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ABSTRACT 

Over the past two decades, roadway infrastructure in the United States has experienced severe 

deterioration, costing road users billions of dollars in wasted fuels, lost time, and higher numbers 

of accidents. Transportation infrastructure asset management initiatives, which aim at providing 

and maintaining physical infrastructure assets at an acceptable level, need to address various 

economic, social, and environmental issues. Therefore, the American Association of State 

Highway and Transportation Officials (AASHTO) has encouraged public agencies to incorporate 

sustainable development principles into their decision-making and organizational operations at a 

program level.  

Meanwhile, at a project level, maintenance, repair, and rehabilitation (MRR) projects for 

roadway infrastructure are still mostly undertaken by traditional techniques, resulting in higher 

overall life cycle impacts. The use of non-traditional techniques including accelerated methods is 

expected to reduce the overall impacts; however there is a lack of infrastructure management 

frameworks that support public agencies’ decision-making procedures in justifying the use of 

non-traditional techniques.  

Therefore, the goal of this research is to develop a project-level infrastructure 

management framework to consider multiple factors in decision-making and to analyze the life 

cycle economic, social, and environmental impacts of traditional and non-traditional (including 

accelerated methods) roadway MRR techniques.  

The proposed framework utilizes decision flowcharts and multi-criteria decision-making 

(MCDM) methods to shortlist alternatives that meet project requirements to facilitate preliminary 

decision-making. And then, this framework applies life cycle assessment (LCA) and life cycle 



 

 

   

 

cost analysis (LCCA) to quantify the life cycle impacts of candidate project alternatives 

following the triple bottom line of sustainability. MRR techniques analyzed by the framework 

include hot mix asphalt (HMA) and warm mix asphalt (WMA) overlay, hot-in-place recycling 

(HIPR), cold-in-place recycling (CIR), full depth reclamation (FDR), intelligent compaction 

(IC), and use of precast concrete pavement systems (PCPS). 

The decision flowcharts and MCDM model in the proposed framework are developed 

based on existing literature and the results of a survey of state departments of transportation in 

the United States. Analytical hierarchy process (AHP) and analytical network process (ANP) are 

used to determine the weights of criteria for the MCDM model, and a customizable decision 

support tool is created in a spreadsheet program to facilitate application of the model.  

For the LCA-LCCA model, the overall life cycle impacts include: i) agency costs and 

environmental impacts, ii) user costs and environmental impacts due to lost time and wasted fuel, 

and iii) user costs due to increased crash events. Software programs and databases including 

Athena Pavement LCA, GREET®, MOVES, and other miscellaneous data sources are used for 

LCA; while survey results, RSMeans 2016, and other miscellaneous cost sources are used for 

LCCA. The LCA-LCCA model is also capable of performing what-if analysis by adjusting 

variables. Thus, the model allows public agencies to apply their own data and priorities based on 

their sustainability goals, objectives, and performance measures to obtain relevant results.   

The proposed framework is illustrated through case studies and validated by expert 

opinion and literature contrasts. Future studies may expand this framework to include more 

factors in the MCDM model and additional impact items in the LCA-LCCA model.      
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1 INTRODUCTION 

1.1 Background Information 

1.1.1 U.S. Infrastructure 

The American Society of Civil Engineers (ASCE) periodically issues infrastructure report cards 

that reflect the well-being of U.S. infrastructure of all kinds, and the latest issue in 2017 rated the 

overall infrastructure condition as D+. As with specific types of infrastructure, shown in Table 1, 

bridges, wastewater, and rails have witnessed a gradual improvement since the beginning of the 

21st century, while ratings of roads have remained at the range of “D-” and “D+” during the same 

period, despite all the remedial efforts to preserve road infrastructure. The rating of “D” for roads 

is given based on the following facts (ASCE 2017): 

 More than 40% of America’s urban interstates were congested in 2014; 

 A total of 6.9 billion hours were wasted because of traffic delay, which equals 42 hours 

per driver and resulted in 3.1 billion gallons of wasted fuel in 2014. The cost associated 

with wasted time and fuel added up to $160 billion;  

 21% of highway pavement sections were in poor condition in 2015 and the backlog of 

rehabilitation needs was still increasing. Driving on these roads costs U.S. motorists 

$120.5 billion in extra vehicle repairs and operations in 2015; and  

 Traffic fatalities increased by 7% from 2014 to 2015, as 35,092 people died on America’s 

roads.  

Infrastructure 1988 1998 2001 2005 2009 2013 2017 

Bridge - C- C C C C+ C+ 

Wastewater C D+ D D- D- D D+ 

Rail - - - C- C- C+ B 

Road C+ D- D+ D D- D D 
Table 1 Overall Condition Ratings from ASCE Infrastructure Report Card 
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 It is also concluded that U.S. highway systems have been underfunded for years, which 

has resulted in an $836 billion backlog of highway and bridge capital needs. To make the 

situation worse, construction costs of roads are rising faster than infrastructure funding, and 

some states in the last five years have de-paved roads – converting asphalt roads to gravel roads 

where traffic is low in rural areas – to reduce material uses and maintenance needs (ASCE 2017).  

On the other hand, Federal Highway Administration (FHWA) estimated that the benefits 

of making improvements on road infrastructure, including reduced maintenance costs, relieved 

delays, reduced fuel consumption and emission, and improved safety, outweigh the costs of 

maintenance, repair, and rehabilitation (MRR) practices by a ratio of 5.2:1 (ASCE 2017). This 

shows that keeping the road infrastructure in a state of good repair is not only required as a 

foundation for a modern society, but also preferred from an economic perspective. Therefore, the 

ASCE (2017) recommends that appropriate measures are taken in order to raise the grade of road 

infrastructure by increasing funding, raising the federal motor fuels tax, alleviating congestion, 

prioritizing maintenance activities, improving user safety, and making innovations in all phases 

of the infrastructure life cycle.  

1.1.2 Transportation Infrastructure Asset Management 

The American Association of State Highway and Transportation Officials (AASHTO) published 

Transportation Asset Management Guide: A Focus on Implementation in 2011. This guide was 

intended to direct agencies in successfully implementing transportation asset management at all 

levels in the organization through good management, effective leadership, and achieving the 

right organizational culture.  

Transportation asset management (TAM), or transportation infrastructure asset 

management (TIAM) includes the systematic, coordinated planning and programming of 
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investments or expenditures, design, construction, maintenance, operation, and evaluation of 

physical transportation infrastructure assets and related facilities. TAM covers activities 

associated with providing and maintaining transportation infrastructure assets at an acceptable 

level for the public, users, or owners (Uddin et al. 2013). A typical TAM system includes two 

interrelated levels: the network level for deficiency and need analysis, strategy evaluation, and 

regional prioritization; and the project level for detailed data processing, technical and economic 

analysis of alternatives, and implementation.   

The most commonly used methodology for network-level TAM is benefit/cost analysis 

where benefits associated with transportation infrastructure improvement from various 

perspectives (e.g. user cost savings due to relieved congestion) are evaluated and compared 

against costs of implementing the improvement. On the other hand, for project-level TAM the 

tools and methods used for alternative analysis and decision-making, such as decision trees and 

matrices, checklists, and rating systems, vary greatly from one agency to another. 

1.1.3 Sustainability in Transportation Asset Management 

The concept of sustainable development was first raised by the Brundtland Report in 1987, 

where sustainable development was defined as the development that meets the needs of the 

present without compromising the ability of future generations to meet their own needs. So far, it 

is widely acknowledged that human activities have exerted tremendous environmental impacts 

by consuming non-renewable energy sources and emitting excessive amounts of greenhouse 

gases into the atmosphere which disturb the nature’s carbon cycles.  

In the United States, the transportation sector was responsible for 27.7% of total energy 

consumption and 27% of CO2 emissions in 2015 (LLNL 2016; USEPA, 2016). Therefore, 
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following a sustainable development approach in managing transportation infrastructure assets 

plays an important role in the overall sustainability of human activities.  

The AASHTO guide (2011) dedicated one section named “Acting Sustainably” to discuss 

how transportation agencies may sustainably manage infrastructures that support economic 

growth, enable community interactions, and affect the environment. The guide provided 

definitions of sustainability pertaining specifically to transportation agencies under the following 

triple bottom line:  

 Economic sustainability refers to the impact the agency has on the economics of the 

region and not the finances of the agency itself; 

 Social sustainability refers to fair and beneficial business practices toward the community 

and state that balance benefits and repercussions of activities such as maintenance and 

construction across sociodemographic audiences; and  

 Environmental sustainability is the agency’s commitment to protect the environment as 

much as possible by doing no harm or at least by limiting its environmental impacts.  

It is also perceived that energy usage, resource depletion, climate change, and other 

environmental issues are likely to drive changes in transportation activities and agency decision-

making. Therefore, as more transportation agencies begin to appreciate the importance of 

sustainability and seek for improvement in sustainable development, it is becoming more 

important to develop a transportation infrastructure asset management framework following the 

triple bottom line of sustainability that can support the decision-making of public agencies.  
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1.2 Problem Statement and Need for Research 

The aging infrastructure creates increasing economic, social, and environmental impacts on 

agencies and users in the United States. In order to improve the current condition of 

infrastructure, more frequent maintenance, repair, and rehabilitation (MRR) activities are 

expected to take place in the near future. Therefore, infrastructure management frameworks that 

support agency decision-making processes are expected to play a more central role.  

While significant advancements have been achieved in accelerated construction of 

bridges using prefabricated elements, accelerated methods, and other innovative techniques and 

equipment, the MRR activities for roadways are still mostly undertaken by traditional methods, 

resulting in high user costs and environmental impacts due to prolonged traffic disruptions. To 

improve current practices, an infrastructure management framework for roadways with the 

capability of evaluating non-traditional techniques including accelerated methods is needed to 

support decision-making of public agencies.  

Because of their broader scope, network-level road infrastructure management systems 

usually take into consideration benefits such as user cost saving, user emission reduction, and 

other social or environmental factors. On the other hand, at the project level, existing decision 

support frameworks including software programs, department guidelines, and decision trees and 

matrices are mostly agency oriented and cost driven; insufficient attention has been paid to the 

social and environmental impacts of project-level decisions. In addition, existing decision 

support tools utilized by public agencies were mostly developed in late 1990s or early 2000s and 

have not been updated in a timely manner. These tools incorporate very few alternatives using 

non-traditional techniques and fail to cover a sufficient number of important factors from 

different perspectives for the selection of alternatives.  
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Meanwhile, some non-traditional MRR techniques such as intelligent compaction do not 

have unified design procedures or measures of reporting; and each project has been performed 

differently based on specific conditions. This makes it challenging for public agencies to adopt 

these techniques due to a lack of frameworks that can quantitatively analyze their overall impacts 

and justify their implementation at a project level.  

As a result, there is a need for a project-level roadway infrastructure management 

framework that comprehensively covers various MRR techniques, considers multiple factors 

from the economic, social, and environmental aspects in decision-making, and provides 

quantitative analysis on a life-cycle basis to evaluate the sustainability of alternatives.  

1.3 Research Questions, Goals, and Objectives 

With the research needs identified, the following two major research questions are formulated: 

(1) how can various economic, social, and environmental factors be considered in project-level 

decision-making, and (2) how can project-level maintenance, repair, and rehabilitation 

alternatives be evaluated using a life-cycle approach? 

Therefore, the goal of this research is to develop a project-level roadway infrastructure 

management framework to assist public agencies in the selection of the most appropriate 

maintenance, repair, and rehabilitation alternatives, especially non-traditional alternatives 

including accelerated methods, under the triple bottom line of sustainability. Roadway 

infrastructure is selected as the research subject due to its high importance in overall 

infrastructure assets and a lack of innovation in project-level infrastructure management 

practices compared to other types of infrastructure.  

To achieve the research goal, the following research objectives were accomplished:  
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 Investigate current practices of transportation agencies in infrastructure management and 

sustainability;  

 Study traditional and non-traditional roadway MRR techniques including accelerated 

methods, such as warm mix asphalt (WMA) overlay, cold-in-place recycling (CIR), full 

depth reclamation (FDR), intelligent compaction (IC), and precast concrete pavement 

system (PCPS);  

 Evaluate project-level alternatives considering various economic, social, and 

environmental factors;  

 Analyze project-level alternatives with a life cycle approach according to the triple 

bottom lines of sustainability through life cycle assessment and life cycle cost analysis.  

1.4 Research Methodology 

The proposed project-level infrastructure management framework consists of two decision 

flowcharts (one for flexible pavements and the other for rigid pavements), a multi-criteria 

decision making (MCDM) model, and a life cycle assessment (LCA) and life cycle cost analysis 

(LCCA) model. A schematic diagram of the overall framework is shown in Figure 1.  

The MCDM model includes a total of twelve factors from technical, economic, social, 

and environmental perspectives to make preliminary project-level decisions. Weights of the 

criteria are determined by the survey results by Salman et al. (2017) through analytical hierarchy 

process (AHP) and analytical network process (ANP).  

The LCA-LCCA model further evaluates project-level alternatives and makes decisions 

according to the agency’s sustainability goals and performance measures. Software programs and 
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databases including GREET®1, MOVES2, and Athena Pavement LCA are used for life cycle 

assessment while survey results by Salman et al. (2017), RSMeans 20163, and other 

miscellaneous cost sources are used for LCCA, respectively.  

 

Figure 1 Project-level Decision Support Framework Schematic Diagram 

Demonstration case studies (two for the MCDM model and two for the LCA-LCCA 

model) are used to elaborate on the proposed decision support framework, while validations are 

performed through expert opinions for the decision flowcharts and MCDM model, and through 

literature contrast for the LCA-LCCA model.  

                                                 
1 Greenhouse gases, Regulated Emissions and Energy in Transportation (GREET®) model by Argonne national 

laboratory (ANL) is a life cycle inventory database of transportation fuels and other products. 
2 MOVES (Motor Vehicle Emission Simulator) by EPA estimates emissions from mobile sources. 
3 RSMeans by GORDIAN® estimates construction costs. 
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1.5 Discussion, Conclusions, and Future Studies 

This research is expected to fill the gap of a comprehensive project-level roadway infrastructure 

management framework under the triple bottom line of sustainability and to provide suggestions 

to public agencies regarding the contents and approaches needed for project-level decision-

making. It also takes an initiative to evaluate non-traditional MRR techniques, including 

accelerated methods, and to improve commonly used MCDM methods in modeling problems 

associated with infrastructure management decision-making.  

The proposed decision support framework is capable of quantifying the overall and 

specific impacts of project alternatives using non-traditional MRR techniques including 

accelerated methods. Results of the demonstration case study for the LCA-LCCA model show 

that compared to traditional techniques, project alternatives using HIPR, CIR and FDR 

significantly reduce life cycle costs and environmental impacts, while the WMA overlay and IC 

alternatives deliver limited overall impact reductions. PCPS also considerably lowers 

environmental impacts. These findings are in good consistency with existing literature. Using 

this framework, public agencies should apply their own data, study the economic, social, and 

environmental impacts of project alternatives, and make decisions based on agency goals, 

objectives, and performance measures to improve the overall sustainability.  

The IC project alternatives can be revisited once additional benefits of applying 

intelligent compaction are reported. Future studies may expand this decision support framework 

by including more criteria in MCDM and analyzing more roadway, vehicle, and fuel types for 

LCA-LCCA model.   
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2 LITERATURE REVIEW 

2.1 Infrastructure Asset Management and Sustainability 

With limited funding and an increasing backlog of rehabilitation requirements, transportation 

agencies need to plan MRR work to achieve optimum cost effectiveness, and this is one of the 

major objectives of infrastructure asset management. Infrastructure asset management (IAM) 

includes the systematic coordinated planning and programming of investments or expenditures, 

design, construction, maintenance, operation, and evaluation of physical infrastructure assets and 

related facilities. It covers all the activities associated with providing and maintaining 

infrastructure assets at a level of service acceptable to the public, users, or owners. An 

infrastructure asset management system (IAMS) coordinates and enables the execution of these 

activities so that the use of available funds is optimized and the performance and preservation of 

infrastructure assets and provision of services are maximized (Uddin et al. 2013).  

An overall framework for an IAMS is shown in Figure 2. IAM efforts are undertaken at 

two interrelated levels: the program/network/system-wide level and the project/section level. 

Both levels have respective components, objects, and external constraints that are usually beyond 

the control of agencies. The scope of an IAMS depends on the network size and service 

boundaries under the agency’s jurisdiction. While an IAMS has a generic scope across all types 

of infrastructure, particular models, methods, and procedures are different from one to another 

(Uddin et al. 2013). Therefore, there are IAMSs specifically developed and utilized for 

roadways, bridges, underground utilities and others. Figure 3 shows a two-level IAMS 

framework for roadway pavement management (Haas 1994).  
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Figure 2 Overall framework for infrastructure asset management  

Adapted from Uddin et al. (2013) 

 

 

Figure 3 Operating levels of pavement management and major activities  

Adapted from Haas (1994) 
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2.1.1 Network-Level Infrastructure Asset Management 

At the network level, focuses are placed on deficiency and need analysis, strategy evaluation, 

and regional prioritization. General frameworks and guidelines for network-level IAMS have 

been provided by American Association of State Highway and Transportation Officials through 

the AASHTO Transportation Asset Management Guide: A Focus on Implementation (2011). The 

guide covers both managerial and technical aspects of infrastructure asset management and is 

expected to assist decision makers at state, county, and municipal levels in achieving IAM goals. 

Federal Highway Administration (FHWA) also urged the development and adoption of 

Transportation Asset Management Plans (TAMP) for state departments of transportation (DOT) 

as a response to the clause that states, “Each State is required to develop a risk-based asset 

management plan for the National Highway System to improve or preserve the condition of the 

assets and the performance of the system” (23 U.S.C. 119(e)(1), MAP-21 § 1106).  

Several studies have been conducted recently on IAMS for different types of 

infrastructure assets on a network level. To name a few, Zhang et al. (2013) developed a 

network-level IAMS for pavements; Arif et al. (2016) proposed a multi-criteria decision support 

framework for MRR of bridges; Chuang et al. (2006) presented a decision-making framework 

for underground sewer pipelines; Bhattachar et al. (2007) proposed a framework for inventory 

and inspection of culvert infrastructure; Salman and Salem (2012) developed a risk assessment 

tool for managing wastewater collection lines; and Bernhardt et al. (2003) generated an IAMS 

for geotechnical assets based on the general framework by FHWA. It should also be noted that 

some IAMSs proposed for one type of infrastructure asset may be utilized to analyze other 

assets, and there are also other research (Hsieh and Liu 1997; Sadek et al. 2003; Hastak et al. 

2005; ASME 2009) on IAMSs in general without referring to specific types of infrastructure.  
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2.1.2 Project-Level Infrastructure Asset Management 

At the project level, on the other hand, IAM performances vary greatly depending on the types of 

infrastructure and the operations of responsible public agencies. As a result, there are not as 

many studies specifically on the project-level IAM as those on the network-level IAM, while 

some decision support frameworks developed primarily for network-level prioritization are 

reported to be able to provide project-level analysis for the selection of alternatives. Other than 

the network-level IAMS research discussed before, Elbehairy et al. (2009) proposed a bridge 

management system that achieves both network-level and project-level optimization.  

In the context of pavement IAMS at the project level, as shown in Figure 3, after the 

network-level prioritization is completed and the sections of roadway to be maintained, repaired, 

or rehabilitated are identified, regional transportation agencies will continue to plan and execute 

corresponding activities. Commonly used tools that can assist regional transportation agencies in 

developing and evaluating alternatives include public and/or private software programs, 

department-specific guidelines, decision trees, and decision matrices, all of which may be part of 

the pavement management system (PMS) utilized by the agency. Most software programs allow 

agencies to analyze different maintenance strategies under different budget scenarios, and some 

feature integration with geographic information system (GIS) to provide visualization of 

infrastructure assets.  

Guidelines, decision trees, and decision matrices are usually developed according to the 

specific characteristics of the roadway infrastructure managed by the agency. Figure 4 shows a 

decision matrix used by NYSDOT for project-level management of flexible pavement 

infrastructure (Hicks et al. 2000), in which a total of seven alternatives are included and 

information regarding traffic and distress are considered in decision-making process. These types 
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of decision trees and matrices usually provide limited numbers of alternatives and consider few 

factors other than pavement distress types and severities.  

 

Figure 4 NYSDOT decision matrix on alternative preventive maintenance treatments 

 

Economic analysis is usually performed to determine the viability and timing of a project 

and to achieve maximum cost effectiveness once a project has been selected and budgeted. The 

basic principles of economic analysis at network level and project level are the same, but the 

amount of detail and information is more extensive at the project level where alternatives are 

developed and compared with each other. Uddin et al. (2013) suggest that it is highly important 

to include the costs and benefits over the entire life cycle of an infrastructure asset from as many 

aspects, such as agency, user, and environment, as possible in the economic analysis, so that non-

traditional alternatives that may not be selected based on initial cost alone can be justified.  
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2.1.3 Sustainable Practices in Transportation Infrastructure Asset Management 

The AASHTO (2011) guide pointed out that transportation agencies need to understand the 

effect of transportation services on the environment and that of climate change on transportation 

infrastructure. Another guide was developed through the National Cooperative Highway 

Research Program (NCHRP) in 2011 to assist transportation agencies in identifying and applying 

sustainability performance measures. These guides provide frameworks in which transportation 

agencies could develop appropriate infrastructure asset management plans and make necessary 

adjustment to existing managerial and organizational structures to incorporate sustainability at an 

enterprise/network/program level.  

 Commonly used sustainability-oriented decision support tools for agencies’ decision-

making in infrastructure management are self-evaluation or third-party certification sustainability 

rating systems that evaluate the overall sustainability of projects under the triple bottom line 

through credit assignment. A selection of sustainability rating systems discussed in the AASHTO 

guide (2011) is provided in Table 2.  

It is observed that these sustainability rating systems mostly use points or ordinal 

rankings to describe project sustainability, and scoring procedures rely largely on subjective 

evaluation. Therefore, the results of such a rating system, either in the form of total scores or 

corresponding levels of achievement, bear limited practical implications beyond the system 

itself. On the contrary, a framework that quantifies the economic, social, and environmental 

impacts in their original forms provides agencies with more accurate and meaningful results, 

which facilitates the achievement of agencies’ sustainability goals and objectives following the 

AASHTO guide.  
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Table 2 Selected Sustainability Rating Systems 

Rating Systems Developed by Key Characteristics References 

INVEST (Infrastructure Voluntary 

Evaluation Sustainability Tool) 

v1.2 

FHWA 

Self-evaluation tool, 68 criteria in three categories (system planning for 

states, system planning for regions, project development, operations and 

maintenance, and Innovative) 

FHWA (2017) 

ENVISION v2.0 

Institute for 

Sustainable 

Infrastructure 

Self-evaluation tool; 60 sustainability criteria from five categories (quality 

of life, leadership, resource allocation, natural world, and climate & risk). 

Five levels of achievement for each criteria (improved, enhanced, superior, 

conserving, and restorative). Maximum total points: 809.  

