed different ways that robots can be assigned to tasks for task allocation and

resource allocation. However, fairness for multiple resource requesters has not been

considered.

2.1 Fairness in Resource Allocation

For single-type resources, a fair allocation algorithm simply divides the available

resources into equal portions and allocates one portion to each resource requester [7]. The

fairness problem for single-type resources has been extensively studied and applied to

data networks and task scheduling problems. The concepts of fairness in these studies

include both fairness and efficiency. Max-min fairness [6] views the state of fairness in a

system as one in which no resource requester can increase its own allocation without

causing a reduction in the allocations of others. That is, in max-min fairness, an allocation

is considered more fair than other possible allocations when every resource requester in

the preferred allocation has either strictly positive changes or no changes. An alternative

11

Fig. 2.1.: Dominant resource share and aggregated resource share enable multi-type
resource allocation in approaches for single type resource.

and more general fairness concept for single resource allocation is called proportional

fairness [34]. Proportional fairness only requires the allocation to have a positive change

on average for all resource requesters compared to any other possible allocations. Both

max-min and proportional fairness are utility approaches to fairness; they view the amount

or share of resource allocated as the utility of the resource requesters. In addition, some

other concepts of fairness have been defined for specific problems. For example,

proportionate progress or P-fairness [3] was defined for real-time periodic scheduling

problem. To achieve fairness for single-type resources, weighted progressive filling [52] is

often used to achieve max-min fairness. In addition, Cigler and Faltings [15] analyzed fair

resource allocation among multiple resource requesters using a game theoretical approach

and developed a learning based solution for resource requesters.

More general types of fairness, including multi-type resource situations, have been

discussed in economics [44], where fairness is discussed in terms of envy and Pareto

efficiency in trading [50]. Dominant resource fairness (DRF) [20] has been proposed for

12

Table 2.1: Comparison of fair multi-type resource allocation for different problems

DRF (STR-MRT) DRFH (MTR-SRT) DRF (original)
Allocation Waste Non-waste Non-waste
Envy-free Yes Yes Yes
Pareto Efficient Yes Yes Yes
Sharing Incentive Yes No Yes
Strategy Proof No Yes Yes

multi-type resource fairness. DRF is proven to guarantee four important fairness

properties: envy-freeness, Pareto efficiency, sharing incentives and strategy proofness.

DRF uses the techniques of weighted progressive filling and bridges max-min fairness in

single-type resources with multi-type resources using a concept called the dominant

resource. In contrast, resource allocation mechanisms based on solutions in

micro-economic theory [36] [37] cannot satisfy all the key fairness properties proposed

for DRF. Figure 2.1 shows the relationship between the concepts and solutions of

single-type resource fairness to those of multi-type resource fairness solutions. The

aggregated resource share is the summation of the resource share of all types. Asset

fairness tries to equalize the aggregated resource share among all resource requesters.

Both competitive equilibrium from equal income and DRF use the dominant resource

share to form a bridge from the solutions of single-type resource fairness to multi-type

resource fairness. Resource requesters trade allocated resources to equalize their dominant

resource shares to achieve competitive equilibrium from equal income. On the other hand,

DRF allocates resources by weighted progressive filling, which can provide higher

resource utilization than can be achieved by competitive equilibrium from equal income.

The details of DRF are introduced in the next chapter.

13

Dominant resource fairness was further discussed by DC Parkes et al. [40]. The DRF

algorithm was implemented in Mesos [22] and as a fair scheduler for Hadoop YARN.

Extensions of DRF for different situations and applications have been introduced by many

researchers. For example, a version of DRF was developed for dynamic scenarios by

reserving resources for expected incoming resource requesters [26]. An extension of DRF

for heterogeneous computers (DRFH) was proposed and discussed by Wei Wang et al.

[53]. DRF also has applications beyond job scheduling for cloud computing frameworks.

For example, the dominant resource concept was also applied to virtual machine

placement algorithms [23] and virtual data center systems [2]. Studies have also applied

the idea of DRF to address multiprocessor scheduling problems [55], online storage/cache

sharing systems [41][14], and memory management [25].

Our work also applies the DRF principle. The situation in an MTR-SRT system is

similar to that of computer clusters, because resource allocations are non-wasteful,

meaning that an accurate amount of demanded resources is allocated to resource

requesters. For the STR-MRT, allocations can be wasteful, because a robot’s resources

cannot be split, serving one task with some resources while serving another task with its

remaining resources. Table 2.1 shows the fairness property guarantees when applying the

DRF principle to different problems.

14

Table 2.2: Taxonomy of multi-robot systems for single resource requester. Task allocation
and scheduling problems in different types of systems can be formulated as different

classic theoretical problems.

Task Types
Robot Types

Single-tasking Robot (STR) Multi-tasking Robot (MTR)

Single-robot Task (SRT) Optimal Assignment Set Partitioning
Multi-robot Task (MRT) Set Partitioning Set Covering

2.2 Coordination for Task Allocation in Multi-Robot Systems

Allocating robot resources to resource requesters eventually results in assignment of

tasks to robots. Without the existence of multiple resource requesters, coordinating task

allocation is a fundamental problem for multi-robot systems.

A taxonomy for multi-robot systems for a single resource requester and their related

problems [19] is shown in Table 2.2. A single-tasking robot with single-robot tasks

(STR-SRT) system needs to find an optimal assignment of tasks to robots to maximize the

benefits. Both STR-MRT and MTR-SRT systems are concerned with set partitioning;

STR-MRT systems partition the set of robots to maximize the utilities of robots for tasks,

while MTR-SRT systems seek to find task partitions for different robots. Multi-tasking

robot with multi-robot tasks (MTR-MRT) systems function by identifying the robots that

incur the minimal cost while accomplishing all the tasks. Our work focuses on both

STR-MRT and MTR-SRT systems, and both involve set partitioning problems.

For STMR, Shehory and Karaus [45][46] proposed a distributed set partitioning

solution for robotic team formation. In their proposed solution, each robot enumerates all

the possible coalitions of robots, including itself, up to a predefined size. Then, the robots

aggregate the results to collaboratively select the best robot team. For situations that do

15

not require forming a task team to meet the resource demands, Javier de Lope[17] applied

a reinforcement learning technique to guide the actions of robots by allowing them to

observe the environment; thus, these robots can identify the tasks they should work on

independently.

For single robot tasks, auction-based approaches [51][30] recruit one robot as a

centralized auctioneer, while the other robots bid for the tasks. Choi [13][9] introduced

consensus-based approaches for task allocation in which no centralized auctioneer is

involved.

16

3. BACKGROUND

Our formulation of fair multi-type resource allocation for multi-robot systems and our

solutions are based on knowledge and techniques from multiple fields. First, studies in

fairness of multi-type resource allocation provide a theoretical approach for analyzing our

problems and solutions. Second, our solutions utilize techniques from reinforcement

learning and artificial neural networks. In this chapter, we introduce the basics of

dominant resource fairness and reinforcement learning.

3.1 Fair Multi-type Resource Allocation

In this section, we briefly introduce the concept of fairness for multi-type resource

allocation and the well-known dominant resource fairness (DRF) algorithm [20]. Then,

we describe a version of the algorithm for heterogeneous environments (DRFH) [53].

These resource allocation procedures consist of the following major participants:

• Resource agents: Each resource agent represents a device that provides

computational resources such as CPU and memory. In our robotic scenario, these

resources can also be robotic resources like robotic arms and sensors. Let resource

agents be represented by p ∈ P . The resource capacity of requester p is represented

by a vector cp.

17

• Resource requester: Each resource requester is a human operator who requests

resources from the resource agents to schedule computing tasks. A set of resource

requesters U = {1...n} shares the computing resources of a cluster. In addition, we

assume that tasks from the same resource requester have identical resource demands

and that each resource requester continues to submit tasks until all the resources in

the system have been consumed.

3.1.1 Multi-type Resource Fairness

Allocating an equal division of all types of resources to every resource requester can

prevent starvation and satisfy all resource requesters equally, but this approach may not

maximize the satisfaction of the resource requesters. To address the concerns of both

allocation equality and satisfaction of resource requesters, the following discussion of

economic theories for multi-type resource allocation and the four key fairness properties

define multi-type resource fairness.

Let Vp : A→ R be the evaluation function of resource agent p, where A is a resource

allocation.

Definition 3.1.1 An allocation is envy free when no resource requester prefers any other

requester’s allocation. That is, ∀p, q ∈ P, Vp(Ap) ≥ Vp(Aq) if the allocation A is envy

free.

This fairness property ensures that no resource requester envies any other resource

requester as it observes the allocation of anyone else. Therefore, all the requesters are

18

satisfied with their allocations. This approach guarantees that no resource requester

suffers from resource starvation.

Definition 3.1.2 An allocation is Pareto efficient when it is not possible to increase the

total scheduled tasks of a resource requester without decreasing the total scheduled tasks

of at least one other resource requester. That is,

@A′(∃p ∈ P (Vp(A′p) > Vp(Ap) ∧ ∀q ∈ P (Vq(A′q) ≥ Vq(Aq))) if the allocation A is Pareto

efficient.

Together with envy-freeness, an allocation that meets Pareto efficiency maximizes the

satisfaction of resource requesters while trying to preserve the resource fairness among

requesters as much as possible.

Definition 3.1.3 An allocation has a sharing incentive when each user is better off getting

resources allocated according to their heterogeneous demands rather than exclusively

owning equal fractions of resources. That is, ∀p ∈ P (Vp(Ap) ≥ Vp(A
′
p) if allocation A

has a sharing incentive and allocation A′ is an equal division of all resources.

This property was first defined in [20] to provide a lower bound for fair multi-type

resource allocation algorithms. If all the allocations generated by an allocation algorithm

satisfy this property, we know that the system will benefit by using that algorithm.

Definition 3.1.4 An allocation algorithm is strategy-proof when a resource requester can

achieve maximal benefits only by declaring its resource demands honestly.

Strategy-proofness guarantees that other fairness properties are not compromised by

the malicious behaviors of resource requesters. Even if a resource allocation algorithm is

19

not strategy proof, however, systems can use other methods to discover and punish

cheating. For example, a system could monitor the actual utilization of resource requester

allocations to reveal their real demands.

The first three fairness properties attempt to suggest an allocation that maximizes the

resource allocations to requesters and maintain equal satisfaction. As a result, higher

resource utilization that have higher equality (or reduced inequality) have a better chance

of satisfying the three fairness properties. Therefore, we can use an inequality

measure–Gini coefficient–to assess resource allocations among requesters and use average

resource utilization to compare the fairness among different allocations. The Gini

coefficient represents the inequality of allocation among any number of resource

requesters in a range from 0 to 1. In addition, the Gini coefficient is not sensitive to

resource requester sequence, but it is sensitive to situations in which a small fraction of the

resource requesters uses a high fraction of the total resources.

3.1.2 Dominant Resource Fairness (DRF)

Dominant resource fairness (DRF) is a well-known solution for fair multi-type

resource allocation. A dominant resource is the bottleneck resource of a resource

requesterthe resource that a resource requester needs most. Let the resource share be the

fraction used by a given resource requester of the total amount of that resource in the

system. The dominant resource share of a resource requester is the one with the highest

fraction among the shares of any other resources used by that resource requester. The DRF

algorithm uses the dominant resource as the allocation criterion in its progressive filling

20

procedure. In other words, the DRF algorithm always attempts to allocate resources to the

resource requester with the lowest possible allocated fraction of the dominant resource.

Thus, the allocation generated by DRF is fair in terms of the four key properties [20].

Example 3.1 The DRF algorithm views all resources as if they were in one computer. For

example, if we have 2 resource agents with [10 CPU, 5 GB] and [5 CPU, 10 GB], DRF

views them as one resource agent with a total of [15 CPU, 15 GB]. DRF allocates

resources to resource requesters in a non-wasteful way based on the task resource

requirements. In other words, the resources allocated to a task can exactly match the

demands of that task. Suppose two resource requesters schedule tasks in the system. Each

task of resource requester A demands [2 CPU, 1 GB] and each task of resource requester

B demands [1 CPU, 2 GB]. That is, A’s tasks require (2/15 of CPUs, 1/15 of memory) in

terms of the fraction (share) of resources in the system, while B’s tasks require (1/15 of

CPUs, 2/15 of memory). The dominant resource is the resource that requires the maximum

share. DRF tries to equalize the resource requesters’ shares of the allocated dominant

resources by maximizing the minimum share of the dominant resource among the resource

requesters. In our example, if both resource requesters have sufficient tasks to fill the

system, each of them can obtain 10/15 share of their dominant resources under the

constraints of total resource capacity. In other words, resource requester A can schedule 5

tasks requiring a [10 CPU, 5 GB] allocation while resource requester B can schedule 5

tasks with a [5 CPU, 10 GB] allocation.

The allocation in the example 3.1 is envy free. Both resource requesters are allocated

2/3 of their dominant resources with 5 tasks scheduled. Resource requester A could

21

schedule only 2 tasks with the allocation of resource requester B. Similarly, B could

schedule fewer tasks if given the allocation of resource requester A. Thus, these two

resource requesters do not envy each other.

Because the DRF algorithm uses the mechanism of progressive filling and all

resources allocated to a task are the task’s actual requirement, the DRF is complete when

at least one type of resource is saturated, at which point increasing the allocation of any

resource requester would reduce the allocations of others. In the example 3.1, if resource

requester A schedule one additional task (making its requirement [12 CPU, 6 GB]), it

would reduce the allocation to resource requester B (to [3 CPU, 9 GB]). Hence resource

requester B can schedule only 3 tasks. Similarly, resource requester B cannot increase its

satisfaction without reducing the allocation of resource requester A.

In contrast, if each resource requester were allocated [7.5 CPU, 7.5 GB] out of the

total [15 CPU, 15 GB] by splitting all resources equally, in example 3.1, each resource

requester would be able to schedule only 3 tasksfewer than when the allocation is

performed by DRF. Therefore, the resource requesters are better off trading some of their

equal allocations with others to increase their satisfaction.

Because DRF tries to equalize the dominant resource share by maximizing the

minimal dominant resource share, fake task requirements lead to equal or lower allocation

amounts for at least one type of resource compared to the allocations provided for the real

task requirements. For example, if resource requester A makes a fake task demand of [2

CPU, 2 GB], resource requester A is allocated only [8 CPU, 8 GB] allocated, which can

fulfill fewer tasks than the true allocation [10 CPU, 5 GB]. If resource requester A were to

requests [3 CPU, 1 GB] for each task to increases its claimed resource demands for the

22

dominant resource, resource requester A would be allocated only [9 CPU, 3 GB]. Finally,

if resource requester A increases or decreases the amounts for all types of resources at the

same time, for example, [4 CPU, 2 GB] or [1 CPU, 0.5 GB], it would receive the same

allocation [10 CPU, 5 GB] as if it had behaved honestly. Therefore, it does not benefit a

resource requester to declare fake resource requirements for its tasks.

However, a system may have multiple resource agents with heterogeneous resource

capacity. A naive extension is to apply DRF separately for each resource agent; however,

that approach is inefficient because different resource capacities can cause fragmentation.

For instance, suppose resource agent P1 has [10 CPU, 5 GB] and resource agent P2 has [5

CPU, 10 GB]. If we were to apply DRF separately to both resource agents, resource

requester A would obtain an allocation of [8 CPU, 4 GB], allowing 4 tasks, and resource

requester B would have an allocation of [4 CPU, 8 GB], also allowing 4 tasks. Using this

approach, 3 CPU and 3 GB are not utilized in the system. However, if we schedule all the

tasks of resource requester A on P1 and all tasks of user B on P2, the system would

achieve the optimal utilization, scheduling 5 tasks for resource requester A and 5 tasks for

resource requester B. Therefore, [53] proposed the DRFH algorithm.

For a resource agent p ∈ P , cp = (cp,1, ..., cp,K)
T is its normalized resource capacity

for K types of resources, where
∑

p∈P cp,r = 1,∀r ∈ R. For a resource requester u ∈ U ,

Di = (Du,1, ..., Du,K)
T is the demand vector, where Du,r is the share of resource rthe

fraction of the demanded resource r over the total resource capacity of r in the system.

Therefore, the global dominant resource of resource requester u is r∗u ∈ argmaxr∈RDu,r.

Resource requester u’s share of the allocation on resource agent p is denoted by

23

Aup = (Aup,1, ..., Aup,K)
T . User u can schedule minr∈R{Aup,r/Du,r} tasks using resource

agent p.

Let the global dominant resource share that user u receives from resource agent p be

Gup(Aup) = minr∈R{Aup,r/Dur}Du,r∗u , and let Gu(Au) =
∑

p∈P Gup(Aup). Then, the

DRFH problem is defined as follows:

max
A

min
u∈U

Gu(Au)

s.t.
∑
u∈U

Aup,r ≤ cpr,∀p ∈ P, r ∈ R (3.1)

The DRFH aims to optimize fair dominant resource allocation globally. A DRFH

solution ensures three key fairness properties: envy-freeness, strategy-proofness, and

Pareto efficiency. However, DRFH assumes that a centralized resource manager exists.

