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ABSTRACT

General-purpose Distributed Stream Data Processing Systems (DSDPSs) have attracted

extensive attention from industry and academia in recent years. They are capable of pro-

cessing unbounded big streams of continuous data in a distributed and real (or near-real)

time manner. A fundamental problem in a DSDPS is the scheduling problem, i.e., assigning

threads (carrying workload) to workers/machines with the objective of minimizing average

end-to-end tuple processing time (or simply tuple processing time). A widely-used solu-

tion is to distribute workload over machines in the cluster in a round-robin manner, which

is obviously not efficient due to the lack of consideration for communication delay among

processes/machines. A scheduling solution makes a significant impact on the average tuple

processing time. However, their relationship is very subtle and complicated. It does not

even seem possible to have a mathematical programming formulation for the scheduling

problem if its objective is to directly minimize the average tuple processing time.

In this dissertation, we first propose a model-based approach that accurately models the

correlation between a scheduling solution and its objective value (i.e. average tuple pro-

cessing time) for a given scheduling solution according to the topology of the application

graph and runtime statistics. A predictive scheduling algorithm is then presented, which as-

signs tasks (threads) to machines under the guidance of the proposed model. This approach

achieves an average of 24.9% improvement over Storm’s default scheduler. However, the

model-based approach still has its limitations: the model may not be able to fully capture

the features of a DSDPS; prediction may not be accurate enough; and a large amount of

high-dimensional data may lead to high overhead.

To address the limitations, we develop a model-free approach that can learn to control

a DSDPS from its experience rather than adopting accurate and mathematically solvable



system models, just as a human learns a skill (such as cooking, driving, swimming, etc.).

Recent breakthrough of Deep Reinforcement Learning (DRL) provides a promising ap-

proach for enabling effective model-free control. The proposed DRL-based model-free

approach minimizes the average end-to-end tuple processing time by jointly learning the

system environment via collecting very limited runtime statistics and making decisions

under the guidance of powerful Deep Neural Networks (DNNs). This approach achieves

great performance improvement over the current practice and the state-of-the-art model-

based approach.

Moreover, there is still room for improvement for the above model-free approach: For

the above model-free approach and most existing methods, a user specifies the number of

threads for an application in advance without knowing much about runtime needs, which,

however, remains unchanged during runtime. This could severely affect the performance

of a DSDPS. Therefore, we further develop another model-free approach using DRL, EX-

TRA, which enables the dynamic use of a variable number of threads at runtime. It has

been shown by extensive experimental results, by adding this new feature, EXTRA can

achieve further performance improvement and greater flexibility on scheduling.
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CHAPTER 1

INTRODUCTION

1.1 Motivations

Emerging big stream data applications demand the underlying system to process hetero-

geneous, fast and high-volume data in a distributed and timely manner. A widely-used

solution is parallel/distributed data processing, which divides input data into many small

pieces and processes them in parallel over a large number of physical machines. MapRe-

duce [1] and Hadoop [2] have emerged as the de facto programming model and system for

big data processing respectively. However, they are not suitable for continuous stream data

or online processing because they were designed for offline batch processing of static data,

in which all input data need to be stored on a distributed file system in advance.

Here we focus on general-purpose Distributed Stream Data Processing Systems (DS-

DPSs) (such as Apache Storm [3] and Google’s MillWheel [6]), which deal with pro-

cessing of unbounded streams of continuous data at scale distributedly in real or near-real

time. Their programming models and runtime systems are quite different from those of

MapReduce-based batch processing systems, such as Hadoop [2] and Spark [27], which

usually handle static big data in an offline manner, and they employ different message

passing, fault tolerance and resource allocation mechanisms that are designed specifically
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for online stream data processing.

In a Distributed Stream Data Processing System (DSDPS), an application is usually

modeled using a directed graph, in which each vertex corresponds to a data source or a

Processing Unit (PU), and edges indicate data flow.

A stream data processing system handles unbounded streams of data tuples, which may

last for a long time, therefore, the tuple processing time, i.e., the time between when the

tuple comes out of the data source and the time when its processing is completed and

acknowledged, is usually used as the primary performance metric. A tuple may traverse

multiple PUs and experience various latencies (such as processing latency at a PU and

transfer latency between PUs) during its lifetime.

A fundamental problem in a DSDPS is the scheduling problem (i.e., assigning work-

load to workers/machines) with the objective of minimizing average (end-to-end) tuple

processing time (i.e. end-to-end delay). A widely-used solution is to distribute workload

over machines in the cluster in a round-robin manner [3], which is obviously not efficient

due to lack of consideration for communication delay among processes/machines.

In distributed batch processing systems (such as MapReduce-based systems), an indi-

vidual task’s completion time can be well estimated [46], and the scheduling problem can

be well formulated into a Mixed Integer Linear Programming (MILP) problem with the ob-

jective of minimizing the makespan of a job [47, 48]. Then it can be tackled by optimally

solving the MILP problem or using a fast polynomial-time approximation/heuristic algo-

rithm. However, in a DSDPS, a task or an application never ends unless it is terminated by

its user. A scheduling solution makes a significant impact on the average tuple processing

time. But their relationship is very subtle and complicated. It does not even seem pos-

sible to have a mathematical programming formulation for the scheduling problem if its

objective is to directly minimize average tuple processing time.

We may be able to better solve the scheduling problem if we can accurately model the

correlation between a scheduling solution and its objective value (i.e. average tuple pro-
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cessing time), that is, to predict/estimate average tuple processing time for a given schedul-

ing solution. However, how to accurately model and predict tuple processing time in a

DSDPS is quite challenging and has not yet been well studied.

Queueing theory has been applied for modeling and prediction in distributed database

systems [5]. However, it does not work for general-purpose stream data processing due to

the following reasons: 1) Queueing theory can only offer good estimation for queueing de-

lay under a few assumptions (e.g, tuple arrivals follow a Poisson distribution, etc), which,

may not hold in a complex distributed data processing system. 2) In queueing theory, many

problems in a queueing network (instead of a single queue) remain unknown, while a dis-

tributed data processing system represents a fairly complicated multi-point to multi-point

queueing network where tuples from a queue may be distributed to multiple downstream

queues, and a queue may receive tuples from multiple different upstream queues.

We plan to propose a novel predictive scheduling framework to enable fast and dis-

tributed stream processing, which features application-aware modeling for performance

prediction and predictive scheduling. The application-aware modeling will accurately model

and predict the average tuple processing time for a given scheduling solution, according to

the topology of the application graph and runtime statistics. The scheduling will assign

tasks (threads) to machines under the guidance of the prediction results.

Even if we could develop a relatively accurate model to calculate the objective value

win the knowledge of a given scheduling solution, the approach still suffers from two prob-

lems: 1) In a very complicated distributed computing environment such as a DSDPS, tu-

ple processing time may be caused by many factors, which are not fully captured by the

model. 2) Prediction for each individual component may not be accurate enough. 3) A

large amount of high-dimensional statistics data need to be collected to build and update

the model, which leads to high overhead.

Therefore it is desirable to develop a model-free approach that can learn to well con-

trol a DSDPS from its experience rather than adopting accurate and mathematically solv-
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able system models, just as a human learns a skill (such as cooking, driving, swimming,

etc.) Besides, recent breakthrough of Deep Reinforcement Learning (DRL) [41] provides a

promising technique for enabling effective model-free control. DRL [41] (originally devel-

oped by a startup named DeepMind) enables computers to learn to play games, including

Atari 2600 video games and one of the most complicated games, Go (AlphaGo [42]), and

beat the best human players.

DRL consists of an offline Deep Neural Networks (DNN) construction phase, which

correlates the value function with corresponding states and actions, and an online deep

Q-learning phase for action selection, system control, and DNN updating. We believe

DRL is especially promising for control in DSDPSs because: 1) It has advantages over

other dynamic system control techniques such as model-based predictive control in that

the former is model-free and does not rely on accurate and mathematically solvable system

models (such as queueing models), thereby enhancing the applicability in complex systems

with randomized behaviors. 2) it is capable of handling a sophisticated state space (such

as AlphaGo [42]), which is more advantageous over traditional Reinforcement Learning

(RL) [45]. 3) It is able to deal with time-variant environments such as varying system

states and user demands.

However, direct application of the basic DRL technique, such as Deep Q Network

(DQN) based DRL proposed in the pioneering work [41], may not work well here since

it is only capable of handling control problems with a limited action space but the control

problems (such as scheduling) in a DSDPS usually have a sophisticated state space, and a

huge action (worker threads, worker processes, virtual/physical machines, and their combi-

nations) space. Moreover, the existing DRL methods [41] usually need to collect big data

(e.g., lots of images for the game-playing applications) for learning, which are additional

overhead and burden for an online system. Our goal is to develop a method that only needs

to collect very limited statistics data during runtime.

In summary, it is both rewarding and challenging to apply DRL techniques in a model-
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free approach to control DSDPSs.

Even if an approach described above could be developed, there is still room for im-

provement: while in those approaches (including most current state-of-the-art), a user spec-

ifies the number of threads/processes for a (logic) Processing Unit (PU) in an application in

advance without knowing much about runtime needs, which, however, remains unchanged

during runtime. This could severely affect the performance of the DSDPSs.

We aim to develop a scheduling framework for DSDPSs which is capable of integrating

changing the number of threads into the data/experience-driven model-free control frame-

work, which can fully embrace the power and flexibility brought by a variable number of

threads. However, this new feature makes the scheduling problem much harder since the

new problem involves jointly determining the number of threads and their assignment at

the same time.

1.2 Background

In this section, we provide a brief background introduction to DSDPS, Apache Storm and

DRL.

1.2.1 Distributed Stream Data Processing System (DSDPS)

The typical architecture of a Distributed Stream Data Processing System (DSDPS) is il-

lustrated in Fig. 1.1. As mentioned above, a stream is defined as an unbounded sequence

of tuples and an application is usually modeled as a directed graph (known as topology in

Storm), which includes two types of components: data source (known as spout in Storm)

and Processing Unit (PU, known as bolt in Storm). A data source reads data from external

source(s) and then emits tuples into the topology. A PU consumes tuples from data sources

or other PUs, and processes them using code provided by the user. A PU can either store

data to a database, or pass it to some other units for further processing. These components
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are represented by vertices in the application graph, where directed edges indicate how data

streams are routed. Data sources and PUs can be executed as many parallel tasks on mul-

tiple physical/virtual machines, therefore a task can be considered as an instance of a data

source or processing unit. To ensure reliability, when the message ID of a tuple coming

out of a data source successfully traverses the whole application graph, a special acker is

called to inform the originating data source that message processing is complete. The tuple

processing is the duration between when the data source emits the tuple and when it has

been acked (fully processed). Note that we are only interested in the processing times of

those tuples emitted by data sources since they reflect processing latency over the whole

application. Clearly, a scheduling solution has a significant impact on the tuple processing

time. There are 5 ways for grouping, which define how to route tuples between sets of

tasks:

• Shuffle grouping: Tuples are randomly distributed across receiving bolt’s tasks and

each task is guaranteed to receive an equal number of tuples.

• Fields grouping: A field of a tuple is used as the key to partition the stream. Tuples

with the same key will be mapped to the same task.

• All grouping: Each tuple is broadcasted to all tasks of the corresponding bolt.

• Global grouping: The entire stream is routed to one of the bolt’s tasks, usually the

task with the lowest ID.

• Direct grouping: The producer of the stream decides which task of the consuming

bolt will receive each tuple.

A DSDPS usually uses two levels of abstractions (logical and physical) to express par-

allelism. In the physical layer, it usually consists of a master (known as Nimbus in Storm)

that serves as the central control unit, and a set of machines (called worker nodes in Storm)
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that actually process incoming data. An application graph (topology) is executed on multi-

ple worker processes (called workers in Storm) running on one or multiple worker nodes.

Each worker node runs a daemon called supervisor that listens for any work assigned to it

by the scheduler. Slots are configured on each worker node. The number of slots indicates

the number of workers that can be run on this worker node, and is usually pre-configured

by the cluster operator based on hardware constraints such as the number of CPU cores.

Each worker uses multiple threads (known as executors in Storm) to actually process data

according to user code.

Fig. 1.1: The typical architecture of a Distributed Stream Data Processing System (DS-
DPS)

The master is responsible for distributing users’ code around the cluster, scheduling

tasks, and monitoring them for failures. A scheduling solution specifies how to assign

threads (executors) to processes (workers) and physical/virtual machines (worker nodes).
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Storm includes a default scheduler, which uses a simple scheduling solution, which assigns

executors to pre-configured workers in a round-robin manner and then evenly assigns those

workers to available slots on worker nodes. This scheduling solution leads to almost even

distribution of executors over available slots.

1.2.2 Apache Storm

Since we implemented the proposed frameworks based on Apache Storm [3], we briefly

introduce it here. Apache Storm is an open-source and fault-tolerant DSDPS, which has an

architecture and programming model very similar to what described above, and has been

widely used by quite a few companies and institutes. In Storm, data source, PU, appli-

cation graph, master, worker process and worker thread are called spout, bolt, topology,

Nimbus, worker and executor, respectively. Storm uses ZooKeeper [43] as a coordination

service to maintain it’s own mutable configuration (such as scheduling solution), naming,

and distributed synchronization among machines. All configurations stored in ZooKeeper

are organized in a tree structure. Nimbus (i.e., master) provides interfaces to fetch or update

Storm’s mutable configurations. A Storm topology contains a topology specific configura-

tion, which is loaded before the topology starts and does not change during runtime.

1.2.3 Deep Reinforcement Learning (DRL)

A standard RL setup consists of an agent interacting with an environment in discrete de-

cision epochs. The agent observes state st, takes an action at and receives a reward rt at

each decision epoch t. The goal is to find a policy ⇡(s) that maps a state to an action or ac-

tions deterministically or probabilistically to maximize the discounted cumulative reward

R0 =
P

T

t=0 �
t
r(st, at), where r(·) is the reward function and � 2 [0, 1] is the discount

factor.

DRL [41] extends the well-known Q-learning to support end-to-end system control

based on high-dimensional sensory input (such as raw images) using a Deep Neural Net-
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work (DNN). During the training phase, a DNN called Deep Q-Network (DQN) is built

to derive the correlation between each state-action pair (st, at) of the system under control

and its value function Q(st, at), which is the expected discounted cumulative reward. if

the system is in state st and follows action at at decision epoch t (and a certain policy ⇡

thereafter):

Q(st, at) = E
h
Rt|st, at

i
, (1.1)

where Rt =
P

T

k=t
�
k
r(st, at). A commonly-used off-policy method takes the greedy pol-

icy: ⇡(st) = argmaxat Q(st, at). The DQN can be trained by minimizing the loss:

L(✓Q) = E
h
yt �Q(st, at|✓

Q)
i
, (1.2)

where ✓Q is the weight vector of the DQN and yt is the target value, which can be estimated

by:

yt = r(st, at) + �Q(st+1, ⇡(st+1|✓
⇡)|✓Q). (1.3)

Using a neural network (or even a DNN) as the function approximator in RL is not

new. However, such a non-linear approximator is known to suffer from instability or even

divergence. Two effective techniques were introduced in [41] to improve stability: experi-

ence replay and target network. Unlike traditional RL, a DRL agent updates the DNN with

a mini-batch from an experience replay buffer [41], which stores state transition samples

collected during learning. Compared to the original Q-learning using only immediately

collected samples, DRL randomly sample from the experience replay buffer. This allows a

DRL agent to break the correlation among sequentially generated samples, and learn from

a more independently and identically distributed past experiences, which is required by

most of the training algorithms, such as Stochastic Gradient Descent (SGD). So experience

replay can smooth out learning as well as avoiding oscillations or divergence. In addition,

a DRL agent introduces a separate target network (with the same structure as DQN) to es-

timate target values < yt > for training the DQN, whose parameters, however, are slowly
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updated with the DQN weights every C > 1 epochs and are held fixed between individual

updates.

