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Abstract 

Demand has arisen rapidly for smart materials in the world of the need to develop and understand 

new functional products like plastics, rubber, adhesives, fibers, and coatings. Such products are 

essentially composed of polymers, large molecules of high molecular weight with homogeneous 

or various repeating units, which researchers term “macromolecules” that engender specific 

structural, morphological, and physical and mechanical properties. Those polymers with the 

capacity to change their configuration in accordance with environmental alteration are specifically 

referred to as shape memory polymers (SMPs), attracting much interest of study both academically 

and industrially. Herein, this dissertation aims at design, fabrication, and characterization of novel 

crosslinkable semicrystalline polymeric materials utilizing different techniques and mechanisms 

in order to explore their special thermomechanical features as well as the possibilities for potential 

industrial application based on shape memory (SM) effects. Key aspects include use of modern 

polymer synthesis to tailor thermal and shape memory properties and the adoption of 

electrospinning processing techniques to form continuous, fine fibers that allow unique molecular 

modifications, study of enzymatic degradation behavior involving physical form and 

microstructural state, and unprecedented approaches of making new kinds of shape memory 

assisted self-healing (SMASH) materials and thermal-responsive self-reversible actuators that 

require no human intervention. In the following is described the dissertation scope and 

organization. 

Chapter 1 goes over background relating to material science within the scope of SM material, 

self-healing (SH) material, and actuators. 



Chapter 2 outlines research conducted to achieve new compositions of matter and post-

synthesis process, along with supporting characterization for the development of novel SMP 

materials with featuring tunable reversible actuation capability under ambient stimulus. We 

prepared a family of crosslinkable (unsaturated), semicrystalline cyclooctene (CO)-based 

copolymers with varying second monomer and composition via ring opening metathesis 

polymerization (ROMP). The unsaturation enables covalent crosslinking of polymer chains, in the 

presence of select thermal initiator through compression molding, allowing subsequent formation 

of a temperature-responsive network that shows a reversible two-way shape memory (2WSM) 

effect, indicative of crystallization-induced elongation upon cooling and melting-induced 

contraction upon heating when a constant, external stress is applied. Molecular, thermomechanical, 

and SM experiments were performed to investigate and tune the reversible actuation of 

aforementioned copolymers for the purpose of yielding quantitative guidelines for tailoring 

material and actuation performance through variations in composition and process. 

Chapter 3 seeks a latent-crosslinkable, mechanically flexible, fully thermoplastic shape memory 

polymer. Towards this end, we have developed a simple but effective macromolecular design that 

includes pendent crosslinking sites via the chain extender of a polyurethane architecture bearing 

semicrystalline poly(ε-caprolactone) (PCL) soft segment. This new composition was used to 

prepare fibrous mats by electrospinning and films by solvent casting, each containing thermal 

initiators for chemical crosslinking. Relevant to medical applications, in vitro enzymatic 

degradation experiments were carried out to understand the effect of crosslinking state and 

crystalline structure on degradation behavior of the materials. 

Chapter 4 builds upon the results of Chapter 3, reporting on the design, fabrication and 

characterization of a novel, electrospun SMASH polymer blend that incorporates the 



aforementioned latent-crosslinkable polyurethane. This unique blend system has been 

unprecedentedly developed by employing a solution in which crosslinkable polyurethane and 

linear polyurethane are mixed homogeneously for electrospinning. After preparing a family of 

blends with varying compositions, comprehensive characterizations and various healing tests were 

done to determine optimal healing performance. Further, the effect of different damage types and 

molecular anisotropy (nanofibers aligned in high speeds during electrospinning process) were 

studied for their effect on healing performance. 

Chapter 5 continues along the line of Chapter 3, presenting the fabrication and testing of novel, 

electrospun SMP composites that were designed to exploit molecular and geometric anisotropy in 

reversible actuation under external stress-free condition upon change in ambient temperature. 

More specifically, the SMP composites consist of two electrospinnable constituents, one being the 

aforementioned latent crosslinkable polyurethane that serves to shape fixing and recovery (SM 

properties), and the other being a thermoplastic elastomer known as Pellethane that provides the 

internal stress field needed for 2WSM to occur. Multiple designs were developed and investigated 

in this chapter, in particular, including uniaxial actuator, bending actuator, and twisting actuator 

along with their bench demonstration of self-reversible actuation. 

Chapter 6 discusses the overall dissertation conclusions, followed descriptions of suggestions 

for future work, some of which are sub-sectioned at the end of this dissertation.  
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a) 0.25 wt. % and b) 0.50 wt. %, respectively: PCO (black), 1COD (red), 3COD (blue), 5COD (pink), 3NO 

(cyan), and 3CH (green). E' was recorded at a heating rate of 3 °C/min with frequency of 1 Hz. 

Figure 2-6. Tan δ vs temperatures for crosslinked copolymers with DCP concentration of a) 0.25 wt. % 

and b) 0.50 wt. %, respectively: PCO (black), 1COD (red), 3COD (blue), 5COD (pink), 3NO (cyan), and 

3CH (green). 

Figure 2-7. One-way shape memory cycles for a) PCO0.25, b) 1COD0.25, c) 3COD0.25, and d) 5COD0.25, 

respectively. The sample is deformed by increasing stress at 70 °C. A temporary shape was fixed by cooling 

at a rate of 2 °C/min and unloading, and then the original shape was recovered by heating at 2 °C/min. “*” 

indicates starting point. 

Figure 2-8. One-way shape memory cycles for a) PCO0.50, b) 1COD0.50, c) 3COD0.50, d) 5COD0.50, 

e) 3NO0.50, and f) 3CH0.50, respectively. The sample is deformed by increasing stress at 70 °C. A 
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temporary shape was fixed by cooling at a rate of 2 °C/min and unloading, and then the original shape was 

recovered by heating at 2 °C/min. “*” indicates starting point. 

Figure 2-9. Two-way shape memory behavior of PCO-COD copolymers containing different COD 

contents cured with 0.25 wt. % DLP: (i) PCO0.25, (ii) 1COD0.25, (iii) 3COD0.25, and (iv) 5COD0.25. 

The samples were stretched under high temperature (70 °C) at a constant strain of 70%. The deformation 

step is followed by a cooling process at a rate of 2 °C/min, inducing an increase in strain. Then, the increased 

strain decreases by a heating process at a rate of 2 °C/min to 70 °C. Cycle: first (black), second (red), third 

(blue). 

Figure 2-10. Two-way shape memory behavior of PCO-COD copolymers containing different COD 

contents cured with 0.50 wt. % DLP: (i) PCO0.50, (ii) 1COD0.50, (iii) 3COD0.50, and (iv) 5COD0.50. 

The samples were stretched under high temperature (70 °C) at a constant strain of 70%. The deformation 

step is followed by a cooling process at a rate of 2 °C/min, inducing an increase in strain. Then, the increased 

strain decreases by a heating process at a rate of 2 °C/min to 70 °C. Cycle: first (black), second (red), third 

(blue). 

Figure 2-11. Two-way shape memory behavior of copolymers containing various second monomer cured 

with 0.50 wt. % DLP: (i) 3COD0.50, (ii) 3NO0.50, and (iii) 3CH0.50. The samples were stretched under 

high temperature (70 °C) at a constant strain of 70%. The deformation step is followed by a cooling process 

at a rate of 2 °C/min, inducing an increase in strain. Then, the increased strain decreases by a heating process 

at a rate of 2 °C/min to 70 °C. Cycle: first (black), second (red), third (blue). 

Figure 2-12. Gel fraction value (𝐺) as a function of COD content cured with different DCP concentrations. 

(○) indicates 0.25 wt. % DLP and (●) 0.50 wt. % DLP. 

Figure 2-13. a) Actuation magnitude (𝑅𝑎,𝑚) and b) recovery magnitude (𝑅𝑟,𝑚) as a function COD content 

at different DCP concentrations for PCO, 1COD, 3COD, and 5COD. (○) indicates 0.25 wt. % DCP and (●) 

0.50 wt. % DCP. 
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Figure 2-14. Thermal strain hysteresis (∆𝑇) as a function of COD content cured with different DCP 

concentrations. Thermal strain hysteresis was calculated from the temperature difference at the half of strain 

loop generating during cooling and heating. (○) indicates 0.25 wt. % DCP and (●) 0.50 wt. % DCP. 

Figure 2-15. 2WSM characteristics of copolymers with varying second monomers in comparison in terms 

of actuation magnitude and recovery magnitude. 

Figure 2-16. a) Two-way shape memory behavior for 3COD0.50 at different heating/cooling rates, 

0.5 °C/min (pink), 1.0 °C/min (blue), 2.0 °C/min (red), and 3.0 °C/min (black). The sample was deformed 

under a tensile stress of 300 kPa at 70 °C; b) Actuation magnitude (𝑅𝑎,𝑚) and strain hysteresis (∆𝑇) versus 

heating/cooling rate based on the two-way shape memory behavior of the 3COD0.50 sample, respectively. 

Maximum 𝑅𝑎,𝑚 (●) and ∆𝑇 (○). The strain hysteresis was calculated from the temperature difference (ΔT) 

at the half of strain loop in two-way shape memory cycles. 

Figure 2-17. a) 3D two-way shape memory behavior for 3COD0.50 at different stresses, (i) 100 kPa, (ii) 

200 kPa, and (iii) 300 kPa. The sample was deformed under each constant stress at 70 °C, followed by 

cooling and heating steps (2 °C/min), respectively; b) Maximum strain and strain hysteresis versus stress 

based on the two-way shape memory behavior of the 3COD0.50 sample, respectively. Maximum strain (●) 

and strain hysteresis (○). The strain hysteresis was calculated from the temperature difference (ΔT) at the 

half of strain loop in two-way shape memory cycles. 

Figure 2-18. 2D WAXS patterns of the 3COD0.50 sample with an increase of loading after cooling: (i) 

unstretched, (ii) 100 kPa, (iii) 200 kPa, and (iv) 300 kPa. Stretching direction is vertical. The X-ray 

wavelength (λ) is 1.5405 Å. 

Figure 2-19. WAXS plots of (i) 3COD0.50, (ii) 3NO0.50, (iii) 3CH0.50, and (iv) PCO0.50. The X-ray 

wavelength (λ) is 1.5405 Å. 

Figure 2-20. Azimuthal scanning profiles for the 3COD0.50 sample as a function of the applied stress: (i) 

100 kPa, (ii) 200 kPa, and (iii) 300 kPa. The X-ray wavelength (λ) is 1.5405 Å. 



xxiv 

 

Figure 3-1. Differential Scanning Calorimetry (DSC) analysis graph of (i) PCL2k-TPU and (ii) PCL3k-TPU. 

Heating and cooling rates of 10 °C/min. 

Figure 3-2. Scanning electron microscope (SEM) images of PCL3k-TPU: a) virgin cast film surface; e) 

crosslinked cast film surface; b) and f) virgin spun fiber mat surface (770 nm average diameter) at different 

magnifications; c) and g) crosslinked spun fiber mat at different magnifications; d) and h) cryofracture 

(cross-section) views of crosslinked spun fiber mat at different magnifications. Scale bar = 50 μm in a), b), 

c), d), and e); 10 μm in f), g), and h). 

Figure 3-3. 2D Wide-angle X-ray Scattering (WAXS) patterns of a) virgin cast film, b) crosslinked cast 

film, c) virgin spun fiber mat, and d) crosslinked spun fiber mat of PCL3k-TPU; e) WAXS profiles of (i) 

virgin cast film, (ii) crosslinked cast film, (iii) virgin spun fiber mat, and (iv) crosslinked spun fiber mat. 

The X-ray wavelength (λ) is 1.5405 Å. 

Figure 3-4. Differential Scanning Calorimetry (DSC) analysis graph of virgin cast film (i), crosslinked cast 

film (ii), virgin spun fiber mat (iii), and crosslinked spun fiber mat (iv) of PCL3k-TPU. Heating and cooling 

rates of 10 °C/min. 

Figure 3-5. a) Storage modulus (E') vs temperatures for virgin cast film (black) and crosslinked cast film 

(red) of PCL3k-TPU. E' was recorded at a heating rate of 3 °C/min with frequency of 1 Hz; b) one-way and 

c) two-way shape memory cycles for crosslinked cast film of PCL3k-TPU. “*” indicates starting point; d) 

two-way shape memory behavior for crosslinked cast film of PCL3k-TPU at different stresses, (i) 0.30 MPa, 

(ii) 0.50 Mpa, and (iii) 0.70 Mpa. The samples were deformed under each constant stress at 80 °C, followed 

by cooling and heating steps (2 °C/min), respectively. 

Figure 3-6. a) Storage modulus (E') vs temperatures for virgin spun fiber mat (black) and crosslinked spun 

fiber mat (red) of PCL3k-TPU. E' was recorded at a heating rate of 3 °C/min with frequency of 1 Hz; b) 

one-way and c) two-way shape memory cycles for crosslinked spun fiber mat of PCL3k-TPU. “*” indicates 

starting point; d) two-way shape memory behavior for crosslinked spun fiber mat of PCL3k-TPU at different 
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stresses, (i) 0.15 MPa, (ii) 0.30 Mpa, and (iii) 0.45 Mpa. The samples were deformed under each constant 

stress at 80 °C, followed by cooling and heating steps (2 °C/min), respectively. 

Figure 3-7. Maximum strain and strain hysteresis versus stress based on the two-way shape memory 

behavior of a) crosslinked cast film and b) crosslinked spun fiber mat, respectively. Maximum strain (■) 

and strain hysteresis (□). The strain hysteresis was calculated from the temperature difference (ΔT) at the 

half of strain loop in two-way shape memory cycles. 

Figure 3-8. Enzymatic degradation study of PCL3k-TPU: a) Mass remaining profiles, b) crystallinities 

profiles, c) normalized number-average molecular weight (Mn) remaining profiles for virgin samples only, 

and d) evolution profiles of gel fraction value for crosslinked samples only during degradation by Lipase 

PS (0.4 mg/mL) in a pH 7.4 PBS solution at 37 °C. Virgin cast film (●), crosslinked cast film (○), virgin 

spun fiber mat (▲), and crosslinked spun fiber mat (Δ). 

Figure 3-9. Photographs of PCL3k-TPU samples during enzymatic degradation: a) virgin cast film; b) 

crosslinked cast film; c) virgin spun fiber mat; d) crosslinked spun fiber mat. Columns from left to right 

refer to control, day 2, day 18, day 34, and day 66, respectively. 

Figure 3-10. SEM images of PCL3k-TPU samples during enzymatic degradation: a) virgin cast film; b) 

crosslinked cast film; c) virgin spun fiber mat; d) crosslinked spun fiber mat. Columns from left to right 

refer to control, day 2, day 18, day 34, and day 66, respectively. Scale bar = 50 μm. 

Figure 3-11. Thermogravimetric analysis (TGA) graph of virgin cast film (i), crosslinked cast film (ii), 

virgin spun fiber mat (iii), and crosslinked spun fiber mat (iv) of PCL3k-TPU. Heating rate of 10 °C/min. 

Figure 3-12. Thermogravimetric analysis (TGA) graph of virgin cast film (i), crosslinked cast film (ii), 

virgin spun fiber mat (iii), and crosslinked spun fiber mat (iv) of PCL3k-TPU. Heating rate of 10 °C/min. 

Figure 3-13. 2D Small-angle X-ray Scattering (SAXS) patterns of a) virgin cast film, b) crosslinked cast 

film, c) virgin spun fiber mat, and d) crosslinked spun fiber mat of PCL3k-TPU; e) SAXS profiles of (i) 
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virgin cast film, (ii) crosslinked cast film, (iii) virgin spun fiber mat, and (iv) crosslinked spun fiber mat. 

The X-ray wavelength (λ) is 1.5405 Å. 

Figure 3-14. Water uptake profiles during degradation by Lipase PS (0.4 mg/mL) in a pH 7.4 PBS solution 

at 37 °C. Virgin cast film (●), crosslinked cast film (○), virgin spun fiber mat (▲), and crosslinked spun 

fiber mat (Δ). 

Figure 4-1. Differential Scanning Calorimetry (DSC) analysis graph of a) electrospun fiber mats and linear 

polymer: (i) 100:0, (ii) 90:10, (iii) 80:20, (iv) 70:30, (v) 60:40, (vi) 50:50, and (vii) 0:100; and of b) hot 

compacted fiber mats: (i) 100:0, (ii) 90:10, (iii) 80:20, (iv) 70:30, (v) 60:40, and (vi) 50:50. 

Figure 4-2. Scanning electron microscope (SEM) images of electrospun fiber mats: a) 90:10, c) 80:20, e) 

70:30, i) 60:40, and l) 50:50; SEM images of hot compacted fiber mats: b) 90:10, d) 80:20, f) 70:30, j) 

60:40, and m) 50:50. Cryofracture (cross-section) views of hot compacted g) 80:20 and h) 60:40 samples 

at high magnifications. The scale bar is 50 μm. 

Figure 4-3. Storage modulus (E') vs temperatures for a) electrospun fiber mats and b) hot compacted fiber 

mats, respectively: 100:0 (black), 90:10 (red), 80:20 (green), 70:30 (blue), 60:40 (pink), and 50:50 (cyan). 

E' was recorded at a heating rate of 3 °C/min with frequency of 1 Hz. 

Figure 4-4. Reversible plasticity shape memory (RPSM) cycle of a) 100:0, b) 90:10, c) 80:20, d) 70:30, e) 

60:40, and f) 50:50, respectively, where each sample was deformed to 140% strain at room temperature and 

recovered at 80 °C. Strain vs temperature curve (blue) and stress vs strain curve (red) are plotted for each 

composition. “*” indicates starting point. 

Figure 4-5. Stress vs strain curves for the virgin, puncture damaged and healed states of a) 100:0, b) 90:10, 

c) 80:20, d) 70:30, e) 60:40, and f) 50:50, respectively. In particular, the healed 80:20 sample shows a 

profile highly identical to the virgin state, indicating complete restoration of mechanical properties. 

Figure 4-6. a) Optical microscope images of a hot compacted 80:20 sample showing (i) the virgin state, (ii) 

puncture damaged and stretched (~40% strain) state at RT(~22 °C), (iii) heated (90 °C) and healed state, 
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and (iv) re-stretched state (~100% strain) after cooled back to RT. The scale bar is 0.5 mm; b) Snapshots 

of puncture closure and puncture rebonding when the sample was unloaded from the clamps of the LinkAm 

tensile stage and heated up to the temperatures revealed above (stereo micrographs scale bar is 0.5 mm). 

Figure 4-7. Self-healing efficiency vs l-PCL wt. % content. The damage type is puncture. 𝜂1: ○, 𝜂2 : ●. 

Figure 4-8. Optical microscope images of a) a hot compacted 80:20 sample showing (i) the virgin state, (ii) 

scratch (on both sides) damaged and stretched (~40% strain) state at RT(~22 °C), (iii) heated (90 °C) and 

healed state, and (iv) re-stretched state (~100% strain) after being cooled back to RT; b) a hot compacted 

80:20 sample showing (i) the virgin state, (ii) double-edge notched and stretched (~40% strain) state at 

RT(~22 °C), (iii) heated (90 °C) and healed state, and (iv) re-stretched state (~100% strain) after being 

cooled back to RT. The scale bar is 0.5 mm. 

