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Abstract: 

Superhydrophobic surfaces naturally exist in plants and animals, which have inspired the 

development of artificial hydrophobic surfaces. The hydrophobic surfaces have drawn attention 

in multiple areas in recent years. Multiple approaches were carried out and achieved different 

levels of hydrophobicity. In this thesis, a series of hydrophobic surface structures have been 

prepared with a photo-inducted self-writing method and then coated with fluorocarbon 

compounds. Various fiber heights and different coating methods have been tested for differences 

and influences in hydrophobicity. Section views using optical microscope showed uniform cone 

structures fabricated with photo-curing; contact angle measurements that exhibited static contact 

angles greater than 150 ° were achieved. This method is also available for creating translucent 

samples. 
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1 Introduction 

Hydrophobic surfaces contain micro- or nano-scale structures that form roughness, thus making 

them non-wetting. These surfaces are naturally existing and have drawn attention for a period of 

time for different purposes,
1–9

  and different methods have been used to simulate and produce 

them. In most cases, when the aquatic contact angle on a surface is greater than 90°, this surface 

is considered to be hydrophobic. And when the contact angle reaches or exceeds 150°, the 

surface is considered to be superhydrophobic.
10

 Rough surfaces are considered more 

hydrophobic, having greater contact angles.
11,12

 There are 3 models describing wetting, Young
13

 

for ideal flat smooth surfaces, Wenzel
14

 and Cassie-Baxter
11

 for rough surfaces. The ideal rigid 

flat surface for Young’s model is  

𝛾𝑆𝐺 = 𝛾𝑆𝐿 + 𝛾𝐿𝐺 cos 𝜃          (1) 

When the surface is not flat, the two roughness models are used. When the wetting is 

homogeneous, the Wenzel model is used:  

cos 𝜃𝑊 = 𝑟 cos 𝜃𝑌           (2) 

Here, r is the surface roughness factor. It equals the ratio of the total surface area and the 

projected area. When the wetting surface is heterogeneous, the Cassie-Baxter model is used, 

which is more complex than the Wenzel model, 

cos 𝜃𝐶𝐵 = 𝑟𝑓𝑓 cos 𝜃𝑌 + 𝑓 − 1        (3) 

where θY is the Young contact angle, rf is the secondary roughness factor,
12

 as the secondary 

structure is filled with liquid and the Wenzel model is being used here
15

, and f is the fraction of 

area wetted of the projected surface. When there is no secondary roughness, rf =1. 
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Lotus leaves are naturally rough and are usually chosen as the model to describe 

superhydrophobicity,
16,17

 as shown in Figure 1. 

 

Figure 1 Lotus leaf model 

The surface of the lotus leaf contains two levels of roughness, a primary one and a secondary one. 

The diameter of the primary structures is around 5-10 µm with the height at around 12-18 µm,
18–

20
 the distance between them at a similar value

18
 and the secondary structure is nano-scale, at a 

diameter of around 30 nm.
19

 

Creating hydrophobic/superhydrophobic surfaces has various approaches. On metal surfaces, Li 

et al.
21

 had created hierarchically porous micro/nanostructures on copper using hydro-thermal 

treatment, and achieved a contact angle of 151.2°. The same is true on copper surfaces; 

Shirtcliffe et al. have analyzed the contact angle using Cassie-Baxter equation.
22

  On an 

aluminum surface, Ruiz-Cabello et al.
23

 have tested multiple coating performances. To prevent 

corrosion, Liu et al.
4
 electrodeposited Mg–Mn–Ce magnesium plates with cerium nitrate 

hexahydrate and myristic acid in ethanol and created a series of surfaces with contact angles 

greater than 155°. Hermelin et al.
24

 have covered zinc electrodes with polypyrrole using an 

electrochemical method. 

On other surfaces, a number of silicon compounds are chosen for hydrophobic systems. 

