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ABSTRACT 

This dissertation consists of two essays on housing market dynamics and cointegration 

analysis with latent factors. The theme of this dissertation is housing market dynamics, with the 

first essay an application of advanced panel time series models to the studies of housing market 

dynamics, and the second essay a theoretic derivation of an econometric tool on cointegration 

analysis with latent factors that can be applied to the housing market analysis. 

This first essay develops a parsimonious dynamic model to study the impact of a 

common demand shock in the housing market on housing prices and construction activities 

across a set of locations with heterogeneous supply side conditions. Embedded within the model 

is a lead-lag structure that allows one to identify from where shocks propagate while allowing for 

and yielding estimates of cross-sectional differences in housing supply elasticities. The findings 

indicate that local supply conditions may matter more than distance when modeling 

spatiotemporal dynamics in the housing market. 

The second essay considers estimating and testing cointegration between an integrated 

series of interest and a vector of possibly cointegrated nonstationary latent factors. The fully 

modified least squares (FM-OLS) estimation is adopted to the estimation of the cointegration 

relation of interest. The asymptotic properties of the FM-OLS estimators are derived, and the 

residual-based cointegration tests are shown to work as usual even with latent factors. Based on 

the estimated cointegration relation, it is demonstrated that an error correction term added to the 

traditional diffusion index forecast model improves forecasting accuracy. 
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Chapter 1: Studies on Housing Market Dynamics and Cointegration Analysis with 

Latent Factors 

 

The theme of this dissertation is housing market dynamics. Housing markets in the US as 

well as in many other countries exhibit huge volatilities during the past several decades, 

including the most recent Great Recession.  The fluctuations in the housing market have very 

influential impacts on our economy, either through mortgage markets and the construction 

activities or through many other channels such as the consumption and saving behavior of 

households. Besides huge volatilities in the housing market, there are substantial heterogeneity in 

the dynamics of local housing markets. For these and many other reasons, a growing number of 

studies have attempted to model and forecast housing price dynamics. Given that housing prices 

are mostly nonstationary time series and are highly spatially correlated across local housing 

markets, being able to model the nonstationarities and spatial correlations in the housing markets 

is the key issue in the housing market analysis.  

      This dissertation consists of two essays on housing market dynamics and cointegration 

analysis with latent factors. The first essay is an application of advanced panel time series 

models to housing dynamics studies, in which the spatial correlations of housing markets are 

rooted in the spatially correlated demand shocks to the housing markets and a lead-lag diffusion 

pattern of the housing demand shocks in a regional housing market is identified and estimated. 

The second essay is on a theoretic derivation of an econometric tool on cointegration analysis 

with latent factors. Given the fact that housing prices are mostly nonstationary time series and 

housing markets in a given geographic region may subject to common shocks, the idea of taking 

advantage of large dimensional nonstationary data sets to the housing market analysis is 
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appealing as well as challenging. The second essay provides a theoretic tool of estimating the 

cointegration relation between an integrated series of interest and a vector of possibly integrated 

factors. The vector of possibly integrated factors provides a method to summarize the co-

movements in a large nonstationary panel data set. The theoretic results can be applied to the 

housing market to study the common cycles and long-run equilibrium relations in local housing 

markets.  

To be more specific, the first essay in this dissertation extends a parsimonious error 

correction model to study the underlying unobservable spatially correlated demand shocks across 

a set of locations. Currently, most of these studies on housing market dynamics focus on price 

movements only and are not able to provide insights on the heterogeneity in the diffusion 

patterns in the local housing markets.  More importantly, as documented in the business cycle 

literature, sometimes national or state level building permits may be a better leading indicator for 

economic activities than housing prices.  So there may be quite different roles played by housing 

prices and construction activities. Being able to model these two closely related important 

components of the housing market will help us gain a much broader and more comprehensive 

view of the housing market dynamics.  

In the first essay, we build our model on a simple supply and demand model of a local 

housing market. With the assumption that there is only a demand shock to the local housing 

market, the demand shock can be written as a function of the observable price change and new 

construction. By modeling the underlying demand shocks, we are able to derive two reduced 

form diffusion models, one for price movements, and the other for construction activities. In 

these derived diffusion models, the coefficient estimates depend on the local price elasticities of 

housing supply explicitly, which enable us to model the heterogeneous price response and 
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construction response across locations.  Another feature of this model is that it not only controls 

for local spillover effects in the housing market by adding spatial lag terms in the main equations, 

but also allows for the identification of a leading area from where the housing market shocks 

originate and spread out contemporaneously.  

The data we use is the Federal Housing Finance Agency (FHFA) house price indices and 

building permits data from US Census for 22 largest MSAs in California from 1980 to 2016. Our 

estimation results first indicate that housing market in San Jose could be treated as a leading 

market in these 22 MSAs of California. Secondly, conditioning on the local spillover effect, the 

response to a common demand shock in a local housing market is quite different for locations 

with different local supply conditions.  For coastal cities in California with less elastic housing 

supply, the price adjustments are much more substantial than the construction adjustments given 

a common demand shock to this market. In contrast, for most inland cities of California with 

more elastic housing supply, they adjust construction more than price when facing a common 

housing market shock. Another important finding is that the coefficient estimates from the two 

reduced form diffusion models, display correct positive correlations with the Saiz (2010) price 

elasticities measurements. This positive correlation provides support for our modeling of the 

underlying demand shocks and can work as an alternative method to get estimates of local 

supply conditions. 

The second paper in this dissertation studies the estimation and testing of the co-

integration relation between an integrated variable of interest and a vector of latent integrated 

factors. The latent factors are unobservable but can be estimated from a large panel of integrated 

series.  One motivation of this study is dimension reduction. In macroeconomic literature, as the 

data are getting much easier to collect, the number of potential useful variables for analysis could 
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be huge, and most the macroeconomic variables are nonstationary intrinsically. Also, there may 

not exist any economic theory guiding us how to model the long run relation among these 

integrated series. One way to take advantage of this large panel data set is through the factor 

analysis to extract the common stochastic trends, and study the possible long run relation 

between the common stochastic trends and an integrated series of interest. Since the factors are 

of a much lower dimension, the co-integration analysis will be much easier to conduct. Another 

motivation is the growing literature on the Factor-augmented error correction model (FECM). 

The FECM model focuses on the co-integration relation between a smaller subset of the series in 

the large panel set and the set of latent factors. The method has been used empirically by adding 

an error correction term to the forecasting of the first-differenced series.  However, there is no 

theoretical evidence to support the cointegration analysis and the estimation of the FECM model 

using estimated factors. The estimation errors in the latent integrated factors could accumulate 

across time and may cause problems in the cointegration analysis.  

The second paper in this dissertation tries to fill in this gap by studying the estimation and 

testing of the co-integration relation between the latent factors and another integrated series of 

interest. The nonstationary factor used in this paper is a more general one, which allows for 

nonstationary idiosyncratic error terms in the factor model. We also allow for possible 

endogeneity in the latent factors in the main cointegration equation. Following Phillips and 

Hansen (1990) fully modified least squares estimator, we show that under some restrictions on 

the sample sizes and the bandwidth expansion rates of the long run covariance matrices estimator, 

the fully modified least estimator of the cointegration coefficient using estimated factors have a 

mixed normal limiting distribution, which will help with hypothesis testing and statistical 

inference.  
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Another theoretical result the second paper verifies is that the conventional residual-

based cointegration test work as usual as long as the factors are consistently estimated. At the 

end of the paper, we propose a possible application of the fully modified estimator of the 

cointegration coefficient to the traditional diffusion index forecasting literature. After testing and 

estimating for the cointegration relation, we could add an error correction term to the 

conventional forecasting equation of a differenced integrated variable if there exists any 

cointegration relation between the level of the variable and the level of the factors.  Our 

empirical example shows that the proposed forecasting method may outperform existing 

methods under some cases.      
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Chapter 2: Unobserved Demand Shocks and Housing Market Dynamics in a Model 

with Spatial Variation in the Elasticity of Supply 
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1.     Introduction 

1.1 Overview 

This paper extends a parsimonious dynamic model developed in Holly et al. (2011) 

(hereafter HPY) to estimate the influence of spatially correlated unobserved demand shocks 

on house price movements and construction across locations.  The extended model has 

embedded within it cross-sectional differences in housing supply elasticities while also 

allowing for the possibility that shocks may propagate out over time from a dominant 

location. The emphasis on the heterogeneity in housing supply elasticities in our model is 

similar in spirit to papers like Glaeser and Gyourko (2005) and Glaeser et al (2008) who 

demonstrate that housing supply elasticities have important effects on house price volatility.  

The original model of HPY offers a parsimonious structure for analyzing spatial and 

temporal diffusion of house price shocks in a dynamic system. HPY estimate separate house 

price diffusion models for different cities in the U.K. allowing for the possibility that price in 

a given city may be cointegrated with price movements in a “dominant” city (which is 

London in their case). This structure allows for possible lead-lag relationships by allowing 

demand shocks to hit the dominant location first and then propagate out over time to 

secondary locations.  We extend HPY by explicitly modeling the unobserved demand shocks 

allowing for cross-sectional differences in housing supply elasticities as suggested above. Our 

model is then used to examine both house price dynamics and construction whereas HPY 

focus on price movements only. In this sense, the model in HPY is a restricted version of the 

model developed in this paper.  

The need to do a better job of modeling housing market dynamics for the U.S. became 

especially obvious following the crash of 2007. Sharply falling housing prices prompted 

massive numbers of mortgage defaults, dramatic declines in new construction, and pushed the 

economy into the Great Recession (Leamer, 2007; Iacoviello, 2005). Nevertheless, despite 
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the onset of an historic national recession, the recent boom and bust in housing prices and 

mortgage default did not hit all metropolitan areas similarly.  Cities like Phoenix, Los 

Angeles and Sarasota saw prices more than double in the few years leading up to the 2006 

peak only to fall precipitously in the following few years. Other large growing cities like 

Denver and Houston experienced comparatively little change in housing prices over the same 

period. For these and other reasons, a growing number of studies have attempted to model 

and forecast housing price dynamics in a manner that allows for spatial correlation and 

patterns across cities, but most often in a reduced form context. 

Based on our extended diffusion model of unobserved demand shocks, we derive a 

price diffusion and a construction diffusion model for each individual metropolitan area, and 

illustrate their features using data on house prices and construction for 22 metropolitan areas 

in California from 1975 to present. Results indicate strong evidence that metro-level house 

prices are cointegrated in California, where cointegrating coefficients are positively 

correlated with local supply elasticities. These estimated cointegrating coefficients also allow 

us to infer estimates of the elasticity of supply for individual cities (up to a scale factor) as 

noted above. Those estimates correlate closely with elasticity measures obtained by Saiz 

(2010) using very different data on topography of land forms. 

Based on cointegration and exogeneity tests, additional findings indicate that price 

changes in San Jose can be treated as a common factor for all other metropolitan area price 

changes. This is consistent with San Jose being the center of the high-tech industry, an 

industry that is both volatile and which generates enormous amounts of income and 

employment in the California economy. Besides the important role of the leader’s price 

shocks, our results also highlight the importance of cross-sectional differences in the price 

elasticities of housing supply. The effect of the dominant area’s price shocks tend to be 

inversely related to local supply elasticities. Inelastic locations also exhibit larger and faster 
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price adjustments following shocks to the dominant area while elastic metro areas exhibit 

larger and faster changes in the level of new construction.  

Additionally, several panel model specifications are estimated for groups of locations 

outside of San Jose (with San Jose treated as a separate dominant area). Impulse response 

functions are also used to highlight related dynamics.1 The panel model estimates of the 

construction diffusion model further indicate that San Jose’s contemporaneous effects are 

sizable and significant, and tend to be larger in annual and biannual data as compared to 

quarterly data. The effect of data frequency is consistent with the fact that supply elasticities 

tend to increase with the time horizon. Such a perspective emerges naturally out of our model 

with our explicit modeling of unobserved demand shocks and supply elasticities. That 

perspective, however, has been mostly overlooked in most previous papers on housing 

market dynamics which adopt a more reduced form specification.  

The rest of the paper is set out as follows. The next subsection provides further 

background on related literature. In Section 2, we derive the demand diffusion model and 

then derive the price and construction diffusion models. We also show how panel estimation 

of the price and diffusion models take into account the supply side conditions in Section 2.3. 

The local projection method of spatial-temporal impulse responses is presented in Section 

2.4. In Section 3, we report estimates of the price and construction diffusion model using 

quarterly, annual and biannual data for 22 metro areas in California over the period 1980Q1-

2016Q4. In Section 4, we draw some conclusions.  

 

                                                           
1 We use the local projection method of Jordà (2005) to study the high dimensional spatial-temporal impulse response 
functions. Without the need to invert a high dimensional matrix and allowing for estimating the impulse response functions 
of a different dependent variable, the local projection method of Jordà (2005) provides an easy-to-implement way of 
diffusion analysis. From the impulse response analysis, we find that a positive shock to San Jose house price spills over to 
other regions gradually regardless of the distance to San Jose and regardless of the supply side conditions. In addition, a 
positive San Jose’s house price shock will have a significant and persistent effect on construction in metro areas with more 
elastic housing supply conditions.  
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1.2 Previous literature 

Our paper builds off a number of different studies that have examined housing market 

dynamics from several different perspectives. The most relevant literature is the study of 

spatial correlations of housing market dynamics. One of the most important forms of cross 

section dependence arises from contemporaneous dependence across space by relating each 

cross section unit to its neighbors (Whittle, 1954; Cliff and Ord, 1973; Anselin, 2013; 

Kelejian and Robinson, 1995; Kelejian and Prucha, 1999, 2010; Lee, 2004; Brady, 2011).  

Another approach to dealing with cross sectional dependence is to make use of multifactor 

error processes where the cross section dependence is characterized by a finite number of 

unobserved common factors (Pesaran, 2006; Bai 2003, 2009). However, there is no clear 

guidance whether the spatial dependence is pervasive or attenuates across space empirically. 

Holly et al. (2010) model house prices at the level of US states and find there is evidence of 

significant spatial dependence even when the strong form of cross sectional dependence has 

been swept away by the use of cross sectional averages.  

As compared to purely spatial or purely factor models analyzed in the literature, the 

spatial-temporal model developed in HPY uses London house prices as the common factor 

and then models the remaining dependencies conditional on London house prices. This paper 

extends the HPY model to study the diffusion patterns of the unobserved underlying demand 

shocks. This ensures an important role for local supply conditions that have the potential to 

dampen or amplify the impact of demand shocks on price and quantity responses but which 

are mostly ignored in HPY. Instead, HPY argued that the supply of housing is very inelastic 

in the UK, with a supply elasticity of 0.5 compared to an elasticity of 1.4 for the US. (Swank 

et al., 2002).  Clearly, if the price elasticity of housing supply differed markedly across 

regions, then responses to both region specific and national demand shocks could generate 

very different house price dynamics (Glaeser and Gyourko, 2005; Glaeser et al., 2008). 
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Another highly relevant literature is the study of supply constraints and housing 

market dynamics. Since DiPasquale’s (1999) review of the literature to that date, academic 

work on housing supply has expanded extensively. Several papers have made it clear that 

constraints on housing supply vary markedly across regions of the United States, and that 

these constraints can explain large differences in house prices and the level of construction 

(Mayer and Somerville, 2000; Glaeser et al., 2005; Gyourko and Saiz, 2006; Quigley and 

Raphael, 2005; Green et al., 2005; Ihlanfeldt, 2007; Glaeser and Ward, 2009; Paciorek, 2013). 

These and related papers, however, typically posit a relatively simple relationship between 

price and housing investment that ignores spatial spillovers and patterns that contribute to 

cross-sectional variation in housing market dynamics. This paper starts by building a 

diffusion model of the unobserved demand shocks across space, and then derives two reduced 

form diffusion models for price shocks and new construction, respectively. The relationship 

between price and investments and the impact of supply side conditions on this relationship 

are implicitly embedded in the construction diffusion model.  

This paper is also closely related to the literature on housing market efficiency, 

housing bubbles and business cycles. Papers such as Hosios and Pesando (1991) and Case 

and Shiller (1989, AER) find evidence that quality-adjusted house prices are serially 

correlated on a quarterly basis, implying future house prices are forecastable. Capozza et al. 

(2004) finds that higher construction costs were associated with higher serial correlation and 

lower mean reversion in housing prices, presenting conditions for price overshooting. Even 

though these papers model house price dynamics, their main focus is to assess whether house 

prices were forecastable and thus test if there is a bubble in the housing market (Flood and 

Hodrick, 1990). The time series methods applied were relatively simple ignoring spatial 

correlations, underlying demand shocks, and lead-lag patterns.  
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In the housing bubble literature, Glaeser et al. (2008) find that the duration and 

magnitude of housing bubbles are sensitive to the housing supply elasticity, with larger price 

increases in supply-inelastic areas during booms. Complementing Glaeser et al. (2008), 

Huang and Tang (2012) also find a significant link between the supply inelasticity and price 

declines during a bust. These papers provide evidence that supply elasticities may amplify (or 

mute) housing market boom and bust patterns but do not formally model underlying supply 

and demand factors. More recently, Liu et al. (2016) document within-city heterogeneity in 

response to a bubble, and Landvoigt et al. (2015) find that cheaper credit for poor households 

was a major driver of prices during the 2000s boom, especially at the low end of the market. 

These two papers formally model supply (Liu et al., 2016) and demand factors (Landvoigt et 

al., 2015) and document within city heterogeneity during a housing boom and bust episode.2 

The importance of modeling housing market dynamics has been reinforced by a 

growing number of macroeconomic studies that treat volatility in the housing market as a 

source and not simply a consequence of business cycle fluctuations. Bernanke (2008), 

Leamer (2007), and Davis and Heathcote (2005) argue that housing is a leading driver of 

business cycles and suggest that housing should be treated differently from other types of 

investments in macroeconomic models.  More recently, Strauss (2013) finds that national and 

state-level building permits significantly lead economic activity in nearly all US states over 

the past three decades, while Ghent and Owyang (2010) find that national permits are a better 

leading indicator for a city’s employment and that declines in house prices are often not 

followed by declines in employment. While the focus of our paper is not on links between the 

housing market and local business cycles per se, by formally modeling the manner in which 

unobserved demand shocks contribute to spatiotemporal patterns of home prices and housing 

                                                           
2 In related work, Genesove and Han (2012) use commuting time as a proxy for within-city variation in supply elasticity and 
report evidence that during a housing crash prices fall more in the city center than at a city’s edge. 
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construction our model provides a framework that can be used to help explain cross-sectional 

differences in boom-bust patterns.3 

 

2.       Demand Diffusion Model 

2.1   A demand shock diffusion model 

In this paper, we apply the dynamic system of HPY to the cumulative demand shocks 

derived below. To simplify notation, we use 𝑝𝑝𝑖𝑖𝑖𝑖 (or 𝑙𝑙𝑙𝑙𝑃𝑃𝑖𝑖𝑖𝑖) to denote the log of house prices, 

and use 𝑙𝑙𝑙𝑙𝑄𝑄𝑖𝑖𝑖𝑖 to denote the log of house stocks over time for 𝑡𝑡 = 1,2, … ,𝑇𝑇, and over areas 

𝑖𝑖 = 0,1,2, … ,𝑁𝑁. Given the assumption that there is only a demand shock to each local 

housing market, and under the premise that the supply and demand functions of housing 

follow a log linear form, the demand shock at time period t for location i, denoted by Δ𝑑𝑑𝑖𝑖𝑖𝑖, 

can be expressed as the vertical distance between the new demand curve and the old one. As 

illustrated in Figure 1, using simple algebra, we have 

Δ𝑑𝑑𝑖𝑖𝑖𝑖 = �1 + �𝜀𝜀𝑖𝑖
𝑠𝑠�

�𝜀𝜀𝑖𝑖
𝑑𝑑�
� Δ𝑙𝑙𝑙𝑙𝑃𝑃𝑖𝑖𝑖𝑖=�

1
|𝜀𝜀𝑖𝑖
𝑠𝑠|

+ 1
|𝜀𝜀𝑖𝑖
𝑑𝑑|
� Δ𝑙𝑙𝑙𝑙𝑄𝑄𝑖𝑖𝑖𝑖, 

with 𝜀𝜀𝑠𝑠 being the price elasticity of supply of housing, 𝜀𝜀𝑑𝑑 being the price elasticity of demand 

for housing, and the symbol Δ signifies changes in relevant variables. The cumulative 

demand shock at time t for location 𝑖𝑖 is given by  

𝑑𝑑𝑖𝑖𝑖𝑖 = ∑Δ𝑑𝑑𝑖𝑖𝑖𝑖 = �1 + �𝜀𝜀𝑖𝑖
𝑠𝑠�

�𝜀𝜀𝑖𝑖
𝑑𝑑�
� 𝑙𝑙𝑙𝑙𝑃𝑃𝑖𝑖𝑖𝑖. 

We assume that one of the areas, say area 0, is dominant in the sense that shocks to it 

propagate to other areas simultaneously and over time, whilst shocks to the remaining areas 

have little immediate impact on area 0.  For the dominant area, the first order linear error 

correction specification is given by: 

                                                           
3 Ghent and Owyang (2010), Del Negro and Otrok (2007), and Hernández-Murillo et al. (2015) all find that housing cycles 
may have both national and regional elements but that the more pervasive national cycle is dominated by cross-sectional 
heterogeneity upon disaggregating the data. The lead-lag diffusion model of unobserved demand shocks in this paper 
analogously allows for a common regional factor in addition to idiosyncratic city-specific drivers of housing market 
volatility. 
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Δ 𝑑𝑑0𝑡𝑡 = 𝜙𝜙0𝑠𝑠�𝑑𝑑0,𝑡𝑡−1  − 𝜔𝜔0𝑑̅𝑑 0,𝑡𝑡−1
𝑠𝑠 � + 𝑎𝑎0 + 𝑎𝑎01Δ𝑑𝑑0,𝑡𝑡−1 + 𝑏𝑏01Δ𝑑̅𝑑 0,𝑡𝑡−1

𝑠𝑠 + 𝜀𝜀0𝑡𝑡. 

For the remaining areas, it is given by:  

Δ 𝑑𝑑𝑖𝑖𝑖𝑖 = 𝜙𝜙𝑖𝑖𝑖𝑖�𝑑𝑑𝑖𝑖,𝑡𝑡−1  − 𝜔𝜔𝑖𝑖𝑑̅𝑑 𝑖𝑖,𝑡𝑡−1𝑠𝑠 � + 𝜙𝜙𝑖𝑖0� 𝑑𝑑0,𝑡𝑡−1 − 𝛿𝛿𝑖𝑖𝑑𝑑𝑖𝑖,𝑡𝑡−1 − 𝜌𝜌𝑖𝑖𝑡𝑡� + 𝑎𝑎𝑖𝑖 + 𝑎𝑎𝑖𝑖1Δ𝑑𝑑𝑖𝑖,𝑡𝑡−1 +

                             𝑏𝑏𝑖𝑖1Δ𝑑̅𝑑 𝑖𝑖,𝑡𝑡−1𝑠𝑠 + 𝑐𝑐𝑖𝑖𝑖𝑖 Δ𝑑𝑑𝑜𝑜𝑜𝑜 + 𝜀𝜀𝑖𝑖𝑖𝑖,  

for 𝑖𝑖 = 1,2, … ,𝑁𝑁, where 𝑑̅𝑑 𝑖𝑖𝑖𝑖𝑠𝑠  denotes the spatial variable for area 𝑖𝑖 defined by  

𝑑̅𝑑 𝑖𝑖𝑖𝑖𝑠𝑠 = ∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑑𝑑𝑗𝑗𝑗𝑗𝑁𝑁
𝑗𝑗=0  with ∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑁𝑁

𝑗𝑗=0 = 1. 

In the empirical application, we use an inverse distance measure where 𝑠𝑠𝑖𝑖𝑖𝑖 is proportional to 

1/𝐷𝐷𝑖𝑖𝑖𝑖, with 𝐷𝐷𝑖𝑖𝑖𝑖 being the distance between location i and location j. In the above 

specification, we assume that cumulative demand shocks for other locations 𝑖𝑖 = 1,2, … ,𝑁𝑁, 

are cointegrated with that of the dominant area with cointegration relation given by  𝑑𝑑𝑜𝑜𝑜𝑜 −

𝛿𝛿𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖 − 𝜌𝜌𝑖𝑖t. The size of 𝛿𝛿𝑖𝑖 and 𝜌𝜌𝑖𝑖 depend on the relative income and population growth in 

location 𝑖𝑖 relative to the leading area. These two parameters measure the long-run relation 

among fundamental driving forces of the demand for housing across different locations.  

In practice, it is hard to estimate the above model of demand shocks since there is no 

accurate measure of the level of the demand shocks. However, from the simple linear algebra, 

we can express the demand shock as a function of the housing prices. Substituting relevant 

expressions into the above system and normalizing the coefficients of the left-hand side (LHS) 

variables, we get4 

Δ𝑝𝑝0𝑡𝑡  = 𝑎𝑎�0 + 𝑎𝑎01Δ𝑝𝑝0,𝑡𝑡−1 + 𝑏𝑏�01Δ𝑝̅𝑝 0,𝑡𝑡−1
𝑠𝑠 + 𝜀𝜀0̃𝑡𝑡, 

                                                           
4 To simplify the illustration, we first ignore the error correction term involving the spatial average of neighbor’s demand 
shocks. The model reduces into  
              𝛥𝛥 𝑑𝑑0𝑡𝑡 = 𝑎𝑎0 + 𝑎𝑎01𝛥𝛥𝑑𝑑0,𝑡𝑡−1 + 𝑏𝑏01𝛥𝛥𝑑̅𝑑 0,𝑡𝑡−1

𝑠𝑠 + 𝜀𝜀0𝑡𝑡, 
And for the remaining areas 
              𝛥𝛥 𝑑𝑑𝑖𝑖𝑖𝑖 = 𝜙𝜙𝑖𝑖0� 𝑑𝑑0,𝑡𝑡−1 − 𝛿𝛿𝑖𝑖𝑑𝑑𝑖𝑖,𝑡𝑡−1 − 𝜌𝜌𝑖𝑖𝑡𝑡� + 𝑎𝑎𝑖𝑖 + 𝑎𝑎𝑖𝑖1𝛥𝛥𝑑𝑑𝑖𝑖,𝑡𝑡−1 + 𝑏𝑏𝑖𝑖1𝛥𝛥𝑑̅𝑑 𝑖𝑖,𝑡𝑡−1𝑠𝑠 + 𝑐𝑐𝑖𝑖𝑖𝑖 𝛥𝛥𝑑𝑑𝑜𝑜𝑜𝑜 + 𝜀𝜀𝑖𝑖𝑖𝑖 .  
After substituting relevant expressions into above equations, we have for the dominant area  
               �1 + |𝜀𝜀0𝑠𝑠|/|𝜀𝜀0𝑑𝑑|�Δ𝑝𝑝0𝑡𝑡  = 𝑎𝑎0 + 𝑎𝑎01�1 + |𝜀𝜀0𝑠𝑠|/|𝜀𝜀0𝑑𝑑|�Δ𝑝𝑝0,𝑡𝑡−1 + 𝑏𝑏01Δ𝑑̅𝑑 0,𝑡𝑡−1

𝑠𝑠 + 𝜀𝜀0𝑡𝑡, 
and for the remaining areas: 
               �1 + |𝜀𝜀𝑖𝑖𝑠𝑠|/|𝜀𝜀𝑖𝑖𝑑𝑑|�Δ 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝜙𝜙𝑖𝑖0� �1 + |𝜀𝜀0𝑠𝑠|/|𝜀𝜀0𝑑𝑑|�𝑝𝑝0,𝑡𝑡−1 − 𝛿𝛿𝑖𝑖�1 + |𝜀𝜀𝑖𝑖𝑠𝑠|/|𝜀𝜀𝑖𝑖𝑑𝑑|�𝑝𝑝𝑖𝑖,𝑡𝑡−1 − 𝜌𝜌𝑖𝑖𝑡𝑡�+ 𝑎𝑎𝑖𝑖 +
                                                              𝑎𝑎𝑖𝑖1�1 + |𝜀𝜀𝑖𝑖𝑠𝑠|/|𝜀𝜀𝑖𝑖𝑑𝑑|�Δ 𝑝𝑝𝑖𝑖𝑖𝑖−1 + 𝑏𝑏𝑖𝑖1Δ𝑑̅𝑑 𝑖𝑖,𝑡𝑡−1𝑠𝑠 + 𝑐𝑐𝑖𝑖𝑖𝑖 �1 + |𝜀𝜀0𝑠𝑠|/|𝜀𝜀0𝑑𝑑|�Δ𝑝𝑝0𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑖𝑖.  
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Δ 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝜙𝜙�𝑖𝑖0� 𝑝𝑝0,𝑡𝑡−1 − 𝛽𝛽𝑖𝑖𝑝𝑝𝑖𝑖,𝑡𝑡−1 − 𝛾𝛾𝑖𝑖𝑡𝑡� + 𝑎𝑎�𝑖𝑖 + 𝑎𝑎𝑖𝑖1Δ 𝑝𝑝𝑖𝑖𝑖𝑖−1 + 𝑏𝑏�𝑖𝑖1Δ𝑝̅𝑝 𝑖𝑖,𝑡𝑡−1𝑠𝑠 + 𝑐̃𝑐𝑖𝑖𝑖𝑖 Δ𝑝𝑝0𝑡𝑡 + 𝜀𝜀𝑖̃𝑖𝑖𝑖 ,  

where 𝑝̅𝑝 𝑖𝑖𝑖𝑖𝑠𝑠  denotes the spatial variable for area 𝑖𝑖 defined by  

𝑝̅𝑝 𝑖𝑖𝑖𝑖𝑠𝑠 = ∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑝𝑝𝑗𝑗𝑗𝑗𝑁𝑁
𝑗𝑗=0  with ∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑁𝑁

𝑗𝑗=0 = 1. 

Thus, we can derive the error correction specification for the log of house prices (housing 

price diffusion model) from the cointegrating relation between the demand shocks across 

locations. For location 𝑖𝑖, the coefficient on the error correction term 𝜙𝜙�𝑖𝑖0, the coefficient on 

the contemporaneous effect of the leading area 𝑐̃𝑐𝑖𝑖0, and  the cointegrating coefficients are as 

follows: 

𝜙𝜙�𝑖𝑖0 = 𝜙𝜙𝑖𝑖0 �1 + |𝜀𝜀0𝑠𝑠 |
�𝜀𝜀0
𝑑𝑑�
� / �1 + |𝜀𝜀𝑖𝑖

𝑠𝑠|
|𝜀𝜀𝑖𝑖
𝑑𝑑|
�, 𝑐̃𝑐𝑖𝑖0 = 𝑐𝑐𝑖𝑖0 �1 + |𝜀𝜀0𝑠𝑠 |

�𝜀𝜀0
𝑑𝑑�
� / �1 + �𝜀𝜀𝑖𝑖

𝑠𝑠�
�𝜀𝜀𝑖𝑖
𝑑𝑑�
�, 

𝛽𝛽𝑖𝑖 = 𝛿𝛿𝑖𝑖
�1+�𝜀𝜀𝑖𝑖

𝑠𝑠�/�𝜀𝜀𝑖𝑖
𝑑𝑑��

�1+�𝜀𝜀0
𝑠𝑠�/�𝜀𝜀0

𝑑𝑑��
  and  𝛾𝛾𝑖𝑖 = 𝜌𝜌𝑖𝑖 

�1+�𝜀𝜀0
𝑠𝑠�/�𝜀𝜀0

𝑑𝑑��
. 

For the leading area, 𝑎𝑎�0 = 𝑎𝑎0
�1+�𝜀𝜀0

𝑠𝑠�/�𝜀𝜀0
𝑑𝑑��

, and 𝑏𝑏�01 = 𝑏𝑏01
�1+�𝜀𝜀0

𝑠𝑠�/|𝜀𝜀0
𝑑𝑑�

. 

Compare the above specification with the price diffusion model in HPY: 

Δ 𝑝𝑝0𝑡𝑡 = 𝜙𝜙0𝑠𝑠�𝑝𝑝0,𝑡𝑡−1  − 𝑝̅𝑝 0,𝑡𝑡−1
𝑠𝑠 � + 𝑎𝑎0 + 𝑎𝑎01Δ𝑝𝑝0,𝑡𝑡−1 + 𝑏𝑏01Δ𝑝̅𝑝 0,𝑡𝑡−1

𝑠𝑠 + 𝜀𝜀0𝑡𝑡, 

              Δ 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝜙𝜙𝑖𝑖𝑖𝑖�𝑝𝑝𝑖𝑖,𝑡𝑡−1  − 𝑝̅𝑝 𝑖𝑖,𝑡𝑡−1𝑠𝑠 � + 𝜙𝜙𝑖𝑖0�𝑝𝑝𝑖𝑖,𝑡𝑡−1  − 𝑝𝑝0,𝑡𝑡−1� + 𝑎𝑎𝑖𝑖 + 𝑎𝑎𝑖𝑖1Δ𝑝𝑝𝑖𝑖,𝑡𝑡−1 

                             + 𝑏𝑏𝑖𝑖1Δ𝑝̅𝑝 𝑖𝑖,𝑡𝑡−1𝑠𝑠 +  𝑐𝑐𝑖𝑖𝑖𝑖 Δ𝑝𝑝𝑜𝑜𝑜𝑜 + 𝜀𝜀𝑖𝑖𝑖𝑖.  

There are several differences. First of all, this paper tries to model the cumulative demand 

shocks and argues that the modelling of HPY is implicitly built on the modelling of the 

demand shocks. As the above derivation shows, starting from the error correction model of 

the cumulative demand shocks, we get the error correction model of the log of housing prices. 

Secondly, in our derived error correction model of housing prices, convergence is not 

necessary. Log of real housing prices could diverge across locations. The error correction 

term �𝑝𝑝0,𝑡𝑡−1 − 𝛽𝛽𝑖𝑖𝑝𝑝𝑖𝑖,𝑡𝑡−1 − 𝛾𝛾𝑖𝑖𝑡𝑡� allows for different trending pattern and cointegrating vector 

other than (1, -1).  Of course, the form of the cointegrating relation is an empirical issue. As 
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shown later, in the metro areas of California, some areas’ HPIs have quite different trending 

pattern and most of them have a cointegrating vectors other than (1, -1).5  Thirdly, 

coefficients in the derived price diffusion model contain useful information about local 

supply elasticities. As shown in the expressions for the error correction coefficient 𝜙𝜙�𝑖𝑖0 and 

the coefficient on the contemporaneous effect of the leading area 𝑐̃𝑐𝑖𝑖0, areas with more elastic 

housing supply (larger |𝜀𝜀𝑖𝑖𝑠𝑠|) will adjust prices to a less extent than areas with more inelastic 

housing supply in response to a common demand shock. As verified in the empirical exercise, 

the leading area’s contemporaneous effect 𝑐̃𝑐𝑖𝑖0 indeed has a negative relation with supply 

elasticities estimates from Saiz (2010).  

Starting with the error correction model of the demand shocks, we can also derive an 

error correction model for Δ𝑙𝑙𝑙𝑙𝑄𝑄𝑖𝑖𝑖𝑖. However, the measurement of the change in housing stock 

involves a frequency issue. Also new construction exhibits very obvious seasonality patterns. 

Hence the signal embedded in a change in the housing stock involves lots of irrelevant noise. 

In order to study the demand side shocks embedded in the quantity response, we can use the 

signal imbedded in prices to study the diffusion of the demand shocks onto housing stocks. 

Substituting the relevant expressions on the right-hand side (RHS) of the error correction 

model of the demand shocks with expressions of housing prices, and substituting the 

dependent variable with the expressions for the housing stocks,6 one can get the following 

equations after normalizing the coefficients on the LHS variables: 

Δ𝑙𝑙𝑙𝑙𝑄𝑄0𝑡𝑡  = 𝑎𝑎�0 + 𝑎𝑎�01Δ𝑝𝑝0,𝑡𝑡−1 + 𝑏𝑏�01Δ𝑝̅𝑝 0,𝑡𝑡−1
𝑠𝑠 + 𝜀𝜀0̂𝑡𝑡, 

Δ 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 = 𝜙𝜙�𝑖𝑖0� 𝑝𝑝0,𝑡𝑡−1 − 𝛽𝛽𝑖𝑖𝑝𝑝𝑖𝑖,𝑡𝑡−1 − 𝛾𝛾𝑖𝑖𝑡𝑡� + 𝑎𝑎�𝑖𝑖 + 𝑎𝑎�𝑖𝑖1Δ 𝑝𝑝𝑖𝑖𝑖𝑖−1 + 𝑏𝑏�𝑖𝑖1Δ𝑝̅𝑝 𝑖𝑖,𝑡𝑡−1𝑠𝑠 + 𝑐̂𝑐𝑖𝑖𝑖𝑖 Δ𝑝𝑝0𝑡𝑡 + 𝜀𝜀𝑖̂𝑖𝑖𝑖.  
                                                           
5 The error correction term involving spatial averages also possess a coefficient different from 1. The error correction term 
𝑑𝑑𝑖𝑖,𝑡𝑡−1  −𝜔𝜔𝑖𝑖𝑑̅𝑑 𝑖𝑖,𝑡𝑡−1𝑠𝑠  indicates that each metro area’s cumulative demand shocks  shares a common trend with its neighbor’s 
cumulative demand shocks, with a cointegrating coefficient given by (1, −𝜔𝜔𝑖𝑖). As verified later, this cointegrating relation 
among cumulative demand shocks implies a similar cointegrating relation among the log of housing prices. Thus if we 
include the error correction term in the log of housing prices, the error correction term will take the form  𝑝𝑝𝑖𝑖,𝑡𝑡−1  −𝜔𝜔�𝑖𝑖𝑝̅𝑝 𝑖𝑖,𝑡𝑡−1𝑠𝑠 . 
6 For the dominant area, �1/|𝜀𝜀0𝑠𝑠| + 1/|𝜀𝜀0𝑑𝑑|�Δ𝑙𝑙𝑙𝑙𝑄𝑄0𝑡𝑡 = 𝑎𝑎0 + 𝑎𝑎01�1 + |𝜀𝜀0𝑠𝑠|/|𝜀𝜀0𝑑𝑑|�Δ𝑝𝑝0,𝑡𝑡−1 + 𝑏𝑏01Δ𝑑̅𝑑 0,𝑡𝑡−1

𝑠𝑠 + 𝜀𝜀0𝑡𝑡. For the 
remaining areas, �1/|𝜀𝜀𝑖𝑖𝑠𝑠| + 1/|𝜀𝜀𝑖𝑖𝑑𝑑|�Δ𝑙𝑙𝑙𝑙𝑄𝑄𝑖𝑖𝑖𝑖 = 𝜙𝜙𝑖𝑖0� �1 + |𝜀𝜀0𝑠𝑠|/|𝜀𝜀0𝑑𝑑|�𝑝𝑝0,𝑡𝑡−1 − 𝛿𝛿𝑖𝑖�1 + |𝜀𝜀𝑖𝑖𝑠𝑠|/|𝜀𝜀𝑖𝑖𝑑𝑑|�𝑝𝑝𝑖𝑖,𝑡𝑡−1 − 𝜌𝜌𝑖𝑖𝑡𝑡� + 𝑎𝑎𝑖𝑖 +
                                                  𝑎𝑎𝑖𝑖1�1 + |𝜀𝜀𝑖𝑖𝑠𝑠|/|𝜀𝜀𝑖𝑖𝑑𝑑|�Δ 𝑝𝑝𝑖𝑖𝑖𝑖−1 + 𝑏𝑏𝑖𝑖1Δ𝑑̅𝑑 𝑖𝑖,𝑡𝑡−1𝑠𝑠 + 𝑐𝑐𝑖𝑖𝑖𝑖 �1 + |𝜀𝜀0𝑠𝑠|/|𝜀𝜀0𝑑𝑑|�Δ𝑝𝑝0𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑖𝑖.  
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We call the above simplified model the construction diffusion model. For the leading area 0,  

𝑎𝑎�01 = 𝑎𝑎01|𝜀𝜀0𝑠𝑠|, and 𝑎𝑎�0 = 𝑎𝑎0/�1/|𝜀𝜀0𝑠𝑠| + 1/|𝜀𝜀0𝑑𝑑|�. For location 𝑖𝑖, the coefficient on the error 

correction term 𝜙𝜙�𝑖𝑖0 and the coefficient on the contemporaneous effect of the leading area 

𝑐̂𝑐𝑖𝑖𝑖𝑖 are given by 

𝜙𝜙�𝑖𝑖0 = 𝜙𝜙𝑖𝑖0
�1+|𝜀𝜀0𝑠𝑠 |/�𝜀𝜀0𝑑𝑑��
�1/|𝜀𝜀𝑖𝑖

𝑠𝑠|+1/|𝜀𝜀𝑖𝑖
𝑑𝑑|�

= 𝜙𝜙�𝑖𝑖0|𝜀𝜀𝑖𝑖𝑠𝑠|, and 𝑐̂𝑐𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑖𝑖0
�1+|𝜀𝜀0𝑠𝑠 |/�𝜀𝜀0𝑑𝑑��
�1/|𝜀𝜀𝑖𝑖

𝑠𝑠|+1/|𝜀𝜀𝑖𝑖
𝑑𝑑|�

= 𝑐̃𝑐𝑖𝑖0|𝜀𝜀𝑖𝑖𝑠𝑠|. 

And 𝑎𝑎�𝑖𝑖1 = 𝑎𝑎𝑖𝑖1
�1+�𝜀𝜀𝑖𝑖

𝑠𝑠�/�𝜀𝜀𝑖𝑖
𝑑𝑑��

�1/|𝜀𝜀𝑖𝑖
𝑠𝑠|+1/|𝜀𝜀𝑖𝑖

𝑑𝑑|�
=𝑎𝑎𝑖𝑖1|𝜀𝜀𝑖𝑖𝑠𝑠|, and 𝑎𝑎�𝑖𝑖 = 𝑎𝑎𝑖𝑖

�1/|𝜀𝜀𝑖𝑖
𝑠𝑠|+1/|𝜀𝜀𝑖𝑖

𝑑𝑑|�
. 

Expressing the change in the housing stock as a function of the price error correction 

terms and price changes, we could examine the different diffusion patterns of the demand 

shocks. As demand side shocks originated from a leading area diffuse across surrounding 

areas, responses of prices and quantities could be very different. All of these responses hinge 

on the relative price elasticities of supply and demand with respect to the leading area. For 

areas with smaller price elasticities of supply of housing and with more restrictive regulations 

on construction, we would expect a larger contemporaneous response in price movements 

(measured by 𝑐̃𝑐𝑖𝑖0) and a smaller contemporaneous  response in construction activities 

(measured by 𝑐̂𝑐𝑖𝑖𝑖𝑖 ). On the contrary, for places with more open land and less restrictive 

zonings on construction, we would expect more construction activity other than price 

movements.  

Given the above argument, this paper is able to study the two sides of the housing 

markets, i.e., price and quantity. By studying price movements as well as construction 

activity, we are able to capture a more complete picture of the diffusion of the demand side 

shocks. As we will see later in the empirical evidence, indeed, quantity response behaves 

quite differently from price response.  
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2.2   Panel time series model 

Estimation of the demand shock diffusion model could be done for each individual 

location using time series analysis. Given the short time period for the construction permits 

data described below, the OLS estimation of the construction diffusion model is not reliable. 

Hence, we resort to panel estimations for the analysis of the construction diffusion model.7 

When using panel regression to analyze the diffusion model, we first assume that housing 

market shocks have the same diffusion pattern, and then divide locations under consideration 

into two groups based on price elasticities of housing supply from Saiz (2010) and estimate 

separate panel regressions for each group.  