3.2 Reinforcement Learning

Reinforcement learning is an online learning method by which an intelligent agent can

learn the approximate future rewards of action from the environment. The environment

and the effects of the actions of intelligent agents are modeled as a Markov decision

process. A Markov decision process can be expressed as a 5-tuple (S,A, P,R, γ), as

follows:

• S is a finite set of states that represent the environmental observations of an agent;

• A is a finite set of actions or strategies;

24

• Pa(s, s′) = Pr(st = s′|st−1 = s, at−1 = a) is the probability that taking action a in

state s at time t− 1 results in state s′ at time t+ 1;

• Ra(s, s
′) is the reward received by the agent after transiting from state s to state s′

after taking action a;

• γ ∈ [0, 1] is a discount factor of the importance of future rewards.

An agent’s policy π(a|s) is a mapping from state s to the probability of taking an

action, a. An agent’s goal is to determine a policy that allows it to make decisions to

maximize its total rewards. Given the transaction probabilities of states with actions, a

software agent can evaluate a state based on its potential for gaining a reward.

V π(s) =
∑
s′

Pπ(s)(s, s
′)(Rπ(s)(s, s

′) + γV π(s′))

To evaluate an action a taken by an agent in state s, the action value under policy π is

defined as follows:

Qπ(s, a) =
∑
s′

Pa(s, s
′)(Ra(s, s

′) + γV π(s′))

A policy that achieves an optimal value in each state is an optimal policy. An agent’s

policy should attempt to maximize the immediate and potential rewards. Then, we obtain

the action value function with the optimal policy:

Qπ∗(s, a) =
∑
s′

Pa(s, s
′)(Ra(s, s

′) + γmaxa′Q
π∗(s′, a′))

25

where π∗(s) = argmaxaQ(s, a).

In each time step t, an agent achieves the immediate reward rt and receives

(st−1, rt, st), where st−1 is the previous state and st is the current state of the environment.

To estimate the action values, an agent can correct the Q value when it receives an

environmental observation.

Q = Q+ δQ

Based on this idea, a widely used value-based model free reinforcement learning

techniqueQ-learningwas proposed by Watkin [54]. The Q-learning updating rule is

Q(st−1, at−1) = Q(st−1, at−1) + α(rt + γmaxaQ(st, a)−Q(st−1, at−1))

where α is the learning rate, which ranges from 0 to 1, and γ is the discount factor for

a future reward.

An agent can use a two-dimensional look-up table to record the Q values for each state

and action. Then, the agent updates the Q values while it makes decisions and receives

observations from the environment. In theory, the Q values will converge to the actual

value if an agent experiences every state an infinite number of times with a proper learning

rate.

Recent improvements in neural network research have led to more efficient algorithms

for neural reinforcement learning [43]. Deep reinforcement learning can successfully play

26

games such as Atari [35] and Go [47] by efficiently handling the large number of possible

states in these games.

27

4. FAIR RESOURCE ALLOCATION FOR SINGLE-TASKING

ROBOTS WITH MULTI-ROBOT TASKS SYSTEMS

4.1 Overview

When a group of robots serves multiple resource requesters, the following questions

must be addressed: “Which sub-group of robots should serve which resource requester?”

and “How is ‘fairness’ achieved during this process?” The major challenge in resource

allocation for multiple resource requesters in multi-robot systems is to maximize the

satisfaction of the resource requesters in a fair manner.

In this chapter, we introduce the multi-type resource fairness problem for a

single-tasking robot with multi-robot tasks (STR-MRT) system. In other words, a task is

divisible, and one robot can be responsible for only a part of that task. In this type of

system, a robot can work on one task at a time, and multiple robots can form a team to

collectively execute a task. To achieve fairness (which is defined as having the fairness

properties) for multi-type resource allocation, we apply the dominant utilized resource

fairness (DRF) concept to the STR-MRT systems. We discuss DRF for an STR-MRT in

terms of the four key fairness properties: envy-freeness, Pareto efficiency, sharing

incentives and strategy proofness. In the fairness analysis, we identify three basic cases of

DRF allocations for an STR-MRT.

28

We propose an implementation of centralized DRF for an STR-MRT derived from the

original DRF proposal [20]. Additionally, we implement a task team formation

mechanism using a heuristic that minimizes resource waste within a task team.

The experimental results show that our proposed algorithm outperforms “equal

division” approaches in terms of allocation equality and resource utilization.

The contributions of this chapter are summarized as follows:

• We model the fair multi-type resource allocation for an STR-MRT as a max-min

fairness problem of the dominant resource and analyze the fairness properties of

DRF for an STR-MRT.

• We develop a heuristic based robot team formation to empirically minimize the

resource waste within a task team.

• We develop a centralized resource fairness algorithm by combining DRF and our

proposed heuristic based robot team formation. To our knowledge, this is the first

attempt to apply dominant resource fairness to multi-robot systems.

4.2 Resource Fairness for Single-tasking Robots with Multi-robot Tasks Systems

A Resource agent is a software intelligent agent that represents a robot. In our

multi-robot system, robots have multiple types of resources and perform as autonomous

resource agents to serve resource requesters. Each resource agent is devoted to one task

supplied by a resource requester until the task is completed. In this section, we introduce

the dominant resource fairness for an STR-MRT.

29

Fig. 4.1.: An example of resource utilization problem in robotic team for a task. The left
circle represents the task resource requirement. The task requires different types of

resources: extinguishers and cameras. The robotic team formed in the figure, however, has
one excess resourceone red extinguisher.

4.2.1 Formulation of Fair Resource Allocation

Let P be the set of resource agents in the system and let U be the set of resource

requesters. The resource vector of a resource agent p ∈ P is denoted as

cp = (cp,1, cp,2..., cp,K)
T , where cp,i is the amount of resource type i available in p and K is

number of resource types in the system. The task demand of a resource requester u ∈ U is

denoted as ru = (ru,1, ru,2..., ru,K)
T . For simplicity, we assume that the resource

capacities of a robot are significantly smaller than any resource demands.

In the original DRF, the amount of resources allocated to a task exactly match the

resources that the task demands. However, for an STR-MRT system, a task may be

allocated more resources than demanded, as in the example shown in Figure 4.1. In other

words, task execution may not utilize some resources that come with the robots. Because

the satisfaction of a resource requester depends solely on the utilized resources, our

STR-MRT system considers utilized resource share instead of allocated resource share as

the criterion of resource allocation. Therefore, we consider the dominant utilized resource

30

share among the resource requesters in our solution of the fair resource allocation problem

for an STR-MRT.

Suppose that Nu is the number of tasks that robots are executing for resource requester

u. The actual usage of resource type i by u is the product of the number of tasks and the

resource requirements of each task: ru,i ×Nu. The used fraction of resource i in the

system by resource requester u is represented as Equation 4.1.

Du,i = (ru,i ×Nu)/
∑
p∈P

cp,i (4.1)

Thus, the dominant utilized resource share for u’s allocation is represented using

Equation 4.2.

du = max1≤i≤KDu,i (4.2)

Let Pu be the set of resource agents executing resource requester u’s tasks. A is a

resource allocation. Au ∈ A is the resource allocation for u. Au,i is the fraction of

resources of type i in the system allocated to resource requester u, as shown in Equation

4.3.

Au,i =
∑
p∈Pu

rp,i/
∑
q∈P

cq,i (4.3)

Robots can execute a task only if their allocations meet the task’s resource

requirement. Hence, for any type of resource i ∈ [1, K] and any resource requester u, we

have Dui ≤ Aui. Any extra resources allocated to u, e.g., Au −Du, may be wasted.

31

To achieve resource fairness, which is defined as meeting the fairness properties [20],

the original DRF algorithm tries to maximize the lowest dominant resource share among

resource requesters using a progressive filling approach [6]. Consequently, the algorithm

attempts to equalize the dominant resource shares among the resource requesters while

maximizing the total resource utilization in the system. For the STR-MRT problem, the

fair resource allocation algorithm using DRF maximizes the least-utilized dominant

resource share, as shown in Equation 4.4.

MaxAMinu∈Udu

Subject to∑
u∈U

Aui ≤ 1, ∀i ∈ [1, K]

∑
i∈[1,K]

Dui ≤ Aui,∀u ∈ U

(4.4)

Thus, the fair resource allocation algorithm for a multi-robot system aims to equalize

the dominant resource share as much as possible while maximizing the amount of

resources utilized by the multi-robot system. We can implement the progressive filling

algorithm to solve this max-min optimization, which is proposed and discussed in the

original DRF.

32

4.2.2 Fairness Properties

Because the resource allocations to resource requesters in STR-MRT systems can be

wasteful, we discuss fairness under three basic cases:

• Resource allocations for resource requesters are non-wasteful for any type of

resource; that is, these allocations can be expressed as linear combinations of robots.

• Resource allocations for resource requesters have the same dominant resource type.

• Resource allocations for resource requesters have different dominant resource types,

but these allocations may not be the linear combinations of robots.

When a resource allocation for a type of resource is non-wasteful, the allocation

contains the exact amount of the resource demanded by a task, and the task can fully

utilize the allocation of that type of resource. If the DRF algorithm for the STR-MRT

generates a solution that allocates the dominant resources for all resource requesters in a

non-wasteful manner, the solution satisfies envy-freeness, Pareto efficiency and sharing

incentives. However, the DRF algorithm for the STR-MRT may not satisfy

strategy-proofness. A full discussion of these fairness properties can be found in

Appendix A.

Figure 4.2 shows three examples for the three basic cases in which the allocations for

dominant resources are non-wasteful. In these three examples, no resource requester

prefers the allocation of any other requester and cannot improve its own allocation without

reducing that of others. In Figure 4.2 a) and c), the allocations better satisfy the resource

requesters than would an equal division of all types of resources, while in Figure 4.2 b),

33

R1 R2 R1 R2

R1 R2 R1 R2

R1 R2 R1 R2

Resource Requester 1 Resource Requester 2

Resource Requester 1 Resource Requester 2

Resource Requester 1 Resource Requester 2

0.66

0.33

0.5

0.125

0.25

0.66

0.33

0.125

0.25

a) Allocations are linear combinations of robots.

b) Resource requesters have same type of dominant resource.

c) Resource requesters have different types of dominant resources.

Fig. 4.2.: Three basic resource allocation cases for STR-MRT systems. When all types of
resources in the allocations are non-wasteful, the allocations are linear combinations of

robot capacities. This situation has been discussed in previous studies about DRF. When
resource allocations are wasteful, there are two basic cases: those in which every resource

requester has the same dominant resource type and those in which resource requesters
have different dominant resources types.

34

DRF generates an equal division of all types of resources because the two resource

requesters have the same type of dominant resource, and DRF tries to equalize the

allocations of the dominant utilized resource.

4.3 Centralized Fair Resource Allocation

A centralized fair resource allocation implementation for an STR-MRT consists of two

phases: resource requester selection and task team formation. In this implementation, a

centralized planner makes a decision concerning the resource allocations for all resource

agents. The planner receives resource requests from the resource requesters and maintains

resource fairness among the resource requesters. The planner performs centralized

resource requester selection based on dominant utilized resource fairness. In addition, the

planner runs a best-fit algorithm (described in Section 4.4) to place resource agents in task

teams.

Algorithm 1 Procedure CentralizedP lannerDRF
Require: P,U,R
Return: A
Q← P
A← −→0
while

∑
u∈U Aui ≤

∑
p∈P Rpi −minu∈URui,∀i ∈ [1, K] do

u← argminu∈UDu

T ← FormTaskTeam(Ru, Q)
Au ← Au +

∑
p∈T Rp

Q← Q/T
end while

The planner has complete knowledge of the system. Every robot must register with it.

Then, the planner can run the dominant utilized resource fair algorithm to assign robots to

resource requesters as shown in Algorithm 1. The planner considers a set of resource

35

agents P , a set of resource requesters U , and their resource requirements or capacities R.

The function FormTaskTeam(P,U,R) selects resource agents from Q to form a team

when the resource capacities of those robots best match the resource demands of a task

from user u. The process continues until no more tasks can be satisfied by the resource

agents in Q.

Figure 4.3 illustrates an example of the centralized fair resource allocation scheme.

The centralized planner first selects a resource requester with the lowest dominant utilized

resource share. Then, it forms a robotic team for a task based on the selected requester.

Subsequently, it repeats these two steps until no more task resource demands from any

resource requester can be met.

4.4 Centralized Task Team Formation

To maximize resource utilization and mitigate the impact of wasted resources on

fairness, robots need to form teams with minimal resource waste. Suppose the average

resource utilization in a task team is Utilization(t, Rv) =
∑

i∈[1,K](At,i −Rv,i)/K for a

team t of task v, where At,i =
∑

p∈t cp,i. We can define the task team formation problem

as follows.

Definition 4.4.1 Given a set of resource agents P = {p1, p2, ...} with corresponding

resource capacities CP = {C1, C2, ..., C|P |} and a set of task resource demands

36

Resource agent (Robot) Resource requester

1. Select a resource requester by DRF 2. Form a task team

3 Select another resource requester 4. Form task team for another task

Fig. 4.3.: An example of centralized fair multi-type resource allocation. Different gray
represents different resource configurations of robots and different resource requirements

of resource requesters. At the beginning, all robots are in the pool and do not work for any
resource requesters. Then the centralized algorithm allow robots forming task team for

one resource requester at a time.

37

RV = {Rv1 , Rv2 , ...}, the task team formation problem is to find a mapping M : V → P

from each task to a set of resource agents such that

MaxM
∑
v∈V

Utilization(M(v), Rv)

Subject to⋃
v∈V

M(v) ⊆ P

∑
p∈M(v)

Cp,i ≥ Rv,i,∀v ∈ V, ∀i ∈ [1, K]

(4.5)

The problem is essentially similar to the multi-capacity bin packing problem [29]. The

multi-capacity bin packing problem [33][28] packs items with multi-type resources into a

minimal number of bins with identical multi-type resource capacities. In other words, an

optimal solution to the bin packing problem will fill each bin as completely as possible.

Because the multi-capacity bin packing problem is an extension of the bin packing

problem, our team formation problem has the same computational complexity as the bin

packing problem.

Theorem 4.4.1 The optimization problem of task team formation is NP-hard.

Proof Here, we show that the multi-capacity bin packing is reducible to the task team

formation problem. Suppose that the capacity of each bin is expressed as a vector, CB. Let

a set of items be I . An item i ∈ I has resource Ri. The total amount of resources of all the

items is RI =
∑

i∈I Ri. We note that finding a subset of items I1 ⊆ I such that MaxI1RI1

subjects to RI1 ≤ CB is equivalent to finding a I1 ⊆ I such that

38

MaxI/I1Utilization(I/I1, RI − CB) subject to RI/I1 ≥ RI − CB. That is, we can find a

subset I1 ⊆ I by solving our task team formation problem where one task has the resource

requirement RI − CB and a set of resource agents I . After finding this I1 subset, the

available items are I/I1. Then, I2 can be found by solving the task team formation

problem of one task with the resource requirement RI −RI1 − CB and a set of resource

agents I/I1 until the leftover items can be packed into one bin. Therefore, the

multi-capacity bin packing problem is reducible to the task team formation problem. It

follows that the optimization problem of task team formation is at least as hard as the bin

packing problem. Because the optimization problem of bin packing is NP-hard [16], the

optimization problem of task team formation is also NP-hard.

Similar to the bin packing problem, the best-fit algorithm can find an approximate

solution to our task team formation problem. The algorithm always selects the resource

agent with the minimum difference between the resource demands of a team for a task and

the resource capacity of the resource agent, as shown in Equation 4.6.

Difference(p, v,M(v)) =
∑
i∈[1,K]

|(rv,i−
∑

q∈M(v)

cq,i)/(rv,1−
∑

q∈M(v)

cq,1)−cp,i/cp,1| (4.6)

Having only a small difference between the capacity of a resource agent p ∈ P and the

resource demand to satisfy task v ∈ V in team M(v) indicates a higher utilization of

resources. Hence, a resource agent prefers to join a team with a small difference between

its capacity and the resources demanded by that team.

39

Algorithm 2 describes the procedure of forming a task team using the best-fit

algorithm. The available resource agents in P are evaluated by their feasibility and their

difference from the resource demands of task v. The calculation

Feasible(d, P) = {p ∈ P |∃i ∈ [1, K](Rd,i > 0 ∧ Cp,i > 0)} selects all feasible resource

agents that have at least one resource demanded by the current team tv to satisfy the task.

Next, calculating SelectRobot(P, t, tv) = argminq∈PDifference(q, v, tv) selects the

resource agent with the minimum difference from the resources demanded by team tv.

Then, the algorithm updates the resources demanded to satisfy the task by the team by the

resource capacity of the newly joined resource agent. Finally, the process repeats until all

the resource requirements of task v have been met.