Polydimethylsiloxane (PDMS) for example, has low surface tension due to low intermolecular 
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forces between the chains, and the organic methyl groups surround the Si–O backbone, provides 

good hydrophobicity
25

. The same reference also mentions that functionalizing PDMS would 

increase the contact angle. According to Park et al.,
26

 coating silica particles with PDMS has 

achieved a contact angle close to 170°. Mushroom-like structures produced by Lee et al.
27

 have 

achieved high contact angles with low hysteresis by using silica particles and being treated with 

plasma. Tropmann et al.
28

 have reported fabricating PDMS with micro channels, reaching a 

hysteresis of 1°. PDMS/PMMA coating on PDMS by Liu et al
29

 and laser rendering by 

Farshchian et al. also showed good hydrophobicity. PDMS is also useful for being the mold 

material in fabricating microstructures from lithography.
30,31

 Other silanes are used as well.
32

 

Hydrophobic silica, a simple compound, is also used to manufacture hydrophobic surfaces.
33

 

Organic fluorine compounds are also being used in hydrophobic systems because of the electric 

field of the C–F bond dipole
34

 and lower surface energy.
35–37

 Perfluorosilane coated by Chemical 

Vapor Deposition (CVD) on a silicon wafer, reported by Wang et al.
38

 achieved a static contact 

angle of 156° and hysteresis of 10°, which shows superhydrophobicity. Perfluoro compounds 

were also used by other researchers to generate superhydrophobic surfaces. 
39–43

 

Poly(tetrafluoroethylene) (PTFE) is also being researched; Zhan et al.
44

 used a laser to fabricate a 

self-cleaning surface with PTFE; Milionis et al.
45

 used PTFE to coat SU-8 pillars and contact 

angles of over 150° were acquired. 

 

Figure 2 The concept of experiment. 



4 

 

 

The approach in this article includes two steps, as shown in Figure 2. The first step is the light 

induced self-writing method, using camphorquinone (CQ) as the main initiator, which has 

maximum absorbance at the wavelength of 468 nm,
46,47

 and is able to generate free-radicals 

which are favorable for polymerization.
48

 To maximize the use of light, a light source with a 470 

nm wavelength was chosen. The (4-octyloxyphenyl) phenyliodonium hexafluoroantimonate 

(OPPI) acts as a cationic initiator.
49

 The mechanism
50–52

 is shown in Scheme 1. The self-writing 

pattern is from the mesh mask, with different dimension combinations. The second step is the 

hydrophobic coating; its main purpose is to generate secondary roughness. The coating process 

varies for different coating materials. 

 

Scheme 1 Reaction mechanism of the initiation 

The self-writing method is that when the light beam goes through the mask consisting of specific 

cylindrical arrays, it diffracts as shown in Figure 3 (a). As the photo-polymerization initiates and 

is on-going, the polymerized products have a higher refractive index compared to the monomer 

mixture. Total internal reflection occurs, self-focusing the diffracted light beam (Figure 3 (b) and 

(c)). The bottom also has a larger diameter than the aperture due to the diffraction. Oxygen 
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diffusion at the top of the mixture prohibits the growth of the pillars. The thickness of the 

diffusion layer has correlations with the light intensity and film thickness.
50

 

 

Figure 3 Evolution of the pillar growth 
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If the film thickness is high enough, it could be derived that the final product would become a 

“chess piece” (Figure 3 (d)), this is due to the second total reflection happening before the light 

beams reach the inhibition zone as the “focal point” is lower than the distance from the upper 

surface of the substrate to the bottom line of the inhibition zone.   
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2 Experiments and Method 

2.1 Material and reagents 

Trimethylolpropane triacrylate (TMPTA) was purchased from Sigma-Aldrich and is the basic 

monomer. The photo-initiating system consists of camphorquinone (CQ) as a free-radical 

initiator, purchased from Sigma-Aldrich, and (4-octyloxyphenyl) phenyliodonium 

hexafluoroantimonate (OPPI) as a cationic initiator, obtained from Hampford Research Inc. 

(Stratford, CT). The hydrophobic coating utilized 1H,1H,2H,2H-perfluorodecanethiol (PFDT) 

and free flowing polytetrafluoroethylene (PTFE) powder with 1 µm particle size, were both 

purchased from Sigma-Aldrich. Various solvents were considered for use as the media of the 

coating mixture. Methanol (MeOH) was acquired from Fisher-Scientific and ethyl alcohol (EtOH) 

was purchased from Pharmco-Aaper. 

2.2 The primary structure 

The feedstock solution was prepared with solving CQ and OPPI in TMPTA at room temperature, 

the weight ratio was 96:2.5:1.5. The mixture was continuously stirred for 24 h without ambient 

light. As the mixture was ready, it was added to a custom-made cell with a translucent acrylate 

cover or a 1 mm glass microscope slide as substrate as shown in Figure 4.  



8 

 

 

 

Figure 4 Experiment setup, the spacing of mesh is shown as a/b. 