Under the assumption that all the following locations within a group have the same 

diffusion pattern, we can write the following panel data model for metro areas’ log house 

prices: 

Δ 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝜙𝜙�𝑠𝑠(𝑝𝑝𝑖𝑖,𝑡𝑡−1  − 𝜔𝜔�𝑖𝑖𝑝̅𝑝 𝑖𝑖,𝑡𝑡−1𝑠𝑠 ) + 𝜙𝜙�0� 𝑝𝑝0,𝑡𝑡−1 − 𝛽𝛽𝑖𝑖𝑝𝑝𝑖𝑖,𝑡𝑡−1 − 𝛾𝛾𝑖𝑖𝑡𝑡� + 𝑎𝑎�𝑖𝑖 + 𝑎𝑎1Δ 𝑝𝑝𝑖𝑖𝑖𝑖−1 +

                            𝑏𝑏�1Δ𝑝̅𝑝 𝑖𝑖,𝑡𝑡−1𝑠𝑠 +  𝑐̃𝑐𝑜𝑜 Δ𝑝𝑝0𝑡𝑡 + 𝜀𝜀𝑖̃𝑖𝑖𝑖,   𝑖𝑖 = 1,2, … ,𝑁𝑁; 𝑡𝑡 = 1,2, … ,𝑇𝑇. 

And for the construction diffusion model, we have the following panel data regression model: 

Δ 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 = 𝜙𝜙�𝑠𝑠�𝑝𝑝𝑖𝑖,𝑡𝑡−1  − 𝜔𝜔�𝑖𝑖𝑝̅𝑝 𝑖𝑖,𝑡𝑡−1𝑠𝑠 � + 𝜙𝜙�0� 𝑝𝑝0,𝑡𝑡−1 − 𝛽𝛽𝑖𝑖𝑝𝑝𝑖𝑖,𝑡𝑡−1 − 𝛾𝛾𝑖𝑖𝑡𝑡� + 𝑎𝑎�𝑖𝑖 + 𝑎𝑎�𝑖𝑖1Δ 𝑝𝑝𝑖𝑖𝑖𝑖−1 +

                                   𝑏𝑏�𝑖𝑖1Δ𝑝̅𝑝 𝑖𝑖,𝑡𝑡−1𝑠𝑠 + 𝑐̂𝑐𝑖𝑖𝑖𝑖 Δ𝑝𝑝0𝑡𝑡 + 𝜀𝜀𝑖̂𝑖𝑖𝑖,   𝑖𝑖 = 1,2, … ,𝑁𝑁; 𝑡𝑡 = 1,2, … ,𝑇𝑇.  

In the above two specifications, the diffusion coefficients are the same across locations 

except the area fixed effects 𝑎𝑎�𝑖𝑖 and 𝑎𝑎�𝑖𝑖. Notice that in both of the panel regressions, we 

exclude the dominant area and focus on the diffusion analysis of the following areas. The 

error correction terms, 𝑝𝑝𝑖𝑖,𝑡𝑡−1  − 𝜔𝜔�𝑖𝑖𝑝̅𝑝 𝑖𝑖,𝑡𝑡−1𝑠𝑠 , and  𝑝𝑝0,𝑡𝑡−1 − 𝛽𝛽𝑖𝑖𝑝𝑝𝑖𝑖,𝑡𝑡−1 − 𝛾𝛾𝑖𝑖𝑡𝑡, are estimated from the 

bivariate VAR(4) models of each location’s house price and its neighbor’s local averages, 

                                                           
7 Applying panel data techniques to the housing market dynamics, we should pay special attention to the heterogeneity and 
cross sectional dependence issues, since housing markets are quite localized. In the individual OLS estimation of the 
diffusion models, cross sectional dependence has been taken into account by the inclusion of spatial averages of the 
neighbors’ shocks, and heterogeneity is assumed automatically since each individual location has its own regression 
equation. 
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and the bivariate VAR(4) models of each location’s house price and the dominant area’s 

house price, respectively.  

 

2.3   Spatial-Temporal Impulse Response Functions 

Starting from the price diffusion model, HPY rewrite the system of equations into a 

vector autoregression model (VAR), in which some coefficient matrices reflect temporal 

dependence of house prices while other matrices reflect spatial dependence. Based on the 

estimates of these coefficient matrices, the VAR model can be used for forecasting or 

impulse response analysis. This approach involves inverting an (𝑁𝑁 + 1) × (𝑁𝑁 + 1) matrix. 

Hence, this impulse response analysis is computationally intensive for large 𝑁𝑁. Moreover, it 

cannot generate the impulse response analysis for the construction diffusion model since the 

dependent variable is different from the explanatory variables. Instead of following HPY’s 

impulse response analysis, this paper uses Jordà’s (2005) location projection method, which 

allows one to estimate the dynamics of regional housing prices as well as construction 

controlling for spatial correlation across regions. As shown in Jordà (2005), the impulse 

response function for an individual variable in a vector of endogenous variables can be 

estimated consistently from a regression of this variable on the lags in the system for each 

horizon, h. (See Jordà (2005) for a complete explanation of the local projection method and 

Jordà (2007) and Jordà and Kozicki (2007) for additional explanation). 

By Jordà’s (2005) location projection method, for the housing price diffusion model, 

the impulse responses of a unit shock to house prices in the dominant area on the following 

area 𝑖𝑖 = 1,2, … ,𝑁𝑁, at horizon h periods ahead is given by 𝑐̃𝑐𝑖𝑖𝑖𝑖 
ℎ  in the following equation:    

              Δ 𝑝𝑝𝑖𝑖𝑖𝑖+ℎ = 𝜙𝜙�𝑖𝑖𝑖𝑖 
ℎ �𝑝𝑝𝑖𝑖,𝑡𝑡−1  − 𝜔𝜔�𝑖𝑖𝑝̅𝑝 𝑖𝑖,𝑡𝑡−1𝑠𝑠 � + 𝜙𝜙�𝑖𝑖0 

ℎ � 𝑝𝑝0,𝑡𝑡−1 − 𝛽𝛽𝑖𝑖𝑝𝑝𝑖𝑖,𝑡𝑡−1 − 𝛾𝛾𝑖𝑖𝑡𝑡� + 𝑎𝑎�𝑖𝑖ℎ 

                   + 𝑎𝑎𝑖𝑖1ℎ Δ 𝑝𝑝𝑖𝑖𝑖𝑖−1 +  𝑏𝑏�𝑖𝑖1ℎ Δ𝑝̅𝑝 𝑖𝑖,𝑡𝑡−1𝑠𝑠 + 𝑐̃𝑐𝑖𝑖𝑖𝑖 
ℎ Δ𝑝𝑝0𝑡𝑡 + 𝜀𝜀𝑖̃𝑖𝑖𝑖+ℎ. 
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For the construction diffusion model, the impulse responses of a unit shock to house prices in 

the dominant area on the following area 𝑖𝑖 at horizon h periods is given by 𝑐̂𝑐𝑖𝑖𝑖𝑖 
ℎ  in the following 

equation:   

Δ 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖+ℎ = 𝜙𝜙�𝑖𝑖𝑖𝑖ℎ �𝑝𝑝𝑖𝑖,𝑡𝑡−1  − 𝜔𝜔�𝑖𝑖𝑝̅𝑝 𝑖𝑖,𝑡𝑡−1𝑠𝑠 � + 𝜙𝜙�𝑖𝑖0ℎ � 𝑝𝑝0,𝑡𝑡−1 − 𝛽𝛽𝑖𝑖𝑝𝑝𝑖𝑖,𝑡𝑡−1 − 𝛾𝛾𝑖𝑖𝑡𝑡� + 𝑎𝑎�𝑖𝑖ℎ +

                                     𝑎𝑎�𝑖𝑖1ℎ Δ 𝑝𝑝𝑖𝑖𝑖𝑖−1 + 𝑏𝑏�𝑖𝑖1ℎ Δ𝑝̅𝑝 𝑖𝑖,𝑡𝑡−1𝑠𝑠 + 𝑐̂𝑐𝑖𝑖𝑖𝑖 
ℎ Δ𝑝𝑝0𝑡𝑡 + 𝜀𝜀𝑖̂𝑖𝑖𝑖+ℎ.  

The impulse responses analysis for the panel time series model can be derived similarly.  

 

3.       Empirical Results 

3.1   Metro areas and the leading area 

We apply the methodology described in HPY to quarterly All-Transactions 

(Estimated using Sales Prices and Appraisal Data) House Price Index (hereafter HPI) from 

the Federal Housing Finance Agency (FHFA) for Metropolitan areas in California.8 The 

nominal HPI series are deflated using Consumer Price Index-All Urban Consumers: Less 

Shelter for US.9 Definitions of Metropolitan areas are based on the Office of Management 

and Budget (OMB) 2013 delineations. Since there are more missing observations for HPI for 

smaller metropolitan areas, this paper selects metropolitan areas with population larger than 

250,000 (based on 2010 Census Population and Housing Tables). The final housing price 

data include quarterly All-Transactions HPI series of FHFA over the period 1980Q1-2016Q4 

for 22 metro areas listed in Table 1.  

To construct the variable Δ𝑙𝑙𝑙𝑙𝑄𝑄𝑖𝑖𝑖𝑖, notice that  

Δ𝑙𝑙𝑙𝑙𝑄𝑄𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑄𝑄𝑖𝑖𝑖𝑖 − 𝑙𝑙𝑙𝑙𝑄𝑄𝑖𝑖,𝑡𝑡−1 = 𝑙𝑙𝑙𝑙(𝑄𝑄𝑖𝑖,𝑡𝑡−1 + Δ𝑄𝑄𝑖𝑖𝑖𝑖)- 𝑙𝑙𝑙𝑙𝑄𝑄𝑖𝑖,𝑡𝑡−1 ≈
Δ𝑄𝑄𝑖𝑖𝑖𝑖
𝑄𝑄𝑖𝑖,𝑡𝑡−1

. 

The approximation of the above equation is valid since the change in housing stock is quite 

small relative to the existing housing stock. In this paper, we use housing permits as our 

                                                           
8 The FHFA HPI series can be downloaded at the following URL: 
https://www.fhfa.gov/DataTools/Downloads/Pages/House-Price-Index-Datasets.aspx#qat.  
9 Retrieved from FRED, Federal Reserve Bank of St. Louis: https://fred.stlouisfed.org/series/CUUR0000SA0L2. 

https://www.fhfa.gov/DataTools/Downloads/Pages/House-Price-Index-Datasets.aspx#qat
https://fred.stlouisfed.org/series/CUUR0000SA0L2
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measure of new quantity Δ𝑄𝑄𝑖𝑖𝑖𝑖, and we scale up Δ𝑙𝑙𝑙𝑙𝑄𝑄𝑖𝑖𝑖𝑖  by 100. In other words, we use the 

percent change (100* Δ𝑙𝑙𝑙𝑙𝑄𝑄𝑖𝑖𝑖𝑖) in the housing stock as our measure of the quantity response of 

demand shocks. Monthly county level permits data are obtained from the SOCDS Building 

Permits Database of U.S. Department of Housing and Urban Development.10  The county 

level permits data cover the period 1997Q1-2016Q4. We aggregate across counties and 

months to create quarterly metropolitan area level aggregates using the 2013 definitions 

provided by the census. County housing stock estimates are from the Census 2000 housing 

units counts.11 We first aggregate across counties to create metropolitan area level housing 

units counts in 2000. To form quarterly estimates of housing units counts for quarters after 

2000, we add cumulative building permits for total units from 2000 on to the 2000 housing 

units counts. Similarly, to from quarterly estimates of housing units counts for quarters before 

2000, we subtract the reverse cumulative building permits for total units from 2000 

backwards from the 2000 housing units counts.  

HPY pick London as the leader for the argument that London is the largest city in 

Europe but more significantly is a major world financial center. As the largest places for 

economic activity, it is highly possible that economic shocks will first arrive at London and 

then propagate out to the surrounding regions in UK. In this paper, we find that it is not 

necessary that the largest metropolitan area lead other areas in the housing market. In terms 

of the 2010 Census population, Los Angeles-Long Beach-Glendale (hereafter LA), is the 

most populous area. However, in testing for cointegration among housing prices, only 5 out 

of 21 areas show a significant cointegration relation with LA at the 5% significance level. In 

contrast, 20 out of 21 areas show significant cointegration relation with San Jose-Sunnyvale-

Santa Clara (hereafter San Jose) at the 5% significance level. Theoretically, if house prices of 

                                                           
10 The building permit database contains data on permits for residential construction issued by about 21,000 jurisdictions 
collected in the Census Bureau's Building Permits Survey. (https://socds.huduser.gov/permits/summary.odb)   
11 The Census 2000 housing units counts are available at American FactFinder website 
https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=DEC_00_SF1_H001&prodType=table.  

https://socds.huduser.gov/permits/summary.odb
https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=DEC_00_SF1_H001&prodType=table
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all other areas are cointegrated with a leading area’s house price, we should expect that any 

pair of locations’ house prices are cointegrated. However, because of the finite sample 

properties of the cointegration rank test (hereafter CI), the pairwise CI tests indicate quite 

different cointegration patterns when choosing different leading areas. By the CI test based 

on the bivariate vector error correction model, choosing San Jose as a leading area yields the 

most meaningful results. Hence, in this paper, we pick our leading area as the one that shows 

the most cointegrated relations with other areas and further confirm the exogeneity of the 

leading area’s price shocks using the Wu-Hausman test later on in the estimation of the price 

diffusion model.  

 

3.2    Convergence of house price indexes in California 

The logarithm of real HPI and their quarterly rates of change cross the 22 regions are 

displayed in Figure 2. There is a clear upward trend for most of California metro areas over 

the 1975-2016 period, with prices in San Francisco and San Jose rising faster than other 

metro areas. Even though all of these metro areas’ HPI indices move downward or upward 

together most of the time, there are obvious diverging behaviors in these HPI indices for the 

post-2006 period. As all of these metro areas’ housing market recover from the crisis, there 

are persistent gaps in the HPI indices, and it seems that these gaps will continue to exist for a 

while.  

Using San Jose as the dominant region, in the left panel of Table 2, we present trace 

statistics for testing cointegration between San Jose and metro area 𝑖𝑖 house price indexes, 

computed based on a bivariate VAR(4) specification in 𝑝𝑝0𝑡𝑡 and 𝑝𝑝𝑖𝑖𝑖𝑖 for 𝑖𝑖 = 1,2, … ,21. The 

null hypothesis that the log of real house price index in San Jose is not cointegrated with that 

in other metro areas is rejected at the 10% significance level or less in all cases. As stated in 

HPY, cointegration whilst necessary for long-run convergence of house prices is not 
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sufficient. We further test for the cotrending and the cointegrating vector corresponding to 

(𝑝𝑝𝑖𝑖𝑖𝑖,𝑝𝑝𝑜𝑜𝑜𝑜) is (1, -1). The joint hypothesis that 𝑝𝑝𝑖𝑖𝑖𝑖 and 𝑝𝑝0𝑡𝑡 are cotrending and their cointegrating 

vector can be represented by (1, -1) is tested using the log-likelihood ratio statistic with an 

asymptotic chi-squared distribution with degree of freedom 2. In this paper, we follow the 

algorithm of Cavaliere, Nielsen, and Rahbek (2015) to calculate the 95% and 90% 

bootstrapped critical values of the joint test, in which the null hypothesis is imposed on the 

bootstrap sample. Cavaliere, Nielsen, and Rahbek (2015) show that the bootstrap test 

constructed this way is asymptotically valid and it outperforms other existing methods.12  

As shown in the right panel of Table 2, the null of the joint test under consideration is 

rejected at the 10% level for all the cases, except San Francisco and Visalia. Most of these 

rejections are not marginal. For 11 out of these 21 metro areas, the null is rejected at the 5% 

significance level. Thus, it seems that in California, HPI for metro areas are not converging in 

the long-run. To understand the divergence of HPI in California, we run two separate 

marginal tests for the cotrending hypothesis and for the CI vector being (1, -1), based on a 

bivariate VAR(4) with unrestricted intercepts and restricted trend coefficients using the log-

likelihood ratio statistic. These two individual test statistics have a χ1
2 limiting distribution. 

Again, the critical values are based on the bootstrapping algorithm of Cavaliere, Nielsen, and 

Rahbek (2015).   

As shown in the left panel of Table 3, the null hypothesis of cotrending is rejected at 

the 5% level for 8 metro areas, including Anaheim, LA, Salinas, San Diego, San Luis Obispo, 

San Rafael, Santa Cruz, and Santa Rosa. For the test of cointegrating vector being (1, -1) with 

the leader’s HPI based on the bivariate VAR(4) model with unrestricted intercepts and 

                                                           
12 It is well known that the finite-sample properties of tests of hypotheses on the cointegrating vectors in vector 
autoregressive models can be quite poor, and that current solutions based on Bartlett-type corrections or bootstrap based on 
unrestricted parameter estimators are unsatisfactory, in particular in those cases where also asymptotic χ22 tests fail most 
severely. 
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restricted trend (middle panel of Table 3), the null is rejected at the 10% level or less for the 

same set of 8 areas for which the cotrending hypothesis is rejected.  

One can conclude that except for these 8 metro areas, other metro areas in CA show 

evidence of long-run convergence of log of real HPI with log of San Jose’s real HPI. 

However, it should be pointed out that the base VAR model for those who do share a 

common trend with the leading area is misspecified. The testing of CI vector being (1, -1) for 

these area sharing a common trend with the leading area should be based on a bivariate 

VAR(4) model with unrestricted intercepts only. Thus we run another log-likelihood test of 

the CI vector being (1, -1), based on the bivariate VAR(4) model with unrestricted intercepts 

and restricted trend coefficients if the cotrending test is rejected, otherwise based on a 

bivariate VAR(4) with unrestricted intercepts. The last three columns of Table 3 show the test 

results. Again, the critical values are based on the bootstrapping algorithm of Cavaliere, 

Nielsen, and Rahbek (2015).  For all of these 8 areas for which the cotrending test with San 

Jose’s HPI is rejected, the null hypothesis that log of real HPI of these areas is cointegrated 

with that of San Jose with CI vector (1, -1) is rejected at the 10% level or less. For the 

remaining 13 areas that show cotrending evidence with San Jose, the null of CI vector being 

(1, -1) is rejected for 9 of them. In total, the null of the CI vector being (1, -1) is rejected for 

17 metro areas in CA.  

From the above testing of over-identifying restrictions in bivariate VAR(4) models, 

there is little evidence that the HPIs of metro areas in CA are converging in the long run. 

Even though the HPIs of these metro areas are co-integrated with that of San Jose, 8 of them 

tend to have different trending patterns than San Jose, and almost all of them have quite 

different cointegrating coefficients than (1, -1). 13 

                                                           
13 We also study the long run converging relation between each metro area’s log of HPI and the log of HPI of the local 
average of its neighbors. The empirical results show that 𝑝𝑝𝑖𝑖𝑖𝑖 share a common linear trend with 𝑝̅𝑝 𝑖𝑖𝑖𝑖𝑠𝑠 , but the cointegrating 
vector differs from (1,-1). 
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3.3    Price elasticity of supply of housing and convergence of house prices 

We estimate error correction coefficients of log of real HPI of San Jose and other CA 

metro areas in a cointegrating bivariate VAR(4) with unrestricted intercepts and restricted 

trend coefficients if the cotrending test is rejected. Otherwise, the error correction term is 

estimated based on a bivariate VAR(4) with unrestricted intercepts. From the simple demand 

shock model, we find that the cointegration coefficient depends on the relative magnitude of 

the supply elasticities through 𝛽𝛽𝑖𝑖 = 𝛿𝛿𝑖𝑖�1 + |𝜀𝜀𝑖𝑖𝑠𝑠|/�𝜀𝜀𝑖𝑖𝑑𝑑��/�1 + |𝜀𝜀0𝑠𝑠|/�𝜀𝜀0𝑑𝑑��, which suggests a 

positive relation between the CI coefficient and the price elasticity of supply of housing.  

The primary measure of supply side conditions is taken from Saiz (2010), as shown in 

the third column of Table 1. Such supply elasticity estimates are simple nonlinear 

combinations of the available data on physical and regulatory constraints, and predetermined 

population levels in 2000. Because the definitions of metro area differ in this paper, only 19 

metro areas (18 following areas and 1 leading area) have the supply elasticity measures. To 

test the empirical application of the CI coefficient, we run the following regression using the 

supply elasticity estimates from Saiz (2010):  

𝛽𝛽𝑖𝑖 = 𝑐𝑐 + 𝑏𝑏 ∗ 𝜀𝜀𝑖𝑖𝑠𝑠 + 𝑣𝑣𝑖𝑖, for i=1, 2,…,N. 

Excluding Bakersfield for which the CI coefficient (17.13) is an outlier, we are left with 17 

following metro areas (with such small sample size, standard errors are from bootstrapping 

with 1000 replications). As shown in Table 4, the first column shows the regression result of 

the CI coefficient on the estimated elasticities of Saiz (2010). The coefficient on the 

estimated price elasticity of supply is positive and significant at the 1% significance level. 

The positive significant coefficient on elasticity verifies the positive relation between the CI 

coefficient and the price elasticity of supply, which is further depicted in Figure 3.  
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In the second regression of Table 4, the explanatory variable is the share of 

unavailable land for development (unaval). The results show that the higher the share of 

unavailable land, the smaller the CI coefficient. From the logic that for severely land-

constrained places housing supply is highly inelastic as in Saiz (2010), this negative and 

significant coefficient on the share of unavailable land is consistent with the derivation that 

the CI coefficient is positively correlated with the supply elasticity of housing.  However, we 

find little evidence of a significant correlation between the CI coefficient and the WRLURI 

index (a measure of the strictness of the local regulatory environment based on results from a 

2005 survey of over 2000 localities across the country from Gyourko, Saiz and Summers, 

2008). Also, the population size in 2000 and the percent change in population from 2000 to 

2010 show little impact on the CI coefficient. 

 

3.4    Estimates of house price diffusion models 

The regression results for the price diffusion model in which San Jose acts as the 

dominant metro area are summarized in Table 5. Estimates of the error correction coefficients,  

𝜙𝜙�𝑖𝑖0 and 𝜙𝜙�𝑖𝑖𝑖𝑖,  are provided in columns 2 and 3 of Table 5. The estimates, 𝜙𝜙�𝑖𝑖0, the coefficient 

on the error correction term � 𝑝𝑝0,𝑡𝑡−1 − 𝛽𝛽𝑖𝑖𝑝𝑝𝑖𝑖,𝑡𝑡−1 − 𝛾𝛾𝑖𝑖𝑡𝑡� , captures the effect of deviations of 

area 𝑖𝑖’s log of HPI from that of San Jose, and 𝜙𝜙�𝑖𝑖𝑖𝑖 is associated with � 𝑝𝑝𝑖𝑖,𝑡𝑡−1 − 𝜔𝜔𝑖𝑖𝑝̅𝑝 𝑖𝑖,𝑡𝑡−1𝑠𝑠 �, 

which measures the effect of deviations of area 𝑖𝑖’s log of HPI from its neighbors.  

For the error correction term measured relative to San Jose, we find that it is only 

statistically significant in five coastal areas (San Francisco, San Luis Obispo, San Rafael, 

Santa Cruz, and Santa Rosa). In other words, only these five coastal metro areas show 

significant adjustments to price deviations from the dominant region’s price level. The error 

correction term measured relative to neighboring areas is statistically significant in seven 

areas (San Jose, Merced, Sacramento, Salinas, San Diego, Stockton, and Vallejo).   
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The remaining 10 areas, with none of these two error correction terms significant, 

include the Los Angeles-Long Beach Combined Statistical Area (composed of LA, Anaheim, 

Riverside, and Oxnard), the Fresno-Madera Combined Statistical Area (composed of Fresno 

and Madera), Bakersfield, Modesto, Oakland, and Santa Maria. The non-significance of these 

two error correction terms for these 10 areas are hard to explain. As stated in HPY, this 

insignificance may be due to the fact that the sample period might not be sufficiently 

informative in this regard, or these areas might have different error correcting properties that 

the parsimonious specification can fully take into account.  

Next let us turn to the short-term dynamics and spatial effects. As in HPY, we report 

the sum of lagged coefficients, with the associated t-ratios provided in brackets (by the delta 

method). Different from HPY, the own lag effects in this paper are quite significant with 

moderate magnitudes for most of the areas, excluding only five areas, namely, Riverside, San 

Diego, Stockton, Vallejo, and Visalia. Likewise, the lagged HPI changes from neighboring 

areas are statistically significant for most of the areas, with the exception of San Jose, 

Anaheim, LA, San Francisco, and Santa Maria. This significant evidence of the own lag 

effects and of the lagged neighbors’ HPI changes, clearly highlight the importance of 

dynamic spill-over effects from the neighboring areas as well as the persistence of the 

housing prices movements.  

The contemporaneous effect of San Jose HPI are sizeable and statistically significant 

in all areas. There is no clear relation between the size of this contemporaneous effect and the 

commuting distance of the area to San Jose. For most of the areas considered, the coefficients 

on the San Jose lag effects offset a significant part of the San Jose contemporaneous effects. 

We combine the San Jose contemporaneous effects and the lagged San Jose effects for each 

area by summing the two estimates. Still we find no clear relation between the size of the 

combined coefficients and the commuting distance to San Jose. In Figure 4, we plot the sum 
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of the contemporaneous effect and lag effect of the leader’s HPI on each metro areas against 

the supply elasticity estimates from Saiz (2010). As shown in the figure, metro areas with 

more inelastic housing supply will be affected by the leader’s house price changes to a larger 

extent than areas with more elastic housing supply. This negative relation between the supply 

elasticity and the combined coefficient on leader’s price changes is consistent with the 

derivation of  𝑐̃𝑐𝑖𝑖0 = 𝑐𝑐𝑖𝑖0�1 + |𝜀𝜀0𝑠𝑠|/�𝜀𝜀0𝑑𝑑��/�1 + |𝜀𝜀𝑖𝑖𝑠𝑠|/|𝜀𝜀𝑖𝑖𝑑𝑑|� from the diffusion model of the 

demand shock. 

The Wu-Hausman statistics, which test the hypothesis that HPI changes in San Jose 

are exogenous to the evolution of house prices in other areas, show that the null cannot be 

rejected for all of the metro areas at the 1% significance level. Only for Oakland and Santa 

Cruz, the null is rejected at the 5% level, and for Stockon the null is rejected at the 10% 

significance level. By the Wu-Hausman test results, we verify the assumption that housing 

price changes in San Jose are exogenous to all other metro areas’ price changes and hence 

confirm the assertion that San Jose leads the housing markets in all of the metro areas of 

CA.14 

 

3.5   Panel model estimation  

In this section, we pool all of the individual estimations into panel regressions with 

metro area fixed effects15, and use quarterly data, annual data, and then biannual data to 

explore how the frequency of the data affects the demand shock diffusion patterns. In order to 

allow for heterogeneous diffusion patterns implied by varying local supply side conditions, 

we run these panel regressions for three groups of metro areas. The first group consists of all 

of the 21 following metro areas, and the second group includes 6 metro areas with the most 
                                                           
14 We also study the time series estimation of each individual metro area’s construction diffusion model. Because of the 
small sample size (76), the results are quite noisy and there is no clear pattern on the effect of the leader’s contemporaneous 
price changes and the construction adjustments to short-run price deviations from its long-run equilibrium level. We resort to 
the panel analysis of the construction diffusion model taking advantage of more estimation power.  
15 In the panel regression, we set all of the lag orders to the maximum number 4 and include both of these two error 
correction terms whether they are significant or not.   
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inelastic housing supply (LA, Oakland, Oxnard, San Diego, San Francisco, and Santa Maria). 

The last group is made up of the remaining 15 metro areas with more elastic housing supply.  

The estimation results for the price diffusion model are summarized in Table 6. The 

first three columns use the quarterly housing price data, with the first column for all of the 21 

metro areas, and the second for the 6 least elastic areas, and the third for the remaining 15 

relative elastic areas. From the first panel regression (Column 1 of Table 6), we find sizable 

and significant leader contemporaneous effect (0.74 with standard error 0.022), and this 

estimate is comparable to that from the individual time series estimates. This difference in the 

estimates for these two groups of areas with different supply elasticities are not significant.  

The coefficients on these two error correction terms are significant with the correct 

signs, indicating housing prices in following areas will adjust upwards if they are below their 

long-run equilibrium with the dominant area’s house price or with their neighbors’ house 

prices.  The error correction coefficients differ substantially for these two groups of areas. For 

the inelastic metro areas, the coefficient on EC1 is 0.014, compared to 0.00088 for the elastic 

metro areas. This result indicates that metro areas with more inelastic supply conditions will 

adjust prices faster to any deviation from their long-run equilibrium with the dominant area’s 

price level. The coefficient on EC2 is only significant in the elastic metro group, indicating 

that only elastic areas’ housing prices will respond to short-run deviation from its long-run 

equilibrium with its neighbors’ housing prices.  

The leader lag effects are significant to the 4th lag in the full sample and are similar in 

magnitude for these two groups with different supply side conditions. Neighbor lag effects 

are also significant, with a slightly larger magnitude for the elastic group. Own lag effects are 

also significant, with similar magnitudes for both groups. Again, in the panel analysis, we see 

that dynamic spillover effects from the neighboring areas are important in the diffusion 
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analysis through the error correction terms as well as through the spatial lag terms, and it is 

more important for areas with more unrestricted housing supply conditions.  

Comparing the estimates of the first three columns with those of the middle three 

columns of Table 6, we can see how the frequency affects the diffusion patterns of price 

shocks. 16 As we change from quarterly data to annual data, the error correction coefficients 

are significantly larger. This indicates that in a longer time horizon, local housing markets 

will adjust more thoroughly to the short-run price deviations from their long-run equilibrium. 

The difference in the leader contemporaneous effect between the inelastic group and the 

elastic group is still not statistically significant.  

The last three columns of Table 6 show the results using the biannual data. Again, the 

error correction coefficients become even larger with only EC1 significant. These two error 

correction terms are not significant for the inelastic group. This is consistent with the 

interpretation that the error correction coefficients measure the adjustment speeds of the 

prices to their short-run deviation from their long-run equilibrium. As the data frequency 

become lower, i.e., a longer time gap between observations, we may not be able to estimate 

the short-run adjustment speeds. However, under the biannual estimation, the difference in 

the leader contemporaneous effect between the inelastic group and the elastic group is much 

larger and significant (0.80 with standard error 0.032 for inelastic and 0.59 with standard 

error 0.029 for elastic).  

To summarize for the panel regression of the price diffusion model, San Jose’s 

contemporaneous effects are sizable and significant, and tend to be larger in metro areas with 

more inelastic housing supply conditions.  We also find strong evidence on price responses to 

price deviations from their long-run equilibrium, with inelastic places adjusting prices faster 

to the deviations from the dominant area’s price level. Moreover, there exist significant 

                                                           
16 Notice that in the annual and biannual regression, we only include 2 lag terms to save on observations lost due to lagging. 
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spillover effects and own lag effects in the diffusion of price shocks. Also, longer horizons 

allow for more thorough adjustments to price deviations.  

The estimation results for the construction diffusion model are summarized in Table 7. 

From the first panel regression (Column 1 of Table 7), we find sizable and significant leader 

contemporaneous effect (0.44 with standard error 0.21). This estimate seems to be larger for 

the group of metro areas with elastic housing supply (0.57 with standard error 0.28 in 

Column 3 of Table 7) than that for the group with inelastic housing supply (0.39 with 

standard error 0.22 in Column 2 of Table 7). However, this difference is not statistically 

significant. The own lag effects (coefficient on LD.lnHPI) is larger and more significant than 

the leader contemporaneous effects.  

The coefficients on these two error correction terms are significant with opposite 

signs as in the price equations, indicating that following areas will depress construction if 

their housing prices are below their long-run equilibrium with the dominant area’s house 

price or with their neighbors’ house prices.  The error correction coefficients differ 

substantially for these two groups. For the inelastic metro areas, the coefficient on EC1 is 

0.02 with standard error 0.022 (not significantly different from 0), compared to -0.042 with 

standard error 0.0045 for the elastic metro areas. This result indicates that metro areas with 

more elastic supply conditions will adjust construction faster in response to any price 

deviation from their long-run equilibrium with the dominant area’s price level. The 

coefficient on EC2 is -0.066 with standard error 0.033 for the inelastic group, compared to 

0.058 with standard error 0.025 for the elastic group. The negative sign on EC2 for the 

inelastic group is hard to explain in that it implies that these inelastic areas will boost 

construction in the short-run even when their housing prices are below their long-run 

equilibrium with their neighbor’s house prices.  
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 The leader lag effects and the neighbor lag effects are not significant. In contrast, 

own lag effects are significant, with similar magnitudes for both groups. Thus, in the panel 

analysis of the construction diffusion model, we see that dynamic price spillover effects from 

the neighboring areas are important in the diffusion analysis only through the error correction 

terms.  

As we change from quarterly to annual data, the coefficient on EC1 is significantly 

larger, indicating that in a longer time horizon, local housing markets will adjust construction 

more to the short-run price deviations from their long-run equilibrium. However, the 

coefficient on EC2 becomes insignificant for the annual regression. This insignificance of 

EC2 in the annual data indicates that short-run spillover effects from neighbors are only 

observed in higher frequency data. The difference in the leader contemporaneous effect 

between the inelastic group and the elastic group is larger (0.92 with standard error 0.47 for 

inelastic and 1.41 with standard error 0.59 for elastic) even though the difference is still not 

statistically significant.  

The last three columns of Table 7 show the results using the biannual data. As the 

data frequency becomes lower, the short-run adjustments are not significant any more. The 

own lag effects also tend to be insignificant. However, under the biannual estimation, the 

leader contemporaneous effect become even larger, even though the difference between the 

inelastic group and the elastic group is still not significant (1.58 with standard error 0.2 for 

the whole group, 1.19 with standard error 0.25 for the inelastic group, and 0.59 with standard 

error 0.029 for the elastic group).  

To summarize for the panel regression of the construction diffusion model, San Jose’s 

contemporaneous effects are sizable and significant, and tend to be larger in lower frequency 

data. We find strong evidence on construction response to price deviations from their long-

run equilibrium in higher frequency data. Elastic places tend to adjust construction faster and 
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to a larger extent to the deviations from the dominant area’s price level. Moreover, spillover 

effects on construction work only through the error correction terms, and own lag effect is 

larger than the leader contemporaneous effect in high frequency data but are dominated by 

the leader contemporaneous effect in low frequency data.  

Comparing the panel regression of the price diffusion model and that of the 

construction diffusion model, we find quite different diffusion patterns of the demand shocks. 

The leader contemporaneous effects are sizable and significant in both estimations, but the 

difference in the leader contemporaneous effects for metro areas with different local supply 

conditions is more significant for the price diffusion model. Short-run adjustment of prices to 

price deviation from the equilibrium with the leader’s price level are faster for the inelastic 

metro areas, while the elastic metro areas will adjust prices more rapidly to price deviation 

from the equilibrium with their neighbor’s price level. In contrast, elastic areas will adjust 

construction faster to price deviation from the equilibrium with the leader’s price level. 

Spillover effects of neighbors’ demand shocks are transmitted in the price equations through 

the neighbor lag effect as well as the error correction term, while neighbors’ spillover effects 

impact construction only through the error correction term. Own lag effects are more 

important in the construction diffusion model for higher frequency data, and leader 

contemporaneous effect become more important for the construction diffusion model for 

lower frequency data.  

 

3.6   Spatial-temporal impulse response 

In this section, we use the local projection method of Jordà (2005) outlined in Section 

2.4 to study the impulse response of the effects of a positive unit shock to San Jose house 

prices over time and across space. We study not only the effects of a leader’s price shock on 

the other areas’ price changes, but also the effects of a leader’s price shock on the other areas’ 
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construction response. We first apply the local projection method to the price and 

construction diffusion models for each individual metro areas, and then to the panel 

regressions for both diffusion models.  

In Figure 5, we plot the impulse response of the effects of a positive unit shock to San 

Jose house price changes on the house price changes in other areas for the individual price 

diffusion estimations. The left panel of Figure 5 shows the effects of the shock on house price 

changes in 6 metro areas with the least elastic supply conditions (LA, Oakland, Oxnard, San 

Diego, San Francisco, and Santa Maria), whilst the right panel shows the effects on house 

price changes in the other 6 metro areas with the most elastic supply conditions (Bakersfield, 

Fresno, Merced, Modesto, Stockton, and Visalia). As we can see from these impulse response 

functions (hereafter IRFs) of the house price changes, the spontaneous responses are of the 

same magnitude for most of these 12 metro areas regardless of the supply side conditions and 

most of these IRFs go to zero in less than 5 quarters (except LA and Oakland). Thus, we do 

not find very significant differences in the transmissions of the leader’s price shocks to areas 

with different supply conditions.  

Figure 6 illustrates the IRFs of a positive unit shock to San Jose’s price changes on 

price changes (left panel) and housing stock changes (right panel) in other areas estimated 

from the panel regressions. In each panel, “Elastic” stands for estimates from the panel 

regression with 15 metro areas with relative elastic housing supply conditions, and “Inelastic” 

stands from estimates from the panel regression with the 6 metro areas with the least elastic 

housing supply conditions, and “All MSA” stands for estimates from the panel regression 

with all of the 21 following areas. The left panel shows that IRFs of price changes do not 

exhibit significant differences between elastic areas and inelastic areas, and the responses of 

price changes to a unit shock of the leader’s price changes decrease to zero gradually within 

10 quarters. In contrast, the right panel indicates that elastic areas exhibit significant larger 
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construction responses to a unit shock to the leader’s price changes, and this response grows 

larger after 5 quarters and remain above zero for more than 18 quarters. For inelastic metro 

areas, these IRFs are not significantly different from zero.  

To summarize the impulse response analysis, we find that a positive shock to San Jose 

house price changes spills over to other regions’ price changes gradually regardless of the 

distance to San Jose and regardless of the supply side conditions. However, a positive San 

Jose’s house price shock will have a significant and persistent effect on construction in metro 

areas with more elastic housing supply conditions.  

 

4.       Conclusion 

This paper incorporates supply side conditions into the spatial and temporal 

dispersion of shocks in a non-stationary dynamic system. Using California metro area house 

prices we establish that San Jose is a dominant area in the sense of Pesaran and Chudik 

(2010). House prices within each metro area respond directly to a shock to San Jose and the 

overall effect of the dominant area’s shock is negatively correlated with the local supply 

elasticities. Construction within each metro area also responds directly to a shock to San Jose, 

and the overall effect of the dominant area’s shock is positively correlated with the local 

supply elasticities. Impulse response analysis indicates that the construction response is more 

persistent than the price response for metro areas with more elastic housing supply.  

An important finding in this paper relative to Holly et al. (2011) is that local supply 

conditions have greater impact on the diffusion patterns of a common demand shock in the 

housing market than physical distance. When San Jose experiences a price shock, the effects 

on price and construction in other areas tend not to attenuate with distance to San Jose. On 

the other hand, impulse response functions (IRF) and other results indicate that local supply 

conditions have important impacts on the responses to shocks in the dominant area. These 
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findings complement the cross sectional dependence literature and reinforce the view that 

local supply conditions may matter more than distance when modeling spatiotemporal 

dynamics in the housing market. 
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Figure 1: Housing market with demand side shocks 

 

 

Figure 2: California (CA) Real House Price Indices by Metro Areas 
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Figure 3: CI coefficients of log HPI versus supply elasticities 

Notes: On the vertical axis is the CI coefficient 𝛽𝛽𝑖𝑖  in the CI relation 𝑝𝑝0𝑡𝑡 − 𝛽𝛽𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖 , which is estimated from a 
bivariate VAR(4) specification of the log real HPI in San Jose (𝑝𝑝0𝑡𝑡) and the other metro area (𝑝𝑝𝑖𝑖𝑖𝑖) with unrestricted 
intercepts and restricted trend coefficients if rejecting the cotrending test, otherwise from a bivariate VAR(4) 
specification with a unrestricted intercepts only. On the horizontal axis is the price elasticities of housing supply 
𝜀𝜀𝑖𝑖𝑠𝑠 from Saiz (2010).  Each dot stands for a following area and the red dotted line stands for regression 𝛽𝛽𝑖𝑖 = 𝑐𝑐 +
𝑏𝑏 ∗ 𝜀𝜀𝑖𝑖𝑠𝑠 + 𝑣𝑣𝑖𝑖 . 

Figure 4: Combined leader effects versus supply elasticities 

 
Notes: On the vertical axis is the sum of the contemporaneous and lag effect of the leader’s HPI on each metro 
areas, i.e., ∑ 𝑐̃𝑐𝑖𝑖𝑖𝑖 
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Figure 5: Impulse Response Functions of one unit shock to San Jose house price 
changes over time from Individual OLS Regressions of the price diffusion model 

 
Notes: The plotted IRFs are 𝑐̃𝑐𝑖𝑖𝑖𝑖 

ℎ  estimates in Δ 𝑝𝑝𝑖𝑖𝑖𝑖+ℎ = 𝜙𝜙�𝑖𝑖𝑖𝑖 
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ℎ Δ𝑝𝑝0𝑡𝑡 + 𝜀𝜀𝑖̃𝑖𝑖𝑖+ℎ for each horizon h. Each graph stands for an individual metro 
area.  