Figure 4-9. a) SEM imaging cross-sectional views of a) a puncture damaged 80:20 sample, b) a scratch 

damaged 80:20 sample, and c) a notch damaged 80:20 sample for (i) the damaged state, (ii) the damaged 

state upon 40% strain, (iii) the healed state, and (iv) the healed state upon 100% strain. The scale bar is 100 

μm. The red arrows indicate the damages accordingly. 

Figure 4-10. Stress vs strain curves for the virgin state, damaged state, and healed state of a hot compacted 

80:20 sample under application of different types of damages: puncture (bottom), scratch (middle), and 

notch (upper), respectively. 

Figure 4-11. Optical microscope images of a) an isotropic 60:40, b) an oriented 60:40 whose stretching 

direction is perpendicular to original fiber orientation (90°), and c) an oriented 60:40 whose stretching 

direction is parallel with original fiber orientation (0°), respectively, showing (i) the virgin state, (ii) 

puncture damaged state, (iii) stretched (~40% strain) state at RT(~22 °C), (iv) heated (90 °C) and healed 

state, and (v) re-stretched state (~100% strain) after cooled back to RT. The scale bar is 0.5 mm. The loading 

direction and film long axis direction are both horizontal. 
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Figure 4-12. a) 2D WAXS patterns and b) SAXS patterns of (i) an oriented, electrospun 60:40, (ii) an 

oriented, hot compacted 60:40, (iii) an isotropic, electrospun 60:40, and (iv) an isotropic, hot compacted 

60:40. The X-ray wavelength (λ) is 1.5405 Å. 

Figure 4-13. a) WAXS, b) SAXS, and c) azimuthal profiles (0 and 180° = meridional) of (i) an oriented, 

electrospun 60:40, (ii) an oriented, hot compacted 60:40, (iii) an isotropic, electrospun 60:40, and (iv) an 

isotropic, hot compacted 60:40. The X-ray wavelength (λ) is 1.5405 Å. 

Figure 4-14. Stress vs strain curves for a) oriented 60:40 and isotropic 60:40 in comparison for the virgin, 

puncture damaged and healed states and for b) the virgin, puncture damaged and healed states of the sample 

whose stretching direction is parallel with fiber orientation (0°) and the sample whose stretching direction 

is perpendicular to fiber orientation (90°). 

Figure 4-15. Thermogravimetric analysis (TGA) graph of electrospun fiber mats: 100:0 (black), 90:10 (red), 

80:20 (green), 70:30 (blue), 60:40 (pink), and 50:50(F) (cyan). 

Figure 4-16. Tan δ vs temperatures for a) electrospun fiber mats and b) hot compacted fiber mats, 

respectively: 100:0 (black), 90:10 (red), 80:20 (green), 70:30 (blue), 60:40 (pink), and 50:50 (cyan). 

Figure 4-17. Young’s Modulus (RT) vs l-PCL wt. % content. Damage type is puncture. 

Figure 5-1. Scanning electron microscope (SEM) images of Bilayer01: Pellethane side a) before curing 

and b) after curing, x-PU side c) before curing and d) after curing, and e) cross-sectional view of cured 

sample; of Bilayer02: Pellethane side g) before curing and h) after curing, x-PU side i) before curing and j) 

after curing, and f) cross-sectional view of cured sample. Scale bar = 10 μm in a), b), c), d), g), h), i) and 

j); 50 μm in e) and f). 

Figure 5-2. 2D WAXS patterns of bilayers before and after thermal curing: a) uncured Bilayer01, b) 

uncured Bilayer02, c) cured Bilayer01, and d) cured Bilatyer02. The X-ray wavelength (λ) is 1.5405 Å. 

Both the principle orientation of fiber axis and strip’s long axis are horizontal. 
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Figure 5-3. Azimuthal scanning profiles for bilayers before and after thermal curing: (i) uncured Bilayer01, 

(ii) cured Bilayer01, (iii) uncured Bilayer02, and (iv) cured Bilayer02. The X-ray wavelength (λ) is 1.5405 

Å. 

Figure 5-4. Thermogravimetric analysis (TGA) profiles of neat Pellethane (black), Bilayer01 (red), 

Bilayer02 (blue), and neat x-PU (pink). Heating rate of 10 °C/min. 

Figure 5-5. Differential Scanning Calorimetry (DSC) analysis graph of cured bilayers and substituent 

polymers: (i) neat Pellethane, (ii) cured Bilayer01, (iii) cured Bilayer02, and (iv) cured x-PU. The second 

heating was recorded at a rate of 10 °C/min. 

Figure 5-6. Differential Scanning Calorimetry (DSC) analysis graph of a) uncured electrospun bilayers: (i) 

first heating and (ii) second heating of Bilayer01, and, (iii) first heating and (iv) second heating of Bilayer02; 

and of b) cured bilayers and substituent polymers: (i) neat Pellethane, (ii) Bilayer01, (iii) Bilayer02, and 

(iv) neat x-PU. Heating rate is 10 °C/min. 

Figure 5-7. Tensile storage modulus (E') vs temperatures for cured bilayers and substituent polymers: neat 

Pellethane (black), Bilayer01 (red), Bilayer02 (blue), and neat x-PU (pink). E' was recorded at a heating 

rate of 3 °C/min with frequency of 1 Hz. 

Figure 5-8. Tensile two-way actuation under stress-free condition for a) Bilayer01 and b) Bilayer02, both 

cured thermally. The samples were heated to 80 °C without applying external stress except preloading force 

of 0.001 N, following which alternate cooling and heating process was adopted at a rate of 2 °C/min. 

Figure 5-9. a) Tensile two-way actuation under stress-free condition for neat Pellethane. The samples were 

heated to 80 °C without applying external stress except preloading force of 0.001 N, following which 

alternate cooling and heating process was adopted at a rate of 2 °C/min; b) two-way shape memory cycles 

for crosslinked x-PU under 220 kPa. The sample was deformed under each constant stress at 80 °C, 

followed by cooling and heating steps (2 °C/min). 
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Figure 5-10. a) Snapshots of two-way actuation of bending actuator. The sample changed from a bent 

shape to a more bent/curled shape by heating in a ~58 °C water bath. Then its shape recovered by cooling 

in a ~0 °C water-ice bath. The reversible actuation can be repeated by alternate heating and cooling; b) 

Quantification of reversible two-way actuation of bending actuator. Curvature (𝒦) was calculated from 

Radius which was directly measured using ImageJ. 

Figure 5-11. a) Snapshots of two-way actuation of twisting actuator. The sample changed from a twisted 

shape to a more twisted shape by heating in a ~55 °C water bath. Then its shape recovered by cooling in a 

~0 °C water-ice bath. The reversible actuation can be repeated by alternate heating and cooling; b) 

Quantification of reversible two-way actuation of twisting actuator. Spiral radius (ℛ) and spiral pitch 

(center-to-center spacing, 𝒫) were estimated using ImageJ. 

Figure 5-12. a) Snapshots of two-way actuation of flattening actuator. The sample changed from a curled 

shape to a flat shape by heating in a ~58 °C water bath. Then its shape recovered by cooling in a ~0 °C 

water-ice bath. The reversible actuation can be repeated by alternate heating and cooling; b) Quantification 

of reversible two-way actuation of flattening actuator. Curvature (𝒦) was calculated from Radius which 

was directly measured using ImageJ. 

Figure 5-13. a) Snapshots of two-way actuation of untwisting actuator. The sample changed from a twisted 

shape to a flat shape by heating in a ~55 °C water bath. Then its shape recovered by cooling in a ~0 °C 

water-ice bath. The reversible actuation can be repeated by alternate heating and cooling; b) Quantification 

of reversible two-way actuation of untwisting actuator. Spiral radius (ℛ) and spiral pitch (center-to-center 

spacing, 𝒫) were estimated using ImageJ. 

Figure 5-14. Tan 𝛿 vs temperatures for cured bilayers and substituent polymers: neat Pellethane (black), 

Bilayer01 (red), Bilayer02 (blue), and neat x-PU (pink). 

Figure 5-15. 2D WAXS profiles of bilayers before and after thermal curing: (i) uncured Bilayer01, (ii) 

uncured Bilayer02, (iii) cured Bilayer01, and (iv) cured Bilayer02. The X-ray wavelength (λ) is 1.5405 Å. 
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Figure 5-16. 2D WAXS patterns of bilayers before and after thermal curing: a) neat Pellethane and b) neat 

x-PU. The X-ray wavelength (λ) is 1.5405 Å. 

Figure 5-17. 2D WAXS profiles of (i) neat Pellethane, (ii) cured Bilayer01, and (iii) cured x-PU. The X-

ray wavelength (λ) is 1.5405 Å. 

Figure 6-1. Simplified presentation of a polymer jetting 3D printer with separate support and build material 

channels; where each layer is planarized and cured by UV exposure immediately after its deposition. 

Figure 6-2. Schematic of off-centered co-electrospinning system. 

Figure 6-3. Cartoon showing preparation of dual-cure network stress-free actuators. 
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List of Videos 

Video 5-1. Self-reversible two-way actuation of bending actuator. The sample was actuated at ~ 58 °C 

above 𝑇𝑚 of x-PU, turning to a more bent shape towards Pellethane side as Pellethane fibers were exerting 

compressive stress onto x-PU. Then the initial shape was recovered by cooling at ~ 0 °C. Such free standing 

reversible actuation can be repeated by alternate heating and cooling. 

Video 5-2. Self-reversible two-way actuation of twisting actuator. The sample was actuated at ~ 55 °C 

above 𝑇𝑚 of x-PU, turning to a more twisted, spiral shape with Pellethane side being inside as Pellethane 

fibers were exerting compressive stress onto x-PU. Then the initial shape was recovered by cooling at ~ 

0 °C. Such free standing reversible actuation can be repeated by alternate heating and cooling. 

Video 5-3. Self-reversible two-way actuation of flattening actuator. The sample was actuated at ~ 58 °C 

above 𝑇𝑚 of x-PU, turning to a completely flat shape as oriented x-PU contracted extensively. Then the 

initial shape was recovered by cooling at ~ 0 °C. Such free standing reversible actuation can be repeated by 

alternate heating and cooling. 

Video 5-4. Self-reversible two-way actuation of untwisting actuator. The sample was actuated at ~ 55 °C 

above 𝑇𝑚 of x-PU, turning to a flat shape as oriented x-PU contracted extensively. Then the initial shape 

was recovered by cooling at ~ 0 °C. Such free standing reversible actuation can be repeated by alternate 

heating and cooling. 
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Chapter 1: Introduction 

1.1 Background 

1.1.1 Polymer Basics 

A polymer is defined as a substance made up of long chain molecules which have long sequence 

of one or more species of small subunits (monomers (Scheme 1-1 (a))) covalently bonded together 

through a chemical reaction known as polymerization.1,2 This particular long chain nature sets 

polymers apart from other substances or materials and gives rise to their characteristic properties.3,4 

The emphasis upon this nature presented up to this point implies the importance of molecular 

weight that for polymers, typically falls in the range from thousands to millions. Broadly speaking, 

25,000 g/mol is the minimum molecular weight required for good physical and mechanical 

features in terms of many commercialized polymers.5 Molecular weight takes different forms, 

given different sources, the most important two of which are number average molecular weight 

(𝑀𝑛) and weight average molecular weight (𝑀𝑤). Note that most synthetic polymers and natural 

polymers have a distribution in molecular weights, indicative of different chain lengths generated 

during one single synthesis batch of a polymer. The breadth of such distribution is described by 

polydispersity index (PDI) represented by the ratio of 𝑀𝑤  to 𝑀𝑛 . In general, condensation 

polymers reveal a PDI of around 2 and to date no successful polymer reaction has been reported 

to yield a PDI of 1 except the case of proteins,3 though modern, controlled polymerizations can 

approach this ideally. 

1.1.2 Polymer Classifications 



2 
 

Several fundamental terms and concepts relating to structure must be understood in order to get 

a more comprehensive insider’s view of polymer’s characteristics. There are four conventional 

types of polymer skeletal structures that account for most industrial polymers in use today: linear 

(Scheme 1-1 (b)), cyclic, branched, and network.2 It is important to recognize that the variations 

in skeletal may result in major differences in such properties as transition temperature, solvent 

resistance, tensile strength, and etc. Notably, network polymers can be not only formed by 

polymerization, but also by crosslinking together pre-existing chains, either physically or 

chemically (covalently). Crosslink density plays a significant role in physical and mechanical 

properties of network polymers, for example of the vulcanization of natural rubber. Also, polymers 

can be classified, on a species-basis of their constituent monomers, into two categories: 

homopolymers that are derived from one species of monomer, and copolymers that are composed 

of more than one species of monomer. Specifically, copolymers can be further categorized into 

four structural types: random copolymers in which the distribution of repeat units is statistically 

random, alternating copolymers in which repeat units are arranged alternately along the polymer 

chain, block copolymers in which repeat units line up only in blocks of the same kind, and graft 

copolymers that are branched polymers where the branches have a different chemical structure to 

that of the backbone chain. Furthermore, there is another common way of classifying polymers in 

which way polymers are separated, essentially based upon the underlying molecular structure, into 

three groups: thermoplastics, elastomers, and thermosets2,4 (Scheme 1-1 (c), (e), and (f)). 

Thermoplastics are oftentimes referred to as a class of linear or lightly branched polymers, which 

become liquid when heat is applied. They constitute the largest portion of the polymers in 

commercial production thus far as their great ability to be processed into virtually any 

configuration in aid of many traditional processing techniques like injection-molding and extrusion. 
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Unlike thermoplastics, elastomers are highly stretchable rubbery networks that recover their 

original shape immediately when the applied stress is removed. This feature is quite useful in many 

design of mechanical devices in both academic institution and industry. In contrast to elastomers, 

thermosets are network polymers with a high degree of crosslinking so as to be very rigid and 

mechanically stable. In this dissertation, we are particularly interested in thermoplastic polymers 

that can later be crosslinked to form networks that exhibit certain thermomechanical and shape 

memory properties. 

1.1.3 Thermal Transitions 

Two primary types of polymer physical structures are in common use: semicrystalline and 

amorphous.3 The term semicrystalline is adapted as these polymers contain a small portion of 

amorphous domains elsewhere crystalline structures are well formed, while, amorphous polymers 

are defined by having no long-range order of underlying molecular structure (Scheme 1-2). It is 

known that mechanical properties of semicrystalline polymers (e.g. Young’s modulus) vary 

significantly as these polymers go through one of three major thermal transitions: glass transition, 

recrystallization (on cooling) transition, and melting (on heating) transition (Figure 1-1). Below 

the glass transition temperature ( 𝑇𝑔 ), the polymer chains are largely immobilized and only 

vibrational motions are possible so that the polymer appears to be glassy along with high Young’s 

modulus. When the polymer is heated above 𝑇𝑔, the polymer becomes soft and rubbery associated 

with several orders of magnitude drop in modulus. The region between 𝑇𝑔 and 𝑇𝑚 is called the 

rubber plateau in which modulus doesn’t change drastically as temperature increases. The melting 

transition temperature (𝑇𝑚) is the temperature at which long-range order of crystalline regions 

loses and the polymer transitions from solid to liquid. Note that covalently crosslinked polymers 
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(networks) doesn’t become liquid but just softens. The recrystallization transition temperature (𝑇𝑐) 

is the temperature at which formation of polymer crystals occurs on cooling (or, in some cases due 

to thermal history, upon heating). These transitions are pivotal because that is where molecular 

rearrangements take place and it could be the origin of shape memory effects. 

1.1.4 Polymerization 

As mentioned previously, polymers are synthesized through a chemical reaction known as 

polymerization which takes a number of different approaches based upon comparison of the 

molecular formula of the polymer with that of corresponding monomers from which it was 

formed.3 One approach is through condensation polymerizations in which the elimination of small 

molecules is involved in order to form covalent bonds between monomers. Addition 

polymerizations usually yield a polymer containing the same repeat units, and without need of 

eliminating small molecules. However, this method of classification turned out imperfect due to 

some overlap between these two polymerization categories. As a better method that focuses on the 

underlying polymerization mechanisms, two general types have been created by the modern 

preference: step polymerization and chain polymerization.2,3,5,6 The common chain polymerization 

mechanisms include free radical polymerization and ring opening polymerization, while, 

condensation polymerization belongs to step polymerization. More specifically, free radical 

polymerization can be divided into three distinct basic steps: initiation, propagation, and 

termination (Scheme 1-3). Note that a further process known as chain transfer can occur with 

initiator, monomer, solvent and transfer agent, to cause termination of an actively growing chain. 

Similarly, the reactions through ring opening polymerization also generate active radicals but only 

one with two active ends instead of two individual radicals in free radical polymerization 

mechanism. As for condensation polymerization mechanism, polyurethane condensation reactions 
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will be one of the primary method by which I synthesize the polymers I used for this dissertation. 

Put simply, these reactions occur in a form of reacting a di- or poly-isocyanate with a polyol. 

1.1.5 Crosslinking 

A crosslink is defined as a linkage that bonds two individual polymer chains together to form a 

network.7 It can be a physical or a chemical (covalent) crosslink depending on its nature and 

mechanism of bonding. The crosslinked polymers, which we refer to as thermoset, have many 

advantageous properties some of which are as following: (1) outstanding ability to maintain 

original shape as well as to minimize dimensional creep, (2) improved solvent resistance, and (3) 

great resistance to heat distortion. 

Physical crosslinks are usually reversible so that they can be reset or reformed by heat, light or 

other means. One example involving intermolecular interaction is that Si-O:B (B = boron) weak 

bonding has been used to form reversible physical crosslinks in order to develop an optional simple 

method to modulate the viscoelastic properties of polymer in practical applications.8 Another way 

to form physical crosslinks involves use of a distinct architecture that places the higher thermal 

transition macromer groups on the backbone of the crystallizable polymer in the form of a graft 

copolymer. The backbone polymer may act as the switching phase (soft segment) with a lower 

transition temperature, while the graft polymer may serve as hard segment that has a noticeably 

higher transition temperature and thus physically crosslinks the material. Polyhedral oligomeric 

silsequioxane (POSS), which consists of an inner (SiO1.5)n core and an organic substituent cage-

shaped shell in a diameter ranging from 1 to 3 nm, offers the ability serve as such hard segment 

due to its high tendency to aggregation of its own kind, as the kinetics favored the formation of 

small nano-phase-separated POSS regions.9-13 In addition, it has been reported that physical 
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crosslinking can be achieved by the photoinduced anisotropy of a synthesized linear polymer 

within which the azobenzene groups responds to light triggering while alkyl chains aggregate 

together to generate physical crosslinks by tail-to-tail associations.14 More interestingly, physical 

crosslinks can be formed via ionic bonding/crosslinking. For instance, ionic crosslinks can be 

created between the sulfonate groups attached to the polymer backbones of a polymer electrolyte 

membrane, to reduce the water sorption and to also improve dimensional stability.15 

Ordinarily, chemical (covalent) crosslinks are more favored in many practical applications as 

they allow materials to accommodate greater strain or stress without losing the capacity to fully 

recover following mechanical deformation.16-18 Several efficient methods of polymer covalent 

crosslinking are discussed in the following. To begin with, network polymers can be obtained by 

copolymerizing a mono-olefin with a branched crosslinking monomer that has multiple carbon-

carbon double bonds (C=C).3 During the last century, the reactions, which are capable of yielding 

a whole array of functional synthetic molecules and organic materials, have been termed click 

reactions out of which a famous one is called thiol-ene click chemistry (Scheme 1-4).19 Such a 

chemistry takes two forms of particular note: thiol-ene free radical addition to electron-

rich/electron-poor C=C and catalyzed thiol Michael addition to electron-poor C=C. However, the 

largest drawback of this strategy is the lack of processability as synthesis reaction and covalent 

crosslinking will be completed simultaneously. 