The process of creating the basic structure is shown in Figure 5 A. The thickness of the liquid in 

the cell was being controlled by varying the volume. The cell was then placed on a transparent 

mask with printed round mesh, ordered from Photo Sciences Incorporated. The source of light 

came from a Thorlabs M470L3 LED with a wavelength of 470 nm, coupled with a set of COP4-

A collimation adapter, and controlled by a Thorlabs 2100 pulse controller.  The controller was 

therefore remote-controlled by a custom-made program through a USB-COM port.  

 

Figure 5 The experiment process 
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The photo curing process was carried out using a constant light source. The constant mode was 

set to a specific power calibrated to 10 mW/cm
2
. Time was fixed for each specific spacing and 

power setting. The samples were being soaked with ethanol for 3-5 minute before drying in air. 

2.3 The Hydrophobic Coating 

The entire hydrophobic coating process is shown in Figure 5 B. The coating method varies 

depends on the coating mixture. 

The hydrophobic coating mixture 1 (HPCM-1) was prepared by solving CQ and PFDT in a 

specified solvent with a weight ratio of 1:1:98. The coating mixture was continuously stirred for 

24 h with no ambient light before utilizing. The coating procedure was to drop different volume 

of the coating fluid on the surface of the basic structures and cover with a reversed cell to reduce 

the evaporation of the solvent. The reaction was processed using a similar set-up to that shown in 

Figure 4, except that the mask was replaced with a glass microscope slide, with the LED power 

maintained at 10 mW/cm
2
 and facing upright for the thiol-ene reaction, the simplified reaction is 

shown in Scheme 2. After washing with methanol, the samples were let dry in a fume hood. 

 

Scheme 2 The thiol-ene reaction for chemical coating. Here, R refers to the poly-TMPTA and R’ refers to (CH2)2(CF2)7CF3. 

The hydrophobic coating mixture 2 (HPCM-2) was prepared mixing PTFE powder and ethanol, 

at a weight fraction of 5 %. The mixture was being processed with vortex mixer and ultrasonic 

bath for 30 minutes before use for better mixing. The mixture was added to a spray gun and 
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sprayed on the samples prepared at 40 psi nitrogen or drop on the samples. The samples were let 

dry in fume hood. 

2.4 Contact Angle Measurement  

The contact angle measurements were carried out using a Ramé-Hart 250 F1 contact angle 

goniometer. The DROPimage Advanced controlling software automatically calculates the 

contact angles from the images captured via the camera lens, fitting the tangent line. The data of 

each sample for analysis were collected 10 times within 1 second. The errors in analysis are 

standard deviations. ImageJ software developed by the National Institutes of Health (NIH) was 

also used in analyzing the images, with the contact angle plug-in developed by Marco Brugnara. 

2.5 Microscopy 

The microscope images were captured using a Zeiss Axioscope A1, equipped with Axiocam 105 

color camera and monitored by Zeiss Efficient Navigation (ZEN) Lite software. The 

microstructure dimensions were measured using ZEN Lite software. The zoom-in photographs 

were captured using a Venus USB 2.0 Digital Microscope with manual zooming and focusing. 

The same digital microscope was also used to film a few video clips of the droplet and the 

sample. 

2.6 Scanning Electron Microscopy (SEM) 

The SEM images were obtained with a JEOL JSM-IT100 scanning electron microscope, with 

tungsten/lanthanum hexaboride (W/LaB6) filament-cathode combination. The samples were 

sputter-coated with gold-palladium at 45 mV for 60 s, and the acceleration voltage was set at 

10.0 kV and 7.0 kV.  
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3 Results and Discussion 

3.1 The Structure 

The structures generated by the first process are uniform multi-fiber/pillar standing structures, 

with a slab forming on the substrate. This was formed by the initiation of CQ and OPPI under the 

specific wavelength of 470 nm, a blueish visible light. This mechanism for the entire reaction is 

free-radical and was described by Chen et al..
50

 The roughness (r) and area fraction (f) are 

defined as
53

 

𝑟 = 1 + 𝜋 (
d H

b2 )           (4) 

𝑓 = (
𝑑

𝑏
)

2

                (5) 

where b is the pitch, or the spacing, d is the cylindrical diameter and H is the height when the 

structure is cylindrical.  

            

Figure 6 Section views of shapes. (a) Conical frustum; (b) Irregular (chess piece); 

A B 



12 

 

 

Similarly, when the structure has the shape of a conical frustum (Figure 6 A), first calculate the 

surface area: 

𝑆𝑃 = 𝜋(𝑟1 + 𝑟2)𝑙           (6) 

SP here denotes the surface area of a single pillar structure, and l is leg length of the right 

trapezoid. 