Figure 6: Impulse Response Functions of one unit shock to San Jose house price 
changes over time from panel regression of the price and the construction diffusion 
model 

 
Notes: The plotted IRFs in the left panel are 𝑐̃𝑐𝑜𝑜 

ℎ  estimates in panel regression Δ 𝑝𝑝𝑖𝑖𝑖𝑖+ℎ = 𝜙𝜙�𝑠𝑠 
ℎ(𝑝𝑝𝑖𝑖,𝑡𝑡−1  − 𝜔𝜔�𝑖𝑖𝑝̅𝑝 𝑖𝑖,𝑡𝑡−1𝑠𝑠 ) +

𝜙𝜙�0 
ℎ � 𝑝𝑝0,𝑡𝑡−1 − 𝛽𝛽𝑖𝑖𝑝𝑝𝑖𝑖,𝑡𝑡−1 − 𝛾𝛾𝑖𝑖𝑡𝑡�+ 𝑎𝑎�𝑖𝑖ℎ + 𝑎𝑎1ℎΔ 𝑝𝑝𝑖𝑖𝑖𝑖−1 + 𝑏𝑏�1ℎΔ𝑝̅𝑝 𝑖𝑖,𝑡𝑡−1𝑠𝑠 + 𝑐̃𝑐0ℎΔ𝑝𝑝0𝑡𝑡 + 𝜀𝜀𝑖̃𝑖𝑖𝑖+ℎ  for each group of metro areas at 

each horizon h. The IRFs in the right panel are 𝑐̂𝑐𝑜𝑜 
ℎ  estimates in Δ 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖+ℎ = 𝜙𝜙�𝑠𝑠ℎ�𝑝𝑝𝑖𝑖,𝑡𝑡−1  − 𝜔𝜔�𝑖𝑖𝑝̅𝑝 𝑖𝑖,𝑡𝑡−1𝑠𝑠 � +

𝜙𝜙�0ℎ� 𝑝𝑝0,𝑡𝑡−1 − 𝛽𝛽𝑖𝑖𝑝𝑝𝑖𝑖,𝑡𝑡−1 − 𝛾𝛾𝑖𝑖𝑡𝑡�+ 𝑎𝑎�𝑖𝑖ℎ + 𝑎𝑎�1ℎΔ 𝑝𝑝𝑖𝑖𝑖𝑖−1 + 𝑏𝑏�1ℎΔ𝑝̅𝑝 𝑖𝑖,𝑡𝑡−1𝑠𝑠 + 𝑐̂𝑐0 
ℎΔ𝑝𝑝0𝑡𝑡 + 𝜀𝜀𝑖̂𝑖𝑖𝑖+ℎ for each group of metro areas at 

each horizon h. Group “ALL MSA” includes all of the 21 following areas, while group “Elastic” includes 6 metro 
areas with the most inelastic housing supply (LA, Oakland, Oxnard, San Diego, San Francisco, and Santa Maria),  
and group “Inelastic” is made up of the remaining 15 metro areas with more elastic housing supply. 
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Table 1: Metro areas, abbreviations, and data 

Metro Areas Abbrev. Elasticity pop_2010 

Anaheim-Santa Ana-Irvine, CA Anaheim  3010232 

Bakersfield, CA  Bakersfield 1.64 839631 

Fresno, CA       Fresno 1.84 930450 

Los Angeles-Long Beach-Glendale, CA  LA 0.63 9818605 

Merced, CA       Merced 2.39 255793 

Modesto, CA      Modesto 2.17 514453 

Oakland-Hayward-Berkeley, CA Oakland 0.70 2559296 

Oxnard-Thousand Oaks-Ventura, CA         Oxnard 0.75 823318 

Riverside-San Bernardino-Ontario, CA     Riverside 0.94 4224851 

Sacramento--Roseville--Arden-Arcade, CA  Sacramento  2149127 

Salinas, CA      Salinas 1.10 415057 

San Diego-Carlsbad, CA   San Diego 0.67 3095313 

San Francisco-Redwood City-South San 
Francisco, CA 

San Francisco 0.66 1523686 

San Jose-Sunnyvale-Santa Clara, CA       San Jose 0.76 1836911 

San Luis Obispo-Paso Robles-Arroyo 
Grande, CA    

San Luis Obispo  1.22 269637 

San Rafael, CA  San Rafael  252409 

Santa Cruz-Watsonville, CA       Santa Cruz 1.19 262382 

Santa Maria-Santa Barbara, CA    Santa Maria 0.89 423895 

Santa Rosa, CA   Santa Rosa 1.00 483878 

Stockton-Lodi, CA        Stockton 2.07 685306 

Vallejo-Fairfield, CA    Vallejo 1.14 413344 

Visalia-Porterville, CA  Visalia 1.97 442179 

Notes: Definitions of Metropolitan areas are based on the Office of Management and Budget (OMB) 2013 
delineations. Column Elasticity is the supply elasticity estimates from Saiz (2010). Such supply elasticity estimates 
are based on economic fundamentals related to natural and man-made land constraints. Column pop_2010 is the 
population counts of 2010 Census.  
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Table 2: 
Trace cointegration tests with unrestricted intercepts and restricted trend coefficients, 
and test of over-identifying restrictions in bivariate VAR(4) models of log HPI of 
CA Metro Areas (1980Q1-2016Q4) Trace cointegration tests with unrestricted 
intercepts and restricted trend coefficients, and test of over-identifying restrictions in 
bivariate VAR(4) models of log HPI of CA Metro Areas (1980Q1-2016Q4) 
 

CBSA Areas 
Trace Statistics 

H_0: Cotrending and  
Cointegrating vector is  
(1,-1) with San Jose 

H0: r=0 vs. 
H1: r >=1 

H0: r<=1 vs. 
H1: r >=2 

LR 
statistics 

95% 
BCV 

90% 
BCV 

11244 Anaheim 35.16*** 10.96* 17.13** 15.06 13.15 
12540 Bakersfield 29.89** 14.06** 13.34* 13.49 12.21 
23420 Fresno 28.8** 11.89* 12.7* 12.93 11.43 
31084 LA 32.42*** 9.50 16.92** 15.98 14.24 
32900 Merced 29.8** 13.04** 14.26** 13.76 12.61 
33700 Modesto 28.13** 11.94* 12.93* 14.63 12.77 
36084 Oakland 30.46*** 12.7** 12.62* 13.54 12.00 
37100 Oxnard 34.29*** 12.61** 17.41** 15.70 13.73 
40140 Riverside 26.23** 10.52* 12.93* 14.16 12.71 
40900 Sacramento 30.41** 11.92* 15.84* 17.16 15.73 
41500 Salinas 27.49** 6.45 18.34** 15.70 14.08 
41740 San Diego 27.47** 5.62 19.51** 13.80 11.57 
41884 San Francisco 23.08* 7.82 9.16 14.20 12.10 
42020 San Luis 

Obi  
26.52** 5.21 18.95** 15.48 12.98 

42034 San Rafael 33.56*** 6.98 17.52** 14.84 12.20 
42100 Santa Cruz 27.79** 2.75 23.96** 15.46 13.70 
42200 Santa Maria 32.49*** 11.18* 16.13* 16.69 14.69 
42220 Santa Rosa 31.38*** 9.35 18.04** 15.48 13.89 
44700 Stockton 28.38** 12.78** 12.76* 13.41 12.32 
46700 Vallejo 30.69*** 10.76* 17** 14.93 13.64 
47300 Visalia 26.79** 11.27* 12.42 14.94 13.06 

1The trace statistics reported are based on the bivariate VAR(4) specification of log of real HPI of San Jose and 
other metro areas in CA, with unrestricted intercepts and restricted trend coefficients. 
2The trace statistic is the cointegration test statistic of Johansen (1991). The log likelihood ratio (LR) statistic 
reported is for testing the cotrending restriction with the cointegration vector given by (1,-1) for the log real HPI in 
San Jose and the other metro area. 
3For the trace test, the 99%, 95%, and 90% critical values of the test for H0: r=0 are 30.45, 25.32, and 22.76. For 
the trace test, the 99%, 95%, and 90% critical values of the test for H0: r<=1 are 16.26, 12.25, and 10.49. 
4BCV stands for bootstrap critical values, based on 1000 bootstrap replications. Bootstrapping algorithm is from 
Cavaliere, Nielsen, and Rahbek (2015). 
5* signifies that test rejects the null at the 10% level; ** signifies test rejects the null at the 5% level; **** signifies 
that test rejects the null at the 1% level.  
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Table 3: Test of over-identifying restrictions in bivariate VAR(4) models of log HPI 
of CA Metro Areas (1980Q1-2016Q4) 

Areas 

H_0: Cotrending with 
Leader 

H_0: Cointegrating vector 
is (1,-1) with Leader 

H_0: Cointegrating vector is 
(1,-1) with Leader based on 
cotrending test 

LR stat. 95% 
BCV 

90% 
BCV LR stat. 95% 

BCV 
90% 
BCV LR stat. 95% 

BCV 
90% 
BCV 

Anaheim 10.3** 9.98 8.81 13.06* 13.27 11.41 13.06* 13.27 11.41 
Bakersfield 0.02 6.48 5.36 1.22 8.62 6.98 13.32** 9.99 8.92 
Fresno 4.75 8.45 7.16 3.89 8.08 6.57 7.95* 8.03 6.89 
LA 9.55** 9.36 7.66 12.92* 13.06 11.73 12.92* 13.06 11.73 
Merced 3.62 8.18 6.46 3.24 8.19 7.05 10.64* 10.85 9.55 
Modesto 4.16 8.64 6.94 2.64 9.60 7.95 8.77 11.04 9.76 
Oakland 3.74 9.16 7.56 5.00 9.74 8.57 8.87** 7.79 6.62 
Oxnard 6.88 9.79 8.16 9.08 12.13 10.21 10.53** 8.28 7.21 
Riverside 1.82 6.76 5.25 4.72 8.92 7.73 11.11** 9.86 9.05 
Sacramento 6.54 12.82 10.98 4.68 10.71 9.12 9.29** 8.97 8.03 
Salinas 14.1** 12.32 10.48 14.37** 11.85 10.26 14.37** 11.85 10.26 
San Diego 16.09** 13.33 11.49 13.91** 13.53 11.74 13.91** 13.53 11.74 
San 
Francisco 6.88 9.81 8.56 7.44 10.91 9.63 2.28 10.53 8.77 

San Luis 
Obispo 16.01** 12.96 11.20 14.39** 13.42 11.78 14.39** 13.42 11.78 

San Rafael 15.38** 11.46 9.80 9.01* 9.43 7.79 9.01* 9.43 7.79 
Santa Cruz 22.23** 9.39 7.87 20.52** 11.81 9.53 20.52** 11.81 9.53 
Santa Maria 9.89 13.85 11.96 9.73 13.88 12.31 6.23* 7.02 6.07 
Santa Rosa 12.68** 12.67 10.63 10.47* 11.20 9.70 10.47* 11.20 9.70 
Stockton 2.70 8.45 6.91 2.57 8.26 7.09 10.06** 10.00 9.07 
Vallejo 9.14 11.11 9.35 7.73 10.84 9.13 7.86 9.08 8.15 
Visalia 4.12 8.80 6.84 2.12 9.08 7.51 8.30 11.29 9.81 
1 The first log likelihood ratio (LR) statistic reported is for testing the cotrending restriction for the log real HPI in 
San Jose and the other metro area, based on the bivariate VAR(4) specification with unrestricted intercepts and 
restricted trend coefficients. 
2 The second log likelihood ratio (LR) statistic reported is for testing the cointegration vector given by (1,-1) for 
the log real HPI in San Jose and the other metro area,  based on  the bivariate VAR(4) specification with 
unrestricted intercepts and restricted trend 
3 The third log likelihood ratio (LR) statistic reported is for testing the cointegration vector given by (1,-1) for the 
log real HPI in San Jose and the other metro area, based on  the bivariate VAR(4) specification with unrestricted 
intercepts and restricted trend coefficients if rejecting the cotrending test, otherwise the base bivariate VAR(4) 
specification only has a unrestricted intercepts. 
4 BCV stands for bootstrap critical values, based on 1000 bootstrap replications. Bootstrapping algorithm is from 
Cavaliere, Nielsen, and Rahbek (2015). 
5 * signifies that test rejects the null at the 10% level; ** signifies test rejects the null at the 5% level; **** 
signifies that test rejects the null at the 1% level.  
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Table 4: CI coefficients of lnHPI versus supply side conditions 

 (1) (2) (3) (4) (5) 

VARIABLES beta_i beta_i beta_i beta_i beta_i 

      

elasticity 2.65***     

 (0.48)     

unaval  -5.88*** -6.29*** -5.47*** -6.30*** 

  (1.14) (1.24) (1.20) (1.46) 

WRLURI   0.87 0.12 0.87 

   (0.97) (1.04) (0.90) 

c.population_2010    -4.7e-07  

#c.unaval    (4.3e-07)  

      

c.percent_change_80_1
0     0.049 

#c.unaval     (2.17) 

      

Constant -1.26** 4.97*** 4.55*** 5.07*** 4.54*** 

 (0.57) (0.67) (0.86) (0.91) (0.92) 

      

Observations 17 17 17 17 17 

R-squared 0.704 0.674 0.691 0.777 0.691 

Notes: beta_i stands for the CI coefficient 𝛽𝛽𝑖𝑖  in the CI relation 𝑝𝑝0𝑡𝑡 − 𝛽𝛽𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖, from a bivariate VAR(4) of log of real 
HPI of San Jose (𝑝𝑝0𝑡𝑡) and other CA metro area (𝑝𝑝𝑖𝑖𝑖𝑖) with unrestricted intercepts and restricted trend coefficients if 
the cotrending test is rejected, otherwise with unrestricted intercepts only.  Variable elasticity is the supply 
elasticity estimates from Saiz (2010), which are simple nonlinear combinations of the available data on physical 
and regulatory constraints. Variable unaval is the share of unavailable land for development from Saiz (2010).  
Variable WRLURI  is from the 2005 Wharton Regulation Survey of Gyourko, Saizm and Summers (2008) on the 
elasticity of supply. Variable c.population_2010#c.unaval is an interaction term of the 2010 Census population 
counts with the variable unaval, while variable c.percent_change_80_10#c.unaval is an interaction term of the 
percent change of population from 1980 Census to 2010 Census with the variable unaval. Because the definitions 
of metro area differ from Saiz (2010), only 18 following metro areas have the supply elasticity measures (with 
Bakersfield for which the CI coefficient (17.13) is an outlier, we are left with 17 metro areas). Standard errors in 
parentheses are bootstrapped from 1000 repetitions. *** p<0.01, ** p<0.05, * p<0.1 
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Table 5: Estimation of Region Specific House Price Diffusion Equation with San Jose as a Dominant Region (1980Q1-2016Q4) 

Areas EC1 EC2 Own Lag 
Effects 

Neighbor 
Lag 

Effects 

Leader Lag 
Effects 

Leader 
Contemporaneous 

Effects 

Wu-
Hausman 
Statistics 

k_a k_b k_c 

San Jose  0.02*** 
(2.97) 

0.75*** 
(8.12) 

0.08 
(0.95) 

   1 3  

Anaheim   0.49*** 
(4.1) 

0.16 
(1.33) 

-0.44*** 
(-5.35) 

0.73*** 
(12.02) 

-1.35 1 1 1 

Bakersfield   0.47*** 
(3.71) 

0.60*** 
(3.25) 

-0.74*** 
(-5.84) 

0.64*** 
(7.10) 

0.56 3 2 1 

Fresno   0.31** 
(2.32) 

0.76*** 
(3.95) 

-0.74*** 
(-5.10) 

0.6*** 
(6.18) 

-0.61 4 1 1 

LA   0.64*** 
(4.84) 

0.04 
(0.26) 

-0.41*** 
(-4.79) 

0.72*** 
(11.74) 

-1.64 1 1 1 

Merced  -0.03*** 
(-3.13) 

0.17* 
(1.67) 

1.26*** 
(6.62) 

-0.83*** 
(-4.50) 

0.68*** 
(5.83) 

-1.09 2 1 4 

Modesto   -0.44*** 
(-2.7) 

1.67*** 
(5.94) 

-0.52** 
(-2.41) 

0.62*** 
(4.64) 

-0.44 3 1 1 

Oakland   0.25* 
(1.88) 

0.34*** 
(3.30) 

-0.43*** 
(-5.7) 

0.86*** 
(19.77) 

-2.07** 1 3 1 

Oxnard   0.27** 
(2.5) 

0.37*** 
(2.98) 

-0.5*** 
(-4.71) 

0.8*** 
(11.10) 

-1.08 1 1 2 

Riverside   0.12 
(0.91) 

0.85*** 
(4.25) 

-0.54*** 
(-4.46) 

0.75*** 
(8.80) 

-1.28 1 1 1 

Sacramento  -0.09*** 
(-3.09) 

0.8*** 
(6.08) 

0.05*** 
(0.27) 

-0.66*** 
(-5.77) 

0.81*** 
(10.58) 

-0.2 2 4 1 

Salinas  0.00** 
(-2.00) 

-0.2** 
(-1.98) 

1.22*** 
(7.26) 

-0.79*** 
(-5.99) 

0.97*** 
(11.19) 

-0.8 1 2 1 

San Diego  0.06*** 
(2.85) 

0.14 
(0.73) 

0.54*** 
(2.91) 

-0.43*** 
(-3.92) 

0.64*** 
(7.81) 

0.52 4 2 2 
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San Francisco 0.04* 
(1.91) 

 0.47*** 
(4.41) 

0.11 
(1.62) 

-0.47*** 
(-4.53) 

0.81*** 
(15.58) 

-0.84 4 1 2 

San Luis Obispo 0.08*** 
(3.72) 

 -0.03 
(-0.30) 

0.22** 
(2.1) 

 0.56*** 
(6.58) 

-0.6 1 1 0 

San Rafael 0.08*** 
(3.54) 

 -0.5*** 
(-5.01) 

0.35*** 
(4.22) 

 0.8*** 
(12.42) 

0.64 2 1 0 

Santa Cruz 0.14*** 
(4.75) 

 -0.55*** 
(-5.22) 

0.5*** 
(5.46) 

 0.77*** 
(10.87) 

-2.13** 2 1 0 

Santa Maria   0.55*** 
(3.28) 

0.1 
(0.57) 

-0.39*** 
(-3.47) 

0.71*** 
(8.38) 

-0.6 3 2 1 

Santa Rosa 0.06*** 
(3.07) 

 -0.22** 
(2.12) 

0.46*** 
(4.19) 

 0.72*** 
(13.00) 

0.93 1 1 0 

Stockton  -0.03** 
(-2.52) 

0.07 
(0.63) 

1.04*** 
(5.42) 

-0.84*** 
(-6.37) 

0.97*** 
(10.56) 

-1.77* 1 1 1 

Vallejo  -0.04*** 
(-3.16) 

-0.05 
(-0.43) 

1.42*** 
(6.88) 

-0.8*** 
(-5.85) 

0.68*** 
(7.48) 

-0.41 4 1 1 

Visalia   0.06 
(0.63) 

0.96*** 
(6.44) 

-0.81*** 
(-5.15) 

0.55*** 
(5.21) 

0.05 1 1 2 

Notes: This table reports estimates based on the price equations Δ𝑝𝑝𝑖𝑖𝑖𝑖 = 𝜙𝜙�𝑖𝑖0� 𝑝𝑝0,𝑡𝑡−1 − 𝛽𝛽𝑖𝑖𝑝𝑝𝑖𝑖,𝑡𝑡−1 − 𝛾𝛾𝑖𝑖𝑡𝑡� + 𝜙𝜙�𝑖𝑖𝑖𝑖� 𝑝𝑝𝑖𝑖,𝑡𝑡−1 − 𝜔𝜔𝑖𝑖𝑝̅𝑝 𝑖𝑖,𝑡𝑡−1𝑠𝑠 � + 𝑎𝑎�𝑖𝑖 + ∑ 𝑎𝑎𝑖𝑖𝑖𝑖Δ 𝑝𝑝𝑖𝑖𝑖𝑖−𝑙𝑙
𝑘𝑘𝑖𝑖𝑖𝑖
𝑙𝑙=1 +

∑ 𝑏𝑏�𝑖𝑖𝑖𝑖Δ𝑝̅𝑝 𝑖𝑖,𝑡𝑡−𝑙𝑙𝑠𝑠𝑘𝑘𝑖𝑖𝑖𝑖
𝑙𝑙=1 + ∑ 𝑐̃𝑐𝑖𝑖𝑖𝑖 Δ𝑝𝑝0,𝑡𝑡−𝑙𝑙

𝑘𝑘𝑖𝑖𝑖𝑖
𝑙𝑙=0 + 𝜀𝜀𝑖̃𝑖𝑖𝑖 , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2, … ,𝑁𝑁. For 𝑖𝑖 = 0 denoting the San Jose equation, we put a priori restriction, 𝜙𝜙�00 = 𝑐̃𝑐00 = 0. “EC1”, “EC2”, 

“Own lag effects”, “Neighbor lag effects”, “Leader lag effects”, “Leader contemporaneous effects” relate to estimates of 𝜙𝜙�𝑖𝑖0, 𝜙𝜙�𝑖𝑖𝑖𝑖, ∑ 𝑎𝑎𝑖𝑖𝑖𝑖
𝑘𝑘𝑖𝑖𝑖𝑖
𝑙𝑙=1 , ∑ 𝑏𝑏�𝑖𝑖𝑖𝑖

𝑘𝑘𝑖𝑖𝑖𝑖
𝑙𝑙=1 , ∑ 𝑐̃𝑐𝑖𝑖𝑖𝑖 

𝑘𝑘𝑖𝑖𝑖𝑖
𝑙𝑙=1 , and 

𝑐̃𝑐𝑖𝑖0 , respectively. T-ratios are in the parenthesis. *** signifies that the test rejects the null at the 1% level, ** at the 5% level, and * at the 10% level. The error 
correction coefficients are restricted such that at most one of them are statistically significant at the 5% level. Wu-Hausman is the t-ratio for testing 𝐻𝐻0:𝜇𝜇𝑖𝑖 = 0 in 
the augmented regression Δ𝑝𝑝𝑖𝑖𝑖𝑖 = 𝜙𝜙�𝑖𝑖0� 𝑝𝑝0,𝑡𝑡−1 − 𝛽𝛽𝑖𝑖𝑝𝑝𝑖𝑖,𝑡𝑡−1 − 𝛾𝛾𝑖𝑖𝑡𝑡� + 𝜙𝜙�𝑖𝑖𝑖𝑖� 𝑝𝑝𝑖𝑖,𝑡𝑡−1 − 𝜔𝜔𝑖𝑖𝑝̅𝑝 𝑖𝑖,𝑡𝑡−1𝑠𝑠 � + 𝑎𝑎�𝑖𝑖 + ∑ 𝑎𝑎𝑖𝑖𝑖𝑖Δ 𝑝𝑝𝑖𝑖𝑖𝑖−𝑙𝑙

𝑘𝑘𝑖𝑖𝑖𝑖
𝑙𝑙=1 + ∑ 𝑏𝑏�𝑖𝑖𝑖𝑖Δ𝑝̅𝑝 𝑖𝑖,𝑡𝑡−𝑙𝑙𝑠𝑠𝑘𝑘𝑖𝑖𝑖𝑖

𝑙𝑙=1 + ∑ 𝑐̃𝑐𝑖𝑖𝑖𝑖 Δ𝑝𝑝0,𝑡𝑡−𝑙𝑙
𝑘𝑘𝑖𝑖𝑖𝑖
𝑙𝑙=0 + 𝜇𝜇𝑖𝑖𝜀𝜀0̃𝑡𝑡 + 𝜀𝜀𝑖̃𝑖𝑖𝑖, 

where 𝜀𝜀0̃𝑡𝑡 is the residual of the San Jose house price equation. In selecting the lag orders, 𝑘𝑘𝑖𝑖𝑖𝑖, 𝑘𝑘𝑖𝑖𝑖𝑖 , and 𝑘𝑘𝑖𝑖𝑖𝑖, the maximum lag-order is set to 4 and the lag orders 
are selected by Schwarz Bayesian criterion. All the regressions include an intercept term.   
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Table 6: Panel Regression of House Price Diffusion Equation with San Jose as a Dominant Region (1980Q1-2016Q4) 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

VARIABLES Quarterly  
All Metro 

Quarterly 
Inelastic 
Metro 

Quarterly 
Elastic 
Metro 

Annual 
All Metro 

Annual 
Inelastic 
Metro 

Annual 
Elastic 
Metro 

Biannual 
All Metro 

Biannual 
Inelastic 
Metro 

Biannual 
Elastic 
Metro 

          
EC1 0.0012** 0.014*** 0.00088* 0.011*** 0.081*** 0.010*** 0.035*** 0.12 0.035** 
 (0.00045) (0.0032) (0.00050) (0.0029) (0.021) (0.0032) (0.013) (0.088) (0.014) 
EC2 -0.0060*** 0.0036 -0.0074*** -0.028** 0.060* -0.039*** -0.058 0.13 -0.11* 
 (0.0019) (0.0048) (0.0022) (0.012) (0.036) (0.014) (0.057) (0.20) (0.066) 
D.price_leader 0.74*** 0.77*** 0.72*** 0.66*** 0.70*** 0.62*** 0.66*** 0.80*** 0.59*** 
 (0.022) (0.030) (0.028) (0.028) (0.043) (0.036) (0.023) (0.032) (0.029) 
LD.price_leader -0.43*** -0.33*** -0.48*** -0.24*** -0.32*** -0.23*** 0.37*** 0.46*** 0.34*** 
 (0.036) (0.049) (0.046) (0.045) (0.065) (0.059) (0.066) (0.10) (0.087) 
L2D.price_leader -0.053 -0.13** -0.024 0.029 0.059 -0.019 0.14** 0.048 0.12 
 (0.037) (0.050) (0.048) (0.046) (0.068) (0.059) (0.062) (0.098) (0.082) 
L3D.price_leader -0.14*** -0.092* -0.16***       
 (0.037) (0.051) (0.048)       
L4D.price_leader 0.13*** 0.021 0.15***       
 (0.032) (0.044) (0.041)       
LD.Spatial_lnHPI 0.68*** 0.43*** 0.77*** 0.23*** 0.096 0.32*** 0.048 0.22 -0.030 
 (0.038) (0.055) (0.048) (0.081) (0.12) (0.11) (0.12) (0.22) (0.16) 
L2D.Spatial_lnHPI -0.22*** -0.14** -0.23*** -0.099 -0.0056 -0.055 0.10 0.015 0.13 
 (0.042) (0.061) (0.053) (0.077) (0.12) (0.10) (0.12) (0.18) (0.16) 
L3D.Spatial_lnHPI -0.080* 0.0014 -0.084       
 (0.044) (0.063) (0.056)       
L4D.Spatial_lnHPI -0.059 -0.12** -0.037       
 (0.038) (0.055) (0.049)       
LD.lnHPI 0.064*** 0.12*** 0.042* 0.42*** 0.49*** 0.37*** -0.65*** -0.78*** -0.53*** 
 (0.021) (0.041) (0.025) (0.057) (0.11) (0.069) (0.079) (0.18) (0.10) 
L2D.lnHPI 0.14*** 0.14*** 0.12*** -0.046 -0.099 -0.055 -0.33*** -0.10 -0.35*** 
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 (0.020) (0.039) (0.024) (0.057) (0.11) (0.068) (0.079) (0.17) (0.10) 
L3D.lnHPI 0.18*** 0.097** 0.19***       
 (0.020) (0.039) (0.024)       
L4D.lnHPI 0.074*** 0.18*** 0.054**       
 (0.021) (0.039) (0.024)       
Constant -0.00090** -0.000058 -0.0013*** -0.0060** -0.0027 -0.0071** -0.0032 -0.011 -0.00089 
 (0.00038) (0.00051) (0.00048) (0.0025) (0.0035) (0.0032) (0.010) (0.013) (0.013) 
          
Observations 3,003 858 2,145 714 204 510 336 96 240 
R-squared 0.659 0.770 0.636 0.717 0.810 0.701 0.828 0.949 0.769 
Number of 
cbsa_md 

21 6 15 21 6 15 21 6 15 

Metro FE YES YES YES YES YES YES YES YES YES 
Notes: This table reports estimates based on the price equations Δ𝑝𝑝𝑖𝑖𝑖𝑖 = 𝜙𝜙�0� 𝑝𝑝0,𝑡𝑡−1 − 𝛽𝛽𝑖𝑖𝑝𝑝𝑖𝑖 ,𝑡𝑡−1 − 𝛾𝛾𝑖𝑖𝑡𝑡� + 𝜙𝜙�𝑠𝑠� 𝑝𝑝𝑖𝑖,𝑡𝑡−1 − 𝜔𝜔𝑖𝑖𝑝̅𝑝 𝑖𝑖,𝑡𝑡−1𝑠𝑠 � + 𝑎𝑎�𝑖𝑖 + ∑ 𝑎𝑎𝑙𝑙Δ 𝑝𝑝𝑖𝑖𝑖𝑖−𝑙𝑙4

𝑙𝑙=1 +
∑ 𝑏𝑏�𝑙𝑙Δ𝑝̅𝑝 𝑖𝑖,𝑡𝑡−𝑙𝑙𝑠𝑠4
𝑙𝑙=1 + ∑ 𝑐̃𝑐𝑙𝑙 Δ𝑝𝑝0,𝑡𝑡−𝑙𝑙

4
𝑙𝑙=0 + 𝜀𝜀𝑖̃𝑖𝑖𝑖 , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2, … ,𝑁𝑁.  The dominant area is excluded in this panel regression. Variable D. price_leader (Δ𝑝𝑝0,𝑡𝑡 ) is the 

contemporaneous price changes in San Jose, and L𝑙𝑙D.price_leader (Δ𝑝𝑝0,𝑡𝑡−𝑙𝑙 ) is the lagged price changes of order 𝑙𝑙  in San Jose for 𝑙𝑙=1, 2, 3, 4. Variable 
L𝑙𝑙D.Spatial_lnHPI (Δ𝑝̅𝑝 𝑖𝑖,𝑡𝑡−𝑙𝑙𝑠𝑠 ) is the lagged price changes of order 𝑙𝑙 of the neighbor of metro area 𝑖𝑖 for 𝑙𝑙=1, 2, 3, 4. Variable L𝑙𝑙D.lnHPI (Δ𝑝𝑝𝑖𝑖 ,𝑡𝑡−𝑙𝑙) is the lagged 
price changes of order 𝑙𝑙  in metro area i for 𝑙𝑙 =1, 2, 3, 4. “EC1”, “EC2”, “D.price_leader” (Leader contemporaneous effects), “LD.price_leader”—
“ L4D.price_leader” (Leader lag effects) , “LD.Saptial_lnHPI”—“ L4D. Saptial_lnHPI” (Neighbor lag effects), “LD. lnHPI”—“ L4D. lnHPI” (Own lag effects),  
relate to estimates of 𝜙𝜙�0, 𝜙𝜙�𝑠𝑠, 𝑐̃𝑐0 , 𝑐̃𝑐1 − 𝑐̃𝑐4 ,  𝑏𝑏�1 − 𝑏𝑏�4 , and 𝑎𝑎�1 − 𝑎𝑎�4 , respectively. Standard errors are in the parenthesis. *** signifies that the test rejects the null at 
the 1% level, ** at the 5% level, and * at the 10% level. The first three columns use quarterly HPI from 1980Q1 to 2016Q4;  the first regression includes all of 
the 21 following areas;  the second regression is for metro areas with supply elasticity less than 0.9, more specifically including LA, Oakland, Oxnard, San Diego, 
San Francisco, and Santa Maria; and the third regression is for the remaining 15 metro areas. Column 4 to Column 6 use annual HPI from 1980 to 2016, and the 
last three columns use biannual data from 1980 to 2016. 

 

 

 

 

  



 

48 
 

 

Table 7: Panel Regression of Construction Diffusion Equation with San Jose as a Dominant Region (1997Q1-2015Q4) 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

VARIABLES Quarterly 
All Metro 

Quarterly 
Inelastic 
Metro 

Quarterly 
Elastic 
Metro 

Annual 
All Metro 

Annual 
Inelastic 
Metro 

Annual 
Elastic 
Metro 

Biannual 
All 

Metro 

Biannual 
Inelastic 
Metro 

Biannual 
Elastic 
Metro 

          
EC1 -0.041*** 0.020 -0.042*** -0.10*** 0.15 -0.11*** -0.028 -0.26 -0.024 
 (0.0039) (0.022) (0.0045) (0.034) (0.19) (0.039) (0.090) (0.52) (0.10) 
EC2 0.044** -0.066** 0.058** 0.15 -0.16 0.15 0.91* 0.77 1.11* 
 (0.020) (0.033) (0.025) (0.18) (0.33) (0.22) (0.51) (1.59) (0.66) 
D.price_leader 0.44** 0.39* 0.57** 1.23*** 0.92* 1.41** 1.58*** 1.19*** 1.71*** 
 (0.21) (0.22) (0.28) (0.43) (0.47) (0.59) (0.20) (0.25) (0.27) 
LD.price_leader -0.49 0.041 -0.80 -2.08*** -0.57 -2.81*** 0.039 0.58 -0.052 
 (0.39) (0.40) (0.52) (0.65) (0.65) (0.88) (0.55) (0.76) (0.77) 
L2D.price_leader -0.63 -0.57 -0.68 -0.062 0.27 -0.32 0.24 0.51 0.024 
 (0.43) (0.44) (0.57) (0.67) (0.68) (0.91) (0.50) (0.68) (0.74) 
L3D.price_leader -0.25 0.47 -0.60       
 (0.42) (0.43) (0.56)       
L4D.price_leader 0.22 0.23 0.21       
 (0.33) (0.35) (0.45)       
LD.Spatial_lnHP
I 

-0.063 -0.77 0.57 0.80 -1.44 2.15 0.92 1.55 1.18 

 (0.51) (0.58) (0.67) (1.11) (1.25) (1.51) (1.07) (2.27) (1.52) 
L2D.Spatial_lnH
PI 

0.46 0.028 0.66 1.31 -1.00 2.00 1.96* 1.40 2.52 

 (0.60) (0.67) (0.79) (1.12) (1.33) (1.49) (1.05) (1.54) (1.62) 
L3D.Spatial_lnH
PI 

0.39 -0.88 0.93       

 (0.61) (0.66) (0.81)       
L4D.Spatial_lnH
PI 

0.68 -0.47 0.93       

 (0.50) (0.55) (0.67)       
LD.lnHPI 1.16*** 0.88* 1.00** 1.94** 2.80** 1.26 -0.022 -1.24 -0.29 
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 (0.36) (0.52) (0.44) (0.82) (1.21) (1.03) (0.83) (1.84) (1.12) 
L2D.lnHPI 0.61 1.19** 0.38 -0.11 1.73 -0.47 -1.56** -1.52 -1.84* 
 (0.39) (0.55) (0.48) (0.88) (1.23) (1.09) (0.71) (1.25) (1.04) 
L3D.lnHPI 0.20 0.57 0.063       
 (0.39) (0.54) (0.48)       
L4D.lnHPI -0.078 1.32*** -0.40       
 (0.36) (0.50) (0.45)       
Constant 0.22*** 0.14*** 0.25*** 0.84*** 0.51*** 0.95*** 1.10*** 0.73*** 1.24*** 
 (0.0043) (0.0046) (0.0059) (0.039) (0.043) (0.054) (0.11) (0.13) (0.14) 
          
Observations 1,575 450 1,125 399 114 285 189 52 137 
R-squared 0.351 0.387 0.366 0.324 0.386 0.338 0.322 0.449 0.318 
Number of 
cbsa_md 

21 6 15 21 6 15 21 6 15 

Metro FE YES YES YES YES YES YES YES YES YES 
Notes: This table reports estimates based on the price equations 100 ∗ Δ𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 = 𝜙𝜙�0� 𝑝𝑝0,𝑡𝑡−1 − 𝛽𝛽𝑖𝑖𝑝𝑝𝑖𝑖,𝑡𝑡−1 − 𝛾𝛾𝑖𝑖𝑡𝑡� + 𝜙𝜙�𝑠𝑠� 𝑝𝑝𝑖𝑖 ,𝑡𝑡−1 − 𝜔𝜔𝑖𝑖𝑝̅𝑝 𝑖𝑖,𝑡𝑡−1𝑠𝑠 � + 𝑎𝑎�𝑖𝑖 + ∑ 𝑎𝑎𝑙𝑙Δ 𝑝𝑝𝑖𝑖𝑖𝑖−𝑙𝑙4

𝑙𝑙=1 +
∑ 𝑏𝑏�𝑙𝑙Δ𝑝̅𝑝 𝑖𝑖,𝑡𝑡−𝑙𝑙𝑠𝑠4
𝑙𝑙=1 + ∑ 𝑐̃𝑐𝑙𝑙 Δ𝑝𝑝0,𝑡𝑡−𝑙𝑙

4
𝑙𝑙=0 + 𝜀𝜀𝑖̃𝑖𝑖𝑖 , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2, … ,𝑁𝑁.  The dominant area is excluded in this panel regression. Variable D. price_leader (Δ𝑝𝑝0,𝑡𝑡 ) is the 

contemporaneous price changes in San Jose, and L𝑙𝑙D.price_leader (Δ𝑝𝑝0,𝑡𝑡−𝑙𝑙 ) is the lagged price changes of order 𝑙𝑙  in San Jose for 𝑙𝑙=1, 2, 3, 4. Variable 
L𝑙𝑙D.Spatial_lnHPI (Δ𝑝̅𝑝 𝑖𝑖,𝑡𝑡−𝑙𝑙𝑠𝑠 ) is the lagged price changes of order 𝑙𝑙 of the neighbor of metro area 𝑖𝑖 for 𝑙𝑙=1, 2, 3, 4. Variable L𝑙𝑙D.lnHPI (Δ𝑝𝑝𝑖𝑖 ,𝑡𝑡−𝑙𝑙) is the lagged 
price changes of order 𝑙𝑙  in metro area i for 𝑙𝑙 =1, 2, 3, 4. “EC1”, “EC2”, “D.price_leader” (Leader contemporaneous effects), “LD.price_leader”—
“ L4D.price_leader” (Leader lag effects) , “LD.Saptial_lnHPI”—“ L4D. Saptial_lnHPI” (Neighbor lag effects), “LD. lnHPI”—“ L4D. lnHPI” (Own lag effects),  
relate to estimates of 𝜙𝜙�0, 𝜙𝜙�𝑠𝑠, 𝑐̃𝑐0 , 𝑐̃𝑐1 − 𝑐̃𝑐4 ,  𝑏𝑏�1 − 𝑏𝑏�4 , and 𝑎𝑎�1 − 𝑎𝑎�4 , respectively. Standard errors are in the parenthesis. *** signifies that the test rejects the null at 
the 1% level, ** at the 5% level, and * at the 10% level. The first three columns use quarterly HPI from 1997Q1 to 2015Q4;  the first regression includes all of 
the 21 following areas;  the second regression is for metro areas with supply elasticity less than 0.9, more specifically including LA, Oakland, Oxnard, San Diego, 
San Francisco, and Santa Maria; and the third regression is for the remaining 15 metro areas. Column 4 to Column 6 use annual HPI from 1997 to 2015, and the 
last three columns use biannual data from 1997 to 2015.  
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1 Introduction

In this paper, we study estimation and a test of cointegration relations between an ob-

served integrated variable and some latent integrated factors. Usually, cointegration

analysis is on observable integrated series to explore possible long run equilibrium rela-

tions. Cointegration relations between an integrated variable and some latent unobserved

integrated factors have been understudied, but the need of this study is highlighted in the

recent development in the literature of forecasting under the nonstationary setting with

cointegration and large dynamic factor model involved.

One motivation of considering cointegration relations with latent integrated factors

is to find the most relevant long run equilibrium information through dimension reduc-

tion. Under the case when the number of integrated series is large and there is no clear

economic theory on the long run equilibrium relation between the series of interest and the

large panel of integrated series, latent factors can work as an efficient way to summarize

the pervasive source of nonstationarity in the large panel, which may help to explain the

series of interest better in the long run. Also, cointegration relations between the series

of interest and the latent factors of this large panel could be estimated much more easily

because of the much smaller number of series involved. Another motivating examples

is the diffusion index forecasts with integrated (or I(1)) variables, where the forecasting

equation is in the form of an error correction model (ECM) and there is a need to estimate

the error correction (hereafter EC) term. Estimating the EC term is basically estimat-

ing the cointegration regression between the variable of interest and the latent diffusion

index.

This idea of diffusion index forecasts in which covariability in a large number of

economic variables can be modeled by a relatively few number of unobserved latent vari-

ables (the latter also known as diffusion indexes) is appealing and has proved to be useful

in dealing with this high-dimensional problem (see Stock and Watson (1998), (2002a),

(2002b)). Most of the diffusion index forecasts have been done in a stationary setting
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by transforming integrated series into stationary series, but most economic time series

frequently exhibit characteristics that are widely believed to be intrinsically nonstationary.

Cointegration among some integrated macroeconomic variables may help with forecasts

by adding long-run information into the model. Transforming integrated series into sta-

tionary series may throw useful long run information away and result in over-differenced

equations.

The Factor-augmented Error Correction Model (FECM) introduced by Banerjee and

Marcellino (2009) is an extension of the diffusion index forecasts to I(1) variables with

possible cointegration relation taken into account. By adding an cointegration relation

to the dynamic factor models and modeling the factors jointly with a limited set of

economic variables of interest from the large dataset, the FECM method have been shown

to improve over both the Error Correction Model (ECM), by relaxing the dependence

of cointegration analysis on a small set of variables, and the Factor-augmented Vector

Autoregression (FAVAR, Bernanke, Boivin, and Bernanke et al., 2005), by allowing for the

inclusion of error correction terms in the equations for the key variables under analysis.

Further studies in Banerjee, Marcellino, and Masten (2014a, 2014b) show that the FECM

generally offers a higher forecasting precision relative to the FAVAR.

However, in the above studies of FECM, the authors outline their underlying data

generating process (DGP) using the true latent factors, while their estimation processes

are based on estimated factors. It is well known that estimated factors involve estimation

errors even under a stationary setting (Stock and Watson, 1998; Bai and Ng, 2002, Bai,

2003). In models with weak stationary factors, estimated factors may be very noisy

and may fail to provide useful information for the purpose of forecasting. However, as

long as the latent factors embed strong signals in the large panel of data and could be

consistently estimated, the estimation errors in the factors are negligible and inference for

factor-augmented regressions could be conducted as usual as shown in Bai and Ng (2006).

Based on results in Bai (2003), Bai and Ng (2006) show that the least squares estimators
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obtained from factor-augmented regressions are consistent with usual converging speeds

and are asymptotically normal, given that signals embedded in factors are strong and

could be consistently estimated.

For large panels of integrated series, estimation errors in latent integrated factors

could be substantial given the fact that estimators of the integrated factors are usually

constructed as partial sums of the principal component estimators to a first-differenced

panel. No theoretical examination has been undertaken to show that the estimation errors

in the estimated integrated factors are negligible and thus to show that the usage of

estimated integrated factors for the cointegration estimation and the factor-augmented

error correction model estimation are valid. In this paper, we try to fill this gap by

developing asymptotic theories for estimators of the cointegration regression between

an integrated variable and some latent factors. Given that the latent integrated factors

are strong and could be consistently estimated, our results indicate that the direct least

squares estimator of the cointegration relation based estimated factors are consistent. This

will provide theoretical justification for the usage of estimated factors in the estimation

of FECM. We also show that given the factors are consistently estimated the traditional

residual-based cointegration tests between the integrated variable and these latent factors

also work as usual.

As stated above, the cointegration estimation considered in this paper involves a

generated regressor issue. Pagan (1984) provides extensive discussions on situations when

regressions involve generated regressors from another regression, and provides results on

the consistency and the efficiency of two-step estimators as compared to joint estimators

of the two regressions. The analysis in Pagan (1984) is quite classic in the sense that

regressors are all stationary and the first-step estimations of the two-step estimators

are usually least squares estimations. In the cointegration regression considered in this

paper, we also use a two-step procedure, with estimating the latent factors in the first

step and estimating the cointegration regression using the estimated factors in the second
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step. The main difference from Pagan (1984) is that the main regression we focus on

is a cointegration regression with integrated regressors and the factor analysis in our

first step can not be treated as a least squared regression given the factor model we are

considering. And given the nature of the large dimensional factor model, a joint estimation

of the factor model and the cointegration regression seems impossible and thus we do not

have a benchmark to infer the efficiency of our two-step estimators. Hence, in this paper,

we focus on the consistency and inference of the cointegration relation estimator using

generated factors from a large panel of integrated series.

The factor model this paper assumes is a more realistic nonstationary large-dimension

factor model which allows for possible I(1) idiosyncratic components as in Bai and Ng

(2004). The factor model in the current FECM literature, such as in Banerjee and Mar-

cellino (2009), only allows for stationary idiosyncratic components, imposing a large

number of cointegration relations in the large-dimension factor model. This corresponds

to the factor model considered in Bai (2004), which seems unrealistic in the real world

given the fact that many macroeconomic variables are not cointegrated. Hence, this paper

adopts the factor model in Bai and Ng (2004), and try to estimate and test the cointe-

gration relation between these pervasive sources of nonstationarity in this large panel

of integrated series and another integrated variable of interest. The latent nonstation-

ary factors are allowed to cointegrate to some extent, which is equivalent to allowing

for stationary common factors in the factor model. Also, the integrated variable of in-

terest could be one series outside of the large panel dataset from which the factors are

extracted.

Given the large-dimension nonstationary factor model and the estimates of the

latent integrated factors in Bai and Ng (2004), the next step is to explore the asymptotic

properties of the estimates of the cointegration relation between the integrated variable

of interest and the latent factors using estimated factors. Another extension this paper

highlights is that we allow for the correlation between the latent regressors and the error
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term in the cointegration equation of interest, which implies endogeneity in the latent

regressors but is often assumed missing in previous literature. To account for potential

serial correlation and endogeneity in the cointegration regression of interest, we adopt the

fully modified least squares (FM-OLS) estimation of the cointegration equation developed

in Phillips and Hansen (1990) and Phillips (1995).

As shown in Phillips and Durlauf (1986), for regressions with integrated processes,

the asymptotic theory for conventional tests and estimates involves major departures

from classical theory and raises new issues of the presence of nuisance parameters in the

limiting distribution theory. To get nuisance parameter-free asymptotic distributions of es-

timates for regressions with integrated processes, Phillips and Hansen (1990) and Phillips

(1995) propose fully modified least squares (FM-OLS) regression, based on which the

asymptotic distribution of Wald test statistic is shown to involve chi-squared distributions.

These FM-OLS estimates account for serial correlation and endogeneity in the regressors.

We follow the FM-OLS regression of Phillips and Hansen (1990) and Phillips (1995) to get

estimates of the cointegration coefficients with asymptotic distributions free of nuisance

parameters, which in turn facilitate hypothesis testing. Nonstationarity in the latent re-

gressors does not affect the consistency of estimates even when the latent regressors are

correlated with error terms.

In some sense, our setting up is similar to the cointegrating regressions with messy

regressors considered in Miller (2010). In Miller (2010), the integrated regressors are messy

in the sense that the data may be mismeasured, missing, observed at mixed frequencies,

or may have mildly nonstationary noise. It is shown in Miller (2010) that canonical coin-

tegrating regression (CCR) is valid even when the error term is not covariance stationary.