The DQN-based DRL only works for control problems with a low-dimensional discrete

action space. It is not trivial to extend it to deal with a continuous or high-dimensional dis-

crete action space since it needs to find the action that maximizes the action-value function,

which, however, requires an iterative process to solve a non-trivial non-linear optimization

problem (continuous) or search for the best action in a large space at each epoch.

The commonly-used method for continuous control is the actor-critic approach [49],

which employs the policy gradient to search for the optimal policy. The traditional actor-

critic approach can also be extended to embrace DNN (such as DQN) to guide decision

making [59]. For example, a recent work [59] from DeepMind introduced a deterministic

actor-critic method, called Deep Deterministic Policy Gradient (DDPG), which has been

shown to be very effective for continuous control. The basic idea is to maintain a parame-

terized actor function ⇡(st|✓⇡) and a parameterized critic function Q(st, at|✓Q). The critic

function can be implemented using the above DQN, which returns Q value for a given

state-action pair. The actor function can also be implemented using a DNN, which speci-

fies the current policy by mapping a state to a specific action. According to [54], the actor

network can be updated by applying the chain rule to the expected cumulative reward J

with respect to the actor parameters ✓⇡:

r✓⇡J ⇡ E
h
r✓⇡Q(s, a|✓Q)|s=st,a=⇡(st|✓⇡)

i

= E
h
raQ(s, a|✓Q)|s=st,a=⇡(st) ·r✓⇡⇡(s|✓⇡)|s=st

i
.

(1.4)

Note that the experience replay and target network introduced above can also be integrated

to this approach to ensure stability.
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1.3 State of the Art and Literature Gap

Distributed/Parallel Stream Data Processing Systems (DSDPSs):

Recently, several general-purpose distributed/parallel systems have been developed par-

ticularly for stream data processing. As introduced above, Apache Storm [3] is an open-

source, distributed, reliable and fault-tolerant DSDPS that is designed particularly for on-

line processing of unbounded stream data. Storm provides a directed graph based model

for programming as well as an effective mechanism to guarantee message processing. It

supports fault-tolerance by monitoring worker processes and re-starting failed ones in a

timely manner. Apache S4 (Simple Scalable Streaming System) [4] is another general-

purpose, distributed, scalable and pluggable platform for processing continuous and un-

bounded streams of data. Time-Stream [7] is a distributed system designed by Microsoft

specifically for low-latency continuous processing of big streaming data in the cloud. It

employs a powerful new abstraction called resilient substitution that caters to the specific

needs in this new computation model to handle failure recovery and dynamic reconfigu-

ration in response to load changes. MillWheel [6] is a platform for building low-latency

data processing applications, which is widely used at Google. In MillWheel, users specify

a directed computation graph and application code for individual nodes, and the system

manages persistent states and the continuous flows of data, all within the envelope of the

framework’s fault-tolerance guarantees. In addition, Apache Flink [18] is a open source

framework for distributed big data analytics, the core of which is a distributed streaming

data flow engine written in Java and Scala.

A few other distributed systems were developed to extend MapReduce to support stream

data processing. In [20], Kumar et al. extended IBM’s System S stream processing mid-

dleware with support for MapReduce by providing language and runtime support for speci-

fying and embedding MapReduce jobs as elements of a larger data flow. In [21], a modified

MapReduce architecture was introduced, which allows data to be pipelined between oper-

ators. This extends the MapReduce programming model beyond batch processing, and can



12

reduce completion times and improve system utilization for batch processing jobs. Karve et

al. in [22] proposed to use pipelining between the map and reduce phases to ensure the

output of the map phase is made available to the reduce phase as soon as possible to speed

up the execution of MapReduce jobs. In [23], Aly et al. presented a Hadoop-based sys-

tem, M3, which bypasses the HDFS to support main-memory-only processing and allows

for continuous execution of the map and reduce phases where individual mappers and re-

ducers never terminate. Backman et al. presented C-MR [24], a modified MapReduce

processing model to continuously execute workflows of MapReduce jobs on unbounded

data streams. Other MapReduce-like systems include Google’s FlumeJava [25] and Wal-

martLab’s Muppet [26], Twitter’s Heron [55] and commercial solutions including Azure

Stream Analytics [56] and Amazon Kinesis [57]. Muppet [26] was developed by Wal-

martLab for fast data processing, in which an update (instead of reduce) function is used

to continuously update output based on data streams. FlumeJava was presented in [25],

which is a Java library that makes it easy to develop, test, and run efficient data parallel

pipelines. In addition, Apache Spark [27] is currently one of the most popular open source

MapReduce-based frameworks. Spark Streaming [28] is a stream data processing system

that uses the core Apache Spark API and its fast scheduling capability to perform stream-

ing analytics. It ingests data in mini-batches and performs RDD transformations on those

mini-batches of data. In [29], the authors presented design, implementation and evaluation

of a novel GPU-accelerated system, G-Storm, for distributed stream data processing.

Unlike these related works that presented design and implementation of programming

model and/or runtime systems for distributed stream data processing, in Chapter 2, our

model-based scheduling framework focuses on performance modeling and prediction.

Modeling and Scheduling in DSDPSs: In [30], scheduling strategies aiming at mini-

mizing tuple latency and total memory requirement were proposed for a Data Stream Man-

agement System (DSMS). The authors first proposed a strategy with a goal of minimizing

tuple latency, followed by another one minimizing maximal memory requirement. This
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work mainly focused on deciding the processing order of the arriving tuples; while our

work highlights the scheduling assignment of working threads. In another early work [31],

the authors proposed novel operator scheduling approaches for data stream systems, which

specify (1) which operators to schedule, (2) in which order to schedule the operators, and

(3) how many tuples to process at each execution step. They studied the proposed ap-

proaches in the context of the Aurora data stream manager. In [32], an offline sched-

uler and an online scheduler were presented for Storm. The former works by analyzing

the topology structure and making scheduling decisions; the latter works by continuously

monitoring system performance and rescheduling executors at runtime to improve overall

performance. Xu et al. presented T-Storm in [9], which focused on traffic-aware schedul-

ing that minimizes inter-node and inter-process traffic in Storm while ensuring no worker

nodes were overloaded. It also enables fine-grained control over worker node consolida-

tion. In [33], Bellavista et al. proposed a general and simple technique to design and

implement priority-based resource scheduling in flow-graph-based distributed stream pro-

cessing systems by allowing application developers to augment flow graphs with priority

metadata and by introducing an extensive set of priority schemas. In an early work [5],

Nicola and Jarke provided a survey of performance models for distributed and replicated

database systems, especially queueing theory based models. In [34], Wei et al. proposed a

prediction based Quality-of-Service (QoS) management scheme for periodic queries over

dynamic data streams. The scheme features novel query workload estimators which predict

the query workload using execution time profiling and input data sampling. The authors

of [35] described a decentralized framework for proactively predicting and alleviating hot-

spots in distributed stream processing applications in real-time. In a recent work [36], the

authors presented a novel technique for resource usage estimation of data stream process-

ing workloads in the cloud, which uses mixture density networks, a combined structure of

neural networks and mixture models, to estimate the whole spectrum of resource usage as

probability density functions. In [37], Bedini et al. presented a set of models that formalize
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the performance characteristics of a practical distributed, parallel and fault-tolerant stream

processing system using Actor Model theory. They modeled the characteristics of the data

flow, the data processing and the system management costs at a fine granularity within the

different steps of executing a distributed stream processing job. In addition, they presented

an experimental validation of the proposed performance models using Storm. In a very

recent work [50], Li et al. proposed a dynamic optimization algorithm for Storm based

on the theory on constraints (STDO-TOC), which dynamically eliminates the performance

bottleneck of a topology. In addition, they proposed a real-time scheduling algorithm based

on topology and traffic to effectively solve the problem of inter-node load imbalance.

Unlike these related works, in Chapter 2, we present a application-aware method to

predict average tuple processing time (rather than hotspot [35], workloads [36], or data

processing and system management costs [37]) particularly for a typical big stream data

processing system (such as Storm and S4), whose programming model and runtime system

are different from those in [30, 31, 34]. In addition, we develop a predictive scheduling

algorithm (that works closely with the proposed prediction method), which is different

from priority-based methods [33] or those algorithms aiming at minimizing traffic between

worker nodes [9, 32].

Moveover, unlike these related works, in Chapter 3 and Chapter 4, we also aim to de-

velop an experience/data driven model-free approach for scheduling in DSDPSs to directly

minimize the average tuple processing time with the application of the state-of-the-art DRL

techniques, which has no been done before. Regarding dynamically changing the number

of threads on the fly, Li et al. did include this feature in their work [50], however, the pa-

rameters were controlled by mathematical models, while ours takes a model-free approach

with DRL techniques.

Deep Reinforcement Learning (DRL): DRL has recently attracted extensive attention

from both industry and academia. On one hand, some works were focused on discrete con-

trol with a limited action space. In a pioneering work [41], Mnih et al. proposed Deep
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Q Network (DQN), which can learn successful policies directly from high dimensional

sensory inputs. This work bridges the gap between high-dimensional sensory inputs and

actions, resulting in the first artificial agent that is capable of learning to excel at a diverse

array of challenging gaming tasks. The paper [60] considered a problem of multiple agents

sensing and acting with the goal of maximizing their shared utility, based on DQN. The au-

thors designed agents that can learn communication protocols to share information needed

for accomplishing tasks. The authors of [61] proposed Double Q-learning as a specific

adaptation to the DQN, which is introduced in a tabular setting and can be generalized to

work with a large-scale function approximation. Schaul et al. proposed the prioritized ex-

perience replay in DQN in [51], in order to replay important transitions more frequently

thus learn more efficiently. On the other hand, other works further extend DRL to address

continuous control. Lillicrap et al. [59] proposed an actor-critic, model-free algorithm ,

DDPG, based on the deterministic policy gradient that can operate over continuous action

spaces. Duan et al. [62] presented a benchmark suite of control tasks to quantify progress

in the domain of continuous control. Gu et al. presented normalized advantage functions

to reduce sample complexity for continuous tasks in [63]. Mnih et al. [53] presented asyn-

chronous gradient descent for optimizing learning with DNNs with the result of successes

of asynchronous actor-critic method on various continuous motor control tasks. Arnold et

al. [64] extended the methods proposed for continuous actions to make decisions within

a large discrete action space. In [58], the authors employed a DRL framework to jointly

learn state representations and action policies using game rewards as feedback in the task of

learning control policies for text-based games, where the action space contains all possible

text descriptions. Gu et al. [52] proposed a policy gradient method named Q-Prop with

the application of a Taylor expansion of the off-policy critic as a control variant.

In addition, RL/DRL has been applied to control of big data and cloud systems. In [71],

the authors proposed a novel MapReduce scheduler in heterogeneous environments based

on RL, which observes the system state of task execution and suggests speculative re-
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execution of the slower tasks on other available nodes in the cluster. An RL approach was

proposed in [72] to enable automated tuning configuration of MapReduce parameters. Liu

et al. [73] proposed a novel hierarchical framework for solving the overall resource re-

source allocation and power management problem in cloud computing systems with DRL.

The control problems in MapReduce and cloud systems are quite different from the prob-

lem studied here. Hence, the methods proposed in these related works cannot be directly

applied here.

Even though the emerging DRL has made tremendous successes on various control

tasks, it remains unknown if and how it can be applied to solving complicated control and

resource allocation problems in complex distributed computing systems such as DSDPSs.

The proposed work makes one of the first efforts along this line.

1.4 Contributions and Dissertation Organization

In the dissertation, we propose efficient online scheduling in Distributed Stream Data Pro-

cessing Systems (DSDPSs). Specifically, we make the following contributions:

• In Chapter 2, we propose a novel predictive scheduling framework to enable fast

and distributed stream data processing, which features application-aware modeling

for performance prediction and predictive scheduling. For prediction, we present

a application-aware method to accurately predict the average tuple processing time

of an application for a given scheduling solution, according to the topology of the

application graph and runtime statistics. For scheduling, we present an effective

algorithm to assign threads to machines under the guidance of prediction results.

• In Chapter 3, we present a novel model-free approach that can learn to well con-

trol a DSDPS from its experience rather than accurate and mathematically solvable

system models, just as a human learns a skill (such as cooking, driving, swimming,
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etc). Specifically, we, for the first time, propose to leverage emerging Deep Rein-

forcement Learning (DRL) for enabling model-free control in DSDPSs; and present

design, implementation and evaluation of a novel and highly effective DRL-based

control framework, which minimizes average end-to-end tuple processing time by

jointly learning the system environment via collecting very limited runtime statistics

data and making decisions under the guidance of powerful Deep Neural Networks

(DNNs).

• In Chapter 4, we present a model-free approach with a variable number of threads.

The proposed approach enables a DSDPS to dynamically change the number of

threads during runtime according to system states and demands. Moreover, the

proposed approach leverages an experience/data driven model-free approach for dy-

namic control using the DRL, which enables a DSDPS to learn the best way to control

itself from its own experience.

The rest of the dissertation is organized as follows: We propose a novel predictive

scheduling framework featuring application-aware modeling for performance prediction

and predictive scheduling in Chapter 2. In Chapter 3, we propose a novel model-free

approach that can learn to well control a DSDPS from its experience with the application of

DRL. In Chapter 4, a model-free approach with a variable number of threads is proposed,

enabling a DSDPS to dynamically change the number of threads on the fly during runtime,

which extends the previous model-free approach and leads to more flexible and efficient

control. The conclusion of the dissertation is presented in Chapter 5.
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CHAPTER 2

MODEL-BASED SCHEDULING FOR

DISTRIBUTED STREAM DATA

PROCESSING SYSTEMS (DSDPSS)

2.1 Overview

In this chapter, we propose a novel predictive scheduling framework to enable fast and dis-

tributed stream data processing, which features topology-aware modeling for performance

prediction and predictive scheduling. Moreover, we validate and evaluate the proposed

framework based on an emerging platform, Apache Storm [3], which has been widely used

in many companies and organizations, such as Twitter, Groupon, Yelp, etc. We summarize

our contributions in the following:

• For prediction, we present a topology-aware method to accurately model and predict

the average tuple processing time of an application for a given scheduling solution,

according to the topology of the application graph and runtime statistics.