Institute for 

Sustainable 

Infrastructure 

(2017) 

Sustainable Transportation Access 

Rating System (STARS) 

North American 

Sustainable 

Transportation 

Council 

Third-party certification; 29 credits in six categories (integrated process, 

access, climate and energy, ecological function, cost effectiveness analysis, 

and innovation) 

Hurley (2010) 

Greenroads v1.5 

University of 

Washington, 

CH2M HILL 

Voluntary rating system; 37 credits that total 108 points plus 10 more 

custom points with 1 to 5 points under each credit out of seven components 

(ecology, equity, economy, extent, expectations, experience, and exposure) 

University of 

Washington 

(2011) 

Green Leadership in Transportation 

and Environmental Sustainability 

(GreenLITES) v2.1.0 

NYSDOT 

Self-certification; similar to Greenroads with five categories (sustainable 

sites, water quality, materials and resources, energy and atmosphere, and 

innovation/unlisted)  

NYSDOT 

(2017) 

Illinois Livable and Sustainable 

Transportation System and Guide 

(I-LAST) v 2.02 

IDOT, ACEC-IL4, 

and IRTBA5 

Percentage-based evaluation tool; 20 credits in eight categories (planning, 

design, environmental, water quality, transportation, lighting, materials, and 

innovation) 

IDOT (2012) 

Building Environmentally and 

Economically Sustainable 

Transportation-Infrastructure-

Highways (BE2ST-in-Highways) 

University of 

Wisconsin-

Madison 

Customizable weighting tools using analytical hierarchy process; nine 

criteria; stakeholders can select weights and credits based on relative 

importance 

University of 

Wisconsin-

Madison (2017) 

Green Guide for Roads 

Transportation 

Association of 

Canada 

Self-evaluation tool; three-point ranking (high, medium, low) of 13 areas.   

Transportation 

Association of 

Canada (2015) 

GreenPave 

Ministry of 

Transportation of 

Ontario, Canada 

Points-based system, similar to Greenroads and GreenLITES with 

customization for Ontario 

Chan et al. 

(2013) 

                                                 
4 American Council of Engineering Companies-Illinois  
5 Illinois Road and Transportation Builders Association 



 

 

17 

 

2.2 Roadway Maintenance, Repair, and Rehabilitation Techniques 

Pavement preservation activities are generally categorized into preventative maintenance, routine 

maintenance, repair, rehabilitation, and reconstruction activities. Other terms such as restoration 

and remodeling are also used interchangeably. Uddin et al. (2013) provide definitions of these 

different actions:  

 Maintenance is the set of activities required to keep a component, system, 

infrastructure asset, or facility functioning as it was originally designed and 

constructed to function.  

 Preventive or proactive maintenance, or preservation, is performed to 

retard or prevent deterioration or failure of a component or system; 

 Corrective or reactive maintenance is performed to repair damage and/or 

to restore infrastructure to satisfactory operation or function, after failure. 

 Routine maintenance is any maintenance done on a regular basis or 

schedule. In nature it is generally preventive, but it can also be corrective.  

 Rehabilitation is the act or process of making possible a compatible use for a 

property through repair, alternations, and additions, while preserving those 

portions or features that convey its historical, cultural, or architectural values.  

 Reconstruction is the act or process of depicting, by means of new construction, 

the form, features, and detailing of a non-surviving site, landscape, building, 

structure, or object, for the purpose of replicating its appearance at a specific 

period of time and in its historic location.  
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In this research, non-traditional MRR techniques refer to the processes and procedures 

that achieve goals and objectives of maintenance, repair, and rehabilitation with reduced 

economic, social, and/or environmental impacts in comparison to the traditionally used 

techniques, In some states, non-traditional techniques have been performed more extensively 

than others, as different public agencies in the United States vary greatly in the adoption of non-

traditional MRR techniques.  

As maintenance and repair techniques usually result in relatively small overall impact, 

more emphasis has been exerted on improving rehabilitation/reconstruction techniques for 

roadways. Therefore, non-traditional MRR techniques covered in this study are mostly 

rehabilitation techniques including warm mix asphalt (WMA) overlay, cold-in-place recycling 

(CIR), full depth reclamation (FDR), innovative compaction (IC) for flexible pavements, and use 

of precast concrete pavement systems (PCPS) for rigid pavements. The traditional techniques, as 

the counterparts of non-traditional ones, are hot mix asphalt (HMA) overlays and hot-in-place 

recycling (HIPR) for flexible pavements and use of cast-in-place (CIP) concrete for rigid 

pavements. This research also covers maintenance and repair treatments such as crack seal, 

asphalt patching for flexible pavements, and crack repair and diamond grinding for rigid 

pavements. Detailed information on traditional and non-traditional techniques is provided in the 

following subsections.  

2.2.1 Traditional Techniques 

2.2.1.1 Crack Seal and Joint Seal 

Crack seal is used for addressing cracks on asphalt pavement surfaces to reduce infiltration of 

water into the pavement through cracks and slow surface deterioration. The most commonly used 

materials in crack sealing procedures are bituminous sealants. Sealants are usually formulated 
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with bitumen, a polymer modifier such as styrene-butadiene-styrene, and recycled-rubber 

powder (Wang et al. 2012). Crack seal is capable of treating minor to moderate cracking 

problems at an acceptable cost, but it usually makes very limited extension to the service life of 

asphalt pavement. Joint Seal for concrete pavement is performed out of the same consideration 

as crack seal for asphalt pavement. It is needed when missing or de-bonded sealants or seal joints 

containing incompressible objects are present (FHWA 2005).  

2.2.1.2 Patching 

Pavement patching is performed by removing a distressed area and then backfilling with new 

asphalt or concrete mixture, which addresses local pavement deficiencies. Patching is also 

needed if areas of distresses exist while the entire pavement section requires rehabilitation as a 

pre-overlay repair method (Li and Wen 2014).  

2.2.1.3 Hot Mix Asphalt Overlays 

Hot Mix Asphalt (HMA) Overlays replace the top layers of deteriorated asphalt pavement with a 

new hot mix asphalt layer typically with lift thickness of from 1.25 to 2 inches, which 

substantially increases the service life of pavement (by eight to ten years). On other occasions, 

HMA overlays of thinner lifts, from 0.5 to 1.25 inches, are used to achieve higher cost efficiency 

if thin overlays are effective in addressing pavement distresses (Wilson et al. 2015).  

2.2.1.4 Diamond Grinding 

Diamond grinding is a concrete pavement restoration technique that addresses faulting and 

roughness irregularities to restore rideability, increase surface macro-texture, reduce noise, and 

improve safety, which is typically used in conjunction with other concrete pavement 

rehabilitation techniques. The reduction of slab thickness by diamond grinding is generally 
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between 3/16 and ¼ inch, and the effect on service life due to reduction of thickness is reported 

to be negligible (Correa and Wong 2001).   

2.2.2 Warm Mix Asphalt 

Warm mix asphalt (WMA) refers to asphalt mixtures that are produced at lower temperatures 

than those typically used in the hot mix asphalt (HMA) production, usually by 50°F or more. 

This is achieved through asphalt foaming technologies or by using organic or chemical additives.  

First introduced in Europe in the late 1990s, WMA was intended to reduce greenhouse 

gas emissions while providing mixtures with similar strength, durability, and performance 

characteristics as traditional HMA because of the substantially reduced production temperature 

(Bonaquist 2011). The first WMA pavement in the United States was constructed in 2004, 

followed by a large number of field trials (West et al. 2014).  

Benefits of using WMA as a substitute of traditional HMA include reduced fuel use and 

plant emissions, improved working conditions, better workability and compaction, extended 

paving season due to increased potential for cool weather paving, and increased amount of 

allowable reclaimed asphalt pavement to be used (Anderson et al. 2008).  

2.2.3 Cold-in-Place Recycling  

Cold-in-place recycling (CIR) refers to a rehabilitation process in which the existing pavement 

materials are reused in-place without applying heat. This technique proves to be very effective in 

addressing asphalt pavement deficiencies such as cracking, rutting, bumping and shoveling (Gao 

et.al 2014).  

Specific steps of performing CIR include milling up the existing asphalt pavement, sizing 

the aggregates, mixing with an emulsified asphalt or active filler, placing the new asphalt mix, 
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and compacting the materials. Recycling agents such as lime, fly ash, cement, lime kiln dust, 

foamed asphalt, or asphalt emulsion are used for the CIR technique in order to achieve proper 

binding in the asphalt mixture. Foamed asphalt is produced when asphalt cement is heated and 

pumped through an expansion chamber on the cold recycling unit, where a small amount of cold 

water is injected and vaporized, causing the asphalt cement to rapidly foam (Lane and Lee 2014).  

Shorter construction periods, reduced transportation and production of virgin materials, 

and reduced fuel consumptions and greenhouse gas emissions are the most widely recognized 

benefits of using CIR. Meanwhile, because of the absence of heating, reclaimed asphalt 

pavement materials in CIR are subject to minimum aging, making it possible to perform another 

CIR treatment once the previously CIR-treated pavement reaches the end of its service life (Lane 

and Lee 2014).  

2.2.4 Full Depth Reclamation 

Full depth reclamation (FDR) is the process where the entire thickness of the distressed 

pavement and a pre-determined amount of the subbase layer or base layer are uniformly 

pulverized and mixed together to form a stabilized base course. This rehabilitation technique is 

typically used when (1) target pavement sections demonstrate extensive structural distresses, (2) 

deficiencies occur at lower layers of the pavement, or (3) pavement sections reach the end of 

their service lives (Swiertz 2015). Stabilizing agents used in FDR are essentially the same as 

recycling agents used in CIR such as active fillers, asphalt emulsion, and foamed asphalt, which 

aim at restoring the mechanical deficiencies of reclaimed materials and improving the structural 

characteristics of the base or subbase layer.  

The main advantage of FDR technique is that it eliminates potential structural 

deficiencies in lower layers of asphalt pavement, which contribute to the formation of reflective 
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cracks and other distresses resulting from base or subbase layer problems. Therefore, when 

severe structural failure occurs, FDR is usually a preferable option to conventional rehabilitation 

techniques from a life-cycle perspective because of the reduced future maintenance costs (Bocci 

et.al 2012). As one of the recycling techniques, FDR also decreases the use and transportation of 

virgin materials, resulting in reduced construction costs and greenhouse gas emissions.  

2.2.5 Intelligent Compaction 

Intelligent compaction (IC) technique refers to the process where compaction is monitored and 

controlled by instrumentations to achieve more uniformed compaction and 100% coverage of the 

compacted area rather than through the point measurements of traditional stiffness and density 

tests for quality assurance. Intelligent compaction was introduced in the United States in 2004 

following its successful implementation in Europe, but its adoption has been relatively slow ever 

since (Mooney et al. 2010).  

Major components of an IC system include a global positioning system (GPS), 

accelerometer, infrared temperature sensor, processing software, visual display, and data storage 

(Mooney et al. 2010). Through the functionalities of these system components, IC allows paving 

contractors to closely monitor the stiffness of the materials being compacted in order to minimize 

variability in the end product. As a result, fewer roller passes are needed to achieve the desired 

level of compaction, which leads to optimized labor utilization, shortened construction time, 

reduced fuel consumption, and minimized equipment wear-and-tear.  

IC also offers identification of the areas that have not been properly compacted so that 

reworking of the defective compaction can be planned before additional layers are placed to 

avoid problems in subsurface layer once compaction is completed. This reduces maintenance 

requirements and generates construction records for future reference, making it a favorable 
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addition to traditional paving process from a life-cycle perspective. Meanwhile, one limitation of 

IC application is that there is not yet an industrial standard on the generation and reporting of 

compaction information (Savan et al. 2015).  

2.2.6 Precast Concrete Pavement Systems 

Unlike the traditional cast-in-place process, precast concrete pavement (PCP) systems use 

concrete slabs fabricated off-site and transported to the project site to construct or rehabilitate 

rigid pavement sections. Precast concrete slabs are usually installed on prepared foundations, and 

no on-site curing is needed to achieve sufficient strength. Construction can take place during off-

peak hours or even overnight for minimum disturbance to traffic. As a result, PCP systems are 

most suitable for the rehabilitation of rigid pavements serving heavy traffic for congestion 

reduction considerations.  

Other than shortening of the construction schedule, PCP systems also allow a higher 

standard of quality and fabrication because concrete slabs and panels are manufactured off-site 

with potentially improved quality control, which reduces future maintenance needs and increases 

infrastructure service life (FHWA 2017).  

In summary, non-traditional MRR techniques for roadways may reduce construction 

costs, duration, fuel consumption, greenhouse gas emission, and use of virgin materials. More 

importantly, these techniques are most likely going to create life cycle cost savings, which could 

be a good justification of their implementation.  

Table 3 shows the documented benefits of non-traditional MRR techniques for roadways.  

 



 

 

24 

 

Table 3 Summary of Benefits of Non-traditional MRR Techniques for Roadways 

Benefits WMA CIR FDR IC PCPS 

Construction Cost Savings √  √   

Life-Cycle Cost Savings √ √ √ √ √ 

Accelerated Construction  √  √ √ 

Improved Working Condition √ √    

Improved Quality   √ √ √ 

Reduced Fuel Consumption √ √ √ √  

Reduced GHG Emissions √ √ √ √  

Reduced Virgin Materials  √ √   

 

2.3 Multi-Criteria Decision-making Methods 

Multi-criteria decision-making (MCDM) refers to making decisions in the presence of multiple, 

usually conflicting, criteria (Tzeng and Huang 2011). In the context of project-level 

infrastructure asset management, one example is that accelerated construction techniques for 

roadways may on one hand incur higher agency costs because of extra labor and equipment but 

will, on the other hand, reduce user costs due to a shortened construction schedule and alleviated 

congestion in the vicinity of work zone. Therefore, maintenance, repair, and rehabilitation 

techniques and alternatives have profound impacts on the economy, society and environment, 

and it is highly recommended that decision makers take important factors from all aspects into 

consideration.   

Based on the review from Mardani et al. (2015), the most commonly used MCDM 

methods since 2000 are the Analytical Hierarchy Process (AHP), Analytical Network process 

(ANP), Technique for Order Performance by Similarity to Ideal Solution (TOPSIS), and 

ELimination Et Choix Traduisant la REalité (ELECTRE). There are also many other studies 

using hybrid methods by combining two or more basic MCDM methods or other updated and 

improved MCDM methods.  
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2.3.1 Analytical Hierarchy Process 

Analytical Hierarchy Process (AHP) is a flexible pairwise comparison model developed by Saaty 

(1970). It can be used to model a wide range of problems in an easily understandable way, while 

incorporating logic, intuition, experience, judgment, and personal values in the analysis and 

considering all factors to reach to a final conclusion.  

AHP starts with defining hierarchies to structure the problem so that a clear 

understanding of relationships is obtained and factors can be identified and compared on the 

same platform. Factors are categorized in groups that logically relate to the higher level so that 

the relative importance of each factor and group can be calculated. Once the hierarchic structure 

with major factors is developed, priorities are assigned to elements for each criterion on the 

higher level followed by a weighting process on the lower level. 

To list a few applications of AHP in construction and project management, Gudienė et al. 

(2014) evaluated factors affecting construction projects in Lithuania; Salem (2013) modeled 

decisions on accelerated bridge construction; Raviv et al. (2017) analyzed the risk potential of 

safety incidents, and Inti et al. (2016) used modified AHP to support decision-making processes 

in pavement design selection.  

Benefits of using AHP include the ability to model various unstructured problems with 

ease, the similarity to the natural tendencies of the human rational thinking process, the 

capability of measuring intangible factors, and flexibility of customization by adjusting relative 

priorities to match the changing goal (Saaty 1982). AHP, however, works with the assumption 

that one element is independent from other elements on the same level and on lower levels. This 

may not be in strict consistency with the nature of the problem to be modeled.  
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2.3.2 Analytical Network Process 

Analytical network process (ANP) provides a general framework in the form of a network for 

dealing with decisions without making assumptions about the independence of higher-level 

elements from lower level elements and about the independence of the elements within a level as 

in a hierarchy. The difference between the two MCDM methods regarding composition is shown 

in Figure 5.  

In ANP, one needs to make judgment regarding the relative importance of two elements, 

similar to the pairwise comparison process in AHP, and also regarding their relative influences 

on a third element with respect to a criterion (Saaty 2004). In this manner, with more intensive 

calculation requirements, ANP is capable of analyzing the dependency between and among 

alternatives and criteria, and it is believed to provide more accurate modeling results under 

complex decision-making conditions.  

 

Figure 5 Hierarchy and Network 

General steps in modeling MCDM problems using ANP include (Saaty 2004): (1) 

development of a decision model structure, (2) conducting pairwise comparisons on clusters and 

nodes, (3) forming the supermatrix that includes relative weights of sub-matrices from pairwise 

comparison results, (4) normalizing supermatrix to obtain stochastic columns, and (5) raising the 

supermatrix to limiting powers until the weights have converged. 
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Because of the capability of modeling interdependencies of elements, especially the 

feedback effect from low-level factors to high-level factors, the ANP method is adopted in 

decision environments where influences of criteria and alternatives on each other cannot be 

overlooked. For example, Zhou and Yang (2011) assessed risk associated with a new campus 

construction project with fuzzy ANP; Atmaca and Basar (2012) used ANP to evaluate 

alternatives of different types of power plants considering various factors including economy, 

technology, and sustainability; and Xu et al. (2015) analyzed interrelationships of factors 

affecting sustainable building energy efficiency retrofit.   

2.3.3 Technique for Order Performance by Similarity to Ideal Solution 

The basic principle of the Technique for Order Performance by Similarity to Ideal Solution 

(TOPSIS) method proposed by Hwang and Yoon (1981) is that the chosen alternative has the 

shortest distance from the ideal solution and the farthest distance from the negative ideal solution 

to reflect the optimization by decision-making. Major procedures of TOPSIS method include 

developing normalized and weighted normalized decision matrices, determining the ideal and 

negative-ideal solutions, and calculating separation measures and relative closeness to the ideal 

solution (Opricovic and Tzeng 2004).  

 This method is particularly suitable for decision-making scenarios where a large number 

of attributes and alternatives are present with objective and quantitative data (Shih et al. 2007). 

For example, Srdjevic et al. (2004) evaluated water management scenarios with TOPSIS; Janic 

(2003) applied TOPSIS in the selection of high-speed transport systems; and Cheng et al. (2002) 

used TOPSIS to analyze solid waste management.   
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2.3.4 ELimination Et Choix Traduisant la REalité  

Since the development of the ELimination Et Choix Traduisant la REalité (ELECTRE) method 

by Roy (1968), there have been many versions of ELECTRE method with different operations 

and targeted types of problems, but the fundamental concepts of these versions are the same: 

thresholds and outranking. In the original ELECTRE method, the decision maker will specify an 

indifference threshold and a weak preference threshold to indicate the different levels of 

preferences in evaluating two alternatives. Then each criterion is examined for concordance or 

discordance with the determination of preference and has a concordance index calculated to form 

a matrix of preferences and alternatives.  

The effectiveness and accuracy of analysis depends heavily on the assignment of 

threshold values. One advantage of the ELECTRE method is its direct use of objective/numerical 

data while most other MCDM methods rely on subjective/nominal data from decision maker 

preferences (Buchanan et al. 1998).  

Popular application areas for the ELECTRE family include natural resources and 

environmental management, business management, energy management, design, mechanical 

engineering and manufacturing, and construction engineering (Govindan and Jepsen 2016). 

Examples related to infrastructure asset management include evaluation of transport projects by 

Tsamboulas, et al. (1999), risk assessment of pipelines by Brito et al. (2010), and evaluation of 

cross-country transport-sustainability by Bojkovic et al. (2010).  

Table 4 summaries characteristics, advantages, and limitations of MCDM methods. 

Based on the research objectives, ANP is the most suitable method because of its capability of 

analyzing interdependencies among factors from a triple bottom line of sustainability. 
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Meanwhile, using AHP allows users to customize the decision support tool due to ease of use 

and understanding. TOPSIS is less applicable because there are usually not a great number of 

project alternatives for analysis. Determination of threshold values for ELECTRE method is also 

challenging, making it inappropriate for this research.  

Table 4 Characteristics of Common MCDM Methods 

Methods AHP ANP TOPSIS ELECTRE 

Feature Hierarchy structure; 

weights assigned to 

each criterion 

Network form; 

model influences 

among elements 

Select the one with 

shortest distance to 

ideal solution 

Use thresholds and 

outranking to evaluate 

alternatives 

Advantage Ease of use and 

understanding 

Can analyze 

dependencies 

Good for large number 

of alternatives 

Direct use of numerical 

data 

Limitation Assumption of 

independence 

High complexity Number of alternatives  Dependent on threshold 

values 

 

2.4 Life Cycle Assessment and Life Cycle Cost Analysis 

2.4.1 Life Cycle Assessment 

Life cycle assessment (LCA) is a “cradle-to-grave” approach for assessing products and systems 

by evaluating the environmental impacts resulting from all stages throughout the entire life cycle. 

A typical LCA, also known as a process-based LCA, defined by EPA and ISO 14040, consists of 

four components including goal definition and scoping, inventory analysis, impact assessment 

and interpretation. If conducted properly, LCA allows users to compare all major environmental 

impacts of different alternatives and avoid biased results due to certain portions of environmental 

impacts being excluded from the study. Therefore, users of LCA need to have a well-defined 

scope and complete and up-to-date data in order to produce accurate final results, which makes 

the performance of an LCA highly resource intensive (SAIC 2006).  
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 To simplify the procedures of defining the analysis boundary and collecting 

comprehensive data in process-based LCA, the economic input-output (EIO) LCA model was 

developed by Carnegie Mellon University (2009) to show what outputs of an industry are used as 

inputs of other industries. By using this linear impact model, users can estimate the overall 

environmental impacts from producing a certain value of commodities or services in the United 

States. With a very broad coverage, the EIO LCA model is capable of not only investigating 

environmental impacts of cross-sector products but also identifying the effect of changes on the 

economy.  

However, due to its matrix form, customization of the EIO LCA model is highly 

challenging. In addition, there is no further differentiation within a single industry, making it 

difficult to evaluate environmental impacts of specific products or services on a small scale. 

Therefore, to perform the life cycle assessment of roadway infrastructure asset management 

where various MRR activities are involved, a process-based LCA approach is more appropriate 

in order to capture the uniqueness of each project-level alternative. Recent studies on life cycle 

assessment of roadway pavement, some of which are summarized in Table 5, are largely 

undertaken by process-based LCA approaches.  

Tools and software that can be used to perform a process-based LCA include BEES6 by 

NIST7, GaBi by thinkstep, GREET by Argonne National Laboratory, MOVES by U.S. 

environmental protection agency (EPA), PaLATE8 by University of California, Berkeley, and 

Pavement LCA by Athena Sustainable Materials Institute.  