Algorithm 2 Procedure FormTaskTeam
Require: Rv, P
Return: tv
d← Rv

tv ← ∅
while d > 0 do
P ← Feasible(d, P)
p← SelectRobot(P, v, tv)
tv ← {p} ∪ tv
P ← P/{p}
d← d−Rp

end while

4.5 Experiments

We performed simulations using synthetic data to test our team formation algorithm

and centralized dominant utilized resource fairness algorithm.

40

4.5.1 Team Formation

In the dataset for team formation, we consider two types of resources in our system.

The resource requirements for tasks in the dataset range from 5 to 55 with a step size of 5.

Regarding task demands, the dataset covers all possible combinations of the two types of

resources within the range [5, 55]. That is, there are one hundred different task

configurations in the dataset. The dataset contains three resource configurations for

robots: [2, 1], [1, 2], and [2, 2]. Each resource configuration is used by 1000 robots. In the

simulation, our centralized resource planner forms robot teams using these 3000 resource

agents for resource requesters submitting the tasks with the 100 different resource

requirements in the dataset.

We compared the best-fit algorithm with a random-fit algorithm in our simulation,

where instead of selecting the resource agents with minimum difference for a team, the

system picks a random resource agent from the set of feasible resource agents. The

resource agent selection function for the random-fit algorithm shown in Algorithm 2 is

SelectRobot(P, v, tv) = RandomPick(P).

The experiments for each method are repeated ten times. Figure 4.4 illustrates the

average resource utilization in the task teams. The resource utilization in a task team is the

ratio of task resource demand to the total resource capacities of the resource agents in the

team. The results show that the average resource utilization in the task teams is 0.837

using the best-fit algorithm and 0.742 for the random-fit algorithm. A T-test resulted in a

P-value of 0. These results show that the best-fit approach clearly outperforms the

random-fit approach.

41

Fig. 4.4.: Resource utilizations using Best-fit and Random-fit algorithm

The results of our experiment also reveal that the similarities or differences between

task requirements and the resource capacities of the robots affect a team’s resource

utilization. We show the trends of similarity and difference with regard to team resource

utilization. The difference value is calculated using the Difference function for resource

agent selection in our team formation algorithm, while the similarity value is calculated by

cosine similarity, which is used to measure the vector space similarity [49]. Figure 4.5 and

Figure 4.6 show that the similarities or differences between task resource requirements

and robot resource capacities affect team resource utilization under both the best-fit and

random-fit algorithms.

4.5.2 Centralized Fair Resource Allocation

In this experiment, we create four datasets based on different cases for envy-freeness.

The details of each dataset are listed in Table 4.1. Each dataset consists of 500 resource

agents of each type. The “All Situation” dataset contains all task requirement

42

Fig. 4.5.: Team utilization increases with increase of Cosine similarity and decrease of
difference between task requirements and resource capacities of robots by using Best-fit

method. Y-axes are difference or cosine similarity between task requirements and resource
capacities. X-axes are team utilization.

43

Fig. 4.6.: Team utilization increases with increase of Cosine similarity and decrease of
difference between task requirements and resource capacities of robots by using

Random-fit method. Y-axes are difference or cosine similarity between task requirements
and resource capacities. X-axes are team utilization.

Table 4.1: Configurations of Synthetic Data Sets

Type Robot Configurations Resource Requesters
Linear Combination (LC) [2,1], [1,2] [10, 15], [15, 10]
Same Dominant Resources (SD) [2,1], [1,2] [10, 30], [10, 40]
Different Dominant Resources (DD) [2,1], [1,2] [10, 30], [10, 5]
All Situations (All) [2,1], [1,2] [5-55, 5-55]

combinations for two types of resources with values ranging from 5 to 55. Each

experiment using the “All Situations” dataset samples 10 configurations from the 100

possible resource requester configurations.

We compare our dominant utilized resource fairness with an equal-use assignment

algorithm and a random algorithm using these datasets.

The equal-use resource algorithm selects a task from a uniformly random resource

requester, but it limits the utilized allocated resources of a resource requester. When the

system includes k resource requesters, each resource requester can utilize up to a 1/k

fraction of any resource type. Therefore, the equal-use resource selection algorithm tries

44

Fig. 4.7.: Gini-coefficient and Team resource utilization of our approaches on different
datasets.

to assign an equal share of resources to every resource requester. In contrast, the random

approach selects a task from a uniformly random resource requester with no limitation.

In the experiments, we compare fairness of resource allocation among these

algorithms. The results show that, except for the random selection approach, the

algorithms obtain good performances in terms of fairness. Figure 4.7 shows the inequality

of the dominant resource share. The DRF and equal-use assignment based algorithms

obtain a Gini value below 0.05 on all the datasets. In general, the equal-use resource

algorithm achieves a slightly better performance regarding the equality of the dominant

utilized resource share because it sets a limitation on the utilized resource.

However, the dominant utilized resource allocation algorithm provides the greatest

satisfaction to all the resource requesters. Compared to the other approaches, the DRF

schedules more tasks from all the datasets, as shown in Figure 4.9. In addition, the DRF

algorithm results in both the highest minimum dominant utilized resource share and the

highest maximum dominant utilized resource share. This result indicates that each

45

Fig. 4.8.: Resource utilization and task throughput on different datasets.

46

Fig. 4.9.: Maximal and minimal dominant resource shares on different datasets

resource requester acquires more of the dominant utilized resource share, which leads to

the ability to schedule more tasks for all requesters.

The dominant utilized resource fairness algorithm results in a better resource

utilization in the system. The resource utilization results in Figure 4.8 show that DRF

outperforms the other algorithms on the ALL, LC, and DD datasets.

The performance of DRF is similar to that of the equal-use resource allocation on the

DD dataset in terms of inequality and resource utilization. This result occurs because the

DRF algorithm tries to equalize the dominant used resource share in the same manner as

the equal-use resource algorithm when the resource requesters have the same dominant

resource.

4.6 Conclusion

This chapter, discussed the dominant utilized resource fairness mechanism. We

identified three cases in which resources in an allocation may not be fully utilized and

discussed the fairness properties under these cases. In addition, a team formation

47

mechanism was proposed and tested. We tested the centralized dominant utilized resource

fairness against algorithms based on equal division. We designed the test datasets based

on our analysis of cases regarding resource waste. The experimental results suggest that

our dominant utilized resource fairness approach outperforms both the equal use resource

allocation method and random resource requester selection in terms of both fairness and

resource efficiency.

48

5. DISTRIBUTED FAIR RESOURCE ALLOCATION FOR

SINGLE-TASKING ROBOTS WITH MULTI-ROBOT TASKS

SYSTEMS

5.1 Overview

A centralized solution for fair resource allocation in an STR-MRT system is more fault

tolerant and usable than a centralized resource planner because it is not subject to the

problem of single-point failure. For example, an earthquake may destroy the centralized

planner or disable the general network service, leaving the resource requesters helpless

while they need to call for services from robots. Hence, the robots need to directly

communicate with each other without being affected by failed devices and negotiate a

resource allocation plan.

To alleviate the above-mentioned problem further, in this chapter we introduce a

decentralized solution to fair resource allocation for single-tasking robot with multi-robot

tasks (STR-MRT) systems in which a robot can work on one task at a time and multiple

robots can collaborate on that task. We introduce a software component to this solution

sketch called a “resource agent”. The role of a resource agent is to manage resources for a

robot. First, we propose a decision-making framework for the resource agents. The

decision-making procedure solves two sub-problems: a) selection of a resource requester

(a human coordinator) and b) formation of task team. We discuss a consensus approach

49

for decentralized task team formation. Then, we propose a game-theoretical model for

resource requester selection. Finally, we present a deep reinforcement learning approach

to find the resource requester assignment for a resource agent that achieves both resource

fairness and resource efficiency. The experimental results show that the deep

reinforcement learning method outperforms the tabular Q learning approach and randomly

based baselines.

The contributions of this chapter are summarized as follows.

• We develop a two-phase distributed algorithm to solve the fair resource allocation

problem. The two phases are resource requester selection and distributed task team

formation.

• We develop a coordination game for the requester selection phase and solve the

game using a decentralized procedure with deep reinforcement learning.

• We develop a consensus-based task team formation algorithm.

5.2 Distributed Fair Multi-type Resource Allocation

In this section, we introduce a framework for the two phases of our proposed

algorithm. In the first phase, a resource agent selects a resource requester to serve. After

selecting a resource requester, in the second phase, the resource agent negotiates with

other resource agents to form a robot team to complete a given task of the selected

resource requester.

A resource agent can operate on only one task at a time. As shown in Algorithm 3,

each resource agent, which manages the resources of a robot, selects a resource requester

50

Algorithm 3 Procedure ResourceAgent()

UpdateQ(D,P, U, p)
u← SelectRequester(D,P, U, p)
task ← ReceiveTaskRequest(u)
team← FormTaskTeam(task, P, p)
if p ∈ team then
Execute(team, p, task)

end if

51

to serve. The SelectRequester(D,P, U, p) function selects a requester for a resource

agent by considering both the dominant resource shares of resource requesters and

observations of the behaviors of other resource agents. We will discuss details of requester

selection in Sections 5.5 and 5.6. Then, the resource requester sends a task request to call

for robotic resources. After a resource agent receives a task request, the second phase

begins. The FormTaskTeam(task, P, p) of each resource agent proposes team

formation plans and a consensus algorithm helps resource agents reach an agreement on a

plan. If a resource agent is in the agreed task team, it executes the task in collaboration

with other member resource agents of that team.

An example of decentralized fair resource allocation is shown in Figure 5.1. First, each

resource agent selects a resource requester. Then, the resource agents that selected the

same resource requester attempt to form a task team. Different groups of resource agents

that selected other resource requesters form task teams within their groups simultaneously.

After the task teams are formed, each free resource agent in none of these teams selects

another resource requester. That is, these free resource agents reinitiate the Algorithm 3.

This process repeats until there are not enough resource agents to form a new task team.

Figure 5.2 illustrates the internal state transition of a resource agent. After the resource

agents finish their resource requester selections, they are in an “Idle” state awaiting a

resource request. After a resource agent receives a task request from its selected resource

requester, the internal state of the resource agent transitions to “TeamForming,” in which

the resource agents negotiate to achieve consensus and form a task team. A fully planned

task team formation consists of an agreed-upon set of resource agents who belong to that

task team. That is, the resource agents need to find a plan that specifies the team members

52

Resource agent (Robot) Resource requester

1. Decentralized resource requester selection 2. Decentralized task team formation

3. Re-selection of resource requesters 4. Task team formation

Fig. 5.1.: An example of decentralized fair multi-type resource allocation that forms 4 task
teams. Different gray represents different resource configurations of robots or different

resource requirements of resource requesters. Robots make decisions and form teams for
different resource requesters simultaneously.

53

Fig. 5.2.: Internal state transitions of a resource agent.

for a task. When a resource agent successfully joins a task team, it accepts the task and

executes it in collaboration with other members on the same team. Otherwise, the

resource agent’s state transitions to “Pending,” and the resource agent waits for other

resource agents serving the same resource requester to accept the team plan. In the

following sections, we discuss the problems that must be solved in these two phases and

their solutions. We discuss team formation first, because it is the foundation of our

resource allocation procedure. Then, we introduce a resource requester selection game

and its solutions.

5.3 Task Team Formation

The goal of coordinated team formation is to find a set of resource agents to meet task

resource requirements with minimal resource waste. We introduce a consensus based

algorithm that allows resource agents to form a task team in a distributed manner.

54

5.3.1 Task Team Formation Plan

A team formation plan describes a combination of resource agents. The resource

agents need to reach consensus concerning a team formation plan. Then, the resource

agents that are part of the plan can form the team and collectively work on the same task.

To avoid enumerating all possible combination of resource agents, a resource agent p

uses a heuristic function to measure the cost of joining a team for task u:

FitCost(u, p) =
∑
i∈[1,K]

|ru,i/ru,1 − cp,i/cp,1|

where ru,i is the amount of resource i requested by resource requester u for one of its

tasks; ru denotes the resource demands of any task request from resource requester u,

because we assume that resource demands of tasks from the same resource requester are

identical; cp,i is the capacity of resource i managed by resource agent p; and

FitCost(u, p) calculates an accumulative difference between the normalized resource

demands of a task and the normalized resource capacity of a resource agent. In this

heuristic function, we use the amount of the first type of resource to normalize the amount

of a given resource, which can be replaced by the amount of any other resource.

Intuitively, the lower the value of FitCost, the more similar the resource capacity of a

resource agent is to the resource demands of the given task.

When a plan of task team formation is presented to a resource agent, the resource

agent first checks the resource feasibility of a robot [12], which reflects the robot’s

capability of meeting the resource demands. If a resource agent does not possess any of

55

the resources demanded by a task, it should withdraw from consideration to provide

service for that task. When a resource agent is feasible for a task, it needs to evaluate the

plan. The reward attributable to a plan depends on two factors: the resources required to

execute the task in a team and the resources wasted in the team. After the robotic

resources in a team meet the resource demand of a task, the algorithm tries to maximize

the resource utilization within the team. The resources needed consists of the set of

differences between the resource demanded for tasks and the resources allocated to those

tasks: Need(t, u) = {Du,i −At,i|∀i ∈ [1, K]
∧
At,i < Du,i}, where t is the team plan, u is

the resource requester. Du,i = ru,i/
∑

p∈P cp,i is the share of resource i that u’s task

demands, and At,i is the allocated share of resource i to team t. When the allocated share

of resource i for a team is equal to or more than the share demanded by the task, the

difference between the demanded and allocated amounts for that resource will not be

included in the Need(t, u) set.

The vector of resources wasted for a task from resource requester u in team t is

denoted as Waste(t, u) = {At,i −Du,i|∀i ∈ [1, K]
∧
At,i ≥ Du,i}. The reward

attributable to team plan t can be calculated using the following formula:

Reward(t, u) =


−
∑

n∈Need(t,u) n if
∑

n∈Need(t,u) n > 0

C
sumw∈Waste(t,u)w+1

if
∑

n∈Need(t,u) n = 0

When the resources in a team cannot meet the task requirements, Reward has a

negative value, indicating that more robots are needed to perform the task. When the total

amount of resources meets the task resource requirements, the value of Reward is related

56

to the multiplicative inverse of the total amount of resource wasted. In other words,

resource agents in a team obtain lower rewards when the team wastes robotic resources. In

the reward calculation, C is a constant, which is set to 100 in our study.

5.4 Distributed Task Team Formation

Initially, a resource agent proposes a team formation plan that includes only itself and

forwards that proposal to other resource agents. When a resource agent receives a plan

from another resource agent that selected the same resource requester, it tries to include

itself in the plan by either adding itself to the plan or replacing another resource agent in

the plan. After a new plan is generated, a resource agent compares the new plan with the

best plan known so far and adopts the one with the higher reward. Whenever a resource

agent adopts a new plan, it sends the new plan to the other resource agents who selected

the same resource requester. Finally, a consensus is reached when the resource agents that

selected the same resource requester all agree on a specific team formation plan.

Algorithm 4 describes the procedure of task team formation using consensus. The

Feasible() function checks whether this resource agent can feasibly perform the task. The

ReceiveTeamPlan() function obtains a proposed team plan from the resource agents’

message queue. The team plan provides information about the involved resource agents.

The Resource() function calculates the resource capacity of a resource team and

ResourceRequirement() returns a task’s resource requirements. The Order() function

checks the order of two team plans to resolve conflicts; when two team plans have

identical rewards, this function prefers the team plan containing the resource agent with

57

Algorithm 4 Procedure FormTaskTeam(task, P, p)

team← ∅
if Not Feasible(task, p) then

return team
end if
while True do
plan← ReceiveTeamPlan()
if p 6∈ plan then
plan← plan ∪ {p}
if Resource(plan) > ResourceRequirement(task) then
plan← plan/{argminq∈planFitCost(task, q)}

end if
end if
if (Reward(plan, task) > Reward(team, task))

∨
(Reward(plan, task) =

Reward(team, task)
∧
Order(plan) > Order(team)) then

team← plan
end if
if AgreedOn(team, task, P) then

return team
end if
SendMessages(team, task, P)

end while

58

the highest ID. The AgreedOn() function checks whether the adopted plan of this

resource agent p matches the team plan received from other resource agents that selected

the same resource requester. Finally, the SendMessages() function posts the updated

team plan to the other resource agents serving the same resource requester with agent p.

5.5 Resource Requester Selection Game

We model resource requester selection as a coordination game. A resource agent can

observe the strategies and internal states of other resource agents by communicating with

them. In addition, the resource agents can know the global resource capacity by asking

other resource agents and broadcasting their own information when they join the

multi-robot system. The resource agents obtain the resource allocations of resource

requesters by communicating with them. Consequently, a resource agent can perceive

environmental states and calculate the corresponding rewards during its assignment

decision-making process.

5.5.1 Formulation of Game

We represent the game as G = (U, P, S, F), where U is the set of resource requesters

and the strategy space of the game. P is the set of players (the resource agents), S is the

set of environmental states, and F is the utility function of the players. In our requester

selection game, the players have identical utility functions.