Just like FM-OLS, CCR is also a covariance-based technique used to estimate the cointe-

grating vector of a prototypical cointegrating regression (Park 1992). In the cointegrating

regression considered in our paper, we can think of the integrated factors as the messy

regressors with measurement errors. The measurement errors (or the estimation errors) of
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the latent factors are shown to be covariance-stationary in Bai and Ng (2004). Thus there

is no need to resort to the CCR and we can get by using the FM-OLS, which requires

covariance stationary errors.

In short, our estimation and testing of the cointegration relation between an observed

nonstationary series and some latent factors works under a two-step process. The first step

is to estimate nonstationary factors from the large nonstationary panel dataset consis-

tently following the method in Bai and Ng (2004). The second step is to get the FM-OLS

estimates of the cointegration relation between the integrated variable of interest and the

latent integrated factors using the estimated factors from the first step. We derive the

asymptotic properties of the FM-OLS estimates of the cointegration coefficients, which

allows for possible hypothesis testing and inferences. Traditional residual-based cointe-

gration tests with estimated factors are shown to have usual limiting distributions given

factors are estimated consistently and thus could be used in empirical work without doubt.

In the Application section, we propose the Factor-Augmented Diffusion Index (FADI)

forecasting method by adding an error correction term into the traditional diffusion index

forecasts of Stock and Watson (2002a). In the last section, we use a large panel data set

of US macroeconomic variables from Stock and Watson (2005) to study possible cointe-

gration relations among the series in the large panel and the factors, and show that the

FADI method with consistently estimated factors could improve over the FECM method

in Banerjee and Marcellino (2009) for certain variables under study in short forecasting

horizons.

The paper proceeds as follows. Section 2 introduces the model and states the under-

lying assumptions. Section 3 derives the properties of the FM-OLS estimates and their

asymptotic distributions. Section 4 discusses the cointegration test among an observable

nonstationary series and a set of possibly cointegrated nonstationary latent factors. The

Factor-Augmented Diffusion Index (FADI) forecasting method is discussed in Section

5, and an empirical example on the nonstationary panel of Stock and Watson (2005) is
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discussed in Section 6. Section 7 concludes the paper and summarizes its main results.

Derivations and proofs are given in the Appendix.

The notation and terminology that we use in the paper are taken from Phillips

(1995) and Bai ang Ng (2004). We define the matrix Ω =
∑∞

k=−∞E(uku
′
0) as the long-

run variance matrix of the covariance stationary time series ut and write lrvar(ut) = Ω.

Similarly, we designate long-run covariance matrices as lrcov(·), and we use lrcov+(·) to

signify one-sided sums of covariance matrices, e.g., ∆ =
∑∞

k=0E(uku
′
0), which is called the

one-sided long-run covariance. BM(Ω) denotes a vector Brownian motion with covariance

matrix Ω, and we usually write integrals like
∫ 1

0
B(s)ds as

∫ 1

0
B or simply

∫
B when

there is no ambiguity over limits. The notation yt ≡ I(1) signifies that the time series

yt is integrated of order one, so that ∆yt ≡ I(0). In addition, the inequality “ > 0”

denotes positive definite when applied to matrices, and the symbols “
d−→ ”, “

p−→ ”, “a.s.”,

“ ≡ ” and “ := ” signify convergence in distribution, convergence in probability, almost

surely, equality in distribution, and notational definition, respectively. We use ||A|| to

signify the matrix norm (tr(A
′
A))1/2, |A| to denote the determinant of A, vec(·) to stack

the rows of a matrix into a column vector, [x] to denote the largest integer ≤ x, and all

limits in the paper are taken as the sample size (n, T ) → ∞, except where otherwise

noted.

2 Model and Assumptions

In this paper we are interested in estimating and testing the cointegration relation be-

tween an observed I(1) variable and latent I(1) factors illustrated in the following equa-

tion:

yt = α
′
Ft + εt, (1)

where yt is an integrated scalar series, Ft is an r-dimensional vector of integrated latent

factors, and εt is a stationary scalar. The motivating example for the above cointegration
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analysis is the diffusion index forecasts with I(1) variables, where the forecasting equation

is in the form of an ECM model as follows:

∆yt = γβ
′

 yt−1

Ft−1

+ A1

 ∆yt−1

∆Ft−1

+ ...+ Aq

 ∆yt−q

∆Ft−q

+ εt. (2)

In the above forecasting equation, the key component is the EC term, β
′
(yt−1, F

′
t−1)

′
. Since

the factors are unobserved, estimated factors are used to form forecasts in empirical appli-

cations. However, there is no theoretical work to justify the usual estimation of cointegra-

tion regressions and the above factor-augmented error correction model using estimated

factors. This paper tries to fill this gap by studying the direct estimation of the cointe-

gration relation in equation (1) and discuss the cointegration test between the integrated

variable of interest yt and the latent vector of integrated factors Ft.

The vector Ft is unobservable, but could be estimated from the following factor model

as in Bai and Ng (2004):

Xit = ci + βit+ λ
′

iFt + eit, (3)

(I − L)Ft = C(L)ηt, (4)

(1− ρiL)eit = Di(L)εit (5)

where Xit (i = 1, 2, ..., n; t = 1, 2, ..., T ) is a large set of integrated observable variables,

C(L) =
∑∞

j=0 CjL
j and Di(L) =

∑∞
j=0DijL

j. The factor, Ft, is an r dimensional vector of

random walks. We assume that there are r0 cointegration relations and r1 common trends

among these I(1) factors, with r = r0 + r1. In the above factor model, the idiosyncratic

components are allowed to be nonstationary. If ρi < 1, the idiosyncratic error eit is sta-

tionary, while if ρi = 1, the idiosyncratic error eit is I(1). The possibility of nonstationary

idiosyncratic components in the above model allows us to model difference sources of non-

stationarity in Xit. If Ft is nonstationary but eit is stationary, the nonstationarity of Xit is
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due to a pervasive source. On the other hand, if Ft is stationary but eit is nonstationary,

then the nonstationarity of Xit is from a series-specific source. The PANIC method-Panel

Analysis of Nonstationary in Idiosyncratic and Common components developed in Bai

and Ng (2004) can detect whether the nonstationarity in a series is pervasive, or variable-

specific, or both. Also, Bai and Ng (2004) have shown how to estimate the latent factors

by the method of principal components and determine the number of common trends r1

when neither Ft nor eit is observed.

Let M <∞ be a generic positive number, not depending on T or n. The factor model

satisfies the following assumptions as in Bai and Ng (2004):

Assumption 1 (i) For nonrandom λi, ‖λi‖ ≤ M ; for random λi, E‖λi‖4 ≤ M ; (ii)

1
n

n∑
i=1

λiλ
′
i

p→ ΣΛ > 0 as n→∞ for some (r × r) positive definite non-random matrix ΣΛ.

Assumption 2 (i) ηt ∼ iid(0,Ση), E‖ηt‖
4 ≤ M ; (ii) var(∆Ft) =

∑∞
j=0CjΣηC

′
j > 0; (iii)∑∞

j=0 j‖Cj‖ < M ; and (iv) C(1) has rank r1, 0 ≤ r1 ≤ r.

Assumption 3 (i) For each i, εit ∼ iid(0, σ2
εi), E|εit|8 ≤ M ,

∑∞
j=0 j|Dij| < M , ω2

εi =

Di(1)2σ2
εi > 0; (ii) E(εitεjt) = πij with

∑N
i=1 |πij| ≤ M for all j; (iii) E|N−1/2

∑N
i=1[εisεit −

E(εisεit)]|4 ≤M , for every (t, s).

Assumption 4 The errors εit, {ηt}, and the loadings {λi} are three groups of mutually

independent groups.

Assumption 5 E‖F0‖ ≤M , and for every i = 1, 2, ..., n, E|ei0| ≤M .

Assumption 1 on the factor loadings is to guarantee that the factor structure is

identifiable. Assumption 2 assumes that the short run variance of ∆Ft is positive definite,

which guarantees that the principal component analysis of the first-differenced factor

model work. However, the long-run covariance of ∆Ft can be reduced rank to permit

linear combinations of I(1) factors to be stationary. When there are no stochastic trends,
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r1 = 0 and C(1) is null because ∆Ft is over-differenced. On the other hand, when r1 > 0,

we can rotate the original Ft space by an orthogonal matrix A such that the first r1

elements of AFt are integrated, while the final r0 elements are stationary. We can denote

this rotation by A = [A1, A2]′, where A1 is r × r1 satisfying A′1A1 = Ir1 , and A′1A2 = 0.

Under Assumption 3, (1 − ρiL)eit (with ρi possibly different across i) is allowed to be

weakly serially and cross-sectionally correlated. Assumption 4 assumes εit, {ηt}, and

{λi} are mutually independent across i and t, while Assumption 5 is an initial condition

assumption imposed commonly in unit root analysis.

The factor estimates are based on the application of principal component analysis

to the first-differenced data as in Bai and Ng (2004). Normally, the principal component

method is applied to data in level. When the idiosyncratic term eit is stationary, the

principal components estimators for Ft and λi have been shown to be consistent when

all the factors are I(0) (Bai and Ng, 2002) and when some or all of them are I(1) (Bai,

2004). But when eit has a unit root, a regression of Xit on Ft is spurious, and the esti-

mates of Ft and λi based on data in level will not be consistent. The method of principal

components to the first-differenced data in Bai and Ng (2004) could obtain estimates of

Ft and eit that preserve their orders of integration, both when eit is I(1) and when it is

I(0).

To be precise, suppose the data in level is denoted by X, a data matrix with T time-

series observations and n cross-section units. Taking the first difference of X to yield

x, a set of (T − 1) × n stationary variables, we could get the first-differenced factor

model:

xit = λ
′

ift + zit, (6)

where xit = ∆Xit, ft = ∆Ft, and zit = ∆eit. Let f = (f2, f3, ..., fT )′ and Λ = (λ1, ..., λN)′.

The principal component estimator of f , denoted f̂ , is
√
T − 1 times the r eigenvectors
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corresponding to the first r largest eigenvalues of the (T − 1) × (T − 1) matrix xx′. Under

the normalization f̂ ′f̂/(T − 1) = Ir, the estimated loading matrix is Λ̂ = x′f̂/(T − 1).

Define for t = 2, ..., T ,

F̂t =
t∑

s=2

f̂s. (7)

According to Bai and Ng (2004), under Assumptions 1-5, there exists a matrix H with

rank r such that as (n, T )→∞,

max
1≤t≤T

‖F̂t −HFt +HF1‖ = Op(T
1/2n−1/2) +Op(T

−1/4).

Without loss of generality, we assume that at t = 1, F1 = 0. Then we have max1≤t≤T ‖F̂t −

HFt‖ = Op(T
1/2N−1/2) + Op(T

−1/4). This result implies that F̂t is uniformly consistent for

HFt (up to a shift factor HF1) provided T/n→ 0 as (n, T )→∞.

Since the factor estimator is estimating a rotation of the original factors, we assume

that there exist an orthogonal matrix A such that the first r1 elements of AHFt are

integrated, while the final r0 elements are stationary. One such rotation is given by

A = [A1, A2]′, where A1 is r × r1 satisfying A′1A1 = Ir1 , and A′1A2 = 0. We define

F1t = A′1HFt to be the r1 common stochastic trends and F2t = A′2HFt to be the r0

stationary elements resulting from such a rotation.

In this paper, we consider the possibility that nonstationary regressors, the unob-

servable regressors Ft, may be endogenous in the regression equation (1). As in Phillips

(1995), which studies the fully modified least squares estimates to account for serial cor-

relation effects and for the endogeneity in the regressors, we allow for the innovations of

Ft to be serially correlated and possibly correlated with the idiosyncratic terms in the

regression equation (1). Recall from the factor model (3)-(5), we have

∆F1t = (I − L)A′1HFt = A′1HC(L)ηt := u1t, (8)
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F2t = A′2HFt = A′2H(F0 +
t∑

s=1

C(L)ηs) := u2t, (9)

Let ut = (u
′
1t, u

′
2t)
′
, vt = (εt, u

′
t)
′

= (εt, u
′
1t, u

′
2t)
′
, and ψt = εt ⊗ u2t. As in

Phillips (1995), we assume that vt is a linear process that satisfies the following assump-

tion.

Assumption 6 (EC–Error Condition)

(a) vt = C(L)εt =
∑∞

j=0 Cjεt−j,
∑∞

j=0 j
a||Cj|| <∞, |C(1)| 6= 0 for some a > 1.

(b) εt is i.i.d. with zero mean, variance matrix Σε > 0 and finite fourth order

cumulants.

(c) E(ψt,j) = E(εt+j ⊗ u2t) = 0 for all j ≥ 0.

Assumption 6 (EC) ensures the following functional central limit theorem (FCLT) for

vt to hold:

1√
T

[Tr]∑
t=1

vt
d→ B(r) ≡ BM(Ω), for r ∈ [0, 1],

where Ω = C(1)ΣεC(1)
′

is the long-run variance matrix of vt. We use Σ = E
(
v0v

′
0

)
to

denote the variance matrix of vt. The variance matrix Σ and long-run variance matrix Ω

of vt are partitioned into cell submatrices Σij and Ωij (i, j=0, 1, 2) conformably with vt.

The Brownian motion B(r) can be partitioned into cell vectors Bi(r) (i=0, 1, 2) similarly.

We also have

1√
T

T∑
t=1

ψt,0
d→ N(0,Ωψψ), Ωψψ =

∞∑
j=−∞

E(εtε
′

t+j ⊗ u2tu
′

2t+j).

The one-sided long-run covariances are defined as

Λ =
∞∑
k=1

E
(
vkv

′

0

)
,
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and

∆ = Σ + Λ =
∞∑
k=0

E
(
vkv

′

0

)
,

which can also be partitioned into cell submatrices conformably with vt.

The approach we are following requires the estimation of both Ω and ∆, which

is typically achieved by kernel smoothing of the component sample autocovariances.

Since factors are unobservable, the sample autocovariances depend on estimated fac-

tors. Kernel estimates of Ω and ∆ take the following general form (see, e.g., Priestley

(1981))

Ω̂ =
T−1∑

j=−T+1

ω(j/K)Γ̂(j), and ∆̂ =
T−1∑
j=0

ω(j/K)Γ̂(j), (10)

where ω(·) is a kernel function and K is a bandwidth parameter, with truncation in the

sums given above occurs when ω(j/K) = 0 for |j| ≥ K. The sample covariances in (10) are

given by

Γ̂(j) = T−1
∑

1≤t,t+j≤T

v̂t+j v̂
′

t,

where v̂t =
(
ε̂t, û

′
1t, û

′
2t

)′
, û1t = F̂1t − F̂1,t−1 = A

′
1∆F̂t, û2t = F̂2t = A

′
2F̂t, and ε̂t is the

residual from a preliminary least squares regression of yt on F̂t. Again, Ω̂ and ∆̂ can be

partitioned into cell submatrices conformably with vt.

We also define uat = (u
′
1t,∆u

′
2t)
′

= AHft, where the subscript “a” is denoting

the elements corresponding to u1t and ∆u2t, which occur after the rotation A is taken.

Similarly, the long-run covariance matrices Ω0a, Ωaa, ∆0a, ∆aa and their kernel estimates

are defined in terms of the autocovariances and sample autocovariances of uat. As pointed

out in Phillips (1995), the submatrix of Ωaa corresponding to the difference ∆u2t, i.e.

Ω∆u2∆u2 , is a zero matrix, since ∆u2 is an I(-1) process and therefore has zero long-run

variance. By the same reasoning, the submatrix of Ω0a, viz. Ω0∆u2 , is also a zero matrix.

The presence of some stationary components (viz. F2t) in the regression equation (1) leads

to these degeneracies in the long-run covariance matrices Ω0a and Ωaa. One thing to keep
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in mind is that since we assume that the rotation matrix A is unknown beforehand as

in Phillips (1995), the kernel estimates that the Fully-Modified approach relies on, Ω̂0f

and Ω̂ff , are kernel estimates of the long-run covariances Ω0f = lrcov(εt,∆HFt) and

Ωff = lrcov(∆HFt,∆HFt). These kernel estimates and long-run covariances are the same

as those of Ω0a and Ωaa after transformation by A. Because of the degeneracies in the

long-run covariance matrices, the limit behavior of the kernel estimates of these matrices

needs to be handled carefully. (In the proof, we borrow some results from Lemma 8.1 in

the Appendix of Phillips (1995).)

We use the same class of admissible kernels as in Phillips (1995).

Assumption 7 (KL–Kernel Condition) The kernel function ω(·): R → [−1, 1] is a twice

continuously differentiable even function with

(a) ω(0) = 1, ω
′
(0) = 0, ω

′′
(0) 6= 0; and either

(b) ω(x) = 0 for |x| ≥ 1, with lim|x|→1ω(x)/(1− |x|)2=constant, or

(b’) ω(x) = O(x−2), as |x| → 1.

Under Assumption 7 (KL) we have

lim
x→0

(1− ω(x))/x2 = −(1/2)ω
′′
(0),

and thus the characteristic exponent (r) of the kernel ω(x) as defined in Parzen (1957)

is r = 2. Under Assumption 7 (KL) with (a) and (b) come the commonly used Parzen

and Tukey-Hanning kernels, and under Assumption 7 (KL) with (a) and (b
′
) comes the

Bartlett-Priestley or quadratic spectral kernel (Priestley 1981, p.463).

The bandwidth expansion rate of K = K(T ) as T → ∞ are defined according to

Phillips (1995):

Definition 1 (expansion rate order symbol Oe): For some k > 0 and for K monotone
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increasing in T we write

K = Oe(T
k) if K ∼ cT (T k) as T →∞,

where cT is slowly varying at infinity (i.e., cTx/cT → 1 as T →∞ for x > 0).

Using this notation we outline a set of conditions on the bandwidth expansion rate as

T →∞.

Assumption 8 (BW–Bandwidth Expansion Rate). The bandwidth parameter K in the

kernel estimates (10) has an expansion rate of the form

BW(i). K = Oe(T
k) for some k ∈ (1/4, 2/3);

i.e., K ∼ cT (T k) for some slowly varying function cT and thus K/T 2/3 + T 1/4/K → 0 and

K4/T →∞ as T →∞. Some of our results require other bandwidth expansion rates which

we designate as

BW(ii). K = Oe(T
k) for some k ∈ (0, 2/3),

BW(iii). K = Oe(T
k) for some k ∈ (1/4, 1),

BW(iv). K = Oe(T
k) for some k ∈ (0, 1).

As will be shown in Theorem 1 of this paper, Assumption 8 (BW) is not enough to

guarantee the consistency of the kernel estimates when the regressors involve estimation

errors. In the estimated factor context, an extra condition requiring that the estimation

errors in the factors do not accumulate at a rate faster than the expansion rate of the

bandwidth K should be imposed.
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3 Inference with Estimated Factors

3.1 OLS estimation

Recall the regression equation given in (1):

yt = α
′
Ft + εt.

Let δ̂ be the least squares estimates of the regression of yt on F̂t (given in equation (7))

for t = 1, ..., T . The OLS estimates can be written as δ̂ = (F̂ ′F̂ )−1F̂ ′Y in which Y =

(y1, ..., yT )
′

and F̂ = (F̂1, ..., F̂T )
′
. Define δ = H−1′α. Denote ε = (ε1, ..., εT )

′
, F1 = FH

′
A1,

F2 = FH
′
A2, F̂1 = F̂A1, and F̂2 = F̂A2.

Lemma 1 Suppose Assumptions 1-5 and 6 (EC) hold. As (n, T )→∞, if T/
√
n→ 0,

(a) TA
′
1(δ̂ − δ) d→ (

∫
B1B

′
1)−1(

∫ 1

0
B1dB0 + ∆10),

(b)
√
TA

′
2(δ̂ − δ) d→ N(0,Σ−1

22 ΩψψΣ−1
22 ).

This lemma establishes the consistency of the feasible OLS estimator using estimated

factors and the different converging speeds of the nonstationary coefficient estimator and

stationary coefficient estimator. As observed in Vogelsang and Wagner (2014), when εt

is uncorrelated with u1t and hence uncorrelated with F1t, we have (i) ∆10 = 0, and (ii)

B0(r) is independent of B1(r). Because of the independence between B0(r) and B1(r) in

this case, the limiting distribution of TA
′
1(δ̂ − δ) is a zero mean Gaussian conditioning

on B1(r). Therefore, the t and Wald statistics for testing hypotheses about A
′
1δ have the

usual N(0, 1) and chi-squared limits when consistent robust standard errors are used to

handle the serial correlation in εt.

When the factors are endogenous, the limiting distribution of TA
′
1(δ̂ − δ) is non-

standard given the correlation between B0(r) and B1(r) and the presence of the nuisance

parameters in the vector ∆10. No asymptotic normal result can be obtained conditioning

on B1(r), and the asymptotic bias introduced by ∆10 make this limiting distribution more
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complicated. Inference is difficult in this situation because nuisance parameters cannot be

removed by simple scaling methods.

Phillips and Hansen (1990) and Phillips (1995) develop the FM-OLS estimator

to remove ∆10 and to deal with the correlation between B0(r) and B1(r) in the above

limiting distribution. The key component in this FM-OLS estimator is to construct a

stochastic process independent of B1(r) as follows:

B0·1 = B0 − Ω01Ω−1
11 B1 ≡ BM(σ2

00·1),

where σ2
00·1 = Ω00 − Ω01Ω−1

11 Ω10. This stochastic process is independent of B1(r) by

construction. Using B0·1(r), we can write

∫ 1

0

B1(r)dB0(r) + ∆10 =

∫ 1

0

B1(r)dB0·1(r) +

∫ 1

0

B1(r)dB
′

1(r)Ω−1
11 Ω10 + ∆10.

Because B1(r) and B0·1(r) are independent, we can show that
∫ 1

0
B1(r)dB0·1(r) is a zero

mean Gaussian mixture conditioning on B1(r). As is clear from the above expression, the

FM-OLS estimator rests upon two transformations, with one transformation removing

the term
∫ 1

0
B1(r)dB

′
1(r)Ω−1

11 Ω10 and the other removing ∆10. Because these terms depend

on Ω and ∆, the two transformations require estimates of Ω and ∆10. As shown in the

next section, when factors are latent and are estimated from the large panel of integrated

dataset, the consistency of the estimates of Ω and ∆10 require extra conditions on the

bandwidth expansion rate and the sample sizes T and n.

3.2 The FM-OLS estimation

As in Phillips (1995), the FM-OLS estimator given below is constructed by making

corrections for endogeneity and for serial correlation to the least squares estimator

δ̂ = (F̂
′
F̂ )−1F̂

′
Y . For the endogeneity correction, the variable yt is modified with the
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transformation

y+
t = yt − Ω̂0f̂ Ω̂

−1

f̂ f̂
∆F̂t = yt − Ω̂0f̂ Ω̂

−1

f̂ f̂
f̂t.

In this transformation, Ω̂0f̂ and Ω̂f̂ f̂ are kernel estimates of the long-run covariances

Ω0f = lrcov(εt,∆HFt) = lrcov(εt, Hft) and Ωff = lrcov(∆HFt,∆HFt) = lrcov(Hft, Hft)

taking forms

Ω̂0f̂ =
T−1∑

j=−T+1

ω(j/K)Γ̂0f̂ (j), and Ω̂f̂ f̂ =
T−1∑

j=−T+1

ω(j/K)Γ̂f̂ f̂ (j),

where Γ̂0f̂ (j) = T−1
∑

1≤t,t+j≤T ε̂t+j f̂
′
t , and Γ̂f̂ f̂ (j) = T−1

∑
1≤t,t+j≤T f̂t+j f̂

′
t , where f̂t

are the principal component estimates of factors of the first-differenced factor model and

ε̂t+j is the residual from a preliminary least squares regression of yt on F̂t. Recalling that

A∆HFt = (u
′
1t,∆u

′
2t)
′
= uat, we have

Ω̂0â = Ω̂0f̂A
′
, and Ω̂ââ = AΩ̂f̂ f̂A

′
,

where Ω̂0â =
∑T−1

j=−T+1 ω(j/K)Γ̂0â(j), Ω̂ââ =
∑T−1

j=−T+1 ω(j/K)Γ̂ââ(j), with Γ̂0â(j) =

T−1
∑

1≤t,t+j≤T ε̂t+jû
′
at, and Γ̂ââ(j) = T−1

∑
1≤t,t+j≤T ûa,t+jû

′
at, where ûat = Af̂t and ε̂t+j is

the residual from a preliminary least squares regression of yt on F̂t.

The purpose of the endogeneity correction is to deal with endogeneity in the regres-

sors Ft associated with any cointegrating links between yt and Ft. Since factors Ft are

unobservable, we use principal component estimates of the factors, F̂t, and estimated ût

to form this transformation. This highlights the major difference from the FM-OLS con-

sidered in Phillips (1995). As will be shown shortly, errors introduced by the estimation

of factors are negligible in the asymptotic distribution of the FM-OLS estimator provided

that the cross-sectional sample size n is large enough relative to the time series sample size

T and the bandwidth K asymptotically.
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The serial correlation correction term takes the form

∆̂+

f̂0
= ∆̂f̂0 − ∆̂f̂ f̂ Ω̂

−1

f̂ f̂
Ω̂f̂0, (11)

where ∆̂f̂0 and ∆̂f̂ f̂ are kernel estimates of the one-sided long-run covariances ∆f0 =

lrcov+(∆HFt, εt) = lrcov+(Hft, εt) and ∆ff = lrcov+(∆HFt,∆HFt) = lrcov+(Hft, Hft)

taking forms

∆̂f̂0 =
T−1∑
j=0

ω(j/K)Γ̂f̂0(j), and ∆̂f̂ f̂ =
T−1∑
j=0

ω(j/K)Γ̂f̂ f̂ (j).

This correction is to deal with the effects of serial covariance in the shocks u1t that

drive the nonstationary regressors F1t = A1
′HFt and any serial covariance between

the equation error εt and the past history of u1t. By the same taken as above, we

have

∆̂0â = ∆̂0fA
′
, and ∆̂ââ = A∆̂f̂ f̂A

′
.

Combining the endogeneity and serial correlation corrections we have the FM-OLS

regression formula

δ̂FM = (F̂
′
F̂ )−1(F̂

′
Y + − T ∆̂+

f̂0
).

As pointed out in Phillips (1995), the sample moment matrices of the data and their

orders of magnitude (which depend on the directions of stationarity and nonstationarity in

the regressors) are the keys in deriving a limit theory δ̂FM . Meanwhile, the behavior of the

kernel estimates ∆̂f̂0, ∆̂f̂ f̂ , Ω̂0f̂ , and Ω̂f̂ f̂ that appear in the correction terms of δ̂FM are

also in a need of special attention. The latter is especially important because the kernel

estimator Ω̂f̂ f̂ tends to a singular limit due to the fact that Ωf2f2 = A
′
1ΩffA1 = 0 (because

of the presence of stationary components (viz., F̂2t) in the regressors F̂t). The technical

Lemmas A.4, A.5, and A.6 in the Appendix enable us to take this singularity into account

in the asymptotic analysis and determine what impact it has on the asymptotic behavior
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of the estimator δ̂FM in both stationary and nonstationary directions. In this regard, the

bandwidth expansion rate of K turns out to be very important.

One more complexity this paper involves is that the regressors Ft are unobservable

and estimated from a factor model. The estimated factors innovations, ût, and the resid-

uals from a preliminary least squares regression of yt on F̂t, ε̂t, involve errors from the

estimation of the factors. So the fully modified transformations and the kernel estimates of

the long-run variance-covariance matrices involve estimation errors from the estimated fac-

tors. To guarantee the estimation errors in the factors do not contaminate the asymptotic

properties of the FM-OLS estimator, we need more strict restrictions on the bandwidth

expansion rate of K than in Phillips (1995), and more strict restrictions on the relative

expansion rate of the cross sectional and time series sample sizes n and T than in Bai and

Ng (2004).

The following theorem outlines our main results of the FM-OLS estimators when the

regressors are latent and estimated factors are used for estimation.

Theorem 1 Under Assumptions 1-5, 6 (EC), 7 (KL), and 8 (BW),

(a) under the assumption that K = Oe(T
k) for some k ∈ (0, 2/3), K

√
T/n → 0, and

T/
√
n→ 0 as (n, T )→∞, we have

TA
′

1(δ̂FM − δ)
d→ (

∫
B1B

′

1)−1

∫ 1

0

B1dB0·1;

(b) under the assumption that K = Oe(T
k) for some k ∈ (1/4, 2/3), K3/2

√
T/n → 0,

and T/
√
n→ 0 as (n, T )→∞,

√
TA

′

2(δ̂FM − δ)
d→ N(0,Σ−1

22 ΩψψΣ−1
22 ),

where B0·1 = B0 − Ω01Ω−1
11 B1 ≡ BM(σ2

00·1) in which σ2
00·1 = Ω00 − Ω01Ω−1

11 Ω10.

Notice that the assumption K = Oe(T
k) for some k ∈ (0, 2/3) as (n, T ) → ∞ is the
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same as in Phillips (1995) for the nonstationary coefficient estimates. However, we require

the extra condition that K
√
T/n → 0 in addition to the condition that T/

√
n → 0 as

(n, T ) → ∞. In Lemma 8.1 of Phillips (1995, p.1058), which shows the consistency of

the kernel estimates with observable regressors, the only requirement on the bandwidth

expansion rate is the one stated in Assumption 8 (BW). But with estimation errors in

the factors (converge at rate Op(
√
T/n)), the induced errors in the kernel estimates will

accumulate at rate Op(K
√
T/n). Thus in order to guarantee the consistency of the kernel

estimates, the extra restriction K
√
T/n → 0 should be imposed. In another words, using

estimated factors does not affect the consistency of the kernel estimates as long as the

estimation errors of the factors converge to zero fast enough relative to the bandwidth

expansion rate.

For the stationary coefficient estimates, the assumption K = Oe(T
k) for some k ∈

(1/4, 2/3) as (n, T )→∞ is tighter than that K = Oe(T
k) for some k ∈ (1/4, 1) as T →∞

in Phillips (1995). This tighter bandwidth expansion rate comes from the accumulation

of estimation errors in the factors across the summation of K sample covariances. Lemma

A.6 (b) gives the stationary coefficient correction more explicitly (and when it is scaled by

T 1/2), with the correction term in this case having magnitude Op(T
1/2/K2) + Op(1/

√
K) +

Op(T/
√
n) + Op(K

3/2/T ) + Op(K
3/2
√
T/n). The correction term is op(1) when the

bandwidth expansion rate K = Oe(T
k) satisfies 1/4 < k < 2/3 and K3/2

√
T/n → 0. To

guarantee the estimation error in the factors does not contaminate the limiting behavior

of the long-run covariance estimates, we do not allow the Bandwidth expansion rate to be

too large.

We also impose the more strict relative expansion rate K3/2
√
T/n → 0 for the

stationary FM estimates than for the nonstationary FM estimates (which only requires

K
√
T/n → 0, which is needed in the consistency of the long-run covariance estimates

Ω̂0â). This condition K3/2
√
T/n→ 0 could be written as

√
T 3/n→ 0 since Op(K

3/2/T ) =

op(1) under the assumption that K = Oe(T
k) satisfies 1/4 < k < 2/3. This bandwidth
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expansion rate along with the extra requirement that K3/2
√
T/n → 0 is different than

that in Phillips (1995) because of the extra error terms Op(T/
√
n) + Op(K

3/2/T ) +

Op(K
3/2
√
T/n) in the correction expression. These terms are the results of the estimation

error in the factors. In order to guarantee that the estimation error in the factors does not

contaminate the limiting behavior of the FM estimates, we need more strict requirement

on the relative rate of the bandwidth expansion rate, the cross sectional and time series

sample sizes, i.e., K3/2
√
T/n→ 0 as (n, T )→∞.

Assumptions 1-5 are concerned with the consistency of the principal component esti-

mates of the factors while Assumptions 6 (EC), 7 (KL), and 8 (BW) are concerned with

the consistency of kernel estimates of Ω and ∆. Bai and Ng (2004) shows that under As-

sumptions 1-5, the principal component estimates of the factors, F̂t, are consistent for the

true factors Ft up to a rotation H, and the time average of the squared estimation errors

converges to zero when as T/n → 0 as (n, T ) → ∞. When regressors are observable, As-

sumptions 6 (EC), 7 (KL), and 8 (BW) guarantee that the kernel estimates Ω̂ and ∆̂ are

consistent (Andrews 1991; Phillips 1995). When regressors are unobservable and estimated

factors are used to form the kernel estimates, additional restrictions should be imposed to

guarantee that estimation errors from the regressors do not impact the consistency of the

kernel estimates. The two extra conditions K
√
T/
√
n→ 0 and K3/2

√
T/
√
n→ 0 serve this

purpose since it indicates that estimation errors from the factors should converge to zero

fast enough relative to the expansion rate of the bandwidth K.

A consistent estimator for the asymptotic variance of δ̂FM is

ˆAvar(δ̂FM ) = (D−1
T F̂

′
F̂D−1

T )−1

 σ̂2
00·1
T 2

∑T−h
t=1 F̂1tF̂

′
1t 0

0 1
T

∑T−h
t=1 ε̂2

t F̂2tF̂
′
2t


· (D−1

T F̂
′
F̂D−1

T )−1 (12)

where DT = diag(TIr1 ,
√
TIr0), and σ̂2

00·1 = Ω̂00 − Ω̂01Ω̂−1
11 Ω̂10. Asymptotically pivotal

t and Wald statistics with N(0, 1) and chi-squared limiting distributions can then be
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constructed.

As discussed in Bai and Ng (2004), the factor model is unidentified because

α
′
LL−1Ft = α

′
Ft for any invertible matrix L. The above theorem is a result pertain-

ing to the difference between δ̂FM and the space spanned by δ. Consistency of the FM

estimators follows from the fact that the averaged squared deviations between F̂t and

HF̂t vanish as n and T both tend to infinity. Furthermore, having estimated endoge-

nous I(1) factors as regressors does not affect the consistency of the FM parameter esti-

mates.

4 Cointegration Tests

Before running the regression equation in (1), it is always desirable to test for the cointe-

gration between the observable nonstationary series yt and the set of possibly cointegrated

latent factors Ft in the first place. In this section, we discuss how to test for cointegration

between yt and Ft and establish the asymptotic properties of the residual-based cointegra-

tion test statistics. To test for cointegration relation between yt and Ft, we can simply run

the unit root test on the residuals from the OLS regression of yt on Ft. Since the factors

Ft are unobserved, we use the estimated factors F̂t instead.

Let δ̂ be the least squares estimates of the regression of yt on F̂t for t = 1, ..., T .

The OLS estimates can be written as δ̂ = (F̂ ′F̂ )−1F̂ ′Y in which Y = (y1, ..., yT )
′

and

F̂ = (F̂1, ..., F̂T )
′
. Define δ = H−1′α. Let ε̂t denote the residuals from the OLS regression

of yt on F̂t for t = 1, ..., T . Let ρ̂T be the least squares estimates of the regression of

ε̂t on ε̂t−1 for t = 2, ..., T , which could be written as ρ̂T =
∑T

t=2 ε̂tε̂t−1∑T
t=2 ε̂

2
t−1

. To derive the

asymptotic property of the unit root test under the null hypothesis that there exists a

unit root in εt, we have to modify the Assumption 6 (EC). Now define ut = (u
′
1t, u

′
2t)
′
,

vt = (∆εt, u
′
1t, u

′
2t)
′
= (∆εt, u

′
t)
′

and ψt = ∆εt⊗ u2t, in which u1t = ∆F1t = (I −L)A′1HFt =

A′1HC(L)ηt and u2t = F2t = A′2HFt = A′2H(F0 +
∑t

s=1 C(L)ηs). We assume that vt is a

linear process that satisfies the following assumption.
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Assumption 9 (EC’–Error Condition)

(a) vt = C(L)εt =
∑∞

j=0 Cjεt−j,
∑∞

j=0 j
a||Cj|| <∞, |C(1)| 6= 0 for some a > 1.

(b) εt is i.i.d. with zero mean, variance matrix Σε > 0 and finite fourth order

cumulants.

(c) E(ψt,j) = E(∆εt+j ⊗ u2t) = 0 for all j ≥ 0.

Again, Assumption 9 (EC’) ensures the validity of functional central limit theorem (FCLT)

for vt. Like the case in Assumption 6 (EC), we can partition the corresponding Brownian

motion B(r) into cell vectors Bi(r) (i=0, 1, 2). Under the null hypothesis that there exists

a unit root in εt, the OLS regression of yt on Ft is spurious and we have the following

lemma:

Lemma 2 Suppose Assumptions 1-5 and Assumption 9 (EC’) hold. As (n, T ) → ∞, if

T/n→ 0,

(a) A
′
1(δ̂ − δ) d→ (

∫
B1B

′
1)−1(

∫ 1

0
B1B0),

(b) A
′
2(δ̂ − δ) d→ Σ−1

22 (
∫ 1

0
dB2B0 + ∆20)− Σ−1

22 (
∫ 1

0
dB2B1 + ∆21)(

∫
B1B

′
1)−1(

∫ 1

0
B1B0).

As we can see from the above lemma, the OLS estimates are no longer consistent. In

the following, we follow Hamilton (1994, Chapter 19) closely to construct the cointegra-

tion test. Notice that the main difference of the test in this paper is that the cointegra-

tion regression involves estimation errors in Ft and thus we need to derive the limiting

distribution of the cointegration test statistics under the existence of these estimation

errors.

Let s2
T be the OLS estimate of the variance of the residual κt for the regres-

sion

ε̂t = ρε̂t−1 + κt, for t= 2, 3, ..., T,
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yielding

s2
T = (T − 2)−1

T∑
t=2

(ε̂t − ρ̂T ε̂t−1)2.

Let σ̂ρ̂T be the standard error of ρ̂T from the above regression:

σ̂2
ρ̂T

= s2
T ÷ {

T∑
t=2

ε̂2
t−1}.

Finally, let ĉj,T be the jth sample autocovariance of the estimated residu-

als:

ĉj,T = (T − 1)−1

T∑
t=j+2

κ̂tκ̂t−j for j=0, 1, 2,..., T-2

for κ̂t = ε̂t − ρ̂T ε̂t−1; and let the square of λ̂T be given by

λ̂
2

T = ĉ0,T + 2

q∑
j=1

[1− j/(q + 1)]ĉj,T ,

where q is the number of autocovariances to be used. The Phillips-Ouliaris Zρ statistic

(1987) can be calculated as:

Zρ,T = T (ρ̂T − 1)− 1/2{(T − 1)2σ̂2
ρ̂T
÷ s2

T}{λ̂
2

T − ĉ0,T}.

If yt and Ft are not cointegrated, then the regression of yt and Ft is a spurious re-

gression and ρ̂T should be close to 1. On the other hand, if ρ̂T is quite below 1, and the

calculation of Zρ,T yields a negative value with a large absolute value, then the null hy-

pothesis that yt and Ft are not cointegrated should be rejected. The following theorem

provides a formal statement of the asymptotic distributions of the above test statis-

tics.
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Theorem 2 Suppose Assumptions 1-5 and Assumption 9 (EC’) hold. As (n, T ) → ∞, if

T/n→ 0,

(a) T (ρ̂T−1)
d→

∫ 1
0 B̃0dB̃0+Λ0̃0̃∫ 1

0 B̃0B̃0
, where B̃0 = B0−(

∫ 1

0
B0B

′
1)(
∫
B1B

′
1)−1B1. The Brownian

motion B̃0 has long-run covariance matrix

Ω0̃0̃ = Ω00 − (

∫ 1

0

B0B
′

1)(

∫
B1B

′

1)−1Ω10 − Ω01(

∫
B1B

′

1)−1(

∫ 1

0

B1B0)

+ (

∫ 1

0

B0B
′

1)(

∫
B1B

′

1)−1Ω11(

∫
B1B

′

1)−1(

∫ 1

0

B1B0),

and one-sided long-run covariance

Λ0̃0̃ = Λ00 − (

∫ 1

0

B0B
′

1)(

∫
B1B

′

1)−1Λ10 − Λ01(

∫
B1B

′

1)−1(

∫ 1

0

B1B0)

+ (

∫ 1

0

B0B
′

1)(

∫
B1B

′

1)−1Λ11(

∫
B1B

′

1)−1(

∫ 1

0

B1B0).

(b) If q → ∞ as T → ∞ but q/T → 0, then the statistic Zρ,T satisfies Zρ,T
d→ Zn,

where

Zn =

∫ 1

0
B̃0dB̃0∫ 1

0
B̃0B̃0

=

∫ 1

0
W (r)dW (r)∫ 1

0
W (r)W (r)dr

,

in which W (r) is a one dimensional standard Brownian motion.

Result (a) implies that ρ̂T
p→ 1. When the regression of yt on Ft is spurious, the

estimated residuals will behave like a unit root process. The above results are similar to

Proposition 19.4 of Hamilton (1994, Chapter 19) except the fact that we allow for the

cointegration among the regressors Ft and we use the estimated factors F̂t to estimate the

cointegration regression and construct the cointegration test. Like the case in Proposition

19.4 of Hamilton (1994, Chapter 19), the limiting distribution of T (ρ̂T − 1) and Zρ,T de-

pend only on the number of stochastic explanatory factors in the cointegration regression

(r1). The above limiting distributions are derived under the case that there is no constant
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term appearing in the cointegration of yt on Ft. So the critical values for the Phillips Zρ

statistic can be found in Case 1 of Table B.8 in Hamilton (1994).

5 Application: Factor-Augmented Diffusion Index

Forecasts

So far, we have constructed the FM-OLS estimates of the cointegration regression of

an I(1) process yt and some latent possibly cointegrated nonstatioanry factors Ft, and

showed that the usual cointegration test works even under the case when the factors are

estimated. In this section, we discuss possible applications of the FM-OLS estimates

derived above to the Diffusion Index Forecasts literature and compare with forecasting

with factor-augmented error correction models literature.

Usually, macroeconomic forecasting with a large set of possible predictors is done

through adding factors to an otherwise standard forecasting model, such as “diffusion

index forecast model” (DI) of Stock and Watson (2002a) and factor-augmented vector

autoregressive (FAVAR) models of Bernanke, Boivin, and Bernanke et al. (2005). Under

these methods, the large panel of data are transformed in the first place to get estimates

of a much smaller number of stationary factors, and these estimated stationary factors

are added to the forecasting equation of a properly transformed variable of interest.

The estimation of the factors and the forecasting of the variable of interest are done

in a stationary setting with all of the nonstationarity has been taken care of by taking

logarithms, first-differencing or even twice differencing.

However, most macroeconomic variables are nonstationary in nature. To explore

the nonstationarity and cointegration relations in the forecasting of a small number of

nonstationary variables using a large panel of possibly nonstationary predictors, Banerjee

and Marcellino (2009) suggested using factors extracted from large nonstationary panels

in small-scale error correction models to control for long-run cointegration relations.
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To facilitate the comparison of different forecasting methods, we take the FECM from

Banerjee and Marcellino (2009) and repeat it here. Banerjee and Marcellino (2009) assume

that there are n I(1) variables which can be partitioned into the nA of major interest, xAt,

and the nB = n − nA remaining ones, xBt. The common trend specification of the factor

model could be written as: xAt

xBt

 =

 ΨA

ΨB

 ft +

 uAt

uBt

 , (13)

where ut = (u
′
At, u

′
Bt)

′
is an n-dimensional vector of stationary errors, and ft is a r-

dimensional vector of uncorrelated I(1) common stochastic trends. From the above

specification, all of the series in the panel, xt = (x
′
At, x

′
Bt)

′
, are cointegrated with ft.

Especially, xAt and ft are cointegrated. By the Granger representation theorem, we have

the following error correction specification with added lagged terms to take care of series

correlations in the errors: ∆xAt

∆xBt

 =

 γA

γ

 δ
′

 xAt−1

ft−1

+A1

 ∆xAt−1

∆ft−1

+ ...+Aq

 ∆xAt−q

∆ft−q

+

 εAt

εt

 . (14)

The above model is referred by Banerjee and Marcellino (2009) as the Factor-

augmented Error Correction Model (FECM). Banerjee, Marcellino, and Masten (2014a)

showed that FECM generally offers a better forecasting performance relative to both

FAVARs and standard small-scale ECMs, in that FECMS nest both FAVARs and

ECMs.