As discussed earlier in this dissertation, sulfur vulcanization is widely used to crosslink most 

rubbers containing C=C in their polymer chains, while a few non-sulfur methods have been 

invented for covalent crosslinking of rubbers in spite of saturation. Speaking of non-sulfur 

crosslinking, initiators that produce active, free radicals upon activation, can be employed to affect 

such crosslinking. Peroxides, in particular, prevail over the other common initiators because of 



7 
 

their advantage of being able to crosslink both saturated and unsaturated polymers.20-22 The 

initiators include, but are not limited to, thermal-, photo-, and ionic-initiators.23,24 For unsaturated 

polymers, the alkoxy radicals derived from the peroxide assist in forming chemical bonds based 

upon double bonds in the polymer.25 On the contrary, the likelihood of covalently crosslinking 

saturated polymers essentially relies on the nature of the hydrogen atom most probably pulled out 

and the polymer structure surrounding the radical.25 Other methods of chemical crosslinking have 

been developed but these are beyond the scope of this dissertation. 

1.2 Polymer Mechanical Properties 

The mechanical properties of polymers could differ to a large extent due to their temperature-

dependent viscoelastic behaviors. Specifically, glassy polymers often are hard and easy to crack 

and then break when only a few percent of dimensional extension is applied. Semicrystalline 

polymers tend to be more elastic and ductile as its crystalline and amorphous regions have very 

low 𝑇𝑔 ’s. Also, all linear polymers become fluid upon heating above their glass transition or 

melting transition temperature and thus are unable to withstand external force any longer in their 

molten state, while network polymers turn soft but still keep their initial shapes. A quantitative 

way of investigating the mechanical properties of various polymers is to monitor variation in stress 

as a function strain in the uniaxial tensile testing, and hypothetical profiles of fibers, rigid plastic, 

flexible plastic, and elastomer are provided in this chapter (Figure 1-2). The maximum strain for 

each type of material is defined as yield point or strain-to-failure, an extremely important figure 

pertaining to basic mechanical properties of polymers. Moreover, the linear portion of these 

profiles indicates the elastic region of polymer and the slopes are defined by Young’s Modulus. 

The value of this modulus is oftentimes used to preliminarily determine the most suitable 
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application for the material. Elastomers with a 𝑇𝑔 significantly below room temperature can be 

stretched to above a strain of 500% but usually with only modest tensile strength.26 In general, the 

mechanical properties of polymers are strongly associated with the molecular weight, degree of 

crystallinity, crosslink density, degree of crosslinking, and ambient temperature relative to 

polymer transition temperatures,2,3,27-29 all of which factors have been discussed previously. 

The viscoelastic properties of a polymer is usually studied using dynamic mechanical analysis 

(DMA), a modern characterization technique in which an oscillating stress is applied at varying 

temperatures or frequencies while the displacement of the material is recorded and measured to 

assess the complex modulus.30 In normal DMA testing, the storage modulus (𝐸′) represents the 

elasticity in the form of stored energy, while the loss modulus (𝐸′′) accounts for the viscous portion 

in the form of dissipated energy. Therefore, DMA can be utilized to measure transition temperature 

of polymer based upon the change of modulus associated with the change of molecular energy. 

1.3 Shape Memory Polymers 

1.3.1 Shape Memory Effects 

Shape memory polymers (SMPs) are a class of smart materials that have the ability to 

permanently memorize a macroscopic shape, be deformed and fixed to a temporary and dormant 

shape under specific conditions of stress and temperature, and then later relax to the original, 

stress-free condition under certain environmental command.31-35 During the past few decades, they 

have attracted a lot of interest, both academically and industrially, based on the ability to set a 

temporary, non-equilibrium shape until they are triggered to revert to original shape by a specific 

external stimulus. Several environmental stimuli that can trigger shape changing of SMPs have 

been well studied thus far, such as heat,36,37 light,38 solvent,39,40 electric field,41 magnetic field,42 
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and variation of pH.43 Out of all the external stimuli, heat is the most widely investigated and used, 

as a result of the ease in ability to tailor thermo-mechanical properties of thermally actuated SMPs. 

Shape memory behavior gives materials great potential for sensors, actuators, smart devices of 

great potential for automotive applications of interest to many worldwide companies. To exhibit 

shape memory behavior, there are two primary requisites in need: (1) physical or covalent 

crosslinks with retractable, reversible extension and (2) network chains with mobility switching 

relating to glass transition or melting transition. In fact, shape memory polymers have been 

grouped into four classes on account of their dynamic mechanical properties.18,35 Such classes 

include (1) chemically crosslinked glassy thermosets, (2) chemically crosslinked semicrystalline 

rubbers, (3) physically crosslinked amorphous thermoplastics, and (4) physically crosslinked 

semicrystalline block copolymers. The temperature-dependent dynamic mechanical behavior 

regarding the SMPs listed above is posted accordingly being typical examples (Figure 1-3). 

The shape memory (SM) effects in polymers can take two quite distinct forms: conventional 

one-way shape memory (1WSM) and reversible two-way shape memory (2WSM).44 The 

conventional SM behavior is ordinarily illustrated in a 3D stress-temperature-strain plot on a three-

cycle basis (Figure 1-4 (a)). In this case, the SMP is first heated above such a transition temperature 

as its glass transition temperature or melting temperature and held isothermal at the elevated 

temperature for the SMP to reach thermal equilibrium. Then a tensile stress is applied onto the 

SMP for a prescribed deformation while temperature is unaltered. This step of 1WSM cycle is 

referred to as deformation, which is followed by cooling/fixing as described below. With the load 

maintained, the SMP is cooled below the critical transition temperature to allow vitrification or 

recrystallization to occur so as to prevent elastic recovery. After the load is removed, the SMP 

relaxes in some degree depending on its molecular characteristics and finally maintains the 
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programmed, temporal shape (unloading). At the last step of 1WSM cycle, so called recovery, the 

temporarily fixed shape is reverted back to the original form of the SMP heating above the 

transition temperature. This recovery is a result of polymer chains relaxing to their maximum 

entropy state. 

In contrast, 2WSM features reversible actuation that undergoes a reversible elongation and 

contract in strain through cooling and heating process at a single applied stress (Figure 1-4 (b)). 

Since that the applied stress is maintained constant throughout the entire course of testing, 2WSM 

data is usually presented in a 2D strain-temperature plot. Note that 2WSM behavior requires the 

SMP to be semicrystalline in most cases. More specifically, the SMP is heated to a high 

temperature above its 𝑇𝑚  and stretched to a prescribed strain or by ramping force to a 

predetermined stress at that temperature, following which the stress associated with the strain is 

kept unchanged for the duration of three cycles. On cooling, a unique “soft elasticity” characteristic 

of the liquid crystalline phase (or simply stress-induced crystallization) of the SMP gives rise to a 

crystallization-induced elongation in strain, while on heating, the SMP contracts due to melting of 

polymer crystals in order to ultimately achieve the strain that matches tensile modulus under the 

isotropic condition of the SMP.45 The 2WSM case is the one most easily exploited for actuation 

purpose of interest for the present dissertation, while 1WSM is required more for controlled, one-

time deployment events,46-48 such as expansion of slender medical device or unfolding of a 

complex structure. 

1.3.2 Two-way Shape Memory Polymers 

Although greater than 95% of the literature on SMPs is dedicated to the 1WSM effect, 2WSM 

offers special potential to create practical materials or devices that essentially demands no external 
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manipulation. Back in 1959 it was first reported, but largely ignored, that crosslinked polyethylene 

fibers underwent reversible contraction on heating and elongation on cooling when tensioned.49 In 

particular, the oriented polyethylene fibers were crosslinked through electron-radiation, yielding a 

molecularly aligned polyethylene network that features 25% reversible dimensional variation. This 

work technically launched a new era in 2WSM effect that presents in polymer network, but, 

unfortunately, further investigation into a number of factors affecting 2WSM behavior was not 

conducted. Subsequently, many researchers looked into a similar phenomenon in soft, liquid 

crystalline siloxanes.50 As for reversible shape memory behavior, liquid crystalline elastomers 

(LCEs) have been shown to exhibit excellent performance, attributed to the coupling of the self-

organization of liquid crystalline phase and the entropy elasticity of polymer networks.51,52 

Remarkably “monodomain” samples feature actuation along the orientation axis with no external 

stress bias.53  

In our own lab, 2WSM effect has been studied deeply for a chemically crosslinked 

semicrystalline network of poly(cyclooctene) (PCO).45,54 It is also reported that the crosslinked 

PCO in film exhibits reversible actuation near room temperature. Furthermore, the generality of 

this particular phenomenon is demonstrated in a totally different composition, an end-linked 

poly(ɛ-caprolactone) (PCL).55 Additionally, the LCEs containing mesogen have been reported to 

be capable of changing shapes reversibly in response to variation in temperature.56,57 Considering 

potential application for tissue engineering, regenerative medicine, and the study of cell 

mechanobiology, lots of efforts have been put on the fabrication of smart polymers with shape 

memory triggering at body temperature. Numerous thiol-ene crosslinked poly(ɛ-caprolactone)-co-

poly(ethylene glycol) foams with varying PCL-to-PEG compositions were found to exhibit 

reversible actuation in compression, and also with 𝑇𝑚’s in the range around body temperature.58 
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More surprisingly, these new shape memory foams are characteristic of profound cooling-induced 

compression and heating-induced expansion, a completely opposite way as opposed to typical 

2WSM. It was found that this special SM effect results from additional contraction, which is 

reversed upon heating through 𝑇𝑚, during crystallization of the foams under a compressive stress, 

other than from normal thermal expansion effects. 

Besides our prior studies, Bai et al elaborated a new graft polymer in which PCL chains are 

grafted onto polydopamine (PDA) with phenolic hydroxyl groups as active points by ring-opening 

polymerization.59 This polymer can then be crosslinked using diisocyanate to afford 

semicrystalline polymer networks in order to attain 2WSM. Pandini et al prepared an α,ω-

triethoxysilane-terminated PCL with silica-based domains that were chemically crosslinked 

through hydrolysis using HCl as catalyst.60 The mild sol-gel curing allows covalent crosslinking 

of this PCL polymer with Si-O-Si linkage to achieve promising 2WSM behavior. In addition, such 

compositions may have multiple SM effects by synthesizing a semicrystalline network with two 

well separated crystalline phases that can lead to two parallel crystallization-induced elongation 

upon cooling as well as two distinct melting-induced contraction upon heating. Consequently, 

poly(ethylene-vinyl acetate) (EVA), a low cost polymer in industrial production, was crosslinked 

with dicumyl peroxide, a commonly used thermal initiator, to undergo 2WSM behavior along with 

the 𝑇𝑚 of EVA ranging from 75 °C to 95 °C.61 

In many scenarios, a complex chemistry synthesis is required to crosslink polymers for 2WSM 

effect, which negatively influences the breadth of practical applications of these SMPs largely. 

Therefore, physical methods or designs have been greatly developed to bridge the gap. Chen et al 

described a laminated shape memory polymer composite exhibiting reversible blending/flattening 

behavior (Figure 1-6) by combining the pre-strained, PHA-based shape memory polyurethane 
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(SMPU) with the isotropic elastic polyurethane (EPU).62 Continuing on this lamination approach, 

they further demonstrated a good electro-active 2WSM behavior using the carbon black/SMPU-

EPU laminated composite due to excellent electricity conduction of carbon black.63 Another way 

of controlling SM behavior was proven utilizing phase morphology of covalent networks based on 

crystallizable polymer blends.64  

The need exists for rapid and reliable reversible actuation in SMPs in order to make artificial 

muscles or other actuators.65,66 Behl et al developed a reversible shape memory copolymer network 

that consists of poly(-pentadecalactone) segment determining the shape-changing geometry and 

poly(ε-caprolactone) segment providing the thermally activated actuation.67 Zhou et al synthesized 

an end-capped poly(octylene adipate) that showcased both one-way and two-way reversible shape 

memory after thio-crosslinked and acrylate crosslinked by exposing to 365 nm light.68 Plus, a 

bimorph structure was designed (Scheme 1-5), using dicumyl peroxide crosslinked PCO acting as 

SMP and an acrylate-based polymer with a 𝑇𝑔 below actuator thermal cycle temperature range 

acting as elastic matrix.69 Such bimorph revealed the free-standing 2WSM behavior at 

temperatures ranging from 15 °C to 60 °C. 

1.3.3 Shape Memory Assisted Self-healing 

Polymers and their composites have been extensively applied in a variety of such practical fields 

as transport vehicles, sporting goods, civil engineering, and electronics owing to their light weight, 

good processibility, resistance to corrosion, etc.70,71 However, decomposition, damage, and failure 

could take place naturally to such materials in exposure to harsh environment wherein there exist 

mechanical, chemical, thermal, UV radiation, or a combination of these factors. Also, 

unfortunately, eventual failure still is a matter of time for most engineered materials regardless of 
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the improved robustness or the development of nondestructive inspection method.72 The detection 

and repair to the failing material or device is often costly.73 Inspired by biological systems that 

perfectly textbook regeneration, self-healing (SH), and reproduction, biomimetic SH materials 

offer an exceptional solution to extending their working life and condition because of the built-in 

capability to repair damage as well as to recover functionality autonomously or using the resources 

or signals available inherently.74,75 Such resources can be mechanical,76 thermal,77 or electrical 

forms of energy.78 A typical example of mechanically activated SH composites is the fabrication 

of core-shell nanofibers via coaxial electrospinning reported by Wu et al.79 Speaking of this unique 

geometry, the dicyclopentadiene (DCPD) is encapsulated by a thin polyacrylonitrile shell 

containing Ruthenium-based Grubbs’ catalyst that can initiate the ring-opening metathesis 

polymerization of DCPD. Once the fibers are ruptured, the DCPD flows towards the damage 

location and then reacts with the catalyst to polymerize so as to restore the bulk mechanical 

properties. However, the number of available SH agent is very limited and, further, the ruptured 

shells might act as mechanical defects that compromise mechanical properties. 

Hence, a novel concept has risen up with introducing thermal-responsive shape memory 

polymers to facilitate the SH process, providing an effective mechanism to partially or completely 

close and rebond the crack or other types of damage. This concept has been termed shape memory 

assisted self-healing (SMASH) by our lab originally, generally being demonstrated in at least two 

approaches. In the first approach, locally prepositioned shape memory alloy (SMA) wires80,81 or 

shape memory polymer (SMP) fibers82,83 are used so that upon activation they impose a contractual 

force that pulls the crack surface closer. The second approach relies on bulk shape memory effect 

from the material to close the crack.84-86 For example from our own lab, Rodriguez et al reported 

a PCL-based molecular composite system, a single-phase, two-component blend that consists of a 
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thiol-ene crosslinked PCL (n-PCL) network and a high molecular weight linear PCL (l-PCL) 

interpenetrating the network.87 With “reversible plasticity”, the n-PCL network features a special 

form of SM where a stable temporary state can be achieved through both elastic and plastic 

deformation regions at a temperature (here RT) below its 𝑇𝑚 and also is fully resettable upon 

heating above 𝑇𝑚. Due to their near-identical 𝑇𝑚 values, the heating step is simultaneously used 

to trigger the SH mechanism in which the crack surfaces are rebonded by the l-PCL chains that 

diffuse to and ultimately across the surfaces of damage (Figure 1-7). 

A new SMASH strategy has been introduced by Luo et al, opening the door to develop a phase-

separate morphology in favor of allowing the healing of larger cracks and defects as opposed to 

the single-phase n-PCL/l-PCL blend.88 The overall design was based on a two-step process 

including electrospinning and impregnation, to fabricate an fiber-matrix composite system 

wherein the randomly oriented, nonwoven PCL nano- and microfibers are uniformly spread out in 

a continuous, crosslinked epoxy matrix, which enables more significant flow of the liquefied PCL 

well as larger interfacial area and more sustained healing agent delivery because of the high aspect 

ratio fibers. Along this line, Nejad et al undertook the SMASH strategy as mentioned above, to 

develop thermally activated SH coatings.89 In addition to that a second approach involving 

polymerization induced phase separation (PIPS) of PCL and epoxy was adopted for comparison 

purpose. Generally, the SMASH materials prepared by both approaches revealed excellent and 

similar structural and functional SH outcomes, and, furthermore, the PIPS technique has turned 

out to be more suitable for scale-up application given its processing simplicity. 

1.4 Biodegradable Polymers 



16 
 

Biodegradable polymers have been widely and primarily utilized for tissue engineering, medical 

device, and drug delivery due to the ease in ability to break down into smaller constituents into 

body’s environment.90,91 Degradation could take place to polymers through one of two 

fundamental modes: bulk or surface degradation.92 In bulk degradation, the whole material 

including both the surface and the interior will degrade equally, as often indicated by drop in 

molecular weight and also by the fading color or change of opacity. On the other hand, surface 

erosion occurs only at the exterior surface of the material that is in direct contact with the 

environment. In another words, the interior portions of the material will not be affected at all until 

its outer portion has been degraded and removed, which means that a time-dependent, dimensional 

decrease of the material is always expected but that the overall molecular weight does not vary. 

Note that, in fact, a great deal of materials undergo degradation by a combined mode of bulk and 

surface degradation.93 Another method of classifying degradation behavior of polymers is by 

mechanism: enzymatic or hydrolytic. Enzymatic degradation literally suggests that polymers can 

be degraded by the enzymes secreted by microorganisms in the environment.94 For instance, key 

enzymes which have been used for degradation of various polymers are listed, but are not limited 

to, in the following: (1) dehydrogenase for polyethylene glycol, polypropylene glycol, and 

polytetramethylene glycol; (2) Oxidase or dehydrogenase or hydrolase for polyvinyl alcohol; (3) 

lipase and cutinase for polycaprolactone; and (4) protease and lipase for polylactic acid. In 

hydrolytic degradation, polymers degrade with the presence of water, which breaks a covalent 

bond.95 However, these two mechanisms are not mutually exclusive as some hydrolytically 

degrading polymers can also be degraded enzymatically. 