• For scheduling, we present an effective algorithm to assign tasks (threads) to ma-
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chines under the guidance of the prediction results.

• We implemented the proposed framework based on Storm, and tested it with 3 rep-

resentative applications: word count (stream version), log stream processing and

continuous queries. It has potential to be applied to other similar platforms, such as

Yahoo!’s S4 [4] Google’s MillWheel [6] and Microsoft’s TimeStream [7].

• Extensive experimental results well justify accuracy of the proposed prediction method

and effectiveness of the proposed scheduling algorithm.

To the best of our knowledge, we are the first to propose a method for modeling and

predicting the average tuple processing time in a distributed stream data processing system

and validate the proposed method with the widely-used open-source platform, Storm.

2.2 Design and Implementation of the Proposed Frame-

work

In this section, we present the design and implementation details of the proposed frame-

work.

2.2.1 Overview of Our Design

As illustrated in Fig. 2.1, the proposed framework consists of several modules, including

data collector, data store, time synchronizer, data pre-processor, performance predictor,

schedule generator, and custom scheduler. The data collector runs as multiple threads to

collect runtime statistics from all processes/machines in the cluster, which are then stored

into the distributed data store. The data pre-processor prepares input data for prediction and

scheduling based on raw data in the data store. The time synchronizer provides necessary

synchronization for threads of the data collector.
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Fig. 2.1: The proposed predictive scheduling framework

The most important modules of the proposed framework include performance predic-

tor, schedule generator and the custom scheduler. The performance predictor employs the

proposed prediction method to predict the average tuple processing time of an applica-

tion, which is introduced in Sections 2.2.2. The schedule generator generates a scheduling

solution that defines how executors (i.e., instances of stream operators) are assigned to

workers/worker nodes using the proposed scheduling algorithm (Section 2.2.2). The cus-

tom scheduler keeps reading the current scheduling solution from the schedule generator

and deploys executors accordingly with the help of the master node on the fly.

Next, we introduce the proposed prediction and scheduling methods first, and then we

describe the functions and implementation of these modules in details in Section 2.2.3.

Note that the proposed modeling and prediction method works (or can be slightly modified
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to work) for any system in which an application is modeled using a directed graph and the

proposed predictive scheduling algorithm works for any runtime system in which each PU

is executed using multiple threads at runtime.

2.2.2 Performance Prediction-based Scheduling

Topology-aware Performance Prediction Model

We aim to model and predict the average tuple processing time of an application for a

given scheduling solution, which can serve as a guideline to make a wise decision on task

scheduling. Our idea is to predict the average tuple processing latency at each PU and the

average tuple transfer latency between PUs (including both queueing and communication

latencies) and add them up in a certain way according to the topology of the application

graph. First, we show how to model the average tuple processing time of a typical applica-

tion, whose topology is a chain. Then we extend it to graphs with general topologies.

PU i-1 PU i

Thread 1

Thread 2

Thread Ni�1Ni�1

Thread 1

Thread 2

Thread NiNi

… …

Source … PU C…

Fig. 2.2: A chain topology

First, we focus on a typical application graph with a chain topology as shown in Fig. 2.2.

There are a total of C + 1 components in the topology with C PUs and a data source.

Particularly, i = 0 corresponds to the data source. At runtime, the ith component (i 2

{0, · · · , C}) runs as Ni threads. Consider latency involving PU i (i 2 {1, · · · , C}), denoted

as tPU
i

: after a tuple is processed by a thread of component (source or a PU) (i � 1), it is

inserted to an outgoing queue to a thread of PU i. After certain waiting time, it is passed to
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a thread of PU i, which is then inserted to an incoming queue in that thread. Again, after

certain waiting time, it is processed by a thread of PU i. This latency can be obtained as

follows:

t
PU
i

= t
Proc
i

+ t
Tran
i

, (2.1)

where t
Proc
i

and t
Tran
i

are the average tuple processing latency at PU i and the average tuple

transfer latency over edge (i� 1, i) respectively, which can be estimated using:

t
Proc
i

=
NiX

j=1

w(i, j) ⇤ tProc
ij

. (2.2)

t
Tran
i

=

Ni�1X

j=1

NiX

k=1

w(i, j, k) ⇤ tTran
ijk

. (2.3)

Here, tProc
ij

is the average tuple processing latency of jth thread at PU i, which can

be predicted using a supervised learning algorithm introduced later. w(i, j) is the weight

corresponding to that thread. In our implementation, it was set to the ratio of the number of

tuples received at jth thread of PU i to the total number of tuples received by all threads of

PU i within the past 10 minutes, which can be obtained using runtime statistics collected

by the data collector. tTran
ijk

is the average tuple transfer latency between the jth thread of PU

i� 1 and the kth thread of PU i, which includes communication delay and queueing delay

on both ends as described above. This can also be predicted using a supervised learning

algorithm introduced later. w(i, j, k) is the corresponding weight, which was set to the ratio

between the number of tuples sent from the jth thread of PU i� 1 to the kth thread of PU

i and the total number of tuples sent from PU i � 1 to i within the past 10 minutes in our

implementation. Note that our framework is not restricted to a particular weight function.

Other weight functions may also be used here.

Let tp denote the average tuple processing time of the chain topology, we have:
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tp =
CX

i=1

t
PU
i
. (2.4)

Predicting the average tuple processing time of an application graph with a general

topology is harder. However, an application graph is usually not very complicated so all

paths from data sources can be easily enumerated. How to estimate average tuple process-

ing time over a path (i.e., a chain) has been described above. Suppose that there are a total

of P paths from a data source to the acker and the average tuple processing time of the pth

path is tp, then we have:

tG = max
p2{1,··· ,P}

tp. (2.5)

Next, we use a simple example in Fig. 2.3 to illustrate how our performance model

works on a general topology.

Source2

PU1

PU2

PU3

PU4

PU5

PU6

Source1

Fig. 2.3: An example for performance modeling

In this example, there are 2 data sources, 6 PUs and 2 ackers. There exist 4 paths: p1

= (Source1, PU1, PU4) and p2 = (Source2, PU2, PU4), p3 = (Source2, PU2, PU5, PU6),

p4 = (Source2, PU3, PU6). Suppose at runtime, each of the data sources and PUs has

2 threads. In addition, shuffle grouping is used so that the work load is evenly distributed

from an upstream thread to downstream threads. According to our model, the average tuple

processing time is:
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tG = max
p2{1,··· ,4}

tp. (2.6)

Take path p3 = (Source2, PU2, PU5, PU6) as an example, the chain topology con-

sists of 3 PUs and one source, thus C = 3. According to our assumption, w(i, j) =

0.5, w(i, j, k) = 0.25, 8i, j, k. The average tuple processing time of path p3 can be esti-

mated as:

t3 =
3X

i=1

t
PU
i

=
3X

i=1

t
Proc
i

+ t
Tran
i

=
3X

i=1

(
2X

j=1

0.5 ⇤ tProc
ij

+
2X

j=1

2X

k=1

0.25 ⇤ tTran
ijk

).

(2.7)

In order to use the above model for prediction, we need to predict the average tuple

processing latency at a thread, tProc
ij

, and the average tuple transfer latency between two

threads, tTran
ijk

. We propose to employ a supervised learning algorithm to predict the two

types of latencies. Intuitively, they can be affected by many factors, including system

configurations, workload of threads and machines, co-located threads, etc. We carefully

select a set of features, which have been observed to have an impact on tuple processing

and transfer latencies. We list the set of features selected for predicting the average tuple

processing latency of a thread, tProc
ij

, in the following:

• Machine-CPU: The number of CPU cores of the machine at which the target thread

is located. This could be the total capacity of these CPU cores if machines have

different CPUs.

• Machine-Memory: The size of memory (GB) of the machine at which the target

thread is located.

• Thread-Workload: The number of tuples that the target thread processes within a

window (30 seconds in the current implementation).
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• Machine-Workload: The number of tuples that the machine (at which the target

thread is located) processes within a window (30 seconds in the current implementa-

tion).

• Co-located-Threads: The total number of threads located at the same machine as the

target thread.

Note that machines could be physical machines or Virtual Machines (VMs).

Predicting the average tuple transfer latency is more difficult since tTran
jk

involves threads

on both ends. We summarize our feature selection in the following:

• Machine-CPU-U: The number of CPU cores of the machine at which the upstream

thread is located.

• Machine-Memory-U: The size of memory (GB) of the machine at which the up-

stream thread is located.

• Thread-Workload-U: The number of tuples that the upstream thread processes within

a window (30 seconds in the current implementation).

• Machine-Workload-U: The number of tuples that the machine (at which the upstream

thread is located) processes during a window (30 seconds in the current implementa-

tion).

• Machine-CPU-D: The number of CPU cores of the machine at which the downstream

thread is located.

• Machine-Memory-D: The size of memory (GB) of the machine at which the down-

stream thread is located.

• Thread-Workload-D: The number of tuples that the downstream thread processes

within a window (30 seconds in the current implementation).
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• Machine-Workload-D: The number of tuples that the machine (at which the down-

stream thread is located) processes during a window (30 seconds in the current im-

plementation).

• Co-location (boolean): if it is 1, the upstream thread and the downstream thread are

located at the same machine; 0, otherwise.

Among all the selected features, some are general system features such as CPU and

memory, which are well-known to have an impact on performance of a computing system.

For example, in [38], Matsunaga et al. included CPU and memory of the machines as

features in their training dataset. And, Xue et al. [39] chose them as features for their

prediction framework. Other features are stream processing specific features such as work-

load and co-location, which have shown by our early work [9] to play an important role in

system performance (i.e., average tuple processing time).

Since latency can be any real value, we need to use a regression algorithm to make

prediction. This problem has high-dimensional input data with both continuous and cate-

gorical attributes, which makes it inappropriate to apply parametric regression algorithms

such as linear and non-linear regression. The non-parametric regression algorithms, Sup-

port Vector Regression (SVR), is a good candidate for this problem because SVR scales

relatively well to high dimensional data and the trade-off between classifier complexity

and error can be controlled explicitly [8]. We used cross-validation for kernel function se-

lection and the results show that radial basis kernel function outperforms the linear kernel,

the polynomial kernel and the sigmoid kernel.

Predictive Scheduling

The prediction serves as a guideline for a schedule algorithm to assign threads to machines.

Next, we discuss the scheduling problem and present the proposed algorithm.

Given the set of machines M, the set of processes Q, and the set of threads N , the

scheduling problem is to assign each thread to a process of a machine, that is, to find two
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mappings: N 7! Q and Q 7!M. Our design ensures that on every machine, threads from

the same application are assigned to no more than one process. This is enforced because

assigning threads from one application to multiple (instead of one) processes on a machine

introduces inter-process traffic and may lead to serious performance degradation, which

has been shown in [9]. Therefore the two mappings can be merged to just one mapping:

N 7!M, that is, to assign each thread to a machine.

The objective of the scheduling problem is to minimize the average tuple process-

ing time over an application graph G. Let the scheduling solution be X = hxiji, i 2

{1, ..., N}, j 2 {1, ...,M}, where xij = 1 if thread i is assigned to machine j. Note that

different scheduling solutions can lead to different tuple processing and transfer latencies

thus different tuple processing time.

The proposed algorithm computes a scheduling solution based on the average tuple

processing time predicted by the method described above, which is denoted as Pred(·) in

the following. We formally present the proposed predictive scheduling algorithm as Al-

gorithm 1. The algorithm is essentially a greedy algorithm, which starts from an initial

solution and keeps improving it by adjusting the thread-machine scheduling solution ac-

cording to the prediction results. Then it tries to re-assign threads so as to achieve less

average tuple processing time. The algorithm re-assigns one thread at a time in a greedy

manner by picking the machine that minimizes Pred(tG(X)).

In Algorithm 1, first we initialize X with a feasible solution X0. In our implementation,

X0 was set to the solution given by Storm’s default scheduler, which evenly distributes

threads over all machines in an round robin manner. Then all threads are enumerated and

traversed (Line 2), and for each thread, the algorithm tries to re-assign it to every possible

machine (Line 3–7) that is different from the current solution to see if any improvement

can be made. While it tries different solutions for threads, the prediction model produces

the corresponding (predicted) average tuple processing time (Lines 8–9). Every time, the

algorithm selects the solution that yields the smallest predicted value. Since the prediction
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Algorithm 1 Predictive Scheduling Algorithm

Input: M, N
Output: X = hxiji, i 2 {1, ..., N}, j 2 {1, ...,M}

1: X := X0, where X0 can be any feasible solution;
2: for i = 1 to N do
3: for j = 1 to M do
4: X

0 := X;
5: if xij = 0 then
6: x

0
ij
:= 1;

7: x
0
ik
:= 0, 8k 6= j;

8: if Pred(tG(X 0)) < Pred(tG(X)) then
9: X := X

0;
10: end if
11: end if
12: end for
13: end for
14: return X;

model is already trained, Line 8 is considered to take constant time. Therefore the overall

time complexity of Algorithm 1 is only O(MN).

2.2.3 Implementation Details

In this section, we describe the functions and implementation details of different modules

in the proposed scheduling framework.

Data Collector

The data collector runs as multiple threads throughout all machines in the cluster. When

a tuple arrives from another thread of a PU or a data source, the tuple transfer latency is

recorded with a unique tuple ID. Then the tuple will be processed and sent to a thread of

the next PU, while the tuple processing latency is again recorded by the data collector with

the tuple ID. Timestamps are captured and inserted into data records and further sent to the

distributed data store (described next). Every collected data record comes with a unique



29

tuple ID, which ensures correct tracking of every tuple’s processing and transfer latencies.

Data Store

The distributed data store works closely with the data collector. Whenever a data record

is collected by the data collector, it will be sent to the distributed datastore, which is a

shared data grid throughout the cluster. The data store is implemented by integrating Hazel-

cast [10] into the proposed framework, which is an open source in-memory data grid that

performs well on distributed data storage and computation across machines and clusters.

Usually, several data records will be generated by different threads at a time, which will be

sent to the distributed data store simultaneously. In this case, these raw data records from

different threads are mixed together disorderly and needs to be further processed by the

data pre-processor (described next) so that they can be used for prediction.

Time Synchronizer

Threads of the data collector are distributed over processes/machines across the whole clus-

ter, which require time synchronization over the network. The time synchronization is im-

plemented by integrating PTP daemon (PTPd) [11] into the framework, which is an open

source tool that implements the Precision Time Protocol (PTP) defined by the IEEE-1588

standard [12]. It makes available very precise time coordination of LAN connected com-

puters, achieving clock accuracy in the order of sub-microsecond.

Data Pre-processor

Since the data records are collected from threads, processes and machines throughout the

cluster, for every single tuple, there could be several corresponding data records in the

data store, mixed with data records of other tuples. Those raw data records are shattered

pieces and cannot be directly used for prediction. They need to be concatenated into new

records such that there is a one-to-one correspondence between a data record and a tuple.
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To achieve this, the data pre-processor congregates data records with the same tuple ID into

a new record containing information needed for prediction. After the concatenation, every

new record will consist of a tuple ID and corresponding processing and transfer latencies.