                                                 
6 Building for Environmental and Economic Sustainability 
7 National Institute of Standards and Technology 
8 Pavement Life-cycle Assessment Tool for Environmental and Economic Effects 
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Table 5 Selected Recent Studies on Pavement LCA 

Author(s) and Year Subject Approach 

Araujo et al. (2014) Use phase of asphalt pavement  Process-based 

Aurangzeb et al. (2014) Asphalt mixtures with high RAP content Hybrid 

Butt (2012) Feedstock energies and asphalt additives  Process-based 

Cass and Mukherjee (2010) 
HMA and concrete pavement 

rehabilitation 
EIO LCA 

Cass and Mukherjee (2011) Concrete pavement rehabilitation Hybrid 

Chehovits and Galehouse (2010) Pavement preservation treatments Process-based 

Gangaram (2014) Pavement preservation treatments Process-based 

Giustozzi et al. (2012) Preventive maintenance treatments Process-based 

Inti et al. (2016) Pavement design selection Process-based 

Liu et al. (2014) Life cycle emissions of pavement design Hybrid 

Loijos et al. (2010) Pavement environmental impacts Process-based 

Santero (2009) Pavement environmental impacts Hybrid 

Santos et al. (2014) Pavement in-place recycling Process-based 

Mack et al. (2014) Pavement construction and rehabilitation Process-based 

Wang (2013) Use phase of pavement Process-based 

Zapata and Gambatese (2005) Asphalt pavement and CRCP9 Hybrid 

Zhang et al. (2010) HMA and ECC10 overlays Process-based 

Salem (2014) Pavement preservation treatments Process-based 

 

2.4.2 Life Cycle Cost Analysis 

While environmental impacts of roadway MRR projects can be evaluated through life cycle 

assessment, the economic and social impacts are usually captured by performing a life cycle cost 

analysis (LCCA). Research by Zhang (2009) and Inti (2016) also incorporated environmental 

impacts in LCCA by assigning monetary values to elements like greenhouse gas emissions and 

air and/or water pollution.   

                                                 
9 Continuously reinforced concrete pavement 
10 Engineered cementitious composites 



 

 

32 

 

Economic and social impact items frequently covered in an LCCA of roadway 

infrastructure include agency costs (materials, labor, equipment ownership and operation, and 

transportation), user costs (travel delay costs, fuel costs, and safety costs incurred by driving 

through a work zone or taking a detour), and relevant community costs. Existing literature 

reports that user costs are dominated by travel delay costs (Zhang 2009). It should also be noted 

that not all cost items are applicable to all projects, as certain user costs are only considered in 

more densely populated states or urban areas. In addition, monetizing social impacts such as 

noise and local development can be challenging, making it difficult for state DOTs to include 

these items in their decision-making.    
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3 METHODOLOGY 

As previously shown in Figure 1, the decision support framework proposed in this work for 

project-level roadway infrastructure management consists of flowcharts and MCDM models for 

preliminary decision-making, followed by LCA-LCCA models for further quantification of 

economic, social, and environmental impacts of project alternatives.  

3.1 Decision Flowcharts  

Determination of candidate alternatives is made through a decision flowchart integrating 

decision trees and matrices from multiple state departments of transportation (DOTs) with the 

addition of selected non-traditional techniques. Users start with the targeted roadway distresses 

and navigate through the flowchart to reach recommended MRR techniques to be used by 

answering questions regarding distress severity, existence of concurring distresses, technological 

requirements, and contractor availability. The outputs of decision flowcharts are applicable 

techniques based on the project requirement, and will serve as input to the MCDM model for the 

identification of the most appropriate technique. For some public agencies, there may be existing 

decision flowcharts, trees, or matrices that are well-defined and up-to-date. In this case, users can 

utilize their own tools instead as long as non-traditional and/or accelerated techniques are taken 

into consideration.  

3.2 Multi-Criteria Decision-Making Model  

Multi-criteria decision-making (MCDM) methods are used to evaluate the candidate techniques 

under a total of twelve criteria. The weights of these criteria are obtained from results of a survey 

to state DOTs across the United States conducted by Salman et al. (2017). In the survey, attached 

in Appendix I, major factors affecting the decision-making process on whether to use innovative 



 

 

34 

 

MRR techniques or not have been identified and ranked based on their relative importance. 

Ratings of these factors from over 30 state DOTs serve as major inputs to the three weighting 

schemes in the MCDM model, following the analytical hierarchy process (AHP), analytical 

network process (ANP), and user’s judgment, respectively. These three weighting schemes are 

used in evaluating alternatives in a pairwise manner.  

The outputs of the MCDM model regarding recommended MRR techniques are twofold. 

If one of the candidate techniques stands out as the most appropriate with the highest scores 

among all candidates under all three weighting schemes, decisions can be made by choosing this 

technique as the project alternative. However, if no conclusion can be made because of the 

existence of contradicting results among the three weighting schemes or other circumstances, 

further information is needed to identify the most appropriate technique and the evaluation is 

escalated to the LCA-LCCA model for quantifying the economic, social, and environmental 

impact. Depending on the user’s preference, project alternative evaluation can be performed 

through the LCA-LCCA model directly if sufficient data is available.  

3.3 LCA-LCCA Model 

In the LCA-LCCA model, a total of eight project alternatives with a life cycle of 60 years are 

generated based on available data including design guidelines, state-of-the-practice specifications 

and contractor suggestions, with six for flexible pavement and two for rigid pavement. Each 

alternative features a combination of maintenance, repair, and rehabilitation activities taking 

place at different years, reflecting the actual scenario where roadway sections experience routine 

maintenance a short period of time after initial construction, minor repair once deficiencies 

develop, and major rehabilitation or, eventually, reconstruction when pavement distresses 

become more severe. The analysis of these project alternatives are conducted by integrating life-
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cycle assessment (LCA) for evaluation of environmental impacts and life-cycle cost analysis 

(LCCA) for quantification of economic and social impacts to create holistic comparisons among 

qualified traditional and/or non-traditional alternatives and make informed project-level 

decisions.  

Conventionally the scope of life cycle assessment (LCA) for civil infrastructure includes 

material extraction, transportation, construction, use, maintenance, repair, rehabilitation, 

removal, recycling, and disposal (Loijos 2011). However, in this research on modeling various 

roadway MRR techniques, many phases within this comprehensive scope are identical across 

different project-level alternatives such as the construction and use phases. It is also assumed that 

the roadway will provide similar performance after each rehabilitation activity no matter what 

technique is used, except that some techniques offer higher levels of service life extension. 

Therefore, based on the objectives of this research, a comparative life cycle assessment and life 

cycle cost analysis that focuses on the additional impacts caused by executing MRR processes, 

both from agency and user perspectives, will sufficiently quantify the difference in overall 

impacts of project alternatives so that informed decisions can be made. Inclusion of road use 

phases before and after MRR activities is not necessary.  

Existing LCA and LCCA tools and databases applicable to roadway infrastructure 

maintenance, repair, and rehabilitation have been reviewed and investigated for suitability of the 

research. As a result, GREET®, Motor Vehicle Emission Simulator (MOVES), and Athena 

Pavement LCA are used for life cycle assessment while survey results by Salman et al. (2017), 

RSMeans and other miscellaneous sources are used for life cycle cost analysis, respectively.  

Athena Pavement LCA has been selected for this study due to the following reasons: 
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 It comprehensively covers all aspects in MRR activities in this study including materials, 

transportation, and equipment;   

 It has a material and equipment database that is relatively up-to-date based on industrial 

average data; and 

 It allows modeling of a good number of MRR techniques and customization of materials 

and processes to analyze user-specified construction procedures.  

Similarly, MOVES software is selected for estimating user environmental impacts while 

the work zone is present due to MRR projects because it has up-to-date localized data regarding 

traffic distribution, fuel supply and usage, and environmental information at county level. The 

GREET® database is used to evaluate the environmental impacts of fuels before being consumed 

by vehicles, which, combined with results of MOVES, provides life cycle user environmental 

impacts. RSMeans is selected for agency life cycle cost analysis because of data timeliness and 

comprehensiveness.  

To further elaborate on the LCA-LCCA model, a case study based on an interstate 

highway section in New York State is developed and the overall life cycle impacts are calculated 

for the eight project alternatives. The customization potential of the LCA-LCCA model is 

demonstrated through two examples of the what-if scenario analysis of accelerated methods.  
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4 DECISION FLOWCHARTS AND MCDM MODEL 

As explained in Chapter 1, the first phase of developing a decision support system for roadway 

infrastructure management aims at determining appropriate MRR techniques based on specific 

roadway deficiencies that the project is attempting to address. In this phase, two decision 

flowcharts are proposed to shortlist applicable MRR candidates, one for flexible pavements and 

the other for rigid pavements. Then a multi-criteria decision-making (MCDM) modeling tool is 

developed to evaluate alternative MRR techniques and provide recommendations for the most 

appropriate technique based on twelve criteria.  

4.1 Decision Flowcharts 

Considering that the existing tools tend to include only traditional MRR techniques, decision 

flowcharts covering a higher number of MRR techniques have been developed for flexible 

pavements and rigid pavements, respectively (Figures 6 and 7).  

The proposed flowcharts are derived from decision trees and decision matrices used by 

state DOTs and industry best practices. Although these decision trees and matrices vary greatly 

from one to another, they either form the relationship between the causes of pavement distresses 

and MRR strategies, or define threshold values of pavement performance indicators (e.g. Ride 

Quality Index, RQI) to make MRR recommendations. Some tools also indicate the levels of 

effectiveness (e.g. High, Medium, Low, and Not Applicable) of potential MRR alternatives for 

each type of distress. Due to the fact that existing decision trees and matrices are mostly 

developed in the 2000s or earlier and there is certain degree of disagreement among them, two 

new decision flowcharts that cover a higher number of MRR alternatives are proposed.   
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Figure 6 MRR Technique Selection Flowchart for Flexible Pavement 

Adapted from Hall et al. (2001), NYSDOT (1999), Hicks et al. (2000), Moulthrop et al. (1999), Hunt (1991), and Jahren et al. (1999) 
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Figure 7 MRR Technique Selection Flowchart for Rigid Pavement 

Adapted from Hall et al. (2001), NYSDOT (1999), SDDOT (2010), NCPP (2004), Caltrans Division of Maintenance (2008). 
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Determination of appropriate MRR techniques is performed by answering several 

descriptive questions and concluding on one or more techniques that are suitable for addressing 

the specific pavement distresses. Should the answers for any questions be unclear, it is 

recommended that all potentially applicable techniques be included in the next step of analysis 

using multi-criteria decision-making methods.  

4.2 Multi-Criteria Decision-making Model 

Salman et al. (2017) have conducted a study on the state of practice for the innovative MRR 

techniques of asphalt pavements, where a ten-question survey was distributed to state DOT 

officials and state representatives of FHWA. In one of the questions, highway management 

agencies were asked to rank a number of factors based on their respective importance for the 

decision-making process on whether innovative techniques in general should be utilized. Survey 

responses collected from 31 individuals are summarized in Table 6.  

Table 6 Survey Results on Factors Affecting Decision-making of Innovative MRR Techniques by Salman et al. (2017) 

Factors Affecting Decision-Making Average Ratings* Standard Deviation 

Condition of the Existing Road 4.16 1.16 

Construction GHG Emissions  2.03 1.05 

Construction Schedule  3.26 0.86 

Contractor Availability** 4.33 0.58 

Initial Construction Costs 4.23 1.02 

Lane Closures  3.61 1.02 

Life Cycle Costs 4.10 0.98 

Technical Reliability** 4.00 0.00 

Traffic Delays 3.68 1.01 

User Fuel Consumption 1.84 1.07 

User GHG Emissions 1.84 1.04 

Virgin Materials Used 2.94 0.89 

* Ratings are on a scale of 1 to 5 with 1 being the least important and 5 being the most important 

**Factors specified by survey respondents under the “other” category in the questionnaire 
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Based on the nature of the problem and survey responses, proper multi-criteria decision-

making (MCDM) methods are needed to determine the priorities for each factor so that 

applicable roadway MRR techniques obtained from the decision flowcharts can be analyzed and 

the most appropriate technique(s) can be identified. It is noteworthy that although the survey by 

Salman et al. (2017) targets on innovative MRR techniques for asphalt/flexible pavements, 

factors affecting decision-making procedures identified in the survey are deemed to apply to both 

flexible and rigid pavements.  

4.2.1 Analytical Hierarchy Process 

Following the procedures of Analytical Hierarchy Process (AHP), the pairwise comparison 

matrix are developed to calculate the relative importance of factors between one another (See 

Table 7), where:  

𝑎𝑖𝑗 =
𝑅𝑎𝑡𝑖𝑛𝑔 𝑜𝑓 𝐹𝑎𝑐𝑡𝑜𝑟 𝑖

𝑅𝑎𝑡𝑖𝑛𝑔 𝑜𝑓 𝐹𝑎𝑐𝑡𝑜𝑟 𝑗
                                                                                            (1) 

Table 7 AHP Pairwise Comparison Matrix of Factors 

Pairwise Comparison Matrix CER CGE CS CA ICC LC LCC TR TD UFC UGE VMU 

Condition of the Existing Road 1 2.048 1.277 0.960 0.985 1.152 1.016 1.040 1.132 2.263 2.263 1.418 

Construction GHG Emissions  0.488 1 0.624 0.469 0.481 0.563 0.496 0.508 0.553 1.105 1.105 0.692 

Construction Schedule  0.783 1.603 1 0.752 0.771 0.902 0.795 0.815 0.886 1.772 1.772 1.110 

Contractor Availability 1.041 2.132 1.330 1 1.025 1.199 1.058 1.083 1.178 2.357 2.357 1.476 

Initial Construction Costs 1.016 2.079 1.297 0.975 1 1.170 1.031 1.056 1.149 2.298 2.298 1.440 

Lane Closures  0.868 1.778 1.109 0.834 0.855 1 0.882 0.903 0.982 1.965 1.965 1.231 

Life Cycle Costs 0.984 2.016 1.257 0.945 0.969 1.134 1 1.024 1.114 2.228 2.228 1.396 

Technical Reliability 0.961 1.968 1.228 0.923 0.947 1.107 0.976 1 1.088 2.175 2.175 1.363 

Traffic Delays 0.884 1.810 1.129 0.849 0.870 1.018 0.898 0.919 1 2.000 2.000 1.253 

User Fuel Consumption 0.442 0.905 0.564 0.424 0.435 0.509 0.449 0.460 0.500 1 1.000 0.626 

User GHG Emissions 0.442 0.905 0.564 0.424 0.435 0.509 0.449 0.460 0.500 1.000 1 0.626 

Virgin Materials Used 0.705 1.444 0.901 0.677 0.695 0.813 0.717 0.734 0.798 1.596 1.596 1 
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In a classic AHP, a hierarchical structure consists of criteria and sub-criteria. Analysis is 

conducted in a “top-down” manner with multiple iterations of evaluation. In this research, 

however, in order to avoid complication during the survey process, all factors listed are treated as 

criteria for analysis. As a result, the pairwise comparison matrix of criteria is constructed at a 

single level instead of multiple levels. Following the algorithms of AHP, normalized priorities 

for all factors reflecting their respective importance are obtained through the weighted pairwise 

comparison matrix and are shown in Table 8.  

Table 8 Normalized Priorities of Factors 

Factors Affecting Decision-Making Abbr. Estimated Weights 

Condition of the Existing Road CER 0.104 

Construction GHG Emissions  CGE 0.051 

Construction Schedule  CS 0.081 

Contractor Availability CA 0.108 

Initial Construction Costs ICC 0.106 

Lane Closures  LC 0.090 

Life Cycle Costs LCC 0.102 

Technical Reliability  TR 0.100 

Traffic Delays TD 0.092 

User Fuel Consumption UFC 0.046 

User GHG Emissions UGE 0.046 

Virgin Materials Used VMU 0.073 

 

An important assumption of AHP method is that elements in the hierarchical structure are 

independent from each other on the same level and from those on lower levels; only elements at 

higher level (e.g. criteria) have influence on those at lower level (e.g. sub-criteria). Meanwhile, 

however, considering the nature of decision-making associated with using MRR techniques, the 

factors identified and investigated in the survey have various degrees of interdependency. For 

example, User Fuel Consumption has a major impact on User Greenhouse gas Emission, and 

Traffic Delays are heavily affected by Lane Closures. Should these interdependencies be ignored 
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in MCDM analysis, the final outcomes would be less accurate, and the recommendation of most 

appropriate techniques would be less practically beneficial. Therefore, in order to take into 

consideration the interdependencies among factors, the Analytical Network Process (ANP) 

method is also adopted for the MCDM analysis in this study.  

4.2.2 Analytical Network Process 

In this research, interdependencies between twelve factors are categorized into four levels based 

on magnitude of influence. A pairwise influence matrix is proposed based on common 

understanding of interrelationship between factors, as shown in Table 9. Each cell in the matrix 

shows the magnitude of influence from the factor in the corresponding row (on the left) on the 

factor in the corresponding column (on the top). For a pair of factors, denoted as A and B, the 

magnitude of influence from A on B may not be the same as that from B on A. One example is 

the relationship between Condition of Existing Road and Initial Construction Cost ⸺⸺ the 

former factor has a strong influence on the latter, but the latter does not have discernible impact 

on the former.  

In the ANP algorithm, interdependencies of elements are modeled by comparing the 

levels of influence for two elements on a control element. Based on the magnitude of influence 

categorization in Table 9, to generate ratings of inter-factor influence that can be utilized by 

ANP, Table 10 is developed using a similar ratio scale to conventional AHP/ANP paradigm. For 

each factor as a control criterion, two other factors are compared and the relative importance is 

determined and fed into an interdependency pairwise comparison matrix, resulting in a total of 

twelve interdependency pairwise comparison matrices. Table 11 shows an example of such a 

matrix for the factor of Construction Schedule. 
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Table 9 ANP Pairwise Influence Matrix of Factors 

Pairwise 

Influence 

Matrix 

Influence on 

CER CGE CS CA ICC LC LCC TR TD UFC UGE VMU 

In
fl

u
en

ce
 f

ro
m

 

CER  W S N S W W N W N N W 

CGE N  N N N N W N N N N N 

CS N S  N S S W N W W W N 

CA N W S  S W S W W N N S 

ICC N N W N  N S N N N N W 

LC N N S N W  W N S S W N 

LCC N N W N W N  N N N N N 

TR N W W S W W S  W N N W 

TD N N N N N N W N  V S N 

UFC N N N N N N S N N  V N 

UGE N N N N N N S N N N  N 

VMU N S W N S N W N N N N  

Notes: V- Very Strong Influence; S- Strong Influence; W- Weak Influence; N- Negligible Influence 

 

Table 10 Pairwise Comparison Ratings of Inter-Factor Influence 

Pairwise Comparison Rating of Inter-Factor Influence 

On Factor i 
Influence from Factor k 

Very Strong Strong Weak Negligible 

Influence 

from 

Factor j 

Very Strong 1 3 5 7 

Strong 1/3 1 3 5 

Weak 1/5 1/3 1 3 

Negligible 1/7 1/5 1/3 1 

 

The eigenvector of the interdependency pairwise comparison matrix serves as an input to 

the ANP supermatrix including the overall goal, all twelve criteria, and relative importance 

ratings of influence from two other criteria on this criterion. A publicly accessible software 

program, Super Decision, is used to perform ANP calculations. In Super Decision, the pairwise 

comparison of inter-factor influence is presented in multiple ways including graphical, verbal, 

matrix, questionnaire, and direct. Instead of reciprocals, the ratings of pairwise inter-factor 
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influence are presented by the same value with colorific distinction, as shown in Table 12. The 

unweighted supermatrix of factors in Super Decision is presented in Table 13.   

Table 11 Interdependency Pairwise Comparison Matrix for Construction Schedule 

Interdependency Pairwise Comparison Matrix 

Control:  

Construction Schedule 

CER CGE CA ICC LC LCC TR TD UFC UGE VMU 

S N S W S W W N N N W 

CER S 1 5 1 3 1 3 3 5 5 5 3 

CGE N 1/5 1 1/5 1/3 1/5 1/3 1/3 1 1 1 1/3 

CS S 1 5 1 3 1 3 3 5 5 5 3 

CA W 1/3 3 1/3 1 1/3 1 1 3 3 3 1 

ICC S 1 5 1 3 1 3 3 5 5 5 3 

LC W 1/3 3 1/3 1 1/3 1 1 3 3 3 1 

LCC W 1/3 3 1/3 1 1/3 1 1 3 3 3 1 

TR N 1/5 1 1/5 1/3 1/5 1/3 1/3 1 1 1 1/3 

TD N 1/5 1 1/5 1/3 1/5 1/3 1/3 1 1 1 1/3 

UFC N 1/5 1 1/5 1/3 1/5 1/3 1/3 1 1 1 1/3 

UGE W 1/3 3 1/3 1 1/3 1 1 3 3 3 1 

 

Table 12 Pairwise Comparison Ratings of Inter-Factor Influence 

Pairwise Comparison Rating of Inter-Factor Influence 

On Factor i 
Influence from Factor k 

Very Strong Strong Weak Negligible 

Influence 

from 

Factor j 

Very Strong 1 3 5 7 

Strong 3 1 3 5 

Weak 5 3 1 3 

Negligible 7 5 3 1 

 

With interdependencies of factors taken into consideration, priorities of the twelve factors 

using ANP algorithm are then calculated in Super Decision. Results are compared against 

priorities by AHP in Table 14. It is observed that in ANP, higher emphasis has been placed on 

factors with more profound impact on their peers (e.g. Condition of the Existing Road and 

Construction Schedule), while factors that are heavily influenced by others (e.g. Life Cycle Costs 

and User GHG Emissions) receive lower priorities.  
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Table 13 Unweighted Supermatrix in ANP 

SUPER 

MATRIX 
CER CGE CS CA ICC LC LCC TR TD UFC UGE VMU Goal 

CER 0 0.104 0.189 0.067 0.169 0.132 0.048 0.077 0.120 0.041 0.037 0.132 0.104 

CGE 0.091 0 0.030 0.067 0.029 0.046 0.048 0.077 0.042 0.041 0.037 0.046 0.051 

CS 0.091 0.229 0 0.067 0.169 0.279 0.048 0.077 0.120 0.112 0.100 0.046 0.081 

CA 0.091 0.104 0.189 0 0.169 0.132 0.143 0.231 0.120 0.041 0.037 0.279 0.108 

ICC 0.091 0.383 0.078 0.067 0 0.046 0.143 0.077 0.042 0.041 0.037 0.132 0.106 

LC 0.091 0.383 0.189 0.067 0.070 0 0.048 0.077 0.268 0.209 0.100 0.046 0.090 

LCC 0.091 0.383 0.078 0.067 0.070 0.046 0 0.077 0.042 0.041 0.037 0.046 0.102 

TR 0.091 0.104 0.078 0.333 0.070 0.132 0.143 0 0.120 0.041 0.037 0.132 0.100 

TD 0.091 0.383 0.030 0.067 0.029 0.046 0.048 0.077 0 0.347 0.199 0.046 0.092 

UFC 0.091 0.383 0.030 0.067 0.029 0.046 0.143 0.077 0.042 0 0.338 0.046 0.046 

UGE 0.091 0.383 0.030 0.067 0.029 0.046 0.143 0.077 0.042 0.041 0 0.046 0.046 

VMU 0.091 0.229 0.078 0.067 0.169 0.046 0.048 0.077 0.042 0.041 0.037 0 0.073 

Goal 0 0 0 0 0 0 0 0 0 0 0 0 1 

 
Table 14 Priorities of Factors in ANP and AHP 

Factors Affecting Decision-Making 
Priorities 

ANP AHP 

Condition of Existing Road 0.094 0.104 

Construction GHG Emission 0.050 0.051 

Construction Schedule 0.106 0.081 

Contractor Availability 0.128 0.108 

Initial Construction Cost 0.067 0.106 

Lane Closure 0.101 0.090 

Life Cycle Cost 0.057 0.102 

Technical Reliability 0.115 0.100 

Traffic Delay 0.080 0.092 

User Fuel Consumption 0.072 0.046 

User GHG Emission 0.056 0.046 

Virgin Material Used 0.073 0.073 

 

4.2.3 Multi-Criteria Decision-Making Modeling Tool 

Considering the ease of use and capability of user customization, a multi-criteria decision-

making (MCDM) modeling tool in the form of an Excel file using AHP/ANP methods is 

developed to perform project-specific analysis to identify most appropriate alternatives. The 



 

 

47 

 

MCDM modeling tool integrates AHP calculation procedures, visual displays of pairwise 

comparison results, and drop-down menu options for the selection of relative importance 

descriptions. It also allows generating outputs based on user-defined custom weights for factors 

(the default user-defined weights are ratings provided by NYSDOT from the survey).  