Given the fact that PCL is a bioresorbable polymer FDA-approved devices such as long-term 

implants and controllable drug release, with a 𝑇𝑚 near room temperature, PCL and its derivatives 
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receive attention in this dissertation. Kinetically, lipases could enhance the hydrolysis of the ester 

bonds in PCL. In 1997, Gan et al reported that PCL film could be degraded completely within 4 

days in the phosphate buffer solution containing pseudomonas lipases (PS) but no such accelerated 

degradation behavior was found for porcine pancreatic lipase or candida cylindracea lipase.96 Wu 

et al claimed an approximate 1000-fold increase in enzymatic degradation of PCL nanoparticles 

with the presence of the PS as compared with their pure hydrolyses.97 Further, it is discovered that 

the degradation kinetics of several PCL-based multiblock polymers can be adjusted by varying 

PCL content or PCL molecular weight.98 In addition to that, the enzymatic degradation rate of 

radiation crosslinked PCL samples could be reduced by increasing crosslink density due to the 

formation of network structure.99 The recommended temperatures of enzymatic degradation in 

radiation crosslinked PCL paper are 50 °C for uncrosslinked and 55 °C for crosslinked one, 

respectively. Also, an appropriate enzyme concentration for degradation was found to be 1.67 

mg/ml.100 However, in this dissertation, the enzyme concentration of 0.4 mg/ml and degradation 

temperature of 37 °C have been implemented because of the following reasons: firstly, in the 

context of previous work from our own lab,101 the degradation data of PCL-containing polymers 

obtained at 37 °C is quite useful for present or future application of tissue engineering; secondly, 

0.4 mg/ml was determined to be the lower threshold of completely degrading polymers containing 

PCL subunits at 37 °C within ca. 10 days (Figure 1-8).102 

1.5 Electrospinning 

Electrospinning is a fabrication process of applying electric force to draw fiber with diameters 

in the range from nanometers to micrometers. Historically, the term “electrospinning” was first 

recognized and described technically in 1920 by J. F. Cooley, and since 1995 the driving 

mechanisms for electrospinning process have been further investigated extensively.103 Today, 
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electrospinning has become a sophisticated, versatile technique that allows the formation of 

continuous, fine fibers from polymers (both synthetic and natural), and even metal alloys, 

ceramics.104 A commonly used electrospinning setup (Scheme 1-6) is composed of a syringe with 

small diameter needle to carry the polymer solution, a syringe pump on which the syringe is 

mounted, a high voltage supply which provides the electrostatic repulsion needed by the charged 

polymer solution to counteract its surface tension, and a rotating, grounded mandrel which is used 

to collect the resulting fibers. The working mechanism105,106 of such a setup is that only a cone of 

polymer solution is formed at the needle tip in the absence of electric field but a jet of charged 

polymer solution will be ejected from the cone once surface tension was overridden by electrostatic 

repulsion in the effect of electric driving force. The ejected jet will then travel towards the 

grounded collector, during which the electric force stretches the jet extensively along the traveling 

direction. Meanwhile, solvent evaporates quickly due to the large aspect ratio of the jet, further 

reducing jet diameter and increasing the surface charge density. When the surface charge density 

reaches at a critical point, the jet will split into a few smaller jets. This jet splitting, along with jet 

“whipping”, will be repeated a couple times while all solvent is removed from the jets prior to 

arriving at the mandrel, leaving multiple treads of tremendously stretched polymer fibers.107 

Generally speaking, electrospinning technique offers exceptional processability to produce highly 

porous, fibrous mats which are ideal not only for designing new devices and composites but also 

for applications including cell culture, wound dressing, and membrane filtration.108-110 More 

importantly, lots of studies have highlighted the capacity of using a rotating mandrel in different 

rotation speeds to introduce fiber orientation along a common axis.111 It is highly likely to 

encompass the mechanical properties of polymers like tensile strength and Young’s modulus, 

especially in the fiber direction, by manipulating molecular structure. 
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More recently, a new method, which is referred to as dual-electrospinning or co-electrospinning, 

has derived from the basic electrospinning for the purpose of achieving an interwoven polymeric 

composite of otherwise immiscible polymers.112,113 Such method enables precise control over the 

relative composition for each component so as to tune the thermal, mechanical, and/or other related 

properties. A dual-electrospinning setup has been designed by Madhugiri et al to have the 

capability of ejecting two polymer solutions at the same time.114,115 This setup is nearly identical 

to the one for the basic electrospinning but features different polymer solutions contained in two 

syringes located on the opposite sides of the collecting mandrel. Regarding practical applications, 

this technique has been employed to develop thermal-responsive SMASH materials as discussed 

previously. 

1.6 Scope of Dissertation 

The objective of this dissertation is to design, fabricate, and characterize novel crosslinkable 

semicrystalline polymeric materials utilizing different techniques and mechanisms in order to 

explore their special thermomechanical features as well as the possibilities for potential industrial 

application based on shape memory (SM) effects. Also, this dissertation details our particular 

strategy of combining electrospinning process with thermally crosslinkable polymers with 

reversible SM properties. 

1.6.1 2WSM Polymers 

Chapter 2 concentrates on the fabrication and analysis of a semicrystalline polymer system via 

ROMP to achieve reversible actuation triggered at temperatures in the 20 – 40 °C range. Here, in 

light of prior work, poly(cyclooctene) (PCO) was used as the foundation of this work to design an 

array of crosslinkable, semicrystalline copolymers with varying chemical compositions. 
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Additionally, different second monomers featuring distinct steric structures were used to shift the 

𝑇𝑚’s of corresponding resulting products, and these second monomers include 1,5-cyclooctadiene 

(COD), norbornene (NO), and cycloheptene (CH). The copolymers were covalently crosslinked 

using peroxide by compression molding. Molecular, thermal, dynamic mechanical, and shape 

memory properties of the synthesized copolymers were well studied. Results revealed effective 

control over reversible actuation behavior of the crosslinked copolymers based on the two 

variables: second monomer content and second monomer species. 

Chapter 3 presents the design, synthesis, and characterization of a novel, soft, biodegradable 

PCL-based thermoplastic polyurethane containing unsaturated allyl groups pendent to the 

backbone. Latent crosslinking to network form can be easily introduced by crosslinking the 

unsaturation covalently with a thermal initiator, enabling 1WSM and 2WSM behavior. Importantly, 

this material allows facile thermal and solvent processing prior to crosslinking, the latter allowing 

formation of fine, nano-scale fibers via ordinary electrospinning technique. Such processing 

enables the preparation of unique microstructures and associated of robust shape memory 

properties. Additionally, with presence of PCL segment, the latent-crosslinkable polyurethanes 

exhibited desirable biodegradability that depends on the micro- and crystalline structures. Thus, 

we investigated the effect of processing this material by different means (casting versus 

electrospinning) on properties before and after crosslinking, respectively. The molecular, 

thermomechanical and shape memory properties were studied, in particular. In-vitro enzymatic 

degradation behavior was examined, revealing a dependence on crosslinking state. We envision 

that this versatile polymeric material will have broad applications in the biomedical field, 

especially due to latent crosslinking that allows thermal or solvent processing followed by 

crosslinking.  
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1.6.2 SMASH Materials 

The ability of shape memory polymeric materials to repair physical damage and to then restore 

original functionality possesses significance in the field of self-healing for a broad range of 

applications. In Chapter 4, we report on a novel, electrospun SMASH polymer blend that is built 

upon prior work involving a latent crosslinkable polyurethane (x-PU). This unique blend system 

is developed for the first time by employing a solution in which crosslinkable polyurethane and 

linear polyurethane (l-PU) are mixed homogeneously for electrospinning. After preparing a family 

of blends with varying compositions, comprehensive characterizations and various healing tests 

are done to reveal the effect of composition on healing performance of the materials. Moreover, 

damage type and molecular anisotropy were studied, respectively, in order to evaluate the 

dependence of healing efficiency on such factors. 

1.6.3 Self-reversible Polymeric Actuators 

In Chapter 5, we explore the designs and methods to attain 2WSM behavior under stress-free 

condition in mechanical and/or biomedical application such as self-reversible actuators. Based on 

the work accomplished in Chapter 3, we come up with a strategy of adjusting electrospinning 

parameters (i.e. ejecting flowrate and time) to yield geometrically biased bilayer without bonding 

issue as compared with conventional bilayers or laminated films. Besides the latent-crosslinkable 

polyurethane, a commercially available thermoplastic elastomer, namely Pellethane® 5863-80A, 

is used to provide constant stress field required for SMP to exhibit 2WSM. Increase mandrel uptake 

speeds during electrospinning process serves to create molecular orientation that is adopted to 

polarize stress difference between layers. Basic thermal, mechanical, and shape memory properties 

are analyzed in order to better understand the principle and to then optimize the designing. X-ray 
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scattering is studied to reveal the molecular orientation that exists in the composite. At the end, 

bench actuation testing is demonstrated by snapshots and videotaping. Further designing and 

optimization approaches are discussed in-depth.  
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Scheme 1-1. Schematic Drawings of (a) monomer, (b) linear polymer, (c) thermoplastic, (d) 

crosslink, (e) elastomer, and (f) thermoset.  
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Scheme 1-2. Polymer molecular structure and morphology. (Adapted with permission from 

Sperling, L. H.: Introductions to Physical Polymer Science; 4th; John Wiley & Sons: Hoboken, 

New Jersey, 2006; p 5.). 
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Scheme 1-3. Free radical polymerization divided into three distinct stages: (a) initiation, (b) 

propagation, and (c) termination. 𝐼 represents the initiator, 𝑅0
∙  stands for active radical, 𝑀 is the 

monomer, 𝑅1
∙  is the active polymer chain at early stage. 𝑅𝑛

∙  is the extending chain with n number 

of monomers and 𝑅𝑛+1
∙  is after the addition of one repeat unit. 𝑅𝑛+𝑚  is the resulting polymer 

terminated by recombination where 𝑃𝑛 + 𝑃𝑚 are by disproportion. 
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Scheme 1-4. (A) Schematic of general thiol-ene coupling by (a) free radical and (b) Michael 

addition. (B) Common alkyl thiols. (C) Typical multifunctional thiols. (Reproduced with 

permission from Hoyle, C. E.; Bowman, C. N.: Thiol-ene Click Chemistry. Angew. Chem. Int. Ed. 

2010, 49, 1540 – 1573.). 
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Scheme 1-5. Schematic detailing the bimorph actuator fabrication process. Step 1: the DCP-

crosslinked PCO strip is programmed above its 𝑇𝑚 and its shape is fixed by cooling below its 

𝑇𝑚; Step 2: the programmed strip is mounted inside the custom-made aluminum mold; Step 3: 

the matrix material is injected inside the mold and photo-cured; Step 4: the mold is further 

thermally cured and the pre-sectioned actuator is removed; Step 5: the actuator is sectioned to the 

required geometry. (Adapted with permission from Westbrook, K. K.; Mather, P. T.; Parakh, V.; 

Dunn, M. L.; Ge, Q.; Lee, B. M.; Qi, H. J.: Two-way Reversible Shape Memory Effects in a 

Free-standing Polymer Composite. Smart Mater. Struct. 2011, 20, 065010.). 

  



41 
 

 

Scheme 1-6. Schematic of electrospinning setup used for producing polymer fibers. Polymer fibers 

are formed during flight of polymer solution jet over electric field while solvent evaporates. 
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Figure 1-1. Idealized Young’s Modulus profile of a polymer as a function of temperature: ① 

glassy region; ② glass transition; ③ rubbery plateau region; ④ rubbery flow region; ⑤ viscous 

flow region. (Adapted with permission from Sperling, L. H.: Introductions to Physical Polymer 

Science; 4th; John Wiley & Sons: Hoboken, New Jersey, 2006; p 8.). 
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Figure 1-2. Stress-strain behaviors of common fiber, rigid plastic, flexible plastic, and elastomer. 

(Adapted with permission from Odian, G.: Principles of Polymerization; John Wiley & Sons: 

Hoboken, New Jersey, 2004; p 812.). 
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Figure 1-3. Demonstration of four classes of shape memory polymers in terms of their dynamic 

mechanical behavior: (I) chemically crosslinked glassy thermosets, (II) chemically crosslinked 

semicrystalline rubbers, (III) physically crosslinked thermoplastics, and (IV) physically 

crosslinked block copolymers. (Adapted with permission from Liu, C.; Qin, H.; Mather, P. T.: 

Review of Progress in Shape Memory Polymers. J. Mater. Chem. 2007, 17, 1543 – 1558.). 
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Figure 1-4. (a) One-way shape memory (1WSM) cycles/loops for an example of a crosslinked 

poly(cyclooctene). (b) Two-way shape memory (2WSM) cycles/loops for an example of an end-

linked polycaprolactone. (Adapted with permission from Chung, T.; Romo-Uribe A.; Mather, P. 

T.: Two-way Reversible Shape Memory in a Semicrystalline Network. Macromolecules 2008, 41, 

184 – 192.). 

(a) 

(b) 
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Figure 1-5. Two-way reversible actuation of an PCL-co-PEG SMP foam with (i) 10%, (ii) 20%, 

(iii) 30%, (iv) 40%, (v) 50%, and (vi) 60% initial applied strain. (Adapted with permission from 

Baker, R. M.; Henderson, J. H.; Mather, P. T.: Shape Memory Poly(ɛ-caprolactone)-co-

poly(ethylene glycol) Foams with Body Temperature Triggering and Two-way Actuation. J. Mater. 

Chem. B 2013, 1, 4916 – 4920.). 
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Figure 1-6. Two-way shape memory behavior of the SMPU-EPU laminated composite. (Adapted 

with permission from Chen, S.; Hu, J.; Zhuo, H.: Properties and Mechanism of Two-way Shape 

Memory Polyurethane Composites. Compos. Sci. Technol. 2010, 70, 1437 – 1443.). 
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Figure 1-7. (a) Force-displacement profiles for the virgin, damaged, and healed state of a l-PCL:n-

PCL blend. (b) Notched l-PCL:n-PCL blend showing stereo micrographs of deformation and crack 

growth clamped in the Linkam tensile stage (scale bar: 500 μm). (c) Snapshots of crack closure 

and crack rebonding when the sample was unclamped from the Linkam tensile stage and heated to 

the temperature indicated above (stereo micrographs scale bar: 500 μm). (Adapted with permission 

from Rodriguez, E. D.; Luo, X.; Mather, P. T.: Linear/network Poly(ɛ-caprolactone) Blends 

Exhibiting Shape Memory Assisted Self-healing (SMASH). ACS Appl. Mater. Interfaces 2011, 3, 

152 – 161.). 

  



49 
 

 

Figure 1-8. Experimental mass loss data for hydrogels synthesized from end-methacrylated 

PEG-PCL macromonomers and incubated in solutions with (a) 1.0 mg/ml, (b) 0.4 mg/ml, (c) 0.2 

mg/ml, and (d) 0.1 mg/ml pseudomonas lipase. (Adapted with permission from Rice, M. A.; 

Sanchez-Adams, J.; Anseth, K. S.: Exogenously Triggered, Enzymatic Degradation of 

Photopolymerized Hydrogels with Polycaprolactone Subunits: Experimental Observation and 

Modeling of Mass Loss Behavior. Biomacromolecules 2006, 7, 1968 – 1975.). 

  



50 
 

Chapter 2: Tuning of Reversible Actuation via ROMP-based 

Copolymerization of Semicrystalline Polymers 

2.1 Synopsis 

There exists a need for reversible actuation involving two-way shape memory polymers that can 

respond to ambient temperatures in the 20 °C – 40 °C range, especially for soft actuators in specific 

applications. In this chapter, we report on the fabrication and analysis of a family of soft, 

semicrystalline copolymers based upon cis-cyclooctene via ring-opening metathesis 

polymerization (ROMP). Reversible actuation behavior of such copolymers was tuned by varying 

not only the species and the content of a second comonomer but also the concentration of an 

incorporated crosslinker. Results of thermal and shape memory characterization revealed that 

actuation was tuned to occur near to room temperature (25 °C) or body temperature (37 °C) when 

certain composition and crosslink densities were employed. Also, all crosslinked copolymers 

feature actuation magnitude greater than 50% and recovery magnitude greater than 94%, while 

thermal strain hysteresis was 17.5 °C on average. 

2.2 Introduction 

Shape memory polymers (SMPs) are a class of smart materials that have the ability to 

permanently memorize a macroscopic shape, be deformed and fixed to a temporary and dormant 

shape under specific conditions of stress and temperature, and then later relax to the original, 

stress-free condition under certain environmental command like heat.1-5 This final step can execute 

useful mechanical work. During the past few decades, significant effort has gone into developing 

soft actuators that utilize SMPs to obtain attractive properties ideal for several applications such 
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as sensors, actuators, soft robots, and artificial muscles.6-9 Such properties include, but are not 

limited to, unique functionality, mechanical flexibility, light weight, and low production cost. 

However, conventional SMPs have problems associated with their practical use in actuators, given 

the fact that their shape memory behavior often undergoes in a one-way manner only.10-12 Although 

greater than 95% of the literature on SMPs is dedicated to the one-way shape memory (1WSM), 

two-way shape memory (2WSM) effect, which indicates reversible elongation on cooling and 

contraction on heating at a single applied stress, is largely favored for actuation purpose of interest. 

Back in 1959 it was first reported, but largely ignored, that crosslinked polyethylene fibers 

exhibited such reversible phenomenon when tensioned.13 In particular, oriented polyethylene 

fibers were crosslinked through electron-radiation, yielding a molecularly aligned polyethylene 

network that features 25% reversible dimensional variation. This work technically launched a new 

era in 2WSM effect that presents in polymer network, but, unfortunately, further investigation into 

a number of factors affecting 2WSM behavior was not conducted. Baker et al developed an array 

of thiol-ene crosslinked poly(ɛ-caprolactone)-co-poly(ethylene glycol) foams with varying PCL-

to-PEG compositions which exhibit reversible actuation in compression, and also with melting 

transitions (𝑇𝑚) in the range around body temperature.14 Similarly, Bai et al elaborated a new graft 

polymer in which PCL chains are grafted onto polydopamine with phenolic hydroxyl groups as 

active points by ring-opening polymerization, allowing the formation of semicrystalline networks 

by diisocyanates for 2WSM behavior.15 However, the aforementioned two methods do not achieve 

our goal of malleable post-synthesis processing required for large-scale industrial production of 

2WSM articles. 

Seeking a facile synthesis approach to 2WSM polymers without significant processing limitation, 

we selected the chain growth polymerization process known as ring-opening metathesis 



52 
 

polymerization (ROMP), recognizing that it has become a powerful and broadly applicable tool 

for a variety of complex macromolecular architectures.16 The mechanism of such polymerization 

is based on olefin metathesis, a characteristic metal-mediated unsaturation (C=C) exchange 

process, during which any saturation associated with the original cyclic olefins is transferred to 

the corresponding polymer. This feature provides a benefit over other common approaches because 

the unsaturation maintained throughout polymerization can be used for chemical crosslinking 

following processing. Bielawski et al systematically described highly efficient ROMP using 

ruthenium catalysts for various low-strain cyclic olefins such as cis-cyclooctene (CO), 1,5-

cyclooctadiene (COD), 2-methylcyclopentene, norbornene (NO), N-methyl-7-

oxanorbornenedicarbimide norbornene, etc.17 Further, Alonso-Villanueva et al studied the 

influence of temperature, addition of chain transfer agent, and solvent on ROMP of CO, utilizing 

second generation Grubbs’ catalyst owing to its excellent stability, group tolerance and high 

metathesis activity.18 However, none of the aforementioned ROMP work has ever attempted to 

covalently crosslink the polymers to yield shape memory properties in the resulting materials.  