In this paper, we propose a forecasting method in which the cointegration could be

taken into account by augmenting the DI forecasting of a first-differenced series with the

error-correction terms estimated by the FM-OLS methods. To be more precise, consider
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the h-step-ahead DI forecast of Stock and Watson (2002a),

∆ŷhT+h|T = ĉh +

k1∑
j=1

α̂
′

hj∆yT−j+1 +

k2∑
j=1

β̂
′

hj∆F̂T−j+1. (15)

We augment the above DI forecast with the error correction term yT −

δ̂
′

FM F̂T :

∆ŷhT+h|T = ĉh + γ̂h(yT − δ̂
′

FM F̂T ) +

k1∑
j=1

α̂
′

hj∆yT−j+1 +

k2∑
j=1

β̂
′

hj∆F̂T−j+1. (16)

We call the above forecasting method Factor-augmented Diffusion Index Forecasts (FADI).

The EC term, yT−δ̂
′

FM F̂T , is included in the above forecasting equation only if there exists

cointegration relation between the series of interest yt and the vector of latent factors Ft.

So in the implementation of the above forecasting method, we first test for cointegration

relation between the series of interest yt and the vector of latent factors Ft, and then form

forecasts based on the above equation if there exists cointegration relation. Otherwise,

forecasts are based on the usual DI forecasting method.

The proposed FADI method may look like the FECM method proposed in Banerjee

and Marcellino (2009) at the first glance. However, there are several main differences

between our FADI method and the FECM. Firstly, the factor model based on which

the nonstationary factors are estimated are different. In our paper, we allow for the

nonstationarity in the idiosyncratic components of the factor model (i.e., some of uBt in

(13) can be I(1)), while in Banerjee and Marcellino (2009), the idiosyncratic components

are all assumed to be stationary. To be more specific, the factor model we adopt here is

from Bai and Ng (2004), while Banerjee and Marcellino (2009) assume the factor model

in Bai (2004). Given the number of nonstationary series in the large panel (n) is large,

the assumption that all of the idiosyncratic components are stationary is not realistic.

It is more pragmatic to allow for idiosyncratic source of nonstationarity in the large
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panel.

The second main difference between our FADI method and the FECM is that we al-

low for possible cointegration among the factors. In the FECM of Banerjee and Marcellino

(2009), all of the nonstationary factors are assumed to be uncorrelated random walks.

On the contrary, in our FADI method, the nonstationary factors could be cointegrated

to some extent. The allowance of cointegration among I(1) factors is equivalent to allow

for the existence of nonstationary as well as stationary factors in the factor model. In

the empirical applications of FECM, Banerjee, Marcellino, and Masten (2014a) consider

a modification of the FECM, denoted FECMc, with FECM augmented with common

factors extracted from the stationary component of xt after the I(1) factors ft and their

corresponding loadings have been estimated. Their consideration of the possible stationary

component of xt and the evidence of this extra stationary factor in their example highlight

the necessity of allowing cointegration among the factors. In this sense, our method could

nest both FECM amd FECMc considered in Banerjee, Marcellino, and Masten (2014a)

from a theoretical framework.

Finally, in the FADI method we use the FM-OLS estimator of the cointegration

vector among yt and the latent factors ft in the EC term. The FM-OLS estimator corrects

the second-order bias resulting from the existence of serial correlation and correlations of

the innovations in the variable of interest, εt, and the innovations in the latent factors, ut.

More importantly, we test for the existence of the cointegration relation between the series

yt and the vector of latent factors Ft in the first place and include this extra EC term in

the forecasting equation if there exists such cointegration relation. If there appears no

cointegration between the series yt and the vector of latent factors Ft, we do not include

this EC term in the forecasting equation. In the FECM model of Banerjee and Marcellino

(2009), since they assume stationary idiosyncratic components in the factor model and

they are considering forecasting of some set of variables from this large integrated panel,

the cointegration relation between the series of interest and the vector of latent factors
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are assumed implicitly. However, as pointed out above, it is more realistic to allow for

nonstationary idiosyncratic components in the large integrated panel, and hence it is

necessary to test for cointegration relation between the series of interest and the vector of

latent factors in the first step. We will demonstrate these points using US macroeconomic

data in the following section.

6 Empirical Example: Testing Cointegration of Stock

and Watson (2005)

In this section, we take a large panel of monthly US macroeconomic variables from Stock

and Watson (2005) to analyze the source of nonstationarity in the panel and study possi-

ble cointegration relations among the series in the large panel and the factors. The data

set in Stock and Watson (2005) records monthly observations on 132 U.S. macroeconomic

time series from 1959:1 through 2003:12, with 14 categories’ predictors ranging from real

output and income to price indexes and miscellaneous. Banerjee, Marcellino, and Mas-

ten (2014a) use this data set to simulate real-time forecasting using the FECM model as

discussed in the previous section. For their FECM model to hold, they have to assume

that the idiosyncratic error terms of the large panel must be stationary and they do not

allow for cointegration among the nonstationary factors themselves. However, in their

empirical example, they do not provide any testing result verifying all of these assump-

tions. In this section, we are going to test the stationarity assumptions of the idiosyncratic

error terms and study the cointegration relation among the factors themselves as well as

the cointegration relation among the factors and some variable of interests in the large

panel.

As in Banerjee, Marcellino, and Masten (2014a), we retain only 104 series that were

considered as I(1) by Stock and Watson and focus on the sample period of 1960:1 to

1998:12. Instead of transforming all of these series into approximate stationary series as in
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Stock and Watson (2005), we follow appropriate steps to transform all of these series to

I(1) series. In general, logarithms are used for real quantity variables, levels are used for

nominal interest rates, and first differences of logarithms (growth rates) for price series.

Specific transformations and the list of series are given in Table 17 of Banerjee, Marcellino,

and Masten (2014a).

From the dataset of I(1) variables, we estimate the I(1) factors using the method in

Bai and Ng (2004), and test for unit roots in the idiosyncratic errors and the estimated

factors. To be more specific, we take the first difference of the nonstationary panel X,

and apply the principal component method to the first differenced panel ∆X to get the

factor estimates f̂t and the loading estimates λ̂i, and then construct the factor estimates

for the nonstationary panel as F̂t =
∑t

s=2 f̂s and estimate the idiosyncratic errors as êit =

Xit−λ̂
′

if̂t. As in Bai and Ng (2004), let ADF c
ê (i) be the t statistic for testing di0 = 0 in the

univariate augmented autoregression (with no deterministic terms)

∆êit = di0êit−1 + di1∆êit−1 + ...+ dip∆êit−p + error.

According to Bai and Ng (2004), the asymptotic distribution of ADF c
ê (i) is the same

with the DF test developed by Dickey and Fuller (1979) for the case of no constant with

-1.95 as the critical value at the 5% significance level. In the testing, the number of lagged

differences, i.e., p in the above equation, is chosen by BIC criteria. The right panel of

Table 1 summarizes the unit root testing results. For the 104 I(1) series in the large panel,

44 of them have unit roots in their idiosyncratic error terms. (Notice that even though

the panel X is constructed to include only I(1) series, the unit root tests of X show that

there are only I(1) 61 series in the panel.) The unit root testings of each factor estimate

indicate that the estimated 5 factors are stationary. The individual unit root testings on

the estimated factors may be size distorted and thus the number of nonstationary factors

may be understated.
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Under the assumption that all of the idiosyncratic errors in the large panel are sta-

tionary, we could also use the principal component-based estimator to the level of the

data to estimate the I(1) factors as suggested in Bai (2004) and test for unit roots in the

estimated idiosyncratic errors. The ADF test results in the left panel of Table 1 indicate

that among all of the 104 series, the estimated idiosyncratic errors are nonstationary for

5 series. It seems that the assumption of stationary idiosyncratic errors are reasonable

given the test results. However, if we use the method suggested in Bai and Ng (2004) of

using differenced data to estimate the factors, the test results suggest 44 nonstationary

idiosyncratic errors in the large panel. As discussed in Bai and Ng (2004), the estima-

tion method of “differencing and recumulating” can accommodate both I(1) and I(0)

errors. Thus the test results based on estimates of Bai and Ng (2004) should be more

reliable than that based on estimates under the premise that the idiosyncratic errors are

stationary. Thus there is evidence suggesting that the factor model assumption of Bai

(2004) with stationary idiosyncratic errors is not appropriate for this Stock and Watson

(2005) data set and the factor estimates using method from Bai (2004) may be mislead-

ing.

After verifying that there are unit roots in some of the idiosyncratic error terms of

the large panel, we use the trace and maximal eigenvalue tests of Johansen (1988) to

analyze the possible cointegration among the nonstationary factors. As discussed in Bai

and Ng (2004), because F̂t consistently estimates the space spanned by Ft, Johansen tests

that assume Ft is observed remain valid when Ft is estimated using the “differencing

and recumulating” method. The Johansen test results are summarized in Table 2. For

the method of Bai (2004), given the number of factor is 4, the rank of cointegration

among these factors is 1 by both tests, and hence the number of independent stochastic

trends in the factors is 3. For the method of Bai and Ng (2004), given the number of

factor is 5, the rank of cointegration among these factors is 4 by both tests, and hence

the number of independent stochastic trends in the factors is 1. The cointegration test
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results indicate that there exists cointegration among estimated factors, no matter what

the estimation method is. Hence, the factor model and the estimation method adopted in

Banerjee, Marcellino, and Masten (2014a) that assume all of the factors are independent

is not appropriate. Again, the estimation method of Bai and Ng (2004) which could

accommodate cointegrated nonstationary factors shows its advantage over that in Bai

(2004).

Next, we use the FADI forecasting method proposed in this paper to simulate real-

time forecasts of four US real macroeconomic variables, i.e., Personal income less transfers

(PI), Real manufacturing trade and sales (ManTr), Industrial Production (IP), and

Employees on non-agriculture payrolls (Empl) over the sample 1970-1998, with estimation

starting in 1960. As in Banerjee, Marcellino, and Masten (2014a), we use the iterated

h-step-ahead forecasts (dynamic forecasts) instead of the direct h-step-ahead forecasts as

in Stock and Watson (1998, 2002a, 2002b). The iterated h-step-ahead forecasts at time T

of the FADI method is given by

ŷhT+h|T = ŷT +
h∑
i=1

∆ŷ1
T+i|T+i−1, (17)

with

∆ŷ1
T+1|T = ĉ1 + γ̂1(yT − δ̂

′

FM F̂T ) +

k1∑
j=1

α̂
′

1j∆yT−j+1 +

k2∑
j=1

β̂
′

1j∆F̂T−j+1. (18)

The number of factors are kept fixed through all of the forecasting horizons with 4 inde-

pendent I(1) factors in the nonstationary panel and 5 I(0) factors in the first-differenced

panel. The factor estimates are updated recursively and model selection is conducted for

each forecasting recursion. The above forecasting equation is estimated in two steps, with

the cointegration relation estimated in the first step and the forecasting equation in the

second step. In the first step, the cointegration test is conducted through the residual-

based cointegration test at each forecasting recursion. In the second step, the lag lengths

are selected based on the BIC at each forecasting recursion.
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Before we conduct the recursive iterated forecasting, we use the whole sample pe-

riod 1960:1-1998:12 to analyze the possible cointegration relation among these four real

variables (PI, ManTr, IP, and Empl) and the factor estimates. These four variables are

from the large panel X. From the unit root test results in Table 1, variables PI, ManTr,

and IP exhibit unit roots while Empl may be considered as a stationary series. Also,

the unit root testing of the idiosyncratic terms associated with there four real variables

indicate that variables PI, ManTr, and Empl show cointegration relations with the non-

stationary factors estimated by the method of Bai (2004). When the factors are estimated

from Bai and Ng (2004), all of these four variables show cointegration relations with the

factors.

In the first step of the FADI forecasting, to take advantage of all of the possible coin-

tegration relations among these four real variables and the factors, we run the following

least squares regressions and test the unit roots in the residuals:

yit = δ̂
′

F̂t +
N∑

j=i+1

γjyjt + εit,

for i = 1, 2, ..., N with N being the number of variables of interest,

and

F̂it =
K∑

j=i+1

κjF̂jt + ε̃it,

for i = 1, 2, ..., K − 1 with K being the number of factors. In this empirical example,

yt = (PIt,ManTrt, IPt, Emplt)
′, and thus the number of variables of interest is N = 4.

Hence, in the first step, we run N +K − 1 least squares regressions and test the unit roots

in the residuals. If the unit root testing suggests the residual is stationary, then we have

found a cointegration relation among the variables involved in the regression and record

the coefficients in the cointegration vector. The number of stationary residuals from the

above N + K − 1 regressions is the cointegration rank r we use for the FADI method and

we include all of the r error corrections terms in each forecasting equation of these four
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real variables.

We calculate the out-of-sample prediction mean squared errors (MSEs) of the FADI

relative to the MSE of the AR at each horizon h for the real four variables under study,

and list the relative MSEs of all of the models in Banerjee, Marcellino, and Masten

(2014a) for comparison. Table 3 reports the forecasting results. The relative MSEs of

the FADI method using factors estimated by the method in Bai (2004) are displayed in

Column FADI, while the relative MSEs using factors estimated by the differencing and

recummulating method in Bai and Ng (2004) are displayed in Column FADI2. By the

unit root testing results in Table 1 and Table 2, our preferred method is FADI2 since the

factors are estimated more consistently than that in FADI.

Comparing the relative MSEs of FADI to those of FECM, we find that the method

FADI using factors from Bai (2004) rarely outperforms the method FECM. The relative

MSEs for FADI is only smaller than those of FECM for 3 cases out of the 24 cases. The

performances of FADI2 increase when we use the factors estimated by the method in

Bai and Ng (2004). Even though the RMSEs are smaller only in 7 cases for FADI2, the

forecasting are persistently better for variables IP and Empl at horizon h=1, 3, 6 and

also better for Empl at h=12. As the forecasting horizon increases (for h=18 and 24),

the FADI2 loses its forecasting advantage to FECM for all of the four variables. We

also reestimate the FECM using factors estimates of Bai and Ng (2004), with Column

FECM2 of Table 3 denoting the results. Generally speaking, FECM2 generates worse

forecasting results than FECM, as found in Banerjee, Marcellino, and Masten (2014a).

However, FADI2 generates better forecasting results than FADI in most of the cases. So

consistent estimates of factors can improve the forecasting accuracy of the FADI method

significantly.

A possible reason why FADI2 cannot improve over the FECM method at longer

forecasting horizons for all of these four variables lies in the difference in cointegration es-

timation. The FECM method in Banerjee, Marcellino, and Masten (2014a) uses Johansen
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(1988) Maximum Likelihood estimators of the cointegration ranks and the cointegration

vectors, while our FADI method relies on least squares regressions and unit roots resting

of the regression residuals. The last panel of Table 3 gives the information about the av-

erage cointegration ranks used by each method. The FADI method tends to overstate the

number of cointegrations. The inclusion of extra error correction terms may lead to the

under-performance of the method when forecasting horizon increases.

7 Conclusion

In this paper, we use FM-OLS method to directly estimate the cointegration relation

between an integrated series of interest and a vector of possibly cointegrated nonstationary

latent factors. Under some restrictions on the relative sample sizes, the kernel function,

and the bandwidth expansion rates, we show that the estimation errors in the latent

nonstationary factors do not affect the rate of convergence and the nuisance parameter-

free limiting distribution of the FM-OLS estimators. Moreover, cointegration tests between

the variable of interest and the vector of possibly cointegrated nonstationary latent factors

have the usual limiting distributions when factors are consistently estimated. Given the

existence of cointegration relation, the estimated cointegration relation can be used to

form an error correction term, which could be added to the traditional diffusion index

forecast model to improve forecasting accuracy.

Our empirical example on the Stock and Watson (2005) data set verifies that there

are idiosyncratic nonstationarities in the nonstationary panel, and there are cointegration

relations among these nonstationary factors themselves. Hence, the factor model in

Bai and Ng (2005) is more appropriate for the Stock and Watson (2005) data set. We

also show that the proposed Factor-Augmented Diffusion Index (FADI) forecasting

method improves over the FECM method of Banerjee and Marcellino (2009) for variables

Industrial Production (IP), and Employees on non-agriculture payrolls (Empl) at short
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horizons for forecasting period 1970-1998. Consistently estimated nonstationary factors

improve the performance of the FADI method significantly. However, the overstated

cointegration ranks by the FADI method may lead to inferior forecasting performance at

longer forecasting horizons.
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Table 1: Unit root testing of Stock and Watson (2005): 1960:1-1998:12

Model
Bai (2004) Bai and Ng (2004)

Xit F̂t êit Xit F̂t êit

Number of series 104 4 104 104 5 104

Number of I(1) series 61 3 5 61 0 44

NOTE: Xit stands for the 104 I(1) variables from Stock and Watson (2005) for the time period of 1960:1 to

1998:12. Column Bai (2004) applies the principal component analysis to the level of X to get estimates F̂t

and êit, while Column Bai and Ng (2004) applies the principal component analysis to ∆X to get estimates

F̂t and êit. The number of factors are selected by the Bai and Ng (2002) PC2 criterion. The unit root tests of

Xit and F̂t are through the ADF regressions with a constant, while the unit root tests of êit are through the

ADF regressions without a constant. The numbers of lagged differences in the ADF regressions are selected

by BIC criteria.

Table 2: Johansen tests of factors in Stock and Watson (2005): 1960:1-1998:12

Model Tests stat. r=0 r=1 r=2 r=3 r=4 Common Trends

Bai (2004) trace 79.20*** 23.12 8.1 1.49 - 3

maximal 56.08*** 15.01 6.61 1.49 - 3

Bai and Ng (2004) trace 212.06*** 123.84*** 68.45*** 30.61*** 8.04 1

maximal 88.22*** 55.39*** 37.85*** 22.56*** 8.04 1

NOTE: These above statistics are for testing the rank of cointegration in the estimated factors, with “trace”

standing for the trace statistics and “maximal” for the maximal eigenvalue statistics of Johansen (1988).

Test statistics in Column “r=0” are for the null hypothesis of the rank of cointegration among the factors

is zero, etc.. In Row Bai (2004), factors are estimated by applying the principal component analysis to the

level of X, and Row Bai and Ng (2004) applies the principal component analysis to ∆X to get estimates

F̂t, while X stands for 104 I(1) series of Stock and Watson (2005) for the period of 1960:1 to 1998:12. The

number of factors are selected by the Bai and Ng (2002) PC2 criterion. For the method of Bai (2004), given

the number of factor is 4, the rank of cointegration among these factors is 1 by both tests, and hence the

number of common trends in the factors is 3. For the method of Bai and Ng (2004), given the number

of factor is 5, the rank of cointegration among these factors is 4 by both tests, and hence the number of

common trends in the factors is 1. *** stands for 1 % significance level, with critical values from Table A2

of Johansen and Juselius (1990).
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Table 3: Forecasting US real variables, forecasting period 1970-1998

h log of RMSE of AR
MSE relative to MSE of AR model

FAR VAR FAVAR ECM FECM FADI FECM2 FADI2 FECMc

1

PI 0.007 1.02 0.94 0.92 0.93 0.90 0.98 0.96 0.93 0.93

ManTr 0.011 1.04 0.98 0.95 1.10 1.03 1.02* 1* 1.05 1.00

IP 0.007 0.99 1.08 0.95 1.11 1.24 1.16* 1.19* 1.01* 1.15

Empl 0.002 1.09 1.33 1.20 1.40 1.34 1.43 1.78 1.31* 1.40

3

PI 0.011 1.01 0.91 0.87 0.94 0.85 1.07 0.96 0.88 0.91

ManTr 0.018 1.01 1.01 0.96 1.21 0.97 1.05 1.00 1.07 0.93

IP 0.017 0.96 1.04 0.94 1.10 1.17 1.32 1.15* 1.07* 1.09

Empl 0.005 1.12 1.51 1.40 1.64 1.52 1.81 1.98 1.39* 1.57

6

PI 0.016 1.00 0.94 0.92 1.02 0.86 1.24 0.99 0.93 0.95

ManTr 0.029 1.01 1.01 0.98 1.17 0.89 1.09 1.00 1.03 0.87

IP 0.029 0.97 1.00 0.96 1.08 1.08 1.33 1.06* 1.06* 1.02

Empl 0.010 1.10 1.34 1.32 1.49 1.36 1.59 1.61 1.29* 1.37

12

PI 0.026 1.00 0.96 0.96 1.04 0.87 1.23 1.02 0.95 0.93

ManTr 0.045 1.01 0.99 0.98 1.07 0.74 1.05 1.00 0.94 0.75

IP 0.049 0.99 1.00 0.99 1.03 0.96 1.26 1.03 1.01 0.94

Empl 0.020 1.02 1.11 1.12 1.25 1.10 1.2 1.23 1.09* 1.11

18

PI 0.036 1.01 0.98 0.98 1.09 0.89 1.15 1.01 0.99 0.96

ManTr 0.058 1.00 1.00 0.99 1.06 0.71 1.01 1.00 0.94 0.73

IP 0.065 1.00 1.00 1.00 1.08 0.93 1.25 1.01 1.04 0.96

Empl 0.029 0.96 0.99 1.00 1.15 0.97 0.98 1.06 1.01 0.99

24

PI 0.042 1.01 0.99 0.99 1.07 0.90 1.09 1.01 0.99 0.96

ManTr 0.069 1.01 1.00 1.01 0.99 0.64 0.9 1.00 0.89 0.66

IP 0.076 1.01 0.99 1.00 1.07 0.90 1.2 0.99 1.01 0.95

Empl 0.037 0.91 0.91 0.92 1.04 0.88 0.77* 0.96 0.89 0.91

Cointegration rank: mean min max mean min max

FECM 3.75 1 4 FADI 5.97 4 7

FECM2 4 4 4 FADI2 5.97 5 8

NOTE: h is the forecasting horizon. Results for model FAR, VAR, FAVAR, ECM, FECM, and FECMc

are from Banerjee, Marcellino, and Masten (2014a). The FECM contains four I(1) factors, and FECMc

contains five I(0) factors. FECM2 uses factor estimates of Bai and Ng (2004). FADI stands for the Factor-

Augmented Diffusion Index method proposed in this paper using factor estimates of Bai (2004), while

FADI2 is the FADI method using factor estimates of Bai and Ng (2004). Data: 1960:1-1998:12, forecasting:

1970:1-1998:12. Variables: Personal income less transfers (PI), Real manufacturing trade and sales (ManTr),

Industrial Production (IP), and Employees on non-agriculture payrolls (Empl). Lag selection are based on

the BIC. * stands for smaller RMSEs compared to Column FECM.
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Appendix

Preliminaries for Lemma 1

As in Bai and Ng (2004), for notational simplicity, we assume there are T+1 observations

(t=0, 1, ..., T ) for this lemma. The differenced data have T observations so that x is

T × n. Let VnT be the r × r diagonal matrix of the first r largest eigenvalues of (nT )−1xx
′

in

descending order. By the definition of eigenvectors and eigenvalues, we have (nT )−1xx
′
f̂ =

f̂VnT or (nT )−1xx
′
f̂V −1

nT = f̂ . We make use of an r × r matrix H defined as follows: H =

V −1
nT (f̂

′
f̂/T )(Λ

′
Λ/N). Since the following proofs rely on results from Bai and Ng (2002),

Bai (2003), and Bai and Ng (2004), we state some results of these papers explicitly as

lemmas.

Lemma A.1

(Corresponds to Lemma 1 of Bai and Ng (2004)). Under Assumptions 1-5, considering

estimation of f̂t by the method of principal components, we have an H with rank r such

that as (n, T )→∞,

(a) min[n, T ]T−1
∑T
t=2 ‖f̂t −Hft‖2 = Op(1),

(b) min[
√
n, T ](f̂t −Hft) = Op(1), for each given t,

(c) min[
√
T , n](λ̂i −H

′−1λi) = Op(1), for each given i.

As is well known in factor analysis, λi and ft are not directly identifiable. There-

fore, when assessing the properties of the estimates, we can only consider the differ-

ence in the space spanned by f̂t and ft, and likewise between λ̂i and λi. The matrix

H is defined such that Hft is the projection of f̂t on the space spanned by the fac-

tors, ft. Result (a) is proved in Bai and Ng (2002), while (b) and (c) are proved in Bai

(2003).

Lemma A.2

(Corresponds to Lemma 2 of Bai and Ng (2004)). Consider estimation of (7). Sup-

pose Assumptions 1-5 hold. Then there exists an H with rank r such that as (n, T ) →
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∞,

max
1≤t≤T

‖F̂t −HFt +HF1‖ = Op(T
1/2n−1/2) +Op(T

−1/4).

As stated in this lemma, F̂t is uniformly consistent for HFt (up to a shift factor HF1)

provided T/n → 0 as n, T → ∞. Without loss of generality, we assume that at t=1, F1 = 0.

Then we have max1≤t≤T ‖F̂t −HFt‖ = Op(T
1/2N−1/2) +Op(T

−1/4).

Lemma A.3

In order to prove Lemma 1 of this paper, we need one more lemma regarding the estima-

tion errors of the factors, which we state here as Lemma A.3.

Consider estimation of (7). Recall the definition of the rotation matrix A = [A1, A2]′ (A1

is r × r1 satisfying A′1A1 = Ir1 , and A′1A2 = 0), such that F1t = A′1HFt to be the r1 common

stochastic trends and F2t = A′2HFt to be the r0 stationary elements resulting from such a

rotation. Denote F̂ = (F̂1, ..., F̂T )
′
, F̂1 = F̂A1 and F̂2 = F̂A2. Suppose Assumptions 1-5 hold.

Then there exists an H with rank r such that as (n, T )→∞,

(a) T−1F̂
′

1(FH
′ − F̂ ) = Op(

T√
n

);

(b) T−1F̂
′

2(FH
′ − F̂ ) = Op(

√
T
n ).

Proof. Let φt denote the estimation error of factors, i.e. φt = F̂t − HFt.

Then

F̂
′

1(FH
′ − F̂ )

T
=

∑T
t=1 F̂1t(F

′

tH
′ − F̂ ′t )

T
= −

∑T
t=1 F̂1tφ

′

t

T
,

and

F̂
′

2(FH
′ − F̂ )

T
=

∑T
t=1 F̂2t(F

′

tH
′ − F̂ ′t )

T
= −

∑T
t=1 F̂2tφ

′

t

T
.

From Lemma A.2 we have

max
1≤t≤T

1√
T
‖φt‖ = Op(

1√
n

) +Op(
1

T 3/4
)

= Op(
1√
n

) +Op(
1√
T

) = Op(max(
1√
n
,

1√
T

))

= Op(C
−1
nT )
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where CnT = min[
√
n,
√
T ]. Then ‖φt‖2 = T · Op(max( 1

n ,
1
T )) = Op(T/n) uniformly in t. We also

have

1

T

T∑
t=1

‖φt‖2 = Op(
T

n
).

Thus,

‖
∑T
t=1 F̂1tφ

′

t

T
‖ ≤
√
T (

∑T
t=1 ‖F̂1t‖2

T 2
)1/2(

∑T
t=1 ‖φt‖2

T
)1/2

=
√
TOp(1)Op(

√
T

n
) = Op(

T√
n

).

Similarly, we have

‖
∑T
t=1 F̂2tφ

′

t

T
‖ ≤ (

∑T
t=1 ‖F̂2t‖2

T
)1/2(

∑T
t=1 ‖φt‖2

T
)1/2

= Op(1)Op(

√
T

n
) = Op(

√
T

n
).

Proof of Lemma 1

Suppose Assumptions 1-5 and 6 (EC) hold. As (n, T ) → ∞, if T/
√
n →

0,

(a) TA
′

1(δ̂ − δ) d→ (
∫
B1B

′

1)−1(
∫ 1

0
B1dB0 + ∆10),

(b)
√
TA

′

2(δ̂ − δ) d→ N(0,Σ−1
22 ΩψψΣ−1

22 ).

Proof. Rewrite the cointegration equation as follows

yt = α
′
Ft + εt

= α
′
H−1F̂t + εt + α

′
H−1(HFt − F̂t).

In matrix notation, Y = F̂ δ + ε+ (FH
′ − F̂ )δ. It follows that

δ̂ − δ = (F̂
′
F̂ )−1F̂

′
ε+ (F̂

′
F̂ )−1F̂

′
(FH

′
− F̂ )δ.

Partitioning the coefficients into the nonstationary and stationary part, we

have

A
′

1(δ̂ − δ) = A
′

1

(
F̂
′
F̂
)−1

F̂
′
ε+A

′

1

(
F̂
′
F̂
)−1

F̂
′
(FH

′
− F̂ )H−1′α,
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and

A
′

2(δ̂ − δ) = A
′

2

(
F̂
′
F̂
)−1

T−1F̂
′
ε+A

′

2

(
F̂
′
F̂
)−1

F̂
′
(FH

′
− F̂ )H−1′α.

Note that by partitioned inversion

A
′

1(F̂
′
F̂ )−1F̂

′
ε = A

′

1A
′
(AF̂

′
F̂A

′
)−1AF̂

′
ε

=

[
Ir1 0

]F̂
′

1F̂1 F̂
′

1F̂2

F̂
′

2F̂1 F̂
′

2F̂2


−1

AF̂
′
ε

=

[
Ir1 0

] (F̂
′

1Q2F̂1)−1 −(F̂
′

1F̂1)−1F̂
′

1F̂2(F̂
′

2Q1F̂2)−1

−(F̂
′

2Q1F̂2)−1F̂
′

2F̂1(F̂
′

1F̂1)−1 (F̂
′

2Q1F̂2)−1

AF̂ ′ε

=

[
(F̂
′

1Q2F̂1)−1 −(F̂
′

1F̂1)−1F̂
′

1F̂2(F̂
′

2Q1F̂2)−1

]F̂
′

1

F̂
′

2

 ε

= (F̂
′

1Q2F̂1)−1F̂
′

1ε− (F̂
′

1F̂1)−1F̂
′

1F̂2(F̂
′

2Q1F̂2)−1F̂
′

2ε

and

A
′

2(F̂
′
F̂ )−1F̂

′
ε = A

′

2A
′
(AF

′
FA

′
)−1AF̂

′
ε

=

[
0 Ir0

]F̂
′

1F̂1 F̂
′

1F̂2

F̂
′

2F̂1 F̂
′

2F̂2


−1

AF̂
′
ε

=

[
0 Ir0

] (F̂
′

1Q2F̂1)−1 −(F̂
′

1F̂1)−1F̂
′

1F̂2(F̂
′

2Q1F̂2)−1

−(F̂
′

2Q1F̂2)−1F̂
′

2F̂1(F̂
′

1F̂1)−1 (F̂
′

2Q1F̂2)−1

AF̂ ′ε

=

[
−(F̂

′

2Q1F̂2)−1F̂
′

2F̂1(F̂
′

1F̂1)−1 (F̂
′

2Q1F̂2)−1

]F̂
′

1

F̂
′

2

 ε

= (F̂
′

2Q1F̂2)−1F̂
′

2ε− (F̂
′

2Q1F̂2)−1F̂
′

2F̂1(F̂
′

1F̂1)−1F̂
′

1ε
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where Qi = I − F̂i(F̂
′

i F̂i)
−1F̂

′

i , i=1,2. Thus

TA
′

1(δ̂ − δ) = A
′

1

(
F̂
′
F̂

T 2

)−1

T−1F̂
′
ε+A

′

1

(
F̂
′
F̂

T 2

)−1

T−1F̂
′
(FH

′
− F̂ )H−1′α

= (
F̂
′

1Q2F̂1

T 2
)−1 F̂

′

1ε

T
− (

F̂
′

1F̂1

T 2
)−1 F̂

′

1F̂2

T
(
F̂
′

2Q1F̂2

T
)−1 F̂

′

2ε

T

+ (
F̂
′

1Q2F̂1

T 2
)−1 F̂

′

1(FH
′ − F̂ )H−1′α

T
− (

F̂
′

1F̂1

T 2
)−1 F̂

′

1F̂2

T
(
F̂
′

2Q1F̂2

T
)−1 F̂

′

2(FH
′ − F̂ )H−1′α

T
.

Under Assumption 6 (EC), we have

(
F̂
′

1Q2F̂1

T 2
)−1 F̂

′

1ε

T
= (

F̂
′

1F̂1

T 2
)−1 F̂

′

1ε

T
+Op(

1

T
)
d→ (

∫
B1B

′

1)−1(

∫ 1

0

B1dB0 + ∆10),

and

(
F̂
′

1F̂1

T 2
)−1 F̂

′

1F̂2

T
(
F̂
′

2Q1F̂2

T
)−1 F̂

′

2ε

T
= (

F̂
′

1F̂1

T 2
)−1 F̂

′

1F̂2

T
(
F̂
′

2Q1F̂2

T
)−1 F̂

′

2ε√
T

1√
T

= Op(
1√
T

),

and

(
F̂
′

1Q2F̂1

T 2
)−1 F̂

′

1(FH
′ − F̂ )H−1′α

T
= Op(1)Op(

T√
n

) = Op(
T√
n

),

and

(
F̂
′

1F̂1

T 2
)−1 F̂

′

1F̂2

T
(
F̂
′

2Q1F̂2

T
)−1 F̂

′

2(FH
′ − F̂ )H−1′α

T
= Op(1)Op(1)Op(1)Op(

√
T

n
) = Op(

√
T

n
).

The last two lines of proof also use results from Lemma A.3. Thus if we assume that T√
n
→

0 as (n, T )→∞, the last two expressions will be op(1). Hence, we have

TA
′

1(δ̂ − δ) d→ (

∫
B1B

′

1)−1(

∫ 1

0

B1dB0 + ∆10).

Similarly, we have

√
TA

′

2(δ̂ − δ) = A
′

2

(
F̂
′
F̂

T

)−1

T−1/2F̂
′
ε+A

′

2

(
F̂
′
F̂

T

)−1

T−1/2F̂
′
(FH

′
− F̂ )H−1′α

= (
F̂
′

2Q1F̂2

T
)−1 F̂

′

2ε√
T
− (

F̂
′

2Q1F̂2

T
)−1 F̂

′

2F̂1

T
(
F̂
′

1F̂1

T 2
)−1 F̂

′

1ε

T

1√
T

+ (
F̂
′

2Q1F̂2

T
)−1 F̂

′

2(FH
′ − F̂ )H−1′α√
T

− (
F̂
′

2Q1F̂2

T
)−1 F̂

′

2F̂1

T
(
F̂
′

1F̂1

T 2
)−1 F̂

′

1(FH
′ − F̂ )H−1′α

T

1√
T
.

Under Assumption 6 (EC), we have

(
F̂
′

2Q1F̂2

T
)−1 F̂

′

2ε√
T

= (
F̂
′

2F̂2

T
)−1 F̂

′

2ε√
T

+Op(
1

T
)
d→ N(0,Σ−1

22 ΩψψΣ−1
22 ),
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and

(
F̂
′

2Q1F̂2

T
)−1 F̂

′

2F̂1

T
(
F̂
′

1F̂1

T 2
)−1 F̂

′

1ε

T

1√
T

= Op(
1√
T

),

and

(
F̂
′

2Q1F̂2

T
)−1 F̂

′

2(FH
′ − F̂ )H−1′α√
T

= (
F̂
′

2Q2F̂2

T
)−1 F̂

′

2(FH
′ − F̂ )H−1′α

T

√
T

=
√
TOp(

√
T

n
) = Op(

T√
n

),

and

(
F̂
′

2Q1F̂2

T
)−1 F̂

′

2F̂1

T
(
F̂
′

1F̂1

T 2
)−1 F̂

′

1(FH
′ − F̂ )H−1′α

T

1√
T

=
1√
T
Op(

T√
n

) = Op(

√
T

n
).

The last two lines of proof also use results from Lemma A.3. If T/
√
n→ 0 as (n, T )→∞, the

last two expressions will be op(1). Hence, we have

√
TA

′

2(δ̂ − δ) d→ N(0,Σ−1
22 ΩψψΣ−1

22 ).

Preliminaries for Theorem 1

As in Phillips (1995), to simplify the presentation of our arguments it will be conve-

nient to assume in our proofs that we are working with long-run covariance matrix

estimates that satisfy Assumption KL (a) and (b). This leads to estimates of the

form

Ω̂ =

K−1∑
j=−K+1

ω(j/K)Γ̂(j), and ∆̂ =

K−1∑
j=0

ω(j/K)Γ̂(j),

which corresponds to (10) when the lag kernel is truncated as in KL (b), i.e. ω(x) = 0, for

|x| > 1. The proofs given below for Lemma A.4, A.5, and A.6 apply as they stand under

KL (a) and (b) and therefore hold for the Parzen and Tukey-Hanning kernels, for example,

which satisfy these conditions.
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Lemma A.4

We have the following lemma adapted from Lemma 8.1 in the Appendix of Phillips (1995).

Under Assumptions 1-5, Assumptions 6 (EC), 7 (KL), and 8 (BW(iv)), the following

hold:

(a) Ω̂∆u2∆u2 = −K−2ω
′′
(0)Ω22 + op(K

−2);

(b) Ω̂ε∆u2
= K−2ω

′′
(0)Φ02 + Op(1/

√
KT ) + op(K

−2), where Φ02 =
∑∞
j=−∞(j − 1/2)Γεu2(j),

and

Ω̂u1∆u2
= K−2ω

′′
(0)Φ12 + Op(1/

√
KT ) + op(K

−2), where Φ12 =
∑∞
j=−∞(j −

1/2)Γu1u2(j);

(c) Ω̂0∆û2 := Ω̂ε̂∆u2 = Ω̂ε∆u2 +Op(1/T );

(d*) Ω̂εaΩ̂−1
aa =

[
Ω01Ω−1

11 + op(1), −[Φ02 − Ω01Ω−1
11 Φ12]Ω−1

22 +Op(K
3/2/
√
T ) + op(K

3/2/
√
T )

]
;

(e) K2[T−1∆U
′

2U2 − ∆̂∆u2∆u2
]
p→ ω

′′
(0){∆22 − (1/2)Σ22};

(f) T−1U
′

1U2 − ∆̂u1∆u2
= K−2ω

′′
(0)Ψ12 +Op(1/

√
KT ) + op(K

−2), where

Ψ12 =
∑∞
j=1(j − 1/2)Γu1u2

(j);

(g) T−1∆U
′

2F1 − ∆̂∆u2u1
= T−1u2TF

′

1T + K−2ω
′′
(0)Ψ21 + Op(1/

√
KT ) + op(K

−2),

where

Ψ21 =
∑∞
j=1(j − 1/2)Γu2u1

(j);

(h*) Under the assumption that T/
√
n → 0 as (n, T ) → ∞, we have ∆̂0∆û2

:= ∆̂ε̂∆û2
=

Op(1/
√
KT ) +Op(

√
T
n );

(i*) Under the assumption that T/
√
n → 0 as (n, T ) → ∞, we have ∆̂0û1

:= ∆̂ε̂û1
=

∆01 +Op((K/T )1/2) +Op

(
K
√

T
n

)
+Op

(
K
T

)
+Op(K

−2) +Op
(
T
n

)
;

(j) T−1U
′

1F1 − ∆̂u1u1

d→
∫ 1

0
dB1B

′

1;

(k) T−1F
′

1ε− ∆̂u1ε
d→
∫ 1

0
B1dB0 ;

(l) T−2F
′

1F1
d→
∫ 1

0
B1B

′

1.

Proof.

Proof of (a)-(c), (e)-(g), and (j)-(l) are from Lemma 8.1 in the Appendix of Phillips

(1995).
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(d*).

Ω̂εaΩ̂−1
aa =

[
Ω̂εu1

Ω̂ε∆u2

][ Ω̂u1u1 Ω̂u1u1

Ω̂∆u2u1
Ω̂∆u2∆u2

]−1

=
[

Ω̂εu1
Ω̂ε∆u2

][ Ω̂−1
u1u1·∆u2

−Ω̂−1
u1u1·∆u2

Ω̂u1∆u2
Ω̂−1

∆u2∆u2

−Ω̂−1
∆u2∆u2

Ω̂∆u2u1
Ω̂−1
u1u1·∆u2

Ω̂−1
∆u2∆u2

+ Ω̂−1
∆u2∆u2

Ω̂∆u2u1
Ω̂−1
u1u1·∆u2

Ω̂u1∆u2
Ω̂−1

∆u2∆u2

]
=
[
X1 X2

]
with Ω̂u1u1·∆u2

= Ω̂u1u1
− Ω̂u1∆u2

Ω̂−1
∆u2∆u2

Ω̂∆u2u1
, X1 = Ω̂εu1

Ω̂−1
u1u1·∆u2

− Ω̂ε∆u2
Ω̂−1

∆u2∆u2
Ω̂∆u2u1

Ω̂−1
u1u1·∆u2

,
and

X2 = Ω̂ε∆u2Ω̂−1
∆u2∆u2

+ Ω̂ε∆u2
Ω̂−1

∆u2∆u2
Ω̂∆u2u1

Ω̂−1
u1u1·∆u2

Ω̂u1∆u2
Ω̂−1

∆u2∆u2
− Ω̂εu1

Ω̂−1
u1u1·∆u2

Ω̂u1∆u2
Ω̂−1

∆u2∆u2
.

Using parts (a)-(c) of the lemma we find that

Ω̂u1u1·∆u2
= Ω̂u1u1

− Ω̂u1∆u2
Ω̂−1

∆u2∆u2
Ω̂∆u2u1

= Ω̂u1u1
+Op(K

−2) +Op(K/T ) +Op(K
−1/2T−1/2)

= Ω̂u1u1 + op(1)
p→ Ω11 > 0,

and

X1 = Ω̂εu1Ω̂−1
u1u1·∆u2

− Ω̂ε∆u2Ω̂−1
∆u2∆u2

Ω̂∆u2u1Ω̂−1
u1u1·∆u2

= Ω01Ω−1
11 + op(1)− [ω

′′
(0)Φ02 +Op(K

2/
√
KT )][−ω

′′
(0)Ω22 + op(K

−2)]−1[Op(K
−2) +Op(1/

√
KT )]

= Ω01Ω−1
11 + op(1),

and

X2 = Ω̂ε∆u2Ω̂−1
∆u2∆u2

+ Ω̂ε∆u2Ω̂−1
∆u2∆u2

Ω̂∆u2u1
Ω̂−1
u1u1·∆u2

Ω̂u1∆u2
Ω̂−1

∆u2∆u2
− Ω̂εu1

Ω̂−1
u1u1·∆u2

Ω̂u1∆u2
Ω̂−1

∆u2∆u2

= [−Φ02 +Op(K
3/2/
√
T )]Ω−1

22 + [−Φ02 +Op(K
3/2/
√
T )]Ω−1

22 [Op(K
−2) +Op(K/T )][Ω11 + op(1)]−1

× [−Φ12 +Op(K
3/2/
√
T )]Ω−1

22 − [Ω01 + op(1)][Ω11 + op(1)]−1[−Φ12 +Op(K
3/2/
√
T )]Ω−1

22

= −[Φ02 − Ω01Ω−1
11 Φ12]Ω−1

22 +Op(K
3/2/
√
T ) + op(K

3/2/
√
T ).

(h*). To prove part (h*) we write

∆̂ε̂∆û2 =

K−1∑
j=0

ω(j/K)Γ̂ε̂∆û2(j) =

K−1∑
j=0

ω(j/K)[Γ̂ε̂û2(j)− Γ̂ε̂û2(j + 1)]

=

K−1∑
j=1

[ω(j/K)− ω((j − 1)/K)]Γ̂ε̂û2(j) + Γ̂ε̂û2(0)− ω((K − 1)/K)Γ̂ε̂û2(K)
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=

K−1∑
j=1

[ω(j/K)− ω((j − 1)/K)]Γ̂ε̂û2
(j) +Op(K

−2T−1/2),

since Γ̂ε̂û2(0) = T−1ε̂
′
û2 = T−1ε̂

′
F̂2 = 0 by least squares orthogonality, ω((K − 1)/K) = O(K−2)

and Γ̂ε̂û2(K) = Op(T
−1/2).