A resource agent collects the strategies and internal states of all other resource agents

by receiving messages including this information sent by other resource agents during

59

team formation. An observed environmental state by a resource agent consists of the

strategies and internal states of all the other resource agents. For example, an

environmental state of a multi-robot system with P = {p1, p2, p3} and U = {u1, u2}

might be s = (u1, u1, u2, T eamForming, TeamForming,Running). In s, p1 and p2

decide to serve u1, while p3 decides to serve u2. The environment state s also represents

that both p1 and p2 are in the “TeamForming” state, and p3 is executing a task for u2. The

initial environmental state of the system in this example is

(None,None,None, Idle, Idle, Idle).

The utility function of a resource agent is a weighted combination of resource

utilization, allocation inequality and contributions to a task team:

F (p, u, A,R,D, T) = αUtilization(A,D)+(1−α)TeamReward(cp, ru, T)−βInequality(D)

where α and β range from 0 to 1. In our experiments, α is set to 0.8, and β is set to 0.2.

Utilization(A,D) =

∑
i∈[1,K]

∑
u∈U Dui

K
∑

i∈[1,K]

∑
u∈U Aui

Resource utilization Utilization(A,D) is the average utilization of all K types of

resources in the system. T is the task team that p joins.

TeamReward(cp, ru, T) =
1

K

∑
i∈[1,K]

(
min(cp,i, ru,i)

ru,i
−
∑

q∈T cq,i − ru,i
ru,i|T |

)

60

Table 5.1: Utilization, Inequality(Gini) and Team contribution reward of different
strategies of resource agents.

Strategy of p1 Strategy of p2 Utilization Inequality TeamReward (p1,p2)
u1 u2 0.875 0.071 0.5,1
u1 u1 0.458 0.5 0.5,0
u2 u1 0.292 0.5 0,0.5
u2 u2 0.83 0.5 0.5,1

TeamReward measures the contribution of p in accomplishing a task of u as a

member of team T by deducting shares of wasted resources from the shares of resources

that p has. This reward encourages resource agents to join a task team where they can

make a positive contribution. However, if the team does not collect sufficient resources for

a task, every resource agent on the team gets a 0 reward, because a task cannot be

accomplished without adequate resources. Inequality(D) measures the inequality of

dominant utilized resource shares among resource requesters using the Gini-coefficient.

5.5.2 Example

This example shows how the utility model of this coordination game leads to

cooperation among resource agents to maximize the fairness and resource utilization in

the system.

Suppose two resource agents and two resource requesters are in a system. Resource

agent p1 manages two types of resources, for which their capacities are denoted as a

vector (2, 2). Resource agent p2 manages (1, 2). Each task of resource requester u1

demands (2, 1), and each task of resource requester u2 demands (1, 2).

61

Fig. 5.3.: Payoffs of Resource requester assignment game. The Nash equilibrium is
reached when both resource agents choose the resource requesters that maximizing

resource utilization and equality.

Because the task resource demand from any of these resource requesters can be met by

one of the resource agents, the resource agents may form task teams containing a single

robot. Table 5.1 shows resource utilization, inequalities and team contribution rewards for

resource agents taking different strategies. The first value in the “TeamReward” column

represents the portion of the team reward contributed by p1, while the second value

represents the portion of the team reward contributed by p2. The inequality of dominant

utilized resource shares among resource requesters is calculated using the Gini-coefficient

[21]. The resource utilization and inequality are common to all the resource agents in the

system. Therefore, the resource agents need to cooperate to optimize these values. The

TeamReward encourages resource agents to choose a task for which they serve the

requirements well to reduce wasted resources.

Based on the calculation in Table 5.1, Figure 5.3 represents the payoffs of resource

agents adopting different strategies. Always serving u1 is the best strategy for p1, because

u1 yields the highest payoff regardless of what p2 chooses. Similarly, continuing to serve

62

Fig. 5.4.: Strategy selection from the view of p1. When p1 does not observe the selection
of p2, its optimal strategy is choosing u1. When p1 observes the selection of p2, its optimal

strategy is also choosing u1

63

u2 is the best strategy for p2. Thus, the Nash equilibrium [38] in this example occurs

because p1 always takes u1 and p2 always takes u2. Therefore, the utility model in this

game encourages both resource agents to maximize resource utilization and fairness

collaboratively. An implementation for solving the game must make rational decisions

based on observations of the opponents. An example from the viewpoint of p1 is shown in

Figure 5.4.

5.6 Deep Reinforcement Learning for the Fair Resource Requester Selection Game

The goal of a resource agent is to select a resource requester sensibly to maximize its

utility value. A resource agent evaluates its utility value when it is either about to

complete a task or select a resource requester. Therefore, a resource agent is interested in

its future accumulated utility value as well as its immediate reward. A resource agent must

learn to evaluate the behavioral effects of other resource agents on its own utility value. In

this way, the resource agents select their strategies according to approximated utility

values based on observed states, as in the example shown in Figure 5.4.

Q-learning is a model-free method for learning optimal strategies under different

environmental states. Q value is a function that approximates the combination of

immediate reward and discounted accumulated future rewards of a state-strategy pair:

Q(s, u) = r(s, u) + γ
∑

s′ Pr(s
′)maxu′Q(s

′, u′), where r(s, u) is the utility of a resource

agent after adopting u under state s, and Pr(s′) is the probability of s′ being the next

environment state. The probability can be reflected by the number of times s′ is reached

from (s, u). During value iteration of tabular Q learning, Q values are updated by

64

r + γmaxu′Q(s
′, u′) when a transition of (s, u, s′) with a reward (resource agent’s utility)

r is observed.

The traditional tabular Q-learning algorithm records the estimated Q values of

state-strategy pairs in a table. When a resource agent needs to select a strategy using the

tabular Q-learning algorithm, the algorithm selects the strategy with the highest Q values

for the current state. Otherwise, it might simply pick a random strategy. However, the

search space of strategies under different environment states is huge. An individual

resource agent would rarely experience all possible environment states. As a result, many

entries in the table contain only default values. That is, the Q-learning algorithm may not

be able to find the optimal strategy.

5.6.1 Deep Reinforcement Learning

The Deep Q-network algorithm (DQN) [35] is a neural-fitted Q learning algorithm

[43]. In our deep Q network, the input to the neural network is the environmental state that

a resource agent observes. The size of the output layer of the neural network is equal to

the number of resource requesters in the system. Therefore, each neuron in the output

layer represents the Q value of a strategy given an environment state.

Artificial neural networks can generalize patterns from observations rather than

memorizing pairs of inputs and outputs. For example, our DQN may yield meaningful Q

values when its input is a state that has not been experienced by the resource agent. In

contrast, tabular Q-learning simply outputs default values when the input state has not

65

been experienced. Therefore, DQN can learn faster when the search space of state and

strategy is huge if a pattern for an optimal decision exists.

We can train a neural fitted Q network using traditional back-propagation. To train a

Q-network efficiently, DQN introduces a replay buffer and a periodically updating target

network. The observations of a resource agent are stored in a replay buffer and used to

train the Q-network using sampled batches. In this way, DQN breaks the correlations

between sequential observations. In addition, the DQN training process calculates the

accumulated future utility by using a target network, which breaks the correlations

between the current Q value and targeted future Q values.

5.6.2 Learning the Resource Requester Selection Game

Algorithm 5 Procedure UpdateQ(A,D, P, U, p, T)

reward← F (p, u, A,R,D, T)
state← Observe(A,D,U)
replay buffer ← replay buffer

⋃
{(pre state, u, reward, state)}

mini batch← Sample(replay buffer)
network ← TrainQNetwork(mini batch, network, target network)
if step mod C = 0 then
target network ← network

end if
pre state← state
step← step+ 1

In Algorithm 5, the Observe(A,D,U) function observes the current environmental

state and returns an instance of (s, u, r, s′), which is a tuple consisting of the previous

state, the current strategy, the utility reward received, and the current state. The resource

agent then stores the observed instance in the replay buffer. Next, the resource agent

66

randomly samples a batch of instances from the replay buffer to train the Q network. The

TrainQNetwork(mini batch, network, target network) function updates the

parameters of the Q network, and target network holds the network parameters for the

target network. For each instance (s, u, r, s′) in mini batch, a target Q value is calculated

by q ← maxaPredict(s
′, target network) using forward feeding.

Predict(s′, target network) returns a list of Q values, each of which applies to a

different strategy. Some static variables used in Algorithm 5 are initialized in Algorithm 6.

Algorithm 6 Procedure InitQ()

network ← DefaultParameters()
target network ← network
replay buffer ← ∅
pre state← (None, ..., Idle, ...)
step← 0

To select a strategy for a resource agent, the SelectRequester(D,P, U, p) function in

Algorithm 3 uses an ε− greedy method. The ε value is initially set to 1, and it decreases

by 1% in each training epoch until it reaches its minimal value of 0.05. In other words, a

resource agent initially chooses a random strategy. Then, it gradually reduces the

probability of random behavior and increases the probability of adopting a strategy

suggested by the Q-network. Eventually, a resource agent has a 95% probability of

behaving as suggested by the Q-network.

5.7 Experiments

In the simulation, we assume that the execution time of any task is longer than the time

for the resource requesters to consume all resources in the system. In this way, we can

67

compare the fairness and efficiency of different resource allocation algorithms. As

described in Algorithm 7, each resource agent (robot) in the “Idle” state continues to try to

allocate resources to a resource requester until the resources left in the system cannot meet

any task demands. PI is the set of resource agents in the “Idle” state. The above training

procedure repeats M times. Our simulation outputs the average performance over the last

20 episodes.

We tested our algorithm using four datasets covering the three basic cases of resource

allocation: the resource requirements of tasks can be expressed by linear combinations of

resource agents (LD), resource requesters have same dominant resources (SD), resource

requesters have different dominant resources that cannot be expressed as linear

combinations of capacities of resource agents (DD). The details of these three datasets

were discussed in Chapter 4. We tested and compared resource allocation algorithms

using 8 to 18 resource agents and 4 resource requesters.

Algorithm 7 Procedure ResourceAllocationSimulation

p.InitQ(),∀p ∈ P
for episode = 1, M do

while More task teams can be formed do
Call p.ResourceAgent(),∀p ∈ PI asynchronously

end while
Collect performance data and reset environment

end for

We built a neural network with two fully connected layers on each resource agent. We

used a rectifier activation function and adopted mean squared error as a loss function and

adaptive moment estimation [27] for learning optimization.

68

Fig. 5.5.: Average Q values of the final strategies taken at the end of each episode. The
x-axis represents the training episode; the y-axis represents the average Q value.

Fig. 5.6.: Gini coefficient and utilization of experiments with 18 resource agents and 4
resource requesters.

5.7.1 Experimental Results

In the experiments, we compared the performances of the deep Q-network (DQN),

tabular Q-learning (TQ), equal-use resource allocation (Equal Allocation) and random

selection (Random). The equal-use resource allocation method randomly selects a

resource agent whose amount of utilized resource of any type is smaller than an equal

share of that type of resource. Our experiments show that the deep Q network outperforms

tabular Q learning, equal-use resource allocation and random selection.

69

In the experiments, we trained the models using approximately 1000 episodes with 18

resource agents. The average performances of last 20 episodes of the tested algorithms are

shown in Figure 5.7. The results show that the DQN significantly outperforms other

methods when the resource agents have different dominant resources and when the

resource requirements can be expressed as linear combinations of resource agent

capacities. The Gini-coefficient represents the inequality of dominant utilized resource

allocation among resource requesters. The lower the inequality value is, the less inequality

exists. Resource utilization illustrates the average utilization of resources over different

types in the system. Utilization represents the average resource utilization of allocated

resources within task teams. Because algorithms that satisfy envy-freeness and Pareto

efficiency prefer both equality and efficiency in resource allocation, a combination of

optimal strategies of resource agent leads to equality in dominant resource share among

resource requesters as well as to high resource utilization within task teams and

throughout the entire system.

The deep Q network (DQN) significantly outperforms TQ in our simulation because

DQN can generalize a pattern over a large search space and address states that a specific

resource agent has not experienced deeply. In our problem, the size of the state space is

huge. In the experiments with 18 resource agents and 4 resource requesters, the number of

possible states is O((4× 5)18) because there are 5 possible internal states for a resource

agent. A resource agent will not experience all these environmental states within 1000

episodes. As shown in Figure 5.5, the average Q values of the resource agents’ final states

and strategies are mostly the same as the default values in the first 300 episodes. In

70

Fig. 5.7.: Average team resource utilization and number of completed tasks in
experiments with 18 resource agents and 4 resource requesters.

contrast, the DQN algorithm can approximate the Q value and identify good strategies

quickly.

We tested the allocation methods using 8 resource agents and 4 resource requesters as

shown in Figure 5.8 and Figure 5.7. The performance of DQN with 8 resource agents is

better than its performance with 18 resource agents. First, DQN might require more time

to converge for a dataset with larger state space. When more resource agents are involved,

the size of the state space increases exponentially. Therefore, DQN might require more

than 1000 episodes to identify the optimal strategies. Second, the probability that some

resource agents will deviate from the optimal strategies is greater when there are more

resource agents due to the ε− greedy policy. Finally, the Gini coefficient values of RD

and TQ increase because each resource requester is more likely to be assigned similar

amounts of resources when there are more resource agents in the system.

We also noticed that DQN’s performances on the LC and DD datasets are better than

those of the other methods but that it performs similarly to the Random and Equal

Allocation methods. This result occurs because the optimal solution allocates equal

71

Fig. 5.8.: Average Gini coefficient and utilization in experiments with 8 resource agents
and 4 resource requesters.

Fig. 5.9.: Average team resource utilization and number of completed tasks in
experiments with 8 resource agents and 4 resource requesters.

72

Fig. 5.10.: Average performances for different number of robots and 4 resource requesters
in experiments using linear combination dataset.

73

amounts of the dominant resource to each resource requester when the resource requesters

have the same dominant resource. Figure 5.10 shows a performance comparison of the

DQN, equal-use allocation and random selection algorithms on the LC dataset with

different numbers of resource agents. In general, DQN outperforms the other methods.

The equality of dominant resource allocation using the random selection based methods

improves quickly and approaches the performance of DQN as the number of resource

agents increases. This occurs because the probability that each resource requester receives

similar numbers of resource agents for every type of resource configuration increases as

the number of resource agents increases.

5.8 Conclusion

In this chapter, we proposed a two-phase decentralized solution for the fair resource

allocation problem for STR-MRT systems. The resource requester selection is formulated

as a coordination game and the resource agents use the deep Q network to learn optimal

strategies. The experiment results demonstrated that the proposed approach works well for

an STR-MRT. Among the algorithms tested for resource requester assignment, the deep Q

network based approach outperformed random selection and equal-use resource

allocation.

74

6. DISTRIBUTED FAIR RESOURCE ALLOCATION FOR

MULTI-TASKING ROBOTS WITH SINGLE-ROBOT TASKS

SYSTEMS

6.1 Overview

In a multi-tasking robot with single-robot tasks (MTR-SRT) system, the robots

(resource agents) can accommodate multiple tasks simultaneously. However, a task cannot

be assigned to more than one resource agent. For example, a resource agent may provide

computing resources and execute multiple computational tasks for one or more resource

requesters. After such a task is assigned to a resource agent, that task cannot be assigned

to any other agent.

The fair resource allocation problem for MTR-SRT systems is similar to the fair

resource allocation problem in heterogeneous computer clusters. In a heterogeneous

environment, resource agents have different resource configurations. A simple extension

of dominant resource fairness (DRF) in the heterogeneous environment is to apply the

DRF algorithms independently on each resource agent. This approach can equally satisfy

all resource requesters but at the cost of resource utilization. To improve resource fairness

in a heterogeneous environment, the centralized DRF for heterogeneous environment

(DRFH) [53] algorithm allocates resources based on global resource shares, which are the

fractions of accumulated resources in the system allocated to resource requesters. When a

75

task is to be scheduled, the centralized manager assigns it to a resource agent that can

maximize the resource utilization.

Unlike the work that discussed centralized solutions, in this chapter, we discuss

decentralized solutions for fair resource allocation in MTR-SRT systems by extending the

idea of a global dominant resource share in DRFH. First, we introduce a decentralized

approach using task forwarding. Then, we introduce another decentralized approach in

which resource agents select resource requesters and allocate resources only to their

selected requesters. We model the resource requester selection as a coordination game and

develop a reinforcement learning based approach to solve the game. Our major

contributions elaborated in this chapter are the following:

• We develop a distributed fair resource allocation based on task forwarding among

robots. In the task forwarding approach, robots negotiate with each other to

determine which tasks to execute. The robots forward each task to be scheduled to

find a placement that maximizes resource utilization.

• We propose a resource requester assignment technique for distributed fair resource

allocation. Our resource requester assignment allows tasks to be scheduled

simultaneously on different robots after the robots select their resource requesters.