Along this line, in our own lab, Liu et al first synthesized poly(cyclooctene) (PCO) from cis-

cyclooctene with the presence of first generation Grubbs’ catalyst, and then demonstrated sound 

1WSM of crosslinked PCO film by thermal initiator dicumyl peroxide (DCP).19 The 𝑇𝑚  and 

viscoelastic properties of crosslinked PCO showed a strong dependence on crosslink density that 

was resulted from the concentration of DCP added during thermal curing. In light of that 

achievement, Chung et al unveiled a surprising reversible behavior of covalently crosslinked PCO, 

which behavior tightly associates with crosslink density and the tensile stress applied during 

cooling and heating.20 More specifically, the lowest 𝑇𝑚, at which temperature the SMP is actuated 

to change programmed shape, was achieved at ca. 42 °C by increasing DCP concentration to 2 
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wt%. Nonetheless, no 2WSM polymer has been reported to date that would allow environmental 

stimulus at temperatures in the 20 °C – 40 °C range; i.e. conveniently near body temperature. We 

note that extremely high crosslinker concentration could make the polymer too stiff/brittle to be 

useful due to over-crosslinking.21 Of relevance, Lu et al reported on the copolymerization of L-

lactide with varying level of ɛ-caprolactone (CL) in the range of 0 to 30 mol%, revealing that 𝑇𝑚 

considerably decreased from 174 °C to 125 °C, which is attributed to the increase of chain 

flexibility and mobility resulted from incorporation of CL units.22 As a similar approach to tune 

𝑇𝑚 of polymer, Tan et al prepared a couple poly(butylene succinate-co-hexamethylene succinate) 

copolyesters with 𝑇𝑚 decreasing from ca. 114 °C to 68 °C as hexamethylene succinate content 

increased from 0 mol% to 40 mol%.23 Therefore, copolymerization with a monomer whose 

derivative polymer has a relatively low crystallinity was proven capable of tuning 𝑇𝑚 effectively. 

In this work, we have carried out experimental investigations on the possibility to develop 

reversible actuation with tunable thermal and shape memory properties via ROMP 

copolymerization of CO with varying second monomers, respectively. Such second monomers 

used in copolymerization include COD, NO, and cycloheptene (CH). In particular, a COD content 

range from 0 mol% to 10 mol% was explored to understand its influence on 𝑇𝑚  of the 

corresponding copolymers. Subsequently, all CO-based copolymers were covalently crosslinked 

with variation in crosslink density to form a series of semicrystalline thermoset SMPs. Herein, our 

first aim was to quantify the thermally 1WSM and 2WSM behavior individually for each 

crosslinked copolymer utilizing a dynamic mechanical analyzer (DMA) in custom modes of 

testing. Then, the second aim was to understand, by comparing the results harvested from shape 

memory testing, the role of molecular architecture and crosslink density in view of tailoring 

reversible actuation performance. Finally, wide-angle X-ray scattering (WAXS) was adopted to 
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gain understanding of the origin of the observed reversible actuation phenomena, within the 

context of knowledge gained from prior studies. 

2.3 Experimental 

2.3.1 Materials 

The ruthenium catalyst (1,3-Bis(2,4,6-trimethyphenyl)-2-imidazolidinylidene) Dichloro 

(phenymethylene) (tricyclohexylphosphine) ruthenium (Grubbs’ 2nd Generation) was purchased 

from Sigma-Aldrich and stored in -4 °C freezer prior to use. cis-Cyclooctene (95%, Acros 

Organics; Fisher Scientific) was distilled over calcium hydride (95% Reagent grade; Sigma-

Aldrich) at 180 °C for 2 h under reduced pressure before further use. 1,5-Cyclooctadiene (99%), 

norbornene (bicycle[2.2.1]hept-2-ene 99%), and cycloheptene (97%) were all purchased from 

Sigma-Aldrich and dehydrated over 4Å molecular sieves in a 10 w/v basis for at least 4 d prior to 

use. Dichloromethane (99%; Fisher Scientific) was distilled at 80 °C following a 2-hour refluxing 

and further dehydrated with 4Å molecular sieves (Sigma-Aldrich) for 2 d before use. Dicumyl 

peoxide (98%), HPLC-grade tetrahydrofuran (THF), and deuterated chloroform (chloroform-d, 

99.8% atom D) were purchased from Sigma-Aldrich and used as received. Other reagents and 

solvents were obtained from Fisher Scientific and used as received: ethyl vinyl ether (99%, 

Stabilized, Acros Organics), tris(hydroxymethyl)phosphine (95%, Acros Organics), methanol 

(Certified ACS), and 2-propanol (Certified ACS). 

2.3.2 ROMP Copolymerization 

A set of PCO-based copolymers with varying relative content and species of the second 

monomer were synthesized via ROMP polymerization or copolymerization under strictly air-free 
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environment, as shown in Scheme 2-1. The second monomers include COD, NO, and CH. As a 

representative example, we here specify the preparation of poly(cyclooctene-co-cyclooctadiene) 

(PCO-COD) with a feed CO:COD mol. ratio of 0.97:0.03 (subsequently referred to as 3COD) in 

the following. A Schlenk line (AF-0452, purchased from Chemglass) was utilized to enable an air- 

and water-free reaction environment during the course of polymerization. Moisture was 

intentionally removed by flushing the whole reaction system nitrogen for 20 min. A 250-mL, three-

neck flask (Chemglass, CG-1524-36, round bottom) was evacuated and refilled with nitrogen at 

least three times before both 5.13 mg (6 μmol) Grubbs’ 2nd and a magnetic stir bar were put into 

the flask. In parallel, a 250-mL, one-mouth flask (Chemglass, CG-1506-92, round bottom) was 

purged by three evacuate-refill cycles to carry 100 mL distilled dichloromethane (DCM), 0.24 mL 

(1.8 mmol) COD, and 7.64 (58.2 mmol) CO. Note that the monomer:catalyst ratio was kept at a 

value of 10,000 regardless of composition. Solvent and monomers in this one-mouth flask was 

further deaerated using an ultrasonic cleaner (Branson M1800) under vacuum for 10 min before 

reaction. 

To begin the copolymerization process, the solvent and reagents were transferred from the one-

mouth flask to the three-neck one containing Grubbs’ catalyst through a long, double-tipped needle 

(Sigma-Aldrich, Gauge 20). Reduced pressure was applied to the three-neck flask to drive the 

motion of the monomer solution so that no air and moisture in the atmosphere would enter the 

reaction system during the reagent transfer. The ROMP copolymerization underwent at room 

temperature (~22 °C) for 30 min during which vortex stirring was maintained. Following that, 2 

mL ethyl vinyl ether (300 mL excess to the catalyst) was injected to terminate the reaction and 

another 30 min was allowed for complete termination. In order for removal of water-soluble, toxic 

ruthenium phosphine complexes generated from ROMP copolymerization, 
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tris(hydroxymethyl)phosphine (THMP) was used in our work as it has been reported to capable of 

effectively reducing those ruthenium byproducts.24-26 Subsequently, 0.045 g (0.065 mmol) THMP 

was dissolved in 2 mL 2-propanol, yielding a 0.181 M solution. The removal of ruthenium catalyst 

was performed by adding 0.35 mL of such solution while stirring was kept for 24 h. Finally, the 

polymer solution was drop-wisely precipitated in 500 mL methanol and deionized water mixed by 

9:1 v/v. The precipitates were collected by filtration and dried in the fume hood overnight prior to 

complete drying in vacuum oven at room temperature for 7 d before processing. 

2.3.3 Molecular Characterization 

The copolymers synthesized as described above were prepared using deuterated chloroform 

(CDCl3) at a concentration ranging from 20 to 30 mg/mL. The proton Nuclear Magnetic Resonance 

(1H NMR) spectra were generated using a Bruker Avance III HD 400 MHz spectrometer, to 

quantitatively measure the molar concentration of primary and second monomers. The relaxation 

delay time is 1 s at a temperature of 25 °C. Gel Permeation Chromatography (GPC) was performed 

to determine weight-average molecular weight (𝑀𝑤 ) and polydispersity index (PDI, 𝑀𝑤 /𝑀𝑛), 

using a Waters Isocratic HPLC system equipped with a temperature-controlled differential 

refractometer (Waters 2414). Multi-angle laser light scattering (Wyatt miniDAWN) was 

introduced at three characteristic angles (45 °, 90 °, and 135 °) for in-line absolute molecular 

weight determination. The flow rate of THF as mobile phase in this GPC system was set at 1 mL/h 

constantly. Polymer-THF solutions (2 – 5 mg/mL) were passed through a 0.2 μm PTFE filter 

(Waters) prior to injection at 40 °C. 

2.3.4 Peroxide Curing and Gel Fraction Measurement 
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The various copolymers were blended with a DCP concentration of 0.25 wt% and 0.50 wt%, 

respectively, using a Carver 3851-0 press with heating platens in the following custom method: (1) 

1.5 g sample was first pressed into a film applying two polished stainless-steel sheets coated with 

mold release agent (Pol-Ease® 2300, Polytek); (2) prescribed amounts of DCP were sprinkled 

uniformly onto the surface of the film that was then folded multiple times; (3) the pressing-folding 

process was repeated three more times for the purpose of optimal mixing; (4) after that, a 0.5 mm 

thick stainless steel spacer was placed in between two metal sheets to control the thickness; (5) a 

sheet specimen was formed by compression and thermally cured at 140 °C under a pressure of 

1000 psi for 2 h; (6) finally, the resulting film was allowed to cool to room temperature in the mold. 

In order to assess the extent of covalent crosslinking, network gel fraction values of the 

crosslinked films for each composition were examined using solvent-extraction and gravimetry. 

Each sample was weighed for its initial dry mass (𝑚𝑖) before being soaked in 20 mL THF at 37 °C 

in an Excella shaker for 48 h, during which the THF was refreshed every 12 h. Then samples were 

washed with deionized water, blotted with common towel, and vacuum dried for 2 d at 40 °C to 

remove residual solvent. The final dry mass (𝑚𝑓) was recorded for calculation of gel fraction 

values (𝐺), using the equation below: 

𝐺(%) =
𝑚𝑓

𝑚𝑖
× 100                                                                         (2 − 1) 

2.3.5 Wide-angle X-ray Scattering 

To elucidate the thermally shape memory behavior at the microstructural level, wide angle X-

ray scattering (WAXS) analysis was performed using a Rigaku S-MAX3000 for a 3COD sample 

cured with 0.50 wt% DCP (subsequently referred to as 3COD0.50) under different loading 
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conditions (i.e. unstretched, 100, 200, and 300 kPa). In particular, the sample with an increase of 

loading was prepared according to the first two steps of 1WSM cycle (i.e. loading and shape fixing 

as detailed below) using DMA apparatus prior to WAXS experiments. A Rigaku MicroMax-002+ 

generator was operated under an accelerating voltage of 45 kV and a current of 0.88 mA to yield 

a collimated beam of Cu Ka X-rays with a wavelength of 1.5405 Å. Scattering patterns were 

collected on image plates (see below) for 30 min. The sample-detector distance was fixed at 120.7 

mm, leading to scattering angles 3 ° < 2θ < 40 °. WAXS images were obtained and analyzed using 

a FujiFilm FLA7000 reader (with Fujifilm image plates CR HR-V) and SAXSgui software 

v2.03.04. 

2.3.6 Thermal and Dynamic Mechanical Analysis 

Differential Scanning Calorimetry (DSC) was employed to investigate thermal properties of all 

copolymers before and after peroxide curing, using the TA Instruments Q200 apparatus. Samples 

weighing approximately 5 mg underwent a thermal program of first heating to 100 °C at 10 °C/min, 

cooling to -60 °C at 10 °C/min, and then reheating at 10 °C/min to 100 °C while heat flow data 

was recorded. The melting transition temperature (𝑇𝑚, the peak of the endotherm) and the enthalpy 

of melting (ΔH, area beneath endothermic peak) were recorded, respectively, on the basis of 

second heating curve (to minimize the effects of thermal history). We note that pure PCO has a 𝑇𝑔 

around -70 °C; however, exploration of 𝑇𝑔 of our synthesized copolymers was beyond the scope 

of the present work. 

A TA Instruments Q800 Dynamic Mechanical Analyzer (DMA) was adopted to explore the 

thermomechanical properties and also to assess success of crosslinking all kinds of copolymers. In 

the multi-frequency controlled-strain mode, each sample was equilibrated at -40 °C, held 
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isothermal for 10 min, and heated continuously up to 100 °C at 3 °C/min. An oscillating amplitude 

of ca. 15 μm, oscillation frequency of 1 Hz, preload force of 0.001 N, and force track of 108% 

were utilized to measure the storage and loss tensile moduli. Rectangle shaped samples with an 

approximate length-to-width ratio of 4:1 were used for this testing. 

2.3.7 Shape Memory Characterization 

To probe and analyze 1WSM and 2WSM behavior, dog bone shaped samples (ASTM D63 Type 

IV, scaled down by a factor of 4) were tested for various crosslinked copolymers, using DMA in 

controlled force mode. For 1WSM tests, samples were first strained to 70% at 70 °C, cooled at 

2 °C/min to -10 °C under constant tension, released of their tensile stress, and finally heated up to 

70 °C at 2 °C/min. This program was repeated three times for each sample. To quantify such 

behavior, the calculation of the shape fixing (𝑅𝑓) and shape recovery (𝑅𝑟) ratios for each individual 

cycle were performed using the equations below:27 

𝑅𝑓(%) =
휀𝑓 − 휀𝑖

휀𝑑 − 휀𝑖
× 100                                                            (2 − 2) 

𝑅𝑟(%) =
휀𝑓 − 휀𝑟

휀𝑓 − 휀𝑖
× 100                                                            (2 − 3) 

Here, 휀𝑓 stands for the fixed strain after release stress, 휀𝑖 for the initial strain at starting point of 

each cycle, 휀𝑑  for the deformed strain before unloading, and 휀𝑟  for the recovered strain after 

complete heating. 

In contrast, 2WSM tests were performed in the following procedures: at first, each sample was 

deformed by ramping the applied tensile load at 0.05 N/min to 70% strain at 70 °C. The stress 

required to achieve this strain was then held fixed for all subsequent steps. Next, the samples were 
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cooled to -10 °C at 2 °C/min. Finally, and after being held isothermally for 10 min, each sample 

was reheated to the initial elevated temperature at 2 °C/min. The strains were recorded as a function 

of temperatures while these procedures were done three times in succession. The quality of 2WSM 

behavior was subsequently evaluated by calculating the actuation magnitude (𝑅𝑎,𝑚 ) and the 

recovery magnitude (𝑅𝑟,𝑚) using the equations as follows: 

𝑅𝑎,𝑚(%) = (휀𝑙𝑜𝑤 − 휀ℎ𝑖𝑔ℎ) × 100                                                       (2 − 4) 

𝑅𝑟,𝑚(%) =
휀𝑙𝑜𝑤 − 휀ℎ𝑖𝑔ℎ

𝑓𝑖𝑛𝑎𝑙

휀𝑙𝑜𝑤 − 휀ℎ𝑖𝑔ℎ
𝑖𝑛𝑖𝑡𝑖𝑎𝑙

× 100                                                       (2 − 5) 

where 휀𝑙𝑜𝑤  and 휀ℎ𝑖𝑔ℎ  are the strains respectively at low and high temperatures under loading, 

휀ℎ𝑖𝑔ℎ
𝑓𝑖𝑛𝑎𝑙

 is the final strain at high temperature with stress applied after recovery, and 휀ℎ𝑖𝑔ℎ
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the 

initial strain under stress at high temperature. In addition, the magnitude of hysteresis for each 

sample was determined as the temperature difference between the 50% actuation strain upon 

heating (higher temperature) and cooling (lower temperature). We realize that this value is 

heating/cooling rate dependent.28 Henceforth, as a representative example, a 3COD0.50 sample 

underwent four complete 2WSM cycles as described above, but with a decrease of heating/cooling 

rate from 3 °C/min for first cycle to 0.5 °C/min for last one. 

2.4 Results and Discussion 

2.4.1 Sample Preparation 

The synthesis results of all CO-based copolymers via ROMP copolymerization were 

summarized in details in Table 2-1. These copolymers are, specifically, PCO (polymerized from 

neat CO and used as a control), 1COD, 3COD, 5COD, 10COD, 3NO, and 3CH. On the basis of 
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1H NMR spectra, it is found that the actual CO mol. content is not significantly different from that 

in feed for each individual copolymer, as an indicative of good control over ROMP 

copolymerization. Also, GPC results suggest that all 𝑀𝑤’s are greater than 250,000 g/mol, which 

value is 10 times higher than the minimum molecular weight (i.e. 25,000 g/mol) required for good 

physical and mechanical features in terms of several commercialized polymers.29 

Thermogravimetric analysis (TGA) data agreed as no thermal decomposition occur below 300 °C 

(Figure 2-1). In addition to that, higher molecular weights often indicate longer polymer chains in 

which more crosslinking sites (unsaturation) are available per chain given the fixed length of 

repeating subunits. We speculate that this could contribute to quality crosslinking in order to 

achieve high degree of crosslinking which usually implies great potential for favorable shape 

memory behaviors as well as resistance to mechanical “creep”.30,31 

2.4.2 Thermal and Dynamic Mechanical Analysis 

Importantly, incorporating COD into PCO resulted in a remarkable decrease in 𝑇𝑚 from 49.2 °C 

to 18.3 °C with an increase of COD mol. content from 0 mol% to 10 mol%, correspondingly. This 

is shown in Figure 2-2 in the form of DSC traces of the copolymers. In a similar trend, the 

enthalpies associated with 𝑇𝑚 declines somewhat as more COD was incorporated. We attribute 

this to the deterioration in crystallinity – anticipated to negatively impact actuation magnitude – to 

be higher chain flexibility and mobility of COD versus CO. The same reason applies to both NO- 

and CH-incorporated samples (Figure 2-3). Besides, to compare the copolymers containing 

different second monomers, the feed concentrations of COD, NO, and CH were the same at 3 

mol%. It turned out that 3COD showed the lowest 𝑇𝑚 at 31.3 °C as opposed to 3NO at 35.1 °C 

and 3CH at 47.9 °C, which is in good agreement with their corresponding enthalpies: 3COD < 

3CNO < 3CH. 
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Being thermally cured with DCP by compression molding, the crosslinked copolymers all 

revealed a decreasing 𝑇𝑚  to varying degree as compared to their virgin states due to further 

diminution of crystallinity induced by covalent crosslinking,32 as shown in Figure 2-4. Moreover, 

a noticeable effect of degree of crosslinking was observed on 𝑇𝑚  when different DCP 

concentrations were applied for the same composition. It is important to point out that the 𝑇𝑚 of 

1COD was lowered from 43.5 °C to 38.7 °C for 0.25 wt% DCP crosslinking while that of 3COD 

from 31.3 °C to 26.1 °C for 0.50 wt% DCP crosslinking. The two reduced 𝑇𝑚’s have become quite 

close to body temperature and room temperature, respectively, as much as they may get while not 

being actuated. Also, Table 2-2 states gel fraction value for each copolymer cured with varying 

DCP concentrations, which value in the range from 66% to 92% appears to be much higher than 

the minimum value (~10%)30 required for typical shape memory effect. From a different 

perspective, these values suggest the possibility to further tune thermal properties by boosting 

degree of crosslinking up to the high end of 90% if needed. 