 

Figure 8 MCDM Modeling Tool “Evaluation” Interface 

The MCDM tool in the Excel file consists of Introduction”, “Evaluation”, “Factors”, and 

“Matrices” sheets. In the “Evaluation” sheet, users may use the drop-down menu on the left side 

to determine the relative importance of two alternatives regarding each criterion, as shown in 

Figure 8. Ratings of the two alternatives using AHP priorities, ANP priorities, and custom 

priorities will then be calculated and shown in the bar chart on the right of the same sheet. The 

higher ratings one alternative receives, the more preferable it is compared to its counterpart. The 

“Factors” sheet contains the weights based on the survey results calculated through AHP and 

ANP, and users can apply their custom weights in the last column. The “Matrices” sheet contains 

equations and values used in calculations. Table 15 provides values corresponding to the various 

relative importance categories on a scale of 1 to 9 following the classic AHP scale.  
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Table 15 Pairwise Comparison Rating Scheme 

Pairwise Comparison Rating Scheme 

Evaluation Rating 

Absolutely Inferior 1/9 

Strongly Inferior 1/7 

Fairly Inferior 1/5 

Weakly Inferior 1/3 

Equally Favorable 1 

Weakly Superior 3 

Fairly Superior 5 

Strongly Superior 7 

Absolutely Superior 9 

  

In the hypothetical case in Figure 8, the overall ratings for the two alternatives are 

relatively close. In addition, contradicting results are generated, as two out of the three outputs 

indicate that Alternative A is more favorable while the third outputs advocates Alternative B. 

Therefore, further analysis is needed to determine which alternative is more appropriate.  

4.2.4 Demonstration Case Studies 

Two asphalt pavement MRR projects in Onondaga County, New York, are selected from 

Pavement Data Reports (NYSDOT 2012; NYSDOT 2015) to demonstrate the use of proposed 

MCDM tool. The first case study compares milling and overlay technique with cold in-place 

recycling (CIR) method, and the second case study evaluates full depth reclamation (FDR) and 

total reconstruction. The level of agreement between the recommendations by the MCDM tool 

and the actual techniques utilized by NYSDOT is examined. It should be noted that in the State 

of New York, the decision to use warm mix asphalt (WMA) is generally left to the discretion of 

the contractor. In addition, innovative compaction (IC) has been implemented only in pilot 

projects. Therefore, documentation on projects involving these two techniques was limited.  
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4.2.4.1 I-81 JCT Colvin ST Pavement Rehabilitation Project 

I-81 JCT Colvin St Pavement Rehabilitation Project was undertaken in 2012 with an objective to 

address isolated alligator (fatigue) cracking with low-severity rutting and bumps. The 

rehabilitated highway was a six-lane, 0.46 mile roadway segment of urban principal arterial 

interstate with an annual average daily traffic (AADT) of 79,504 and a peak-hour v/c ratio of 

0.89 at the time of project execution (NYSDOT 2012).  

Based on the decision flowchart and the practices of NYSDOT, the two candidate 

rehabilitation techniques were (A) milling and HMA overlay and (B) cold in-place recycling 

(CIR). As CIR has been used extensively in the region, it features comparable contractor 

availability, technical reliability, as well as construction cost to traditional milling and overlay 

method. Both methods can equally address pavement distresses and require similar traffic 

management plan of lane closures. However, CIR has slightly shorter construction schedule, 

resulting in reduced traffic delay, user fuel consumption, and user GHG emissions. CIR also uses 

fewer virgin materials and generates lower levels of construction GHG emissions. The expected 

life cycle cost for CIR is also lower than that for milling and overlay.  

Figure 9 shows the outputs of the MCDM tool with the information presented above as 

inputs. All methods have ruled alternative B, CIR, as the recommended technique for this 

project. This conclusion coincides with the actual course of action followed by NYSDOT 

(NYSDOT 2012). It is also noteworthy that some of the evaluation results, such as regarding 

contractor availability and technical reliability, may not apply to projects in other localities 

where CIR has not yet been frequently practiced, as the improvement of technical reliability 

largely depends on the prolonged effort by local contractors rather than improvement in the 

agencies’ decision-making processes.  
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Figure 9 MCDM Modeling Tool Modeling Results for I-81 Project 

4.2.4.2 RT11 State St Pavement Rehabilitation Project 

This project was completed in 2014 and it aimed to address the general alligator (fatigue) 

cracking with 19 bumps on a two-lane, 0.26 mile urban roadway segment. This roadway segment 

had an AADT of 6,802 and a peak-hour v/c ratio of 0.5 in 2015. The subbase was unstabilized 

(NYSDOT 2015).  

Based on the decision flowchart and the practices of NYSDOT, the two candidate 

rehabilitation techniques were (A) full depth reclamation (FDR) and (B) total reconstruction. 

Both of these techniques are capable of addressing the distresses encountered on this roadway 

segment. However, FDR is not included in the NYSDOT Work Type Codes, indicating 

questionable technical reliability and contractor availability. Regarding initial construction costs, 

life cycle costs, virgin material used, and construction emissions, FDR has an advantage over 

conventional total reconstruction. Both techniques feature comparable construction schedules 

and require similar traffic management plans, resulting in comparable traffic delays. Since this 
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urban local roadway section has relatively low v/c ratio, the difference between the two 

techniques in terms of impacts on road users, is considered negligible.  

Figure 10 shows the outputs of the MCDM tool with the information presented above as 

inputs. Results using AHP and Custom priorities are in favor of FDR alternative, while the result 

using ANP priorities advocates total reconstruction. This is because ANP assigns higher weights 

to technical reliability and contractor availability, and total reconstruction method prevails under 

these two criteria.  

Considering the small difference between the three results and the fact that outputs are 

not in an agreement, it can be concluded that both techniques are appropriate candidates for this 

project. Therefore, it is reasonably justified that NYSDOT actually used total reconstruction 

method for this project (NYSDOT 2015).  

 

Figure 10 MCDM Modeling Tool Modeling Results for RT11 Project 
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5 LCA-LCCA MODEL 

The LCA-LCCA model identifies the life cycle economic, social, and environmental impacts of 

project alternatives using traditional and non-traditional MRR techniques to provide decision 

makers with quantitative justification of alternative selection.  

5.1 Formulation of Project Alternatives 

5.1.1 Demonstration Roadway Geometry 

To comprehensively identify the life cycle economic, social, and environmental impacts of 

different MRR techniques (both traditional and non-traditional), a demonstration road section is 

created according to NYSDOT specifications and practices, and a number of project-level 

alternatives are developed to reflect different MRR strategies over the life cycle.  

The demonstration road section is a one-mile long single-bound two-lane interstate 

highway with paved shoulders on both sides. Separate sections are created for flexible pavements 

and rigid pavements with the same geometric features. An Interstate section is selected because 

Interstates support most ground freight transport and are therefore crucial to the nation’s 

economy and well-being, and their MRR activities are most labor and material intensive, 

resulting in the largest overall life cycle impacts.  

The lane width is 12 feet, along with shoulders of 6 feet wide on both sides. Materials for 

flexible pavement are HMA PG-70-62 for wearing course of 2” in thickness, HMA PG-64-22 for 

binder and base course of 2” and 6” in thickness, respectively, and granular stone for subbase of 

12” in thickness. Materials for rigid pavement are concrete benchmark 4000 psi for PCC course 

of 10” in thickness and granular stone for subbase of 12” in thickness. Figure 11 shows the 
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courses and overall composition of flexible and rigid pavement. It should be noted that the figure 

is not drawn to scale.  

 

Figure 11 Demonstration roadway pavement geometry: Flexible (left) and Rigid (right) 

5.1.2 MRR Activities 

It is generally acknowledged that a newly built pavement section will experience cycles of 

maintenance, repair, and rehabilitation activities before it is eventually reconstructed. For 

roadways with flexible pavements, a typical cycle starts with maintenance actions such as crack 

sealing, continues with repair actions such as patching, and ends with rehabilitation actions. If all 

MRR activities are being performed properly and there are no structural deficiencies in subbase 

and subgrade courses, the pavement section can be “perpetual”. For roadways with rigid 

pavements, a typical cycle consists of maintenance actions such as joint sealing, and repair or 

rehabilitation actions such as partial or full depth repair and diamond grinding.  

 In this research, major parameters that differentiate project-level alternatives are (1) the 

MRR activities to be performed, (2) the scope and quantities of these activities, and (3) the 

timing of these activities. Tables 16 and 17 summarize the characteristics of all MRR activities 

considered in this research for flexible pavement roadways and rigid pavement roadways, 

respectively. Other MRR activities that apply to composite pavements (e.g. asphalt overlays 

applied to concrete pavements) are not taken into consideration due to high complexity.  
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Table 16 MRR Activities and Characteristics for Roadways with Flexible Pavement 

MRR 

Category 
Activities Quantities and Specifications 

Estimated 

Service Life 

(Years) 

Activity 

Duration 

per lane 

(Days) 

Maintenance Crack Seal 

3/8" wide 1" depth, 1000ft /ln 3 1 

3/8" wide 1" depth, 1500ft / ln 3 1 

3/8" wide 1" depth, 3750ft / ln 4 3 

3/8" wide 1" depth, 4500ft / ln 4 3 

Repair Patch 
2% lane area, 3 inch deep 8 3 

3% lane area, 3 inch deep 8 5 

Rehabilitation 

Mill and HMA or WMA 

Fill 

4"(2" binder + 2" wearing) 15 37 

2" wearing course, no shoulder 9 15 

Hot In-Place Recycling 

(HIPR) 

Recycle 4" + 2" HMA wearing 

course 
15 16 

Cold In-Place Recycling 

(CIR) 

Recycle 4"+ 2" HMA wearing 

course 
15 16 

Full Depth Reclamation 

(FDR) 

Recycle 6" (2" for wearing, binder 

& base) + 2" HMA wearing course 
18 21 

Mill and HMA Fill with 

Intelligent Compaction (IC) 

4" Paving 17 37 

2" Paving, no shoulder 10 15 

 

Table 17 MRR Activities and Characteristics for Roadways with Rigid Pavement 

MRR 

Category 
Activities 

Quantities and 

Specifications 

Estimated 

Service Life 

in Years 

Activity 

Duration 

per lane in 

Days 

Maintenance Concrete Joint Seal 
4400 ft/ln-mile 13 2 

6600 ft/ln-mile 15 2 

Repair and 

Rehabilitation 

Concrete Partial Depth 

Repair 

2% lane area 13 8 

5% lane area 15 13 

Concrete Full Depth Repair 
10% lane area 15 15 

15% lane area 15 20 

Concrete Full Depth Repair 

using Precast Concrete Slabs 

10% lane area 15 4 

15% lane area 15 6 

Diamond Grinding 
Grind 0.2 inch off 

100% lane area 
15 4 

 

The estimated service life values for Mill and HMA/WMA Fill, HIPR, CIR, and FDR are 

obtained from the survey by Salman et al. (2017), while the rest of the estimated service life 

values and quantities and specifications of each activity are obtained from Athena Pavement 
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LCA databases. The duration per lane for each activity is calculated based on the default 

production rates in RSMeans, published production rates from FHWA and State DOT (for 

concrete full depth repair with precast concrete slabs), and recommended curing days by 

NYSDOT when curing is needed. Actual activities may take twice as long since the roadway 

section has two lanes per direction.  

5.1.3 Rehabilitation Schedules 

The estimated service life of each MRR activity is a key input in developing a 60-year 

rehabilitation schedule of each project-level alternative. A total of six alternatives, labeled 

“Traditional”, “Recycling”, “WMA”, “CIR”, “FDR”, and “IC”, are generated for flexible 

pavements, and two other alternatives, labeled “CIP” and “PCP”, are generated for rigid 

pavements. Table 18 shows the example of rehabilitation schedule for alternative “Traditional”, 

where Mill and HMA Fill technique is used as the rehabilitation technique along with other 

maintenance and repair activities that are constant across different alternatives. The timing of 

activities is developed so that it reflects the job sequence in reality, where maintenance 

treatments are applied to the newly rehabilitated roadway, followed by repairs once distresses 

propagate, and eventually rehabilitations are required when distresses are beyond repair. Due to 

the difference in nature between asphalt pavements and concrete pavements, the activities 

involved and their timings are considerably different. Additional rehabilitation schedules can be 

found in Appendix II.    

The following items are worth being highlighted on the development of alternatives: 

 Every rehabilitation schedule starts with a major rehabilitation activity at year 0, 

reflecting the decision made on the technique used for the current project. This is 

different from the scenario where new construction is performed at the very beginning.  
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 Moderate rehabilitation activities use mostly traditional method of Mill and HMA Fill 

except for the “WMA” alternative, which uses Mill and WMA Fill. The major 

rehabilitation activities for “CIR” and “FDR” alternatives have adopted non-traditional 

techniques of CIR and FDR, respectively, because they generally require a minimum 

pavement thickness of 4” and the major rehabilitation activities apply to both wearing 

and binder courses.  

 As for the “IC” alternative, Tennessee Department of Transportation reported that the 

claimed benefit of shortened duration had been largely offset by the additional time spent 

on the learning process to properly apply the IC instruments (Bledsoe 2015). Meanwhile, 

NYSDOT recognized the color-coding feature in the visual display as the only observed 

benefit of using IC, which is hardly quantifiable. Additionally, IC instruments either 

consume a negligible amount of energy compared to the entire paving process (e.g. in the 

case of GPS), or contribute to the overall energy consumption of rollers (e.g. in the case 

of accelerometers, infrared temperature sensors, and processing software), which is 

difficult to differentiate and quantify. As a result, the energy use of IC instruments is also 

excluded. Therefore, the only difference of the “IC” alternative compared to 

“Traditional” alternative considered in this research is the additional estimated service 

life of 1 year for moderate rehabilitation and 2 years for major rehabilitation.  

 The analysis period of 60 years is selected to ensure that all alternatives have equal 

numbers of moderate and major rehabilitation activities, while using 50 years results in 

fewer major rehabilitation activity for “FDR” and “IC” alternatives, leading to less 

meaningful results. However, “FDR” and “IC” alternatives do have fewer maintenance 

and repair activities throughout the entire analysis period.  
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Table 18 Rehabilitation Schedule using Mill and HMA Fill 

Year Service Life MRR Activity Detail 

0 15 M&F HMA 4" (2" wearing + 2" binder) 

3 3 Crack Seal 1000 ft/ln-mile 

6 4 Crack Seal 3750 ft/ln-mile 

10 8 Patch 2% lane area 

15 9 M&F HMA 2" wearing course, no shoulder 

21 8 Patch 3% lane area 

24 15 M&F HMA 4" (2" wearing + 2" binder) 

27 3 Crack Seal 1500 ft/ln-mile 

30 4 Crack Seal 4500 ft/ln-mile 

34 8 Patch 2% lane area 

39 9 M&F HMA 2" wearing course, no shoulder 

45 8 Patch 3% lane area 

48 15 M&F HMA 4" (2" wearing + 2" binder) 

51 3 Crack Seal 1500 ft/ln-mile 

54 4 Crack Seal 4500 ft/ln-mile 

58 8 Patch 2% lane area 

 

After all alternatives (six for flexible pavement and two for rigid pavement) are 

developed, life cycle assessment and life cycle cost analysis are performed to evaluate their 

impacts following triple bottom line of sustainability, and results are compared to those for other 

alternatives of the same pavement type.  

5.2 Life Cycle Assessment of Environmental Impacts 

As discussed before, the scope of LCA in this research only includes the life cycle impacts 

incurred during the execution of an MRR project, assuming different project alternatives have 

the same “before” and “after” conditions. Specifically, for public agencies executing MRR 

activities, emissions and energy use are analyzed during (1) material extraction, processing, and 

manufacturing, (2) material and equipment transportation, and (3) equipment operations. For 

road users, it is assumed that execution of MRR activities would require closure of one lane out 
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of two for a certain period of time and would result in traffic congestion, resulting in increased 

emissions and fuel consumptions. Therefore, additional emissions and energy consumptions 

compared to normal traffic scenarios are calculated for user life cycle environmental impacts.  

5.2.1 Agency Life Cycle Assessment 

Using the information of eight project alternatives from previous section as inputs, a life cycle 

assessment of 60 years is conducted using Athena Pavement LCA software. The transportation 

distances are derived from 2012 Commodity Flow Survey by Census Bureau and the Bureau of 

Transportation Statistics (USDOT and USDOC 2015). Relevant data are shown in Table 19.  

As asphalt mixtures consist of roughly 5% of bitumen and 95% of aggregates by weight, 

the calculated average transportation distance of asphalt mixture materials is 33 miles. For 

materials used for rigid pavement, concrete mixtures have 16% of Portland cement, 37% of sand, 

and 41% of stone aggregate with the rest being water. Therefore the calculated average shipment 

distance is 44 miles. The average distance from site to stockpile is assumed to be 10 miles for all 

alternatives.  

Table 19 Transportation Data from CFS 2012 

SCTG 

Code 

Commodity Average per 

shipment in mile 

110 Sand 51 

120 Gravel and crushed stone 30 

199 Other products of petroleum refining, and coal products,  83 

311 Portland cement 86 

345 Material handling, excavating, boring, and related machinery 

and equipment 

422 
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Due to the fact that Athena Pavement LCA software does not feature use of precast 

concrete pavement as one of the rehabilitation options and that the material and equipment 

database is encrypted for security purposes, an approximation approach is used to model “PCP” 

alternative. It is assumed that “CIP” and “PCP” alternatives use the same amount of concrete for 

full depth repair of distressed pavement sections. Considering that the major equipment for 

“PCP” is truck-mounted crane for transporting, lifting, and placing precast concrete slabs, 

whereas for “CIP” alternative, concrete trucks and pavers are used, the following assumptions 

are made:  

1. The environmental impacts related to materials are identical for the two alternatives.  

2. Trucks are used for both alternatives to transport the same quantity of materials, and, 

therefore, the environmental impacts related to the use of trucks are identical.  

As a result, the differences in the environmental impacts between the two rigid pavement 

alternatives stem from (1) the use of truck-mounted crane in “PCP” versus the use of concrete 

paver in “CIP”, and (2) the transportation of concrete paver in “CIP” only. In order to quantify 

these two components, an additional in-depth modeling is performed for the paving process of 

the concrete full depth repair activity to isolate equipment environmental impacts from the 

overall environmental impacts during on-site and transportation processes as follows: 

1. The environmental impacts of the concrete paving process are calculated based on the 

difference between a typical full depth repair activity and a full depth removal activity.  

2. The environmental impacts due to equipment use are calculated by comparing the values 

of maintenance phase assuming the entire pavement is rehabilitated against 

manufacturing phase with only material-related environmental impacts. The proportions 

of material-related and equipment-related environmental impacts are obtained.  
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3. The combination of results from Step 1 and 2 provides the environmental impacts of 

concrete paver operations. Using the emission factors by Tetra Tech (2015) and USEPA 

(2015) shown in Table 20, the environmental impacts of equipment use for a crane can be 

calculated. For Human Health criterion measured by PM2.5, the emission factor of PM10 

is used for equipment due to data limitations. For criteria in which no emission factors are 

provided, the environmental impacts are assumed to be equal. The operating time for the 

two types of equipment is also taken into consideration, in which the crane is being used 

for a shorter duration than the concrete paver.  

4. The equipment transportation environmental impacts are assumed to be independent from 

the quantities of materials being transported. Then incremental values of material 

quantities are used to obtain various results of overall transportation environmental 

impacts. Regression analysis is performed to find the portion of the overall transportation 

environmental impacts that is constant, which corresponds to equipment transportation 

environmental impacts.  

5. The environmental impacts for equipment operations from Step 3 and the results from 

Step 4 combined reflects the overall difference in environmental impacts for the full 

depth repair activity using PCP compared to CIP. The overall environmental impacts for 

PCP can be calculated accordingly based on the results from the “CIP” alternative.  

Table 20 Emission Factors for Concrete Paver and Crane 

 Equipment  Engine Size  NOx  PM10 a/  SO2  CO2  CH4  N2O  gal/hp-hr b/  

Paver  175 < HP <= 300  2.23 0.13 0.004 536 0.031 0.014 0.053 

Crane  175 < HP <= 300  1.67 0.08 0.004 531 0.03 0.013 0.052 

Global warming potential factor: CO2 = 1, CH4 =25, N2O =298 
Source: Tetra Tech (2015), USEPA (2015) 

With all inputs and methodology defined, the agency LCA results are generated in 

Athena Pavement LCA in various forms, including total and non-renewable primary energy use, 
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fossil fuel consumption, and global warming potential. Table 21 shows the summary of LCA 

results for the maintenance phase in a comparative manner, where the “Traditional” alternative is 

considered as the benchmark for flexible pavement alternatives and the “CIP” alternative is 

considered as the benchmark for rigid pavement alternatives.  

Table 21 Comparative Summary of LCA Results by Athena Pavement LCA 

Criteria GWP TPE NRE FFC AP ODP HHC EP SP 

Flexible 

Pavement 

Traditional 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Recycling 70.4% 65.7% 65.7% 65.7% 71.9% 72.6% 66.8% 72.6% 74.3% 

WMA 97.3% 98.9% 98.9% 98.9% 98.6% 97.6% 99.2% 99.4% 99.5% 

CIR 41.5% 52.8% 52.8% 52.8% 38.6% 37.1% 48.8% 37.5% 33.6% 

FDR 38.5% 47.9% 47.9% 47.9% 36.1% 34.8% 44.5% 35.2% 32.0% 

IC 87.3% 87.3% 87.3% 87.3% 87.3% 87.3% 87.3% 87.3% 87.3% 

Rigid 

Pavement 

CIP 100% 100% 100% 100% 100% 100% 100% 100% 100% 

PCP 85.9% 86.0% 86.1% 86.4% 87.3% 99.9% 86.0% 87.1% 90.2% 

Notes:  

GWP: Global Warming Potential 

PEC: Total Primary Energy  

NRE: Non-renewable Energy 

 

FFC: Fossil Fuel Consumption 

AP: Acidification Potential  

ODP: Ozone Depletion Potential 

 

HHC: Human Health Criteria 

EP: Eutrophication Potential 

SP: Smog Potential 

 

As discussed in the previous section, the overall life cycle environmental impacts during 

the maintenance phase include impacts from materials, equipment operations, and transportation, 

while the initial construction and road use phases are excluded from the research scope. The 

LCA results in absolute values measured by total primary energy, non-renewable energy, fossil 

fuel consumption, acidification potential, global warming potential, HH criteria, ozone depletion 

potential, smog potential, and eutrophication potential are listed in Appendix III.  