• We develop a resource requester selection coordination game for robots. In this

game, a robot’s strategy is a subset of resource requesters. We develop a utility

model to reward robots based on equality of dominant resource share among

resource requesters and resource utilization.

76

• We propose a joint strategy search based on reinforcement learning for the resource

requester selection game. We compare the reinforcement learning method with a

heuristic based greedy algorithm and random selection. The experimental results

show that reinforcement learning performs best in terms of equality and resource

utilization.

6.2 Fairness Resource Allocation Problem for Multi-tasking Robots with

Single-robot Tasks Systems

Because DRFH [53] has an existing centralized solution for the MTR-SRT, we used

the same definition of the problem to provide a distributed solution.

6.2.1 Naive Distributed Dominant Resource Fairness

The dominant resource fairness (DRF) algorithm views all resources in the system as

if they exist in a single resource agent. In a distributed environment, when multiple

resource agents serve resource requesters together, a naive solution is to let each resource

agent make allocation decisions independently for all resource requesters. This

mechanism can increase the task throughput for each resource requester while preserving

the equality among their dominant resource shares; however, it can also sometimes lead to

wasted resources and even compromise one or more fairness properties.

Example 6.1 Resource agent p1 has resources of [10 CPU, 5 GB] while p2 has [5 CPU,

10 GB]. Resource requester u1 needs [2 CPU, 1 GB] for each of its tasks, and resource

requester u2 needs [1 CPU, 2 GB] for each of its tasks. If we simply apply DRF on each of

77

Fig. 6.1.: Example 6.1: Two resource agents allocate resources by using the naive
distributed DRF for one resource requester with a demand of [2 CPU, 1 GB] and another
resource requester with a demand of [1 CPU, 2 GB]. Each applies DRF to its available
local resources, which results in a non-optimal allocation where 3 CPU and 3 GB are

wasted in the system.

the agents, then u1 can accommodate a total of 4 scheduled tasks: p1 provides [6 CPU, 3

GB] for 3 tasks of u1 and p2 provides [2 CPU, 1 GB] for 1 task of u1. Similarly, u2 can

also schedule 4 tasks: 1 task with [1 CPU, 2 GB] on p1 and 3 tasks with [3 CPU, 6 GB] on

p2. Consequently, 4 CPUs and 4 GB of resources remain unused in the system as shown in

Figure 6.1.

The resource allocation scheme described in Example 6.1 is naive distributed DRF,

which applies DRF independently to the local resource capacity. However, because a

better allocation for both resource requesters is possible, naive distributed DRF does not

preserve one of the fairness properties–Pareto efficiency. Nevertheless, naive distributed

DRF is envy-free and strategy-proof.

Proposition 6.2.1 Naive distributed DRF is envy-free.

78

Fig. 6.2.: Example 6.1: The possible optimal allocation for one resource requester with a
demand of [2 CPU, 1 GB] and one resource requester with a demand of [2 CPU, 1 GB]

where no resources are wasted in the system

79

Proof Let Ni(gau) be the number of tasks that resource requester u can schedule with a

global allocation of gau, and let Nu(aup) be the number of tasks that resource requester u

can schedule with resource allocation aup on resource agent p. Then, we have

Nu(gau) =
∑

p∈P N(aup). Suppose the system applies a naive distributed DRF algorithm

to allocate resources to resource requesters, and resource requester u is given its total

allocation gau. Here, aup is u’s allocated resources from resource agent p. For any

u,m ∈ U, u 6= m and for all p ∈ P , Nu(aup) ≥ Nu(amp), according to the envy-freeness

property of DRF. Thus, for any u,m ∈ U, u 6= m and for all p ∈ P , Nu(gau) ≥ Nu(gam).

Therefore, naive distributed DRF is envy-free.

Proposition 6.2.2 Naive distributed DRF is strategy-proof.

Similar to the proof for the envy-freeness of naive distributed DRF, its

strategy-proofness can be justified intuitively because applying DRF to each resource

agent independently guarantees strategy-proofness for all resource requesters on each

resource agent in the system.

6.2.2 Dominant Resource Fairness in Heterogeneous Environments

In Example 6.1, if p1 receives tasks from resource requester u1 only and p2 receives

tasks from resource requester u2 only, each can accommodate 5 tasks allocated as shown

in Figure 6.2. Resource requesters achieve better resource allocation when resource agents

are dedicated to different resource requesters. DRFH [53] uses a centralized resource

manager that makes allocation decisions for resource agents using global information. In

other words, DRFH selects the resource requester with the lowest global dominant

80

resource share. Then, DRFH fits a task of the selected resource requester into a resource

agent whose resource capacity is distributed similarly to the resource demands of that

task. Let A be the set of all possible allocations. Then, aip,r is the allocation of resource

requester i on resource agent p for resource r. cp,r is the capacity of resource r on resource

agent p. Suppose −→gai is the global resource allocation of resource requester i. The global

resource share of resource requester i is defined as
−→
gdi = [gai,1/gc1, gai,2/gc2, ...,

gai,K/gcK], where K = |R| is the number of types of resources in the system. The global

dominant resource share of resource requester i is
−→
gd∗i = maxr∈R

−−→
gdir. The goal of DRFH

is to solve the linear optimization in equation 6.1.

max
a∈A

min
i∈U

−→
gd∗i

Subject to∑
i∈U

aip,r ≤ cp,r,∀p ∈ P, r ∈ R

(6.1)

6.3 Task-forwarding for Fair Resource Allocation

In this work [58], we extend the idea of DRFH and develop the distributed dominant

resource fairness (DDRF) algorithm, which is a decentralized solution based on task

forwarding. In DDRF, resource agents (robots) communicate with each other to acquire

specific global information, including the total allocations of resource requesters, the total

resource capacity in the multi-robot system, and the contact information for other resource

agents. Each resource agent has a set of Primary Resource Requesters that share the

resources on that resource agent. A resource requester can be a primary resource requester

81

for no more than one single resource agent. However, different tasks of a resource

requester can be executed by different resource agents. In addition, a resource agent keeps

a list of known resource requesters whose resource allocations it knows. We define a

fitness function to match the task demands with the resource capacity of a resource agent.

The fitness function is a heuristic for task placement that maximizes the resource

utilization of resource requesters. During the resource allocation, resource agents try to

allocate resources to their primary resource requesters if they observe that their primary

resource requesters have the lowest dominant resource share among the known resource

requesters. If a resource agent notices that the fitness value of a received task is smaller

than a pre-defined threshold, the resource agent forwards that task to its neighboring

resource agents using direct communication.

When a resource requester enters a multi-robot system, it contacts one of these

resource agents and becomes a primary resource requester of that resource agent. In our

simulations, all resource requesters enter the multi-robot system during initialization and

contact random resource agents. Therefore, a resource agent starts with a subset of

requesters as its primary resource requesters. A resource agent can also communicate with

some fixed neighboring resource agents (friends), and it shares the values of lowest global

dominant resource shares among the resource agent’s known resource requesters with

them. If a resource agent observes that any global dominant resource share of any of its

primary resource requesters is equal to or lower than the lowest value shared by all its

neighboring resource agents, the resource agent will try to allocate the resource demands

of a task for that primary resource requester. First, the resource agent checks whether it

has sufficient resources to accommodate that task and whether the fitness value of the task

82

exceeds a specific threshold defined by the resource agent. If the task does not pass the

check, the resource agent forwards the task to a random neighbor and removes the

resource requester from its list of primary resource requesters. When another resource

agent receives the forwarded task, it must decide whether to accept the task or forward it

again. If the task is forwarded more times than a pre-defined limit, a random resource

agent or a resource agent that has the highest fitness value for that task along the

forwarding path will accept the task placement. After a resource agent accepts a task, the

resource requester who submitted that task becomes a primary resource requester of the

accepting resource agent.

Algorithm 8 shows how a resource agent determines resource allocation.

Resource Management always tries to allocate resources for a task belonging to one of

its primary resource requesters. Here, r∗ represents the dominant resource and PUp

represents the list of primary resource requesters of p. Because a resource requester can

hold the primary position for only one resource agent, no other resource agent can initiate

another attempt to allocate resources to that resource requester before one of that resource

requester’s tasks is successfully placed. Consequently, all the resource agents wait for the

tasks of resource requesters with the lowest dominant resource share to be placed before

attempting to allocate resources to other resource requesters.

To preserve fairness, our algorithm matches tasks to resource agents for better

resource utilization. Intuitively, we want to match the task demand vector for resources

with those of the resource agents’ available resources. Assigning tasks to robots with

which they are well matched will incur less fragmentation and ensure less waste of

resources. Therefore, more robot resources can be utilized and more resource requesters’

83

tasks can be executed. Therefore, we use cosine similarity as the heuristic to search for an

optimal solution of equation 6.1. Assuming that the available resources on a resource

agent p are Available(p, r) = cpr −
∑

i∈U Aip,r, we define the fitness function of a

resource agent p and the tasks from a resource requester u as follows:

Fitness(p, u) =

∑
r∈RDu,rAvailable(p, r)√∑

r∈R(Available(p, r))
2
√∑

r∈R(Du,r)2
(6.2)

Upon receiving a message requesting resources for a forwarded task, the resource

agent runs the first-fit algorithm if a task has been forwarded fewer than step limit times.

That is, a resource agent tries to allocate resources for the task when the fitness value is

above a threshold defined by the resource agent and the resource agent’s available

resources meet the task demands. If the allocation is successful, the resource agent adds

the resource requester to its list of primary resource requesters. Otherwise, it forwards the

task to its friends. However, when the number of times the task has been forwarded

exceeds the step limit, the resource agent runs a best-fit algorithm that attempts to assign

the task to the resource agent with the highest fitness value along the forwarding path.

Additionally, whenever a resource agent receives a task, the resource agent adds the

information of the submitting resource requester to its list of known resource requesters.

6.4 Distributed Fair Resource Allocation Game

We propose an alternative approach of distributed fair resource allocation for the

MTR-SRT in which each resource agent first selects resource requesters and then allocate

resources independently to these selected resource requesters using DRF. We model this

84

Algorithm 8 Local Resource Management Procedures with Task Forwarding
PROCEDURE Resource Management:
loop

for all i ∈ PUp do
if Di,r∗ ≤ minj∈Up Dj,r∗ and Di,r∗ ≤ minq∈Friends(p) minj∈Uq Dj,r∗ then
path← ∅
if Fitness(p, i) ≥ Thr And ∀r ∈ R(Di,r ≤ Ava(p, r)) then
cip ← cip −Di

Ai ← Ai +Di

else
j ← Random(Friends(p))
PUp ← PUp \ {i}
Send(j,Di, path ∪ (i, F itness(p, i)), 0)

end if
end if

end for
end loop

PROCEDURE On Receive Task Forwarding:
(Di, path, step)←Message
if step < step limit then

if Fitness(p, i) ≥ Thr And ∀r ∈ R(Di,r ≤ Ava(p, r)) then
cip ← cip −Di

Ai ← Ai +Di

PUp ← PUp ∪ {i}
else
j ← Random(Friends(p) \ path.keys)
Send(j,Di, path ∪ (i, F itness(p, i)), step+ 1)

end if
else

if (Fitness(p, i) ≥ Thr Or Fitness(p, i) ≥ maxj∈path.keys{path[j]}) And (∀r ∈
R,Dir ≤ Ava(p, r)) then
cip ← cip −Di

Ai ← Ai +Di

PUp ← PUp ∪ {i}
else
path← path \ (i, F itness(p, i))
j ← argmaxj∈path.keys{path[j]}
if j ∈ ∅ then
Send(j,Di, path \ (i, F itness(p, i)), step)

end if
end if

end if
Up ← Up ∪ {i}

85

Fig. 6.3.: Example 6.2:The optimal allocation of resource agents for a resource requester
with demands of [2 CPU, 1 GB] and a resource requester with demands of [1 CPU, 2 GB].

No resource is wasted

resource allocation approach as a coordination game. The players in the game are resource

agents. A player’s strategy is a subset of resource requesters. The utility model of players

includes two terms: the inequality of dominant resource shares among all resource

requesters and resource utilization on resource agents.

6.4.1 Selection of Resource Requesters

Although distributed dominant resource fairness (DDRF) with task forwarding

performs similarly to centralized DRFH, DDRF has the disadvantage that resource agents

must negotiate for each task. In most cases, the number of tasks submitted by resource

requesters far exceeds the number of resource requesters. Therefore, negotiating for each

task is inefficient. Instead, each resource agent can serve a set of resource requesters; then,

the resource agents schedule the tasks of those selected resource requesters

simultaneously by applying DRF independently. In this way, resource agents can

86

Fig. 6.4.: Example 6.2:Resource agents allocate resources using naive distributed DRF for
a resource requester with demands of [2 CPU, 1 GB] and a resource requester with

demands of [1 CPU, 2 GB]. Here, 3 CPU and 3 GB are wasted.

87

negotiate to select resource requesters to maximize resource fairness. Example 6.2

describes a case where negotiation to select resource requesters results in a better

performance than the naive distributed DRF.

Example 6.2 If resource agent p1 (with a resource capacity of [11 CPU, 7 GB]) and

resource agent p2 (with a resource capacity of [4 CPU, 8 GB]) provide resources to the

resource requesters in Example 6.1, resource requester u1 should be able to schedule 5

tasks on p1 while u2 should be able to schedule 1 task on p1 and 4 tasks on p2 in an

optimal solution, as shown in Fig.6.3. However, DRF cannot find a combination of

resource requesters for each resource agent to generate the optimal result using only local

information. If both resource agents allocate resources for both resource requesters, the

algorithm equalizes the dominant resource allocation for the resource requesters. Then,

the algorithm schedules 3 tasks on p1 and 1 task on p2 for u1. Additionally, it schedules 2

tasks on p1 and 2 tasks on p2 for u2. However, using this approach, [6 CPU, 2 GB] is

wasted in the system. If resource agent p1 were to receive tasks from u1 only, and p2 were

to receive tasks from u2 only, then 5 tasks from u1 and 4 tasks from u2 would be scheduled.

This result is closer to the optimal solution and has a higher resource utilization.

6.4.2 Equality and Efficiency

By equalizing the dominant resource shares among resource requesters globally, DRF

and DRFH have been proven to satisfy the fairness properties of envy-freeness and

strategy-freeness [53][20]. This motivates us to measure these two properties globally for

our distributed solutions. Intuitively, less inequality of global allocated dominant resource

88

Fig. 6.5.: Example 6.2:A possible combination of resource requesters for the
resource-providing agents. Agent 1 receives tasks only from resource requester u1, which

has task demands of [2 CPU, 1 GB], and agent 2 receives tasks only from resource
requester u2, which has demands of [1 CPU, 2 GB]. Then, both agents apply DRF to their

available local resources. Using this approach, only 1 CPU and 2 GB are wasted

89

shares among resource requesters indicates an allocation more likely to satisfy

envy-freeness and strategy-freeness, because resource requesters are unlikely to envy each

other or successfully obtain benefits by trickery when they are allotted similar shares of

the dominant resource. The Gini-coefficient of the global dominant resource shares is a

metric for such inequality. This inequality metric is ideal for our utility model because the

values ranges from 0 to 1 regardless of the number of resource requesters in the system,

and it represents how much the allocations differ from a completely equal allocation. A

Gini coefficient of 0 represents total equality, while a Gini coefficient of 1 represents total

inequality.

In contrast, in distributed heterogeneous environments, the DRF-based algorithms may

not meet the fairness property of Pareto-efficiency. In Example 6.2, the naive distributed

DRF algorithm generates the resource allocation shown in Figure 6.4. This resource

allocation does not satisfy Pareto-efficiency, because resource requester u1 can increase its

allocation without reducing the allocation of resource requester u2, as shown in Figure 6.5.

Proposition 6.4.1 In a distributed heterogeneous environment, if an allocation exists in

which resource utilization is maximized compared to all other possible allocations with

equalized dominant resource share, then that allocation satisfies Pareto-efficiency.

The above proposition can be easily justified by contradiction. Suppose a DRF

allocation a ∈ A that results in the maximal resource utilization among all other possible

DRF allocations in the system does not satisfy Pareto-efficiency. This implies that another

DRF allocation a′ would increase the resource allocations of some resource requesters

without decreasing the allocations of any other resource requester. It follows that more

90

resources are allocated in a′ than in a, which contradicts the precondition that such an a

leads to better resource utilization in the system. Therefore, the above proposition holds.

According to Proposition 6.4.1, to achieve both Pareto-efficiency and envy-freeness, a

resource allocation should not only maintain the equality of dominant resource share

among the resource requesters but also maximize the resource efficiency in terms of

resource utilization. As discussed by Joe-Wong et al. [24], a trade-off always exists

between equality and efficiency. Heavily emphasizing the improvement of only one of the

two leads to a loss of fairness.