Revealing the direct impact of peroxide curing on the thermomechanical behavior, Figure 2-5a 

and b show the storage modulus profiles as a function of temperature at a DCP concentration of 

0.25 wt% and 0.50 wt%, respectively. All copolymers cured with varying amounts of DCP are 

characteristic of a modest storage modulus of approximately 100 MPa for temperatures below 0 °C. 

Moreover, this modulus value appears to depend only weakly on crosslink density. However, the 

onset temperature at which the storage modulus starts dropping sharply exhibited an unneglectable 

dependence on crosslink density exactly like what we found in DSC studies. Note that the 𝑇𝑚 

measured by DMA oftentimes comes up higher than that by DSC because of the stress-induced 

crystallization during DMA testing.33,34 The storage modulus for 0.25 wt% DCP crosslinking 

decreased by three orders of magnitude, while that for 0.50 wt% DCP crosslinking declined by 
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approximately two orders of magnitude, both with increasing temperature from 0 °C through 

melting transition to 70 °C. Such transitions can also be found in the Tan δ-temperature profiles 

as shown in Figure 2-6. This difference is attributed to a constraining influence of crosslink 

junctions on chain mobility, which made network polymers more resistant to deformation in the 

non-crystalline state.  

From the standpoint of shape memory capacity, increasing such resistance to deformation may 

allow the polymers to better recover from a larger deformation without having significant 

irreversible deformation known as “creep”. After the sharp drop in storage modulus through 

melting transition, each sample reached an extended rubbery plateau of modulus whose value is in 

direct effect of crosslink density. Being a representative example, 3COD revealed a 917% increase 

in storage modulus from 0.197 MPa for 0.25 wt% DCP curing to 2.004 MPa for 0.50 wt% DCP 

curing. The other compositions were found to follow an identical trend. More importantly, the 

presence of a stable rubbery plateau above 𝑇𝑚 would allow polymer to be deformed extensively 

without macroscopic flow, being a prerequisite for an attractive shape memory effect. 

2.4.3 Shape Memory Analysis 

The shape memory effects in polymers can take two quite distinct forms: conventional one-way 

shape memory (1WSM) and reversible two-way shape memory (2WSM), the former being 

ordinarily illustrated in a 3D stress-temperature-strain plot on a three-cycle basis. As detailed in 

the experimental section, the copolymers crosslinked with 0.25 wt% and 0.50 wt% DCP were 

tested using a DMA, yielding their corresponding 1WSM cycles demonstrated in Figure 2-7 and 

in Figure 2-8, respectively. Each cycle consists of three steps: (1) deformation: a strain of 70% 

was achieved at an elevated high temperature (70 °C) above 𝑇𝑚; (2) fixing: each sample was 
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cooled to a low temperature (-10 °C) at a constant cooling rate of 2 °C/min, following which a 

temporal shape was obtained by removing the stress associated with that prescribed strain; (3) 

recovery: the temporarily fixed shape was reverted back to the original form owing to elasticity 

upon heating to that elevated high temperature at a constant heating rate of 2 °C/min. Such shape 

memory cycle was repeated three times for each sample as specified above. Notably, a “training” 

cycle, which is typically the first cycle with fairly low recovery ratio as compared with its 

succeeding cycles that become highly reproducible, has been observed for chemically crosslinked 

SMPs, as the processing and storage history of the SMPs play an important role in such cycle.4,35,36 

Surprisingly, our crosslinked copolymers exhibited a negligible or very subtle training cycle 

relating to 1WSM effect. We speculate that incorporating the highly flexible and mobile second 

monomers might largely facilitate the reorganization of polymer chains on the molecular scale 

upon deformation and first heating. Further, the associated shape fixing (𝑅𝑓) and shape recovery 

(𝑅𝑟 ) ratios were calculated to quantitatively evaluate the 1WSM behavior of the crosslinked 

copolymers (Table 2-3). Broadly speaking, all crosslinked samples revealed a 𝑅𝑓 greater than 95% 

with a 𝑅𝑟 no less than 94%, both on average of total three cycles. Thus, it is evident that these 

crosslinked copolymers exhibited exceptional 1WSM behavior along with both robust fixing and 

recovery. 

The two-way shape memory (2WSM) effect (reversible actuation) of each crosslinked 

copolymer, being the focus of the present work, is presented in a 2D strain-temperature plot since 

that the applied stress is maintained constant throughout the entire course of 2WSM testing (Figure 

2-9 through 2-11). In contrast to 1WSM cycle, here, the sample was heated to a high temperature 

(70 °C) above its 𝑇𝑚 by 2 °C /min before stretched to a prescribed strain (70%) at that temperature, 

following which the stress associated with the strain was kept unchanged for the duration of three 



65 
 

cycles. On cooling, the stress-induced crystallization gave rise to an elongation in strain, while on 

heating, the sample contracted due to melting of polymer crystals in order to ultimately achieve 

the strain that matches tensile modulus under the isotropic condition.20 Figure 2-9 showed the 

2WSM cycles of various PCO-COD copolymers cured with 0.25 wt% DCP, while the amount of 

DCP used for crosslinking was increased to 0.50 wt% in Figure 2-10. The actuation magnitude 

(𝑅𝑎,𝑚) and the recovery magnitude (𝑅𝑟,𝑚) were calculated to better understand and compare the 

2WSM effect for each sample (Table 2-3). Quite interestingly, a more remarkable training cycle 

was observed in 2WSM behavior as compared with corresponding 1WSM cycles, especially for 

lower COD mol. contents as well as for lower DCP concentrations. This distinctive characteristic 

is probably due to the constantly applied stress, which might hinder complete shape recovery to 

some degree, during 2WSM testing. However, the training cycle effect was found to be diminished 

significantly by increasing DCP concentration, as crosslink density is directly dependent on DCP 

concentration. 

Additionally, “creep” is commonly considered as one of major mechanical deficiencies of SMPs, 

and it is well known that creep takes place as a direct consequence of both molecular conformations 

and rearrangements due to insufficient constraining effect of polymer network.37,38 In 2WSM 

testing, creep presents in a form of irrecoverable strain from one cycle to another, which is more 

likely to be observed, in our case, for the samples cured with smaller amount of DCP (e.g. Fig. 

9(ii) and (iii)). When more DCP was employed for crosslinking, higher crosslink density was 

achieved to alleviate creep as shown correspondingly in Figure 2-10(ii) and (iii). More specifically, 

the 𝑅𝑟,𝑚’s of 1COD and 3COD samples increased from 94.3% and 94.8% to 97.0% and 96.5%, 

respectively, as DCP concentration increased from 0.25 wt% to 0.50 wt%. However, such trend 

was not found for 5COD samples despite increasing DCP concentration (𝑅𝑟,𝑚 = 97.6% for 0.25 
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wt% DCP and 97.1 for 0.50 wt% DCP), which we attribute to equally good establishment of a 

heavily crosslinked network under either curing condition (𝐺 = 89.6% for 0.25 wt% DCP and 92.1% 

for 0.50 wt% DCP). We point out that the noticeable creep in PCO samples was caused by low gel 

fractions not significantly dependent of DCP concentration (𝐺 < 80%).  

To investigate the influence of different second monomers on reversible actuation, 2WSM cycles 

for 3COD0.50, 3NO0.50 and 3CH0.50 were compiled in Figure 2-11. The reversible behavior for 

each sample was further quantified and compared in Figure 2-15. Out of three kinds of copolymers, 

3COD0.50 displayed the most favorable reversible actuation due to its lowest actuation 

temperature ( 𝑇𝑚 ), highest actuation magnitude ( 𝑅𝑎,𝑚  ~78%), and minimized creeping 

phenomenon (𝑅𝑟,𝑚 ~96%). We reason that its highest 𝑅𝑎,𝑚 is due to the highest stress (0.83 MPa) 

required to achieve the same strain at 70% as compared with the other two copolymers (i.e. 0.46 

MPa for 3NO0.50 and 0.59 MPa for 3CH0.50). 

Furthermore, considering reversible actuation in practical use, the actuation magnitude is 

particularly important since that it dictates the extent of shape changing for our crosslinked 

copolymers during cooling and heating. For comparison and optimization purpose, 𝑅𝑎,𝑚 is plotted 

as a function of COD mol% in Figure 2-13(a). It is evident that all copolymers revealed a relatively 

higher 𝑅𝑎,𝑚 than neat PCO did because of the better flexibility and mobility of COD. Also, 𝑅𝑎,𝑚 

reached peak values at COD content of, respectively, 3 mol% for 0.25 wt% DCP (~70.7%) and 1 

mol% for 0.50 wt% DCP (~83.9%). That 𝑅𝑎,𝑚 decreased with the COD content further increasing 

is probably due to the relatively high crosslink density which could constrain the local chain 

movement in the neighborhood of a crosslink site (Figure 2-12). Figure 2-13(b) reveals that the 

recovery magnitude follows the same trend with COD content as was found for gel fraction. 
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Besides the important 2WSM characteristics of 𝑅𝑎,𝑚 and 𝑅𝑟,𝑚, thermal strain hysteresis (∆𝑇), as 

another one of high importance, is defined by the temperature difference at the half of strain loop 

generated during cooling and heating. The effect of COD content on thermal strain hysteresis is 

shown in Figure 2-14. Ideally, smaller this hysteresis is, the better the reversible actuation is 

deemed, in terms of the breadth of operating temperature span required for complete two-way 

actuation. It is observed that all ∆𝑇’s as a function of COD and DCP content concentrated around 

17.5 °C with a deviation of ca. 1.5 °C, and such median value is averagely lower than that reported 

for a commercially available PCO cured with 2.0 wt% DCP.20 

The influence of heating/cooling rates on the thermal hysteresis of 2WSM cycle was also 

investigated here in light of previous work accomplished by Burke et al.28 The experiments were 

carried out using 3COD0.50 sample that exhibited the most favorable 2WSM properties as 

discussed above. More specifically, the sample was deformed under a tensile stress of 300 kPa at 

70 °C, following which the 2WSM cycle at various heating/cooling rates was recorded in Figure 

2-13a, including 0.5 °C/min (pink), 1.0 °C/min (blue), 2.0 °C/min (red), and 3.0 °C/min, 

respectively. It is obvious that the ∆𝑇 was reduced notably by ca. 57.7% with decreasing the 

heating/cooling rate from 3.0 to 0.5 °C/min but 𝑅𝑎,𝑚  modestly increased by ca. 14.3% in the 

meanwhile, as quantitatively shown in Figure 2-16(b). We postulate such variation in ∆𝑇 or 𝑅𝑎,𝑚 

was rooted in the changing microstructure (and its time-dependence via crystallization kinetics), 

during temperature ramping, under a tensile stress that facilitated the elongated crystalline phases 

to rotate to align along the stretching direction. Likewise, the two-way actuation of 3COD0.50 at 

different stresses show that the hysteresis between the cooling and heating loop became ca. 24.4% 

narrower as stress increased from 100 to 300 kPa (Figure 2-17). Therefore, given all the 

characterization and analysis stated above, it is clearly concluded that this ROMP 
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copolymerization approach allows controllable tuning of reversible actuation based on 𝑇𝑚 in the 

20 °C– 40 °C range. 

2.4.4 WAXS Analysis 

In prior work pertaining to the crosslinking of pure PCO, it was asserted that microstructure 

changes and molecular orientation effects are closely related to the 2WSM behavior. So, in this 

investigation, 2D wide-angle X-ray scattering (WAXS) patterns were systematically recorded 

from a 3COD0.50 sample under varying loading conditions. Samples were thermally annealed at 

100 °C to eliminate the effect of thermal history before applying a range of stresses during 

crystallization upon cooling. The WAXS patterns for such samples are shown in Figure 2-18. 

Previous work suggested two sharp Debye-Scherrer rings for the unstretched PCO sample, and its 

pattern becomes polarized (oriented) more and more with an increase of the applied stress upon 

cooling.20,39,40 Coincidentally, as indicated in Figure 2-15(i) the unstretched 3COD0.50 revealed a 

highly symmetric pattern that consists of two crystalline rings at 2θ = 17.1° (5.18 Å) and 19.9° 

(4.46 Å), each corresponding to the (010) (inner ring) and (1̅10) (outer ring) reflections (Figure 

2-19). We hypothesize that COD packs and crystallizes in a manner as similar as CO does owing 

to their similarity in chemistry and molecular structure. Further, molecular orientation was 

illustrated by the anisotropic patterns as indicated in Figure 2-18(ii), (iii), and (iv) under imposed 

stresses of 100, 200, and 300 kPa, respectively. More specifically, when the largest deformation 

was introduced during cooling (Figure 2-18(iv)), the azimuthal spread of the (010) reflection 

divided into two bands which were close to the equatorial axis (horizontal), indicating a meridional 

(vertical) orientation of crystallites, whereas the (1̅10) reflection split into four isolated, off-

equatorial bands representing stress-induced crystallite orientations in both equatorial and 

meridional directions.  
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Considering closely macromolecular orientation, the angular position and d-spacing did not 

change with increasing stress, as an indication of unaltered microstructure (packing) of the 

copolymer. Further, the stress-induced increase in degree of crystallinity was studied based on the 

intensity-azimuthal angle profiles as plotted in Figure 2-20. It is seen that the intensity peaks turned 

azimuthally sharper as stress increased from 100 to 300 kPa, suggesting that polymer molecules 

oriented to a larger extent. That both molecular orientation and crystallization were increasingly 

promoted along the stretching axis is in good agreement with our observation of improved 

reversible actuation under increasing stress level (Figure 2-17). In addition, this molecular 

orientation appeared to be bimodal because the single peak split into two narrow peaks when stress 

was induced. Such observation seems not to be in alignment with the findings related to the DCP-

crosslinked PCO. Concerning this discrepancy, we reason that it might be due to the presence of 

second monomer which responded to stress rather differently from the neat PCO. 

2.5 Conclusions 

In this study, a family of semicrystalline copolymers with low 𝑇𝑚 in the 20 – 40 °C span was 

successfully developed via ring-opening metathesis copolymerization of cis-cyclooctene (CO) 

with varying second monomers such as 1,5-cyclooctadiene (COD), norbornene (NO) and 

cycloheptene (CH). Covalent crosslinking the resulting copolymers into networks, with the 

presence of dicumyl peroxide (DCP) acting as a thermal initiator, enabled excellent two-way shape 

memory (2WSM) behavior. Tuning of such reversible actuation was further achieved by 

systematic variation in chemical composition and DCP concentration. The thermal, dynamic 

mechanical, and shape memory properties of these copolymer networks were comprehensively 

characterized using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), 

and wide-angle X-ray scattering (WAXS). Results suggest that the melting transition temperatures 
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(𝑇𝑚 ) of copolymer networks was reduced progressively with increasing COD content, DCP 

concentration, or a combination thereof. Importantly, poly(cyclooctene-co-cyclooctadiene) (PCO-

COD) containing 3 mol% COD showed a 𝑇𝑚 (26.1 °C) quite near to room temperature after cured 

with 0.50 wt% DCP, allowing specific applications which require two-way actuation in the vicinity 

of room temperature.  

Reversible actuation (i.e. 2WSM) behavior was analyzed and compared, both qualitatively and 

quantitatively, for each individual copolymer network. We found that both crystalline structure 

and crosslink density played pivotal roles in achieving good control over the reversible actuation. 

Among three second co-monomers, COD was the best from the point of view of lowering 𝑇𝑚 while 

preserving actuation magnitude. With further investigation, 3COD exhibited the best performance 

of reversible actuation, despite the crosslinker concentration, in terms of actuation magnitude, 

recovery magnitude and thermal hysteresis. Furthermore, the effects of different heating/cooling 

rates and different tensile stresses on the reversible actuation of a 3COD0.50 sample were 

investigated, respectively, revealing that actuation magnitude increased with thermal hysteresis 

decreased when either lower heating/cooling rate or higher stress was applied. WAXS analysis 

lent a significant support in interpreting the reversible behavior of copolymer networks at the 

molecular level. Therefore, in view of all observations discussed above, we envision that this work 

can serve as a perfect guidance on tuning the thermally reversible actuation of semicrystalline 

polymers. 
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Table 2-1. Synthesis Summary of CO-based copolymers 

Sample 

Actual CO 

composition 

(mol. %) b 

Yield 

(Mass %) 

Molecular weight (Mw, 

kDa) 

PDI 𝑇𝑚 (°C) c 
∆𝐻𝑚 

(J/g) 

PCO - 80.3 267.3 1.33 49.2 41.74 

1COD a 98.1 80.0 574.3 2.93 43.5 41.16 

3COD 96.7 81.2 415.4 1.38 31.3 26.56 

5COD 95.4 91.8 401.2 1.36 22.7 18.05 

10COD 90.5 70.1 616.9 1.38 18.3 26.54 

3NO 98.5 70.0 384.5 1.44 35.1 29.22 

3CH 96.0 73.4 327.7 1.51 47.9 36.91 

a Nomenclature: 1 stands for 1 mol. % COD added in feed, COD for 1,5-cyclooctadiene. 

b Determined by NMR spectra. 

c Peak values of second heating in DSC curves.  
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Table 2-2. Thermal and Microstructural Characteristics as A Function of DCP wt.% 

Sample 𝑇𝑚
𝑃𝑟𝑖𝑠𝑡𝑖𝑛𝑒 (°C) 𝑇𝑚

0.25𝐷𝐶𝑃 (°C) 𝐺0.25𝐷𝐶𝑃 (%) 𝑇𝑚
0.50𝐷𝐶𝑃 (°C) 𝐺0.50𝐷𝐶𝑃 (%) 

PCO 49.2 47.5 77.4 45.9 79.5 

1COD 43.5 38.7 85.6 32.4 87.6 

3COD 31.3 27.8 83.0 26.1 88.2 

5COD 22.7 20.5 89.6 16.3 92.1 

3NO 35.1 - - 34.8 70.4 

3CH 47.9 - - 44.9 81.2 

 

  



78 
 

Table 2-3. 1WSM and 2WSM characteristics as A Function of composition and DCP wt.% 

Sample 𝑅𝑓 (%) 𝑅𝑟 (%) 𝑅𝑎,𝑚 (%) 𝑅𝑟,𝑚 (%) ∆𝑇 (°C) 