Since Γ̂ε̂û2(j) = Γ̂εu2(j)− δ
′
Γ̂φu2(j)− (δ̂ − δ)′ Γ̂F̂u2

(j) + Γ̂εφ(j)A2 − δ
′
Γ̂φφ(j)A2 − (δ̂ − δ)′ Γ̂F̂φ(j)A2,

we have

∆̂ε̂∆û2
=

K−1∑
j=1

[ω(j/K)− ω((j − 1)/K)]Γ̂ε̂û2
(j) +Op(K

−2T−1/2)

=

K−1∑
j=1

[ω(j/K)− ω((j − 1)/K)]Γ̂εu2
(j)− δ

′
K−1∑
j=1

[ω(j/K)− ω((j − 1)/K)]Γ̂φu2
(j)

− (δ̂ − δ)
′
K−1∑
j=1

[ω(j/K)− ω((j − 1)/K)]Γ̂F̂u2
(j) +

K−1∑
j=1

[ω(j/K)− ω((j − 1)/K)]Γ̂εφ(j)A2

− δ
′
K−1∑
j=1

[ω(j/K)− ω((j − 1)/K)]Γ̂φφ(j)A2 − (δ̂ − δ)
′
K−1∑
j=1

[ω(j/K)− ω((j − 1)/K)]Γ̂F̂φ(j)A2 (A-1)

+Op(K
−2T−1/2).

The first term in (A-1) has mean zero because

Γεu2(j) = 0 for all j ≥ 0

in view of Assumption 6 (EC). Next we consider the variance matrix of the first term,

i.e.,

K−1∑
j=1

[ω(j/K)− ω((j − 1)/K)]Γ̂εu2(j) = K−1
K−1∑
j=1

ω
′
((j − 1)/K)Γ̂εu2(j)[1 +O(K−1)],

and

lim
T→∞

KTvar[vec{K−1
K−1∑
j=1

ω
′
((j − 1)/K)Γ̂εu2(j)}]

= lim
T→∞

T

K
var[vec{

K−1∑
j=1

ω
′
((j − 1)/K)Γ̂εu2

(j)}] = constant.

The last line of proof is following Theorem 9 of Hannan (1970, p. 280) on the asymptotic

covariance matrix of spectral estimates because of the first term of (A-1) has the same

form as a spectral estimate at the origin and ω
′
(x) is continuous and uniformly bound
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under KL. Hence,

K−1∑
j=1

[ω(j/K)− ω((j − 1)/K)]Γ̂εu2
(j) = Op(1/

√
KT ).

For the second term in (A-1), under Assumption 7 (KL) we can use the following

Taylor expansion for ω(j/K) as K →∞:

ω(j/K)− ω((j − 1)/K) = K−1ω
′
((j − 1)/K)(1 +O(1/K)).

Thus

K−1∑
j=1

(ω(j/K)− ω((j − 1)/K))Γ̂φu2
(j) = K−1

K−1∑
j=−K+2

ω
′
((j − 1)/K)Γ̂φu2

(j)(1 +O(1/K)).

The modulus of K−1
∑K−1
j=1 ω

′
((j − 1)/K)Γ̂φu2(j) is dominated above by

(sup|j|≤K |ω
′
(θj)|)K−1

K−1∑
j=1

||Γ̂φu2(j)||

≤ constant K−1
K−1∑
j=1

||Γ̂φu2(j)||

= Op(

√
T

n
).

So the second term
∑K−1
j=1 (ω(j/K)− ω((j − 1)/K))Γ̂φu2

(j) = Op(
√

T
n ).

By a similarly reasoning, for the fourth term we have
∑K−1
j=1 (ω(j/K) − ω((j −

1)/K))Γ̂εφ(j) = Op(
√

T
n ), and for the fifth term we have

∑K−1
j=1 (ω(j/K) − ω((j − 1)/K))Γ̂φφ(j) =

Op(
T
n ).

For the third term,

(δ̂ − δ)
′
K−1∑
j=1

[ω(j/K)− ω((j − 1)/K)]Γ̂F̂u2
(j)

=

K−1∑
j=1

[ω(j/K)− ω((j − 1)/K)](δ̂ − δ)
′
Γ̂F̂u2

(j)

=

K−1∑
j=1

[ω(j/K)− ω((j − 1)/K)](δ̂1 − δ1)
′
Γ̂F̂1u2

(j)

+

K−1∑
j=1

[ω(j/K)− ω((j − 1)/K)](δ̂2 − δ2)
′
Γ̂F̂2u2

(j). (A-2)

Using the fact that δ̂2 − δ2 = A
′

2(δ̂ − δ) = Op(T
−1/2) under the assumption that T/

√
n → 0 as
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(n, T ) → ∞, we find that the second term on the last line is Op(1/
√
KT )Op(1/

√
T ) = op(T

−1).

For the first term on the last line we note that δ̂1 − δ1 = A
′

1(δ̂ − δ) = Op(T
−1) under the

assumption that T/
√
n→ 0 as (n, T )→∞ and

K−1∑
j=1

[ω(j/K)− ω((j − 1)/K)]Γ̂F̂2u2
(j) = K−1

K−1∑
j=1

ω
′
(θj)Γ̂F̂2u2

(j) = Op(1).

So the third term in (A-1) is at most Op(T−1). Similarly, for the last term in (A-1) is

also at most Op(T−1). To conclude, under the assumption that T/
√
n → 0 as (n, T ) →

∞

∆̂ε̂∆û2
= Op(1/

√
KT ) +Op(

√
T

n
) +Op(T

−1) +Op(

√
T

n
) +Op(

T

n
) +Op(T

−1) +Op(K
−2T−1/2).

= Op(1/
√
KT ) +Op(

√
T

n
).

(i*). By definition

∆̂0û1 := ∆̂ε̂û1 =

K−1∑
j=0

ω(j/K)Γ̂ε̂û1(j), where Γ̂ε̂û1(j) = T−1
∑

1≤t,t+j≤T

ε̂t+j û
′

1t,

and û1t = A
′

1f̂t = A
′

1(f̂t − Hft + Hft) = A
′

1ϕt + u1t, in which ϕt = f̂t − Hft and u1t = A
′

1Hft

by definition, and ε̂t is the residual from a preliminary least squares regression of yt on F̂t.

Noticing that yt = F̂
′

t δ + εt + α
′
H−1(HFt − F̂t), we have

ε̂t = yt − F̂
′

t δ̂

= F̂
′

t δ + εt + α
′
H−1(HFt − F̂t)− F̂

′

t δ̂

= εt − δ
′
φt − F̂

′

t (δ̂ − δ),

in which δ
′

= α
′
H−1, δ̂ = (F̂

′
F̂ )−1F̂

′
Y and φt = F̂t −HFt. This leads to

ε̂t+j û
′

1t = {εt+j − δ
′
φt+j − F̂

′

t+j(δ̂ − δ)}{A
′

1(f̂ −Hft +Hft)}
′

= {εt+j − δ
′
φt+j − F̂

′

t+j(δ̂ − δ)}{u1t +A
′

1ϕt}
′

= εt+ju
′

1t − δ
′
φt+ju

′

1t − (δ̂ − δ)
′
F̂t+ju

′

1t

+ εt+jϕ
′

tA1 − δ
′
φt+jϕ

′

tA1 − (δ̂ − δ)
′
F̂t+jϕ

′

tA1.
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By definition

Γ̂ε̂û1
(j) = T−1

∑
1≤t,t+j≤T

ε̂t+j û
′

1t

= T−1
∑

1≤t,t+j≤T

εt+ju
′

1t − δ
′
T−1

∑
1≤t,t+j≤T

φt+ju
′

1t

− (δ̂ − δ)
′
T−1

∑
1≤t,t+j≤T

F̂t+ju
′

1t

+ T−1
∑

1≤t,t+j≤T

εt+jϕ
′

tA1 − δ
′
T−1

∑
1≤t,t+j≤T

φt+jϕ
′

tA1

− (δ̂ − δ)
′
T−1

∑
1≤t,t+j≤T

F̂t+jϕ
′

tA1

= Γ̂εu1
(j)− δ

′
Γ̂φu1

(j)− (δ̂ − δ)
′
Γ̂F̂u1

(j)

+ Γ̂εϕ(j)A1 − δ
′
Γ̂φϕ(j)A1 − (δ̂ − δ)

′
Γ̂F̂ϕ(j)A1,

where Γ̂φu1
(j), Γ̂F̂u1

(j), Γ̂εϕ(j), Γ̂φϕ(j) and Γ̂F̂ϕ(j) are defined similarly to

Γ̂ε̂û1(j).

Then we have

∆̂ε̂û1 =

K−1∑
j=0

ω(j/K)Γ̂ε̂û1(j)

=

K−1∑
j=0

ω(j/K)Γ̂εu1(j)− δ
′
K−1∑
j=0

ω(j/K)Γ̂φu1(j)

− (δ̂ − δ)
′
K−1∑
j=0

ω(j/K)Γ̂F̂u1
(j)

+

K−1∑
j=0

ω(j/K)Γ̂εϕ(j)A1 − δ
′
K−1∑
j=0

ω(j/K)Γ̂φϕ(j)A1

− (δ̂ − δ)
′
K−1∑
j=0

ω(j/K)Γ̂F̂ϕ(j)A1.

Notice the first term in the above equation

K−1∑
j=−K+1

ω(j/K)Γ̂εu1(j) = ∆̂εu1 .

For any given j, Γ̂φu1(j) = T−1
∑

1≤t,t+j≤T φt+ju
′

1t, whose modulus satis-
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fies

||Γ̂φu1
(j)||2 ≤ (1/T

∑
1≤t,t+j≤T

||u1t||2)(1/T
∑

1≤t,t+j≤T

||φt+j ||2).

Assumption 6 (EC) insures that 1/T
∑

1≤t,t+j≤T ||u1t||2 = Op(1). According to Lemma A.3,

under Assumptions 1-5, ( 1
T

∑T
t=1 ||φt||2) = Op(T/n). So for any given j,

||Γ̂φu1
(j)||2 ≤ Op(1)Op(

T

n
) = Op(

T

n
), and ||Γ̂φu1

(j)|| = Op

(√
T

n

)
.

Similarly, we have for any given j,

||Γ̂εϕ(j)||2 ≤ (1/T
∑

1≤t,t+j≤T

||εt+j ||2)(1/T
∑

1≤t,t+j≤T

||ϕt||2).

Assumption 6 (EC) insures that 1/T
∑

1≤t,t+j≤T ||εt+j ||2 = Op(1). According to Lemma 1 of

Bai and Ng (2004), under Assumptions 1-5, ( 1
T

∑T
t=1 ||ϕt||2) = ( 1

T

∑T
t=1 ||f̂t −Hft||2) = Op(D

−1
nT )

with DnT = min{n, T}. So for any given j,

||Γ̂εϕ(j)||2 ≤ Op(1)Op(
1

DnT
) = Op(

1

DnT
), and ||Γ̂εϕ(j)|| = Op

(
1√
DnT

)
.

Similarly,

||Γ̂φϕ(j)||2 ≤ (1/T
∑

1≤t,t+j≤T

||φt+j ||2)(1/T
∑

1≤t,t+j≤T

||ϕt||2) = Op(
T

nDnT
),

and

||Γ̂φϕ(j)|| ≤ (1/T
∑

1≤t,t+j≤T

||φt+j ||2)1/2(1/T
∑

1≤t,t+j≤T

||ϕt||2)1/2 = Op(

√
T√

nDnT

).

To summarize,

||Γ̂φu1
(j)|| = Op

(√
T

n

)
, ||Γ̂εϕ(j)|| = Op

(
1√
DnT

)
, and ||Γ̂φϕ(j)|| = Op

( √
T√

nDnT

)
.

So for the term
∑K−1
j=−K+1 ω(j/K)Γ̂φu1

(j), its modulus is dominated by

(sup|j|≤K |ω(θj)|)
K−1∑
j=0

||Γ̂φu1
(j)||

≤ constant

K−1∑
j=0

||Γ̂φu1
(j)||

= Op

(
K

√
T

n

)
.

Thus the second term δ
′∑K−1

j=0 ω(j/K)Γ̂φu1
(j) = Op

(
K
√

T
n

)
.
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For the term
∑K−1
j=0 ω(j/K)Γ̂εϕ(j), since ϕt = φt − φt+1, we have Γ̂εϕ(j) = Γ̂ε∆φ(j)

and

K−1∑
j=0

ω(j/K)Γ̂εϕ(j) =

K−1∑
j=0

ω(j/K)Γ̂ε∆φ(j)

=

K−1∑
j=0

ω(j/K)[Γ̂εφ(j)− Γ̂εφ(j + 1)]

=

K−1∑
j=1

[ω(j/K)− ω((j − 1)/K)]Γ̂εφ(j)+

ω(0/K)Γ̂εφ(0)− ω((K − 1)/K)Γ̂εφ(K).

Assumption KL implies that

ω(0/K) = 1, ω((K − 1)/K) = O(K−2),

so that the second and third terms are Op(
√

T
n ) and op(K

−2). This leaves us with the first

term which we write as

K−1∑
j=1

[ω(j/K)− ω((j − 1)/K)]Γ̂εφ(j) =
(∑

B∗

+
∑
B∗

)
[ω(j/K)− ω((j − 1)/K)]Γ̂εφ(j) (A-3)

where B∗ = {j : |j| ≤ K∗} and B∗ = {j : |j| > K∗, 1 ≤ j ≤ K − 1} for some K∗ = Kb with

0 < b < 1. Under KL we can use the following Taylor development for ω(j/K) when |j| ≤ K∗

and K →∞ to get

ω(j/K)− ω((j − 1)/K) = ω
′
((j − 1)/K)(1/K) + (1/2)ω

′′
(0)(1/K2)(1 + o(1))

= ω
′′
(0)((j − 1)/K2)(1 + o(1)) + (1/2)ω

′′
(0)(1/K2)(1 + o(1)).

The first sum in (A-4) is then

∑
B∗

[ω(j/K)− ω((j − 1)/K)]Γ̂εφ(j) = K−2ω
′′
(0){

∑
|j|≤K∗

(j − 1)Γ̂εφ(j) + (1/2)
∑
|j|≤K∗

Γ̂εφ(j)}(1 + o(1)).

The mean of the term in braces of above expression is

∑
|j|≤K∗

(j − 1)(1− |j|/T )Γεφ(j) + (1/2)
∑
|j|≤K∗

(1− |j|/T )Γεφ(j)

→
∞∑

j=−∞
(j − 1/2)Γεφ(j).
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Thus the first sum in (A-4) is Op(K−2). The second sum in (A-4) is

∑
B∗

[ω(j/K)− ω((j − 1)/K)]Γ̂εφ(j) = K−1
∑
B∗

ω
′
(θj)Γ̂εφ(j)

where (j − 1)/K < θj < j/K. This expression has mean given by

K−1
∑
B∗

ω
′
(θj)(1− |j|/T )Γεφ(j)

whose modulus is dominated by

(sup|j|≤K |ω
′
(θj)|)K−1

∑
|j|>K∗

||Γεφ(j)||

≤ constantK−1
K−1∑

j=−K+2

||Γεφ(j)||

= Op

(√
T

n

)
.

Thus the fourth term δ
′∑K−1

j=0 ω(j/K)Γ̂εϕ(j) = Op(K
−2) +Op

(√
T
n

)
. By the same reasoning, for

the fifth term we have δ
′∑K−1

j=0 ω(j/K)Γ̂φϕ(j) = Op(K
−2) +Op

(
T
n

)
.

For the third term (δ̂ − δ)′
∑K−1
j=0 ω(j/K)Γ̂F̂u1

(j), we have

(δ̂ − δ)
′
K−1∑
j=0

ω(j/K)Γ̂F̂u1
(j) = (δ̂ − δ)

′
A1

K−1∑
j=0

ω(j/K)Γ̂F̂1u1
(j) + (δ̂ − δ)

′
A2

K−1∑
j=0

ω(j/K)Γ̂F̂2u1
(j).

By definition

Γ̂F̂1u1
(j) = T−1

∑
1≤t,t+j≤T

F̂1,t+ju
′

1t = T−1
∑

1≤t,t+j≤T

A
′

1(F̂t+j −HFt+j +HFt+j)u
′

1t

= T−1
∑

1≤t,t+j≤T

A
′

1φt+ju
′

1t + T−1
∑

1≤t,t+j≤T

A
′

1HFt+ju
′

1t

= A
′

1Γ̃φu1
(j) +HΓ̂F1u1

(j) = Op

(√
T

n

)
+Op(1),

and

Γ̂F̂2u1
(j) = T−1

∑
1≤t,t+j≤T

F̂2,t+ju
′

1t = T−1
∑

1≤t,t+j≤T

A
′

2(F̂t+j −HFt+j +HFt+j)u
′

1t

= T−1
∑

1≤t,t+j≤T

A
′

2φt+ju
′

1t + T−1
∑

1≤t,t+j≤T

A
′

2HFt+ju
′

1t
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= A
′

2Γ̃φu1(j) +HΓ̂F2u1(j) = Op

(√
T

n

)
+Op(

1√
T

).

So for the term
∑K−1
j=0 ω(j/K)Γ̂F̂1u1

(j), its modulus is dominated by

(sup|j|≤K |ω(θj)|)
K−1∑
j=0

||Γ̂F̂1u1
(j)|| ≤ constant

K−1∑
j=0

||Γ̂F̂1u1
(j)|| = Op

(
K

√
T

n

)
+Op(K),

and for the term
∑K−1
j=0 ω(j/K)Γ̂F̂2u1

(j), its modulus is dominated by

(sup|j|≤K |ω(θj)|)
K−1∑
j=0

||Γ̂F̂2u1
(j)|| ≤ constant

K−1∑
j=0

||Γ̂F̂1u1
(j)|| = Op

(
K

√
T

n

)
+Op(

K√
T

).

Thus under the assumption that T/
√
n→ 0 as (n, T )→∞, we have

(δ̂ − δ)
′
K−1∑
j=0

ω(j/K)Γ̂F̂u1
(j) = (δ̂ − δ)

′
A1

K−1∑
j=0

ω(j/K)Γ̂F̂1u1
(j) + (δ̂ − δ)

′
A2

K−1∑
j=0

ω(j/K)Γ̂F̂2u1
(j)

= Op(
1

T
)(Op

(
K

√
T

n

)
+Op(K)) +Op(

1√
T

)(Op

(
K

√
T

n

)
+Op(

K√
T

))

= Op

(
K√
Tn

)
+Op(

K

T
) +Op

(
K√
n

)
.

Similarly, for the sixth term, we have

(δ̂ − δ)
′
K−1∑
j=0

ω(j/K)Γ̂F̂ϕ(j) = (δ̂ − δ)
′
A1

K−1∑
j=0

ω(j/K)Γ̂F̂1ϕ
(j) + (δ̂ − δ)

′
A2

K−1∑
j=0

ω(j/K)Γ̂F̂2ϕ
(j)

= Op(
1

T
)(Op

(
K√
DnT

√
T

n

)
+Op(K)) +Op(

1√
T

)(Op

(
K√
DnT

√
T

n

)
+Op(

K√
T

))

= Op

(
K

√
DnT

√
Tn

)
+Op(

K

T
) +Op

(
K√

DnT
√
n

)
.

To conclude, under the assumption that T/
√
n→ 0 as (n, T )→∞,

∆̂ε̂û1
=

K−1∑
j=0

ω(j/K)Γ̂εu1
(j)− δ

′
K−1∑
j=0

ω(j/K)Γ̂φu1
(j)− (δ̂ − δ)

′
K−1∑
j=0

ω(j/K)Γ̂F̂u1
(j)

+

K−1∑
j=0

ω(j/K)Γ̂εϕ(j)A − δ
′
K−1∑
j=0

ω(j/K)Γ̂φϕ(j)A1 − (δ̂ − δ)
′
K−1∑
j=0

ω(j/K)Γ̂F̂ϕ(j)A1

= ∆̂εu1 +Op

(
K

√
T

n

)
+Op

(
K√
Tn

)
+Op(

K

T
) +Op

(
K√
n

)
+Op(K

−2) +Op

(√
T

n

)

+Op(K
−2) +Op

(
T

n

)
+Op

(
K

√
DnT

√
Tn

)
+Op(

K

T
) +Op

(
K√

DnT
√
n

)
= ∆̂εu1 +Op

(
K

√
T

n

)
+Op

(
K

T

)
+Op(K

−2) +Op

(
T

n

)

= ∆01 +Op((K/T )1/2) +Op

(
K

√
T

n

)
+Op

(
K

T

)
+Op(K

−2) +Op

(
T

n

)
.
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The last line of above proof is because ∆̂εu1
= ∆01 +Op((K/T )1/2).

Lemma A.5

Under Assumptions 1-5, 6 (EC), 7 (KL), and 8 (BW), we have:

(a) Under the assumption that T/
√
n→ 0 as (n, T )→∞

Γ̂0û2
(j) := Γ̂ε̂û2

(j) = Γ̂εu2
(j)− δ

′
Γ̂φu2

(j)− (δ̂ − δ)
′
Γ̂F̂u2

(j)

+ Γ̂εφ(j)A2 − δ
′
Γ̂φφ(j)A2 − (δ̂ − δ)

′
Γ̂F̂φ(j)A2

= Γ̂εu2
(j) +Op

(√
T

n

)
+Op(T

−1/2) +Op(
T

n
);

(b) Under the assumption that T/
√
n→ 0 as (n, T )→∞

Γ̂0â(j) := Γ̂ε̂â(j) = Γ̂εa(j)− δ
′
Γ̂φa(j)− (δ̂ − δ)

′
Γ̂F̂ a(j)

+ Γ̂εϕ(j)A
′
− δ

′
Γ̂φϕ(j)A

′
− (δ̂ − δ)

′
Γ̂F̂ϕ(j)A

′

= Γ̂εa(j) +Op

(√
T

n

)
+Op(T

−1/2) +Op

(
1√
DnT

)
+Op(

√
T√

nDnT

);

(c) Under the assumption that T/
√
n→ 0 as (n, T )→∞,

Ω̂0â := Ω̂ε̂â = Ω̂εa +Op

(
K

√
T

n

)
+Op

(
K

T

)
+Op(K

−2) +Op

(
T

n

)
;

(d) Ω̂ââ = Ω̂aa +Op(K
−2) +Op(

√
T
n );

(e)

∆̂ââ :=
[ ∆̂û1û1 ∆̂û1∆û2

∆̂∆û2û1
∆̂∆û2∆û2

]
=
[ ∆̂u1u1 ∆̂u1∆u2

∆̂∆u2u1
∆̂∆u2∆u2

]
+Op(K

−2) +Op

(√
T

n

)

= ∆̂aa +Op(K
−2) +Op(

√
T

n
);

(f)

T−1∆Û
′

2Û2 − ∆̂∆û2∆û2
= Op(K

−2) +Op(
1

T
) +Op(

√
T

n
);
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(g)

T−1Û
′

1Û2 − ∆̂û1∆û2
= Op(K

−2) +Op(1/
√
KT ) +Op(

1

T
) +Op(

√
T

n
);

(h)

T−1∆Û
′

2F̂1 − ∆̂∆û2û1
= T−1u2TF

′

1T + T−1φTF
′

1T − T−1φ0F
′

1,1

+Op(K
−2) +Op(1/

√
KT ) +Op(

√
T

n
) +Op(

√
T

nDnT
) +Op(K

−2) +Op(

√
T

n
)

= Op(K
−2) +Op(1/

√
KT ) +Op(T

−1/2) +Op(

√
T

n
);

(i) When T/n→ 0 as (n, T )→∞, we have

T−1Û
′

1F̂1 − ∆̂û1û1
:= N11T

d→
∫ 1

0
dB1B

′

1;

(j) When K
√
T/
√
n→ 0, K/T → 0 and T/

√
n→ 0 as (n, T )→∞,

T−1F̂
′

1ε− ∆̂û10
d→
∫ 1

0
B1dB0;

with DnT = min{n, T}.

Proof. (a).

By definition

Ω̂εu2 =

K−1∑
j=−K+1

ω(j/K)Γ̂εu2(j), where Γ̂εu2(j) = T−1
∑

1≤t,t+j≤T

εt+ju
′

2t,

and

Ω̂ε̂û2
=

K−1∑
j=−K+1

ω(j/K)Γ̂ε̂û2
(j), where Γ̂ε̂û2

(j) = T−1
∑

1≤t,t+j≤T

ε̂t+j û
′

2t,

where û2t = F̂2t = A
′

2F̂t and ε̂t is the residual from a preliminary least squares regression of

yt on F̂t. Noticing that yt = F̂
′

t δ + εt + α
′
H−1(HFt − F̂t), we have

ε̂t = yt − F̂
′

t δ̂

= F̂
′

t δ + εt + α
′
H−1(HFt − F̂t)− F̂

′

t δ̂

= εt − δ
′
φt − F̂

′

t (δ̂ − δ),

in which δ
′

= α
′
H−1, δ̂ = (F̂

′
F̂ )−1F̂

′
Y and φt = F̂t −HFt. This leads to

ε̂t+j û
′

2t = {εt+j − δ
′
φt+j − F̂

′

t+j(δ̂ − δ)}{A
′

2(F̂ −HFt +HFt)}
′
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= {εt+j − δ
′
φt+j − F̂

′

t+j(δ̂ − δ)}{u2t +A
′

2φt}
′

= εt+ju
′

2t − δ
′
φt+ju

′

2t − (δ̂ − δ)
′
F̂t+ju

′

2t

+ εt+jφ
′

tA2 − δ
′
φt+jφ

′

tA2 − (δ̂ − δ)
′
F̂t+jφ

′

tA2.

By definition

Γ̂ε̂û2(j) = T−1
∑

1≤t,t+j≤T

ε̂t+j û
′

t

= T−1
∑

1≤t,t+j≤T

εt+ju
′

2t − δ
′
T−1

∑
1≤t,t+j≤T

φt+ju
′

2t

− (δ̂ − δ)
′
T−1

∑
1≤t,t+j≤T

F̂t+ju
′

2t

+ T−1
∑

1≤t,t+j≤T

εt+jφ
′

tA2 − δ
′
T−1

∑
1≤t,t+j≤T

φt+jφ
′

tA2

− (δ̂ − δ)
′
T−1

∑
1≤t,t+j≤T

F̂t+jφ
′

tA2

= Γ̂εu2
(j)− δ

′
Γ̂φu2

(j)− (δ̂ − δ)
′
Γ̂F̂u2

(j)

+ Γ̂εφ(j)A2 − δ
′
Γ̂φφ(j)A2 − (δ̂ − δ)

′
Γ̂F̂φ(j)A2,

where Γ̂φu2(j), Γ̂F̂u2
(j), Γ̂εφ(j), Γ̂φφ(j) and Γ̂F̂φ(j) are defined similarly to

Γ̂ε̂û2
(j).

For any given j, Γ̂φu2
(j) = T−1

∑
1≤t,t+j≤T φt+ju

′

2t, whose modulus satis-

fies

||Γ̂φu2
(j)||2 ≤ (1/T

∑
1≤t,t+j≤T

||u2t||2)(1/T
∑

1≤t,t+j≤T

||φt+j ||2).

Assumption 6 (EC) insures that 1/T
∑

1≤t,t+j≤T ||u2t||2 = Op(1). According to Lemma 2,

under Assumptions 1-5, ( 1
T

∑T
t=1 ||φt||2) = Op(T/n). So for any given j,

||Γ̂φu2
(j)||2 ≤ Op(1)Op(

T

n
) = Op(

T

n
), and ||Γ̂φu2

(j)|| = Op

(√
T

n

)
.

Similarly, we have for any given j,

||Γ̂εφ(j)||2 ≤ (1/T
∑

1≤t,t+j≤T

||εt+j ||2)(1/T
∑

1≤t,t+j≤T

||φt||2).

Assumption 6 (EC) insures that 1/T
∑

1≤t,t+j≤T ||εt+j ||2 = Op(1). According to Lemma 2,
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under Assumptions 1-5, ( 1
T

∑T
t=1 ||φt||2) = Op(T/n). So for any given j,

||Γ̂εφ(j)||2 ≤ Op(1)Op(
T

n
) = Op(

T

n
), and ||Γ̂εφ(j)|| = Op

(√
T

n

)
.

Similarly,

||Γ̂φφ(j)||2 ≤ (1/T
∑

1≤t,t+j≤T

||φt+j ||2)(1/T
∑

1≤t,t+j≤T

||φt||2) = Op(
T 2

n2
),

and

||Γ̂φφ(j)|| ≤ (1/T
∑

1≤t,t+j≤T

||φt+j ||2)1/2(1/T
∑

1≤t,t+j≤T

||φt||2)1/2 = Op(
T

n
).

For the third and sixth terms, under the assumption that T/
√
n → 0 as (n, T ) → ∞, we

have

(δ̂ − δ)
′
Γ̂F̂u2

(j) = Op(T
−1/2)Op(1) = Op(T

−1/2)

(δ̂ − δ)
′
Γ̂F̂φ(j)A2 = Op(T

−1/2)Op(1) = Op(T
−1/2).

To conclude, under the assumption that T/
√
n→ 0 as (n, T )→∞

Γ̂ε̂û2(j) = Γ̂εu2(j)− δ
′
Γ̂φu2(j)− (δ̂ − δ)

′
Γ̂F̂u2

(j)

+ Γ̂εφ(j)A2 − δ
′
Γ̂φφ(j)A2 − (δ̂ − δ)

′
Γ̂F̂φ(j)A2

= Γ̂εu2
(j) +Op

(√
T

n

)
+Op(T

−1/2) +Op

(√
T

n

)
+Op(

T

n
) +Op(T

−1/2)

= Γ̂εu2(j) +Op

(√
T

n

)
+Op(T

−1/2) +Op(
T

n
).

(b).

By definition

Ω̂0â := Ω̂ε̂â =

K−1∑
j=−K+1

ω(j/K)Γ̂ε̂â(j), where Γ̂ε̂â(j) = T−1
∑

1≤t,t+j≤T

ε̂t+j û
′

at,

and ûat = Af̂t = A(f̂t−Hft+Hft) = Aϕt+uat, in which ϕt = f̂t−Hft and uat = AHft by definition.

From the proof of part (a) we have ε̂t = εt − δ
′
φt − F̂

′

t (δ̂ − δ). Thus

ε̂t+j û
′

at = {εt+j − δ
′
φt+j − F̂

′

t+j(δ̂ − δ)}{Aϕt + uat}
′

= εt+ju
′

at − δ
′
φt+ju

′

at − (δ̂ − δ)
′
F̂t+ju

′

at
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+ εt+jϕ
′

tA
′
− δ

′
φt+jϕ

′

tA
′
− (δ̂ − δ)

′
F̂t+jϕ

′

tA
′
.

Then

Γ̂ε̂â(j) = T−1
∑

1≤t,t+j≤T

ε̂t+j û
′

at

= T−1
∑

1≤t,t+j≤T

εt+ju
′

at − δ
′
T−1

∑
1≤t,t+j≤T

φt+ju
′

at

− (δ̂ − δ)
′
T−1

∑
1≤t,t+j≤T

F̂t+ju
′

at

+ T−1
∑

1≤t,t+j≤T

εt+jϕ
′

tA
′
− δ

′
T−1

∑
1≤t,t+j≤T

φt+jϕ
′

tA
′

− (δ̂ − δ)
′
T−1

∑
1≤t,t+j≤T

F̂t+jϕ
′

tA
′

= Γ̂εa(j)− δ
′
Γ̂φa(j)− (δ̂ − δ)

′
Γ̂F̂ a(j)

+ Γ̂εϕ(j)A
′
− δ

′
Γ̂φϕ(j)A

′
− (δ̂ − δ)

′
Γ̂F̂ϕ(j)A

′
,

where Γ̂φa(j), Γ̂F̂ a(j), Γ̂εϕ(j), Γ̂φϕ(j) and Γ̂F̂ϕ(j) are defined similarly to

Γ̂ε̂â(j).

For any given j, Γ̂φa(j) = T−1
∑

1≤t,t+j≤T φt+ju
′

at, whose modulus satis-

fies

||Γ̂φa(j)||2 ≤ (1/T
∑

1≤t,t+j≤T

||uat||2)(1/T
∑

1≤t,t+j≤T

||φt+j ||2).

Assumption 6 (EC) insures that 1/T
∑

1≤t,t+j≤T ||uat||2 = Op(1). According to Lemma 2,

under Assumptions 1-5, ( 1
T

∑T
t=1 ||φt||2) = Op(T/n). So for any given j,

||Γ̂φa(j)||2 ≤ Op(1)Op(
T

n
) = Op(

T

n
), and ||Γ̂φa(j)|| = Op

(√
T

n

)
.

Similarly, we have for any given j,

||Γ̂εϕ(j)||2 ≤ (1/T
∑

1≤t,t+j≤T

||εt+j ||2)(1/T
∑

1≤t,t+j≤T

||ϕt||2).

Assumption 6 (EC) insures that 1/T
∑

1≤t,t+j≤T ||εt+j ||2 = Op(1). According to Lemma 1 of

Bai and Ng (2004), under Assumptions 1-5, ( 1
T

∑T
t=1 ||ϕt||2) = ( 1

T

∑T
t=1 ||f̂t −Hft||2) = Op(D

−1
nT )
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with DnT = min{n, T}. So for any given j,

||Γ̂εϕ(j)||2 ≤ Op(1)Op(
1

DnT
) = Op(

1

DnT
), and ||Γ̂εϕ(j)|| = Op

(
1√
DnT

)
.

Similarly,

||Γ̂φϕ(j)||2 ≤ (1/T
∑

1≤t,t+j≤T

||φt+j ||2)(1/T
∑

1≤t,t+j≤T

||ϕt||2) = Op(
T

nDnT
),

and

||Γ̂φϕ(j)|| ≤ (1/T
∑

1≤t,t+j≤T

||φt+j ||2)1/2(1/T
∑

1≤t,t+j≤T

||ϕt||2)1/2 = Op(

√
T√

nDnT

).

For the third and sixth terms, under the assumption that T/
√
n → 0 as (n, T ) → ∞, we

have

(δ̂ − δ)
′
Γ̂F̂ a(j) = Op(T

−1/2)Op(1) = Op(T
−1/2)

(δ̂ − δ)
′
Γ̂F̂ϕ(j)A

′
= Op(T

−1/2)Op(1) = Op(T
−1/2).

To conclude, under the assumption that T/
√
n→ 0 as (n, T )→∞,

Γ̂ε̂â(j) = Γ̂εa(j)− δ
′
Γ̂φa(j)− (δ̂ − δ)

′
Γ̂F̂ a(j)

+ Γ̂εϕ(j)A
′
− δ

′
Γ̂φϕ(j)A

′
− (δ̂ − δ)

′
Γ̂F̂ϕ(j)A

′

= Γ̂εa(j) +Op

(√
T

n

)
+Op(T

−1/2) +Op

(
1√
DnT

)
+Op(

√
T√

nDnT

) +Op(T
−1/2)

= Γ̂εa(j) +Op

(√
T

n

)
+Op(T

−1/2) +Op

(
1√
DnT

)
+Op(

√
T√

nDnT

).

(c). By definition

Ω̂0â := Ω̂ε̂â =

K−1∑
j=−K+1

ω(j/K)Γ̂ε̂â(j), where Γ̂ε̂â(j) = T−1
∑

1≤t,t+j≤T

ε̂t+j û
′

at,

and ûat = Af̂t = A(f̂t−Hft+Hft) = Aϕt+uat, in which ϕt = f̂t−Hft and uat = AHft by definition.

From the proof of part (a) we have ε̂t = εt − δ
′
φt − F̂

′

t (δ̂ − δ). Thus

ε̂t+j û
′

at = {εt+j − δ
′
φt+j − F̂

′

t+j(δ̂ − δ)}{Aϕt + uat}
′

= εt+ju
′

at − δ
′
φt+ju

′

at − (δ̂ − δ)
′
F̂t+ju

′

at

+ εt+jϕ
′

tA
′
− δ

′
φt+jϕ

′

tA
′
− (δ̂ − δ)

′
F̂t+jϕ

′

tA
′
.
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Then

Γ̂ε̂â(j) = T−1
∑

1≤t,t+j≤T

ε̂t+j û
′

at

= T−1
∑

1≤t,t+j≤T

εt+ju
′

at − δ
′
T−1

∑
1≤t,t+j≤T

φt+ju
′

at

− (δ̂ − δ)
′
T−1

∑
1≤t,t+j≤T

F̂t+ju
′

at

+ T−1
∑

1≤t,t+j≤T

εt+jϕ
′

tA
′
− δ

′
T−1

∑
1≤t,t+j≤T

φt+jϕ
′

tA
′

− (δ̂ − δ)
′
T−1

∑
1≤t,t+j≤T

F̂t+jϕ
′

tA
′

= Γ̂εa(j)− δ
′
Γ̂φa(j)− (δ̂ − δ)

′
Γ̂F̂ a(j)

+ Γ̂εϕ(j)A
′
− δ

′
Γ̂φϕ(j)A

′
− (δ̂ − δ)

′
Γ̂F̂ϕ(j)A

′
,

where Γ̂φa(j), Γ̂F̂ a(j), Γ̂εϕ(j), Γ̂φϕ(j) and Γ̂F̂ϕ(j) are defined similarly to

Γ̂ε̂â(j).

Then we have

Ω̂ε̂â =

K−1∑
j=−K+1

ω(j/K)Γ̂ε̂â(j)

=

K−1∑
j=−K+1

ω(j/K)Γ̂εa(j)− δ
′

K−1∑
j=−K+1

ω(j/K)Γ̂φa(j)

− (δ̂ − δ)
′

K−1∑
j=−K+1

ω(j/K)Γ̂F̂ a(j)

+

K−1∑
j=−K+1

ω(j/K)Γ̂εϕ(j)A − δ
′

K−1∑
j=−K+1

ω(j/K)Γ̂φϕ(j)A

− (δ̂ − δ)
′

K−1∑
j=−K+1

ω(j/K)Γ̂F̂ϕ(j)A
′
.

Notice the first term in the above equation

K−1∑
j=−K+1

ω(j/K)Γ̂εa(j) = Ω̂εa.

From the proof of part (b), we have

||Γ̂φa(j)|| = Op

(√
T

n

)
, ||Γ̂εϕ(j)|| = Op

(
1√
DnT

)
, and ||Γ̂φϕ(j)|| = Op

( √
T√

nDnT

)
.
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So for the term
∑K−1
j=−K+1 ω(j/K)Γ̂φa(j), its modulus is dominated by

(sup|j|≤K |ω(θj)|)
K−1∑

j=−K+1

||Γ̂φa(j)||

≤ constant

K−1∑
j=−K+1

||Γ̂φa(j)||

= Op

(
K

√
T

n

)
.

Thus the second term δ
′∑K−1

j=−K+1 ω(j/K)Γ̂φa(j) = Op

(
K
√

T
n

)
. For the term∑K−1

j=−K+1 ω(j/K)Γ̂εϕ(j), since ϕt = φt − φt+1, we have Γ̂εϕ(j) = Γ̂ε∆φ(j) and

K−1∑
j=−K+1

ω(j/K)Γ̂εϕ(j) =

K−1∑
j=−K+1

ω(j/K)Γ̂ε∆φ(j)

=

K−1∑
j=−K+1

ω(j/K)[Γ̂εφ(j)− Γ̂εφ(j + 1)]

=

K−1∑
j=−K+2

[ω(j/K)− ω((j − 1)/K)]Γ̂εφ(j)+

ω((−K + 1)/K)Γ̂εφ(−K + 1)− ω((K − 1)/K)Γ̂εφ(K).

Assumption KL implies that

ω((−K + 1)/K), ω((K − 1)/K) = O(K−2),

so that the second and third terms are op(K
−2). This leaves us with the first term which

we write as

K−1∑
j=−K+2

[ω(j/K)− ω((j − 1)/K)]Γ̂εφ(j) =
(∑

B∗

+
∑
B∗

)
[ω(j/K)− ω((j − 1)/K)]Γ̂εφ(j) (A-4)

where B∗ = {j : |j| ≤ K∗} and B∗ = {j : |j| > K∗,−K + 1 ≤ j ≤ K − 2} for some K∗ = Kb with

0 < b < 1. Under KL we can use the following Taylor development for ω(j/K) when |j| ≤ K∗

and K →∞ to get

ω(j/K)− ω((j − 1)/K) = ω
′
((j − 1)/K)(1/K) + (1/2)ω

′′
(0)(1/K2)(1 + o(1))

= ω
′′
(0)((j − 1)/K2)(1 + o(1)) + (1/2)ω

′′
(0)(1/K2)(1 + o(1)).
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The first sum in (A-4) is then

∑
B∗

[ω(j/K)− ω((j − 1)/K)]Γ̂εφ(j) = K−2ω
′′
(0){

∑
|j|≤K∗

(j − 1)Γ̂εφ(j) + (1/2)
∑
|j|≤K∗

Γ̂εφ(j)}(1 + o(1)).

The mean of the term in braces of above expression is

∑
|j|≤K∗

(j − 1)(1− |j|/T )Γεφ(j) + (1/2)
∑
|j|≤K∗

(1− |j|/T )Γεφ(j)

→
∞∑

j=−∞
(j − 1/2)Γεφ(j).

Thus the first sum in (A-4) is Op(K−2). The second sum in (A-4) is

∑
B∗

[ω(j/K)− ω((j − 1)/K)]Γ̂εφ(j) = K−1
∑
B∗

ω
′
(θj)Γ̂εφ(j)

where (j − 1)/K < θj < j/K. This expression has mean given by

K−1
∑
B∗

ω
′
(θj)(1− |j|/T )Γεφ(j)

whose modulus is dominated by

(sup|j|≤K |ω
′
(θj)|)K−1

∑
|j|>K∗

||Γεφ(j)||

≤ constantK−1
K−1∑

j=−K+2

||Γεφ(j)||

= Op

(√
T

n

)
.

Thus the fourth term δ
′∑K−1

j=−K+1 ω(j/K)Γ̂εϕ(j) = Op(K
−2) +Op

(√
T
n

)
. By the same reasoning,

for the fifth term we have δ
′∑K−1

j=−K+1 ω(j/K)Γ̂φϕ(j) = Op(K
−2) +Op

(
T
n

)
.

For the third term (δ̂ − δ)′
∑K−1
j=−K+1 ω(j/K)Γ̂F̂ a(j), we have

(δ̂ − δ)
′

K−1∑
j=−K+1

ω(j/K)Γ̂F̂ a(j) = (δ̂ − δ)
′
A1

K−1∑
j=−K+1

ω(j/K)Γ̂F̂1a
(j) + (δ̂ − δ)

′
A2

K−1∑
j=−K+1

ω(j/K)Γ̂F̂2a
(j).

By definition

Γ̂F̂1a
(j) = T−1

∑
1≤t,t+j≤T

F̂1,t+ju
′

at = T−1
∑

1≤t,t+j≤T

A
′

1(F̂t+j −HFt+j +HFt+j)u
′

at

= T−1
∑

1≤t,t+j≤T

A
′

1φt+ju
′

at + T−1
∑

1≤t,t+j≤T

A
′

1HFt+ju
′

at
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= A
′

1Γ̃φua(j) +HΓ̂F1ua(j) = Op

(√
T

n

)
+Op(1),

and

Γ̂F̂2a
(j) = T−1

∑
1≤t,t+j≤T

F̂2,t+ju
′

at = T−1
∑

1≤t,t+j≤T

A
′

2(F̂t+j −HFt+j +HFt+j)u
′

at

= T−1
∑

1≤t,t+j≤T

A
′

2φt+ju
′

at + T−1
∑

1≤t,t+j≤T

A
′

2HFt+ju
′

at

= A
′

2Γ̃φua
(j) +HΓ̂F2ua

(j) = Op

(√
T

n

)
+Op(

1√
T

).

So for the term
∑K−1
j=−K+1 ω(j/K)Γ̂F̂1a

(j), its modulus is dominated

by

(sup|j|≤K |ω(θj)|)
K−1∑

j=−K+1

||Γ̂F̂1a
(j)|| ≤ constant

K−1∑
j=−K+1

||Γ̂F̂1a
(j)|| = Op

(
K

√
T

n

)
+Op(K),

and for the term
∑K−1
j=−K+1 ω(j/K)Γ̂F̂2a

(j), its modulus is dominated by

(sup|j|≤K |ω(θj)|)
K−1∑

j=−K+1

||Γ̂F̂2a
(j)|| ≤ constant

K−1∑
j=−K+1

||Γ̂F̂1a
(j)|| = Op

(
K

√
T

n

)
+Op(

K√
T

).