6.4.3 Resource Constraints

We introduce constraints between resource requesters and resource agents. For

example, a constraint that a resource agent is not available to a resource requester may

exist because that resource agent is unable to provide the resource types desired by that

resource requester or the resource agent is unreachable because it is physically out of

communication range. Therefore, only resource agents within a particular distance and

equipped with the demanded resources are potentially usable for a resource requester. In

Figure 6.6, three resource requesters and four resource agents exist in the system. An edge

between a resource requester and a resource agent represents the availability of the

resource agent (e.g., there are no constraints between the resource requester and the

resource agent). The resource agents available to a given set of resource requesters are in a

work coalition such as u0 and u2. In this work, the resource allocation scheme is applied

only to the resource agents in a work coalition.

91

p0 p1 p3

p2

u0 u1 u2

w0

w1

w2

Fig. 6.6.: Constrained Graph: the dotted edges indicate the availability of a resource agent
for a resource requester; the resource agents serving a given group of resource requesters

are in the same work coalition

In a distributed environment with resource constraints, resource agents must allocate

their resources collaboratively within their work coalitions. Craig Boutilier [8] solved

coordination games of multi-agent systems by applying the reinforcement learning

method to each individual agent. Ana L. C. Bazzan [5] considered joint strategies, which

are combinations of agent strategies, in stochastic games, and solved the game in agent

coalitions using reinforcement learning. Next, we will introduce a coordination game for

resource allocation and its solutions.

6.4.4 The Coordination Game under Constraints

We proposed a game theoretical model for resource allocation under constraints that

consider network connectivity and resource types. The utility model of the game provides

incentives to resource agents; thus, they try to increase resource utilization and allocation

fairness for resource requesters.

92

Gw = (Uw, S, F,
−→cp ,−→cr,w) is the resource allocation game in work coalition w:

• Uw: The resource requesters in the work coalition w

• S: Sets of resource agents’ strategies (subsets of resource requesters)

• F : Utility function of agents

• s ∈ S: A strategy, which is a subset of resource requesters (s ⊂ U)

• −→cp : The resource capacity of resource agent p ∈ P

• −→cr,w: The
∑

p∈P cprw global capacity of resource r ∈ R in work coalition w

We need to reward resource agents when the strategies result in more equal global

dominant resource shares and better local resource utilization. Thus, our utility model

combines these two criteria using the factor α, which ranges from 0 to 1 as shown in

Equation 6.3. We calculate inequality instead of equality in the following equation.

Therefore, (α− 1) is always a negative value so that resource agents will prefer smaller

values of inequality.

Utility(s, p, w) = (α− 1)Inequality(
−→
dw)

+αUtilization(s, p) (6.3)

Let
−→
dw be the vector of the dominant resource share of work coalition w. We define the

inequality as Inequality(
−→
dw) =

1
|Uw|

∑
d∈
−→
dw
(d− µ)2, where µ = 1

|
−→
dw|

∑
d∈
−→
dw
d is the

average dominant resource share among resource requesters and d is an element in
−→
dw.

93

Then, a resource agent can calculate the local resource utilization by

Utilization(sp, p) =
1
|R|
∑

r∈R
∑

i∈sp aipr, where a ∈ RA.

When all resource agents try to maximize their utility values, game equilibrium

approximates an optimal outcome.

6.5 Solving the Fair Resource Allocation Game

To find a solution for the resource allocation game, the resource agents first try to find

an individual strategy using Q-learning or greedy selection based on a heuristic; then,

robots perform majority voting to select a joint strategy, which is a combination of the

individual strategies within the same work coalition. We compared three approaches in

this work: the Q-learning based method with majority voting, the greedy algorithm, and

random strategy selection. The experimental results show that the learning based approach

outperforms the greedy and random strategy selections.

6.5.1 Greedy Solution

A greedy resource agent always tries to maximize its utility using a heuristic. At the

end of each step t, a resource agent p evaluates the utility it received for adopting the

current strategy spt. Then, it takes the selection of resource requesters with the maximal

value of the heuristic represented in Equation 6.4 as its next strategy.

We redefine the ex-post utility function with the parameter of time step t as

Utility(s, p, w, t) = (α− 1)Inequality(
−→
dwt) + αUtilization(s, p).

94

A resource agent does not know its ex-post utility at the beginning of t. Thus, it

estimates the ex-ante utility to adopt a strategy before the end of t when the actual utility

value can be known. Equation 6.4 is a simple heuristic of ex-ante utility that combines the

estimated rewards of equality and utilization.

Est Rewards(spt, p, w, t) = αUtilize Rewards(spt, p)

+(α− 1)Ineq Rewards(spt,
−→
dwt) (6.4)

The inequality reward of agents gained from serving a resource requester is

ineq reward(u,w, t) = 2−duwt at time t. Equation (6.5) favors strategies that select

resource requesters with low dominant resource share values.

Ineq Rewards(spt,
−→
dwt) =

1

|spt|
∑
u∈spt

ineq reward(u,w, t) (6.5)

The reward of utilization is calculated by Equation 6.6, which approximates the

difference between the available resources of a resource agent and the estimated resource

consumption after allocation. Expected allocated resources and available resources are

normalized by their mean values. When the Euclidean distance between the normalized

available resources and normalized expected allocated resources is small, this allocation is

more likely to result in a high resource utilization on this resource agent.

95

Utilize Rewards(spt, p) =

Euclidean(Usage(spt, p), Capacity(p)) (6.6)

Algorithm 9 describes the procedure of the strategy-selection function using the

greedy approach.

Let au,t,p,rn be the allocation of resource rn ∈ R for resource requester u ∈ U on

resource agent p ∈ P at time step t. Here, au,t,p is the average value of resource allocation

on p at time t for u. Let acp,t,rn be the currently available resource rn on agent p at time

step t. Because the DRF tries to equalize the dominant resource share among the resource

requesters, we can estimate the usage of resource r1 by resource agent p as
∑

u∈spt
au,t,p,r1
du,t,p

.

acp,t is the average resource available amount on resource agent p at time step t, and

spt ∈ S is the subset of resource requesters that resource agent p serves at time t. Suppose

the estimated resource usage vector for strategy spt on resource agent p is

Usage(spt, p) = (
∑

u∈spt
au,t,p,r1/au,t,p

du,t,p
...,
∑

u∈spt
au,t,p,r|R|/au,t,p

du,t,p
) and the resource

capacities are Capacity(p) = (acp,t,r0/acp,t..., acp,t,r|R|/acp,t).

Algorithm 9 Procedure Select Strategy()
Require: spt, tmpt, w, t
Return: spt
if 1

e1/tmpt ≤ random(0, 1) then
spt ← argmaxs′Est Rewards(s

′
, p, w, t)

end if

96

6.5.2 Learning the Game Solution

The greedy approach based on the heuristic does not consider other resource agents’

behaviors; thus, it may result in suboptimal actions. For example, all the resource agents

may try to serve the same resource requesterthe one with the lowest dominant resource

shareat time t. The excessive allocation for one resource requester eventually leads to

inequality and lower ex-post utilities. Hence, we apply reinforcement learning techniques

to help resource agents search for an optimal strategy. In our case, the actions or strategies

in reinforcement learning are the subsets of resource requesters. The state in learning at

time t for agent p consists of the strategies of all the other agents s−p,t.

We apply a Q-learning based algorithm to the resource agents to learn the optimal

strategy in the game. Equation (6.7) shows the update function to estimate the actual

reward of an action under a particular state.

Qp,t+1(s−p,t, spt) = Qp,t(s−p,t, spt) + β(Rewardp,t+1

+γmaxsQp,t(s−p,t+1, s)−Qp,t(s−p,t, spt)) (6.7)

Equation (6.8) selects the most rewarded strategy for the next time step. Each resource

agent periodically updates the state from its global information and Q-values. Then, it

uses the ε− greedy method to select the most promising action for the next time step, as

shown in Algorithm 10.

97

sp,t+1 = argmaxs(Qp,t(s−p,t, s)) (6.8)

Algorithm 10 Procedure Select Strategy()

Require: s−p,t, spt, Rd, tmpt, w, t
Return: spt
Update Q(s−p,t−1, sp,t−1) ← Q(s−p,t−1, sp,t−1) + β(Rd + γmaxs′Q(s−p,t, s

′) −
Q(s−p,t, sp,t−1))
if 1

e1/tmpt ≤ random(0, 1) then

spt ←
{
argmaxs′(Q(s−p,t, s

′)), random(0, 1) > ε
random(subsetsof(Uw)), random(0, 1) ≤ ε

end if

6.5.3 Joint Strategy Search

An individual strategy may result in maximal reward for a given resource agent but

may lead to poor rewards for others. Therefore, to achieve resource fairness, the resource

agents need to jointly find a set of strategies to achieve the best allocation. In our work, we

apply a simple majority voting algorithm for this purpose.

A resource agent keeps track of the best joint strategy that yields the highest reward.

During the joint strategy search phase, it compares the locally saved best joint strategy lsp

with the global joint strategy gsw, which is collaboratively tracked by all resource agents

in the same work coalition and updates the voting of global joint strategy accordingly. If

the locally kept joint strategy matches the global one, then we increase the voting,

otherwise we decrease it. An agent can replace the global joint strategy with its own

98

preferred one if the vote drops to zero. This method guarantees that the agents stably

agree on one joint strategy when more than half the agents like that strategy. However, a

drawback of this method is that when no joint strategy is preferred by a majority of agents,

the agreed joint strategy keeps changing.

6.6 Experiments

6.6.1 Experiments of Task Assignment Approach

We uniformly sample the task demands of resource requesters and the configurations

of resource agents from Google cluster-usage traces [42]. The traces contain information

concerning the task demands from over 900 resource requesters and the resource

capacities of over 10,000 servers. In this dataset, resource requesters submit tasks with

similar resource demands. On average, the most popular resource demands are requested

by approximately 60% of the tasks from a resource requester, while the resource demands

in second place are requested by 27% of tasks from a resource requester. Therefore, the

assumption of identical task resource requirements from a resource requester in our model

should not significantly affect the performance of our model on this practical dataset.

Because we assume that task demands from a resource requester are identical and that

each resource requester has infinite tasks, we sample a total of 20 tasks from different

resource requesters. Additionally, we sample the CPU and memory configurations of 100

machines. Thus, we simulate a system with a total of 20 resource requesters and 100

resource agents. In these simulations, we compare fairness and efficiency among the

99

Fig. 6.7.: Fairness and Efficiency of Different Resource Allocation Algorithms

100

following methods: naive DRF extension under distributed environment, DDRF without

task forwarding and DDRF with task forwarding.

In the simulation of our two versions of DDRF algorithms, each resource provider is

configured to have 10 friends. We set the step limit to 3 and the fitness threshold to 0.8 for

the simulation of DDRF with task forwarding. Figure 6.7 shows that the two versions of

DDRF achieve fairness performances similar to centralized DRFH, and they achieve

better general resource utilization than do the other algorithms.

6.6.2 Experiments of Resource Requester Assignment Game

Our learning approach is compared with a heuristically based greedy method and a

random solution. In the simulation, we assume that resource agents have 2 types of

resources. Algorithm 11 describes the random selection method, which acts as a baseline

for the other methods.

In all the simulations, the α value of the utility calculation is set to 0.3. The learning

rate, β, for the reinforcement learning based method is set to 0.2, and the discount factor,

γ, is set to 0.5. In addition, each resource agent has the same 2 types of resources. We use

the following performance metrics in our experiments: resource utilization,

Gini-coefficient of dominant allocation among resource requesters, and average utility

value of resource agents. For the first simulation, we use a small synthetic test set that

includes the following cases: 1) one resource agent in a work coalition with multiple

resource requesters, 2) one resource agent in a work coalition with a single resource

requester and 3) multiple resource agents with multiple resource requesters in a work

101

coalition. In addition, the first simulation assumes that all the tasks from a resource

requester have identical resource requirements. In other simulations, machine

configurations are uniformly sampled from the Google trace dataset. Resource requesters

are sampled from among those with at least 1,000 tasks in the dataset and their tasks are

ordered in queues by submission time. Because we assume that each resource requester

has an infinite number of tasks, a resource requester loops through its task queue to render

tasks continuously.

Algorithm 11 Procedure Select Strategy(cur s, s, ca, a, tmpt)

if 1
e1/tmpt ≤ random(0, 1) then
a← random(subsetsof(U))

end if
return a

Experiment 1 tests the performance of our reinforcement learning approach, and the

results are shown by the constrained graph in Figure.6.6. The agents’ resource capacities

are as follows: resource agent 0 has [2, 1]; resource agent 1 has [1, 2]; resource agent 2 has

[3, 3]; and resource agent 3 has [2, 2]. In this experiment, 3 resource requesters request

resources for tasks with demands of [0.2, 0.1], [0.1, 0.2], and [0.2, 0.2], respectively.

Table.6.1 represents the converged assignment of resource requesters after 1,000-time

steps in the first experiment. In all the work coalitions, the resource agents successfully

found the optimal solution.

Experiment 2 compares the performances among four strategy-searching methods:

reinforcement learning, greedy search, random exploration, and naive DRF extension. In

this simulation, 10 resource agents are in one work coalition, and 4 resource requesters are

in the system. We select 4 very different task demands for the 4 resource requesters and a

102

Table 6.1: Resource Allocation Results of 3 work coalitions in Experiment 1

C1 C2 C3

RA0 RA1 RA2 RA3
U0 [2,1] [1.2,0.6]
U1 [1,2] [0.6,1.2]
U2 [1.2,1.2] [2,2]

Fig. 6.8.: Performance comparison among reinforcement learning (RL), greedy
approach (GD), random exploration (RD), and naive DRF extension (NV), showing the

average Gini-coefficient, resource utilization and utility values of 2,000–2,500 time steps
in 100 simulations and the throughput (task executed per time step). The 10 resource

agents have a wide variety of resource configurations, and the 4 resource requesters have
different task demands.

wide variety of resource configurations for the resource agents in this experiment. Figure

6.8 depicts the results of this experiment, which aim to test the performances of our

algorithms under cases in which properly matching resource agents to resource requesters

improves the resource allocation performance.

103

Fig. 6.9.: Performance comparison among reinforcement learning (RL), greedy
approach (GD), random exploration (RD), and naive extension of DRF (NV), showing the
average Gini-coefficient, resource utilization and utility values of 2,000-2,500 time steps

in 100 simulations and the throughput (task executed per time step). The 10 Resource
agents have the same resource configuration, and the 4 resource requesters have differing

task demands.

Experiment 3 has a setting similar to Experiment 2 except that the resource agents all

have the same resource configuration. Figure.6.9 shows the results of this experiment.

Experiment 4 compares the performance among the three strategy-searching

methods: reinforcement learning, greedy search and random exploration. In this

experiment, we uniformly sampled 10 resource requesters and 100 resource agents from

the Google cluster-usage trace; therefore, our ratio of resource requesters and resource

agents is consistent with the ratio in a real-world dataset. Each resource agent connects to

a resource requester with a probability of 0.9. We ran 100 experiments for each method

104

Fig. 6.10.: Performance comparison among reinforcement learning (RL), greedy
approach (GD) and random exploration (RD), showing the average Gini-coefficient,

resource utilization and utility values of 2,000–2,500 time steps in 100 simulations and the
throughput (task executed per time step)

and compared the average metric values. Figure.6.10 illustrates the results of this

experiment. We did not include the naive extension of DRF in this simulation because the

resource capacity of a single resource agent cannot fairly accommodate tasks arriving

from all resource requesters.

In Experiment 5, there are 10 resource agents , while the number of resource

requesters ranges from 5 to 100. The purpose of this experiment is to reveal the impact of

an overload of resource requesters on fairness in the system. Figure 6.11 depicts the

performance changes that occur with different numbers of resource requesters for the

reinforcement learning based approach.

105

Fig. 6.11.: Performance trends of simulation 3: one work coalition of 10 resource
agents is fixed in this simulation. The x-axis is the ratio of resource requesters to resource
agents. Therefore, 0.5 means there are 5 resource requesters in the simulation, while 10
means there are 100 resource requesters in the simulation. The performance values are

averages of 10 runs

In summary, the reinforcement learning based approach performs considerably better

than do the other two approaches. The number of resource requesters available in the

system has a significant negative influence on resource allocation equality and a slightly

positive impact on resource utilization.

As shown in Figure 6.8, the positive results obtained by our reinforcement learning

algorithm compared to the other baselines in Experiment 2 indicate that the learning

algorithm helps the resource agents adopt strategies that match their resource capacities to

the task demands efficiently and, therefore, leads to fair and efficient resource allocation.

In contrast, the results in Experiment 3 demonstrate that our reinforcement learning

approach helps resource agents maximize their utility values when considering both

fairness and local resource utilization. However, as shown in Figure 6.9, the reinforcement

learning approach does not always outperform the naive DRF extension with regard to

resource utilization when all the resource agents have same resource capacity.

106

In Experiment 4, we uniformly sampled data from a Google cluster trace and used

these data to create a mix of cases in both Experiment 2 and Experiment 3. Figure 6.10

shows that the reinforcement learning based solution achieves 31% more utility compared

to the greedy approach and 55% more compared to the random exploration approach. In

addition, the reinforcement learning approach leads to 26% less inequality than the greedy

approach and 33% less inequality than the random exploration approach. It also results in

a task throughput 5% higher than these two baselines. These results indicate that equality

is the most important factor, because the resource utilizations of all 3 approaches are high

and quite similar.