Performance Predictor

The performance predictor builds a prediction model using the method described in Sec-

tion 2.2.2 based on the configuration information of the cluster and runtime data provided

by the data pre-processor. Our framework is not restricted to the proposed prediction

model. The other models can also be applied here.

Schedule Generator

The schedule generator generates a scheduling solution using the predictive scheduling

algorithm described in Section 2.2.2 based on the prediction results provided by the perfor-

mance predictor.

Custom Scheduler

After the scheduling solution is generated by the schedule generator, the custom scheduler

deploys it on the cluster via the master. Note that our design handles schedule genera-

tion and deployment with two separate modules such that with our framework, the current

scheduling algorithm can be replaced by a new one at runtime without shutting down the

cluster.

Note that the overhead of the proposed predictive scheduling framework is not signifi-

cant. First, traffic load for data collection is light since it only involves simple information

such as timestamp and tuple ID. Second, data samples are first stored into local memory,

which do not need to be collected frequently for prediction (every 20 minutes). Third, we

use an efficient and mature software tool Hazelcast to create a separated channel for data

collection, which further reduces its impact to regular tuple processing and communica-
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tion. In addition, our framework starts to predict with limited data and then keeps updating

the prediction model with new data. So it does not need to wait until a large amount of

data are collected. Almost all the experimental results (presented later) show the original

Storm and the Storm with the proposed framework stabilize after roughly the same amount

of time (around 8 minutes), which justifies our argument.

2.3 Performance Evaluation

In this section, we describe experimental settings, followed by experimental results and

analysis.

2.3.1 Experimental Setup

We implemented the proposed predictive scheduling framework over Apache Storm 0.9.2

release [13] (obtained from Storm’s repository on Apache Software Foundation) and in-

stalled it on top of Ubuntu Linux 12.04. Experiments were performed on a cluster at

Syracuse University’s Green Data Center for performance evaluation. The Storm cluster

consists of 10 IBM blade servers connected by a 1Gbps network, each of which was con-

figured to have 10 slots. In order to fully test the performance of the proposed framework, 3

representative stream data processing applications (topologies) were implemented and de-

ployed in our cluster: word count (stream version), log stream processing and continuous

queries. We describe these topologies in the following.

Word Count Topology (stream version) (Fig. 2.4): Widely known as a MapReduce

application, Word Count lists every word’s number of appearances in a set of files. The

stream version used in our experiments does a very similar job but with a stream data

source. The topology has a chain-like structure with one spout and three bolts. The topol-

ogy uses an open-source log agent called LogStash [14] to read data from input source

files. LogStash submits input file lines as separate JSON values into a Redis [15] queue,
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which are consumed and emitted into the topology. The input file is the text file of Alice’s

Adventures in Wonderland [16]. The spout produces data stream while the input file is

pushed into the queue. The spout is connected with the SplitSentence bolt which splits

each input line into individual words and feeds them to a WordCount bolt that counts the

number of appearances using fields grouping. The results are further sent to a Mongo bolt

which stores them into a Mongo database. In the experiments, the topology was set to have

6 Spout executors (threads), 8 SplitSentence bolt executors, 8 WordCount bolt executors

and 8 Mongo bolt executors.

Word Count Topology

Spout SplitSentence
BoltRedis

Input 
File

Log
Stash

WordCount
Bolt

Database
Bolt

Mongo
DB

Fig. 2.4: Word Count Topology (stream version)

Word Count Topology (stream version) with 2 sources: This topology is almost

same as the above expect that it includes an additional spout, which directly reads from

the file [16]. In the experiment, the topology was set to have 6 executors for Spout 1, 6

executors for Spout 2, 8 SplitSentence bolt executors, 8 WordCount bolt executors and 8

Mongo bolt executors.

Log Stream Processing Topology (Fig. 2.5): Log stream processing represents one

of the most popular use cases for Storm. The topology also uses Logstash [14] to read

data from log files. LogStash submits log lines as separate JSON values into a Redis [15]

queue which emits the output into the topology. Microsoft IIS log files obtained from the

College of Engineering and Computer Science at Syracuse University were used as the

input data. The LogRules bolt performs rule-based analysis on the log stream and delivers

values containing a specific type of log entry instance. The log entry is then sent to two

separate bolts simultaneously: one is the Indexer bolt which performs index actions and



33

another one is the Counter bolt which performs counting actions on the log entries. For

testing purpose, the original topology was slightly modified by introducing two Mongo

bolts, one for the Indexer bolt and another one for the Counter bolt. These two Mongo

bolts store the results into separate collections in a Mongo database for verification. In

the experiments, the Storm cluster was configured to have 3 Spout executors (threads), 6

LogRules bolt executors, 6 Indexer bolt executors, 6 Count bolt executors and 6 executors

for each Mongo bolt.

Log Stream Processing TopologyLog 
Files

Log
Stash

Redis Spout LogRules
Bolt

Indexer
Bolt

Database
Bolt

Counter
Bolt

Database
Bolt

Mongo
DB

Fig. 2.5: Log Stream Processing Topology

Continuous Queries Topology (Fig. 2.6): This is another popular application on Storm.

The topology is a select query that works by initializing access to a mapping table created

in memory and looping over each row to check there is a hit [17].

It consists of a spout and two bolts. The spout continuously emits a randomly generated

query, which is sent to a Query bolt. The database table is placed in memory on the host

machine for Storm. The Query bolt takes queries from the spout and iterates over the

database table to check if there are matching records. A hit on a matching record is then

emitted to the last PU named the Printer bolt, which takes matching records and writes them

to a file. In our experiments, we randomly generated a database table with vehicle plates

and their owners’ information (such as names and SSNs). Queries were also randomly

generated to search the table for the speeding vehicles’ owners (vehicle speed was randomly

generated and attached to every entry). The experiments were conducted with 5 Spout

executors (threads), 13 Query bolt executors and 13 Printer bolt executors.



34

Continuous Queries Topology

Spout Query
Bolt

File
Bolt

Output
File

Database
Table

Fig. 2.6: Continuous Queries Topology
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Fig. 2.7: Performance on a word count topology (stream version)
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Fig. 2.8: Performance on a log stream processing topology

2.3.2 Experimental Results and Analysis

In this section, we present and analyze experimental results of the 3 applications introduced

above. We used two commonly used metrics for performance evaluation, including predic-
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Fig. 2.9: Performance on a continuous queries topology

tion accuracy and average tuple processing time (of a topology after stabilization) [9]. To

justify the effectiveness of the proposed scheduling algorithm, Storm’s default scheduler

was used as the baseline solution for comparison.

For each topology, three figures are presented to show the experimental results. The

first one shows the prediction accuracy, which is given by (1� |Pred�Act|
Act ), where Pred is the

predicted value and Act is obtained from actual readings collected by data collector. For

prediction, we used the readings of various features (described above) within the first 20

minutes after stabilization as the training data. During the training phase, randomly gener-

ated scheduling solutions were used to obtain sufficient amount of diverse data for training.

In the corresponding figures, “PU0-PU1", “PU1" and “Overall" refer to the prediction ac-

curacy of average (over 30 seconds) tuple transfer latency between PU0 and PU1, average

tuple processing latency at PU1 and average tuple processing time of the whole topology af-

ter stabilization, respectively. The second figure shows the average (over 30 seconds) tuple

processing time at a PU and average tuple transfer latency between PUs (after stabilization)

given by the proposed scheduling framework and the default scheduler respectively. The

third figure shows the average tuple processing time of the whole topology (given by the

proposed scheduling framework and the default scheduler respectively) over a period of 20

minutes. From these experimental results, we can make the following observations.

Word Count Topology (stream version): The experimental results of this topology
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are shown in Fig. 2.7. From Fig. 2.7(a), we can see that the prediction accuracies for

individual PUs vary from 83.8% (between the Spout and SplitSentence bolt) to 91.6% (at

SplitSentence bolt). The prediction accuracy for the whole topology is 83.3%, which is

slightly lower than individual prediction accuracies.

From Fig. 2.7(b), we can see that the predictive scheduling framework outperforms the

default scheduler in terms of average tuple transfer latency. For example, the improve-

ment on the average tuple transfer latency between PU0 and PU1 is the most significant

one, which is over 60%. The improvements are around 30% for both PU1-PU2 and PU2-

PU3. However, we also notice that the predictive scheduling framework performs slightly

worse than the default scheduler at PU2 and PU3. This is because compared to the de-

fault scheduler (that leads to almost even distribution of workload), the predictive schedul-

ing framework tends to consolidate workload to reduce tuple transfer latency by assigning

more threads to a machine, which, however may lead to longer tuple processing latency at

some PUs. Even though some PUs experience longer tuple processing latency, the predic-

tive scheduling framework reduces the overall tuple processing time of the whole topology,

which can also be observed from Fig. 2.7(c). From Fig. 2.7(c), we can observe that after

a short initial period of about 8 minutes, the average tuple processing time (given by both

schedulers) stabilizes at a lower value (compared to its initial value). The default sched-

uler’s initial value is relatively high (5.6 ms) and then decreases significantly to about 2.2

ms. The predictive scheduling framework starts with a much lower initial value (2.0 ms)

and stabilizes at about 1.5 ms, which represents a reduction of 31.8%.

When a topology is deployed, it will first be deployed on the master node (i.e., Nimbus

in Storm). The master node will then distribute the topology file to worker nodes. Initially

it takes some time for worker nodes to receive and deploy the topology file, and execute

specified configurations. However, the measurement of tuple processing time starts from

very beginning. Therefore, it can be observed that the average tuple processing time keeps

decreasing and then stabilizes at certain value within the first few minutes. Similar obser-
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vations can also be made in the following results.

Log Stream Processing Topology: The experimental results of this topology are shown

in Fig. 2.8. From Fig. 2.8(a), we can see that the prediction accuracies for individual PUs

vary from 85.8% (at LogRules bolt) to 91.5% (between LogRules bolt and Indexer bolt).

Similarly, the prediction accuracy for the whole topology is 84%, which is slightly lower

than individual prediction accuracies.

From Fig. 2.8(b), we can discover that the predictive scheduling framework outper-

forms the default scheduler in terms of tuple transfer latency, while for different PUs,

the improvement can vary, from 40% for PU0-PU1, to nearly flat for PU1-PU4. From

Fig. 2.8(c), we can see that both schedulers stabilize after 8 � 10 minutes. Two curves

show similar trends. For the default scheduler, it starts with an initial value of 4.9 ms and

stabilizes at about 3.0 ms. For the predictive scheduling framework, the initial value is

lower (at 4.0 ms) and stabilizes at about 2.4 ms, which shows a 20% improvement.

Continuous Queries Topology: The experimental results of this topology are shown

in Fig. 2.9. Fig. 2.9(a) shows prediction accuracies for different PUs vary from 88.3%

(between Query bolt and Printer bolt) to 93.7% (between the Spout and Query bolt). For

the whole topology, the prediction accuracy is 85.2%.

From Fig. 2.9(b), we can observe that the average tuple processing latency at PU1

(Query bolt) dominates the average tuple processing time of the topology due to lookup

over a large size table. Still, the predictive scheduling framework achieves noticeable re-

duction on average tuple processing and transfer latencies. From Fig. 2.9(c), we can make

similar observations as those from the previous two topologies. The average tuple process-

ing time of the whole topology is longer than those of the two previous topologies due to

heavier workload. The proposed framework still achieves a reduction of 22.7%, compared

to the default scheduler.

Word Count Topology (stream version) with 2 sources: The experimental results of

this topology are shown in Fig. 2.10. From Fig. 2.10(a), we can see that the prediction
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Fig. 2.10: Performance on a word count topology (stream version) with 2 sources

accuracies for individual PUs vary from 83.7% (between Spout 2 and SplitSentence bolt)

to 88.2% (at SplitSentence bolt). The prediction accuracy for the whole topology is 86%.

From Fig. 2.10(b), it can be seen that the performance behavior and improvement are sim-

ilar to those in the single-source case. From Fig. 2.10(c), we can observe that the default

scheduler leads to an initial value of about 5.8 ms and then decreases to around 2.24ms,

while the predictive scheduling framework starts at about 2.0 ms and stabilizes at about

1.56 ms, which shows a reduction of 30.4%.

Performance Impact of Parameter Selection: In our experiments, one of the most

important parameters is the number of executors of data sources and PUs. Here we used

Word Count topology (stream version) again to illustrate the impact of parameter selec-

tion. The original setup (scenario A) for the experiment was 6 Spout executors (threads), 8

SplitSentence bolt executors, 8 WordCount bolt executors and 8 Mongo bolt executors. In

scenario B, we decreased the numbers of executors to 3 Spout executors, 4 SplitSentence

bolt executors, 4 WordCount bolt executors and 4 Mongo bolt executors. While in scenario

C, we further decreased the numbers to 1 Spout executor, 2 SplitSentence bolt executors, 2

WordCount bolt executors and 2 Mongo bolt executors. The experiment results are shown

in Fig. 2.11.

We can observe from Fig. 2.11(a) that at PU1, the processing latency increases from

0.08 ms (scenario A) to 0.083 ms (scenario B) and further to 0.088 ms (scenario C), while
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average tuple transfer latencies remain almost the same. Similar observations can be made

for other PUs. Moreover, it can be seen from Fig. 2.11(b) that more executors help reduce

average tuple processing time over the topology as expected.
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Fig. 2.11: Performance impact of parameter selection on a word count topology (stream
version)

2.4 Summary

In this chapter, we presented the design, implementation and evaluation of a model-based

predictive scheduling framework aiming at fast and distributed stream data processing. The
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framework consists of several functional modules including data collector, data store, time

synchronizer, data pre-processor, performance predictor, schedule generator and custom

scheduler. Together they form a complete framework that can collect runtime data, analyze

them, make predictions and come up with a scheduling solution. For prediction, a topology-

aware model was presented to accurately predict the average tuple processing time of an

application for a given scheduling solution, using runtime statistics. For scheduling, an

effective algorithm was presented to assign threads to machines under the guidance of

prediction results. We implemented it based on Apache Storm, and tested it in a cluster

with 3 representative applications: word count (stream version), log stream processing and

continuous queries. Extensive experimental results show 1) The topology-aware prediction

method offers an average accuracy of 84.2%. 2) The predictive scheduling framework

reduces the average tuple processing time by 24.9% on average, compared to the Storm’s

default scheduler.
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CHAPTER 3

MODEL-FREE SCHEDULING FOR

DSDPSS USING DEEP

REINFORCEMENT LEARNING (DRL)

3.1 Overview

In this chapter, we aim to develop a novel and highly effective DRL-based model-free con-

trol framework for a DSDPS to minimize average data processing time by jointly learning

the system environment with very limited runtime statistics data and making scheduling

decisions under the guidance of powerful Deep Neural Networks (DNNs). We summarize

our contributions in the following:

• We show that direct application of DQN-based DRL to scheduling in DSDPSs does

not work well.