For irregular shapes (Figure 6 B and Figure 3 (d)), 

𝑆𝑃 = 𝜋 ∑ (𝑟𝑖 + 𝑟𝑖+1)𝑙𝑖
𝑛
1 + 𝑓(𝑟)         (7) 

𝑓(𝑟) = {
𝜋𝑟𝑛+1𝑙𝑛+1, 𝑐𝑜𝑛𝑖𝑐𝑎𝑙 𝑡𝑜𝑝;

𝜋𝑟𝑛+1
2 ,                𝑓𝑙𝑎𝑡 𝑡𝑜𝑝;

         (8) 

Here, ri is the radius of the solid of revolution, while li is the length of the leg of the right 

trapezoid. Thus, 

𝑟 = 1 +
𝑆𝑃−𝜋𝑟1

2

𝑏2            (9) 

𝑆𝐸 = 𝑆𝑃 − 𝑆𝑁𝑜𝑛          (10) 

𝑓 =
𝑆𝐸

𝑏2
            (11) 

SE is the area of effective contact surface; it equals the value of subtracting the non-contacted 

surface areas (SNon) from Sp and f is used to calculate the Cassie-Baxter contact angle using Eq. 

(3). The microscopic images were used to determine SNon together with the measurements, and 

it was calculated using similar methods to those in Eq. (7) and (8). 

The uniform spacing is designated by the mask being used (Figure 7 A to D) and the height is 

strongly related to the initial thickness of the feedstock film.
50

 The single structure is cone-
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shaped, with a larger diameter at the bottom and a tip on the top (Figure 7 E). Changes in height 

also alter the shape (Figure 7 F), affecting r, and in this figure, when H is significantly lower, r is 

also lower. The slab at bottom was formed either from the diffraction of light initiating the 

reaction or from the diffusion of initiated free-radicals proceeding reaction between structures. 

Flaws in structure (Figure 7 A) are likely to be formed by the unevenness of the plastic substrate 

being used. Glass is considered to have better evenness and better transmittance than the thinner 

plastic substrate and when glass is being used as the substrate (Figure 7 C), the uniformity is 

increased, at the cost of sample adhesion to substrate. The samples on glass substrates are likely 

to flip and twist over time (Figure 7 D) which changes the tip spacing and uniformity of the 

surface structures and therefore prevents the samples from having a further use (i.e. the coating 

procedure). The twist is likely to be caused by internal stress on the surface of slab, which is 

formed by the residue of TMTPA. Plastic substrates tend to adhere with the sample from the 

poly(methyl methacrylate) (PMMA) from the cross-linking of their residues on the interface.
54

 

Reducing the thickness of the slab or eliminating it would be necessary for processing on glass 

substrates. However, due to the refractive index it is less likely to prevent the slab from forming 

on glass. 
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Figure 7 A: Zoom-in photograph of a sample with 10/50 spacing on a plastic substrate; B: Microscope image of the same sample; 

C-D: Sample on a glass substrate with 10/50 spacing; E: Sectioned view of the 10/50 sample with an initial thickness of 310 µm; 

F: Sectioned view of a sample with 10/50 spacing and 270 µm initial thickness. 

Figure 8 A is a column chart showing the contact angles of samples with basic structure and no 

coating, with respective goniometer images shown as Figure 8 B to E. The curve in Figure 8 B is 

the edge of the sample in the background. Generally, the hydrophobicity increases as the surface 

roughness increases. One exception is the sample with 280 µm initial thickness. Due to the 

limitations of the goniometer and sample cutting, the background is always shown in the images, 

thus it leads to inaccurate measurements. The 280 µm sample itself may have unevenness or a 

damaged structure that accounts for the lower contact angle. 
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Figure 8 Non-coated samples with different height, Spacing 10/50. A: Contact angles; B-E: Images captured with goniometer for 

Contact Angle Measurement, Slab, initial thickness of 240 µm, 280 µm, and 320 µm, respectively. 

 

Figure 9 Clean substrate with an average contact angle of 64.82° 

According to Figure 9, a pure PMMA substrate has an average contact angle of 64.82°. For the 

sample as shown in Figure 8 D, which has a very close value to the bare substrate, it is possible 

that the area for measurement had insufficient effective structure left for some reason, and the 

surface was close to pure flat PMMA. 