Thus under the assumption that T/
√
n→ 0 as (n, T )→∞, we have

(δ̂ − δ)
′

K−1∑
j=−K+1

ω(j/K)Γ̂F̂ a(j) = (δ̂ − δ)
′
A1

K−1∑
j=−K+1

ω(j/K)Γ̂F̂1a
(j) + (δ̂ − δ)

′
A2

K−1∑
j=−K+1

ω(j/K)Γ̂F̂2a
(j)

= Op(
1

T
)(Op

(
K

√
T

n

)
+Op(K)) +Op(

1√
T

)(Op

(
K

√
T

n

)
+Op(

K√
T

))

= Op

(
K√
Tn

)
+Op(

K

T
) +Op

(
K√
n

)
.

Similarly, for the sixth term, we have

(δ̂ − δ)
′

K−1∑
j=−K+1

ω(j/K)Γ̂F̂ϕ(j) = (δ̂ − δ)
′
A1

K−1∑
j=−K+1

ω(j/K)Γ̂F̂1ϕ
(j) + (δ̂ − δ)

′
A2

K−1∑
j=−K+1

ω(j/K)Γ̂F̂2ϕ
(j)

= Op(
1

T
)(Op

(
K√
DnT

√
T

n

)
+Op(K)) +Op(

1√
T

)(Op

(
K√
DnT

√
T

n

)
+Op(

K√
T

))

= Op

(
K

√
DnT

√
Tn

)
+Op(

K

T
) +Op

(
K√

DnT
√
n

)
.

To conclude, under the assumption that T/
√
n→ 0 as (n, T )→∞,

Ω̂ε̂â =

K−1∑
j=−K+1

ω(j/K)Γ̂εa(j)− δ
′

K−1∑
j=−K+1

ω(j/K)Γ̂φa(j)− (δ̂ − δ)
′

K−1∑
j=−K+1

ω(j/K)Γ̂F̂ a(j)
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+

K−1∑
j=−K+1

ω(j/K)Γ̂εϕ(j)A − δ
′

K−1∑
j=−K+1

ω(j/K)Γ̂φϕ(j)A − (δ̂ − δ)
′

K−1∑
j=−K+1

ω(j/K)Γ̂F̂ϕ(j)A
′

= Ω̂εa +Op

(
K

√
T

n

)
+Op

(
K√
Tn

)
+Op(

K

T
) +Op

(
K√
n

)
+Op(K

−2) +Op

(√
T

n

)

+Op(K
−2) +Op

(
T

n

)
+Op

(
K

√
DnT

√
Tn

)
+Op(

K

T
) +Op

(
K√

DnT
√
n

)
= Ω̂εa +Op

(
K

√
T

n

)
+Op

(
K

T

)
+Op(K

−2) +Op

(
T

n

)
.

(d). By definition

Ω̂ââ := Ω̂ââ =

K−1∑
j=−K+1

ω(j/K)Γ̂ââ(j), where Γ̂ââ(j) = T−1
∑

1≤t,t+j≤T

ûa,t+j û
′

at,

and ûat = Af̂t = A(f̂t − Hft + Hft) = Aϕt + uat, in which ϕt = f̂t − Hft and uat = AHft by

definition. Thus

ûa,t+j û
′

at = {Aϕt+j + ua,t+j}{Aϕt + uat}
′

= ua,t+ju
′

at + ua,t+jϕ
′

tA
′
+Aϕt+ju

′

at +Aϕt+jϕ
′

tA
′
.

Then

Γ̂ââ(j) = T−1
∑

1≤t,t+j≤T

ûa,t+j û
′

at

= T−1
∑

1≤t,t+j≤T

ua,t+ju
′

at + T−1
∑

1≤t,t+j≤T

ua,t+jϕ
′

tA
′

+AT−1
∑

1≤t,t+j≤T

ϕt+ju
′

at +AT−1
∑

1≤t,t+j≤T

ϕt+jϕ
′

tA
′

= Γ̂aa(j) + Γ̂aϕ(j)A
′
+AΓ̂ϕa(j) +AΓ̂ϕϕ(j)A

′
,

where Γ̂aa(j), Γ̂aϕ(j), Γ̂ϕa(j), and Γ̂ϕϕ(j) are defined similarly to Γ̂ââ(j).

Then we have

Ω̂ââ =

K−1∑
j=−K+1

ω(j/K)Γ̂ââ(j)

=

K−1∑
j=−K+1

ω(j/K)Γ̂aa(j) +

K−1∑
j=−K+1

ω(j/K)Γ̂aϕ(j)A
′

+A

K−1∑
j=−K+1

ω(j/K)Γ̂ϕa(j) +A

K−1∑
j=−K+1

ω(j/K)Γ̂ϕϕ(j)A
′
.
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Notice the first term in the above equation

K−1∑
j=−K+1

ω(j/K)Γ̂aa(j) = Ω̂aa.

For any given j, Γ̂aϕ(j) = T−1
∑

1≤t,t+j≤T ua,t+jϕ
′

t, whose modulus satis-

fies

||Γ̂aϕ(j)||2 ≤ (1/T
∑

1≤t,t+j≤T

||ua,t+j ||2)(1/T
∑

1≤t,t+j≤T

||ϕt||2).

Assumption 6 (EC) insures that 1/T
∑

1≤t,t+j≤T ||uat||2 = Op(1). According to Lemma 1 of

Bai and Ng (2004), under Assumptions 1-5, ( 1
T

∑T
t=1 ||ϕt||2) = ( 1

T

∑T
t=1 ||f̂t −Hft||2) = Op(D

−1
nT )

with DnT = min{n, T}. So for any given j,

||Γ̂aϕ(j)||2 ≤ Op(1)Op(
1

DnT
) = Op(

1

DnT
), and ||Γ̂aϕ(j)|| = Op

(
1√
DnT

)
.

Similarly,

||Γ̂ϕϕ(j)||2 ≤ (1/T
∑

1≤t,t+j≤T

||ϕt+j ||2)(1/T
∑

1≤t,t+j≤T

||ϕt||2) = Op(
1

D2
nT

),

and

||Γ̂ϕϕ(j)|| ≤ (1/T
∑

1≤t,t+j≤T

||ϕt+j ||2)1/2(1/T
∑

1≤t,t+j≤T

||ϕt||2)1/2 = Op(
1

DnT
).

So the modulus of the second term
∑K−1
j=−K+1 ω(j/K)Γ̂aϕ(j) can be shown to be

Op(K
−2) + Op(

√
T
n ) as in the term

∑K−1
j=−K+1 ω(j/K)Γ̂εϕ(j) in the proof of part (c). And

similarly,
∑K−1
j=−K+1 ω(j/K)Γ̂ϕϕ(j) = Op(K

−2) +Op(
√

T
nDnT

).

To conclude,

Ω̂ââ =

K−1∑
j=−K+1

ω(j/K)Γ̂ââ(j)

=

K−1∑
j=−K+1

ω(j/K)Γ̂aa(j) +

K−1∑
j=−K+1

ω(j/K)Γ̂aϕ(j)A
′
+A

K−1∑
j=−K+1

ω(j/K)Γ̂ϕa(j) +A

K−1∑
j=−K+1

ω(j/K)Γ̂ϕϕ(j)A
′

= Ω̂aa +Op(K
−2) +Op(

√
T

n
) +Op(K

−2) +Op(

√
T

n
) +Op(K

−2) +Op(

√
T

nDnT
)

= Ω̂aa +Op(K
−2) +Op(

√
T

n
).

(e). Similar to the proof of part (d).

(f).
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Lemma 8.1 (e) in the Appendix of Phillips (1995) states that

K2[T−1∆U
′

2U2 − ∆̂∆u2∆u2
]
p→ ω

′′
(0){∆22 − (1/2)Σ22}.

Thus T−1∆U
′

2U2 − ∆̂∆u2∆u2
= Op(K

−2). From Lemma A.5 (e), we have ∆̂∆û2∆û2
= ∆̂∆u2∆u2

+

Op(K
−2) + Op(

√
T
n ), and from the proof of Lemma A.5 (a), we know that û2t = F̂2t = A

′

2F̂t =

A
′

2(F̂ −HFt +HFt) = u2t + A
′

2φt with φt = F̂t −HFt, and ∆û2t = f̂2t = A
′

2f̂t = A
′

2(f̂ −Hft +Hft) =

∆u2t +A
′

2ϕt with ϕt = f̂t −Hft. This leads to

∆û2tû
′

2t = (∆u2t +A
′

2ϕt)(u2t +A
′

2φt)
′

= ∆u2tu
′

2t +A
′

2ϕtu
′

2t + ∆u2tφtA2 +A
′

2ϕtφ
′

tA2,

and

T−1∆Û
′

2Û2 =

∑T
t=1 ∆û2tû

′

2t

T

=

∑T
t=1 ∆u2tu

′

2t

T
+A

′

2

∑T
t=1 ϕtu

′

2t

T
+

∑T
t=1 ∆u2tφ

′

t

T
A2 +A

′

2

∑T
t=1 ϕtφ

′

t

T
A2.

It can be easily shown that
∑T

t=1 ∆u2tφ
′
t

T = Op(
√

T
n ), and

∑T
t=1 ϕtφ

′
t

T =

Op(
√

T
nDnT

).

We also have∑T
t=1 ϕtu

′

2t

T
=

∑T
t=1(φt − φt−1)u

′

2t

T

= T−1φTu
′

2T − T−1φ0u
′

2,1 −
∑T−1
s=1 φs(u

′

2s − u
′

2,s+1)

T

= T−1φTu
′

2T − T−1φ0u
′

2,1 +

∑T−1
s=1 φs∆u

′

2,s+1

T

= T−1φTu
′

2T − T−1φ0u
′

2,1 +Op(

√
T

n
)

= Op(
1

T
) +Op(

1

T
) +Op(

√
T

n
) = Op(

1

T
) +Op(

√
T

n
),

with the last line from the fact that T−1φTu
′

2T = Op(1/T ), T−1φ0u
′

2,1 = Op(1/T ), and∑T−1
s=1 φs∆u

′
2,s+1

T = Op(
√

T
n ). Thus

T−1∆Û
′

2Û2 − ∆̂∆û2∆û2
=

∑T
t=1 ∆û2tû

′

2t

T
− ∆̂∆û2∆û2

= T−1∆U
′

2U2 − ∆̂∆u2∆u2
+Op(K

−2) +Op(

√
T

n
) +Op(

1

T
) +Op(

√
T

n
) +Op(

√
T

nDnT
)

122



= Op(K
−2) +Op(

1

T
) +Op(

√
T

n
).

Hence, if T/n → 0 as (n, T ) → ∞, we have T−1∆Û
′

2Û2 − ∆̂∆û2∆û2 = T−1∆U
′

2U2 − ∆̂∆u2∆u2 +

op(1).

(g).

Lemma 8.1 (f) in the Appendix of Phillips (1995) states that

T−1U
′

1U2 − ∆̂u1∆u2
= K−2ω

′′
(0)Ψ12 +Op(1/

√
KT ) + op(K

−2)

where Ψ12 =
∑∞
j=1(j − 1/2)Γu1u2

(j). Thus T−1U
′

1U2 − ∆̂u1∆u2
= Op(K

−2) + Op(1/
√
KT ) + op(K

−2).

From Lemma A.5 (e), we have ∆̂û1∆û2
= ∆̂u1∆u2

+ Op(K
−2) + Op(

√
T
n ). From the proof of

Lemma A.5 (a), we know that û2t = F̂2t = A
′

2F̂t = A
′

2(F̂ − HFt + HFt) = u2t + A
′

2φt with

φt = F̂t − HFt, and ∆û2t = f̂2t = A
′

2f̂t = A
′

2(f̂ − Hft + Hft) = ∆u2t + A
′

2ϕt with ϕt = f̂t − Hft.

And û1t = f̂1t = A
′

1f̂t = A
′

1(f̂ − Hft + Hft) = u1t + A
′

1ϕt with ϕt = f̂t − Hft. This leads

to

û1tû
′

2t = (u1t +A
′

1ϕt)(u2t +A
′

2φt)
′

= u1tu
′

2t +A
′

1ϕtu
′

2t + u1tφ
′

tA2 +A
′

1ϕtφ
′

tA2,

and

T−1Û
′

1Û2 =

∑T
t=1 û1tû

′

2t

T

=

∑T
t=1 u1tu

′

2t

T
+A

′

1

∑T
t=1 ϕtu

′

2t

T
+

∑T
t=1 u1tφ

′

t

T
A2 +A

′

1

∑T
t=1 ϕtφ

′

t

T
A2.

It can be shown that
∑T

t=1 ϕtu
′
2t

T = Op(
1
T ) + Op(

√
T
n ),

∑T
t=1 u1tφ

′
t

T = Op(
√

T
n ), and

∑T
t=1 ϕtφ

′
t

T =

Op(
√

T
nDnT

). Thus

T−1Û
′

1Û2 − ∆̂û1∆û2
=

∑T
t=1 û1tû

′

2t

T
− ∆̂∆û2∆û2

= T−1U
′

1U2 − ∆̂∆u2∆u2 +Op(K
−2) +Op(

√
T

n
) +Op(

1

T
) +Op(

√
T

n
) +Op(

√
T

nDnT
)

= Op(K
−2) +Op(1/

√
KT ) +Op(

1

T
) +Op(

√
T

n
).

Hence, if T/n → 0 as (n, T ) → ∞, we have T−1Û
′

1Û2 − ∆̂û1∆û2
= T−1U

′

1U2 − ∆̂u1∆u2
+

op(1).
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(h). Lemma 8.1 (g) in the Appendix of Phillips (1995) states

that

T−1∆U
′

2F1 − ∆̂∆u2u1
= T−1u2TF

′

1T +K−2ω
′′
(0)Ψ21 +Op(1/

√
KT ) + op(K

−2),

where Ψ21 =
∑∞
j=1(j − 1/2)Γu2u1

(j). Thus T−1∆U
′

2F1 − ∆̂∆u2u1
= Op(K

−2) + Op(1/
√
KT ) +

op(K
−2). From Lemma A.5 (e), we have ∆̂∆û2û1 = ∆̂∆u2u1 + Op(K

−2) + Op(
√

T
n ). We also

have

∆û2tF̂
′

1t = (∆u2t +A
′

2ϕt)(A
′

1(F̂t −HFt + Ft))
′

= (∆u2t +A
′

2ϕt)(F
′

1t + φ
′

tA1)

= ∆u2tF
′

1t +A
′

2ϕtF
′

1t + ∆u2tφ
′

tA1 +A
′

2ϕtφ
′

tA1,

and

T−1∆Û
′

2F̂1 =

∑T
t=1 ∆û2tF̂

′

1t

T

=

∑T
t=1 ∆u2tF

′

1t

T
+A

′

2

∑T
t=1 ϕtF

′

1t

T
+

∑T
t=1 ∆u2tφ

′

t

T
A1 +A

′

2

∑T
t=1 ϕtφ

′

t

T
A1.

It can be easily shown that
∑T

t=1 ∆u2tφ
′
t

T = Op(
√

T
n ), and

∑T
t=1 ϕtφ

′
t

T = Op(
√

T
nDnT

). We also

have ∑T
t=1 ϕtF

′

1t

T
=

∑T
t=1(φt − φt−1)F

′

1t

T

= T−1φTF
′

1T − T−1φ0F
′

1,1 −
∑T−1
s=1 φs(F

′

1s − F
′

1,s+1)

T

= T−1φTF
′

1T − T−1φ0F
′

1,1 +

∑T−1
s=1 φsu

′

1,s+1

T

= T−1φTF
′

1T − T−1φ0F
′

1,1 +Op(

√
T

n
)

= Op(
1√
T

) +Op(
1

T
) +Op(

√
T

n
) = Op(

1√
T

) +Op(

√
T

n
),

with the last line from the fact that T−1φTF
′

1T = Op(1/
√
T ), T−1φ0F

′

1,1 = Op(1/T ), and∑T−1
s=1 φsu

′
1,s+1

T = Op(
√

T
n ). Thus

T−1∆Û
′

2F̂1 − ∆̂∆û2û1
=

∑T
t=1 ∆û2tF̂

′

1t

T
− ∆̂∆û2û1

= T−1∆U
′

2F1 + T−1φTF
′

1T − T−1φ0F
′

1,1 +Op(

√
T

n
) +Op(

√
T

nDnT
)
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− ∆̂∆u2u1
+Op(K

−2) +Op(

√
T

n
)

= T−1u2TF
′

1T + T−1φTF
′

1T − T−1φ0F
′

1,1

+Op(K
−2) +Op(1/

√
KT ) +Op(

√
T

n
)

= Op(K
−2) +Op(1/

√
KT ) +Op(T

−1/2) +Op(

√
T

n
).

(i). We have

T−1Û
′

1F̂1 =

∑T
t=1 û1tF̂

′

1t

T

=

∑T
t=1(u1t +A

′

1ϕt)(F
′

1t + φ
′

tA1)

T

=

∑T
t=1 u1tF

′

1t

T
+A

′

1

∑T
t=1 ϕtF

′

1t

T
+

∑T
t=1 u1tφ

′

t

T
A1 +A

′

1

∑T
t=1 ϕtφ

′

t

T
A1

= T−1U
′

1F1 +Op(
1√
T

) +Op(

√
T

n
) +Op(

√
T

nDnT
).

with the last line from the fact that
∑T

t=1 u1tφ
′
t

T = Op(
√

T
n ),

∑T
t=1 ϕtφ

′
t

T = Op(
√

T
nDnT

), and
∑T

t=1 ϕtF
′
1t

T = Op(
1√
T

) + Op(
√

T
n ) from part (h). Hence when T/n → 0 as (n, T ) → ∞, we

have

T−1Û
′

1F̂1 − ∆̂û1û1
=

∑T
t=1 û1tF̂

′

1t

T
− ∆̂û1û1

= T−1U
′

1F1 − ∆̂u1u1 +Op(K
−2) +Op(

√
T

n
) +Op(

1√
T

) +Op(

√
T

n
) +Op(

√
T

nDnT
)

d→
∫ 1

0

dB1B
′

1.

(j).

T−1F̂
′

1ε− ∆̂û10 =

∑T
t=1 F̂1tεt
T

− ∆̂û10

=

∑T
t=1(F1t +A

′

1φt)εt
T

− ∆̂û10

=

∑T
t=1 F1tεt
T

+A
′

1

∑T
t=1 φtεt
T

− ∆̂û10

= T−1F
′

1ε−∆u10

+Op(

√
T

n
) +Op((K/T )1/2) +Op

(
K

√
T

n

)
+Op

(
K

T

)
+Op(K

−2) +Op

(
T

n

)

= T−1F
′

1ε−∆u10 +Op(K
−2) +Op

(
K

√
T

n

)
+Op

(
K

T

)
.
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because
∑T

t=1 φtεt
T = Op(

√
T
n ), and according to Lemma A.4 (i*), we have ∆̂0û1 = ∆εu1 +

+Op((K/T )1/2) + Op

(
K
√

T
n

)
+ Op

(
K
T

)
+ Op(K

−2) + Op
(
T
n

)
when T/

√
n → 0 as (n, T ) → ∞. So

when K
√
T/
√
n→ 0, K/T → 0 and T/

√
n→ 0 as (n, T )→∞, we have

T−1F̂
′

1ε− ∆̂û10 = T−1F
′

1ε−∆u1ε + op(1)

d→
∫ 1

0

B1dB0.

Lemma A.6

Under Assumptions 1-5, 6 (EC), 7 (KL), 8(BW), K
√
T/
√
n → 0, K/T → 0, and T/

√
n → 0 as

(n, T )→∞, we have:

(a)

Ω̂0âΩ̂−1
ââ [T−1Û

′

aF̂1 − ∆̂âû1
] = Ω01Ω−1

11 N11T

+Op(
1

K2
) +Op(

1√
KT

) +Op(
1√
T

) +Op(

√
T

n
) +Op(

K3/2

T
) +Op(

K3/2

√
n

),

where N11T
d→
∫ 1

0
dB1B

′

1; Under the assumption that K = Oe(T
k) for some k ∈ (0, 2/3),

K
√
T/
√
n→ 0, and T/

√
n→ 0 as (n, T )→∞, we have

Ω̂0âΩ̂−1
ââ [T−1Û

′

aF̂1 − ∆̂âû1
] = Ω01Ω−1

11 N11T + op(1)
d→ Ω01Ω−1

11

∫ 1

0

dB1B
′

1;

(b)

Ω̂0âΩ̂−1
ââ [T−1Û

′

aF̂2 − ∆̂â∆û2
] = Op(

1

K2
) +Op(

1√
KT

) +Op(
1

T
) +Op(

√
T

n
) +Op(

K3/2

T 3/2
) +Op(

K3/2

√
n

);

In the above expression, under the assumption that K = Oe(T
k) for some k ∈ (0, 2/3),

K
√
T/
√
n → 0, and T/

√
n → 0 as (n, T ) → ∞, we have Ω̂0âΩ̂−1

ââ [T−1Û
′

aF̂2 − ∆̂â∆û2
] =

op(1).

Furthermore, under the assumption that K = Oe(T
k) for some k ∈ (1/4, 2/3), K3/2

√
T
n →

0, and T/
√
n→ 0 as (n, T )→∞, we have

T 1/2 · Ω̂0âΩ̂−1
ââ [T−1Û

′

aF̂2 − ∆̂â∆û2 ] = Op(
T 1/2

K2
) +Op(

1√
K

) +Op(
T√
n

) +Op(
K3/2

T
) +Op(

K3/2T 1/2

√
n

)
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= op(1);

(c) When T/
√
n→ 0 as (n, T )→∞, we have

T 1/2[T−1ε
′
F̂2 − ∆̂0∆û2

] = T−1/2ε
′
F2 +Op(K

−1/2)
d→ N(0,Ωψψ);

Proof. From Lemma A.5 (c) and (d), we have

Ω̂0âΩ̂−1
ââ = (Ω̂εa +Op

(
K

√
T

n

)
+Op

(
K

T

)
+Op(K

−2) +Op

(
T

n

)
)(Ω̂aa +Op(K

−2) +Op(

√
T

n
))−1

= (Ω̂εa + op(1))(Ω̂aa + op(1))−1 = Ω̂εaΩ̂−1
aa + op(1),

when K
√
T/
√
n → 0, K/T → 0 and T/

√
n → 0 as (n, T ) → ∞. By Lemma A.4 part (d*) we

have

Ω̂εaΩ̂−1
aa =

[
Ω01Ω−1

11 + op(1), −[Φ02 − Ω01Ω−1
11 Φ12]Ω−1

22 +Op(K
3/2/
√
T ) + op(K

3/2/
√
T )

]
.

Thus,

Ω̂0âΩ̂−1
ââ [T−1Û

′

aF̂ − ∆̂ââ] = Ω̂εaΩ̂−1
aa [T−1Û

′

aF̂ − ∆̂ââ] + op(1)

=
[

Ω01Ω−1
11 + op(1), −[Φ02 − Ω01Ω−1

11 Φ12]Ω−1
22 +Op(K

3/2/
√
T ) + op(K

3/2/
√
T )

]
×
[ T−1Û

′

1F̂1 − ∆̂û1û1
T−1Û

′

1Û2 − ∆̂û1∆û2

T−1∆Û
′

2F̂1 − ∆̂∆û2û1
T−1∆Û

′

2Û2 − ∆̂∆û2∆û2

]
+ op(1)

=
[

Ω01Ω−1
11 + op(1), −[Φ02 − Ω01Ω−1

11 Φ12]Ω−1
22 +Op(K

3/2/
√
T ) + op(K

3/2/
√
T )

]
×
[ N11T Op(K

−2) +Op(1/
√
KT ) +Op(

1
T ) +Op(

√
T
n )

Op(
1
K2 ) +Op(

1√
KT

) +Op(
1√
T

) +Op(
√

T
n ) Op(K

−2) +Op(
1
T ) +Op(

√
T
n )

]
+ op(1)

=
[
I II

]
with

I = Ω̂0âΩ̂−1
ââ [T−1Û

′

aF̂1 − ∆̂âû1
]

= Ω01Ω−1
11 N11T +Op(

1

K2
) +Op(

1√
KT

) +Op(
1√
T

) +Op(

√
T

n
)

+Op(
1√
KT

) +Op(
K

T
) +Op(

K3/2

T
) +Op(

K3/2

√
n

)

= Ω01Ω−1
11 N11T +Op(

1

K2
) +Op(

1√
KT

) +Op(
1√
T

) +Op(

√
T

n
) +Op(

K3/2

T
) +Op(

K3/2

√
n

),

and

II = Ω̂0âΩ̂−1
ââ [T−1Û

′

aF̂2 − ∆̂â∆û2 ]
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= Op(
1

K2
) +Op(

1√
KT

) +Op(
1

T
) +Op(

√
T

n
) +Op(

1√
KT

) +Op(
K3/2

T 3/2
) +Op(

K3/2

√
n

)

= Op(
1

K2
) +Op(

1√
KT

) +Op(
1

T
) +Op(

√
T

n
) +Op(

K3/2

T 3/2
) +Op(

K3/2

√
n

).

Under the assumption that K = Oe(T
k) for some k ∈ (0, 2/3), T/

√
n → 0 as (n, T ) → ∞, we

have

I = Ω̂0âΩ̂−1
ââ [T−1Û

′

aF̂1 − ∆̂âû1
] = Ω01Ω−1

11 N11T + op(1)
d→ Ω01Ω−1

11

∫ 1

0

dB1B
′

1.

For term II, we have

T 1/2 · II = T 1/2Ω̂0âΩ̂−1
ââ [T−1Û

′

aF̂2 − ∆̂â∆û2
]

= Op(
T 1/2

K2
) +Op(

1√
K

) +Op

(
1√
T

)
+Op(

T√
n

) +Op(
K3/2

T
) +Op(K

3/2

√
T

n
)

= Op(
T 1/2

K2
) +Op(

1√
K

) +Op(
T√
n

) +Op(
K3/2

T
) +Op(K

3/2

√
T

n
).

Notice that when K = Oe(T
k) for some k > 1/4, the term Op(

T 1/2

K2 ) = op(1), and when k < 2/3,

the term Op(
K3/2

T ) = op(1). We also require that K3/2
√

T
n → 0 to make the last error term

negligible in the limit.

To conclude, under the assumption that K = Oe(T
k) for some k ∈ (1/4, 2/3), and

K3/2
√

T
n → 0 as (n, T )→∞, we have

T 1/2 · II = Op(
T 1/2

K2
) +Op(

1√
K

) +Op(
T√
n

) +Op(
K3/2

T
) +Op(

K3/2T 1/2

√
n

) = op(1).

For part (c), from Lemma A.4 (h*), under the assumption that T/
√
n → 0 as (n, T ) →

∞, we have ∆̂0∆û2 := ∆̂ε̂∆û2 = Op(1/
√
KT ) + Op(

√
T
n ). From the proof of Lemma A.5 (a), we

know that û2t = F̂2t = A
′

2F̂t = A
′

2(F̂ −HFt + HFt) = u2t + A
′

2φt with φt = F̂t −HFt. This leads

to

εtF̂
′

2t = εt(u2t +A
′

2φt)
′

= εtu
′

2t + εtφ
′

tA2,

and

T−1/2ε
′
F̂2 =

∑T
t=1 εtF̂

′

2t√
T
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=

∑T
t=1 εtu

′

2t√
T

+

∑T
t=1 εtφ

′

t√
T

A2.

It can be shown that
∑T

t=1 εtφ
′
t√

T
= Op(

T√
n

), and noticing Assumption 6 (EC), we

have

T 1/2[T−1εF̂2 − ∆̂0∆û2 ] = T−1/2εF2 +Op(
T√
n

) +Op(1/
√
KT ) +Op(

√
T

n
)

d→ N(0,Ωψψ),

under the assumption that T/
√
n→ 0 as (n, T )→∞.

Discussion: (i) part (a) and part (b) comprise of the matrix Ω̂0âΩ̂−1
ââ [T−1Û

′

aF̂ − ∆̂ââ],

which corresponds to the separation of the FM correction terms into those that relate to

the stationary and nonstationary coefficients, respectively. Part (b) gives the stationary

coefficient correction more explicitly (and when it is scaled by T 1/2), as it is in the analysis

of the limit distribution of the FM estimates of the stationary coefficients). The correction

term in this case has magnitude Op(
T 1/2

K2 ) + Op(
1√
K

) + Op(
T√
n

) + Op(
K3/2

T ) + Op(
K3/2T 1/2
√
n

),

which is op(1) when the bandwidth expansion rate K = Oe(T
k) satisfies 1/4 < k < 2/3 and

K3/2T 1/2
√
n

→ 0.

(ii) The condition K3/2T 1/2
√
n

→ 0 is more strict than the requirement that K
√

T
n → 0, in

which the latter condition is needed in the consistency of the long-run covariance estimates

Ω̂0â. This condition K3/2T 1/2
√
n

→ 0 could be written as
√

T 3

n → 0 since Op(
K3/2

T ) = op(1) under

the assumption that K = Oe(T
k) satisfies 1/4 < k < 2/3. This bandwidth expansion rate

along with the extra requirement that K3/2T 1/2
√
n

→ 0 is different than that in Phillips (1995)

because of the extra error terms Op( T√
n

)+Op(
K3/2

T )+Op(
K3/2T 1/2
√
n

). These terms are the results

of the estimation error in the factors. In order to guarantee that the estimation error in

the factors does not contaminate the limiting behavior of the FM estimates, we need more

strict requirement on the relative rate of the bandwidth expansion rate, the cross sectional

and time series sample sizes, i.e., K3/2T 1/2
√
n

→ 0 as (n, T )→∞.

(iii) Part (c) shows that the FM correction term for serial correlation (in the case

of the stationary coefficients) also has no effect asymptotically and is Op(K−1/2). The
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submatrix that appears in part (a) relates to the FM endogeneity correction for the

nonstationary coefficients. For the endogeneity correction to work we want this matrix

to be Op(1) and to be as close to its dominating term, viz. Ω01Ω−1
11 N11T , as possible. Note

that the error in this case involves a term of order Op( 1
K2 ) + Op(

1√
KT

) + Op(
1√
T

) + Op(
√

T
n ) +

Op(
K3/2

T ) + Op(
K3/2
√
n

). Thus this correction term operates satisfactorily provided K = Oe(T
k)

for some k ∈ (0, 2/3), T/
√
n → 0 as (n, T ) → ∞. Notice that we have used the fact that

Op(
K3/2
√
n

) = Op(
K3/2

T
T√
n

) = op(1) under the condition that K = Oe(T
k) for some k ∈ (0, 2/3),

T/
√
n→ 0.

(iv) Combining the effects of the error terms for the stationary and the nonstationary

coefficients we see that the correction terms work satisfactorily provided the bandwidth

expansion rate K = Oe(T
k) for some k ∈ (1/4, 2/3).

Proof of Theorem 1

Under Assumptions 1-5, 6 (EC), 7 (KL), and 8 (BW),

(a) under the assumption that K = Oe(T
k) for some k ∈ (0, 2/3), K

√
T/
√
n → 0, and

T/
√
n→ 0 as (n, T )→∞, we have

TA
′

1(δ̂FM − δ)
d→ (

∫
B1B

′

1)−1

∫ 1

0

B1dB0·1;

(b) under the assumption that K = Oe(T
k) for some k ∈ (1/4, 2/3), K3/2

√
T
n → 0, and

T/
√
n→ 0 as (n, T )→∞,

√
TA

′

2(δ̂FM − δ)
d→ N(0,Σ−1

22 ΩψψΣ−1
22 ),

where B0·1 = B0 −Ω01Ω−1
11 B1 ≡ BM(σ2

00·1) in which σ2
00·1 = Ω00 −Ω01Ω−1

11 Ω10.

Proof. (a) From the endogeneity correction

y+
t = yt − Ω̂0f̂ Ω̂−1

f̂ f̂
∆F̂t = yt −∆F̂

′

t Ω̂
−1

f̂ f̂
Ω̂f̂0.

In matrix form, we have Y + = Y −∆F̂ Ω̂−1

f̂ f̂
Ω̂f̂0, in which ∆F̂ = (f̂1, f̂2, ..., f̂T )

′
. Let φt = F̂t −HFt

denotes the estimation error of the factors and φ = (φ1, φ2, ...φT )
′
.
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We can rewrite the cointegration regression as

y+
t = α

′
Ft + ε+

t

= α
′
H−1F̂t + ε+

t + α
′
H−1(HFt − F̂t)

= F̂
′

t δ + ε+
t + α

′
H−1(HFt − F̂t),

where ε+
t = εt − Ω̂0f̂ Ω̂−1

f̂ f̂
∆F̂t. In matrix notation, Y + = F̂ δ + ε+ + (FH

′ − F̂ )H−1′α, where

Y + = (y+
1 , ..., y

+
T )
′
, ε+ = (ε+

1 , ..., ε
+
T )
′
, and F̂ = (F̂1, ..., F̂T−h)

′
.

By definition

δ̂FM = (F̂
′
F̂ )−1(F̂

′
Y + − T ∆̂+

f̂0
)

= (F̂
′
F̂ )−1(F̂

′
(F̂ δ + ε+ + (FH

′
− F̂ )H−1′α)− T ∆̂+

f̂0
)

= δ + (F̂
′
F̂ )−1F̂

′
ε+ + (F̂

′
F̂ )−1F̂

′
(FH

′
− F̂ )H−1′α− (F̂

′
F̂ )−1T ∆̂+

f̂0
.

So we have

A
′

1(δ̂FM − δ) = A
′

1

(
F̂
′
F̂
)−1 (

F̂
′
ε+ − T ∆̂+

f̂0

)
+A

′

1

(
F̂
′
F̂
)−1

F̂
′
(
FH

′
− F̂

)
H−1′α,

and

A
′

2(δ̂FM − δ) = A
′

2

(
F̂
′
F̂
)−1 (

F̂
′
ε+ − T ∆̂+

f̂0

)
+A

′

2

(
F̂
′
F̂
)−1

F̂
′
(
FH

′
− F̂

)
H−1′α.

By the partitioned inversion, we have

A
′

1(F̂
′
F̂ )−1(F̂

′
ε+ − T ∆̂+

f̂0
) = A

′

1A
′
(AF̂

′
F̂A

′
)−1A(F̂

′
ε+ − T ∆̂+

f̂0
)

=

[
Ir1 0

]F̂
′

1F̂1 F̂
′

1F̂2

F̂
′

2F̂1 F̂
′

2F̂2


−1

A(F̂
′
ε+ − T ∆̂+

f̂0
)

=

[
Ir1 0

] (F̂
′

1Q2F̂1)−1 −(F̂
′

1F̂1)−1F̂
′

1F̂2(F̂
′

2Q1F̂2)−1

−(F̂
′

2Q1F̂2)−1F̂
′

2F̂1(F̂
′

1F̂1)−1 (F̂
′

2Q1F̂2)−1

A(F̂
′
ε+ − T ∆̂+

f̂0
)

=

[
(F̂
′

1Q2F̂1)−1 −(F̂
′

1F̂1)−1F̂
′

1F̂2(F̂
′

2Q1F̂2)−1

]A
′

1

A
′

2

 (F̂
′
ε+ − T ∆̂+

f̂0
)
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= (F̂
′

1Q2F̂1)−1A
′

1(F̂
′
ε− F̂

′
∆F̂ Ω̂−1

f̂ f̂
Ω̂f̂0 − T ∆̂+

f̂0
)

− (F̂
′

1F̂1)−1F̂
′

1F̂2(F̂
′

2Q1F̂2)−1A
′

2(F̂
′
ε− F̂

′
∆F̂ Ω̂−1

f̂ f̂
Ω̂f̂0 − T ∆̂+

f̂0
).

For the second last term in the last line, we have

A
′

1(F̂
′
ε− F̂

′
∆F̂ Ω̂−1

f̂ f̂
Ω̂f̂0 − T ∆̂+

f̂0
) = F̂

′

1ε− F̂
′

1∆F̂A
′
(AΩ̂f̂ f̂A

′
)−1AΩ̂f̂0 − TA

′

1(∆̂f̂0 − ∆̂f̂ f̂ Ω̂−1

f̂ f̂
Ω̂f̂0)

= F̂
′

1ε− F̂
′

1∆F̂A
′
Ω̂−1
ââ Ω̂â0 − TA

′

1A
′
A∆̂f̂0 + TA

′

1A
′
(A∆̂f̂ f̂A

′
)AA

′
(AΩ̂f̂ f̂A

′
)−1AΩ̂f̂0

= F̂
′

1ε− F̂
′

1ÛaΩ̂−1
ââ Ω̂â0 − T

[
Ir1 0

]
∆̂â0 + T

[
Ir1 0

]
∆̂ââΩ̂−1

ââ Ω̂â0

= F̂
′

1ε− F̂
′

1ÛaΩ̂−1
ââ Ω̂â0 − T ∆̂û10 + T ∆̂û1âΩ̂−1

ââ Ω̂â0

= (F̂
′

1ε− T ∆̂û10)− (F̂
′

1Ûa − T ∆̂û1â)Ω̂−1
ââ Ω̂â0,

where Ûa = ∆F̂A
′
. Similarly, we have

A
′

2(F̂
′
ε− F̂

′
∆F̂ Ω̂−1

f̂ f̂
Ω̂f̂0 − T ∆̂+

f̂0
) = F̂

′

2ε− F̂
′

2∆F̂A
′
(AΩ̂f̂ f̂A

′
)−1AΩ̂f̂0 − TA

′

2(∆̂f̂0 − ∆̂f̂ f̂ Ω̂−1

f̂ f̂
Ω̂f̂0)

= F̂
′

2ε− F̂
′

2∆F̂A
′
Ω̂−1
ââ Ω̂â0 − TA

′

2A
′
A∆̂f̂0 + TA

′

2A
′
(A∆̂f̂ f̂A

′
)AA

′
(AΩ̂f̂ f̂A

′
)−1AΩ̂f̂0

= F̂
′

2ε− F̂
′

2ÛaΩ̂−1
ââ Ω̂â0 − T

[
0 Ir2

]
∆̂â0 + T

[
0 Ir2

]
∆̂ââΩ̂−1

ââ Ω̂a0

= F̂
′

2ε− F̂
′

2ÛaΩ̂−1
ââ Ω̂â0 − T ∆̂∆û20 + T ∆̂∆û2âΩ̂−1

ââ Ω̂â0

= (F̂
′

2ε− T ∆̂∆û20)− (F̂
′

2Ûa − T ∆̂∆û2â)Ω̂−1
ââ Ω̂â0.

Then for FM-OLS estimates corresponding to the nonstationary factors, we

have

TA
′

1(δ̂FM − δ) = A
′

1

(
F̂
′
F̂

T 2

)−1(
F̂
′
ε+

T
− ∆̂+

f̂0

)
+A

′

1

(
F̂
′
F̂

T 2

)−1

T−1F̂
′
(
FH

′
− F̂

)
H−1′α

= I + II,

in which

I = A
′

1

(
F̂
′
F̂

T 2

)−1(
F̂
′
ε+

T
− ∆̂+

f̂0

)

= (
F̂
′

1Q2F̂1

T 2
)−1T−1A

′

1(F̂
′
ε− F̂

′
∆F̂ Ω̂−1

f̂ f̂
Ω̂f̂0 − T ∆̂+

f̂0
)

− (
F̂
′

1F̂1

T 2
)−1 F̂

′

1F̂2

T
(
F̂
′

2Q1F̂2

T
)−1T−1A

′

2(F̂
′
ε− F̂

′
∆F̂ Ω̂−1

f̂ f̂
Ω̂f̂0 − T ∆̂+

f̂0
)
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= (
F̂
′

1Q2F̂1

T 2
)−1[(

F̂
′

1ε

T
− ∆̂û10)− (

F̂
′

1Ûa
T
− ∆̂û1â)Ω̂−1

ââ Ω̂â0]

− (
F̂
′

1F̂1

T 2
)−1 F̂

′

1F̂2

T
(
F̂
′

2Q1F̂2

T
)−1[(

F̂
′

2ε

T
− ∆̂∆û20)− (

F̂
′

2Ûa
T
− ∆̂∆û2â)Ω̂−1

ââ Ω̂â0]

= I1 − I2,

with

I1 = (
F̂
′

1Q2F̂1

T 2
)−1[(

F̂
′

1ε

T
− ∆̂û10)− (

F̂
′

1Ûa
T
− ∆̂û1â)Ω̂−1

ââ Ω̂â0]

d→ (

∫
B1B

′

1)−1(

∫ 1

0

B1dB0 −
∫ 1

0

B1dB
′

1Ω−1
11 Ω10)

= (

∫
B1B

′

1)−1(

∫ 1

0

B1dB0·1),

where B0·1 = B0 − Ω01Ω−1
11 B1. By Lemma A.6 (a), we have (

F̂
′
1 Ûa

T − ∆̂û1â)Ω̂−1
ââ Ω̂â0 = N

′

11TΩ−1
11 Ω01 +

op(1) with N11T
d→
∫ 1

0
dB1B

′

1. Thus we have (
F̂
′
1 Ûa

T − ∆̂û1â)Ω̂−1
ââ Ω̂â0

d→
∫ 1

0
B1dB

′

1Ω−1
11 Ω01. By Lemma

A.5 (j), we have F̂
′
1ε
T − ∆̂û10

d→
∫ 1

0
B1dB0. And

I2 = (
F̂
′

1F̂1

T 2
)−1 F̂

′

1F̂2

T
(
F̂
′

2Q1F̂2

T
)−1[(

F̂
′

2ε

T
− ∆̂∆û20)− (

F̂
′

2Ûa
T
− ∆̂∆û2â)Ω̂−1

ââ Ω̂â0]

= Op(1)op(1).

By Lemma A.6 (b), we have (
F̂
′
2 Ûa

T − ∆̂∆û2â)Ω̂−1
ââ Ω̂â0 = op(1) under the assumption that K =

Oe(T
k) for some k ∈ (0, 2/3), T/

√
n → 0 as (n, T ) → ∞. By Lemma A.4 (h*), we have ∆̂∆û20 =

Op(1/
√
KT ) + Op(

√
T
n ). And noticing F̂

′
2ε
T = 1√

T

F̂
′
2ε√
T

= Op(1/
√
T ), we have the above result that

I2 = op(1). From the proof of Lemma 1, we have II = A
′

1

(
F̂
′
F̂

T 2

)−1

T−1F̂
′
(
FH

′ − F̂
)
H−1′α =

Op(
T√
n

) +Op(
√

T
n ).

To conclude, under the assumption that K = Oe(T
k) for some k ∈ (0, 2/3), K

√
T/
√
n → 0,

and T/
√
n→ 0 as (n, T )→∞, we have

TA
′

1(δ̂FM − δ) = A
′

1

(
F̂
′
F̂

T 2

)−1(
F̂
′
ε+

T
− ∆̂+

f̂0

)
+A

′

1

(
F̂
′
F̂

T 2

)−1

T−1F̂
′
(
FH

′
− F̂

)
H−1′α

= I1 − I2 + II

d→ (

∫
B1B

′

1)−1(

∫ 1

0

B1dB0·1).

The assumption K = Oe(T
k) for some k ∈ (0, 2/3), K

√
T/
√
n → 0, and T/

√
n → 0 as

(n, T ) → ∞, comes from combining the assumption K
√
T/
√
n → 0, K/T → 0 and T/

√
n → 0
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as (n, T ) → ∞ in Lemma A.5 (j), the assumption that K = Oe(T
k) for some k ∈ (0, 2/3),

T/
√
n → 0 as (n, T ) → ∞ in Lemma A.6 (a), and the assumption that K = Oe(T

k) for some

k ∈ (0, 2/3), T/
√
n→ 0 as (n, T )→∞ as in Lemma A.6 (b).