• We are the first to present a highly effective and practical DRL-based model-free

control framework for scheduling in DSDPSs.

• We show via extensive experiments with three representative Stream Data Processing
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(SDP) applications that the proposed framework outperforms the current practice and

the state-of-the-art.

To the best of our knowledge, we are the first to leverage DRL for enabling model-free

control in DSDPSs. We aim to promote a simple and practical model-free approach based

on emerging DRL, which, we believe, can be easily extended to better control many other

complex distributed computing systems.

3.2 Design and Implementation of the Proposed Frame-

work

In this section, we present the design and implementation details of the proposed frame-

work.

3.2.1 Overview of Our Design

We illustrate the proposed framework in Figure 3.1, which can be viewed to have two parts:

DSDPS and DRL-based Control. The architecture is fairly simple and clean, which consists

of the following components:

1) DRL Agent (Section 3.2.2): it is the core of the proposed framework, which takes the

state as input, applies a DRL-based method to generating a scheduling solution, and

pushes it to the custom scheduler.

2) Database: It stores transition samples including state, action and reward information

for training (See Section 3.2.2 for details).

3) Custom Scheduler: It deploys the generated scheduling solution on the DSDPS via

the master.
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Fig. 3.1: The architecture of the proposed DRL-based control framework

Our design leads to the following desirable features:

1) Model-free Control: Our design employs a DRL-based method for control, which

learns to control a DSDPS from runtime statistics data without relying on any mathemati-

cally solvable system model.

2) Highly Effective Control: The proposed DRL-based control is guided by DNNs,

aiming to directly minimize average tuple processing time. Note that the current practice

evenly distributes workload over machines; and some existing methods aim to achieve an

indirect goal, (e.g., minimizing inter-machine traffic load [9]), with the hope that it can lead

to minimum average tuple processing time. These solutions are obviously less convincing

and effective than the proposed approach.

3) Low Control Overhead: The proposed framework only needs to collect very lim-
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ited statistics data, i.e., just the average tuple processing time, during runtime for offline

training and online learning (see explanations in Section 3.2.2), which leads to low control

overhead.

4) Hot Swapping of Control Algorithms: The core component of the proposed frame-

work, DRL agent, is external to the DSDPS, which ensures minimum modifications to the

DSDPS, and more importantly, makes it possible to replace it or its algorithm at runtime

without shutting down the DSDPS.

5) Transparent to DSDSP users: The proposed framework is completely transparent to

DSDSP users, i.e., a user does not have to make any change to his/her code in order to run

his/her application on the new DSDPS with the proposed framework.

3.2.2 DRL-based Scheduling

In this section, we present the proposed DRL-based control, which targets at minimizing

the end-to-end average tuple processing time via scheduling.

Given a set of machines M, a set of processes P , and a set of threads N , a scheduling

problem in a DSDPS is to assign each thread to a process of a machine, i.e., to find two

mappings: N 7! P and P 7! M. It has been shown [9] that assigning threads from

an application (which usually exchange data quite often) to more than one processes on a

machine introduces inter-process traffic, which leads to serious performance degradation.

Hence, similar as in [9, 66], our design ensures that on every machine, threads from the

same application are assigned to only one process. Therefore the above two mappings

can be merged into just one mapping: N 7!M, i.e., to assign each thread to a machine.

Let a scheduling solution be X =< xij >, i 2 {1, · · · , N}, j 2 {1, · · · ,M}, where

xij = 1 if thread i is assigned to machine j; and N and M are the numbers of threads and

machines respectively. Different scheduling solutions lead to different tuple processing

and transfer delays at/between tasks at runtime thus different end-to-end tuple processing

times [66]. We aim to find a scheduling solution that minimizes the average end-to-end
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tuple processing time.

We have described how DRL basically works in Section 1.2.3. Here, we discuss how to

apply DRL to solving the above scheduling problem in a DSDPS. We first define the state

space, action space and reward.

State Space: A state s = (X,w) consists of two parts: the scheduling solution X, i.e.,

the current assignment of executors, and the workload w, which is the tuple arrival rate (the

number of tuples per second) of the application. The state space is denoted as S . Workload

is included in the state in order to achieve better adaptivity and sensitivity to the incoming

workload, which has been validated by our experimental results.

Action Space: An action is defined as a =< aij >, 8i 2 {1, ..., N}, 8j 2 {1, ...,M},

where
P

M

j=1 aij = 1, 8i, and aij = 1 means assigning thread i to machine j. The action

space A is the space that contains all feasible actions. Note that the constraints
P

M

j=1 aij =

1, 8i ensure that each thread i can only be assigned to a single machine, and the size of

action space |A| = M
N . Note that an action can be easily translated to its corresponding

scheduling solution.

Reward: The reward is simply defined to be the negative average tuple processing time

so that the objective of the DRL agent is to maximize the reward.

Note that the design of state space, action space and reward are critical to the success

of a DRL method. In our case, the action space and reward are quite obvious. However,

there are many different ways for defining the state space because a DSDPS includes var-

ious runtime information (features) [66], e.g., CPU/memory/network usages of machines,

workload at each executor/process/ machine, average tuple processing delay at each execu-

tor/PU, tuple transfer delay between executors/PUs, etc. We, however, choose a simple and

clean way in our design. We tried to add other system runtime information into the state but

found that it failed to improve system performance. This is because different scheduling

solutions lead to different values for the above features and eventually different average

end-to-end tuple processing times, while the tuple arrival rate reflects the influence of in-
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coming workload on the average end-to-end tuple processing time; and other information is

redundant. We observed that based on our design, the proposed DNNs can well model the

correlation between a scheduling solution (state) and average end-to-end tuple processing

time (reward) after training. Designing the state space in this way can significantly reduce

control overhead and relieve the system from the burden of heavy data collection because

we only need to collect the average processing time at each decision epoch, which can be

easily done in a DSDPS (e.g., using the Storm REST API).

A straightforward way to apply DRL to solving the scheduling problem is to directly

use the DQN-based method proposed in the pioneering work [41]. The DQN-based method

uses a value iteration approach, in which the value function Q = Q(s, a;✓) is a parame-

terized function (with parameters ✓) that takes state s and the action space A as input and

return Q value for each action a 2 A. Then we can use a greedy method to make an action

selection:

⇡Q(s) = argmax
a2A

Q(s, a;✓) (3.1)

If we want to apply the DQN-based method here, we need to restrict the exponentially-large

action space A described above to a polynomial-time searchable space. The most natural

way to achieve this is to restrict each action to assigning only one thread to a machine. In

this way, the size of the action space can be significantly reduced to |A| = N ⇥M , which

obviously can be searched in polynomial time. Specifically, as mentioned above, in the

offline training phase, we can collect enough samples of rewards and the corresponding

state-action pairs for constructing a sufficiently accurate DQN, using a model-free method

that deploys a randomly-generated scheduling solution (state), and collect and record the

corresponding average tuple processing time (reward). Then in the online learning phase, at

each decision epoch t, the DRL agent obtains the estimated Q value from the DQN for each

at with the input of current state st. Then ✏-greedy policy [44] is applied to select the action

at according to the current state st: with (1 � ✏) probability, the action with the highest

estimated Q value is chosen, or an action is randomly selected with probability ✏. After
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observing immediate reward rt and next state st+1, a state transition sample (st, at, rt, st+1)

is stored into the experience replay buffer. At every decision epoch, the DQN is updated

with a mini-batch of collected samples in the experience replay buffer using SGD.

Although this DQN-based method can provide solutions to the scheduling problem

and does achieve model-free control for DSDPSs, it faces the following issue. On one

hand, as described above, its time complexity grows linearly with |A|, which demands

an action space with a very limited size. On the other hand, restricting the action space

may result in limited exploration of the entire exponentially-large action space and thus

suboptimal or even poor solutions to the scheduling problem, especially for the large cases.

The experimental results in Section 3.3 validate this claim.

The Actor-critic-based Method for Scheduling

In this section, we present a method that can better explore the action space while keeping

time complexity at a reasonable level.

â

AK

Q(·)f(·)

Fig. 3.2: The actor-critic-based method

We leverage some advanced RL techniques, including actor-critic method [45, 64] and

the deterministic policy gradient [54], for solving the scheduling problem. Note that since
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these techniques only provide general design frameworks, we still need to come up with a

specific solution to our problem studied here. The basic idea of the proposed scheduling

method is illustrated in Figure 3.2, which includes three major components: 1) an actor

network that takes the state as input and returns a proto-action â, 2) an optimizer that finds a

set AK of K Nearest Neighbors (K-NN) of â in the action space, and 3) a critic network that

takes the state and and AK as input and returns Q value for each action a 2 AK . Then an

action with the highest Q value can be selected for execution. The basic design philosophy

of this method is similar to that of a rounding algorithm, which finds a continuous solution

by solving a relaxed version of the original integer (i.e., discrete) problem instance and then

rounds the continuous solution to a “close" feasible integer solution that hopefully offers

a objective value close to the optimal. Specifically, the actor network f(s;✓⇡) = â is a

function parameterized by ✓⇡ and f : S 7! RM
N . â is returned as a proto-action that takes

continuous values so â /2 A. In our design, we use a 2-layer fully-connected feedforward

neural network to serve as the actor network, which includes 64 and 32 neurons in the

first and second layer respectively and uses the hyperbolic tangent function tanh(·) for

activation. Note that we chose this activation function because our empirical testing showed

it works better than the other commonly-used activation functions.

The hardest part is to find the K-NN of the proto-action, which has not been well dis-

cussed in related work before. Even though finding K-NN can easily be done in linear time,

the input size is MN here, which could be a huge number even in a small cluster. Hence,

enumerating all actions in A and doing a linear search to find the K-NN may take an expo-

nentially long time. We introduce an optimizer, which finds the K-NN by solving a series

of Mixed-Integer Quadratic Programming (MIQP) problems presented in the following:

MIQP-NN:
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min
a

: ka� âk22

s.t.:
MX

j=1

aij = 1, 8i 2 {1, · · · , N};

aij 2 {0, 1}, 8i 2 {1, · · · , N}, 8j 2 {1, · · · ,M}.

(3.2)

In this formulation, the objective is to find the action a that is the nearest neighbor of

the proto-action â. The constraints ensure that action a is a feasible action, i.e., a 2 A. To

find the K-NN, the MIQP-NN problem needs to be iteratively solved K times. Each time,

one of the KNN of the proto-action will be returned, the corresponding values < aij > are

fixed, then the MIQP-NN problem is updated and solved again to obtain the next nearest

neighbor until all the K-NN are obtained. Note that this simple MIQP problem can usually

be efficiently solved by a solver as long as the input size is not too large. In our tests,

we found our MIQP-NN problem instances were all solved very quickly (within 10ms on

a regular desktop) by the Gurobi Optimizer [67]. For very large cases, the MIQP-NN

problem can be relaxed to a convex programming problem [68] and a rounding algorithm

can be used to obtain approximate solutions.

The set AK of K-NN actions are further passed to the critic network to select the action.

The critic network Q(s, a;✓Q) is a function parameterized by ✓Q, which returns Q value for

each action a 2 AK , just like the above DQN. The action can then be selected as follows:

⇡Q(s) = argmax
a2AK

Q(s, a;✓Q). (3.3)

Similar to the actor network f(·), we employ a 2-layer fully-connected feedforward neural

network to serve as the critic network, which includes 64 and 32 neurons in the first and

second layer respectively and uses the hyperbolic tangent function tanh(·) for activation.

Note that the two DNNs (one for actor network and one for critic network) are jointly
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trained using the collected samples.

Algorithm 2 The actor-critic-based method for scheduling
1: Randomly initialize critic network Q(·) and actor network f(·) with weights ✓Q and

✓⇡ respectively;
2: Initialize target networks Q0 and f

0 with weights ✓Q0
 ✓Q, ✓⇡0

 ✓⇡;
3: Initialize experience replay buffer B;

/**Offline Training**/
4: Load the historical transition samples into B, train the actor and critic network offline;

/**Online Learning**/
5: Initialize a random process R for exploration;
6: Receive a initial observed state s1;

/**Decision Epoch**/
7: for t = 1 to T do
8: Derive proto-action â from the actor network f(·);
9: Apply exploration policy to â: R(â) = â + ✏I;

10: Find K-NN actions AK of â by solving a series of MIQP-NN problems (described
above);

11: Select action at = argmaxa2AK
Q(st, a);

12: Execute action at by deploying the corresponding scheduling solution, and observe
the reward rt;

13: Store transition sample (st, at, rt, st+1) into B;
14: Sample a random mini-batch of H transition samples (si, ai, ri, si+1) from B;
15: yi := ri + �maxa2Ai+1,K Q

0(si+1, a), 8i 2 {1, · · · , H}, where Ai+1,K is the set of
K-NN of f 0(si+1);

16: Update the critic network Q(·) by minimizing the loss:

L(✓Q) = 1
H

HP
i=1

[yi �Q(si, ai)]2;

17: Update the weights ✓⇡ of actor network f(·) using the sampled gradient:

r✓⇡f ⇡
1
H

HP
i=1
râQ(s, â)|â=f(si) ·r✓⇡f(s)|si ;

18: Update the corresponding target networks:
✓Q0

:= ⌧✓Q + (1� ⌧)✓Q0 ;
✓⇡0

:= ⌧✓⇡ + (1� ⌧)✓⇡0

19: end for

We formally present the actor-critic-based method for scheduling as Algorithm 2. First,

the algorithm randomly initializes all the weights ✓⇡ of actor network f(·) and ✓Q of

critic network Q(·) (line 1). If we directly use the actor and critic networks to generate

the training target values < yi > (line 15), it may suffer from unstable and divergence

problems as shown in paper [64]. Thus, similar as in [64, 59], we create the target networks
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to improve training stability. The target networks are clones of the original actor or critic

networks, but the weights of the target networks ✓Q0 and ✓⇡0 are slowly updated, which is

controlled by a parameter ⌧ . In our implementation, we set ⌧ = 0.01.

To robustly train the the actor and critic networks, we adopt the experience replay buffer

B [41]. Instead of training network using the transition sample immediately collected at

each decision epoch t (from line 8 to line 12), we first store the sample into a replay buffer

B, then randomly select a mini-batch of transition samples from B to train the actor and

critic networks. Note that since the size of B is limited, the oldest sample will be discarded

when B is full. The sizes of replay buffer and mini-batch were set to |B| = 1000 and

H = 32 respectively in our implementation.

The online exploration policy (line 9) is constructed as R(â) = â + ✏I, where ✏ is

an adjustable parameter just as the ✏ in the ✏-greedy method [44], which determines the

probability to add a random noise to the proto-action rather than take the derived action

from the actor network. ✏ decreases with decision epoch t, which means with more training,

more derived actions (rather than random ones) will be taken. In this way, ✏ can tradeoff

exploration and exploitation. The parameter I is a uniformly distributed random noise, each

element of which was set to a random number in [0, 1] in our implementation.