  

82.67 

93.24 
88.4 

106.33 

0

20

40

60

80

100

120

Slab 240 280 320

C
o
n

ta
ct

 A
n

g
le

 (
D

eg
re

e)
 

Initial Film Thickness (µm) 

A No Coating 



16 

 

 

3.2 The Coating 

  

Figure 10 Two different types of coating composition: A: PFDT coating, chemically bonded; B: PTFE coating, physically 

adhered; Bottom layer: substrate; Dark layer: Slab/gel; Light layer: micro-pillar/primary structure. 

Three coating procedures were carried out for testing. The PFDT coating reaction, the thiol-ene 

reaction mechanism has been described by Crivello et al..
55

 Since the photo-polymerization 

reaction of the basic structure is like cross-linking of TMPTA, the initial guess was that some of 

the C=C bonds from poly(TMPTA) remained as residues after the initial photo-curing, and thus 

could have further reactions with –SH function groups that existed in the HPCM-1 solution, with 

CQ as the initiator. The hydrophobic part, the fluorocarbon chain, is chemically attached to the 

surface of the structure, as shown in Figure 10 A.  

Figure 11 A shows the hydrophobic performance of 10/50 samples after two times of coating. 

Washing and drying procedure were carried out between the two coating procedures to clean out 

the excess fluorocarbon chains covering the surface. The mixture was added to fill the space 

between primary structures, and the reaction was desired to occur on the surface of the primary 

structure. When the lights came from below, most of them would go through the slab on the 

bottom and the reaction occurred there. The cone pillars would restrict the light coming out on 

A B 
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their surface due to the refraction index so the reaction was limited on desired surfaces; also, 

excess light absorbed and the presence of oxygen
56

 could make two PFDT molecules link. The –

SH group could be initiated by the free radicals generated by CQ in the presence of light and 

form –S–S– bonds ; and when the light source was on top and facing down, the unfavorable 

linking reaction would occur on the surface of the mixture and the side product would 

accumulate between pillars as the solvent evaporated.  

The slab prepared for contact angle measurement formed cracks after coating due to internal 

stress, and this restricted the hydrophobicity (measured contact angle of 74.7°) of this specific 

sample. The sample with an initial film thickness of 280 µm had achieved an average contact 

angle of 129.93°, as shown in Figure 11 B, followed by the one with a 320 µm initial film 

thickness. It is possible that the solvent evaporates before the tip has enough PFDT molecules 

attached to the surface. The one with 240 µm initial film thickness achieved a lower contact 

angle, which was due to a different shape without a “sharp” tip, resembling a bump. The one 

labeled as a slab was photo-cured without a textured mask and the surface was flat, which led to 

poor performance compared to the ones with structures. Similar to the one with a “bump” surface, 

the flatness greatly reduced the performance of PFDT. 

The PFDT coating was tested for more times as shown in Figure 11 C. Coating samples at 3 

times show poor hydrophobicity comparing to the twice-coated ones, and the fourth coating had 

no better results than the third one. It is assumed that the surface residues had been consumed 

after the second coating and starting from the third coating, the excess PFDT could no longer 

react with the surface. The molecules started linking themselves as described above, and the side 

products possibly either got stuck between the existing secondary structures, filling the gaps and 

creating uneven roughness, or they would accumulate at the bottom surface. 
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Figure 11 Contact angles of samples. A: PFDT coating twice; B: Twice-coated sample with 280 µm initial thickness; C: Coating 

of PFDT, 2-4 times. 

The coating of PTFE is intended to let the particles physically attached to the surface, as shown 

in Figure 10 B. Figure 12 A shows the results from dripping the samples with a 5% wt. PTFE 

mixture (HPCM-2). Compared with the results shown in Figure 11 A, the 280 µm and 320 µm 

coatings showed less hydrophobicity, with smaller contact angles. The one with highest flatness, 

the slab one, had a very similar contact angle to the highest one in the group, the 280 µm one. 
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Since the HPCM-2 was dripped onto the surfaces, the flatness of the slab let the particles 

distribute more evenly on the surface; with the help of the roughness created by PTFE particles, 

the hydrophobicity is increased. And for the samples with structures, it was more likely that the 

particles were mainly precipitated onto the bottom, with fewer particles on the tips of structures. 

The sample with 240 µm initial thickness had the smallest contact angle among all the samples 

in this group. The reason for this goes back to the shape –the “bumps” had very low heights, and 

the particles accumulated between the short structures and increase the flatness, resulting in a 

lower r. The particles intended to create secondary roughness were unable to achieve good 

distribution with this method. 

 

Figure 12 Samples coated with dripping PTFE. A: The contact angles; B-E: Goniometer images for processing, slab, 240 µm, 

280 µm, and 320 µm initial thicknesses, respectively. 