PCO0.25 97.5±0.1 99.0±0.2 33.8±1.5 86.8±4.6 15.9±0.5 

1COD0.25 96.2±0.5 97.5±0.7 55.4±0.5 94.3±3.2 16.0±0.4 

3COD0.25 97.8±4.6 96.2±0.8 70.7±1.5 94.8±2.1 18.9±0.2 

5COD0.25 94.8±1.9 95.2±0.5 62.4±0.6 97.6±1.5 17.2±0.1 

PCO0.50 97.7±0.2 96.3±0.3 45.6±0.4 90.4±3.7 18.4±0.2 

1COD0.50 96.6±0.2 95.7±0.6 83.9±0.3 97.0±1.1 18.8±0.1 

3COD0.50 98.1±3.4 95.9±0.2 78.0±1.1 96.5±1.3 17.6±0.1 

5COD0.50 95.0±2.8 97.3±0.7 57.5±0.5 97.1±0.7 19.9±0.3 

3NO0.50 97.6±1.2 98.2±0.4 45.2±0.4 90.7±4.2 14.8±0.2 

3CH0.50 97.9±0.3 94.6±1.0 61.3±0.6 95.4±2.3 17.3±0.5 
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Scheme 2-1. Copolymerization of cis-cyclooctene (CO) with various second monomers: a) 

poly(cyclooctene-co-cyclooctadiene) (PCO-COD), b) poly(cyclooctene-co-norbornene) (PCO-

NO), and c) poly(cyclooctene-co-cycloheptene) (PCO-CH) via ring opening polymerization in the 

presence of Grubbs catalyst 2nd generation. The reaction is held at room temperature (~22 °C) for 

30 min under nitrogen environment before terminated by ethyl vinyl ether, followed by addition 

of tris(hydroxymethyl)phosphine in 2-propanol to cleanse residual catalyst. 
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Figure 2-1. Thermogravimetric analysis (TGA) graph of all synthesized polymers: PCO (black), 

1COD (red), 3COD (blue), 5COD (pink), 10COD (dark green), 3NO (cyan), and 3CH (green). 
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Figure 2-2. Differential Scanning Calorimetry (DSC) analysis graph of a) pristine PCO-COD 

polymers with varying COD mol. % contents: (i) PCO, (ii) 1COD, (iii) 3COD, (iv) 5COD, and (v) 

10COD; and of b) pristine PCO-based copolymers with different second monomers: (i) 3COD, (ii) 

3NO, and (iii) 3CH. Heating rate is 10 °C/min. 
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Figure 2-3. 2D WAXS pattern a) of the PCO0.50 sample, b) of the 3NO0.50 sample and c) of 

the 3CH0.50 sample. The X-ray wavelength (λ) is 1.5405 Å. 
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Figure 2-4. Differential Scanning Calorimetry (DSC) analysis graph of a) crosslinked PCO-COD 

polymers with DCP concentration of 0.25 wt. %: (i) PCO0.25, (ii) 1COD0.25, (iii) 3COD0.25, 

and (iv) 5COD0.25; and of b) crosslinked PCO-COD copolymers with DCP concentration of 0.50 

wt. %: (i) PCO0.50, (ii) 1COD0.50, (iii) 3COD0.50, and (iv) 5COD0.50; and of c) crosslinked 

PCO-based copolymers with varying second monomers at a DCP concentration of 0.50 wt. %: (i) 

3COD0.50, (ii) 3NO0.50, and (iii) 3CH0.50. Heating rate is 10 °C/min. 
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Figure 2-5. Storage modulus (E') vs temperatures for crosslinked copolymers with DCP 

concentration of a) 0.25 wt. % and b) 0.50 wt. %, respectively: PCO (black), 1COD (red), 3COD 

(blue), 5COD (pink), 3NO (cyan), and 3CH (green). E' was recorded at a heating rate of 3 °C/min 

with frequency of 1 Hz. 
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Figure 2-6. Tan δ vs temperatures for crosslinked copolymers with DCP concentration of a) 0.25 

wt. % and b) 0.50 wt. %, respectively: PCO (black), 1COD (red), 3COD (blue), 5COD (pink), 

3NO (cyan), and 3CH (green). 
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Figure 2-7. One-way shape memory cycles for a) PCO0.25, b) 1COD0.25, c) 3COD0.25, and d) 

5COD0.25, respectively. The sample is deformed by increasing stress at 70 °C. A temporary shape 

was fixed by cooling at a rate of 2 °C/min and unloading, and then the original shape was recovered 

by heating at 2 °C/min. “*” indicates starting point. 
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Figure 2-8. One-way shape memory cycles for a) PCO0.50, b) 1COD0.50, c) 3COD0.50, d) 

5COD0.50, e) 3NO0.50, and f) 3CH0.50, respectively. The sample is deformed by increasing 

stress at 70 °C. A temporary shape was fixed by cooling at a rate of 2 °C/min and unloading, and 

then the original shape was recovered by heating at 2 °C/min. “*” indicates starting point. 
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Figure 2-9. Two-way shape memory behavior of PCO-COD copolymers containing different 

COD contents cured with 0.25 wt. % DLP: (i) PCO0.25, (ii) 1COD0.25, (iii) 3COD0.25, and (iv) 

5COD0.25. The samples were stretched under high temperature (70 °C) at a constant strain of 70%. 

The deformation step is followed by a cooling process at a rate of 2 °C/min, inducing an increase 

in strain. Then, the increased strain decreases by a heating process at a rate of 2 °C/min to 70 °C. 

Cycle: first (black), second (red), third (blue). 
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Figure 2-10. Two-way shape memory behavior of PCO-COD copolymers containing different 

COD contents cured with 0.50 wt. % DLP: (i) PCO0.50, (ii) 1COD0.50, (iii) 3COD0.50, and (iv) 

5COD0.50. The samples were stretched under high temperature (70 °C) at a constant strain of 70%. 

The deformation step is followed by a cooling process at a rate of 2 °C/min, inducing an increase 

in strain. Then, the increased strain decreases by a heating process at a rate of 2 °C/min to 70 °C. 

Cycle: first (black), second (red), third (blue). 
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Figure 2-11. Two-way shape memory behavior of copolymers containing various second 

monomer cured with 0.50 wt. % DLP: (i) 3COD0.50, (ii) 3NO0.50, and (iii) 3CH0.50. The samples 

were stretched under high temperature (70 °C) at a constant strain of 70%. The deformation step 

is followed by a cooling process at a rate of 2 °C/min, inducing an increase in strain. Then, the 

increased strain decreases by a heating process at a rate of 2 °C/min to 70 °C. Cycle: first (black), 

second (red), third (blue). 
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Figure 2-12. Gel fraction value (𝐺) as a function of COD content cured with different DCP 

concentrations. (○) indicates 0.25 wt. % DLP and (●) 0.50 wt. % DLP. 
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Figure 2-13. a) Actuation magnitude (𝑅𝑎,𝑚) and b) recovery magnitude (𝑅𝑟,𝑚) as a function COD 

content at different DCP concentrations for PCO, 1COD, 3COD, and 5COD. (○) indicates 0.25 

wt. % DCP and (●) 0.50 wt. % DCP. 
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Figure 2-14. Thermal strain hysteresis (∆𝑇) as a function of COD content cured with different 

DCP concentrations. Thermal strain hysteresis was calculated from the temperature difference at 

the half of strain loop generating during cooling and heating. (○) indicates 0.25 wt. % DCP and 

(●) 0.50 wt. % DCP. 
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Figure 2-15. 2WSM characteristics of copolymers with varying second monomers in comparison 

in terms of actuation magnitude and recovery magnitude. 
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Figure 2-16. a) Two-way shape memory behavior for 3COD0.50 at different heating/cooling rates, 

0.5 °C/min (pink), 1.0 °C/min (blue), 2.0 °C/min (red), and 3.0 °C/min (black). The sample was 

deformed under a tensile stress of 300 kPa at 70 °C; b) Actuation magnitude (𝑅𝑎,𝑚) and strain 

hysteresis (∆𝑇) versus heating/cooling rate based on the two-way shape memory behavior of the 

3COD0.50 sample, respectively. Maximum 𝑅𝑎,𝑚  (●) and ∆𝑇  (○). The strain hysteresis was 

calculated from the temperature difference (ΔT) at the half of strain loop in two-way shape memory 

cycles. 
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Figure 2-17. a) 3D two-way shape memory behavior for 3COD0.50 at different stresses, (i) 100 

kPa, (ii) 200 kPa, and (iii) 300 kPa. The sample was deformed under each constant stress at 70 °C, 

followed by cooling and heating steps (2 °C/min), respectively; b) Maximum strain and strain 

hysteresis versus stress based on the two-way shape memory behavior of the 3COD0.50 sample, 

respectively. Maximum strain (●) and strain hysteresis (○). The strain hysteresis was calculated 

from the temperature difference (ΔT) at the half of strain loop in two-way shape memory cycles. 
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Figure 2-18. 2D WAXS patterns of the 3COD0.50 sample with an increase of loading after cooling: 

(i) unstretched, (ii) 100 kPa, (iii) 200 kPa, and (iv) 300 kPa. Stretching direction is vertical. The 

X-ray wavelength (λ) is 1.5405 Å. 
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Figure 2-19. WAXS plots of (i) 3COD0.50, (ii) 3NO0.50, (iii) 3CH0.50, and (iv) PCO0.50. The 

X-ray wavelength (λ) is 1.5405 Å. 
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Figure 2-20. Azimuthal scanning profiles for the 3COD0.50 sample as a function of the applied 

stress: (i) 100 kPa, (ii) 200 kPa, and (iii) 300 kPa. The X-ray wavelength (λ) is 1.5405 Å. 
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Chapter 3: A Latent-crosslinkable Poly(ɛ-caprolactone) (PCL)-based 

Thermoplastic Polyurethane: Synthesis, Shape Memory, and Degradation 

3.1 Synopsis 

In this chapter, seeking a latent-crosslinkable, mechanically flexible, fully thermoplastic shape 

memory polymer, we have developed a simple but effective macromolecular design that includes 

pendent crosslinking sites via the chain extender of a polyurethane architecture bearing semi-

crystalline poly(ε-caprolactone) (PCL) soft segments. This new composition was used to prepare 

fibrous mats by electrospinning and films by solvent casting, each containing thermal initiators for 

chemical crosslinking. The one-step synthesis strategy proved successful, and the crosslinking 

sites within PCL segments resulted in two-way (reversible) shape memory: repeatable elongation 

(cooling) and contraction (heating) under constant tensile stress. Being fully characterized, the 

crosslinked fiber mats revealed promising one-way and two-way (reversible) shape memory 

phenomena, with lower storage moduli though, compared to uncrosslinked films. We observed for 

both fibrous mats and films that increasing the applied tensile stress led to greater crystallization-

induced elongation upon cooling as well as smaller strain hysteresis, particularly for covalently 

crosslinked sample. Relevant to medical applications, the materials were observed to feature 

unique, two-stage enzymatic degradation that was sensitive to differences in crystallinity and 

microstructure among samples. 

3.2 Introduction 

Shape memory polymers (SMPs) have attracted a lot of interest, both academically and 

industrially, based on the ability to set a temporary, non-equilibrium shape until they are triggered 
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to revert to original shape by a specific external stimulus 1-3. Several environmental stimuli that 

can trigger shape changing of SMPs have been well studied thus far, such as heat, light, humidity, 

electric field, magnetic field, and variation of pH. Out of all the external stimuli, heat is the most 

widely investigated and used, as a result of the ease in ability to tailor thermo-mechanical 

properties of thermally actuated SMPs 3. Consequently, thermally activated SMPs offer 

complexity of material response, including multistage shape change behavior 4-6 and reversible 

(two-way shape memory) actuation 7,8. Such response complexity can then be manipulated and 

tuned through variations in material composition, fabrication method, and post-synthesis processes. 

A need exists for rapid and reliable reversible actuation in SMPs in order to make artificial 

muscles or other actuators 6,9,10. Addressing this need, liquid crystalline elastomers (LCEs) 11,12 

have been shown to exhibit excellent performance, attributed to the coupling of the self-

organization of liquid crystalline phase and the entropy elasticity of polymer networks. In general, 

when an external stress is applied, LCEs elongate during cooling from isotropic (amorphous) state 

to liquid crystalline phase, and contract during heating by achieving the strain associated with 

tensile modulus at isotropic state. Remarkably, “monodomain” samples feature actuation along the 

orientation axis with no external stress bias 13. Toward attaining this reversible actuation behavior 

in a simple synthetic way, researchers have unveiled multiple macromolecular designs beyond 

LCEs that can also give rise to actuation. In our own lab, Chung et al 14 reported on tunable two-

way shape memory behavior of crosslinked poly(cyclooctene) by variation of peroxide 

concentrations. In another approach, Baker et al 15 fabricated porous foams with body temperature 

triggering shape memory by crosslinking functionalized PCL and poly(ethylene gylcol) (PEG) via 

thiol-ene chemistry, and, interestingly, the foams revealed reversible actuation behavior in 

compression other than in tension as commonly investigated. Besides the work accomplished by 
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our own lab, Behl et al 16 developed a reversible shape memory copolymer network that consists 

of poly(-pentadecalactone) segment determining the shape-changing geometry and poly(ε-

caprolactone) segment providing the thermally activated actuation. Zhou et al 17 synthesized an 

end-capped poly(octylene adipate) that showcased both one-way and two-way reversible shape 

memory after thio crosslinked and acrylate crosslinked by exposing to 365 nm light. 

With growing need in biomaterials and environmentally friendly materials, biodegradable PUs 

have been studied extensively as one of the specialized SMPs in the field of shape memory research. 

Teramoto et al 18 elaborated a novel approach that employed a multi-step copolymerization of ʟ-

lactide, ɛ-caprolactone and ethylene glycol oligomer to yield a biodegradable, semicrystalline 

copolymer containing backbone C=C double bond. This copolymer could subsequently be 

crosslinked chemically, enabling the two-way shape memory behavior. Additionally, the 

compositional selection of diisocyanates and the molecular weight of soft segments have been 

found to play leading roles in tailoring select thermal, mechanical, and shape memory properties 

of PUs 19,20. Beyond composition, material form and microstructural characteristics of SMPs may 

impose an equal influence on these properties. Electrospinning, as a highly versatile and widely 

used technique that allows fabrication of continuous, fine fibers, has been primarily applied on 

polymers (both synthetic and natural), and even metal alloys, ceramics 21,22. Demir et al 23 obtained 

a electrospun PU based on poly(tetramethylene oxide), and also studied the effect of electric field, 

surrounding temperature, conductivity and viscosity of the polymer solution on structural 

properties of resulting fibers. However, to our best knowledge, no one has yet to combine 

electrospinning with thermal curing, especially for biodegradable PUs with a relatively low 

melting temperature. 
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For the present study, we sought to prepare fine fibers via electrospinning and to then post-cure 

the fibrous web to achieve two-way shape memory behavior. In this work, the approach we have 

implemented involves the use of 3, 4-dihydroxy-1-butene (DHB), functioning as a chain extender 

in polyurethane chemistry with a pendant allyl group that, simultaneously, serves to enable 

crosslinking while controlling the melting transition and crystallinity 24-26. As variation in 𝑇𝑚 near 

room temperature impacts crystallinity, and therefore shape memory behavior, manipulating 

thereof offers an effective approach to tune thermomechanical and potentially biological functions 

as a biomaterial. Our specific goal with current work was to develop crosslinkable, 

electrospinnable, biodegradable thermoplastic polyurethanes that feature two-way reversible 

shape memory behavior while maintaining comparable thermal and mechanical properties after 

processing and curing. Our approach was first to synthesize linear PCL-based thermoplastic 

polyurethanes 27 (subsequently referred to as PCL-TPUs) from polycaprolactone-diol, as a short, 

biodegradable soft segment and DHB, as a crosslinkable unit with a diisocyanate as segment linker. 

We next processed the synthesized PUs into both fiber mats (by electrospinning) and films (by 

compression molding), each containing initiators for thermal curing, respectively. Thermal, 

mechanical, and shape memory properties of the crosslinked materials were characterized, to 

further investigate the effect of processing and curing on these properties. Moreover, based on the 

knowledge gained from previous work 28-30, enzymatic degradation study was conducted to study 

the degradation behavior and reveal possible mechanisms. 

3.3 Experimental 

3.3.1 Materials 
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Poly(caprolactone)-diols (PCL2k, average Mn ~ 2,000 g/mol, purchased from Sigma-Aldrich; 

PCL3k, average Mn ~ 3,000 g/mol, purchased from Scientific Polymer Products, Inc.) were vacuum 

dried for 2 d prior to use. 3, 4-Dihydroxy-1-butene (DHB, ≥99%), dilauroyl peroxide (DLP, 

Luperox® LP, 97%), phosphate buffered saline (PBS, dry powder, pH 7.4 containing TWEEN® 

20), and sodium azide (ReagentPlus®, ≥99.5%) were purchased from Sigma-Aldrich and used as 

received. Hexamethylene diisocyanate (HDI, purum, ≥98%) was purchased from Sigma-Aldrich 

and stored over 3 Å molecular sieves (Sigma-Aldrich) for 3 d before further use. Tin-POMS 

catalyst was purchased from Hybrid Plastics and vacuum dried extensively for a week prior to use. 

Lipase from Pseudomonas cepacia (powder, light beige, ≥30 U/mg) was purchased from Sigma-

Aldrich and stored at -20 °C freezer before use. Toluene, chloroform, and n-hexanes were all 

purchased from Fisher Scientific. Toluene was dehydrated by refluxing over calcium hydride 

(Sigma-Aldrich) multiple times until collection and stored over 3 Å molecular sieves for 3 d before 

use. N, N-Dimethylformamide (DMF, anhydrous, 99.8%), HPLC-grade tetrahydrofuran (THF), 

and deuterated chloroform (Chloroform-d, 99.8% atom D) were purchased from Sigma-Aldrich 

and used as received. 

3.3.2 Polyurethane Synthesis 

A one-port synthesis method was adopted to synthesize the PCL-TPUs from PCL-diol, HDI, and 

DHB, as shown in Scheme 3-1. A Schlenk line (AF-0452, purchased from Chemglass Life 

Sciences) was utilized to create air-free reaction environment during the course of polymerization. 

Moisture was intentionally removed from the whole reaction system by evacuating and refilling 

clean nitrogen at least three times. A 500-mL Schlenk flask (AF-0528, single neck, round bottom) 

was oven dried at 80 °C and flame dried right before use. As a representative example, we specify 

the preparation of PCL3k-TPU as below. A mass of 9.0 g (3.0 mmol) PCL3k was dissolved in 100 
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mL distilled toluene within a 500-mL flask that was subsequently heated to and kept at 100 °C for 

about 30 min, while 100 mg (1 wt. %) Tin-POMS catalyst was dissolved into 5 mL distilled toluene 

for further use. Once the polymer solution became transparent, indicating that polymer was fully 

dissolved, 0.18 mL (2.1 mmol) DHB, 0.96 mL (6.0 mmol) HDI, and 5 mL toluene containing Tin-

POMS were added into the flask via a syringe under an inert atmosphere of nitrogen. Incubation 

as such was maintained at 100 °C for 24 h to accomplish polymerization while stirring was kept 

to assure good mixing. A noticeable increase in viscosity during polymerization was witnessed. 