Increasing the number of resource requesters results in insufficient resources for all

resource requesters and slows down the convergence of reinforcement learning, because it

dramatically enlarges the strategy search space. Therefore, when more resource requesters

are available for a work coalition, the average allocation inequality increases. Figure 6.11

shows how the number of resource requesters affect a work coalition of 10 resource

agents. As the number of resource requesters increases, the equality of allocation becomes

compromised. However, as shown in Figure 6.11, adding more resource requesters results

in better resource utilization.

6.7 Conclusion

In this chapter, we discussed fair multi-type resource allocation for MTR-SRT

systems. We proposed a task-forwarding mechanism to find the proper placement for each

task to maximize the fairness and resource allocation. We also discussed the notion of

107

resource fairness among resource requesters in a multi-robot system under certain

constraints. We built a game theoretic model for the dominant resource fairness problem.

Our proposed method of applying dominant resource fairness preserves all the key

fairness properties within a work coalition. Moreover, it ensures the envy-freeness and

strategy-freeness of DRF throughout the entire multi-robot system regardless of whether

constraints exist. We use a reinforcement learning and majority voting mechanism to

search for equilibrium in the game. We compared the reinforcement learning approach

with both a heuristic based greedy search method and with random exploration. The

experimental results show that our reinforcement learning approach outperforms the

heuristic based greedy search, random exploration and the naive DRF extension in

allocation fairness and resource utilization. In conclusion, our proposed algorithms–both

the task-forwarding and resource allocation game solutions–outperform the random

exploration and naive DRF extension methods.

108

7. CONCLUSION

To our knowledge, this dissertation is the first study of multi-type resource fairness

problems for multi-robot systems. It is motivated by the popularity of multi-robot system

applications. We believe that future multi-robot systems must consider multi-type

resource fairness when serving multiple resource requesters. Our work focused on two

typical cases: single-tasking robots with multi-robot tasks (STR-MRT) and multi-tasking

robots with single-robot tasks (MTR-SRT).

We have provided both centralized and decentralized solutions for STR-MRT systems.

We discussed how our solutions preserve fairness used typical cases to show how

resources are utilized. Based on these observations, we designed simulations. We

implemented centralized algorithms and showed that dominant resource fairness

outperforms random division approaches. We also discussed how robots can form

collaborative teams for tasks. The proposed team formation procedure considers the

differences between task resource requirements and robot resource capacities. Then the

robots with the best fit are selected as members to maximize the team’s resource

utilization.

Using game theory, we designed and discussed a utility and coordination model for

robots to achieve decentralized resource management. We implemented the decentralized

solution using reinforcement learning techniques. We discussed and compared two

reinforcement learning approaches: tabular Q learning and artificial neural network-based

109

Q learning. As found by our experimental results, due to the large state space in our

problem, the neural network approach using deep reinforcement learning techniques

outperforms the tabular Q reinforcement learning approach.

Moreover, we designed and implemented a consensus-based algorithm for distributed

task team formation as a part of the decentralized fair multi-type resource allocation.

Finally, we provided two decentralized solutions for the MTR-SRT. One decentralized

solution is task-forwarding, which matches a task to a robot based on the similarity

between the task resource demands and the resource capacity of the robot. We showed

that this approach performs comparably to centralized resource allocation procedures

when the number of robots is relatively small. In addition, we proposed a coordination

model for robots using game theory. In this approach, robots do not need to negotiate for

each task; instead, they select resource requesters from whom the tasks originate, and

apply dominant resource fairness independently. In this way, robots can allocate resources

to different resource requesters and run multiple tasks simultaneously. We provided a

reinforcement learning approach to select resource requesters, and designed a majority

voting based approach to negotiate strategy and coordination among robots. The results of

experiments show that the reinforcement learning based approach for selecting resource

requesters outperforms the naive DRF extension, in which robots apply DRF

independently to all resource requesters.

The experimental results also show that, regarding resource fairness for the STR-MRT,

our proposed algorithms, which use the dominant resource principle and neural network

based reinforcement learning, outperformed algorithms using an equal division of

resources or uniformly random resource allocation. Moreover, for the MTR-SRT, our

110

decentralized resource allocation solutions, which use the dominant resource principle and

reinforcement learning techniques, outperformed both uniform random allocation and the

naive DRF extension regarding resource fairness.

7.1 Future Work

We have studied various aspects of multi-type resource fairness for multi-robot

systems and have proposed solutions. However, this work can be extended in variety of

directions; a vast problem space remains to be explored in the future. Some future

approaches might include the following.

7.1.1 Dynamic Environment of Robots and Resource Requesters

Robots may leave and join a dynamic environment. Resource requesters may log in

and log out as wellsimilar to consuming services on computer clusters. A resource agent

should adjust its strategies when other robots join or leave the system or in failure cases.

Although reinforcement learning is an online learning algorithm, our current model must

be redesigned to be able to handle changes in the size of the state and action sets. In

addition, weights could be introduced to represent the relative importance of some tasks

compared to others. Another interesting situation is that robots cannot typically

communicate with all other robots and resource requesters. Moreover, a dynamic

communication network among robots would change over time as well, compelling robots

to serve different resource requesters at different times. In addition, for time-sensitive

111

tasks, we could combine the fairness criteria of real-time systems into the resource

allocation procedure.

7.1.2 Heterogeneous Robot Collaboration within Task Teams

The concept of robots collaborating as a team to accomplish tasks has been studied in

previous works [32][12] [32] [56]; however, few have discussed heterogeneous robots

with different capabilities. For example, consider robots with advanced sensors patrolling

a forest area. These patrol robots inform fire-extinguishing robots when they find a fire.

These two types of robots work on the same task but may face some collaboration issues.

The first issue is communication. How can robots communicate if they are

autonomous and far away from each other? Must they return to a base to deliver their

information or can other robots help to relay the collaborative information?

Another issue is fault tolerance. The resource management procedure can handle

dynamic robot changes when the robots are idle and waiting for task assignment.

However, if some robots were to fail during task execution, the result would be that the

team would fail to accomplish the task.

7.1.3 Robot Cloud System

The ultimate goal of studying resource allocation for multi-robot systems is to create a

universal software platform through which multi-robot systems would collaborate,

schedule tasks, and allocate resources for multiple resource requesters. The idea is similar

to computer system clouds, which provide resources for multiple resource requesters. In a

112

decentralized system, a resource requester contacts any robot on the cloud from a client

and gains access to the multi-robot system to execute tasks. The resource agents of robots

handle resource requests and communicate with other robots to allocate resources for task

execution.

APPENDICES

113

A. DISCUSSION OF FAIRNESS PROPERTIES FOR

SINGLE-TASKING ROBOTS WITH MULTI-ROBOT TASKS

SYSTEMS

In this appendix, we discuss how fairness is preserved by dominant resource fairness

(DRF) in STR-MRT systems in terms of fairness properties. These fairness properties are

borrowed from economic theory. By discussing these fairness properties, we can

understand how our algorithm satisfy resource requesters in a fair and efficient manner. In

addition, we discuss three special cases for STR-MRT systems: a) resource allocations for

resource requesters are all linear combinations of robot capacities; b) resource allocations

have the same dominant resources; and c) resource allocations have different dominant

resources, but they are not linear combinations of robot capacities.

Without loss of generality, we assume that the task resource requirements are

significantly higher than the resource capacities of the available robots. That is, a resource

agent can be viewed as a divisible entity. During the discussion of the fairness properties,

we use the total share of resource capacity ,Dp, to represent the total resource capacity of

resource agents of type p ∈ P .

Let Cp = (cp,1/
∑

q∈P cq,1..., cp,K/
∑

q∈P cq,K)
T be a vector of the fractions of

resource capacity for resource agent type p. Suppose C = (C1, C2..., C|P |) is a matrix

where each column contains fractions of resource capacities. Thus, we have∑
p∈P Cp = (1..., 1)T . Xu = (x1, x2..., x|P |)

T is a vector of size |P |, in which each

114

element x in X is 0 ≤ x ≤ 1. This vector represents the fraction of resource agents of

each type allocated to resource requester u. Thus, Au = CXu is the resource allocated to

u, and Du is the resource demanded by resource requester u for its tasks. We can rewrite

Equation 4.4 as Equation A.1.

MaxXMinu∈Udu

Subject to

0 ≤ Xui ≤ 1,∀i ∈ [1, |P |]

CXu ≥ Du, ∀u ∈ U

(A.1)

That is, we try to find factors such that x1C1 + x2C2 + ...x|P |C|P | maximizes the

dominant utilized resource du.

A.1 Sharing Incentives

Lemma A.1 At least one resource is non-wasteful in the allocation to any resource

requester.

If all resources in an allocation are wasteful for resource requester u, Du can be increased

until one resource in the allocation is fully consumed. Therefore, at least one resource in

the allocation is non-wasteful if Du is maximized within its allocation.

Proposition A.1.1 A solution of Equation A.1 holds the sharing-incentive property.

115

R2

R10.67

0.67

0.33

0.33

0.3

0.7

Fig. A.1.: When the requested resources of two resource requesters are linear
combinations of the capacities of resource agents, these two resource requesters will not

envy each other.

To divide all the resources equally for the resource requesters, the system assigns equal

amounts of all types of resource agents to each resource requester. Because the dominant

resource is the resource with the highest share, the dominant resource is the first resource

to be saturated and fully utilized. Thus, equal division results in the same dominant

resource share for each resource requester. Because a solution of Equation A.1 has same

dominant resource share for each resource requester and should maximize the amount of

dominant utilized resource share, a solution of Equation A.1 has equal or higher amount

of dominant utilized resource share comparing to the equal division method. It follows

that a solution of Equation A.1 has the sharing-incentive property.

116

A.2 Envy-freeness

Envy-freeness may not hold for STR-MRT systems due to the resource waste problem.

However, we can show that envy-freeness is guaranteed under some conditions. When

resource allocation is non-wasteful, envy-freeness holds as in the original DRF.

Proposition A.2.1 If the utilized resources of resource requesters are a linear

combination of the resource capacities of resource agents, envy-freeness holds.

If the allocated resource of any resource requester u is a linear combination of the

resource capacities of the resource agents in system, then DXu −Du = 0. Thus, the

allocated resources are all utilized, and the resource allocation has no waste. This satisfies

the non-wasteful [31] condition of envy-freeness for dominant resource fairness [20].

Therefore, given that the utilized resources allocated to all resource requesters are linear

combinations of the resource capacities of resource agents, envy-freeness must hold.

As an example, in Figure A.1, the allocations of two resource requesters can be

satisfied by two types of resource agents (robots). The allocated resources to resource

requester 1 are [0.33, 0.67], which is exactly the amount it utilizes. Resource requester 2

obtains resources of [0.67, 0.33]. According to our assumption that the task resource

requirements from the same resource requester are identical, Du1Nu1 = [0.33, 0.67],

where Du1 is the task resource requirement from resource requester 1 and Nu1 is the

number of tasks allocated to resource requester 1. If resource requester 1 obtains the

allocation of resource requester 2, we have Du1N
′
p1
≤ [0.67, 0.33], where N ′p1 is the

number of tasks scheduled by resource requester 1 when given the same allocation as

resource requester 2. Because R2 is the dominant resource of resource requester 1,

117

R2

R1

0.175

0.125 0.70.3

0.3

0.7

Resource Requester 1 Resource Requester 2

0.17

0.5

Fig. A.2.: Resource requesters have the same dominant resource, R2. Their dominant
resource allocations are both 0.5–the exact amount they need. Thus, their dominant
resource allocations are non-wasteful. Even if they cannot utilize all the allocated

resources of type R2, they do not envy each other.

N ′p1/Np1 = 0.33/0.67. Hence, resource requester 1 can execute fewer tasks when given

the same allocation as resource requester 2. Similarly, resource requester 2 does not prefer

the allocation of resource requester 1.

Although the example in Figure A.1 has only two resource types, we can generalize

the example to more resource types. If R1 and R2 represent the dominant resources of two

resource requesters and we ignore any other dimensions in the resource vector, the same

conclusion can be derived. If the dominant resources of two resource requesters are linear

combinations of the capacities of resource agents on these two dimensions, neither of the

resource requesters can be allocated more resources of the other’s dominant type, because

118

R2

R1

0.175

0.175 0.70.3

0.3

0.7

Resource Requester 2

Fig. A.3.: Resource requesters have different dominant resource and their dominant
resource allocations are non-wasteful.

both resource requesters should be allocated the highest share of their dominant resource.

Therefore, they do not envy each other.

Allocations are wasteful when the utilized allocated resources of resource requesters

cannot be expressed as linear combinations of resource agents.

Proposition A.2.2 If all resource requesters have same dominant resource and their

dominant resource allocations are non-wasteful, the DRF allocation is envy-free.

Because dominant resources are non-wasteful, the dominant resource shares utilized

by all resource requesters are equal in a solution of Equation 4.4. Therefore, if the

dominant resources of all resource requesters have the same type, no resource requester

can utilize more dominant resources in others’ allocations. It follows that the resource

requesters will not envy each other.

119

Figure A.2 illustrates an example satisfying Proposition A.2.2 in which resource

requester 1 obtains an allocation of [0.8, 0.5], while resource requester 2 obtains an

allocation of [0.2, 0.5]. Neither can utilize all the resources allocated to them, because

their demands are not linear combinations of the resource capacities of robots. Resource

requester 1 can utilize [0.125, 0.5], and resource requester 2 can utilize [0.17, 0.5].

Nevertheless, they do not envy each other.

Proposition A.2.3 When resource requesters have different dominant resources,

envy-freeness holds if the allocations for dominant resources are non-wasteful.

Suppose we assign equal amount of all types of resource agents to each resource

requester. According to the discussion of the sharing-incentive property A.1.1, the

dominant resource shares of all resource requesters are equal and non-wasteful. The

minimal dominant resource share can be maximized by exchanging resource agents when

the distributions of resource capacities over different resource types are similar to the

distribution of task requirements among resource requesters. Consequently, resource

requesters obtain equal or greater allocations of their dominant resources if the allocation

for the dominant resource is non-wasteful. They can also reduce the resource waste on

non-dominant resources, because the resource agents of a resource requester with larger

amounts of non-dominant resources are traded with resource agents that have larger

amounts of that requester’s dominant resource. Therefore, a solution of Equation A.1 does

not result in an allocation of a resource requester that has larger amount of non-dominant

resources than it does of the dominant resource. It follows that resource requesters do not

envy each other in a solution of Equation A.1 if the dominant resource allocations are

120

non-wasteful. Figure A.3 shows an example in which two resource requesters have

different dominant resources when the allocation for the dominant resource is

non-wasteful.

Based on the analysis of these three situations, we can conclude that a solution of

Equation A.1 is envy-free if the dominant resource allocation is non-wasteful.

A.3 Pareto-efficiency

Proposition A.3.1 A solution of Equation A.1 is Pareto-efficient.

Let us assume that a solution of Equation A.1 does not maximize the dominant utilized

resource for each resource requester. To increase the Du of a resource requester u, the new

allocation A′u should satisfy A′ui > Aui,∀i ∈ [1, K]. If extra resources of each type are

available without decreasing the allocation of any resource requester, the system can

distribute the extra amount to each resource requester so that the dominant utilized

resource increases for each resource requester. This contradicts with the assumption that a

solution of Equation A.1 maximizes the dominant utilized resource for each resource

requester.

A.4 Strategy-proofness

Proposition A.4.1 An allocation obtained by solving Equation A.1 is not Strategy-proof.

Wasteful allocation may lead to violations of strategy-proofness. Consider an example

in which two resource requesters have different dominant resources. Suppose resource

requester 1 submits tasks with a resource requirement of [0.06, 0.02] and resource

121

requester 2 submits tasks demanding [0.02, 0.08]. If both requesters make their demands

honestly, resource requester 1 can obtain an allocation of [0.3, 0.7], and resource requester

2 obtains [0.7, 0.3] by solving Equation A.1. However, if resource requester 2 were to

request [0.08, 0.02] for each task, it would obtain an allocation of approximately [0.8, 0.5]

as shown in Figure A.2. Resource requester 2 prefers [0.8, 0.5] to [0.7, 0.3]. Therefore, the

system can be tricked by falsifying resource demands.

LIST OF REFERENCES

122

LIST OF REFERENCES

[1] J. T. Abatzoglou and A. P. Williams. Impact of anthropogenic climate change on
wildfire across western us forests. Proceedings of the National Academy of Sciences,
113(42):11770–11775, 2016.

[2] S. Angel, H. Ballani, T. Karagiannis, G. O’Shea, and E. Thereska. End-to-end
performance isolation through virtual datacenters. In OSDI, pages 233–248, 2014.