Another coating method, spray coating, was considered after the ineffectiveness of drip coating. 

The contact angle comparison is shown in Figure 13. As can be seen, spray coating is better in all 

initial thicknesses. A brief result is shown in Figure 14. In Figure 14 A and B, the sample was 

not coated, and the hydrophobicity is poor. After coating, comparing Figure 14 A and C, the 
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surfaces are highly similar; the white line on the coated one is the accumulation of PTFE 

particles. The droplet in Figure 14 D has a significantly higher contact angle than the one shown 

in Figure 14 B, indicating that the hydrophobicity of the surface has increased. 

 

Figure 13 Contact angle comparison, PTFE-S refers to PTFE spray coating, and PTFE-D refers to drip coating. 

Table 1 Linear Regression of Height H versus Thickness T for 10/50 Samples 

 Thickness T (µm) Structural Height H (µm) 

Data Points 

241 36.6769 

262 55.021 

281 49.59908 

304 103.2395 

320 115.1505 

Linear Regression (1) H=1.0319 T - 218.645, R
2
=0.834115 

Linear Regression (2) H=1.02784 T - 212.071, R
2
=0.994045 (281 Excluded) 
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Figure 14 Slab before and after spray coating. A: Before coating; B: Droplet on non-coated surface; C: After coating; D: Droplet 

on coated surface. 

 

Figure 15 Droplets on five 10/50 spacing samples with various initial film thickness. A-E: Initial thicknesses from 240 µm to 320 

µm, 20 µm common difference; F: Zoom-in of the 320 µm sample interface. 
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Figure 15 shows the 10/50 samples’ hydrophobicity briefly. The contact angles are greater than 

90°. The one in Figure 15 C is of the same initial film thickness as the ones with the largest 

contact angles when coating with PFDT and dripping PTFE. However its height was found to be 

irregular as shown in Table 1 two linear regressions were carried out. Figure 15 F shows the 

interface of the droplet and the primary structure, and demonstrates the pillars that were 

supporting the droplet. 

The reason hydrophobicity increased is that the PTFE particles used were fine ones with a 

particle size of 1 µm. As the particles were sprayed onto the sample, they were more evenly 

distributed across the surface of structures when the solvent in the suspension evaporated rather 

than accumulating on the slab. On a lower scale, this created a higher r on the contact surfaces. 

3.3 Spacing and Contact Area 

Masks with various mesh spacing were available, and the results were mixed. The masks being 

tested were 5/50, 10/100, 40/100, 40/200, 40/400, 80/200, and 80/400. The masks were divided 

into groups. All the samples were spray-coated except the 5/50 samples are shown in Figure 16.  

 

Figure 16 Contact angle values of all PTFE spray coated samples, with increasing sample film thickness for each group.  
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Figure 17 Section view of a 5/50 sample with an initial thickness of 600 µm. 

The 5/50 samples showed very poor results due to the shape of the structure, in which the initial 

thickness was restricted by both oxygen inhibition and the value of the aperture. Compared with 

the 10/50 samples, the holes had an aperture diameter of 5 µm, the light would have stronger 

diffraction effect; it photo-polymerized most of the monomer molecules in the lower section, 

leaving small bumps on top with low H values, as shown in Figure 17. 

 

Figure 18 Highest Contact Angles Achieved with PTFE Spray Coating. A: Slab (Basis value, θ=108.25°); B: 10/50; C: 10/100; D: 

40/100; E: 40/200; F: 80/200; G: 40/400; H: 80/400. 
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Figure 19 Contact Angle versus Structural Height (H), also the caption letters are the corresponding pictures in Figure 18. 

The best results from the goniometer are shown in Figure 18, and Figure 19 shows the contact 

angle values versus the mean actual sample structure height value (H) included in Figure 16. The 

50 µm samples formed a “W”-shape plot, and the structural heights did not follow the film 

thickness. The former phenomenon indicates that the two with lower values may have had an 

undesirable tip surface for higher contact angle while the latter one is possibly due to the high 

viscosity in which the thickness equilibrium was formed after measurement or a loading process 

that tilted and in which the equilibrium had not been reached before the reaction started.  