Notice that the assumption K = Oe(T
k) for some k ∈ (0, 2/3) as (n, T ) → ∞ is the same

as K = Oe(T
k) for some k ∈ (0, 2/3) as T → ∞ in Phillips (1995) for the nonstationary

estimates. However, we require the extra condition that K
√
T/
√
n → 0 in addition to

the condition that T/
√
n → 0 as (n, T ) → ∞. In Lemma 8.1 of Phillips (1995, p.1058),

which shows the consistency of the kernel estimates with observable regressors, the only

requirement on the bandwidth expansion rate is the one stated in Assumption 8 (BW).

But with estimation errors in the factors (converge at rate Op(
√
T/n)), the induced errors

in the kernel estimates will accumulate at rate Op(K
√
T/n). Thus in order to guarantee the

consistency of the kernel estimates, the extra restriction K
√
T/n → 0 should be imposed.

In another words, using estimated factors does not affect the consistency of the kernel

estimates as long as the estimation errors of the factors converge to zero fast enough

relative to the bandwidth expansion rate.

(b) For FM-OLS estimates corresponding to the stationary factors (cointegrated

factors), we have

√
TA

′

2(δ̂FM − δ) = A
′

2

(
F̂
′
F̂

T

)−1
1√
T

(
F̂
′
ε+ − T ∆̂+

f̂0

)
+A

′

2

(
F̂
′
F̂

T

)−1
1√
T
F̂
′
(
FH

′
− F̂

)
H−1′α

= III + IV,

with

III = A
′

2

(
F̂
′
F̂

T

)−1
1√
T

(
F̂
′
ε+ − T ∆̂+

f̂0

)
,

= (
F̂
′

2Q1F̂2

T
)−1
√
TA

′

2(
F̂
′
ε

T
− F̂

′
∆F̂

T
Ω̂−1

f̂ f̂
Ω̂f̂0 − ∆̂+

f̂0
)

− 1

T
(
F̂
′

2Q1F̂2

T
)−1 F̂

′

2F̂1

T
(
F̂
′

1F̂1

T 2
)−1
√
TA

′

1(
F̂
′
ε

T
− F̂

′
∆F̂

T
Ω̂−1

f̂ f̂
Ω̂f̂0 − ∆̂+

f̂0
)

= [(
F̂
′

2Q1F̂2

T
)−1A

′

2 −Op(T−1)A
′

1]
√
T (
F̂
′
ε

T
− F̂

′
∆F̂

T
Ω̂−1

f̂ f̂
Ω̂f̂0 − ∆̂+

f̂0
)

= (
F̂
′

2Q1F̂2

T
)−1
√
TA

′

2(
F̂
′
ε

T
− F̂

′
∆F̂

T
Ω̂−1

f̂ f̂
Ω̂f̂0 − ∆̂+

f̂0
) +Op(T

−1/2),
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and

IV = A
′

2

(
F̂
′
F̂

T

)−1
1√
T
F̂
′
(
FH

′
− F̂

)
H−1′α

= (
F̂
′

2Q1F̂2

T
)−1 F̂

′

2(FH
′ − F̂ )H−1′α√
T

− (
F̂
′

2Q1F̂2

T
)−1 F̂

′

2F̂1

T
(
F̂
′

1F̂1

T 2
)−1 F̂

′

1(FH
′ − F̂ )H−1′α

T

1√
T

= Op(
T√
n

) +Op(

√
T

n
),

with the last line from the proof of Lemma 1.

Recall that

A
′

2(F̂
′
ε− F̂

′
∆F̂ Ω̂−1

f̂ f̂
Ω̂f̂0 − T ∆̂+

f̂0
) = F̂

′

2ε− F̂
′

2∆F̂A
′
(AΩ̂f̂ f̂A

′
)−1AΩ̂f̂0 − TA

′

2(∆̂f̂0 − ∆̂f̂ f̂ Ω̂−1

f̂ f̂
Ω̂f̂0)

= (F̂
′

2ε− T ∆̂∆û20)− (F̂
′

2Ûa − T ∆̂∆û2â)Ω̂−1
ââ Ω̂â0.

Thus

√
TA

′

2(
F̂
′
ε

T
− F̂

′
∆F̂

T
Ω̂−1

f̂ f̂
Ω̂f̂0 − ∆̂+

f̂0
) =

F̂
′

2ε√
T
− F̂

′

2∆F̂A
′

√
T

(AΩ̂f̂ f̂A
′
)−1AΩ̂f̂0 −

√
TA

′

2(∆̂f̂0 − ∆̂f̂ f̂ Ω̂−1

f̂ f̂
Ω̂f̂0)

=
√
T (
F̂
′

2ε

T
− ∆̂∆û20)−

√
T (
F̂
′

2Ûa
T
− ∆̂∆û2â)Ω̂−1

ââ Ω̂â0.

From Lemma A.6 (c), we have when T/
√
n→ 0 as (n, T )→∞, we have

T 1/2[T−1ε
′
F̂2 − ∆̂0∆û2 ] = T−1/2ε

′
F2 +Op(K

−1/2)
d→ N(0,Ωψψ),

and Lemme A.6 (b) states that under the assumption that K = Oe(T
k) for some k ∈

(1/4, 2/3), K3/2
√

T
n → 0, and T/

√
n→ 0 as (n, T )→∞, we have

T 1/2 · Ω̂0âΩ̂−1
ââ [T−1Û

′

aF̂2 − ∆̂â∆û2 ] = Op(
T 1/2

K2
) +Op(

1√
K

) +Op(
T√
n

) +Op(
K3/2

T
) +Op(

K3/2T 1/2

√
n

)

= op(1).

Hence, under the assumption that K = Oe(T
k) for some k ∈ (1/4, 2/3), K3/2

√
T
n → 0, and

T/
√
n→ 0 as (n, T )→∞, we have

√
TA

′

2(δ̂FM − δ) = A
′

2

(
F̂
′
F̂

T

)−1
1√
T

(
F̂
′
ε+ − T ∆̂+

f̂0

)
+A

′

2

(
F̂
′
F̂

T

)−1
1√
T
F̂
′
(
FH

′
− F̂

)
H−1′α

= (
F̂
′

2Q1F̂2

T
)−1
(√
T (
F̂
′

2ε

T
− ∆̂∆û20)−

√
T (
F̂
′

2Ûa
T
− ∆̂∆û2â)Ω̂−1

ââ Ω̂â0

)
+Op(T

−1/2)

+Op(
T√
n

) +Op(

√
T

n
)
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d→ N(0,Σ−1
22 ΩψψΣ−1

22 ).

Notice that the assumption K = Oe(T
k) for some k ∈ (1/4, 2/3) as (n, T ) → ∞ is tighter

than that K = Oe(T
k) for some k ∈ (1/4, 1) as T → ∞ in Phillips (1995) for the stationary

estimates. This tighter bandwidth expansion rate comes from Lemma A.6 (b), which gives

the stationary coefficient correction more explicitly (and when it is scaled by T 1/2). The

correction term in this case has magnitude Op(
T 1/2

K2 )+Op(
1√
K

)+Op(
T√
n

)+Op(
K3/2

T )+Op(
K3/2T 1/2
√
n

),

which is op(1) when the bandwidth expansion rate K = Oe(T
k) satisfies 1/4 < k < 2/3 and

K3/2T 1/2
√
n

→ 0.

This tighter bandwidth expansion rate comes from the accumulation of estimation

errors in the factors across the summation of K sample covariances. Thus, to guarantee

the estimation error in the factors does not contaminate the limiting behavior of the long-

run covariance estimates, we do not allow the Bandwidth expansion rate to be too large.

We also impose the more strict relative expansion rate K3/2
√

T
n → 0 for the stationary FM

estimates than for the nonstationary FM estimates (which only requires K
√

T
n → 0, which

is needed in the consistency of the long-run covariance estimates Ω̂0â). This condition

K3/2T 1/2
√
n

→ 0 could be written as
√

T 3

n → 0 since Op(
K3/2

T ) = op(1) under the assumption that

K = Oe(T
k) satisfies 1/4 < k < 2/3. This bandwidth expansion rate along with the extra

requirement that K3/2T 1/2
√
n

→ 0 is different than that in Phillips (1995) because of the extra

error terms Op( T√
n

) + Op(
K3/2

T ) + Op(
K3/2T 1/2
√
n

). These terms are the results of the estimation

error in the factors. In order to guarantee that the estimation error in the factors does not

contaminate the limiting behavior of the FM estimates, we need more strict requirement

on the relative rate of the bandwidth expansion rate, the cross sectional and time series

sample sizes, i.e., K3/2T 1/2
√
n

→ 0 as (n, T )→∞.

136



Proof of Lemma 2

Suppose Assumptions 1-5 and Assumption 9 (EC’) hold. As (n, T ) → ∞, if T/n →

0,

(a) A
′

1(δ̂ − δ) d→ (
∫
B1B

′

1)−1(
∫ 1

0
B1B0),

(b) A
′

2(δ̂ − δ) d→ Σ−1
22 (
∫ 1

0
dB2B0 + ∆20) − Σ−1

22 (
∫ 1

0
dB2B1 + ∆21)(

∫
B1B

′

1)−1(
∫ 1

0
B1B0). Proof.

Rewrite the original regression equation as follows

yt = α
′
Ft + εt

= α
′
H−1F̂t + εt + α

′
H−1(HFt − F̂t).

In matrix notation, Y = F̂ δ + ε+ (FH
′ − F̂ )δ. It follows that

δ̂ − δ = (F̂
′
F̂ )−1F̂

′
ε+ (F̂

′
F̂ )−1F̂

′
(FH

′
− F̂ )δ.

Partitioning the coefficients into the nonstationary and stationary part, we

have

A
′

1(δ̂ − δ) = A
′

1

(
F̂
′
F̂
)−1

F̂
′
ε+A

′

1

(
F̂
′
F̂
)−1

F̂
′
(FH

′
− F̂ )H−1′α,

and

A
′

2(δ̂ − δ) = A
′

2

(
F̂
′
F̂
)−1

T−1F̂
′
ε+A

′

2

(
F̂
′
F̂
)−1

F̂
′
(FH

′
− F̂ )H−1′α.

By the proof of Lemma 1, we have

A
′

1(F̂
′
F̂ )−1F̂

′
ε = (F̂

′

1Q2F̂1)−1F̂
′

1ε− (F̂
′

1F̂1)−1F̂
′

1F̂2(F̂
′

2Q1F̂2)−1F̂
′

2ε

and

A
′

2(F̂
′
F̂ )−1F̂

′
ε = (F̂

′

2Q1F̂2)−1F̂
′

2ε− (F̂
′

2Q1F̂2)−1F̂
′

2F̂1(F̂
′

1F̂1)−1F̂
′

1ε

where Qi = I − F̂i(F̂
′

i F̂i)
−1F̂

′

i , i=1,2. Thus

A
′

1(δ̂ − δ) = A
′

1

(
F̂
′
F̂

T 2

)−1

T−2F̂
′
ε+A

′

1

(
F̂
′
F̂

T 2

)−1

T−2F̂
′
(FH

′
− F̂ )H−1′α

= (
F̂
′

1Q2F̂1

T 2
)−1 F̂

′

1ε

T 2
− (

F̂
′

1F̂1

T 2
)−1 F̂

′

1F̂2

T
(
F̂
′

2Q1F̂2

T
)−1 F̂

′

2ε

T 2

+ (
F̂
′

1Q2F̂1

T 2
)−1 F̂

′

1(FH
′ − F̂ )H−1′α

T 2
− (

F̂
′

1F̂1

T 2
)−1 F̂

′

1F̂2

T
(
F̂
′

2Q1F̂2

T
)−1 F̂

′

2(FH
′ − F̂ )H−1′α

T 2
.
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in which

(
F̂
′

1Q2F̂1

T 2
)−1 F̂

′

1ε

T 2
= (

F̂
′

1F̂1

T 2
)−1 F̂

′

1ε

T 2
+Op(

1

T 2
)
d→ (

∫
B1B

′

1)−1(

∫ 1

0

B1B0),

and

(
F̂
′

1F̂1

T 2
)−1 F̂

′

1F̂2

T
(
F̂
′

2Q1F̂2

T
)−1 F̂

′

2ε

T 2
= (

F̂
′

1F̂1

T 2
)−1 F̂

′

1F̂2

T
(
F̂
′

2Q1F̂2

T
)−1 F̂

′

2ε

T

1

T
= Op(

1

T
),

and

(
F̂
′

1Q2F̂1

T 2
)−1 F̂

′

1(FH
′ − F̂ )H−1′α

T 2
= Op(1)Op(

T√
n
× 1

T
) = Op(

1√
n

),

and

(
F̂
′

1F̂1

T 2
)−1 F̂

′

1F̂2

T
(
F̂
′

2Q1F̂2

T
)−1 F̂

′

2(FH
′ − F̂ )H−1′α

T 2
= Op(1)Op(1)Op(1)Op(

√
T

n
× 1

T
) = Op(

1√
nT

).

The last two results come from Lemma A.2. Hence, we have

A
′

1(δ̂ − δ) d→ (

∫
B1B

′

1)−1(

∫ 1

0

B1B0).

Similarly, we have

A
′

2(δ̂ − δ) = A
′

2

(
F̂
′
F̂

T

)−1

T−1F̂
′
ε+A

′

2

(
F̂
′
F̂

T

)−1

T−1F̂
′
(FH

′
− F̂ )H−1′α

= (
F̂
′

2Q1F̂2

T
)−1 F̂

′

2ε

T
− (

F̂
′

2Q1F̂2

T
)−1 F̂

′

2F̂1

T
(
F̂
′

1F̂1

T 2
)−1 F̂

′

1ε

T 2

+ (
F̂
′

2Q1F̂2

T
)−1 F̂

′

2(FH
′ − F̂ )H−1′α

T
− (

F̂
′

2Q1F̂2

T
)−1 F̂

′

2F̂1

T
(
F̂
′

1F̂1

T 2
)−1 F̂

′

1(FH
′ − F̂ )H−1′α

T

1

T
,

in which

(
F̂
′

2Q1F̂2

T
)−1 F̂

′

2ε

T
= (

F̂
′

2F̂2

T
)−1 F̂

′

2ε

T
+Op(

1

T
)
d→ Σ−1

22 (

∫ 1

0

dB2B0 + ∆20),

and

(
F̂
′

2Q1F̂2

T
)−1 F̂

′

2F̂1

T
(
F̂
′

1F̂1

T 2
)−1 F̂

′

1ε

T 2

d→ Σ−1
22 (

∫ 1

0

dB2B
′

1 + ∆21)(

∫
B1B

′

1)−1(

∫ 1

0

B1B0),

and

(
F̂
′

2Q2F̂2

T
)−1 F̂

′

2(FH
′ − F̂ )H−1′α

T
= Op(

√
T

n
),

and

(
F̂
′

2Q1F̂2

T
)−1 F̂

′

2F̂1

T
(
F̂
′

1F̂1

T 2
)−1 F̂

′

1(FH
′ − F̂ )H−1′α

T

1

T
=

1

T
Op(

T√
n

) = Op(
1√
n

).
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The last two expressions come from Lemma A.2. If T/n → 0 as (n, T ) → ∞, the last two

expressions will be op(1).

Hence, we have

A
′

2(δ̂ − δ) d→ Σ−1
22 (

∫ 1

0

dB2B0 + ∆20)− Σ−1
22 (

∫ 1

0

dB2B
′

1 + ∆21)(

∫
B1B

′

1)−1(

∫ 1

0

B1B0).

Proof of Theorem 2

Suppose Assumptions 1-5 and Assumption (9) hold. As (n, T ) → ∞, if T/n →

0,

(a)

T (ρ̂T − 1)
d→
∫ 1

0
B̃0dB̃0 + Λ0̃0̃∫ 1

0
B̃0B̃0

,

where B̃0 = B0 − (
∫ 1

0
B0B

′

1)(
∫
B1B

′

1)−1B1. The Brownian motion B̃0 has long-run

covariance matrix Ω0̃0̃ = Ω00 − (
∫ 1

0
B0B

′

1)(
∫
B1B

′

1)−1Ω10 − Ω01(
∫
B1B

′

1)−1(
∫ 1

0
B1B0) +

(
∫ 1

0
B0B

′

1)(
∫
B1B

′

1)−1Ω11(
∫
B1B

′

1)−1(
∫ 1

0
B1B0) and one-sided long-run covari-

ance Λ0̃0̃ = Λ00 − (
∫ 1

0
B0B

′

1)(
∫
B1B

′

1)−1Λ10 − Λ01(
∫
B1B

′

1)−1(
∫ 1

0
B1B0) +

(
∫ 1

0
B0B

′

1)(
∫
B1B

′

1)−1Λ11(
∫
B1B

′

1)−1(
∫ 1

0
B1B0).

(b) If q →∞ as T →∞ but q/T → 0, then the statistic Zρ,T satisfies

Zρ,T
d→ Zn,

where

Zn =

∫ 1

0
B̃0dB̃0∫ 1

0
B̃0B̃0

=

∫ 1

0
W (r)dW (r)∫ 1

0
W (r)W (r)dr

,

in which W (r) is a one dimensional standard Brownian motion.

Proof. (a) Under the null hypothesis that there is no cointegration relation between yt and

Ft, i.e., there is a unit root in εt,

T (ρ̂T − 1) =
T−1

∑T
t=2(ε̂t − ε̂t−1)ε̂t−1

T−2
∑T
t=2 ε̂

2
t−1

.
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Notice that

ε̂t = yt − δ̂
′

F̂t

= (α
′
H−1HFt + εt)− δ̂

′

F̂t

= δ
′
HFt + εt − δ̂

′

HFt + δ̂
′

HFt − δ̂
′

F̂t

= εt − (δ̂ − δ)
′
HFt − δ̂

′

(F̂t −HFt)

= εt − (δ̂ − δ)
′
A1 · F1t − (δ̂ − δ)

′
A2 · F2t − δ̂

′

φt,

in which φt = F̂t −HFt. We have

T−2
T∑
t=2

ε̂2
t−1 = T−2

T∑
t=2

{εt−1 − (δ̂ − δ)
′
A1 · F1,t−1 − (δ̂ − δ)

′
A2 · F2,t−1 − δ̂

′

φt−1}2

=
1

T 2

T∑
t=2

ε2
t−1 + (δ̂ − δ)

′
A1

T∑
t=2

F1,t−1F
′

1,t−1

T 2
A
′

1(δ̂ − δ) + (δ̂ − δ)
′
A2

T∑
t=2

F2,t−1F
′

2,t−1

T 2
A
′

2(δ̂ − δ) + δ̂
′ T∑
t=2

φt−1φ
′

t−1

T 2
δ̂

− 2

T∑
t=2

εt−1F
′

1,t−1

T 2
A
′

1(δ̂ − δ)− 2

T∑
t=2

εt−1F
′

2,t−1

T 2
A
′

2(δ̂ − δ)− 2

T∑
t=2

εt−1φ
′

t−1

T 2
δ̂

+ 2(δ̂ − δ)
′
A1

T∑
t=2

F1,t−1F
′

2,t−1

T 2
A
′

2(δ̂ − δ) + 2(δ̂ − δ)
′
A1

T∑
t=2

F1,t−1φ
′

t−1

T 2
δ̂

+ 2(δ̂ − δ)
′
A2

T∑
t=2

F2,t−1φ
′

t−1

T 2
δ̂,

For the first four squared terms, we have

1

T 2

T∑
t=2

ε2
t−1

d→
∫ 1

0

B0B0,

and

(δ̂ − δ)
′
A1

T∑
t=2

F1,t−1F
′

1,t−1

T 2
A
′

1(δ̂ − δ) d→ (

∫ 1

0

B0B
′

1)(

∫
B1B

′

1)−1(

∫ 1

0

B1B
′

1)(

∫
B1B

′

1)−1(

∫ 1

0

B1B0)

= (

∫ 1

0

B0B
′

1)(

∫
B1B

′

1)−1(

∫ 1

0

B1B0),

and

(δ̂ − δ)
′
A2

T∑
t=2

F2,t−1F
′

2,t−1

T 2
A
′

2(δ̂ − δ) = Op(1)Op(
1

T
)Op(1) = Op(

1

T
),

and

δ̂
′ T∑
t=2

φt−1φ
′

t−1

T 2
δ̂ = Op(1)Op(

T

n
× 1

T
)Op(1) = Op(

1

n
).
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For the next six cross-product terms, we have

2

T∑
t=2

εt−1F
′

1,t−1

T 2
A
′

1(δ̂ − δ) d→ 2(

∫ 1

0

B0B
′

1)(

∫
B1B

′

1)−1(

∫ 1

0

B1B0),

and

2

T∑
t=2

εt−1F
′

2,t−1

T 2
A
′

2(δ̂ − δ) = 2
1

T

T∑
t=2

εt−1F
′

2,t−1

T
A
′

2(δ̂ − δ) = Op(
1

T
),

and

‖
T∑
t=2

εt−1φ
′

t−1

T 2
‖ ≤ 1√

T
(

T∑
t=2

ε2
t−1

T 2
)1/2(

T∑
t=2

‖φt−1‖2

T
)1/2 =

1√
T
Op(1)Op(

√
T

n
) = Op(

1√
n

),

and

2(δ̂ − δ)
′
A1

T∑
t=2

F1,t−1F
′

2,t−1

T 2
A
′

2(δ̂ − δ) = Op(
1

T
),

and

2(δ̂ − δ)
′
A1

T∑
t=2

F1,t−1φ
′

t−1

T 2
δ̂ ≤ Op(

1√
n

),

and

2(δ̂ − δ)
′
A2

T∑
t=2

F2,t−1φ
′

t−1

T 2
δ̂ ≤ Op(

1√
Tn

).

Hence,

T−2
T∑
t=2

ε̂2
t−1 = T−2

T∑
t=2

{εt−1 − (δ̂ − δ)
′
A1 · F1,t−1 − (δ̂ − δ)

′
A2 · F2,t−1 − δ̂

′

φt−1}2

=
1

T 2

T∑
t=2

ε2
t−1 + (δ̂ − δ)

′
A1

T∑
t=2

F1,t−1F
′

1,t−1

T 2
A
′

1(δ̂ − δ) +Op(
1

T
) +Op(

1

n
)

− 2

T∑
t=2

εt−1F
′

1,t−1

T 2
A
′

1(δ̂ − δ)−Op(
1

T
)−Op(

1√
n

)

+Op(
1

T
) +Op(

1√
n

)

+Op(
1√
Tn

)

d→
∫ 1

0

B0B0 − (

∫ 1

0

B0B
′

1)(

∫
B1B

′

1)−1(

∫ 1

0

B1B0)

=

∫ 1

0

B̃0B̃0.

in which B̃0 = B0 − (
∫ 1

0
B0B

′

1)(
∫
B1B

′

1)−1B1. The Brownian motion B̃0
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has long-run covariance matrix Ω0̃0̃ = Ω00 − (
∫ 1

0
B0B

′

1)(
∫
B1B

′

1)−1Ω10 −

Ω01(
∫
B1B

′

1)−1(
∫ 1

0
B1B0) + (

∫ 1

0
B0B

′

1)(
∫
B1B

′

1)−1Ω11(
∫
B1B

′

1)−1(
∫ 1

0
B1B0) and one-sided

long-run covariance Λ0̃0̃ = Λ00 − (
∫ 1

0
B0B

′

1)(
∫
B1B

′

1)−1Λ10 − Λ01(
∫
B1B

′

1)−1(
∫ 1

0
B1B0) +

(
∫ 1

0
B0B

′

1)(
∫
B1B

′

1)−1Λ11(
∫
B1B

′

1)−1(
∫ 1

0
B1B0).

For the numerator in T (γ̂ − 1), we have

T−1
T∑
t=2

(ε̂t − ε̂t−1)ε̂t−1 = T−1
T∑
t=2

(∆εt − (δ̂ − δ)
′
A1 ·∆F1t − (δ̂ − δ)

′
A2 ·∆F2t − δ̂

′

∆φt)

· (εt−1 − (δ̂ − δ)
′
A1 · F1,t−1 − (δ̂ − δ)

′
A2 · F2,t−1 − δ̂

′

φt−1)

=

T∑
t=2

∆εtεt−1

T
− (δ̂ − δ)

′
A1

T∑
t=2

∆F1tεt−1

T
− (δ̂ − δ)

′
A2

T∑
t=2

∆F2tεt−1

T
− δ̂

′ T∑
t=2

∆φtεt−1

T

−
T∑
t=2

∆εtF
′

1,t−1

T
A
′

1(δ̂ − δ) + (δ̂ − δ)
′
A1

T∑
t=2

∆F1tF
′

1,t−1

T
A
′

1(δ̂ − δ)

+ (δ̂ − δ)
′
A2

T∑
t=2

∆F2tF
′

1,t−1

T
A
′

1(δ̂ − δ)− δ̂
′ T∑
t=2

∆φtF
′

1,t−1

T
A
′

1(δ̂ − δ)

−
T∑
t=2

∆εtF
′

2,t−1

T
A
′

2(δ̂ − δ) + (δ̂ − δ)
′
A1

T∑
t=2

∆F1tF
′

2,t−1

T
A
′

2(δ̂ − δ)

+ (δ̂ − δ)
′
A2

T∑
t=2

∆F2tF
′

2,t−1

T
A
′

2(δ̂ − δ)− δ̂
′ T∑
t=2

∆φtF
′

2,t−1

T
A
′

2(δ̂ − δ)

−
T∑
t=2

∆εtφ
′

t−1

T
δ̂ − (δ̂ − δ)

′
A1

T∑
t=2

∆F1tφ
′

t−1

T
δ̂ − (δ̂ − δ)

′
A2

T∑
t=2

∆F2tφ
′

t−1

T
δ̂ − δ̂

′ T∑
t=2

∆φtφ
′

t−1

T
δ̂.

For the first terms, we have

T∑
t=2

∆εtεt−1

T

d→
∫ 1

0

B0dB0 + Λ00.

Consider the second term together:

(δ̂ − δ)
′
A1

T∑
t=2

∆F1tεt−1

T

d→ (

∫ 1

0

B0B
′

1)(

∫
B1B

′

1)−1(

∫ 1

0

dB1B0 + Λ10),

and the fifth term:

T∑
t=2

∆εtF
′

1,t−1

T
A
′

1(δ̂ − δ) d→ (

∫ 1

0

dB0B
′

1 + Λ01)(

∫
B1B

′

1)−1(

∫ 1

0

B1B0).

Consider the second and the fifth term together:

(δ̂ − δ)
′
A1

T∑
t=2

∆F1tεt−1

T
+

T∑
t=2

∆εtF
′

1,t−1

T
A
′

1(δ̂ − δ)
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=
εT−1F

′

1T − ε1F
′

11 −
∑T−1
t=2 ∆εtF

′

1t

T
A
′

1(δ̂ − δ) +

T∑
t=2

∆εtF
′

1,t−1

T
A
′

1(δ̂ − δ)

= {
εT−1F

′

1T − ε1F
′

11 −
∑T−1
t=2 ∆εtF

′

1t

T
+

∑T
t=2 ∆εtF

′

1,t−1

T
}A
′

1(δ̂ − δ)

= {
εT−1F

′

1T − ε1F
′

11 + ∆εTF
′

1,T−1

T
−
∑T−1
t=2 ∆εt∆F

′

1,t

T
}A
′

1(δ̂ − δ)

d→ (Ω01 −Op(
1

T
)−Op(

1√
T

)− Σ01)(

∫
B1B

′

1)−1(

∫ 1

0

B1B0)

= Λ01(

∫
B1B

′

1)−1(

∫ 1

0

B1B0),

in which we have used the fact that εT−1F
′
1T

T

d→ Ω01, and
∑T−1

t=2 ∆εt∆F
′
1,t

T

d→ Σ01, and ε1F
′
11

T =

Op(
1
T ), and

∆εTF
′
1,T−1

T = Op(
1√
T

). For the third term, we have

(δ̂ − δ)
′
A2

T∑
t=2

∆F2tεt−1

T
= (δ̂ − δ)

′
A2

T∑
t=2

(F2t − F2,t−1)εt−1

T

= (δ̂ − δ)
′
A2(

F2,T εT−1

T
− F2,1ε1

T
−
∑T−1
t=2 F2,t∆εt

T
)

d→ Op(1)(Op(
1√
T

)−Op(
1

T
)− 0) = Op(

1√
T

),

where the last is from the fact that F2,T εT−1

T = Op(
1√
T

) and
∑T−1

t=2 F2,t∆εt
T

d→ E(u2t ⊗∆εt) = 0 by

Assumption 9 (EC’).

For the forth term, we have

δ̂
′ T∑
t=2

∆φtεt−1

T
= δ̂

′ T∑
t=2

(φt − φt−1)εt−1

T

= δ̂
′

(
φT εT−1

T
− φ1ε1

T
−
∑T−1
t=2 φt∆εt

T
)

d→ Op(1)(Op(
1√
T

)−Op(
1

T
)−Op(

√
T

n
) = Op(

1√
T

) +Op(

√
T

n
),

where the last line is from the fact that φT εT−1

T = Op(
1√
T

) and ‖
∑T−1

t=2 φt∆εt
T ‖ ≤

(
∑T−1

t=2 ‖φt‖
2

T )1/2(
∑T−1

t=2 ∆ε2t
T )1/2 = Op(

√
T
n ).

For the sixth term, we have

(δ̂ − δ)
′
A1

T∑
t=2

∆F1tF
′

1,t−1

T
A
′

1(δ̂ − δ) d→ (

∫ 1

0

B0B
′

1)(

∫
B1B

′

1)−1(

∫
dB1B

′

1 + Λ11)(

∫
B1B

′

1)−1(

∫ 1

0

B1B0)

Consider the seventh and tenth terms together:

(δ̂ − δ)
′
A2

T∑
t=2

∆F2tF
′

1,t−1

T
A
′

1(δ̂ − δ) + (δ̂ − δ)
′
A1

T∑
t=2

∆F1tF
′

2,t−1

T
A
′

2(δ̂ − δ)
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= (δ̂ − δ)
′
A2{

F2TF
′

1,T−1 − F21F
′

11 −
∑T−1
t=2 F2t∆F

′

1t

T
+

T∑
t=2

F2,t−1∆F
′

1t

T
}A
′

1(δ̂ − δ)

= (δ̂ − δ)
′
A2{

F2TF
′

1,T−1 − F21F
′

11 + F2,T−1∆F
′

Tt

T
−
∑T−1
t=2 ∆F2t∆F

′

1,t

T
}A
′

1(δ̂ − δ)

d→ Op(1)(Op(
1√
T

)−Op(
1

T
) +Op(

1

T
)−Op(

1√
T

))Op(1)

= Op(
1√
T

).

For the eighth term, we have

δ̂
′ T∑
t=2

∆φtF1,t−1

T
A
′

1(δ̂ − δ) = δ̂
′ T∑
t=2

(φt − φt−1)F1,t−1

T
A
′

1(δ̂ − δ)

= δ̂
′

(
φTF1,T−1

T
− φ1F11

T
−
∑T−1
t=2 φt∆F1t

T
)A
′

1(δ̂ − δ)

d→ Op(1)(Op(
1√
T

)−Op(
1

T
)−Op(

√
T

n
) = Op(

1√
T

) +Op(

√
T

n
),

where the last line is from the fact that φTF1,T−1

T = Op(
1√
T

) and ‖
∑T−1

t=2 φt∆F1t

T ‖ ≤

(
∑T−1

t=2 ‖φt‖
2

T )1/2(
∑T−1

t=2 ∆F 2
1t

T )1/2 = Op(
√

T
n ).

For the ninth term, we have

T∑
t=2

∆εtF
′

2,t−1

T
A
′

2(δ̂ − δ) d→ Op(
1√
T

)Op(1) = Op(
1√
T

),

and for the eleventh term, we have

(δ̂ − δ)
′
A2

T∑
t=2

∆F2tF
′

2,t−1

T
A
′

2(δ̂ − δ) d→ Op(1)Op(
1√
T

)Op(1) = Op(
1√
T

).

For the 12th term, we have

δ̂
′ T∑
t=2

∆φtF
′

2,t−1

T
A
′

2(δ̂ − δ) d→ Op(1)Op(
1

min[
√
n,
√
T ]

)Op(1) = Op(
1

min[
√
n,
√
T ]

),

since ‖
∑T−1

t=2 ∆φtF
′
2,t−1

T ‖ ≤ (
∑T−1

t=2 ‖∆φt‖
2

T )1/2(
∑T−1

t=2 ‖F2,t−1‖2
T )1/2 = Op(

1
min[

√
n,
√
T ]

).

For the 13th term, we have

‖
T∑
t=2

∆εtφ
′

t−1

T
δ̂‖ ≤ (

∑T−1
t=2 ‖∆εt‖2

T
)1/2(

∑T−1
t=2 ‖φt−1‖2

T
)1/2 = Op(

√
T

n
).

Likewise, we can show that the 14th term is also at the speed of

Op(
√

T
n ).
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Hence,

T−1
T∑
t=2

(ε̂t − ε̂t−1)ε̂t−1
d→
∫ 1

0

B0dB0 + Λ00

− (

∫ 1

0

B0B
′

1)(

∫
B1B

′

1)−1(

∫ 1

0

dB1B0 + Λ10)

− (

∫ 1

0

dB0B
′

1 + Λ01)(

∫
B1B

′

1)−1(

∫ 1

0

B1B0)

+ (

∫ 1

0

B0B
′

1)(

∫
B1B

′

1)−1(

∫
dB1B

′

1 + Λ11)(

∫
B1B

′

1)−1(

∫ 1

0

B1B0)

=

∫ 1

0

B0dB0 − (

∫ 1

0

B0B
′

1)(

∫
B1B

′

1)−1(

∫ 1

0

dB1B0 +

∫ 1

0

B1dB0)

+ (

∫ 1

0

B0B
′

1)(

∫
B1B

′

1)−1(

∫
dB1B

′

1)(

∫
B1B

′

1)−1(

∫ 1

0

B1B0)

+ Λ00 − 2(

∫ 1

0

B0B
′

1)(

∫
B1B

′

1)−1Λ10 + (

∫ 1

0

B0B
′

1)(

∫
B1B

′

1)−1Λ11(

∫
B1B

′

1)−1(

∫ 1

0

B1B0)

=

∫ 1

0

B̃0dB̃0 + Λ0̃0̃,

where we have used the fact that∫ 1

0

B̃0dB̃0 = =

∫ 1

0

B0dB0 − (

∫ 1

0

B0B
′

1)(

∫
B1B

′

1)−1(

∫ 1

0

dB1B0 +

∫ 1

0

B1dB0)

+ (

∫ 1

0

B0B
′

1)(

∫
B1B

′

1)−1(

∫
dB1B

′

1)(

∫
B1B

′

1)−1(

∫ 1

0

B1B0),

and

Λ0̃0̃ = Λ00 − 2(

∫ 1

0

B0B
′

1)(

∫
B1B

′

1)−1Λ10 + (

∫ 1

0

B0B
′

1)(

∫
B1B

′

1)−1Λ11(

∫
B1B

′

1)−1(

∫ 1

0

B1B0).

In all, we have proved that

T (ρ̂T − 1) =
T−1

∑T
t=2(ε̂t − ε̂t−1)ε̂t−1

T−2
∑T
t=2 ε̂

2
t−1

d→
∫ 1

0
B̃0dB̃0 + Λ0̃0̃∫ 1

0
B̃0B̃0

,

in which B̃0 = B0 − (
∫ 1

0
B0B

′

1)(
∫
B1B

′

1)−1B1. The Brownian motion B̃0

has long-run covariance matrix Ω0̃0̃ = Ω00 − (
∫ 1

0
B0B

′

1)(
∫
B1B

′

1)−1Ω10 −

Ω01(
∫
B1B

′

1)−1(
∫ 1

0
B1B0) + (

∫ 1

0
B0B

′

1)(
∫
B1B

′

1)−1Ω11(
∫
B1B

′

1)−1(
∫ 1

0
B1B0) and one-sided

long-run covariance Λ0̃0̃ = Λ00 − (
∫ 1

0
B0B

′

1)(
∫
B1B

′

1)−1Λ10 − Λ01(
∫
B1B

′

1)−1(
∫ 1

0
B1B0) +

(
∫ 1

0
B0B

′

1)(
∫
B1B

′

1)−1Λ11(
∫
B1B

′

1)−1(
∫ 1

0
B1B0).
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(b) Firstly, notice that

(T − 1)2σ̂2
ρ̂T
÷ s2

T =
1

(T − 1)−2
∑T
t=2 ε̂

2
t−1

d→ 1∫ 1

0
B̃0B̃0

.

Secondly,

ĉj,T = (T − 1)−1
T∑

t=j+2

κ̂tκ̂t−j

= (T − 1)−1
T∑

t=j+2

(ε̂t − ρ̂T ε̂t−1)(ε̂t−j − ρ̂T ε̂t−j−1)

= (T − 1)−1
T∑

t=j+2

(∆ε̂t − (ρ̂T − 1)ε̂t−1)(∆ε̂t−j − (ρ̂T − 1)ε̂t−j−1)

=
1

T − 1

T∑
t=j+2

∆ε̂t∆ε̂t−j −
1

T − 1

T∑
t=j+2

(ρ̂T − 1)ε̂t−1∆ε̂t−j −
1

T − 1

T∑
t=j+2

(ρ̂T − 1)∆ε̂tε̂t−j−1

+
1

T − 1

T∑
t=j+2

(ρ̂T − 1)2ε̂t−1ε̂t−j−1.

Result (a) implies that T (ρ̂T − 1) = Op(1), and it is easy to show that 1
T−1

∑T
t=j+2(ρ̂T −

1)ε̂t−1∆ε̂t−j = Op(
1
T ), and 1

T−1

∑T
t=j+2(ρ̂T − 1)∆ε̂tε̂t−j−1 = Op(

1
T ), and 1

T−1

∑T
t=j+2(ρ̂T −

1)2ε̂t−1ε̂t−j−1 = Op(
1
T 2 ). Hence, we have

ĉj,T
p→ 1

T − 1

T∑
t=j+2

∆ε̂t∆ε̂t−j

=
1

T − 1

T∑
t=j+2

(∆εt − (δ̂ − δ)
′
A1 ·∆F1t − (δ̂ − δ)

′
A2 ·∆F2t − δ̂

′

∆φt)

· (∆εt−j − (δ̂ − δ)
′
A1 ·∆F1,t−j − (δ̂ − δ)

′
A2 ·∆F2,t−j − δ̂

′

∆φt−j)

=
1

T − 1

T∑
t=j+2

∆εt∆εt−j − (δ̂ − δ)
′
A1

1

T − 1

T∑
t=j+2

∆F1t∆εt−j

− (δ̂ − δ)
′
A2

1

T − 1

T∑
t=j+2

∆F2t∆εt−j − δ̂
′ 1

T − 1

T∑
t=j+2

∆φt∆εt−j

− 1

T − 1

T∑
t=j+2

∆εt∆F
′

1,t−jA
′

1(δ̂ − δ) + (δ̂ − δ)
′
A1

1

T − 1

T∑
t=j+2

∆F1t∆F
′

1,t−jA
′

1(δ̂ − δ)

+ (δ̂ − δ)
′
A2

1

T − 1

T∑
t=j+2

∆F2t∆F
′

1,t−jA
′

1(δ̂ − δ) + δ̂
′ 1

T − 1

T∑
t=j+2

∆φt∆F
′

1,t−jA
′

1(δ̂ − δ)

− 1

T − 1

T∑
t=j+2

∆εt∆F
′

2,t−jA
′

2(δ̂ − δ) + (δ̂ − δ)
′
A1

1

T − 1

T∑
t=j+2

∆F1t∆F
′

2,t−jA
′

2(δ̂ − δ)
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+ (δ̂ − δ)
′
A2

1

T − 1

T∑
t=j+2

∆F2t∆F
′

2,t−jA
′

2(δ̂ − δ) + δ̂
′ 1

T − 1

T∑
t=j+2

∆φt∆F
′

2,t−jA
′

2(δ̂ − δ)

− 1

T − 1

T∑
t=j+2

∆εt∆φ
′

t−j δ̂ + (δ̂ − δ)
′
A1

1

T − 1

T∑
t=j+2

∆F1t∆φ
′

t−j δ̂

+ (δ̂ − δ)
′
A2

1

T − 1

T∑
t=j+2

∆F2t∆φ
′

t−j δ̂ + δ̂
′ 1

T − 1

T∑
t=j+2

∆φt∆φ
′

t−j δ̂

p→ E(∆εt∆εt−j)− plim{(δ̂ − δ)
′
A1}E(∆F1t∆εt−j) +Op(

1√
T

) +Op(
1

min[
√
n,
√
T ]

)

− E(∆εt∆F1,t−j)plim{A
′

1(δ̂ − δ)}+ plim{(δ̂ − δ)
′
A1}E(∆F1t∆F

′

1,t−j)plim{A
′

1(δ̂ − δ)}+Op(
1√
T

)

+Op(
1

min[
√
n,
√
T ]

) +Op(
1√
T

) +Op(
1√
T

) +Op(
1√
T

) +Op(
1

min[
√
n,
√
T ]

)

+Op(
1

min[
√
n,
√
T ]

) +Op(
1

min[
√
n,
√
T ]

) +Op(
1

min[
√
n,
√
T ]

) +Op(
1

min[n, T ]
)

= E(∆εt∆εt−j)− plim{(δ̂ − δ)
′
A1}E(∆F1t∆εt−j)

− E(∆εt∆F1,t−j)plim{A
′

1(δ̂ − δ)}+ plim{(δ̂ − δ)
′
A1}E(∆F1t∆F

′

1,t−j)plim{A
′

1(δ̂ − δ)}.

Hence, we have proved that

ĉj,T
p→ E(∆εt∆εt−j)− plim{(δ̂ − δ)

′
A1}E(∆F1t∆εt−j)

− E(∆εt∆F1,t−j)plim{A
′

1(δ̂ − δ)}+ plim{(δ̂ − δ)
′
A1}E(∆F1t∆F

′

1,t−j)plim{A
′

1(δ̂ − δ)}

= E(∆εt∆εt−j)− (

∫ 1

0

B0B
′

1)(

∫
B1B

′

1)−1E(∆F1t∆εt−j)− E(∆εt∆F1,t−j)(

∫
B1B

′

1)−1(

∫ 1

0

B1B0)

+ (

∫ 1

0

B0B
′

1)(

∫
B1B

′

1)−1E(∆F1t∆F
′

1,t−j)(

∫
B1B

′

1)−1(

∫ 1

0

B1B0).

Thus,

1/2{λ̂
2

T − ĉ0,T } =

q∑
j=1

[1− j/(q + 1)]ĉj,T

d→
∞∑
j=1

E(∆εt∆εt−j)− (

∫ 1

0

B0B
′

1)(

∫
B1B

′

1)−1
∞∑
j=1

E(∆F1t∆εt−j)

−
∞∑
j=1

E(∆εt∆F1,t−j)(

∫
B1B

′

1)−1(

∫ 1

0

B1B0)

+ (

∫ 1

0

B0B
′

1)(

∫
B1B

′

1)−1
∞∑
j=1

E(∆F1t∆F
′

1,t−j)(

∫
B1B

′

1)−1(

∫ 1

0

B1B0)

= Λ00 − (

∫ 1

0

B0B
′

1)(

∫
B1B

′

1)−1Λ10 − Λ01(

∫
B1B

′

1)−1(

∫ 1

0

B1B0)

− (

∫ 1

0

B0B
′

1)(

∫
B1B

′

1)−1Λ11(

∫
B1B

′

1)−1(

∫ 1

0

B1B0)
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= Λ0̃0̃,

as q →∞ and q/T → 0.

To conclude, if q → ∞ as T → ∞ and q/T → 0, then the Phillips’s Zρ statistic (1987)

satisfies:

Zρ,T = T (ρ̂T − 1)− 1/2{(T − 1)2σ̂2
ρ̂T
÷ s2

T }{λ̂
2

T − ĉ0,T }

d→
∫ 1

0
B̃0dB̃0 + Λ0̃0̃∫ 1

0
B̃0B̃0

− Λ0̃0̃∫ 1

0
B̃0B̃0

=

∫ 1

0
B̃0dB̃0∫ 1

0
B̃0B̃0

.

The last limit could also be written as
∫ 1
0
W (r)dW (r)∫ 1

0
W (r)W (r)dr

for a scalar standard Brownian motion

W (r).
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