The critic network Q(·) is trained by the mini-batch samples from B as mentioned

above. For every transition sample (si, ai, ri, si+1) in the mini-batch, first we obtain the

proto-action âi+1 of the next state si+1 from the target actor network f
0(si+1); second, we

find K-NN actions Ai+1,K of the proto-action âi+1 by solving a series of MIQP-NN prob-

lems presented above; then we obtain the highest Q-value from the target critic network,

maxa2Ai+1,K Q
0(si+1, a). To train critic network Q(si, ai), the target value yi for input si

and ai is given by the sum of the immediate reward ri and the discounted max Q-value

(line 15). The discount factor � = 0.99 in our implementation. A common loss function

L(·) is used to train the critic network (line 16). The actor network f(·) is trained by the

deterministic policy gradient method [54] (line 17). The gradient is calculated by the chain
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rule to obtain the expected return from the transition samples in the mini-batch with respect

to the weights ✓⇡ of the actor network.

The actor and critic networks can be pre-trained by the historical transition samples, so

usually the offline training (line 4) is performed first, which is almost the same as online

learning (lines 13–18). In our implementation, we first collected 10, 000 transition sam-

ples with random actions for each experimental setup and then pre-trained the actor and

critic networks offline. In this way, we can explore more possible states and actions and

significantly speed up online learning.

3.2.3 Implementation Details

We implemented the proposed framework based on Apache Storm [3]. In our implemen-

tation, the custom scheduler runs within Nimbus, which has access to various information

regarding executors, supervisors and slots. A socket is implemented for communications

between the custom scheduler and the DRL agent. When an action is generated by the

DRL agent, it is translated to a Storm-recognizable scheduling solution and pushed to the

custom scheduler. Upon receiving a scheduling solution, the custom scheduler first frees

the executors that need to be re-assigned and then adds them to the slots of target ma-

chines. Note that during the deployment of a new scheduling solution, we try to make a

minimal impact to the DSDPS by only re-assigning those executors whose assignments

are different from before while keeping the rest untouched (instead of deploying the new

scheduling solution from scratch by freeing all the executors first and assigning executors

one by one as Storm normally does). In this way, we can reduce overhead and make the

system to re-stabilize quickly. In addition, to make sure of accurate data collection, after

a scheduling solution is applied, the proposed framework waits for a few minutes until the

system re-stabilizes to collect the average tuple processing time and takes the average of 5

consecutive measurements with a 10-second interval.
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3.3 Performance Evaluation

In this section, we describe experimental setup, followed by experimental results and anal-

ysis.

3.3.1 Experimental Setup

We implemented the proposed DRL-based control framework over Apache Storm [3] (ob-

tained from Storm’s repository on Apache Software Foundation) and installed the system

on top of Ubuntu Linux 12.04. We also used Google’s TensorFlow [69] to implement and

train the DNNs. For performance evaluation, we conducted experiments on a cluster in

our data center. The Storm cluster consists of 11 IBM blade servers (1 for Nimbus and 10

for worker machines) connected by a 1Gbps network, each with an Intel Xeon Quad-Core

2.0GHz CPU and 4GB memory. Each worker machine was configured to have 10 slots.

We implemented three representative DSDPS applications (called topologies in Storm)

to test the proposed framework: continuous queries, log stream processing and word count

(stream version), which are described in the following. We chose these three applications

because they are considered the most popular and representative SDP applications. Specifi-

cally, continuous queries is one of the most popular SDP applications on Storm; log stream

processing is another popular SDP application that has been introduced in the well-known

Storm guidebook [65]; and word count is the most widely-used benchmark application for

big data processing. Moreover, these applications were also used for performance eval-

uation in [66] that presented the state-of-the-art model-based approach; thus using them

ensures fair comparisons.

Continuous Queries Topology (Figure 2.6): This topology represents a popular ap-

plication on Storm (described in Section 2.3). To perform a comprehensive evaluation, we

came up with 3 different setups for this topology: small-scale, medium-scale and large-

scale. In the small-scale experiment, a total of 20 executors were created, including 2 spout
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executors, 9 Query bolt executors and 9 File bolt executors. In the medium-scale experi-

ment, we had 50 executors in total, including 5 spout executors, 25 Query bolt executors

and 20 File bolt executors. For the large-scale experiment, we had a total of 100 executors,

including 10 spout executors, 45 Query bolt executors and 45 File bolt executors.

Log Stream Processing Topology (Figure 2.5): The topology is detailedly described

in Section 2.3. In our experiment, the topology was configured to have a total of 100 execu-

tors, including 10 spout executors, 20 LogRules bolt executors, 20 Indexer bolt executors,

20 Counter bolt executors and 15 executors for each Database bolt.

Word Count Topology (stream version) (Figure 2.4): This topology is described in

Section 2.3. In the experiment, the topology was configured to have a total of 100 executors,

including 10 spout executors, 30 SplitSentence bolt executors, 30 WordCount executors and

30 Database bolt executors.

3.3.2 Experimental Results and Analysis
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(c) Large-scale

Fig. 3.3: Average tuple processing time over the continuous queries topology

In this section, we present and analyze experimental results. To well justify effective-

ness of our design, we compared the proposed DRL-based control framework with the

actor-critic-based method (labeled as “Actor-critic-based DRL") with the default scheduler

of Storm (labeled as “Default") and the state-of-the-art model-based method proposed in

a very recent paper [66] (labeled as “Model-based") in terms of average (end-to-end) tu-
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Fig. 3.4: Normalized reward over the continuous queries topology (large-scale)

ple processing time. Moreover, we included the straightforward DQN-based DRL method

(described in Section 3.2.2) in the comparisons (labeled as “DQN-based DRL").

For the proposed actor-critic-based DRL method and the DQN-based DRL method,

both the offline training and online learning were performed to train the DNNs to reach cer-

tain scheduling solutions, which were then deployed to the Storm cluster described above.

The figures presented in the following show the average tuple processing time correspond-

ing to the scheduling solutions given by all these methods in the period of 20 minutes.

In addition, we show the performance of the two DRL methods over the online learning

procedure in terms of the reward. For illustration and comparison purposes, we normalize

and smooth the reward values using a commonly-used method r�rmin
rmax�rmin

(where r is the ac-

tual reward, rmin and rmax are the minimum and maximum rewards during online learning

respectively) and the well-known forward-backward filtering algorithm [70] respectively.

Note that in Figures 3.3, 3.5 and 3.7, time 0 is the time when a scheduling solution given

by a well-trained DRL agent is deployed in the Storm. It usually takes a little while (10-20

minutes) for the system to gradually stabilize after a new scheduling solution is deployed.

This process is quite smooth, which has also been shown in [66]. So these figures do
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not show the performance of the DRL methods during training processes but the perfor-

mance of the scheduling solutions given by well-trained DRL agents. The rewards given

by the DRL agents during their online learning processes are shown in Figures 3.4, 3.6 and

3.8. This process usually involves large fluctuations, which have also been shown in other

DRL-related works such as [61, 59].

Continuous Queries Topology (Figure 2.6): We present the corresponding experi-

mental results in Figures 3.3 and 3.4. As mentioned above, we performed experiments on

this topology using three setups: small-scale, medium-scale and large-scale, whose corre-

sponding settings are described in the last subsection.

From Figure 3.3, we can see that for all 3 setups and all the four methods, after a

scheduling solution is deployed, the average tuple processing time decreases and stabilizes

at a lower value (compared to the initial one) after a short period of 8�10 minutes. Specif-

ically, in Figure 3.3(a) (small-scale), if the default scheduler is used, it starts at 3.71ms

and stabilizes at 1.96ms; if the model-based method is employed, it starts at 3.22ms and

stabilizes at 1.46ms; if the DQN-based DRL method is used, it starts at 3.20ms and stabi-

lizes at 1.54ms; and if the actor-critic-based DRL method is applied, it starts at 2.94ms and

stabilizes at 1.33ms. In this case, the actor-critic-based DRL method reduces the average

tuple processing time by 31.4% compared to the default scheduler and by 9.5% compared

to the model-based method. The DQN-based DRL method performs slightly worse than

the model-based method.

From Figure 3.3(b) (medium-scale), we can see that the average tuple processing times

given by all the methods slightly go up. Specifically, if the default scheduler is used, it

stabilizes at 2.08ms; if the model-based method is employed, it stabilizes at 1.61ms; if

the DQN-based DRL method is used, it stabilizes at 1.59ms; and if the actor-critic-based

DRL method is applied, it stabilizes at 1.43ms. Hence, in this case, the actor-critic-based

DRL method achieves a performance improvement of 31.2% over the default scheduler and

11.2% over the model-based method. The performance of DQN-based DRL method is still
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comparable to the model-based method.

From Figure 3.3(c) (large-scale), we can observe that the average tuple processing

times given by all the methods increase further but still stabilize at reasonable values,

which essentially shows that the Storm cluster undertakes heavier workload but has not

been overloaded in this large-scale case. Specially, if the default scheduler is used, it sta-

bilizes at 2.64ms; if the model-based method is employed, it stabilizes at 2.12ms; if the

DQN-based DRL method is used, it stabilizes at 2.45ms; and if the actor-critic-based DRL

method is applied, it stabilizes at 1.72ms. In this case, the actor-critic-based DRL method

achieves a more significant performance improvement of 34.8% over the default scheduler

and 18.9% over the model-based method. In addition, the performance of the DQN-based

DRL method is noticeably worse than that of the model-based method.

In summary, we can make the following observations: 1) The proposed actor-critic-

based DRL method consistently outperforms all the other three methods, which well justi-

fies the effectiveness of the proposed model-free approach for control problems in DSDPSs.

2) The performance improvement (over the default schedule and the model-based method)

offered by the proposed actor-critic-based DRL method become more and more significant

with the increase of input size, which shows that the proposed model-free method works

even better when the distributed computing environment becomes more and more sophisti-

cated. 3) Direct application of DQN-based DRL method does not work well, especially in

the large case. This method lacks a carefully-designed mechanism (such as the proposed

MIQP-based mechanism presented in Section 3.2.2) that can fully discover the action space

and make a wise action selection. Hence, in large cases with huge action spaces, random

selection of action may lead to a suboptimal or even poor decision.

We further exploit how the two DRL methods behave during online learning by show-

ing how the normalized reward varies over time within T = 1500 decision epochs in

Figure 3.4. We performed this experiment using the large-scale setup described above.

From this figure, we can observe that both methods start from similar initial reward val-
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ues. The DQN-based DRL method keeps fluctuating during the entire procedure and ends

at an average award value of 0.44 (the average over the last 200 epochs); while the actor-

critic-based DRL method experiences some fluctuations initially, then gradually climbs to

a higher value. More importantly, the actor-critic-based DRL method consistently offers

higher rewards compared to the DQN-based method during online learning. These results

further confirm superiority of the proposed method during online learning. Moreover, we

find that even in this large-scale case, the proposed actor-critic-based DRL method can

quickly (within only 1500 decision epochs) reach a good scheduling solution (whose per-

formance have been discussed above) without going though a really long online learning

procedure (e.g., several million epochs) shown in other applications [41]. This justifies the

practicability of the proposed DRL method for online control in DSPDSs.
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Fig. 3.5: Average tuple processing time over the log processing topology (large-scale)

Log Stream Processing Topology (Figure 2.5): We performed a large-scale experi-

ment over the log stream processing topology, whose settings have been discussed in the

last subsection too. We show the corresponding results in Figures 3.5 and 3.6. This topol-

ogy is more complicated than the previous continuous queries topology, which leads to a

longer average tuple processing time no matter which method is used.
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Fig. 3.6: Normalized reward over the log processing topology (large-scale)
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Fig. 3.7: Average tuple processing time over the word count topology (large-scale)

In Figure 3.5, if the default scheduler is used, it stabilizes at 9.61ms; if the model-based

method is employed, it stabilizes at 7.91ms; if the DQN-based DRL method is used, it

stabilizes at 8.19ms; and if the actor-critic-based DRL method is applied, it stabilizes at

7.20ms. As expected, the proposed actor-critic-based DRL method consistently outper-

forms the other three methods. Specifically, it reduces the average tuple processing time by
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Fig. 3.8: Normalized reward over the word count topology (large-scale)

25.1% compared to the default scheduler and 9.0% compared to the model-based method.

Furthermore, the DQN-based DRL method performs worse than the model-based method,

which is consistent with the results related to the continuous queries topology. Similarly,

we show how the normalized reward varies over time within T = 1500 decision epochs in

Figure 3.6. From this figure, we can make a similar observation that the actor-critic-based

DRL method consistently leads to higher rewards compared to the DQN-based method

during online learning. Obviously, after a short period of online learning, the proposed

actor-critic-based DRL method can reach a good scheduling solution (discussed above) in

this topology too.

Word Count Topology (stream version) (Figure 2.4): We performed a large-scale

experiment over the word count (stream version) topology and show the corresponding

results in Figures 3.7 and 3.8. Since the complexity of this topology is similar to that of

the continuous queries topology, all the four methods give similar average time processing

times.

In Figure 3.7, if the default scheduler is used, it stabilizes at 3.10ms; if the model-

based method is employed, it stabilizes at 2.16 ms; if the DQN-based DRL method is used,
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it stabilizes at 2.29ms; and if the actor-critic-based DRL method is applied, it stabilizes

at 1.70ms. The actor-critic-based DRL method results in a performance improvement of

45.2% over the default scheduler and 21.3% improvement over the model-based method.

The performance of the DQN-based DRL method is still noticeably worse than the model-

based method. We also show the performance of the two DRL methods during online

learning in Figure 3.8, from which we can make observations similar to those related to the

first two topologies.
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Fig. 3.9: Average throughput over the continuous queries topology (large-scale)
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(a) Continuous queries topology
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(b) Log stream processing topology
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(c) Word count topology

Fig. 3.10: Average tuple processing time over 3 different topologies (large-scale) under
significant workload changes

In addition, we show the average throughput given by the four methods over the contin-
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uous queries topology (large-scale) in Figure 3.9. From this figure, we can see that all the

methods show similar throughput (about 6600-6700 tuples per second), which are fairly

close to the data arrival rate at the spout.

Moreover, we compare the proposed model-free method with the model-based method

under significant workload changes on 3 different topologies (large-scale). For the continu-

ous queries topology (large-scale), we can see from Figure 3.10(a) that when the workload

is increased by 50% at 20 minute, the average tuple processing time of the actor-critic-based

DRL method rises sharply to a relatively high value then gradually stabilizes at 1.76ms,

while the model-based method rises sharply too and then stabilizes at 2.17ms. The spikes

are caused by the adjustment of the scheduling solution. However, we can observe that

once the system stabilizes, the proposed method leads to a very minor increase on aver-

age tuple processing time. Hence, it is sensitive to the workload change and can quickly

adjust its scheduling solution accordingly to avoid performance degradation. This result

well justifies the robustness of the proposed method in a highly dynamic environment with

significant workload changes. Moreover, during the whole period, we can see that the pro-

posed method still consistently outperforms the model-based method. We can make similar

observations for the other two topologies from Figures 3.10(b)–3.10(c).