[3] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate progress:
A notion of fairness in resource allocation. In Proceedings of the Twenty-fifth Annual
ACM Symposium on Theory of Computing, STOC ’93, pages 345–354, New York,
NY, USA, 1993. ACM. ISBN 0-89791-591-7. doi: 10.1145/167088.167194. URL
http://doi.acm.org/10.1145/167088.167194.

[4] L. Bayndr. A review of swarm robotics tasks. Neurocomputing, 172:292 – 321,
2016. ISSN 0925-2312. doi: http://dx.doi.org/10.1016/j.neucom.2015.05.116. URL
http://www.sciencedirect.com/science/article/pii/
S0925231215010486.

[5] A. L. Bazzan. Joint learning in stochastic games: Playing coordination games within
coalitions. 2009.

[6] D. P. Bertsekas and R. G. Gallager. Data networks, volume 2.

[7] J.-Y. Boudec. Rate adaptation, congestion control and fairness: A tutorial. 2000.

[8] C. Boutilier. Planning, learning and coordination in multiagent decision processes.
In In Proceedings of the Sixth Conference on Theoretical Aspects of Rationality and
Knowledge (TARK96, pages 195–210.

[9] L. Brunet, H.-L. Choi, and J. P. How. Consensus-based auction approaches for
decentralized task assignment. In AIAA Guidance, Navigation, and Control
Conference, Honolulu, Hawaii, 2008.

[10] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun. Collaborative
multi-robot exploration. In Proceedings 2000 ICRA. Millennium Conference. IEEE
International Conference on Robotics and Automation. Symposia Proceedings (Cat.
No.00CH37065), volume 1, pages 476–481 vol.1, 2000. doi:
10.1109/ROBOT.2000.844100.

[11] Y. U. Cao, A. S. Fukunaga, and A. Kahng. Cooperative mobile robotics:
Antecedents and directions. Auton. Robots, 4(1):7–27, Mar. 1997. ISSN 0929-5593.
doi: 10.1023/A:1008855018923. URL
http://dx.doi.org/10.1023/A:1008855018923.

http://doi.acm.org/10.1145/167088.167194
http://www.sciencedirect.com/science/article/pii/S0925231215010486
http://www.sciencedirect.com/science/article/pii/S0925231215010486
http://dx.doi.org/10.1023/A:1008855018923

123

[12] J. Chen and D. Sun. Coalition-based approach to task allocation of multiple robots
with resource constraints. IEEE Transactions on Automation Science and
Engineering, 9(3):516–528, July 2012. ISSN 1545-5955. doi:
10.1109/TASE.2012.2201470.

[13] H.-L. Choi, L. Brunet, and J. P. How. Consensus-based decentralized auctions for
robust task allocation. Trans. Rob., 25(4):912–926, Aug. 2009. ISSN 1552-3098.
doi: 10.1109/TRO.2009.2022423. URL
http://dx.doi.org/10.1109/TRO.2009.2022423.

[14] A. Cidon, D. Rushton, S. M. Rumble, and R. Stutsman. Memshare: a dynamic
multi-tenant key-value cache. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17), pages 321–334. USENIX Association, 2017.

[15] L. Cigler and B. Faltings. Decentralized anti-coordination through multi-agent
learning. Journal of Artificial Intelligence Research, 47:441–473, 2013.

[16] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms for
np-hard problems. chapter Approximation Algorithms for Bin Packing: A Survey,
pages 46–93. PWS Publishing Co., Boston, MA, USA, 1997. ISBN 0-534-94968-1.
URL http://dl.acm.org/citation.cfm?id=241938.241940.

[17] J. de Lope, D. Maravall, and Y. Quionez. Response threshold models and stochastic
learning automata for self-coordination of heterogeneous multi-task distribution in
multi-robot systems. 61(7):714–720. ISSN 0921-8890. doi:
10.1016/j.robot.2012.07.008.

[18] G. Dudek, M. R. M. Jenkin, E. Milios, and D. Wilkes. A taxonomy for multi-agent
robotics. Autonomous Robots, 3(4):375–397, Dec 1996. ISSN 1573-7527. doi:
10.1007/BF00240651. URL https://doi.org/10.1007/BF00240651.

[19] B. P. Gerkey and M. J. Matari. A formal analysis and taxonomy of task allocation in
multi-robot systems. 23(9):939–954. ISSN 0278-3649, 1741-3176. doi:
10.1177/0278364904045564.

[20] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica.
Dominant resource fairness: Fair allocation of multiple resource types. In
Proceedings of the 8th USENIX Conference on Networked Systems Design and
Implementation, NSDI’11, pages 323–336, Berkeley, CA, USA, 2011. USENIX
Association.

[21] C. Gini. Concentration and dependency ratios. Rivista di politica economica, 87:
769–792, 1997.

[22] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,
S. Shenker, and I. Stoica. Mesos: A platform for fine-grained resource sharing in the
data center. In Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation, NSDI’11, pages 295–308, Berkeley, CA, USA, 2011.
USENIX Association.

[23] H. Jin, D. Pan, J. Xu, and N. Pissinou. Efficient vm placement with multiple
deterministic and stochastic resources in data centers. In Global Communications
Conference (GLOBECOM), 2012 IEEE, pages 2505–2510. IEEE, 2012.

http://dx.doi.org/10.1109/TRO.2009.2022423
http://dl.acm.org/citation.cfm?id=241938.241940
https://doi.org/10.1007/BF00240651

124

[24] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang. Multi-resource allocation:
Fairness-efficiency tradeoffs in a unifying framework. In INFOCOM, 2012
Proceedings IEEE, pages 1206–1214, March 2012. doi:
10.1109/INFCOM.2012.6195481.

[25] S. Kannan. OS support for heterogeneous memory. PhD thesis, Georgia Institute of
Technology, 2016.

[26] I. Kash, A. D. Procaccia, and N. Shah. No agent left behind: Dynamic fair division
of multiple resources. Journal of Artificial Intelligence Research, 51:579–603, 2014.

[27] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[28] L. T. Kou and G. Markowsky. Multidimensional bin packing algorithms. IBM J. Res.
Dev., 21(5):443–448, Sept. 1977. ISSN 0018-8646. doi: 10.1147/rd.215.0443. URL
http://dx.doi.org/10.1147/rd.215.0443.

[29] W. Leinberger, G. Karypis, and V. Kumar. Multi-capacity bin packing algorithms
with applications to job scheduling under multiple constraints. In Proceedings of the
1999 International Conference on Parallel Processing, ICPP ’99, pages 404–,
Washington, DC, USA, 1999. IEEE Computer Society. ISBN 0-7695-0350-0. URL
http://dl.acm.org/citation.cfm?id=850940.852821.

[30] T. Lemaire, R. Alami, and S. Lacroix. A distributed tasks allocation scheme in
multi-uav context. In Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004
IEEE International Conference on, volume 4, pages 3622–3627 Vol.4, April 2004.
doi: 10.1109/ROBOT.2004.1308816.

[31] J. Li and J. Xue. Egalitarian division under leontief preferences. Economic Theory,
54(3):597–622, 2013. ISSN 09382259, 14320479. URL
http://www.jstor.org/stable/43562911.

[32] F. Lin, M. Fardad, and M. R. Jovanovic. Optimal control of vehicular formations
with nearest neighbor interactions. IEEE Transactions on Automatic Control, 57(9):
2203–2218, Sept 2012. ISSN 0018-9286. doi: 10.1109/TAC.2011.2181790.

[33] K. Maruyama, S. K. Chang, and D. T. Tang. A general packing algorithm for
multidimensional resource requirements. International Journal of Computer &
Information Sciences, 6(2):131–149, Jun 1977. ISSN 1573-7640. doi:
10.1007/BF00999302. URL http://dx.doi.org/10.1007/BF00999302.

[34] R. Mazumdar, L. G. Mason, and C. Douligeris. Fairness in network optimal flow
control: Optimality of product forms. IEEE Transactions on communications, 39(5):
775–782, 1991.

[35] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[36] H. Moulin. Fair division and collective welfare. MIT press, 2004.

[37] J. F. Nash. The bargaining problem. Econometrica, 18(2):155–162, 1950. ISSN
00129682, 14680262. URL http://www.jstor.org/stable/1907266.

[38] M. J. Osborne. An introduction to game theory, volume 3. Oxford university press
New York, 2004.

http://dx.doi.org/10.1147/rd.215.0443
http://dl.acm.org/citation.cfm?id=850940.852821
http://www.jstor.org/stable/43562911
http://dx.doi.org/10.1007/BF00999302
http://www.jstor.org/stable/1907266

125

[39] L. E. Parker. Alliance: An architecture for fault tolerant multirobot cooperation.
IEEE transactions on robotics and automation, 14(2):220–240, 1998.

[40] D. C. Parkes, A. D. Procaccia, and N. Shah. Beyond dominant resource fairness:
Extensions, limitations, and indivisibilities. ACM Transactions on Economics and
Computation, 3(1):3, 2015.

[41] Q. Pu, H. Li, M. Zaharia, A. Ghodsi, and I. Stoica. Fairride: Near-optimal, fair cache
sharing. In NSDI, pages 393–406, 2016.

[42] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch. Heterogeneity
and dynamicity of clouds at scale: Google trace analysis. In Proceedings of the
Third ACM Symposium on Cloud Computing, SoCC ’12, pages 7:1–7:13, New York,
NY, USA, 2012. ACM. ISBN 978-1-4503-1761-0. doi: 10.1145/2391229.2391236.

[43] M. Riedmiller. Neural fitted q iteration – first experiences with a data efficient neural
reinforcement learning method. In Proceedings of the 16th European Conference on
Machine Learning, ECML’05, pages 317–328, Berlin, Heidelberg, 2005.
Springer-Verlag. ISBN 3-540-29243-8, 978-3-540-29243-2. doi:
10.1007/11564096 32. URL
http://dx.doi.org/10.1007/11564096_32.

[44] D. Schmeidler and K. Vind. Fair Net Trades. Econometrica, 40(4):637–642, July
1972. URL https:
//ideas.repec.org/a/ecm/emetrp/v40y1972i4p637-42.html.

[45] O. Shehory and S. Kraus. Task allocation via coalition formation among
autonomous agents. In IJCAI (1), pages 655–661, 1995.

[46] O. Shehory and S. Kraus. Methods for task allocation via agent coalition formation.
Artificial intelligence, 101(1-2):165–200, 1998.

[47] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,
D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of Go with deep
neural networks and tree search. Nature, 529(7587):484–489, jan 2016. ISSN
0028-0836. URL
http://dx.doi.org/10.1038/nature16961http://10.1038/
nature16961http://www.nature.com/nature/journal/v529/
n7587/abs/nature16961.html{#}supplementary-information.

[48] A. Singh, A. Krause, C. Guestrin, and W. J. Kaiser. Efficient informative sensing
using multiple robots. Journal of Artificial Intelligence Research, 34:707–755, 2009.

[49] A. Singhal. Modern information retrieval: A brief overview. IEEE Data Eng. Bull.,
24(4):35–43, 2001.

[50] H. Varian. Equity, envy, and efficiency. Journal of Economic Theory, 9(1):63–91,
1974. URL http://EconPapers.repec.org/RePEc:eee:jetheo:v:
9:y:1974:i:1:p:63-91.

[51] A. Viguria, I. Maza, and A. Ollero. SET: An algorithm for distributed multirobot
task allocation with dynamic negotiation based on task subsets. In 2007 IEEE
International Conference on Robotics and Automation, pages 3339–3344. doi:
10.1109/ROBOT.2007.363988.

http://dx.doi.org/10.1007/11564096_32
https://ideas.repec.org/a/ecm/emetrp/v40y1972i4p637-42.html
https://ideas.repec.org/a/ecm/emetrp/v40y1972i4p637-42.html
http://dx.doi.org/10.1038/nature16961 http://10.1038/nature16961 http://www.nature.com/nature/journal/v529/n7587/abs/nature16961.html{#}supplementary-information
http://dx.doi.org/10.1038/nature16961 http://10.1038/nature16961 http://www.nature.com/nature/journal/v529/n7587/abs/nature16961.html{#}supplementary-information
http://dx.doi.org/10.1038/nature16961 http://10.1038/nature16961 http://www.nature.com/nature/journal/v529/n7587/abs/nature16961.html{#}supplementary-information
http://EconPapers.repec.org/RePEc:eee:jetheo:v:9:y:1974:i:1:p:63-91
http://EconPapers.repec.org/RePEc:eee:jetheo:v:9:y:1974:i:1:p:63-91

126

[52] C. A. Waldspurger. Lottery and stride scheduling: Flexible proportional-share
resource management. 1995.

[53] W. Wang, B. Li, and B. Liang. Dominant resource fairness in cloud computing
systems with heterogeneous servers. In INFOCOM, 2014 Proceedings IEEE, pages
583–591, April 2014. doi: 10.1109/INFOCOM.2014.6847983.

[54] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

[55] S. M. Zahedi and B. C. Lee. Ref: Resource elasticity fairness with sharing incentives
for multiprocessors. ACM SIGARCH Computer Architecture News, 42(1):145–160,
2014.

[56] Y. Zhang and H. Mehrjerdi. A survey on multiple unmanned vehicles formation
control and coordination: Normal and fault situations. In 2013 International
Conference on Unmanned Aircraft Systems (ICUAS), pages 1087–1096, May 2013.
doi: 10.1109/ICUAS.2013.6564798.

[57] Q. Zhu and J. C. Oh. Equality or efficiency: A game of distributed multi-type fair
resource allocation on computational agents. In 2015 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT),
volume 2, pages 139–142. doi: 10.1109/WI-IAT.2015.96.

[58] Q. Zhu and J. C. Oh. An approach to dominant resource fairness in distributed
environment. In IEA/AIE 2015, 2015.

[59] Q. Zhu and J. C. Oh. Learning fairness under constraints: A decentralized resource
allocation game. In 2016 15th IEEE International Conference on Machine Learning
and Applications (ICMLA), pages 214–221, Dec 2016. doi:
10.1109/ICMLA.2016.0043.

VITA

127

VITA

Qinyun Zhu was born in Chongqing, China. He received his Bachelor degree in

Computer Science at Harbin Institute of Technology (Weihai, Shandong, China). He

received his Master degree in Computer Science from Syracuse University (Syracuse,

New York, USA). He received his PhD in Computer and Information Science and

Engineering from Syracuse University (Syracuse, New York, USA) in May 2018.

	Multi-type Fair Resource Allocation for Distributed Multi-Robot Systems
	Recommended Citation

	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Motivating Examples
	Single-Tasking Robots with Multi-robot Tasks (STR-MRT)
	Multi-tasking Robots with Single Robot Tasks (MTR-SRT)

	Problem Framework
	Thesis Statement and Overview of Dissertation
	Related Work
	Fairness in Resource Allocation
	Coordination for Task Allocation in Multi-Robot Systems

	Background
	Fair Multi-type Resource Allocation
	Multi-type Resource Fairness
	Dominant Resource Fairness (DRF)

	Reinforcement Learning

	Fair Resource Allocation for Single-tasking Robots with Multi-robot Tasks Systems
	Overview
	Resource Fairness for Single-tasking Robots with Multi-robot Tasks Systems
	Formulation of Fair Resource Allocation
	Fairness Properties

	Centralized Fair Resource Allocation
	Centralized Task Team Formation
	Experiments
	Team Formation
	Centralized Fair Resource Allocation

	Conclusion

	Distributed Fair Resource Allocation for Single-tasking Robots with Multi-robot Tasks Systems
	Overview
	Distributed Fair Multi-type Resource Allocation
	Task Team Formation
	Task Team Formation Plan

	Distributed Task Team Formation
	Resource Requester Selection Game
	Formulation of Game
	Example

	Deep Reinforcement Learning for the Fair Resource Requester Selection Game
	Deep Reinforcement Learning
	Learning the Resource Requester Selection Game

	Experiments
	Experimental Results

	Conclusion

	Distributed Fair Resource Allocation for Multi-tasking Robots with Single-robot Tasks Systems
	Overview
	Fairness Resource Allocation Problem for Multi-tasking Robots with Single-robot Tasks Systems
	Naive Distributed Dominant Resource Fairness
	Dominant Resource Fairness in Heterogeneous Environments

	Task-forwarding for Fair Resource Allocation
	Distributed Fair Resource Allocation Game
	Selection of Resource Requesters
	Equality and Efficiency
	Resource Constraints
	The Coordination Game under Constraints

	Solving the Fair Resource Allocation Game
	Greedy Solution
	Learning the Game Solution
	Joint Strategy Search

	Experiments
	Experiments of Task Assignment Approach
	Experiments of Resource Requester Assignment Game

	Conclusion

	Conclusion
	Future Work
	Dynamic Environment of Robots and Resource Requesters
	Heterogeneous Robot Collaboration within Task Teams
	Robot Cloud System

	Discussion of Fairness Properties for Single-tasking Robots with Multi-robot Tasks Systems
	Sharing Incentives
	Envy-freeness
	Pareto-efficiency

	Strategy-proofness
	LIST OF REFERENCES
	VITA