As for the distance at 100 µm, 10/100 samples have different hydrophobicity compared with 

40/100 samples. The desired contact surfaces are shown in Figure 20 A-B. The 10/100 samples 

with greater initial thickness tended to bend on the tip and generate more heterogeneity and the 

contact angles decreased. This may have been due to the path of the light being affected by 

heterogeneity in the film or disturbance during the washing process, as when thickness increases, 
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the height increases, the top of the structure has a small diameter and the strength is weak, even 

with a longer curing time than all other groups; thus the strength is inferior to the others. The 

tendency is to decrease with the increase of height, which can be seen in the figure. The 40/100 

samples have a larger aperture diameter compared with the distance, allowing the free radical 

diffuse into the covered area more easily and started forming a “bridge”. If the film thickness is 

greater, a slab of polymers is formed, then the layer cracks due to the internal stress and breaks 

the uniformity of the primary structure when the initial thickness is greater than 450 µm. The 

measurement of both the 40/100 300 µm and 400 µm were affected by the image background 

and may not be accurate, as in Figure 19 there are two significant lower value points, as the 

samples are suffering from the heterogeneity of the surfaces. And despite the fact that there were 

two samples with very high contact angles, the droplets did not roll well as the other samples 

with similar contact angles, indicating larger hysteresis.  

 

Figure 20 A and B: Contact Surfaces of two 100 Samples. A: 10/100 sample; B: 40/100 sample; C and D: Water Interaction with 

Structures for 400-Spacing Samples. C: 80/400 with partial immerse; D: 40/400 with full immerse. 

For the spacing value of 200, the results show good hydrophobicity for both 40/200 and 80/200 
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sub-groups. The contact angles of both sub-groups results are also shown in Figure 16. The spray 

coating of PTFE proved to be very effective for the 200 group. In Figure 21 A, the sample is 

uncoated and the hydrophobicity is not good, as shown in Figure 21 B. After coating, the sample 

primary structures remain visible in Figure 21 C; the contact angle has increased compared to 

Figure 21 B and D. Figure 21 E is a 40/200 sample interacting with a droplet, and the “support” 

of the tip is visible. A view from a lower angle is available as seen in Figure 21 F, which is an 

80/200 sample being shown. The droplet can be seen “floating” above the slab at the bottom, 

supported by the primary structures. This image is actually a screenshot from a video clip 

showing the droplet and the sample as the droplet was unstable at the position in the figure. 

 

Figure 21 A-D: 80-200 Sample; A: The pre-coated sample; B: Droplet on the pre-coated sample; C: Sample after coating; D: 

Droplets on coated sample; E: Zoom-in view of droplet interact with microstructures, 40/200 spacing; F: Side view of a moving 

droplet and structures, 80/200 spacing. 



27 

 

 

For the distance value of 400 µm, the distance is considered too far for free-radicals to diffuse 

and react, also for the light to have enough diffraction. It is also considered that the primary 

structures are not dense enough (b is too large for droplets) or long enough to provide enough 

support to the droplet. The surface tension could not hold the sphere shape and the water touched 

the bottom, and the pillars are seemingly penetrating into the droplets in Figure 20 C and D, thus 

showing a transition state from Cassie-Baxter state to Wenzel state (touching the slab or 

substrate) a macro “mushroom” state
57

 or a Wenzel state.  The high contact angle values of 

droplets are due to the surface roughness provided by PTFE particles on the substrate surfaces. 

The droplets would not roll even when the contact angle was high. Their contact angle could also 

be seen in Figure 16. In order to not form the Wenzel state, a higher structural height value H 

may allow enough clearance for the droplet to be supported by the structure, or a different tip 

shape would allow more particles to adhere to the tip, creating higher secondary roughness to 

alter the hydrophobicity of the 400-group samples. 

3.4 Shape, Surface and Droplet Analysis 

Though the profiles of the pillars could be acquired from the section views, the exact shapes of 

the structures remain unknown. The equations in Section 3.1 are based on solids of revolution. 

To verify this, exact three-dimensional views are necessary. Also, the performance of the coating 

was shown in the previous section, and the exact coating surface morphology and topography are 

as yet unknown in this research. The following characterization and modeling were carried out to 

provide sufficient support for the analysis.  
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Figure 22 Scanning Electron Microscope (SEM) images. Array View (A-G): A: 10/50; B: 10/100; C: 40/100; D: 40/200; E: 

40/400; F: 80/400; G: 80/200; H: Single Structure of 80/200; I: Tip of Structure, 80/200. 

The scanning electron microscope (SEM) was being used to analyze the shape of structures and 

the surface of structures. Figure 22 A to G show the arrays of structures, formed by the self-

writing process. The array density is based on the photo mask, and the base radii of pillars are 

normally larger than the aperture diameters of the masks, due to the dispersion of light and free 

radicals. A lower aperture/spacing ratio is more favorable to forming “chess piece” pillars. 