3.4 Summary

In this chapter, we investigated a novel model-free approach that can learn to well control a

DSDPS from its experience rather than accurate and mathematically solvable system mod-

els, just as a human learns a skill. We presented design, implementation and evaluation of

a novel and highly effective DRL-based control framework for DSDPSs, which minimizes

the average end-to-end tuple processing time. The proposed framework enables model-free

control by jointly learning the system environment with very limited runtime statistics data

and making decisions under the guidance of two DNNs, an actor network and a critic net-
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work. We implemented it based on Apache Storm, and tested it with three representative

applications: continuous queries, log stream processing and word count (stream version).

Extensive experimental results well justified the effectiveness of our design, which showed:

1) The proposed framework achieves a performance improvement of 33.5% over Storm’s

default scheduler and 14.0% over the state-of-the-art model-based method on average. 2)

The proposed DRL-based framework can quickly reach a good scheduling solution during

online learning.
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CHAPTER 4

MODEL-FREE SCHEDULING FOR

DSDPSS WITH A VARIABLE NUMBER

OF THREADS

4.1 Overview

In this chapter, we present design, implementation and evaluation of a control framework,

EXTRA (EXperience-driven conTRol frAmework), for scheduling in DSDPSs. Our design

is novel and unique due to the following reasons. In summary, we made the following

contributions:

• EXTRA enables a DSDPS to dynamically change the number of threads on the fly

according to system states and demands. Most existing methods, however, use a fixed

number of threads to carry workload (for each processing unit of an application),

which is specified a user in advance and does not change during runtime. So our

design introduces a whole new dimension for control in DSDPSs, which has a great

potential to significantly improve system flexibility and efficiency, but makes the

scheduling problem much harder.
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• EXTRA leverages an experience/data driven model-free approach for dynamic con-

trol using the emerging Deep Reinforcement Learning (DRL), which enables a DS-

DPS to learn the best way to control itself from its own experience just as a human

learns a skill (such as driving and swimming) without any accurate and mathemati-

cally solvable model.

• We implemented it based on a widely-used DSDPS, Apache Storm, and evaluated its

performance with three representative Stream Data Processing (SDP) applications:

continuous queries, word count (stream version) and log stream processing.

• Particularly, we performed experiments under realistic settings (where multiple ap-

plication instances are mixed up together), rather than a simplified setting (where

experiments are conducted only on a single application instance) used in most re-

lated works.

4.2 Design and Implementation of the Proposed Frame-

work

In this section, we present the design and implementation details of the proposed frame-

work.

4.2.1 Overview of Our Design

The proposed framework, EXTRA, consists of the following components:

1) DRL Agent: As the central part of EXTRA, this component applies a DRL-based

method with the input of a state, produces an action (Section 4.2.2) and translates it

into corresponding scheduling solution, which is further pushed to the custom sched-

uler.
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2) Data Store: This component leverages a database for storing transition samples (for

the training purpose), including information about the state, action and reward (Sec-

tion 4.2.2).

3) Custom Scheduler: Upon receiving a scheduling solution from DRL agent, this com-

ponent deploys it on the DSDPS via its master, which specifies the number of threads

of each PU or data source, and their assignment.

Our design leads to several nice features, which makes EXTRA superior to existing

methods. First, EXTRA is capable of varying the number of threads for each PU during

runtime, which leads to more flexible and effective control thus offers a DSDPS an extra

leverage to better handle a highly dynamic environment. This is a desirable feature that

most scheduling methods do not have. For most of them (including Storm’s default sched-

uler), in an application, the number of threads of each PU is pre-defined by its user with

limited or almost no knowledge about runtime states and demands, and remains unchanged

throughout the whole data processing procedure. Second, our design features experience-

driven model-free control powered by emerging DRL (Section 4.2.2), which gradually dis-

covers the best way to control a DSPDS from its own experience; while the current practice

employs a rather trivial method that evenly distributes workload over machines. In addi-

tion, we strongly emphasize user transparency (Section 4.2.3) in our design so that a user

do not need to make any changes to their original code in order to run their applications on

the new DSDPS with EXTRA.

4.2.2 DRL-based Scheduling with a Variable Number of Threads

In this section, we present the proposed DRL-based scheduling algorithm in EXTRA,

which targets at minimizing the end-to-end average tuple processing time via jointly de-

termining the number of threads and their assignment. First, we summarize the major

notations below for quick reference.
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Table 4.1: Major Notations
Notation Description
M and M The set of machines and the total number of machines

P The set of processes
N and N The set of threads and the maximum number of threads
C and C The set of components and the total number of components
Ci and ci The maximum and actual number of threads from component i

H The number of application instances
s and S The state and state space

a, â and A The action, proto-action and action space
r The reward

✓ and � Weights of actor and critic networks p(·) and Q(·)

Suppose that we are given a set of machines M, a set of processes P , and a set of

threads N , a scheduling solution specifies how to assign each thread to a process of a

machine, i.e., two mappings: N 7! P and P 7! M. Similar as in [9, 66], our design

ensures that threads from the same application instance are assigned to only one process

on a machine, which leads to better performance than the solution that may assign them to

more than one process due to additional but unnecessary inter-process communications [9].

Based on this design, the above two mappings can be merged into just one mapping: N 7!

M, i.e., to assign each thread to a machine. Note that we call it application instance (i.e.,

topology in Storm) instead of application because there can be more than one concurrent

instances of a common application in a DSDPS.

We consider a realistic scenario where there are H application instances running on a

DSDPS simultaneously, which consist of a set of components C (data sources or processing

units). C is the total number of components and ci is the actual number of active threads

of component i, which is bounded by a maximum value of Ci. So ci 2 {1, · · · , Ci} since

each component needs to have at least one thread.

The problem of scheduling with a variable number of threads seeks a solution that spec-

ifies how many threads of each component in C is assigned to each machine in M. Differ-

ent scheduling solutions lead to different tuple processing and transfer delays at/between
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threads at runtime thus different end-to-end tuple processing times [66]. The objective of

this problem is to minimize the average end-to-end tuple processing time. We have de-

scribed how DRL, particularly DDPG, works in Section 1.2.3. Here we introduce how to

leverage DDPG for solving the above scheduling problem. We first define the state, action

and reward as follows.

Action: An action is defined as a =< aij >, 8i 2 {1, · · · , C}, 8j 2 {1, · · · ,M},

where aij 2 {0, · · · , Ci}, 8i, j and 1 
P

M

j=1 aij  Ci, 8i, and aij = a means assigning

a threads of component i to machine j. The constraints ensure that the total number of

threads from each component does not exceed the corresponding maximum value, and

each component needs to have at least one thread. Note that aij could be 0, which means

no thread of component i is assigned to machine j. The action space A is the space that

contains all feasible actions, whose size is exponentially large.

State: A state s = (a,w) consists of two parts: the current thread assignment a =<

aij > as described above, and the workload w. Here, w = [w1, · · · , wh, · · · , wH ], where wh

is the tuple arrival rate (the number of tuples per second) of the hth application instance. We

include workload in the state because we aim to design a DRL method that can be adaptive

and sensitive to the incoming workload, which has been validated by our experimental

results.

Reward: The reward is defined to be the negative value of the sum of average tuple

processing time over all running application instances so that maximizing this reward is

equivalent to minimizing the sum of average tuple processing times. Note that weights can

be assigned to application instances to indicate their priorities, then the reward becomes the

weighted sum of the average tuple processing times.

The basic DRL technique, the DQN-based method [41], adopts a value iteration ap-

proach, taking state s and action space A as input and return value Q = Q(s, a|✓) for each

action a 2 A (with parameters ✓). A greedy method can then be applied to select an action

in each epoch. In order to apply this method, the action space A needs to be restricted to be
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polynomial-time searchable. However, the action space here is exponentially large. Hence,

we don’t see a straightforward extension to address our problem.

Actor Network Critic Network

DSDPS

Reward Action
State

Optimizer 
(EXTRA-NN)

Proto-action

Threads

K-NN Actions

Update

â

p(·)

s

Q(·)

AK

r a

Machines

Components

N M

C

Fig. 4.1: The actor-critic-based method

In our design, we choose to leverage some advanced RL techniques, including actor-

critic method [45, 64] and the deterministic policy gradient [54], for solving the scheduling

problem. Note that since these techniques only provide a general framework, we still need

to come up with a specific solution to our problem studied here. The basic idea of the

proposed method is illustrated in Figure 4.1, which includes three major components: 1)

an actor network that takes the state as input and returns a continuous proto-action â (base

solution); 2) an optimizer that finds a set AK of K Nearest Neighbors (K-NN) of â in the

action space; and 3) a critic network that takes the state and and AK as input and returns

Q value for each action a 2 AK . Then an action with the highest Q value is selected for

execution.

Specifically, the actor network p(s|✓) is a function parameterized by ✓. â is returned as a

proto-action that takes continuous values so â /2 A (i.e., not a feasible action). For the actor

network, we use a 2-layer fully-connected feedforward neural network, which includes 64

and 32 neurons in the first and second layers respectively and uses the hyperbolic tangent

function tanh(·) for activation. This activation function is chosen because it has been

shown by our empirical study that it works best among all the commonly-used activation

functions.
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The next and most critical step is to find the K-NN of the proto-action, which has not

been well discussed in related work [64]. It is known that finding K-NN can easily be

done in linear time. However, the input size is the total number of actions here, which is

exponentially large. Hence, enumerating all actions in A and doing a linear search for the

K-NN may take exponentially long time. We introduce an optimizer, which finds the K-NN

by solving a series of Mixed-Integer Quadratic Programming (MIQP) problems defined in

the following:

EXTRA-NN:

min
a

: ka� âk22

s.t.:
MX

j=1

aij � 1, 8i 2 {1, · · · , C};

MX

j=1

aij  Ci, 8i 2 {1, · · · , C};

aij 2 {0, · · · , Ci}, 8i 2 {1, · · · , C}, 8j 2 {1, · · · ,M}.

(4.1)

Solving EXTRA-NN can find the nearest neighbor a of the proto-action action â. The

constraints ensure the feasibility of action a, i.e., a 2 A (See the definition of an action).

K-NN of â can be obtained by iteratively solving EXTRA-NN K times. Each time, one of

the K-NN of the proto-action is returned, the corresponding values < aij > are fixed, then

the MIQP-NN problem is updated and solved again to obtain the next nearest neighbor until

all the K-NN are obtained. In practise, this simple MIQP problem can be efficiently solved

using a solver as long as C, < Ci > and M are not too large. In our experiments, we solved

EXTRA-NN using the Gurobi Optimizer [67] and found that solving a problem instance

could usually be done in real time (within about 10ms using a regular desktop) For very

large input cases, we can improve computational efficiency by relaxing the EXTRA-NN

problem to a convex programming problem [68] and using a rounding algorithm to obtain



71

approximate solutions.

The last step is to select an action from AK using the critic network. The critic network

Q(s, a|�) is a function parameterized by �, which returns Q value for each action a 2 AK

as a DQN. The action can then be selected as follows:

⇡Q(s) = argmax
a2AK

Q(s, a|�). (4.2)

Similar to the actor network p(·), we employ a 2-layer fully-connected feedforward neural

network to serve as the critic network, which includes 64 and 32 neurons in the first and

second layers respectively and employs the hyperbolic tangent function tanh(·) for activa-

tion. Note that the two DNNs (actor network and critic network) are jointly trained using

the collected transition samples.

We formally present the DRL-based algorithm for scheduling as Algorithm 3. Both

experience replay and target networks [41, 59] are adopted in our algorithm to improve

learning stability and avoid divergence. For experience replay, samples are first stored into

a replay buffer B, then a mini-batch of transition samples are randomly selected from B to

train the actor and critic networks, instead of using immediately collected transition sample

at each decision epoch t (lines 13–14). Note that since the size of B is limited, the oldest

sample will be discarded when B is full. The sizes of experience replay buffer and mini-

batch were set to |B| = 1000 and L = 32 respectively in our implementation. Target

networks are clones of the original actor or critic networks, but their weights ✓0 and �0

are slowly updated, which is controlled by a parameter ⌧ (line 18). In our implementation,

⌧ = 0.01.

The actor and critic networks are first pre-trained in an offline manner using historical

transition samples (line 3). By introducing pre-training, more possible states and actions

can be explored so that online learning can be accelerated. The pre-training process is

almost the same as the online learning procedure (lines 8–18). In our implementation, for
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Algorithm 3 The DRL-based scheduling algorithm
1: Randomly initialize actor network p(·) and critic network Q(·) with weights ✓ and �

respectively;
2: Initialize target networks p0(·) and Q

0(·) with weights ✓0
 ✓, �0

 �;
/**Offline Training**/

3: Initialize and load the historical transition samples into experience replay buffer B,
pre-train p(·) and Q(·) offline;
/**Online Learning**/

4: for episode = 1 to E do
5: Initialize a random process X for exploration;
6: Receive an initial observation state s1;

/**Decision Epoch**/
7: for t = 1 to T do
8: Derive proto-action â from p(·);
9: Apply exploration policy to â: X (â) = â + ✏I;

10: Obtain AK containing K-NN of â by solving EXTRA-NN (described above);
11: Select action at = argmaxa2AK

Q(st, a);
12: Execute action at by deploying the corresponding scheduling solution, then ob-

serve the reward and the new state;
13: Store transition sample (st, at, rt, st+1) into B;
14: Sample a random mini-batch of L transition samples (si, ai, ri, si+1) from B;
15: yi := ri + �maxa2Ai+1,K Q

0(si+1, a), 8i 2 {i, · · · , L}, where Ai+1,K is the set of
K-NN of p0(si+1);
/**Updating the networks**/

16: Update � to minimize the loss given by Equation (1.2);
17: Update ✓ using the sampled gradient given by Equation (1.4);
18: Update ✓0 and �0 as follow:

✓0 := ⌧✓ + (1� ⌧)✓0

�0 := ⌧�+ (1� ⌧)�0;
19: end for
20: end for

each experiment setup, 10, 000 transition samples were first collected with random actions.

The actor and critic networks were then pre-trained using those samples.

The online exploration policy (line 9) is constructed as X (â) = â + ✏I, where ✏ is an

adjustable parameter just as the ✏ in the ✏-greedy method [44], and I is a random noise,

each element of which was set to a random number uniformly distributed in [0, 1] in our

implementation. Rather than directly taking the derived action from the actor network,

✏ determines the probability of adding a random noise to the proto-action. Moreover, ✏
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decreases with decision epoch t, that is, as the training continues, it is more likely that

derived actions (rather than random ones) will be taken. A trade-off between exploration

and exploitation is thus achieved.

The critic network Q(·) is trained by the mini-batch samples from B as mentioned

above. For every transition sample (si, ai, ri, si+1) in the mini-batch, first we obtain the

proto-action âi+1 of the next state si+1 from the target actor network p
0(si+1); second,

we find K-NN actions Ai+1,K of the proto-action âi+1 by solving EXTRA-NN presented

above; then the highest Q-value from the target critic network, maxa2Ai+1,K Q
0(si+1, a), is

taken (line 15). To train critic network Q(si, ai), the target value yi for input si and ai is

given by the sum of the immediate reward ri and the discounted max Q-value (line 15).