Based on the results of comparative LCA, the following observations are made:  

 Within each alternative, the total primary energy, non-renewable primary energy, and 

fossil fuel consumption results are highly similar, indicating that there is minimum use of 

renewable energy during the MRR practices of roadways.  
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 For flexible pavement alternatives, those involving asphalt recycling techniques, 

including recycling through HIPR, CIR, and FDR, provide major reductions of life cycle 

environmental impacts under all parameters because of decreased quantities of virgin 

materials needed. CIR and FDR have achieved even more life cycle environmental 

impact reductions than recycling through HIPR.  

 The “WMA” alternative delivers limited life cycle environmental impact reductions in all 

parameters compared to the “Traditional” alternative. The “IC” alternative generates 

greater life cycle environmental impact reductions compared to “WMA” alternative.  

 For rigid pavement alternatives, “PCP” alternative creates lower life cycle environmental 

impacts in all criteria when compared to the “CIP” alternative.  

5.2.2 User Life Cycle Assessment 

To quantify the life cycle environmental impacts of road users due to the execution of MRR 

activities, the following inputs for MOVES are assumed or obtained from software defaults, 

government reports and databases, and other existing literature: 

 Traffic volume by annual average daily traffic (AADT) (NYSDOT 2015); 

 Hourly traffic distribution (software defaults); 

 Traffic composition measured by percentage of trucks (NYSDOT 2015); 

 Vehicle age distribution (NYSDOT 1997); 

 Link distance (Assumed); 

 Link speeds (Carlson and Austin, 1997); and 

 Operation mode distribution (Qi et al. 2016). 
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To maintain consistency with the agency LCA, the work zone that road users drive 

through is also one mile in length. However, due to the fact that the work zone speed limits are 

usually lower than the regular speed limits, the existence of work zone will create a shockwave 

to the upstream section of the road, where vehicles are expected to slow down and merge to the 

open lane. Similarly, once vehicles drive past the work zone, they will most likely accelerate and 

resume to regular speed shortly. Therefore, vehicle speeds in upstream, work zone, and 

downstream segments are different from the regular speeds without a work zone.  

A two-lane three-link demonstration roadway section is developed to estimate user 

environmental impacts using MOVES based on a section of I-481 interstate highway at 

Onondaga Town Line / Syracuse City Line. Figure 12 shows a sketch of the roadway with 

upstream link of 0.5 mile, work zone link of 1 mile, and downstream link of 0.5 miles Traffic 

information and vehicle age distribution are listed in Table 22 with slight simplification from the 

original NYSDOT data.  

Table 22 Traffic Information and Vehicle age distribution inputs for MOVES 

Data Type Values Sources 

Traffic 

Information 

AADT = 30,000; 

13% Truck  

NYSDOT 

2015 

Vehicle Age 

Distribution 

for Cars: 

Age and 

Percentage 

0 1 2 3 4 5 6 

NYSDOT 

1997 

0.05 0.07 0.08 0.07 0.06 0.06 0.06 

7 8 9 10 11 12 13 

0.07 0.08 0.08 0.08 0.07 0.05 0.04 

14 15 16 17 18 19 20 

0.02 0.01 0.01 0.01 0.01 0.01 0.01 

Vehicle Age 

Distribution 

for Trucks: 

Age and 

Percentage 

0 1 2 3 4 5 6 7 

0.01 0.02 0.02 0.02 0.06 0.07 0.07 0.06 

8 9 10 11 12 13 14 15 

0.06 0.06 0.07 0.08 0.08 0.08 0.06 0.03 

16 17 18 19 20 21 22 23 

0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01 
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Figure 12 Sketch of Roadway Section with Three Links used in MOVES 

Regarding the vehicle operation mode distribution used for each link, Qi et al. (2016) 

concludes that the percentage of vehicles at different operation modes may be determined by the 

average speed range, as shown in Table 23. The suggested values indicate that as the vehicle 

average speed decreases, an increased portion of vehicles will perform braking, low speed 

coasting, and low speed cruise or acceleration.  

Table 23 Vehicle Operation Mode Distribution and Speed by Qi et al. (2016)  

Operation Distribution vs Speed (mph) 60–70 50–60 40–50 30–40 10–20 

Braking 0.024 0.05 0.078 0.105 0.138 

Idling 0 0 0 0 0.012 

Low Speed Coasting; VSP< 0; 1<=Speed<25 0 0 0.003 0.016 0.288 

Cruise/Acceleration; 0<=VSP< 3; 1<= Speed<25 0 0 0.004 0.013 0.332 

Cruise/Acceleration; 3<=VSP< 6; 1<=Speed<25 0 0 0 0.008 0.11 

Cruise/Acceleration; 6<=VSP< 9; 1<=Speed<25 0 0 0 0.003 0.041 

Cruise/Acceleration; 9<=VSP<12; 1<=Speed<25 0 0 0 0.002 0.013 

Cruise/Acceleration; 12<=VSP; 1<=Speed<25 0 0 0 0 0.03 

Moderate Speed Coasting; VSP< 0; 25<=Speed<50 0 0.01 0.167 0.222 0.019 

Cruise/Acceleration; 0<=VSP< 3; 25<=Speed<50 0 0.006 0.111 0.151 0.004 

Cruise/Acceleration; 3<=VSP< 6; 25<=Speed<50 0 0.008 0.148 0.153 0.001 

Cruise/Acceleration; 6<=VSP< 9; 25<=Speed<50 0 0.008 0.106 0.138 0.002 

Cruise/Acceleration; 9<=VSP<12; 25<=Speed<50 0 0.004 0.078 0.074 0.001 

Cruise/Acceleration; 12<=VSP<18; 25<=Speed<50 0 0.003 0.095 0.058 0.001 

Cruise/Acceleration; 18<=VSP<24; 25<=Speed<50 0 0.001 0.025 0.012 0 

Cruise/Acceleration; 24<=VSP<30; 25<=Speed<50 0 0 0.007 0.004 0 

Cruise/Acceleration; 30<=VSP; 25<=Speed<50 0 0.001 0.014 0.021 0.009 

Cruise/Acceleration; VSP< 6; 50<=Speed 0.238 0.33 0.058 0.008 0 

Cruise/Acceleration; 6<=VSP<12; 50<=Speed 0.337 0.315 0.046 0.003 0 

Cruise/Acceleration; 12<=VSP<18; 50<=Speed 0.242 0.162 0.023 0.003 0 

Cruise/Acceleration; 18<=VSP<24; 50<=Speed 0.098 0.051 0.016 0 0 

Cruise/Acceleration; 24<=VSP<30; 50<=Speed 0.024 0.013 0.003 0 0 

Cruise/Acceleration; 30<=VSP; 50<=Speed 0.035 0.038 0.016 0.006 0 
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To determine the additional user environmental impacts of lane closure scenario 

compared to regular scenario where there is no work zone, a more detailed analysis is conducted 

following the diagram shown in Figure 13. 

 

Figure 13 Diagram for User Environmental Impact using MOVES 

Due to the fact that traffic volume varies within a single day and between weekdays and 

weekends, it is necessary to calculate the hourly level of service (LOS) for both weekdays and 

weekends to reflect the degree of congestion and determine the average speed under each LOS. 

The default values in MOVES for hourly distribution of daily traffic and daily distribution of 

traffic within a week in Onondaga County are used to obtain hourly traffic volume under an 

AADT of 30,000, as shown in Figure 14. Then, hourly LOS can be calculated based on average 

vehicle spacing (see Table 24) following the definitions by 2010 Highway Capacity Manual. 

 

Figure 14 Hourly traffic distribution for demonstration highway section 
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Table 24 Vehicle Spacing under each level of service. 

Level of 

Service (LOS) 

Description Lowest average Vehicle 

Spacing (ft) 

A Free flow 550 

B Reasonably free flow 330 

C Stable flow 220 

D Approaching unstable flow 160 

E Unstable flow, operating at capacity 120 

F Forced or breakdown flow <120 
 

Two lanes are used to serve the hourly traffic volumes when calculating average vehicle 

spacing to determine hourly LOS for regular traffic scenario. In the case of one lane closure due 

to MRR activities, assuming daily and hourly traffic volumes remains the same with the regular 

traffic scenario, the vehicle density in the upstream link, where merging actions take place, is 

expected to increase dramatically, resulting in a lower LOS compared to the regular traffic 

scenario (e.g. from LOS of B in regular scenario to LOS of E in lane closure scenario). After 

merging is completed and vehicles enter the work zone, they are expected to maintain a speed of 

45 mph until they reach the downstream link, where they would most likely accelerate to the 

regular speeds shortly.  

For both scenarios, regular and MRR, the daily traffic volumes under each LOS are 

calculated as shown in Table 25.  

Table 25 Daily traffic volumes under each level of service for regular scenario and MRR scenario 

 Daily Traffic volumes under each LOS 

Level of Service (LOS) A B C D E F 

Regular Weekday 5170 17402 9447 0 0 0 

Weekend 7374 17577 0 0 0 0 

MRR Weekday 1052 1166 1818 4028 12516 11441 

Weekend 1250 2278 3730 3910 13784 0 
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The average vehicle speeds under each LOS adopted by EPA are shown in Table 26. The 

inputs used for MOVES are rounded to integers with LOS A through C of 60 mph, LOS D of 53 

mph, LOS E of 30 mph, and LOS F of 19 mph. EPA also specified a “high speed” of 

approximately 63 mph on top of LOS A through C, and this speed is selected for the average 

speed under regular traffic scenario where there are no flow restrictions. A summary of average 

speed values for each scenario and link is shown in Table 27. With these speed values, the 

operation mode distribution can be determined by referring to the suggested values in 

corresponding columns in Table 23. Appendix IV shows the detailed vehicle operation mode 

distribution for each link under both regular traffic and MRR scenarios.  

Table 26 Average Speed in mph under each level of service 

Level of Service (LOS) A – C D E F 

Average Speed 59.7 52.9 30.5 18.6 
Source: Carlson and Austin. (1997) 

Table 27 Average Speed in mph for scenarios and links 

Link Distance 
Regular 

Scenario 

MRR Scenario 

LOS A-C LOS D LOS E LOS F 

Upstream 0.5 mile 63 60 53 30 19 

MRR 1 mile 63 45 45 45 45 

Downstream 0.5 mile 63 60 60 60 60 
 

As all inputs required for MOVES become available, modeling is performed for five 

different speed combinations shown in Table 27 with one for regular scenario and four for MRR 

scenarios. The modeling results show a number of environmental impacts such as CO2 

equivalent emissions, fossil energy use, and total energy use. After comparing the modeling 

results of MRR scenarios with their counterparts of Regular scenario, the daily additional 

environmental impacts due to lane closure caused by MRR activities are obtained considering 

the daily traffic volume under each LOS shown in Table 25.  
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These environmental impacts calculated with MOVES are generated due to fuel 

combustions in engines of cars and trucks, while the “upstream” environmental impacts 

generated during the production and transportation of fuels can be obtained from the GREET® 

model where the “Well-to-Pump” environmental impacts of a variety of products including E10 

gasoline and conventional diesel are provided. Table 28 shows the GREET® data relevant to this 

research.  With the production and transportation environmental impacts combined with 

combustion environmental impacts, the daily additional user life cycle environmental impacts are 

calculated as shown in Table 29.  

Table 28 “Well to Pump” Environmental Impact Per 1 MJ of Product from GREET 

 Greenhouse Gas (g) Fossil Energy (KJ) Total Energy(KJ) 

E10 Gasoline 24.27 1200 1286 

Conventional Diesel 18.38 1204 1210 

 

Table 29 Daily additional life cycle environmental impacts 

 CO2_Equiv(kg) Fossil Energy (MJ) Total Energy(MJ) 

Weekday 3806 83892 90907 

Weekend 2047 45081 48925 
  

In order to identify the overall environmental impacts during MRR activities throughout 

the analysis period, the duration of lane closure on weekdays and weekends are needed for each 

alternative over 60 years. RSMeans is the primary source used to estimate time needed for each 

activity based on typical daily production rate. Other miscellaneous sources regarding curing 

time needed for certain techniques such as CIR, FDR, and concrete paving have also been 

investigated. The duration of lane closure needed for each project alternative throughout the life 

cycle is listed in Table 30 measured by number of weekdays and weekends per lane. Combining 

the daily additional environmental impacts (Table 29) with duration of lane closure in days 
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(Table 30), the overall life cycle environmental impacts per lane can be calculated as shown in 

Table 31.  

Table 30 Lane closure durations per lane for each alternative over life cycle 

Alternative 
Lane Closure Days  

Weekday Weekend 

Traditional 172 50 

Recycling 103 20 

WMA 172 50 

CIR 103 20 

FDR 106 26 

IC 166 50 

CIP 114 38 

PCP 83 26 
 

Table 31 User environmental Impacts for each alternative per lane 

Alternative CO2_Equiv(kg) Fossil Energy (MJ) Total Energy(MJ) 

Flexible 

Pavement 

Traditional 7.57E+05 1.67E+07 1.81E+07 

Recycling 4.33E+05 9.54E+06 1.03E+07 

WMA 7.57E+05 1.67E+07 1.81E+07 

CIR 4.33E+05 9.54E+06 1.03E+07 

FDR 4.57E+05 1.01E+07 1.09E+07 

IC 7.34E+05 1.62E+07 1.75E+07 

Rigid 

Pavement 

CIP 5.12E+05 1.13E+07 1.22E+07 

PCP 3.69E+05 8.14E+06 8.82E+06 

 

Assuming that MRR activities taking place in the closed lane are independent from the 

vehicle operations on the open lane, the user life cycle environmental impacts are solely related 

to the duration of lane closure. Therefore, alternatives that require longer periods of lane closures 

(e.g. “Traditional” and “WMA”) have higher life cycle user environmental impacts compared to 

the ones that require shorter periods of lane closure (e.g. “CIR and FDR”). For rigid pavement 

alternatives, “PCP” results in lower user life cycle environmental impacts compared to “CIP”, 

which is a major motivation to implement precast concrete pavement systems despite potentially 

higher agency costs.  
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5.2.3 Summary of Life Cycle Assessment Results 

The combined results of agency LCA and user LCA are shown for each alternative per lane with 

respect to global warming potential measured by CO2 equivalent emissions (Figure 15), fossil 

fuel consumption (Figure 16), and total energy consumption (Figure 17). Detailed results are 

listed in Appendix V.  

 

Figure 15 Life Cycle CO2 equivalent emissions 

 

Figure 16 Life Cycle Fossil Energy Consumption 
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Figure 17 Life Cycle Total Energy Consumption 

 

Results show that regarding these three major life cycle environmental impact categories, 

agency impacts account for a large portion of the overall environmental impacts, which verifies 

the importance of taking agency life cycle environmental impacts into consideration during 

decision-making processes.  

Flexible pavement MRR alternatives that involve recycling, including “Recycling”, 

“CIR”, and “FDR” create lower overall life cycle environmental impacts than other flexible 

pavement alternatives. Similarly, “PCP” alternative for rigid pavement creates lower overall 

environmental impacts compared to “CIP” alternative over the life cycle.  

Public agencies can utilize these results in the determination of MRR project alternatives 

according to their specific goals and objectives in terms of sustainability. These results can also 

provide estimates on the potential reductions of life cycle environmental impacts by switching to 

non-traditional or accelerated alternatives from traditional techniques.  
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5.3 Life Cycle Cost Analysis of Economic and Social Impacts 

Out of the same consideration with LCA of project alternatives, the life cycle cost analysis 

(LCCA) of this research focuses only on the costs incurred during the execution of MRR 

activities and excludes cost entries such as the roadway initial construction costs and user costs 

before and after the MRR activities. Specifically, the components of LCCA are (1) agency costs 

on MRR activities, (2) user costs due to additional fuel consumption, (3) user costs due to travel 

time delay, and (4) user costs due to increased number of crashes. These components cover the 

majority of direct social-economic impacts of MRR activities.  

The primary data sources of LCCA for agency costs are survey results by Salman et al. 

(2017), state DOT and FHWA reports, and RSMeans; while data sources of LCCA for user costs 

include U.S. Department of Energy (USDOE), U.S. Department of Transportation (USDOT), 

DataUSA, New York State Department of Transportation (NYSDOT), National Highway Traffic 

Safety Administration (NHTSA), as well as RSMeans.  

5.3.1 Agency Life Cycle Cost Analysis 

Through the national survey of state DOTs, data regarding the costs of implementing WMA 

overlay, CIR, and FDR were collected with sample sizes of 10, 10, and 8, respectively. Cost data 

regarding IC is obtained from literature, where on average the IC instrumentations incur an 

additional cost of 3% (Bledsoe 2015). The costs of performing Crack Seal, Patch, Mill and HMA 

Fill, and Recycling using HIPR are calculated using RSMeans 2016, which also provides 

supplementary information to cost entries in WMA overlay, CIR, and FDR alternatives with 

adjustments of localities. Table 32 summarizes the national average cost of all the activities.  
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Table 32 Cost Information of MRR Activities 

MRR Activities Quantities and Specifications 
Cost in K$/ 

lane 

Crack Seal 

3/8" wide 1" depth, 1000ft / ln 2.2 

3/8" wide 1" depth, 1500ft / ln 3.3 

3/8" wide 1" depth, 3750ft / ln 8.3 

3/8" wide 1" depth, 4500ft / ln 10.0 

Patch 
2% Lane area, 3 inch deep 13.8 

3% Lane area, 3 inch deep 21.1 

Mill and HMA Fill 
4"(2" binder + 2" wearing) 358.5 

2" wearing course, no shoulder 136.6 

Hot In-Place Recycling Recycle 4" + 2" HMA wearing course 268.8 

Warm Mix Asphalt 
4" Overlay 341.0 

2" Overlay, no shoulder 130.4 

Cold In-Place Recycling Recycle 4"+ 2" HMA wearing course 271.2 

Full Depth Reclamation Recycle 6"+ 2" HMA wearing course 369.5 

Intelligent Compaction 
4" Paving 369.2 

2" Paving, no shoulder 140.7 

Concrete Joint Seal 
1/2" wide 2" depth, 4400 ft/ln-mile 7.8 

1/2" wide 2" depth, 6600 ft/ln-mile 11.7 

Concrete Partial Depth 

Repair 

2% lane area, 2 inch deep 19.5 

5% lane area, 2 inch deep 48.8 

Concrete Full Depth 

Repair 

10% lane area 133.9 

15% lane area 200.8 

Concrete Full Depth 

Repair using Precast 

Concrete Slabs 

10% lane area 295.2 

15% lane area 442.8 

Diamond Grinding Grind 0.2 inch off 100% lane area 49 

  

The cost entries over the analysis period of 60 years can be obtained. Table 33 shows the 

example of “Traditional” alternative, and cost entries of all alternatives are listed in Appendix II 

under “Cost/lane (K$)” column. With a discount rate of 4%, a cost breakdown over the analysis 

period is developed in Figure 18 for the same alternative, where all future cost entries are 

discounted to present values in 2016 U.S. dollars. Similarly, the life cycle costs for other 

alternatives are calculated based on respective cost entries over 60 years, and a sensitivity 

analysis is conducted with different values of discount rates from 3% to 7%. Table 34 shows the 

results of agency LCCA in present values measured in 1,000 USD per lane.  
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Table 33 Cost Entries of “Traditional” Alternative 

Year MRR Activity Detail Cost in K$/ln 

0 M&F HMA 4" (2" wearing + 2" binder) 358.5 

3 Crack Seal 1000 ft/ln 2.2 

6 Crack Seal 3750 ft/ln 8.3 

10 Patch 2% Lane area 13.8 

15 M&F HMA 2" wearing course, no shoulder 136.6 

21 Patch 3% Lane area 21.1 

24 M&F HMA 4" (2" wearing + 2" binder) 358.5 

27 Crack Seal 1500 ft/ln 3.3 

30 Crack Seal 4500 ft/ln 10.0 

34 Patch 2% Lane area 13.8 

39 M&F HMA 2" wearing course, no shoulder 136.6 

45 Patch 3% Lane area 21.1 

48 M&F HMA 4" (2" wearing + 2" binder) 358.5 

51 Crack Seal 1500 ft/ln 3.3 

54 Crack Seal 4500 ft/ln 10 

58 Patch 2% Lane area 13.8 
 

 

Figure 18 Agency Cost Entries of “Traditional” Alternative with 4% Discount Rate 

Table 34 Life Cycle Costs of Alternatives with Different Discount Rates 

Alternative 
Agency Life Cycle Costs in K$ 

DR=3% DR =4% DR=5% DR=6% DR=7% 

Flexible 

Pavement 

Traditional 1609 1400 1249 1137 1053 

Recycling 1298 1123 996 902 832 

WMA 1536 1336 1191 1085 1005 

CIR 1306 1131 1003 909 838 

FDR 1540 1335 1190 1086 1010 

IC 1556 1349 1204 1099 1022 

Rigid 

Pavement 

CIP 2005 1785 1636 1534 1461 

PCP 3444 3079 2834 2666 2549 
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Major observations on agency LCCA results include:  

 For flexible pavement alternatives, “CIR” and “Recycling” alternatives have the lowest 

life cycle costs.  

 The life cycle costs of “Traditional” and “WMA” alternatives are highly comparable; the 

life cycle costs of “FDR” and “IC” alternatives are slightly lower than the “Traditional” 

alternative.  

 For rigid pavement alternatives, life cycle costs of “PCP” are much higher than “CIP”.  

 The absolute values of agency LCCA results are highly sensitive to the discount rates.  

In addition, part of the cost data for WMA overlay, CIR, and FDR activities are obtained 

from survey by Salman et al. (2017) with relatively small sample sizes, which may not provide 

results as representative as those estimated using RSMeans. Therefore, the relatively low agency 

costs for “WMA”, “CIR”, and “FDR” alternatives may not be readily achievable, especially if 

contractor availability is limited.  

5.3.2 User Life Cycle Cost Analysis 

In evaluating user-related economic and social impacts, costs of travel time delay, costs of 

additional fuel consumption, and costs of increased crash events are considered in the user 

LCCA. Daily costs of travel time delay are calculated based on the additional travel time of each 

vehicle due to MRR activities, the value of time for each vehicle, and daily traffic volume on 

weekdays and weekends. Daily costs of additional user fuel consumption are calculated based on 

the daily additional fossil fuel consumption using MOVES results, energy density of fuels, and 

unit costs of fuels. Daily costs of increased crash events are calculated based on daily additional 

number of crashes along with costs of crashes.  
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5.3.2.1 Costs of Travel Time Delay 

Using the average speeds of links from Table 27, the total additional travel time per vehicle 

under each LOS can be obtained as shown in Table 35. Combining this information with the 

daily traffic volumes under each LOS (shown in Table 30), the daily additional travel time can 

be calculated as 543 vehicle-hours on weekdays and 297 vehicle-hours on weekends.  