Figure 22 H shows the exact shape of a single pillar, which shape could be used to verify the 

approximation model. Figure 22 I is a higher magnification image of (H), showing the PTFE 

particles are effectively coated onto the surface (the white areas with particles) and the non-
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coated area is minimal (darker area slightly shown). This has also proved that with an 

appropriate structural shape, spray-coating of PTFE particles would be a fast and effective way 

to generate a coating layer.  

   

Figure 23 3D Models Based on Approximation Data. A: 80/200; B: 40/400. 

Two examples of approximation models for calculation of f and r are shown in Figure 23. These 

models were generated using Autodesk® AutoCAD 2015 software. Multiple ri and li values were 

measured with Zeiss ZEN Lite and put in tables for approximate calculation of SP, then 

equations (7) to (11) were used to get f and r. 
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Figure 24 A: f versus mean height H and B: f versus H. 

The f and r are being plotted versus H respectively in Figure 24. Logarithm axis was used for f 

for a better view, but the trends are only clear for 10/100, 40/400 and 80/400 samples. This is 

because of the error in observation and measurement of SNon for f values being calculated. On the 

other hand, the roughness factor r shows good trends for all samples, since SP values are closely 

approximated; as height increases, the surface area value ascends, and follows r.  
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Figure 25 Droplet Radius Difference ∆R (Apex Fit radius R – Contact Fit radius RC) and Bond Number versus Mean Structural 

Height. Bo values are shown in dashed lines. 

The droplet shape is analyzed using both the Bond number and ∆R, the difference between apex 

radius (R) and contact fit radius (RC). Utilizing the ImageJ software, R is fitted with multi-points 

and RC is fitted with the plug-in. The Bond number is calculated from
58

 

𝐵𝑜 = (
𝑙

𝑙𝐶
)2           (12) 

where l is the specific length and lC is the capillary length of water, lC =2.7 mm. In this case, l is 

equal to the apex radius R. In Figure 25, the Bond numbers are lower than 0.3, indicating that the 

droplets are mainly affected by surface tension. The negative values of ∆R show that the fitting 

circles for contact angle have larger radii than the apex circles, the equatorial radii are also 

greater, and the upper part of droplets are more closer to oblate spheroids; for positive ∆R, the 

upper part of droplets are closer to prolate spheroids . The relationship between droplet shape 

and actual contact angle is not significant, as shown in Figure 26. 
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Figure 26 Scatter Plot of Contact Angle versus ∆R. 

Among all the groups, 10/50, 10/100, and the 200-group samples perform high hydrophobicity 

within their specific range. The 80/200 sample with an initial thickness of 250 µm, mean actual 

height of 207.23 µm has the highest contact angle among all the samples. The samples are also 

translucent, as shown in Figure 27. The sample in the figure is the one with high hydrophobicity, 

and the two sides were cut for observation with the goniometer. Heterogeneity in all the samples 

was observed and is either due to the gradient in structural height or the bends on tips, or both. 

The edge is formed by the surface tension between the liquid feedstock and the cell wall, 

resulting in a higher thickness than at the center of the cell where the thickness is measured. 

 

Figure 27  Transparency of a sample. 
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4 Conclusion 

The process to produce superhydrophobic surfaces using a visible-light-inducted self-writing 

method has been achieved using photo-initiating compounds to cross-link the monomer. Total 

reflection inside the path way of light beams forms a pillar or cone-shaped microstructures with 

the aperture arrays on the photo mask. The performance of chemically coating PFDT was 

restricted by the system, and to enhance the performance, due to the refraction index, a light 

source of a different wavelength is needed, along with a photo-initiator working at the 

corresponding wavelength without affecting the reaction. Spraying of PTFE particles forms a 

smaller scale of microstructures on the surface of cones, which helps create strong 

hydrophobicity. The spacing and structural height have significant influences on the shape of the 

structure, thus affecting hydrophobicity; the coating materials are critical and the coating method 

is as well. A parameter set with less feedstock consumption was found. This method is fast, with 

20 minutes of curing time for most spacing, 10 minutes for 80/200 and 400 spacing sets, and 10 

minutes for the following procedures. The results have also demonstrated an approach to 

fabricate translucent superhydrophobic surfaces. Planned further work includes analyzing the 

hysteresis of the surface, finding out the relationship between droplet shape and the dimensional 

parameters. 
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