The discount factor � = 0.99 in our implementation. A common loss function L(·) de-

fined in Equation (1.2) is used to train the critic network (line 16). In order to obtain the

expected return from the transition samples in the mini-batch regarding the weights ✓ of

the actor network p(·), chain rule is used to calculate the gradient. p(·) is trained using the

deterministic policy gradient method given by Equation (1.4) (line 17).

4.2.3 Implementation Details

The proposed framework was implemented based on Apache Storm [3]. The DRL agent

was implemented as a separate program running independently from Storm.

At each decision epoch, the DRL agent calls the Storm REST API to remotely obtain

the state and reward (Section 4.2.2). Then the proposed DRL-based scheduling algorithm

(Algorithm 3) is applied and the action is generated by the DRL agent. The action is

further translated into the corresponding Storm-recognizable scheduling solution, which

includes the desirable number of executors and their assignment. The scheduling solution

is then pushed to the custom scheduler through a socket between the custom scheduler and

the DRL agent, which we implemented for the communication purpose. Running within

Nimbus, the custom scheduler has access to various runtime state information of Storm.
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Upon receiving the scheduling solution from the DRL agent, the custom scheduler changes

the number of executors for each component (if needed) using the rebalance command

from Storm CLI, then updates the number of tasks accordingly to match the number of

executors, and re-submits it to the system. After that, the Nimbus starts to deploy the

executors to the worker nodes (i.e. machines) according to the scheduling solution. Note

that during the deployment, in order to minimize the overhead, we only re-assign those

executors whose assignments are different from the previous ones while keeping the rest

unchanged (instead of freeing all executors first and then assigning them to the worker

nodes one by one from scratch, which is Storm’s default way for re-assignment). Moreover,

to ensure accurate data collection, the proposed framework waits for several minutes till the

captured data stabilizes after a scheduling solution is applied. After that, the average of 5

consecutive measurements is taken with a 10-second interval in between.

4.3 Performance Evaluation

In this section, we describe experimental setup, followed by experimental results and anal-

ysis.

4.3.1 Experimental Setup

We implemented EXTRA over Apache Storm [3] (obtained from Storm’s repository on

Apache Software Foundation) and installed the system on top of Ubuntu Linux. We also

used Google’s TensorFlow [69] to implement and train the DNNs. For performance evalu-

ation, we conducted experiments on a cluster in our data center, which consists of 11 IBM

blade servers (1 for Nimbus and 10 for worker nodes) connected by a 1Gbps network, each

with an Intel Xeon Quad-Core 2.0GHz CPU and 4GB memory. Each worker node was

configured to have 10 slots.

We implemented 3 representative SDP applications to test EXTRA: continuous queries,
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word count (stream version) and log stream processing, which are described in the follow-

ing:

Continuous Queries Topology (Figure 2.6): This topology represents one of the most

popular SDP applications (described in Section 2.3).

To perform a comprehensive evaluation, we came up with 3 different scenarios: small-

scale, medium-scale and large-scale. In every setup, 3 continuous queries topologies (i.e.,

application instances) were configured to run simultaneously. In the small-scale experi-

ment, for each topology, the maximum number of executors were set to N = 20, including

a maximum number of 2 spout executors (i.e., C1 = 2), 9 Query bolt executors and 9 File

bolt executors. In the medium-scale experiment, for each topology, we had a maximum

number of 50 executors in total, including a maximum number of 5 spout executors, 25

Query bolt executors and 20 File bolt executors. For the large-scale experiment, for each

topology, we had a maximum number of 100 executors in total, including a maximum

number of 10 spout executors, 45 Query bolt executors and 45 File bolt executors.

Word Count Topology (stream version) (Figure 2.4): Widely known as a classical

MapReduce application, the original version of the topology counts every word’s frequency

of occurrence in one or multiple files. We modified it into an SDP application running a

similar routine but with a stream data source (detailedly described in Section 2.3).

In the experiment, 3 word count topologies were configured to run simultaneously.

Each topology was configured to have a maximum number of 100 executors in total, in-

cluding a maximum number of 10 spout executors, 30 SplitSentence bolt executors, 30

WordCount executors and 30 Database bolt executors.

Log Stream Processing Topology (Figure 2.5): This is another very popular SDP

application (described in detail in Section 2.3).

In our experiment, 3 log stream processing topologies were configured to run simulta-

neously. Each topology was configured to have a maximum number of 100 executors in

total, including a maximum number of 10 spout executors, 20 LogRules bolt executors, 20
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Indexer bolt executors, 20 Counter bolt executors and 15 executors for each Database bolt.
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(c) Large-scale

Fig. 4.2: Average tuple processing time over 3 continuous queries topologies

Hybrid Scenario: We also came up with a hybrid scenario with 3 different topologies

running simultaneously in the large-scale setting. Specifically, there were a continuous

queries topology with a maximum number of 100 executors (including a maximum num-

ber of 10 spout executors, 45 Query bolt executors and 45 File bolt executors); a word

count topology (stream version) with a maximum number of 100 executors (including a

maximum number of 10 spout executors, 30 SplitSentence bolt executors, 30 WordCount

executors and 30 Database bolt executors); and a log stream processing topology with a

maximum number of 100 executors (including a maximum number of 10 spout executors,

20 LogRules bolt executors, 20 Indexer bolt executors, 20 Counter bolt executors and 15

executors for each Database bolt) in our experiment.

Varying Workload Scenario: To test how EXTRA performs in a highly dynamic en-

vironment, we also performed experiments with varying workload: the incoming data rate

was increased significantly by 50% at 20 minute. The experiments were conducted with 3

continuous queries topologies (the settings were the same as those in the large-scale con-

tinuous queries scenario), as well as with 3 different topologies (the settings were the same

as those in the hybrid scenario).



77

4.3.2 Experimental Results and Analysis

In this section, we present and analyze experimental results. To well justify effectiveness of

our design, we compared EXTRA with the state-of-the-art model-based method proposed

in a very recent paper [66] (labeled as “Model-based") and the default scheduler of Storm

(labeled as “Default") in terms of average (end-to-end) tuple processing time. Both the

model-based method and the default scheduler used the maximum number of threads in all

the experiments.

For EXTRA, both offline training and online learning were performed to train the DNNs

to reach certain scheduling solutions, which were then deployed to the Storm cluster de-

scribed above. We present the corresponding results in Figures 4.2–4.7.

Continuous Queries Topology (Figure 2.6): As mentioned above, we performed ex-

periments with 3 concurrent continuous queries topologies under 3 settings: small-scale,

medium-scale and large-scale, as described above.

From Figure 4.2, we can see that for all 3 methods, after a scheduling solution is de-

ployed, the average tuple processing time decreases and stabilizes at a relatively low value

(compared to the initial one) after a short period of 8 � 10 minutes. Specifically, in Fig-

ure 4.2(a) (small-scale), when the default scheduler is used, it starts at 5.81ms and stabilizes

at 4.06ms; when the model-based method is employed, it starts at 4.86ms and stabilizes at

3.10ms; and when EXTRA is used, it starts at 4.28ms and stabilizes at 2.67ms. In this

case, EXTRA reduces the average tuple processing time by 34.2% compared to the default

scheduler and by 14.0% compared to the model-based method.

From Figure 4.2(b) (medium-scale), we can see that the average tuple processing times

given by all 3 methods slightly go up. Specifically, when the default scheduler is used, it

stabilizes at 4.25ms; when the model-based method is employed, it stabilizes at 3.31ms;

and when EXTRA is applied, it stabilizes at 2.77ms. Hence, in this case, EXTRA achieves

a performance improvement of 34.8% over the default scheduler and 16.2% over the model-

based method.
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From Figure 4.2(c) (large-scale), we can observe that the average tuple processing times

given by all 3 methods increase further but still stabilize at reasonable values, which essen-

tially shows that the Storm cluster undertakes heavier workload but has not been over-

loaded in this large-scale case. Specifically, while the default scheduler is used, it stabilizes

at 5.29ms; while the model-based method is employed, it stabilizes at 4.23ms; and while

EXTRA is used, it stabilizes at 3.12ms. In this case, EXTRA achieves a more significant

performance improvement of 41.0% over the default scheduler and 26.2% over the model-

based method.

Word Count Topology (stream version) (Figure 2.4): We performed a large-scale

experiment over 3 word count (stream version) topologies and show the corresponding re-

sults in Figure 4.3. Since the complexity of this topology is similar to that of the continuous

queries topology, all 3 methods give similar average time processing times.

In Figure 3.7, when the default scheduler is used, it stabilizes at 6.51ms; when the

model-based method is employed, it stabilizes at 4.57ms; and when EXTRA is used, it

stabilizes at 3.37ms. EXTRA results in a significant performance improvement of 48.3%

over the default scheduler and 26.3% over the model-based method.

Log Stream Processing Topology (Figure 2.5): We performed a large-scale exper-

iment over 3 log stream processing topologies as described above. We show the corre-

sponding results in Figure 4.4. This topology is more complicated than the continuous

queries topology, which leads to a longer average tuple processing time no matter which

method is used.

In Figure 4.4, when the default scheduler is used, it stabilizes at 19.93ms; when the

model-based method is employed, it stabilizes at 16.15ms; and when EXTRA is used, it

stabilizes at 12.33ms. As expected, EXTRA consistently outperforms the other two meth-

ods. Specifically, it reduces the average tuple processing time by 38.1% compared to the

default scheduler and 23.6% compared to the model-based method.

Hybrid Scenario: For the hybrid scenario with 3 different topologies, the correspond-
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Fig. 4.3: Average tuple processing time over 3 large-scale word count topologies (stream
version)
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Fig. 4.4: Average tuple processing time over 3 large-scale log processing topologies

ing results are shown in Figure 4.5. When the default scheduler is applied, the average

tuple processing time stabilizes at 10.95ms; when the model-based method is applied, it

stabilizes at 8.42ms; and when EXTRA is used, it stabilizes at 6.45ms. Hence, EXTRA

reduces the average tuple processing time substantially by 41.1% compared to the default
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Fig. 4.5: Average tuple processing time over 3 different large-scale topologies
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Fig. 4.6: Average tuple processing time given by EXTRA over 3 large-scale continuous
queries topologies with varying workload

scheduler, and 23.4% over the model-based method.

In summary, we can make the following observations from the above results: 1) EX-

TRA consistently outperforms the other two methods, which well justifies effectiveness

of the proposed experience-driven approach as well as the use of a variable number of
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Fig. 4.7: Average tuple processing time given by EXTRA over 3 different large-scale
topologies with varying workload

threads for scheduling in a DSDPS. 2) The performance improvement offered by EXTRA

becomes more and more significant with the increase of the input size, which shows that

EXTRA scales very well. 3) Solving EXTRA-NN (Section 4.2.2) can lead to an efficient

and effective discovery of the huge action space and thus result in a wise action selection.

Varying Workload Scenario: The corresponding results are shown in Figures 4.6

and 4.7.

In the first experiment with 3 large-scale continuous queries topologies (Fig. 4.6), dur-

ing the first 20-minute period, the average tuple processing time of EXTRA stabilizes at

3.13ms. When the workload increases by 50% at 20 minute, the average tuple processing

time rises sharply to a very high value then gradually stabilizes at 3.15ms respectively. The

spike is caused by the adjustment of the scheduling solution. However, we can observe

that once the system stabilizes, it leads to very minor increase on average tuple process-

ing time. Hence, EXTRA is sensitive to the workload change and it can quickly adjust its

schedule solution accordingly to avoid performance degradation. In the second experiment

with 3 different large-scale topologies (Fig 4.7), similar observations can be made. The
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initial average tuple processing time is 6.49ms. After the increase of workload, it stabilizes

at 6.50ms, which is almost the same as before. These results well justify robustness of

EXTRA in a highly dynamic environment with varying workload.

4.4 Summary

In this chapter, we present design, implementation and evaluation of a model-free schedul-

ing framework with a variable number of threads, EXTRA, for scheduling in DSDPSs.

EXTRA has two desirable features. First, it enables a DSDPS to dynamically change the

number of threads during runtime according to system states and demands. Second, EX-

TRA leverages an experience/data driven model-free approach for dynamic control using

the DRL, which enables a DSDPS to learn the best way to control itself from its own expe-

rience. We implemented EXTRA based on Apache Storm, and evaluated its performance

with three representative SDP applications: continuous queries, word count (stream ver-

sion), and log stream processing. Particularly, experiments were performed under a realistic

setting where multiple application instances are mixed up together. Extensive experimental

results well justified effectiveness and robustness of EXTRA. Specifically, they show: 1)

Compared to Storm’s default scheduler and the state-of-the-art model-based method, EX-

TRA substantially reduces average tuple processing time by 39.6% and 21.6% respectively

on average. 2) EXTRA does lead to more flexible and efficient control by enabling the use

of a variable number of threads. 3) EXTRA is robust in a highly dynamic environment with

varying workload.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

The objective of the study is to explore the possibility of discovering new approaches to

achieve efficient online scheduling in Distributed Stream Data Processing Systems (DS-

DPSs), which is exceptionally difficult to characterize due to the high complexity of the

system environment. Currently the most widely-used solution is the round-robin manner

which is fairly naive, and mathematical models such as queuing theory does not work well

due to the complexity of the DSDPSs. In the dissertation, we introduced both model-based

and model-free approaches to solve the problem.

For the model-based approach, we are the first to propose a method for modeling and

predicting the end-to-end average tuple processing time in DSDPSs and validate the method

with the widely-used open-source platform, Storm. The approach offers good prediction

accuracy and significant performance improvement over Storm’s default scheduler. For the

model-free approach, we are the first to leverage DRL for enabling model-free control in

DSDPSs. The system environment is learned with very limited runtime statistics (com-

pared to model-based approach) and scheduling solutions are made under the guidance of

DNNs. With satisfying result achieved, we believe that this simple and practical model-free

approach can be easily extended to better control many other complex distributed comput-

ing systems, which has been a challenging problem in this field for years. The model-free
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approach with a variable number of threads enables dynamic use of a variable number of

threads at runtime. This feature opens up a whole new dimension for scheduling in DS-

DPSs since in most of the current solutions the number of threads is decided in advance

and fixed in runtime. This approach further improves flexibility as well as performance of

the previous mentioned model-free approach.

It could be interesting to propose a hybrid approach, combining the model-based ap-

proach with the model-free approach together to solve the scheduling problem. The model-

based approach can provide guidance for the DNNs in the model-free approach to better

learn the environment. Also, although the proposed frameworks were deployed on physi-

cal machines, they can be deployed in a virtualized cloud environment by using virtual ma-

chines (instead of physical machines) to serve as worker nodes. The model-based approach

will work (or can be slighted modified to work) for any DSDPS in which an application is

modeled using a direct graph, and the other two model-free approaches will work for any

DSDPS. Besides, we believe that the research on the DRL theory is still in its infancy. The

rapid development in the DRL field will definitely offer tremendous potential in improving

the performance of our proposed approaches in the future.
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