Table 35 Additional Travel Time per Vehicle under each LOS 

Link Distance 
Regular 

Scenario 

MRR Scenario 

LOS A-C LOS D LOS E LOS F 

Upstream 0.5 mile 63 60 53 30 19 

MRR 1 mile 63 45 45 45 45 

Downstream 0.5 mile 63 60 60 60 60 

Travel Time (Second) 

Upstream 0.5 mile 28.57 30 33.96 60 94.74 

MRR 1 mile 57.14 80 80 80 80 

Downstream 0.5 mile 28.57 30 30 30 30 

Total 2 miles 114.29 140 143.96 170 204.74 

Additional Travel Time (Second) 25.71 29.68 55.71 90.45 
  

To determine the appropriate monetary value of user travel time under the specific conditions in 

this research, the following observations are used: 

 According to the guidelines by USDOT (2011) regarding the value of travel time, for 

passenger cars, local personal travel, intercity travel, and business travel are valued at 

50%, 70%, and 100% of hourly income, respectively.  

 The Passenger Travel Factors and Figures by USDOT (2015) also concluded that in 

2009, 25% of personal total miles traveled are for work and work-related purposes.  

 Daily traffic distribution of Onondaga County from MOVES database shows that peak-

hour traffic volume accounts for more than half of daily traffic volume. 

Therefore, the following assumptions are made:  
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 All truck travels are assumed to be work-related. 

 Intercity traffic volumes are assumed to remain constant throughout the day. 

 Peak hour traffic consists of both local traffic and intercity traffic, while non-peak hour 

traffic consists of only intercity traffic.  

As a result, it is calculated that for passenger cars, 70% of personal travels are local 

travels while the remaining 30% are intercity travels. Then the overall fractions of passenger car 

traffic include 25% for work-related traffic, 52.5% for local personal traffic, and 22.5% for 

intercity personal traffic. Based on the USDOT guidelines, the overall value of time for 

passenger cars is 67% of hourly income. According to DATAUSA, the 2016 median household 

income for Onondaga County, NY, is $57,365, and the average vehicle occupancy by NYSDOT 

(2012) is 1.67 for passenger cars and 1.057 for trucks. Therefore, considering truck traffic 

accounts for 13% of the overall traffic, the value of time is calculated as $30.64 per vehicle-hour, 

and the daily additional costs of travel time delay are $16,641 for weekdays and $9,111 for 

weekends.  

The user life cycle cost of travel time delay can be obtained as shown in Figure 19 for 

“Traditional” alternative as an example. Detailed results are included in Appendix VI.  

 

Figure 19 User Time Cost Entries of “Traditional” Alternative with 4% Discount Rate  
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5.3.2.3 Costs of Additional Fuel Consumption 

Based on the user environmental impacts from MOVES, the additional fossil fuel consumption 

in MJ can be calculated for passenger cars and trucks under each LOS, as shown in Table 36. 

The energy density values for gasoline and diesel fuels are obtained from EPA as 137.16 

MJ/Gallon and 144.54 MJ/Gallon, respectively. The fuel costs in Onondaga County as of August 

2016, as reported by USDOE, are $2.219/Gallon and $2.406/Gallon for gasoline and diesel, 

respectively. Therefore, the daily costs of additional fuel consumption are calculated as $283 for 

weekdays and $138 for weekends. The unit costs of fuels are assumed to be constant throughout 

the analysis period due to the complexity of predicting future fuel prices.   

Table 36 Additional Fossil Fuel Consumption in MJ per Vehicle under each LOS 

LOS Passenger Car Truck 

ABC 0.180 0.240 

D 0.218 0.292 

E 0.438 0.562 

F 0.898 0.758 
  

Based on the rehabilitation schedule for each alternative and the durations of lane closure, 

the additional life cycle user fuel costs can be calculated. Figure 20 shows an example of 

“Traditional” alternative using a discount rate of 4%. The full results are listed in Appendix VI.  

 

Figure 20 User Fuel Cost Entries of “Traditional” Alternative with 4% Discount Rate  
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5.3.2.4 Costs of Increased Crash Events 

Due to the existence of work zone where MRR activities are being performed, assuming daily 

traffic volumes remain constant, the v/c ratio is going to increase, which results in changes in the 

crash rate based on previous studies. Under the same configurations used in MOVES, the change 

in crash rates that leads to potentially increased crash events occur most significantly at the 

upstream link, where vehicle merging occurs before entering the single-lane work zone. 

Therefore, the impacts of increased v/c ratios on crash rates are investigated only for the 

upstream link, since traffic conditions in MRR and downstream links are not as complex.  

The capacity per lane of the interstate highway in this research is calculated using the 

relevant equations from Highway Capacity Manual 2000:  

FFS = BFFS – fLW-fLC- fN – fID                                       (2) 

 Where:  

FFS = Free Flow speed 

BFFS = base free flow speed 

fLW = adjustment factor for lane width 

fLC = adjustment factor for right shoulder lateral clearance 

fN = adjustment factor for number of lanes 

fID = adjustment factor for interchange density 

 

BFFS is set at 70 mph for urban highways; fLW is selected as 0.0 based on the lane width 

of 12 feet; fLC is selected as 0.0 for two lanes in one direction with right shoulder width of 6 feet; 

fN is selected as 4.5 for 2 lanes; and fID is selected as 1.0 for small urban area size. Therefore, 

FFS is calculated as 64.5 mph.  

BaseCap = 1,700 + 10FFS; for FFS <= 70 (3) 

PeakCap = BaseCap * PHF * N * fHV * fp (4) 
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fHV =            1            

1 + PT(ET - 1) 
 

(5) 

Where:  

PHF = Peak Hour Factor 

N = Number of lanes in one direction 

fHV = Adjustment factor for heavy vehicles 

fp = Adjustment factor for driver population 

PT = Proportion of trucks and buses in the traffic stream, expressed as a decimal 

ET = Passenger-car equivalents = 1.5 for all urban freeways 

 

Peak hour factor is 0.90 for initial v/c below 0.81 and 0.95 for initial v/c above 0.9025. 

For initial v/c values in between 0.81 and 0.9025, PHF = (0.9025*v/c)0.5 / 0.95; N equals to 1 for 

MRR scenario; PT is 0.13; fp is 1.0 for urban freeways. The peak capacity is then obtained as 

between 1982 and 2092 depending on the PHF values used. With hourly traffic volume available 

from MOVES, hourly v/c ratios can be calculated.  

Research by Zhou and Sisiopiku (1997) established relationship between v/c ratios and 

crash rates for weekdays and weekends, where crash rates measured by number of accidents per 

100 million vehicle miles traveled (100 MVMT) are related to v/c ratios in the following 

polynomial equations: 

Weekdays: Accident = 488 (v/c)2 – 494 (v/c) + 248                                         (6) 

Weekends: Accident = 592 (v/c)2 – 755 (v/c) + 312                                         (7) 

Based on the hourly v/c ratios under MRR and regular traffic scenarios, the changes in 

hourly crash rates are calculated. Therefore, the number of daily additional crashes per 100 

MVMT are calculated for weekdays and weekends and shown in Table 37 after integrating the 

daily traffic volumes respectively. The detailed results are shown in Appendix VII.  
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Table 37Additional Crashes per 100 MVMT for Weekdays and Weekends 

 Weekdays Weekends 

Number of Crashes for 100 MVMT 2748073 -731364 

 

It is noteworthy that on weekends, the number of additional crashes is negative, 

indicating an improvement in traffic safety caused by MRR activities. This is because the 

equations by Zhou and Sisiopiku (1997) have optimum values of v/c ratios (between 0.5 and 0.6 

for weekdays and between 0.6 and 0.7 for weekends) to achieve the least numbers of crashes. 

For very low v/c ratios that most likely represent night and early morning traffic conditions, poor 

visibility, fatigue, excessive speeding, and higher rates of driving while intoxicated may 

contribute to higher accident rates. As v/c ratio increases, drivers tend to become more cautious 

and maintain proper speed, which leads to lower accident rates until very high v/c ratio is 

reached where major congestion creates higher possibility of multi-vehicle crashes. Because of 

the work zone in MRR scenario, the weekend hourly v/c ratios are closer to the “safest” value 

compared to those in regular traffic scenario, leading to a negative number of additional crashes.  

The cost of each vehicle crash varies greatly depending on locality, severity, and the 

boundaries of impacts being considered. According to NYSDOT (2016), direct economic costs 

of one crash event in 2015 range from $3,800 for a property-damage-only (PDO) scenario to 

$3,355,700 for a fatal scenario, shown in Table 38.  

Table 38 Direct Economic Cost per Crash (NYSDOT 2016) 

Crash Classifications Fatal Injury PDO 

Direct Economic Cost in 2015 USD 3,355,700 90,100 3,800 

 

NHTSA also concluded that the societal harm from vehicle crashes due to loss of quality-

of-life accounts for 71% of the overall impacts, and the remaining 29% corresponds to direct 

economic costs (Blincoe et al. 2015). These observations form the basis on which the costs of 
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crashes are determined, and an average of $34,583 is calculated as the direct economic cost for 

each crash event.  

Following the same methodology used for calculating cost of user time delay and cost of 

additional fuel consumption, cost entries can be developed over the life cycle of 60 years for 

each alternative considering both direct economic cost (29% of the overall cost) and loss of 

quality-of-life cost (71% of the overall cost). Figure 21 shows an example of “Traditional” 

alternative using a discount rate of 4%, and detailed results are listed in Appendix VI.  

 

Figure 21 User Crash Cost Entries of “Traditional” Alternative with 4% Discount Rate 

5.3.2.4 Summary of User Life Cycle Costs 

As discussed before, user life cycle costs consist of (1) costs of travel time delay, (2) costs of 

additional fuel consumption, and (3) costs of additional crashes.  

Using a discount rate of 4%, the total user life cycle costs for each alternative is listed in 

Table 39, and the sensitivity analysis results using different discount rates from 3% to 7% are 

summarized in Table 40. Since the calculations of user costs in all three sub-categories are based 

on lane closure durations, alternatives that require fewer days of lane closure throughout the 

analysis period have lower user life cycle costs.  
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Table 39 User Life Cycle Costs using 4% Discount Rate 

Alternative 
User Life Cycle Costs in K$ (4% discount rate) 

Time Delay Fuel Crash Total 

Flexible 

Pavement 

Traditional 3107 52 483 3642 

Recycling 1646 28 276 1949 

WMA 3107 52 483 3642 

CIR 1646 28 276 1949 

FDR 1682 28 271 1981 

IC 2899 49 449 3396 

Rigid 

Pavement 

CIP 2103 35 319 2458 

PCP 1506 25 232 1763 

 

Table 40 Sensitivity Analysis of User Life Cycle Costs 

Alternative 
User Life Cycle Costs in K$ 

DR=3% DR =4% DR=5% DR=6% DR=7% 

Flexible 

Pavement 

Traditional 4205 3642 3234 2933 2707 

Recycling 2302 1949 1691 1498 1350 

WMA 4205 3642 3234 2933 2707 

CIR 2302 1949 1691 1498 1350 

FDR 2342 1981 1723 1533 1392 

IC 3929 3396 3018 2744 2542 

Rigid 

Pavement 

CIP 2797 2458 2224 2058 1939 

PCP 2012 1763 1591 1469 1380 

 

5.3.3 Summary of Life Cycle Cost Analysis Results 

With agency LCCA and user LCCA results available, the overall life cycle costs for all 

alternatives are calculated and summarized in Table 41 using a discount rate of 4%. The 

sensitivity analysis results of overall life cycle costs are included in Table 42. It is worth noting 

that the agency life cycle costs are national average values from the survey and RSMeans, 

whereas user life cycle costs are using data from Onondaga County, NY. Therefore, an 

adjustment for locality is made by applying a location factor of 0.983 from RSMeans to agency 

life cycle costs so that the summation of the two cost categories accurately indicates the overall 

life cycle costs.  
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Table 41 Life Cycle Costs for Alternatives in Onondaga NY using 4% Discount Rate 

Alternative 
Life Cycle Costs in K$ (4% discount rate) 

Agency User Total 

Flexible 

Pavement 

Traditional 1376 3642 5018 

Recycling 1104 1949 3054 

WMA 1314 3642 4956 

CIR 1111 1949 3061 

FDR 1312 1981 3293 

IC 1326 3396 4722 

Rigid 

Pavement 

CIP 877 2458 3335 

PCP 1513 1763 3277 

  

Table 42 Overall Life Cycle Costs for Alternatives in Onondaga NY 

Alternative 
Overall Life Cycle Costs in K$ 

DR=3% DR =4% DR=5% DR=6% DR=7% 

Flexible 

Pavement 

Traditional 5786 5018 4462 4051 3742 

Recycling 3578 3054 2670 2385 2168 

WMA 5715 4956 4406 3999 3694 

CIR 3586 3061 2677 2391 2174 

FDR 3856 3293 2893 2601 2385 

IC 5459 4722 4201 3825 3547 

Rigid 

Pavement 

CIP 3782 3335 3028 2812 2657 

PCP 3705 3277 2984 2779 2633 

 

For flexible pavements, alternatives involving asphalt recycling have lower overall life 

cycle costs because of both lower agency life cycle costs and lower user life cycle costs. For 

rigid pavements, “PCP” alternative results in a lower overall life cycle cost in spite of a higher 

agency life cycle cost compared to “CIP” alternative. However, these results apply to the specific 

configurations of this research and may change in a different scenario. Public agencies are 

encouraged to use their own cost information wherever applicable to draw more relevant 

conclusions.  

The fractions of each cost item in the overall life cycle costs are listed in Table 43. 

Agency costs account for 26% to 40% of overall life cycle costs, with the rest being user costs. 
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Therefore, it is critical to take into consideration user costs, which account for larger portions. 

User time delay costs dominate the total user costs, while fuel costs take an extremely small 

fraction. This is because the demonstration framework uses partial lane closure as the traffic 

management plan, so the distances that vehicles travel are the same with the regular traffic 

scenario. The extra fuel costs may be greater if vehicles take detours and travel longer distances 

than the existing roadway.  

Table 43 Fractions of Cost Items in Overall Life Cycle Costs 

Alternative Agency Costs 
User Costs 

Time Delay Fuel Safety 

Flexible 

Pavement 

Traditional 27% 62% 1% 10% 

Recycling 36% 54% 1% 9% 

WMA 26% 63% 1% 10% 

CIR 36% 54% 1% 9% 

FDR 40% 51% 1% 8% 

IC 28% 61% 1% 10% 

Rigid Pavement 
CIP 26% 63% 1% 10% 

PCP 46% 46% 1% 7% 

 

5.4 What-if Analysis using the LCA-LCCA Model  

In the case of analyzing different strategies using the same MRR technique, such as accelerated 

construction or other innovative techniques with the potential of reducing the overall impacts, 

this LCA-LCCA model can be used to perform what-if scenario analysis and support project-

level decision-making from a triple bottom line perspective. Two examples are provided for 

demonstration purposes.  

5.4.1 Accelerated Construction 

The example of accelerated construction strategy is formulated based on “Traditional” 

alternative, in which the same set of parameters and specifications are used with the only 

exception that in Mill & Fill HMA activities (both for 2” and for 4” in depth), the milling crew 
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works overtime for two additional hours per weekday to achieve early completion and are paid 

twice as much for overtime hours. The expectation of this strategy is to reduce user costs and 

user emissions by incurring additional agency costs and ultimately achieve lower life cycle costs 

and environmental impacts.  

 Relevant RSMeans data needed to perform the what-if scenario analysis of accelerated 

construction strategy are provided in Table 44. Unit cost for overtime construction is calculated 

using the following equation: 

Total unit cost = 𝑀 +
𝐿×𝑃𝑎𝑦𝑟𝑜𝑙𝑙 𝑓𝑎𝑐𝑡𝑜𝑟+𝐸

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
                                        (8) 

Where M is the material cost, L is the labor cost, and E is the equipment cost. The production 

efficiency for milling activity of 2” is calculated as 97.5% as it lasts for approximately two 

weeks, and that for milling activity of 4” is 95% based on the duration of three weeks.  

Table 44 Daily Cost and Production Efficiency of Milling 

Cost Code 02 41 13.17 5010 and 02 41 13.17 5050 

Activity Pavement removal, bituminous roads, up to 3” / 4” to 6” Crew B-38 

Daily Costs ($) Including Overhead and Profit 

Material n/a n/a n/a n/a n/a 

Labor 1 Labor 

Foreman 

2 

Laborers 

1 Equip. 

Oper. (light) 

1 Equip. Oper. 

(medium) 

Total 

489.60 930.40 594.80 618.40 2633.20 

Equipment 1 Backhoe 

Loader, 48 

H.P 

1 Hyd. 

Hammer, 

(1200 lb) 

1 F.E. 

Loader, 

W.M. 4 C.Y. 

1 Pvmt. Rem. 

Bucket 

Total 

401.94 197.56 727.98 63.14 1390.62 

Production Efficiency of 5 days per week 

Hours/day 1st week 2nd week 3rd week 4th week Payroll 

10 100% 95% 90% 85% 120.0% 

  

The new agency costs and time savings for Mill & Fill HMA activities are shown in 

Table 45. Since user time costs, user fuel costs, user safety costs, and user emissions are 
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proportional to the lane closure days, the economic, social, and environmental impacts of 

accelerated construction strategy can be calculated once the time-savings are known. Therefore, 

the overall impacts of normal and accelerated construction strategies from a triple bottom line 

perspective are listed in Table 46 along with the cost savings with a discount rate of 4% and 

environmental impact reductions. By accelerating the milling process, an overall life cycle cost 

saving of approximately $294,000 is achieved, as well as reductions in user environmental 

impacts by 8% in three major categories. It is worth noting that agency environmental impacts 

are the same for both strategies, as it is assumed that over-time working does not affect the total 

quantities of materials processed or the total hours of equipment operations.  

Table 45 Normal and Accelerated Scenarios for Mill & Fill HMA Activities 

Mill & Fill HMA for 2” 

Strategy Efficiency 
Daily 

Production 

Cost 

($/sy) 

Milling 

(K$/ln) 

Total 

(K$/ln) 
Time Saving 

Normal 100% 690 sy 5.85 41.2 136.6 
2 Weekdays 

Accelerated 97.5% 841 sy 6.76 47.6 143.0 

Mill & Fill HMA for 4” 

Strategy Efficiency 
Daily 

Production 

Cost 

($/sy) 

Milling 

(K$/ln) 

Total 

(K$/ln) 
Time Saving 

Normal 100% 420 sy 9.55 100.8 358.5 
4 Weekdays 

Accelerated 95% 486 sy 11.40 120.5 378.1 
 

Table 46 Normal and Accelerated Scenario Life Cycle Costs and Environmental Impacts 

Strategy 

Life Cycle Costs (K$) with 4% Discount Rate 

Agency 
User Grand 

Total Time Fuel Safety User Total 

Normal 1376 3107 52 483 3642 5017 

Accelerated 1445 2794 47 437 3279 4723 

Cost Savings -69 313 5 46 363 294 

Strategy 

Environmental Impacts 

CO2_E(kg) Fossil Energy (MJ) Total Energy(MJ) 

Agency User Agency User Agency User 

Normal 1.21E+06 7.55E+05 4.01E+07 1.67E+07 4.03E+07 1.81E+07 

Accelerated 1.21E+06 6.95E+05 4.01E+07 1.54E+07 4.03E+07 1.67E+07 

Reductions n/a 8.04% n/a 8.05% n/a 8.04% 
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5.4.2 Innovative Compaction with Verified Schedule Reduction 

As discussed previously, in the LCA-LCCA model the “IC” alternative differs from 

“Traditional” only by the estimated service lives of rehabilitation activities. Meanwhile, one 

respondent of the survey by Salman et al. (2017) reported that paving processes using IC are 

20% shorter than conventional ones. If this benefit were to be further verified, the framework 

could be utilized to estimate the potential economic, social, and environmental impacts.  

The benefits of schedule reduction by using IC are reflected by a 20% reduction of 

duration of paving process and another 20% reduction of equipment costs. The costs associated 

with materials and labor remain constant. The original data from RSMeans and calculated values 

based on 20% reduction for labor and equipment costs are summarized in Table 47, where: 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑐𝑙 𝑂&𝑃 =
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙+𝐿𝑎𝑏𝑜𝑟+𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡∗80%

𝐵𝑎𝑟𝑒 𝑇𝑜𝑡𝑎𝑙
× 𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑐𝑙 𝑂&𝑃                  (9) 

 

Table 47 Unit Costs and Time Savings of IC with Verified Shortened Schedule 

Cost Code 32 12 16.13 0120 and 32 12 16.13 0380 

Activity Plant-Mix Asphalt Paving Crew B-25 

Unit Costs ($/SY) Including Overhead and Profit 

HMA Paving for 2” Binder Course 

Material Labor Equipment 
Bare 

Total 

Total Incl 

O&P 

Adjusted Total 

Incl O&P 

Time Saving 

per lane 

7.45 0.58 0.44 8.47 9.55 9.45 0.22 d 

HMA Paving for 2” Wearing Course 

Material Labor Equipment 
Bare 

Total 

Total Incl 

O&P 

Adjusted Total 

Incl O&P 

Time Saving 

per lane 

8.35 0.64 0.48 9.47 10.70 10.59 0.22 d 

 

To reflect the time-savings in the rehabilitation schedule, the durations of activities Mill 

and Fill of 2” and 4” are both shortened by 1 weekday. Then the user cost items are calculated 

using the same approach.  
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Regarding agency environmental impacts, the emissions and energy consumption 

associated with equipment operations are reduced by 20% while the rest remains the same. 

Similar to other scenarios, user environmental impacts are directly related to the total duration of 

MRR activities throughout the analysis period. Equipment-related life cycle environmental 

impacts of paving the wearing or binder course, based on results from Athena Pavement LCA, 

are listed in Table 48. Therefore, the agency life cycle environmental impacts of IC with 20% 

shortened schedule can be calculated by subtracting 20% of the total equipment environmental 

impacts over the life cycle from the overall life cycle environmental impact of the “IC” 

alternatives. The overall impacts of “IC” alternative with verified shortened schedule are 

summarized in Table 49 and cost savings and environmental impact reductions are calculated.  

Table 48 Environmental Impacts of Paving Equipment  

Equipment Environmental Impacts for Paving one lane-mile 

2” Wearing or Binder Course from Athena Pavement LCA 

CO2_E(kg) Fossil Energy (MJ) Total Energy(MJ) 

5.98E+04 8.67E+05 8.69E+05 

 

Table 49 Overall Impact of IC Alternative with Verified Shortened Schedule 

Strategy 

Life Cycle Costs (K$) with 4% Discount Rate 

Agency 
User Grand 

Total Time Fuel Safety User Total 

Traditional 1376 3107 52 483 3642 5017 

IC Verified 1321 2827 47 435 3309 4628 

Cost Savings 55 280 5 48 333 389 

Strategy 

Environmental Impacts per Lane-Mile 

CO2_E(kg) Fossil Energy (MJ) Total Energy(MJ) 

Agency User Agency User Agency User 

Traditional 1.21E+06 7.55E+05 4.01E+07 1.67E+07 4.03E+07 1.81E+07 

IC Verified 9.75E+05 7.35E+05 3.38E+07 1.63E+07 3.41E+07 1.77E+07 

Reductions 2.28E+05 1.91E+04 6.25E+06 4.20E+05 6.25E+06 4.55E+05 

% Reductions 18.9% 2.5% 15.5% 2.5% 15.5% 2.5% 
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In the case of using IC with 20% shortened schedule, a life cycle cost saving of $395,000, 

15.5% to 18.9% reductions in agency environmental impacts, and 2.5% reductions in user 

environmental impacts are expected. These results show good potential of IC as an improvement 

to conventional asphalt paving processes if accelerated paving can be achieved and the extra 

costs of using IC instruments stay at approximately 3% of the total cost.  

5.5 Application of LCA and LCCA Results in Agency Decision-Making 

Based on the specific goals and objectives regarding incorporating sustainability in the agency’s 

transportation infrastructure asset management plans, public agencies using this decision support 

framework can evaluate these results and make informed decisions on whether non-traditional 

techniques or accelerated construction strategies should be implemented or not.  

To balance agency costs with user costs, Salem and Genaidy (2007) reported that user 

costs are capped at 10% of agency costs in Indiana and at 50% to 75% of agency costs in New 

Jersey. For the accelerated construction strategy case shown in Table 46, the Indiana approach 

would discount the user cost saving to $36,300, which cannot offset additional agency cost of 

$69,000. However, the New Jersey approach would consider the user cost saving of $363,000 to 

be between $181,500 and $272,250, outweighing the additional agency cost. Therefore, the 

criteria that agencies use regarding agency costs versus user costs make a great difference and 

should be carefully selected.  

Regarding LCA results of life cycle environmental impacts, public agencies may refer to 

their sustainability goals, objectives, and performance measures, and take environmental impact 

reduction into consideration in the decision-making process. Some commonly used approaches 

include:  
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 Using life cycle environmental impact reduction results as inputs for sustainability rating 

systems. For example, “reduce energy consumption”, “reduce greenhouse gas 

emissions”, and “reduce air pollutant emissions” are among the 60 criteria of ENVISION. 

The results from the LCA-LCCA model can be directly used to determine the level of 

achievement for the proposed projects based on the magnitude of life cycle 

environmental impact reductions.  

 Assigning monetary values to environmental impact reductions to incorporate these values 

into project life cycle costs, and  

 Considering environmental impact reductions as certain criteria in MCDM methods to 

make project recommendations.  

Public agencies need to decide on the approach and weighting scheme that is most 

appropriate to their missions, goals, and objectives. In the case of IC with 20% shortened 

schedule, if one of the agency goals is to reduce its greenhouse gas emissions by at least 10% 

before 2050, then the implementation of IC should receive high priority in future roadway MRR 

projects for its potential of an 18.9% reduction in greenhouse gas emissions, while techniques 

such as WMA overlay may not deliver comparable performance in greenhouse gas emission 

reductions.  

 

  



 

 

92 

 

6 DISCUSSION, CONCLUSIONS, AND VALIDATION 

6.1 Discussion 

For the decision flowcharts, due to the purpose of identifying the applicable MRR techniques, 

the proposed decision flowcharts have covered mostly technical factors instead of economic or 

environmental factors. The adoption of these decision flowcharts is highly recommended unless 

equivalent tools involving non-traditional techniques are currently being used by public agencies.  

For the MCDM model, while it allows customization through the user-specified 

weighting scheme, public agencies also need to exercise caution in defining their own weights in 

order to ensure the effectiveness of the results. Rather than deliberately assigning weights that 

lead to desired end results, agencies are encouraged to develop the priorities according to their 

actual sustainability goals and objectives.  

For the LCA-LCCA model, the development of IC project alternative considers extended 

estimated service lives as the only benefit for IC application because there is a lack of supporting 

data for other assumed benefits. Once the practice of IC becomes more widespread, this project 

alternative may be revisited.  

In addition, the user LCA model has simplified certain conditions such as traffic patterns, 

traffic management plans, and link speeds to avoid further complication in the modeling. The 

evaluation of environmental impacts of additional crashes is not included in the model due to the 

limitation of available tools.  

For LCCA, a number of MRR activity cost entries are generated from the survey results 

by Salman et al. (2017). Therefore, the accuracy of LCCA results largely depends on the quality 

of responses. Due to relatively small sample sizes, the cost information for CIR, FDR, and IC 
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activities may not be a just reflection of the typical performance on a national level. The salvage 

values for project alternatives at the end of 60-year analysis period are not included in the LCCA 

results because of the controversy in determining the actual values of constructed pavement 

sections as well as the negligible influence (less than 1%) of salvage values on the final results 

due to a relatively long analysis period. Should the salvage values be calculated using the 

remaining portion of the latest investments at year 60 and included in the final results, the “FDR” 

and “IC” alternatives would have even greater cost savings because of higher salvage values.   

Considering the advancement of technologies and the emergence of innovations in public 

transit, renewable energy-based vehicles, autonomous vehicles, new materials, and other relevant 

fields, the parameters such as construction energy consumption and vehicle emission rates used 

in the LCA-LCCA model are subject to change. This could potentially reduce the overall life 

cycle environmental impacts because of lower agency and/or user emissions and energy 

consumption. Meanwhile, some non-traditional techniques that have not yet been widely adopted 

on a national level, such as FDR and IC, may achieve greater life cycle environmental impact 

reductions in the future after the construction proficiency increases.  

6.2 Conclusions 

This research is expected to fill the gap of a comprehensive project-level roadway infrastructure 

management framework following the triple bottom line of sustainability and to provide 

suggestions to public agencies on project-level decision-making.  

The proposed infrastructure management framework will assist transportation agencies in 

(1) developing roadway MRR project alternatives, (2) evaluating project alternatives based on 

multiple criteria, and (3) determining the life cycle economic, social, and environmental impacts 

of project alternatives to make informed project-level decisions. Agencies can also make 
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adjustments to the decision flowcharts, the MCDM model, and the LCA-LCCA model based on 

changing demands to maximize the benefits of using this framework.  

The decision flowcharts and the MCDM model are developed to assist users to expand 

their scope of consideration beyond agency costs so that decisions are made in a more holistic 

manner. The LCA-LCCA model allows users to quantify the life cycle economic, social, and 

environmental impacts of different project alternatives, and perform what-if scenario analysis 

including the evaluation of accelerated strategies to make project decisions that minimize the 

overall life cycle impacts. The results of life cycle environmental impacts from the LCA-LCCA 

model can also serve as inputs to sustainability rating systems such as ENVISION to evaluate 

and promote sustainability practices in roadway infrastructure asset management.  

Based on the demonstration analysis of interstate roadway MRR project alternatives, for 

flexible pavements using traditional Mill and Fill alternative as the benchmark, project 

alternatives that involve asphalt “Recycling” (including HIPR), “CIR”, and “FDR” result in 

considerably lower life cycle costs (by 34~39%) and life cycle environmental impacts (by 

34~53%); “WMA” alternative delivers comparable life cycle costs and minimum life cycle 

environmental impact reductions (less than 2%); and “IC” alternative has slightly lower life 

cycle costs (by 6%) and life cycle environmental impacts (9~10%).  For rigid pavement project 

alternatives, using precast concrete slabs results in slightly lower life cycle economic and social 

impacts (by 2%) and considerably lower life cycle environmental impacts (by 22~24%) 

compared to using traditional cast-in-place concrete.  

6.3 Validation 

The validation of this research has been conducted through a combination of expert opinions and 

literature contrast as follows:  
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 The decision flowcharts and the MCDM model have been reviewed by NYSDOT 

officials with feedback provided and included in Appendix VIII. Necessary changes have 

already been made accordingly.  

 The results of the LCA-LCCA models are in good consistency with the findings of Zhang 

(2009) regarding user LCCA, PB Americas, Inc. et al. (2013) regarding agency LCA of 

warm mix asphalt, and Cross et al. (2010) regarding agency LCA and LCCA of cold in-

place recycling.  

To further validate the framework, collaboration with public agencies is needed for the 

implementation of this framework and the evaluation of project sustainability performance.  
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7 RECOMMENDATIONS FOR FUTURE STUDIES 

Future studies can focus on the following aspects while balancing the comprehensiveness of the 

framework and the ease of implementation:  

 Expand the flowchart and the MCDM model to include additional criteria such as safety, 

durability, and public perception.  

 Enhance the LCA-LCCA model by investigating different roadway types (e.g. local and 

state roads), pavement types (e.g. composite pavement), vehicle types (e.g. electric 

vehicles), fuel types (e.g. biodiesel), and traffic management plans (e.g. detour).  

 Evaluate environmental impacts of additional crash events due to lane closure through 

traffic micro-simulation tools.  

 Include elements from other sustainability triple bottom line categories such as noise, 

local development, and wild-life impacts in the LCA-LCCA model.  

 Utilize probabilistic data to generate results that reflect risk.    
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APPENDIX I: Questionnaire to State DOTs on Innovative MRR Techniques of 

Asphalt Roadways by Salman et al. (2017)  

 

 

QUESTIONNAIRE 

Innovative Techniques for Maintenance, Repair, and Reconstruction (MRR) of 

Asphalt Roadways 

The Civil and Environmental Engineering Department at Syracuse University, is conducting a 

research study that is funded by the University Transportation Research Center (Region 2) to study 

potential innovative techniques for maintenance, repair, and reconstruction (MRR) of asphalt 

roadways. More specifically, the research team is investigating innovative techniques that differ 

from the traditional techniques mainly in terms of reduced project duration, reduced energy 

requirements (environmentally friendly), and reduced direst and user costs. The research team 

generated the following questionnaire to gain an understanding with regards to the current state 

of practice at State Departments of Transportation in relation to asphalt roadway techniques and 

the factors that play an important role in the decision-making process. There are 10 questions in 

this survey and the research team estimates it will take 20 minutes to complete. 

If you have additional comments, please feel free to add them at the end of the survey. 

We would like to thank you in advance for your participation in this survey. Your response will 

be invaluable in achieving the objectives of the study.  

 

Respondent’s Contact Information: 

Name:  

Current Position / Title:   

Agency:  

Address:  

Phone Number: 

Email:  
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May we contact you with follow up questions?    Yes   No 

 

1. Please indicate which of the following traditional maintenance, repair, and reconstruction 

(MRR) methods your agency has used for asphalt roadways in the last five years. 

a. Chip Seal       [ ] 

b. Crack Seal       [ ] 

c. Hot Mix Asphalt Overlay     [ ] 

d. Scrub Seal       [ ] 

e. Slurry Seal       [ ] 

f. Total Reconstruction     [ ] 

g. Other (Please specify)                                              [ ] 

 

2. Please indicate how extensively the following traditional maintenance, repair, and 

reconstruction (MRR) methods have been used by your agency in the last five years. 

 

MRR Method Average miles/year 

Chip Seal  

Crack Seal  

Scrub Seal  

Slurry Seal  

Hot Mix Asphalt Overlay  

Total Reconstruction  

Other  

3. Please indicate which of the following innovative MRR methods your agency has used for 

asphalt roadways in the last five years: 

a. Warm Mix Asphalt Overlay    [ ] 

b. Asphalt Full Depth Reclamation    [ ] 

c. Asphalt Partial Depth Reclamation   [ ] 

d. Reclaimed Asphalt Pavement (RAP)   [ ] 

e. Cold In Place Recycling     [ ] 

f. Intelligent Compaction     [ ] 

g. Innovative Soil Stabilization*    [ ] 

h. Other (Please specify)                                                         [ ] 

i. The agency has not used innovative methods                  [           ] 

*Examples of innovative sol stabilization techniques include use of geosynthetics, geogrid 

reinforcements, and nontraditional additives. 
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4. Does your agency plan to undertake any pilot projects that feature innovative maintenance, 

repair, and reconstruction methods for asphalt roadways in the near future? If yes, please elaborate 

on the planned projects: 

a. Yes       [ ] 

b. No       [ ] 

Planned projects:   

5a. If your agency has only used traditional techniques in the last five years and does not plan to 

use innovative methods in the near future, please provide a brief list of potential reasons as to why 

the agency does not utilize innovative techniques (The rest of the survey focuses on innovative 

methods; therefore, this will serve as the last question for your agency).  

a. Lack of familiarity     [ ] 

b. Lack of experienced contractors in the region  [ ] 

c. Lack of regulations/design standards   [ ] 

d. Other(s): Please specify      [ ] 

 

5b. If your agency has used innovative techniques (in combination with or without traditional 

methods), for each of the innovative methods used please provide information regarding how 

extensively these methods are used (average miles/year), cost, expected service life, and 

construction time.  

MRR Method 
Average 

miles/year 
Cost 

Expected 

Service Life 

Construction 

Time 

Warm Mix Asphalt Overlay      

Asphalt Full Depth Reclamation     

Asphalt Partial Depth Reclamation     

Reclaimed Asphalt Pavement (RAP)     

Cold In Place Recycling      

Intelligent Compaction      

Innovative Soil Stabilization     

Other (Please specify)      

6. Please specify the percentage of innovative MRR projects your agency has completed that were:  

a. On or ahead of schedule      [ ] 

b. Within or below budget      [ ] 

c. With acceptable quality and workmanship   [ ] 

d. With no accidents       [ ] 

 

7. Please rate the importance of the following factors in the decision-making process to determine 

whether innovative MRR techniques should be utilized. A value of “1” represents not important 

and a value of “5” represents very important. 
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Factors Rating 

Initial Construction Cost 1 2 3 4 5 

Life Cycle Costs 1 2 3 4 5 

Amount of Virgin Materials Used 1 2 3 4 5 

Condition of the Existing Road 1 2 3 4 5 

Greenhouse gas emissions (from construction equipment) 1 2 3 4 5 

Construction Schedule 1 2 3 4 5 

Lane Closures 1 2 3 4 5 

Traffic delays 1 2 3 4 5 

Greenhouse gas emissions from users 1 2 3 4 5 

Fuel consumption of users 1 2 3 4 5 

Others (Please specify):   1 2 3 4 5 

8. If your agency had MRR projects involving use of Reclaimed Asphalt Pavement (RAP), what 

percentage of RAP has been used in these projects? 

a. 0-5%       [ ] 

b. 6-10%       [ ] 

c. 11-15%       [ ] 

d. 16-20%                                          [     ] 

e. 21-25%       [ ] 

f. 26% or greater                                            [    ] 

If your agency has used a higher percentage of RAP than 26%, please indicate what 

percentage was used and provide details of the project where it was used. 

 

9. Comment on the challenges your agency has faced employing an innovative technique. 

MRR Method Challenges 

Warm Mix Asphalt Overlay  

Asphalt Full Depth Reclamation  

Asphalt Partial Depth Reclamation  

Reclaimed Asphalt Pavement (RAP)  

Cold In Place Recycling  

Intelligent Compaction  

Innovative Soil Stabilization  

Other (Please specify)  

10. Does your agency utilize a decision support system (DSS) to determine the type of 

maintenance, repair, or reconstruction method that should be used on a particular asphalt roadway? 

If yes, please elaborate on this system in the space provided below: 

a. Yes       [     ] 

b. No       [ ]  
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APPENDIX II: Rehabilitation Schedules and Agency Costs of Alternatives 

Flexible Pavement: 

“Traditional” Rehabilitation Schedule 

Year Service Life MRR Activity Detail Cost/LN(K$) 

0 15 M&F HMA 4" (2" wearing + 2" binder) 358.5 

3 3 Crack Seal 1000 ft/ln-mile 2.2 

6 4 Crack Seal 3750 ft/ln-mile 8.3 

10 8 Patch 2% Lane area 13.8 

15 9 M&F HMA 2" wearing course, no shoulder 136.6 

21 8 Patch 3% Lane area 21.1 

24 15 M&F HMA 4" (2" wearing + 2" binder) 358.5 

27 3 Crack Seal 1500 ft/ln-mile 3.3 

30 4 Crack Seal 4500 ft/ln-mile 10.0 

34 8 Patch 2% Lane area 13.8 

39 9 M&F HMA 2" wearing course, no shoulder 136.6 

45 8 Patch 3% Lane area 21.1 

48 15 M&F HMA 4" (2" wearing + 2" binder) 358.5 

51 3 Crack Seal 1500 ft/ln-mile 3.3 

54 4 Crack Seal 4500 ft/ln-mile 10 

58 8 Patch 2% Lane area 13.8 

 

 

“Recycling” Rehabilitation Schedule 

Year Service Life MRR Activity Detail Cost/LN(K$) 

0 15 HIPR 4" (2" wearing + 2" binder) 268.8 

3 3 Crack Seal 1000 ft/ln-mile 2.2 

6 4 Crack Seal 3750 ft/ln-mile 8.3 

10 8 Patch 2% Lane area 13.8 

15 9 M&F HMA 2" wearing course, no shoulder 136.6 

21 8 Patch 3% Lane area 21.1 

24 15 HIPR 4" (2" wearing + 2" binder) 268.8 

27 3 Crack Seal 1500 ft/ln-mile 3.3 

30 4 Crack Seal 4500 ft/ln-mile 10.0 

34 8 Patch 2% Lane area 13.8 

39 9 M&F HMA 2" wearing course, no shoulder 136.6 

45 8 Patch 3% Lane area 21.1 

48 15 HIPR 4" (2" wearing + 2" binder) 268.8 

51 3 Crack Seal 1500 ft/ln-mile 3.3 

54 4 Crack Seal 4500 ft/ln-mile 10.0 

58 8 Patch 2% Lane area 13.8 
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“WMA” Rehabilitation Schedule 

Year Service Life MRR Activity Detail Cost/LN(K$) 

0 15 M&F WMA 4" (2" wearing + 2" binder) 341.0 

3 3 Crack Seal 1000 ft/ln-mile 2.2 

6 4 Crack Seal 3750 ft/ln-mile 8.3 

10 8 Patch 2% Lane area 13.8 

15 9 M&F WMA 2" wearing course, no shoulder 130.4 

21 8 Patch 3% Lane area 21.1 

24 15 M&F WMA 4" (2" wearing + 2" binder) 341.0 

27 3 Crack Seal 1500 ft/ln-mile 3.3 

30 4 Crack Seal 4500 ft/ln-mile 10.0 

34 8 Patch 2% Lane area 13.8 

39 9 M&F WMA 2" wearing course, no shoulder 130.4 

45 8 Patch 3% Lane area 21.1 

48 15 M&F WMA 4" (2" wearing + 2" binder) 341.0 

51 3 Crack Seal 1500 ft/ln-mile 3.3 

54 4 Crack Seal 4500 ft/ln-mile 10 

58 8 Patch 2% Lane area 13.8 

 

“CIR” Rehabilitation Schedule 

Year Service Life MRR Activity Detail Cost/LN(K$) 

0 15 CIR 4" (2" wearing + 2" binder) 271.2 

3 3 Crack Seal 1000 ft/ln-mile 2.2 

6 4 Crack Seal 3750 ft/ln-mile 8.3 

10 8 Patch 2% Lane area 13.8 

15 9 M&F HMA 2" wearing course, no shoulder 136.6 

21 8 Patch 3% Lane area 21.1 

24 15 CIR 4" (2" wearing + 2" binder) 271.2 

27 3 Crack Seal 1500 ft/ln-mile 3.3 

30 4 Crack Seal 4500 ft/ln-mile 10.0 

34 8 Patch 2% Lane area 13.8 

39 9 M&F HMA 2" wearing course, no shoulder 136.6 

45 8 Patch 3% Lane area 21.1 

48 15 CIR 4" (2" wearing + 2" binder) 271.2 

51 3 Crack Seal 1500 ft/ln-mile 3.3 

54 4 Crack Seal 4500 ft/ln-mile 10 

58 8 Patch 2% Lane area 13.8 
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“FDR” Rehabilitation Schedule 

Year Service Life MRR Activity Detail Cost/LN(K$) 

0 15 FDR 4" (2" wearing + 2" binder) 369.5 

5 3 Crack Seal 1000 ft/ln-mile 2.2 

8 4 Crack Seal 3750 ft/ln-mile 8.3 

12 8 Patch 2% Lane area 13.8 

18 9 M&F HMA 2" wearing course, no shoulder 136.6 

24 8 Patch 3% Lane area 21.1 

27 15 FDR 4" (2" wearing + 2" binder) 369.5 

32 3 Crack Seal 1500 ft/ln-mile 3.3 

35 4 Crack Seal 4500 ft/ln-mile 10.0 

39 8 Patch 2% Lane area 13.8 

45 9 M&F HMA 2" wearing course, no shoulder 136.6 

51 8 Patch 3% Lane area 21.1 

54 15 FDR 4" (2" wearing + 2" binder) 369.5 

59 3 Crack Seal 1500 ft/ln-mile 3.3 

 

 

“IC” Rehabilitation Schedule 

Year Service Life MRR Activity Detail Cost/LN(K$) 

0 15 M&F HMA with IC 4" (2" wearing + 2" binder) 369.2 

4 3 Crack Seal 1000 ft/ln-mile 2.2 

7 4 Crack Seal 3750 ft/ln-mile 8.3 

11 8 Patch 2% Lane area 13.8 

17 9 M&F HMA with IC 2" wearing course, no shoulder 140.7 

23 8 Patch 3% Lane area 21.1 

27 15 M&F HMA with IC 4" (2" wearing + 2" binder) 369.2 

31 3 Crack Seal 1500 ft/ln-mile 3.3 

34 4 Crack Seal 4500 ft/ln-mile 10.0 

38 8 Patch 2% Lane area 13.8 

44 9 M&F HMA with IC 2" wearing course, no shoulder 140.7 

50 8 Patch 3% Lane area 21.1 

54 15 M&F HMA with IC 4" (2" wearing + 2" binder) 369.2 

58 3 Crack Seal 1500 ft/ln-mile 3.3 
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Rigid Pavement: 

 

“CIP” Rehabilitation Schedule 

Year Service Life MRR Activity Detail Cost/LN(K$) 

0 15 Joint Seal 6600 ft/ln-mile 11.7 

0 15 Partial Depth Repair 5% Lane area 48.8 

0 15 Full Depth Repair 15% Lane area 200.8 

0 15 Diamond Grinding 0.2" 100% Lane area 49.0 

15 13 Joint Seal 4400 ft/ln-mile 7.8 

15 13 Partial Depth Repair 2% Lane area 19.5 

28 15 Joint Seal 6600 ft/ln-mile 11.7 

28 15 Partial Depth Repair 5% Lane area 48.8 

28 15 Full Depth Repair 10% Lane area 133.9 

28 15 Diamond Grinding 0.2" 100% Lane area 49.0 

43 13 Joint Seal 4400 ft/ln-mile 7.8 

43 13 Partial Depth Repair 2% Lane area 19.5 

56 15 Joint Seal 6600 ft/ln-mile 11.7 

56 15 Partial Depth Repair 5% Lane area 48.8 

56 15 Full Depth Repair 15% Lane area 200.8 

56 15 Diamond Grinding 0.2" 100% Lane area 49.0 

 

 

“PCP” Rehabilitation Schedule 

Year Service Life MRR Activity Detail Cost/LN(K$) 

0 15 Joint Seal 6600 ft/ln-mile 11.7 

0 15 Partial Depth Repair 5% Lane area 48.8 

0 15 Full Depth Repair with PCP 15% Lane area 442.8 

0 15 Diamond Grinding 0.2" 100% Lane area 49.0 

15 13 Joint Seal 4400 ft/ln-mile 7.8 

15 13 Partial Depth Repair 2% Lane area 19.5 

28 15 Joint Seal 6600 ft/ln-mile 11.7 

28 15 Partial Depth Repair 5% Lane area 48.8 

28 15 Full Depth Repair with PCP 10% Lane area 295.2 

28 15 Diamond Grinding 0.2" 100% Lane area 49.0 

43 13 Joint Seal 4400 ft/ln-mile 11.7 

43 13 Partial Depth Repair 2% Lane area 19.5 

56 15 Joint Seal 6600 ft/ln-mile 11.7 

56 15 Partial Depth Repair 5% Lane area 48.8 

56 15 Full Depth Repair with PCP 15% Lane area 442.8 

56 15 Diamond Grinding 0.2" 100% Lane area 49.0 
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APPENDIX III: Agency LCA Results Per Lane from Athena Pavement LCA 

Alternatives 

Global Warming 

Potential 

Total Primary 

Energy 
Non-Renewable Energy 

kg CO2 E / Lane MJ / Lane MJ / Lane 

Traditional 1.21E+06 4.03E+07 4.02E+07 

Recycling 8.50E+05 2.65E+07 2.64E+07 

WMA 1.17E+06 3.99E+07 3.98E+07 

CIR 5.00E+05 2.13E+07 2.13E+07 

FDR 4.64E+05 1.93E+07 1.93E+07 

IC 1.05E+06 3.52E+07 3.51E+07 

CIP 3.64E+05 3.72E+06 3.66E+06 

PCP 3.13E+05 3.20E+06 3.16E+06 

 

Alternatives 
Fossil Fuel Consumption 

Acidification 

Potential 

Ozone Depletion 

Potential 

MJ / Lane kg SO2 E / Lane kg CFC -11 E / Lane 

Traditional 4.00E+07 9.43E+03 3.41E-05 

Recycling 2.63E+07 6.78E+03 2.48E-05 

WMA 3.96E+07 9.30E+03 3.33E-05 

CIR 2.11E+07 3.64E+03 1.27E-05 

FDR 1.92E+07 3.40E+03 1.19E-05 

IC 3.50E+07 8.23E+03 2.98E-05 

CIP 3.56E+06 2.05E+03 4.75E-03 

PCP 3.08E+06 1.79E+03 4.75E-03 

 

Alternatives 
HH Criteria 

Eutrophication 

Potential 
Smog Potential 

kg PM2.5 / Lane kg N E / Lane kg O3 E / Lane 

Traditional 1.05E+03 5.92E+02 2.58E+05 

Recycling 6.98E+02 4.30E+02 1.92E+05 

WMA 1.04E+03 5.89E+02 2.57E+05 

CIR 5.10E+02 2.22E+02 8.68E+04 

FDR 4.66E+02 2.09E+02 8.27E+04 

IC 9.12E+02 5.17E+02 2.26E+05 

CIP 2.77E+02 3.17E+02 6.09E+04 

PCP 2.38E+02 2.76E+02 5.49E+04 
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APPENDIX IV: Vehicle Operation Mode Distribution for MOVES 

MOVES opMode 

Scenarios 

Regular 
MRR 

LOS - ABC LOS - D LOS - E LOS - F 
ID Name U W D U W D U W D U W D U W D 

0 Braking 0.024 0.024 0.024 0.024 0.08 0.024 0.05 0.08 0.024 0.105 0.08 0.024 0.138 0.08 0.024 

1 Idling 0 0 0 0 0 0 0 0 0 0 0 0 0.012 0 0 

11 Low Speed Coasting; VSP< 0; 1<=Speed<25 0 0 0 0 0.003 0 0 0.003 0 0.016 0.003 0 0.288 0.003 0 

12 Cruise/Acceleration; 0<=VSP< 3; 1<= Speed<25 0 0 0 0 0.004 0 0 0.004 0 0.013 0.004 0 0.332 0.004 0 

13 Cruise/Acceleration; 3<=VSP< 6; 1<=Speed<25 0 0 0 0 0 0 0 0 0 0.008 0 0 0.11 0 0 

14 Cruise/Acceleration; 6<=VSP< 9; 1<=Speed<25 0 0 0 0 0 0 0 0 0 0.003 0 0 0.041 0 0 

15 Cruise/Acceleration; 9<=VSP<12; 1<=Speed<25 0 0 0 0 0 0 0 0 0 0.002 0 0 0.013 0 0 

16 Cruise/Acceleration; 12<=VSP; 1<=Speed<25 0 0 0 0 0 0 0 0 0 0 0 0 0.03 0 0 

21 Moderate Speed Coasting; VSP< 0; 25<=Speed<50 0 0 0 0 0.167 0 0.01 0.167 0 0.222 0.167 0 0.018 0.167 0 

22 Cruise/Acceleration; 0<=VSP< 3; 25<=Speed<50 0 0 0 0 0.111 0 0.006 0.111 0 0.151 0.111 0 0.004 0.111 0 

23 Cruise/Acceleration; 3<=VSP< 6; 25<=Speed<50 0 0 0 0 0.148 0 0.008 0.148 0 0.153 0.148 0 0.001 0.148 0 

24 Cruise/Acceleration; 6<=VSP< 9; 25<=Speed<50 0 0 0 0 0.106 0 0.008 0.106 0 0.138 0.106 0 0.002 0.106 0 

25 Cruise/Acceleration; 9<=VSP<12; 25<=Speed<50 0 0 0 0 0.078 0 0.004 0.078 0 0.074 0.078 0 0.001 0.078 0 

27 Cruise/Acceleration; 12<=VSP<18; 25<=Speed<50 0 0 0 0 0.095 0 0.003 0.095 0 0.058 0.095 0 0.001 0.095 0 

28 Cruise/Acceleration; 18<=VSP<24; 25<=Speed<50 0 0 0 0 0.025 0 0.001 0.025 0 0.012 0.025 0 0 0.025 0 

29 Cruise/Acceleration; 24<=VSP<30; 25<=Speed<50 0 0 0 0 0.007 0 0 0.007 0 0.004 0.007 0 0 0.007 0 

30 Cruise/Acceleration; 30<=VSP; 25<=Speed<50 0 0 0 0 0.014 0 0.001 0.014 0 0.021 0.014 0 0.009 0.014 0 

33 Cruise/Acceleration; VSP< 6; 50<=Speed 0.238 0.238 0.238 0.238 0.058 0.238 0.33 0.058 0.238 0.008 0.058 0.238 0 0.058 0.238 

35 Cruise/Acceleration; 6<=VSP<12; 50<=Speed 0.337 0.337 0.337 0.337 0.046 0.337 0.315 0.046 0.337 0.003 0.046 0.337 0 0.046 0.337 

37 Cruise/Acceleration; 12<=VSP<18; 50<=Speed 0.242 0.242 0.242 0.242 0.023 0.242 0.162 0.023 0.242 0.003 0.023 0.242 0 0.023 0.242 

38 Cruise/Acceleration; 18<=VSP<24; 50<=Speed 0.1 0.1 0.1 0.1 0.016 0.1 0.051 0.016 0.1 0 0.016 0.1 0 0.016 0.1 

39 Cruise/Acceleration; 24<=VSP<30; 50<=Speed 0.024 0.024 0.024 0.024 0.003 0.024 0.013 0.003 0.024 0 0.003 0.024 0 0.003 0.024 

40 Cruise/Acceleration; 30<=VSP; 50<=Speed 0.035 0.035 0.035 0.035 0.016 0.035 0.038 0.016 0.035 0.006 0.016 0.035 0 0.016 0.035 

 

Notes: U: Upstream Link; W: Work zone Link; D: Downstream Link 
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APPENDIX V: Overall LCA Results Per Lane 

Environmental Impact: CO2_E(kg)/Lane 

Alternatives Agency User Total 

Traditional 1.21E+06 7.57E+05 1.96E+06 

Recycling 8.50E+05 4.33E+05 1.28E+06 

WMA 1.17E+06 7.57E+05 1.93E+06 

CIR 5.00E+05 4.33E+05 9.33E+05 

FDR 4.64E+05 4.57E+05 9.21E+05 

IC 1.05E+06 7.34E+05 1.79E+06 

CIP 3.64E+05 5.12E+05 8.76E+05 

PCP 3.13E+05 3.69E+05 6.82E+05 

 

Environmental Impact: Fossil Energy (MJ) /Lane 

Alternatives Agency User Total 

Traditional 4.00E+07 1.67E+07 5.67E+07 

Recycling 2.63E+07 9.54E+06 3.59E+07 

WMA 3.96E+07 1.67E+07 5.63E+07 

CIR 2.11E+07 9.54E+06 3.07E+07 

FDR 1.92E+07 1.01E+07 2.92E+07 

IC 3.50E+07 1.62E+07 5.11E+07 

CIP 3.56E+06 1.13E+07 1.48E+07 

PCP 3.08E+06 8.14E+06 1.12E+07 

 

Environmental Impact: Total Energy (MJ) /Lane 

Alternatives Agency User Total 

Traditional 4.03E+07 1.81E+07 5.84E+07 

Recycling 2.65E+07 1.03E+07 3.68E+07 

WMA 3.99E+07 1.81E+07 5.79E+07 

CIR 2.13E+07 1.03E+07 3.16E+07 

FDR 1.93E+07 1.09E+07 3.02E+07 

IC 3.52E+07 1.75E+07 5.27E+07 

CIP 3.72E+06 1.22E+07 1.59E+07 

PCP 3.20E+06 8.82E+06 1.20E+07 
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APPENDIX VI: Lane Closure Durations and User Costs of Alternatives Per Lane 

Flexible Pavement: 

“Traditional” Lane Closure and User Costs (K$/LN) 

Year 
MRR 

Activity 

Lane Closure Days Time 

Delay Cost 
Fuel Cost 

Crash 

Cost Weekday Weekend 

0 M&F HMA 37 14 743 12.4 109.7 

3 Crack Seal 1 0 17 0.3 3.4 

6 Crack Seal 3 0 50 0.8 10.0 

10 Patch 3 0 50 0.8 10.0 

15 M&F HMA 15 4 286 4.8 45.9 

21 Patch 5 0 83 1.4 16.6 

24 M&F HMA 37 14 743 12.4 109.7 

27 Crack Seal 1 0 17 0.3 3.4 

30 Crack Seal 3 0 50 0.8 10.0 

34 Patch 3 0 50 0.8 10.0 

39 M&F HMA 15 4 286 4.8 45.9 

45 Patch 5 0 83 1.4 16.6 

48 M&F HMA 37 14 743 12.4 109.7 

51 Crack Seal 1 0 17 0.3 3.4 

54 Crack Seal 3 0 50 0.8 10.0 

58 Patch 3 0 50 0.8 10.0 

 

“Recycling” Lane Closure and User Costs (K$/LN) 

Year 
MRR 

Activity 

Lane Closure Days Time 

Delay Cost 
Fuel Cost 

Crash 

Cost Weekday Weekend 

0 HIPR 14 4 269 4.5 42.8 

3 Crack Seal 1 0 17 0.3 3.4 

6 Crack Seal 3 0 50 0.8 10.0 

10 Patch 3 0 50 0.8 10.0 

15 M&F HMA 15 4 286 4.8 45.9 

21 Patch 5 0 83 1.4 16.6 

24 HIPR 14 4 269 4.5 42.8 

27 Crack Seal 1 0 17 0.3 3.4 

30 Crack Seal 3 0 50 0.8 10.0 

34 Patch 3 0 50 0.8 10.0 

39 M&F HMA 15 4 286 4.8 45.9 

45 Patch 5 0 83 1.4 16.6 

48 HIPR 14 4 269 4.5 42.8 

51 Crack Seal 1 0 17 0.3 3.4 

54 Crack Seal 3 0 50 0.8 10.0 

58 Patch 3 0 50 0.8 10.0 
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“WMA” Lane Closure and User Costs (K$/LN) 

Year 
MRR 

Activity 

Lane Closure Days Time 

Delay Cost 
Fuel Cost 

Crash 

Cost Weekday Weekend 

0 M&F WMA 37 14 743 12.4 109.7 

3 Crack Seal 1 0 17 0.3 3.4 

6 Crack Seal 3 0 50 0.8 10.0 

10 Patch 3 0 50 0.8 10.0 

15 M&F WMA 15 4 286 4.8 45.9 

21 Patch 5 0 83 1.4 16.6 

24 M&F WMA 37 14 743 12.4 109.7 

27 Crack Seal 1 0 17 0.3 3.4 

30 Crack Seal 3 0 50 0.8 10.0 

34 Patch 3 0 50 0.8 10.0 

39 M&F WMA 15 4 286 4.8 45.9 

45 Patch 5 0 83 1.4 16.6 

48 M&F WMA 37 14 743 12.4 109.7 

51 Crack Seal 1 0 17 0.3 3.4 

54 Crack Seal 3 0 50 0.8 10.0 

58 Patch 3 0 50 0.8 10.0 

 

“CIR” Lane Closure and User Costs (K$/LN) 

Year 
MRR 

Activity 

Lane Closure Days Time 

Delay Cost 
Fuel Cost  

Crash 

Cost Weekday Weekend 

0 CIR 14 4 269 4.5 42.8 

3 Crack Seal 1 0 17 0.3 3.4 

6 Crack Seal 3 0 50 0.8 10.0 

10 Patch 3 0 50 0.8 10.0 

15 M&F WMA 15 4 286 4.8 45.9 

21 Patch 5 0 83 1.4 16.6 

24 CIR 14 4 269 4.5 42.8 

27 Crack Seal 1 0 17 0.3 3.4 

30 Crack Seal 3 0 50 0.8 10.0 

34 Patch 3 0 50 0.8 10.0 

39 M&F WMA 15 4 286 4.8 45.9 

45 Patch 5 0 83 1.4 16.6 

48 CIR 14 4 269 4.5 42.8 

51 Crack Seal 1 0 17 0.3 3.4 

54 Crack Seal 3 0 50 0.8 10.0 

58 Patch 3 0 50 0.8 10.0 
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“FDR” Lane Closure and User Costs (K$/LN) 

Year 
MRR 

Activity 

Lane Closure Days Time 

Delay Cost 
Fuel Cost  

Crash 

Cost Weekday Weekend 

0 FDR 17 6 338 5.6 50.7 

5 Crack Seal 1 0 17 0.3 3.4 

8 Crack Seal 3 0 50 0.8 10.0 

12 Patch 3 0 50 0.8 10.0 

18 M&F WMA 15 4 286 4.8 45.9 

24 Patch 5 0 83 1.4 16.6 

27 FDR 17 6 338 5.6 50.7 

32 Crack Seal 1 0 17 0.3 3.4 

35 Crack Seal 3 0 50 0.8 10.0 

39 Patch 3 0 50 0.8 10.0 

45 M&F WMA 15 4 286 4.8 45.9 

51 Patch 5 0 83 1.4 16.6 

54 FDR 17 6 338 5.6 50.7 

59 Crack Seal 1 0 17 0.3 3.4 

 

“IC” Lane Closure and User Costs (K$/LN) 

Year MRR Activity 
Lane Closure Days Time 

Delay Cost 
Fuel Cost 

Crash 

Cost Weekday Weekend 

0 M&F HMA with IC 37 14 743 12.4 109.7 

4 Crack Seal 1 0 17 0.3 3.4 

7 Crack Seal 3 0 50 0.8 10.0 

11 Patch 3 0 50 0.8 10.0 

17 M&F HMA with IC 15 4 286 4.8 45.9 

23 Patch 5 0 83 1.4 16.6 

27 M&F HMA with IC 37 14 743 12.4 109.7 

31 Crack Seal 1 0 17 0.3 3.4 

34 Crack Seal 3 0 50 0.8 10.0 

38 Patch 3 0 50 0.8 10.0 

44 M&F HMA with IC 15 4 286 4.8 45.9 

50 Patch 5 0 83 1.4 16.6 

54 M&F HMA with IC 37 14 743 12.4 109.7 

58 Crack Seal 1 0 17 0.3 3.4 
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Rigid Pavement: 

 

“CIP” Lane Closure and User Costs (K$/LN) 

Year MRR Activity 
Lane Closure Days Time 

Delay Cost 
Fuel Cost  

Crash 

Cost Weekday Weekend 

0 Joint Seal 2 0 33 0.6 6.6 

0 Partial Depth Repair 11 4 219 3.7 32.8 

0 Full Depth Repair 16 6 321 5.4 47.6 

0 Diamond Grinding 4 2 85 1.4 11.4 

15 Joint Seal 2 0 33 0.6 6.6 

15 Partial Depth Repair 6 2 118 2.0 17.9 

28 Joint Seal 2 0 33 0.6 6.6 

28 Partial Depth Repair 11 4 219 3.7 32.8 

28 Full Depth Repair 15 4 286 4.8 45.9 

28 Diamond Grinding 4 2 85 1.4 11.4 

43 Joint Seal 2 0 33 0.6 6.6 

43 Partial Depth Repair 6 2 118 2.0 17.9 

56 Joint Seal 2 0 33 0.6 6.6 

56 Partial Depth Repair 11 4 219 3.7 32.8 

56 Full Depth Repair 16 6 321 5.4 47.6 

56 Diamond Grinding 4 2 85 1.4 11.4 

 

“PCP” Lane Closure and User Costs (K$/LN) 

Year MRR Activity 
Lane Closure Days Time 

Delay Cost 
Fuel Cost  

Crash 

Cost Weekday Weekend 

0 Joint Seal 2 0 33 0.6 6.6 

0 Partial Depth Repair 11 4 219 3.7 32.8 

0 Full Depth Repair with PCP 16 6 118 2.0 17.9 

0 Diamond Grinding 4 2 85 1.4 11.4 

15 Joint Seal 2 0 33 0.6 6.6 

15 Partial Depth Repair 6 2 118 2.0 17.9 

28 Joint Seal 2 0 33 0.6 6.6 

28 Partial Depth Repair 11 4 219 3.7 32.8 

28 Full Depth Repair with PCP 15 4 67 1.1 13.1 

28 Diamond Grinding 4 2 85 1.4 11.4 

43 Joint Seal 2 0 33 0.6 6.6 

43 Partial Depth Repair 6 2 118 2.0 17.9 

56 Joint Seal 2 0 33 0.6 6.6 

56 Partial Depth Repair 11 4 219 3.7 32.8 

56 Full Depth Repair with PCP 16 6 118 2.0 17.9 

56 Diamond Grinding 4 2 85 1.4 11.4 
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APPENDIX VII: Daily Additional Crashes 

Weekday Daily Additional Crashes 

Hour 
Hourly 

Traffic 
MRR v/c Regular v/c 

Change in Crash 

Rate 

Change in Crash / 100 

MVMT 

1 316 0.16 0.08 -30.06 -9493 

2 201 0.10 0.05 -21.27 -4272 

3 162 0.08 0.04 -17.74 -2873 

4 149 0.08 0.04 -16.54 -2472 

5 224 0.11 0.06 -23.24 -5204 

6 592 0.30 0.15 -41.13 -24353 

7 1471 0.74 0.37 18.36 27016 

8 2230 1.07 0.56 151.38 337564 

9 1948 0.97 0.49 105.16 204813 

10 1610 0.81 0.41 40.89 65833 

11 1599 0.81 0.40 38.93 62239 

12 1741 0.83 0.44 49.65 86436 

13 1846 0.88 0.47 68.25 125976 

14 1858 0.89 0.47 70.55 131098 

15 1993 0.98 0.50 110.45 220178 

16 2274 1.09 0.57 162.30 368996 

17 2465 1.18 0.62 213.83 527001 

18 2479 1.19 0.63 218.04 540588 

19 1914 0.96 0.48 101.24 193795 

20 1421 0.72 0.36 11.10 15781 

21 1135 0.57 0.29 -21.43 -24318 

22 1019 0.51 0.26 -30.25 -30821 

23 799 0.40 0.20 -40.10 -32027 

24 573 0.29 0.14 -40.82 -23407 

Total 2748073 
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Weekend Daily Additional Crashes 

Hour 
Hourly 

Traffic 
MRR v/c Regular v/c 

Change in Crash 

Rate 

Change in Crash / 100 

MVMT 

1 268 0.27 0.14 -69.60 -37294 

2 180 0.18 0.09 -53.96 -19446 

3 137 0.14 0.07 -43.66 -11949 

4 94 0.09 0.05 -31.66 -5921 

5 85 0.09 0.04 -29.21 -4984 

6 129 0.13 0.07 -41.68 -10773 

7 230 0.23 0.12 -63.69 -29287 

8 334 0.34 0.17 -76.83 -51402 

9 454 0.46 0.23 -79.76 -72410 

10 593 0.60 0.30 -66.89 -79349 

11 717 0.72 0.36 -40.72 -58389 

12 812 0.82 0.41 -11.26 -18277 

13 890 0.85 0.45 5.78 10280 

14 892 0.85 0.45 6.52 11638 

15 895 0.86 0.45 7.55 13514 

16 898 0.86 0.45 8.82 15849 

17 888 0.85 0.45 5.01 8894 

18 847 0.81 0.43 -8.67 -14690 

19 771 0.78 0.39 -25.06 -38621 

20 645 0.65 0.33 -57.64 -74343 

21 535 0.54 0.27 -74.42 -79593 

22 474 0.48 0.24 -78.96 -74928 

23 402 0.41 0.2 -80.07 -64345 

24 307 0.31 0.15 -74.28 -45536 

Total -731364 
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APPENDIX VIII: Summary of Meeting Minutes at NYSDOT 

Date and Time:  

July, 10th, 2017 at 10:00 am 

Location:  

NYSDOT Main Office 

50 Wolf Road 

Albany, NY 12232 

Attendees:  

FHWA: Timothy LaCoss 

NYSDOT: Thomas Kane, Russell Thielke, Benedikt Gustafsson, and Sigrid Rantanen 

Syracuse University: Baris Salman, Song He, Kirill Skorokhod.  

 Feedback on Proposed Decision Flowchart 

o State DOTs usually have their own and perhaps more detailed in-house decision 

flowchart/tree/matrices; and it is usually hard to justify the switch to the proposed 

flowchart. In NYSDOT, for example, a comprehensive pavement design manual, 

which provides recommendations of multiple alternatives for each distress type, is 

being used. 

o The phrase “recycling requirement” needs to be revisited to eliminate potential 

confusions. 

o Based on the practices in New York State, a condition can be added for the Cold-In-

Place Recycling (CIR) method. In order to use this technique, the thickness of the 

existing pavement layer needs to be at least 4 inches.  
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o The decision-making flow chart leads to only one alternative. Thus, it may not work 

well with the Excel based decision tool, as it requires at least two alternatives. 

 Feedback on Proposed MCDM Modeling Tool 

o It is difficult to evaluate the “contractor expertise” criterion as it involves many 

different aspects and it is subject to high subjectivity. In many cases, the agency does 

not know which contracting company will be awarded with the project. “Contractor 

availability” can be a better criterion. 

o A new criterion can be added to the decision-making tool to capture the importance of 

“Safety” 

o Criteria of initial construction costs and life cycle costs may be better evaluated in a 

quantitative manner using specific cost information rather than in subjective / 

qualitative terms (weakly inferior, etc.) 

o Not all of the factors in the excel tool apply to all projects. Adding a feature to turn on 

and off the factors in the Excel based decision tool can be helpful.  
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