Following polymerization as described, the resulting polymer solution was precipitated by drop-

wisely addition into an 8-fold excess of n-hexane, followed by washing with deionized water. The 

precipitates were collected and dried in the fume hood overnight prior to complete drying in 

vacuum oven at room temperature for another 3 d. 

3.3.3 Molecular Characterization 

The PCL2k-TPU and PCL3k-TPU harvested by method mentioned above were prepared using 

deuterated chloroform (CDCl3) at a concentration ranging from 20 to 30 mg/mL. The proton 

Nuclear Magnetic Resonance (1H NMR) spectra were generated using a Bruker Avance III HD 

400 MHz spectrometer, to qualitatively verify chemical structure of synthesis products as well as 

to quantitatively analyze PCL-to-DHB mol. ratio per chain. The relaxation delay time is 1 s at a 

temperature of 25 °C. Gel Permeation Chromatography (GPC) was performed to determine 

number-average molecular weight (Mn) and polydispersity index (PDI, Mw/Mn), using a Waters 

Isocratic HPLC system equipped with a temperature-controlled differential refractometer (Waters 

2414). Multi-angle laser light scattering (Wyatt miniDAWN) was introduced at three characteristic 

angles (45 °, 90 °, and 135 °) for in-line absolute molecular weight determination. The flow rate 



106 
 

of THF as mobile phase in this GPC system was set at 1 mL/h constantly. Polymer-THF solutions 

(2 – 5 mg/mL) were passed through a 0.2 μm PTFE filter (Waters) prior to injection at 40 °C. 

3.3.4 Sample Preparation 

Seeking to understand the effect of PCL3k-TPU before and after processing and curing on 

thermal, mechanical and shape memory properties, polymers as synthesized were processed into 

films, by solvent casting, and, fiber mats, by electrospinning, respectively. To make films, 2 g 

PCL3k-TPU and 40 mg (2 wt. %) DLP were dissolved together into 20 mL chloroform, and the 

solutions then incubated in an Excella shaker (Excella E24, New Brunswick Scientific) at 37 °C 

until becoming completely transparent and homogeneous. The uniform solutions were then cast 

into a 5-inch Teflon dish above a large balanced platen afterwards, and allowed 48 h to dry 

completely. Cast films were further dried in vacuum oven at room temperature. To prepare 

electrospun fiber mats, a 17% (w/v) PCL3k-TPU solution was prepared by adding 2 g PCL3k-TPU 

and 40 mg DLP into a mixture of 8 mL chloroform and 4 mL DMF. The resulting solution was 

then heated to and kept at 37 °C with constant stirring. After dissolution completion, each polymer 

solution was processed into a nonwoven fibrous web (thickness ~ 0.15 mm) using a custom 

electrospinning set-up that has been previously reported by our group.31 The ejecting needle was 

held at a potential of 16 kV, the tip-to-collector distance was 10 cm, the rotation rate of a 57.1 mm 

collecting mandrel was maintained at 400 rpm while the drum was held at a potential of negative 

0.5 kV and a flow rate of polymer solution supplying the 22 gauge needle was 1.5 mL/h, all 

employed over the 8-hour electrospinning process. Complete drying of spun fiber mats was 

subsequently achieved in vacuum oven at room temperature before further use. 
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Eventually, the dried films and fiber webs were cured thermally by the following method. 

Samples (~ 2 g) were sandwiched between two polished stainless steel sheets coated with mold 

release agent (Pol-Ease® 2300, Polytek), and a 0.15 mm thick stainless steel spacer was placed in 

between to control the thickness of the final film. A 0.25 MPa compressive stress and a customized 

ramping heating method (temperature was set at 60 °C initially, ramping up to 90 °C by 20 °C/h, 

and finally kept at 90 °C for 30 min) were implemented throughout entire 2 h of curing, using a 

Carver 3851-0 press with heating platens. Afterwards, the platens were cooled down to room 

temperature, following which the compressive pressure was released. 

3.3.5 Gel Fraction Measurement 

In order to assess the extent of covalent crosslinking, network gel fraction values of the 

crosslinked films and crosslinked fiber mats were examined using solvent-extraction and 

gravimetry. Each sample was weighed for its dry mass before being soaked in 20 mL THF at 37 

°C in an Excella shaker for 48 h, during which the THF was refreshed every 12 h. Then samples 

were washed with deionized water, blotted with common towel, and vacuum dried for a week at 

room temperature to remove residual solvent or water. The final dry mass was recorded for 

calculation of gel fraction. Calculation of gel fraction values involves the initial dry mass, 𝑚𝑖, and 

the final dry mass, 𝑚𝑓, using the equation below 

𝐺(%) =
𝑚𝑓

𝑚𝑖
× 100                                                               (3 − 1) 

Depending on favorability of polymers interacting with THF, this G value typically falls into a 

range from 0% for a totally soluble polymer up to 100% for a perfectly crosslinked network where 

no free linear polymer chains exist. 
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3.3.6 Microstructural Characterization 

To visualize surface morphology and structural geometry of cast films and electrospun fiber mats 

of PCL3k-TPU, Scanning Electron Microscopy (SEM) was conducted using a JEOL JSM-5600 

microscope under an accelerating voltage of 5 kV. Both samples were gold-sputtered for 60 s prior 

to imaging by a Fujifilm FLA7000 reader. Also, to ascertain the molecular ordering and crystalline 

microstructure, wide angle X-ray scattering (WAXS) analysis was performed using a Rigaku S-

MAX3000 for virgin cast films, crosslinked cast films, virgin electrospun fiber mats, and 

crosslinked electrospun fiber mats of PCL3k-TPUs. A Rigaku MicroMax-002+ generator was 

operated under an accelerating voltage of 45 kV and a current of 0.88 mA to yield a collimated 

beam of Cu Ka X-rays with a wavelength of 1.5405 Å. Scattering patterns were collected (see 

below) for 30 min except virgin fiber mat for 15 min due to high transmittance to X-rays. The 

sample-detector distance was fixed at 120.7 mm, leading to scattering angles 3 ° < 2θ < 40 °. 

WAXS images were obtained and analyzed using a FujiFilm FLA7000 reader (with Fujifilm image 

plates CR HR-V) and SAXSgui software v2.03.04. 

3.3.7 Thermal and Dynamic Mechanical Analysis 

Differential Scanning Calorimetry (DSC) was employed to investigate thermal properties of all 

samples using the TA Instruments Q200 apparatus. Samples weighing approximately 5 mg 

underwent a thermal program of first heating to 140 °C at 10 °C/min, cooling to -60 °C at 10 

°C/min, and then reheating at 10 °C/min to 140 °C while heat flow data was recorded. The melting 

transition temperature (𝑇𝑚, the peak of the endotherm), crystallization transition temperature (𝑇𝑐, 

the peak of the exotherm), and the enthalpy of melting (ΔH, area beneath endothermic peak) were 

recorded, respectively, on the basis of second heating curve (to minimize the effects of thermal 
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history). Crystallinity of PCL3k-TPU was determined using the latent heat of melting relative to an 

accepted value for fully crystallized PCL3k, using the equation 

𝑋𝑐(%) =
∆𝐻𝑃𝐶𝐿3𝑘

∆𝐻𝑜,𝑃𝐶𝐿3𝑘

× 100                                                 (3 − 2) 

where ∆𝐻𝑜,𝑃𝐶𝐿3𝑘
 is 64.92 J/g. We recognize that this is a rough estimation, due to the variation in 

synthesis from batch to batch. 

A TA Instruments Q800 Dynamic Mechanical Analyzer (DMA) was adopted to explore the 

thermomechanical properties and also to assess success of crosslinking PCL3k-TPUs (i.e. 

crosslinked cast film and crosslinked spun fiber mat). In the multi-frequency controlled-strain 

mode each sample was equilibrated at -60 °C, held isothermal for 10 min, and heated continuously 

up to 100 °C at 3 °C/min. An oscillating frequency of 1 Hz, amplitude of 15 μm (ca. 0.2%), a 

preload force of 0.001 N, and a force track of 108% were utilized. Rectangle shaped samples with 

an approximate length-to-width ratio of 4:1 were used for testing. 

3.3.8 Shape Memory Characterization 

To probe and analyze one-way and two-way (reversible) shape memory behavior, dog bone 

shaped samples (ASTM D63 Type IV, scaled down by a factor of 4) were tested for crosslinked 

PCL3k-TPUs only, using DMA in controlled force mode. For one-way shape memory tests, 

samples were first strained to 40% at 90 °C, cooled at 2 °C/min to -30 °C under constant tension, 

released of their tensile stress, and finally heated up to 90 °C at 2 °C/min. This program was 

repeated three times for each sample. To quantify the one-way shape memory behavior, the 

calculation of the shape fixing (𝑅𝑓) and shape recovery (𝑅𝑟) ratios 32 for each individual cycle 

were performed using the equations below: 



110 
 

𝑅𝑓(%) =
휀𝑓 − 휀𝑖

휀𝑑 − 휀𝑖
× 100                                                        (3 − 3) 

𝑅𝑟(%) =
휀𝑓 − 휀𝑟

휀𝑓 − 휀𝑖
× 100                                                        (3 − 4) 

Here, 휀𝑓 stands for the fixed strain after release stress, 휀𝑖 for the initial strain at starting point of 

each cycle, 휀𝑑  for the deformed strain before unloading, and 휀𝑟  for the recovered strain after 

complete heating. 

In contrast, two-way shape memory tests were performed in the following procedures: at first, 

each sample was deformed by ramping the applied tensile load at 0.01 N/min to 40% strain at a 

prescribed elevated temperature. The stress required to achieve this strain was then held fixed for 

all subsequent steps. Next, the samples were cooled to a prescribed low temperature at 2 °C/min. 

Finally, and after being held isothermally for 10 min, each sample was reheated to the initial 

elevated temperature at 2 °C/min. The strains were recorded as a function of temperatures while 

these procedures were done three times in succession. The quality of two-way shape memory 

behavior was subsequently evaluated by calculating the actuation magnitude (𝑅𝑎,𝑚 ) and the 

recovery magnitude (𝑅𝑟,𝑚) 14, using the equations as follows: 

𝑅𝑎,𝑚(%) = (휀𝑙𝑜𝑤 − 휀ℎ𝑖𝑔ℎ) × 100                                             (3 − 5) 

𝑅𝑟,𝑚(%) =
휀𝑙𝑜𝑤 − 휀ℎ𝑖𝑔ℎ

𝑓𝑖𝑛𝑎𝑙

휀𝑙𝑜𝑤 − 휀ℎ𝑖𝑔ℎ
𝑖𝑛𝑖𝑡𝑖𝑎𝑙

× 100                                             (3 − 6) 

where 휀𝑙𝑜𝑤  and 휀ℎ𝑖𝑔ℎ  are the strains respectively at low and high temperatures under loading, 

휀ℎ𝑖𝑔ℎ
𝑓𝑖𝑛𝑎𝑙

 is the final strain at high temperature with stress applied after recovery, and 휀ℎ𝑖𝑔ℎ
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the 

initial strain under stress at high temperature. In addition, the magnitude of hysteresis for each 

sample was determined as the temperature difference between the 50% actuation strain upon 
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heating (higher temperature) and cooling (lower temperature). We note that this value is 

heating/cooling rate dependent 33; however, exploration of this dependence was beyond the scope 

of the present work. 

3.3.9 Enzymatic Degradation Study 

In vitro enzymatic degradation experiments were conducted at 37 °C in a PBS aqueous solution 

that contains 0.4 mg/mL 34 lipase from Pseudomonas cepacia. Sodium azide was added to the PBS 

buffer at a concentration of 1 mg/mL, to suppress microorganism growth. Virgin cast film, 

crosslinked cast film, virgin spun fiber mat and crosslinked spun fiber mat were cut into 10 mm 

squares with average thicknesses of 0.14, 0.12, 0.06 and 0.03 mm, respectively. Each sample was 

individually put into 20 mL vials with 5 mL PBS buffer prepared as above. The buffer was replaced 

with a fresh one every 4 d so as to sustain enzyme activity. At predetermined degradation time 

points, three samples from each composition were taken out of PBS buffer, rinsed with deionized 

water, blotted dry, further dried under vacuum for 4 d at room temperature, and finally weighed. 

The calculation of total percentage of mass loss involves in use of the following equation 

𝑀𝑎𝑠𝑠 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 (%) = (
𝑀𝑓

𝑀𝑖
) × 100                                    (3 − 7) 

wherein 𝑀𝑓 is the final dry weight and 𝑀𝑖 is the initial dry weight of samples. The average value 

of three samples at the same time point was separately reported for different compositions and 

forms, error bars indicating one standard deviation. In addition, crystallinity changes during 

degradation were monitored using calorimetry (Eqn. (3-2)), to ascertain the degradability of a 

representative example of the new materials. To further study degradation mechanism, GPC (𝑀𝑛 
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measurements) experiments were applied to uncrosslinked PCL3k-TPU samples while gel fraction 

measurements (Eqn. (3-1)) were employed during degradation to crosslinked PCL3k-TPU samples. 

3.4 Results and Discussion 

3.4.1 Molecular Characterization 

Polyurethanes with varying soft segments were synthesized by condensation polymerization for 

both PCL2k-diol and PCL3k-diol with DHB and HDI in the presence of Tin-POMS catalyst 

(Scheme 3-1). The feed mol. ratio of three ingredients was determined, through trial-and-error 

method, to be 3:2.1:6 in order to maximize yield and molecular weight of resulting products. The 

reason why this ratio was not stoichiometric (2:1:3) is possibly that purity and reaction activities 

of three ingredients are not precisely equivalent. The results of the polyurethane syntheses are 

summarized in Table 3-1. 1H NMR spectra confirmed success of incorporating unsaturation in 

both PCL2k-TPU and PCL3k-TPU in accordance with characteristic peaks at specific chemical 

shifts, and also showcased that actual DHB compositions are about 6 and 9.4 mol % for each case. 

Moreover, the incorporation of pendant allyl groups resulted in an average 19 °C or 10 °C drop of 

melting temperature for PCL2k-TPUs (~ 31 °C) or PCL3k-TPUs (~ 45 °C) compared to the melting 

temperature of their corresponding precursor, either PCL2k-diol (50 °C) or PCL3k-diol (55 °C), as 

shown in Figure 3-1. Increasing molecular weight of soft segment correspondingly increased 

enthalpy of melting, as a direct indication of crystallinity degree. Although high crystallinity might 

adversely influence shape memory effect of polyurethanes 35,36, relatively low melting temperature 

that sits around room temperature would possibly cause poor shape fixing so that no good shape 

memory behavior would be expected if in practical use. As a result, we chose to use PCL3k-TPUs 

for following experiments and further study. 
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3.4.2 Microstructural Characterization 

SEM images of all PCL3k-TPU samples described in sample preparation section are compiled in 

Figure 3-2, to study surface morphology and cross-sectional structure. Figure 3-2(a) and (e) show 

that a homogeneously distributed film with smooth surfaces were made by our customized 

compression molding method. As-spun fiber mat was imaged at different magnifications in Figure 

3-2(b) and (f), indicating the outstanding capacity of this polymer to be easily processed into 

fibrous structure at a scale of a few hundreds of nanometers. More interestingly, following thermal 

curing process only caused partial melting of the spun fibers, resulting in a structural combination 

of fiber and matrix composed by the very same polymer (Figure 3-2(c) and (g)). Furthermore, a 

crosslinked spun fiber mat was hardened in liquid nitrogen for about 10 min, and then cut all the 

way through the thickness to unveil the cross-section. Cross-sectional views at different 

magnifications positively supported the previous conclusion in regard to that fiber-matrix 

composite structure, as we observed some continuous phase connecting to or wrapping around 

fibrous structure clearly in Figure 3-2(d) and (h). Evidently, part of PCL3k-TPU spun fibers 

preserved their original fibrous configuration, and kept their permanent shapes in that way other 

than being fully melted to form a uniform film during our customized thermal curing process. The 

coexistence of fiber and matrix, both made from the same polymer, also fits in the concept of 

Single Polymer Composite (SPC) 37,38. This unique, porous structure could lead to some attractive 

mechanical and biological properties for broader range of applications. 

To further characterize the microstructure of PCL3k-TPU, WAXS experiments were conducted 

on all four samples, revealing the independence of crystalline structure on processing or curing. 

All four samples showcased identical WAXS pattern (Figure 3-3(a), (b), (c), and (d)) and thus 

similar trend in the plot of intensity-versus-2θ (Figure 3-3(e)). Out of all the WAXS patterns and 
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the peak intensities observed for virgin (uncrosslinked) spun fiber mat were relatively higher than 

the other three samples, attributed to high X-ray transmittance due to high porosity. In particular, 

the soft segment, PCL3k, exhibited two characteristic peaks (in Figure 3-3(e)) at 2θ = 21.42° and 

23.66°, respectively, within a broad range spanning 2θ = 18.80° to 26.60°. These two peaks relate 

to d-spacings of 4.12 Å and 3.77 Å. Based on literature reports, the sharp peak at 2θ = 21.42° (4.12 

Å) corresponds specifically to the (110) 39 of PCL crystalline structure. 

3.4.3 Thermal and Dynamic Mechanical Analysis 

Thermal analyses were carried out for virgin cast film, crosslinked cast film, virgin spun fiber 

mat and crosslinked spun fiber mat using DSC, with analysis quantities summarized for 

comparison in Table 3-2. First cooling and second heating curves are shown in Figure 3-4 for these 

samples. In general, samples in different forms have been found to have identical 𝑇𝑚’s at around 

46 °C, indicating no noticeable impact of crosslinking and form on melting transition. In contrast, 

𝑇𝑐 ’s of spun fiber mats slightly shifted to lower temperatures, probably because the fibrous 

microstructure had a significant influence on thermal conductivity. A similar trend was found for 

enthalpies of melting, additionally revealing that crosslinked fiber mat featured the lowest value. 

The enthalpy of melting for each sample tested corresponds to crystallinity directly, as we use 

enthalpy to estimate crystallinity. Thus, we postulate that fibrous microstructure decreased 

crystallinity of the soft segments to some extent, which higher crosslinking degree decreased 

crystallinity even further 40. The later postulation is well supported by gel fraction results. The gel 

fraction value for crosslinked film was 80% while that for crosslinked fiber mat was 90%. Given 

that the same curing condition was applied for both samples, the relatively high gel fraction value 

for crosslinked fiber mat imply that electrospinning process resulted in better mixing between the 

polymer and the crosslinker than solvent casting did. 
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The results of dynamic mechanical analysis (DMA) are compiled in Figure 3-5(a), for films and 

in Figure 3-6(a), for fiber mats, respectively. The storage modulus was monitored to investigate 

and compare their thermomechanical properties over temperature range spanning -60 °C to 100 °C. 

The storage modulus for each sample similarly dropped an order of magnitude, with increasing 

temperature from -60 °C to 20 °C prior to melting transition. Either films or fiber mats softened 

starting at around 37 °C, as the storage modulus began falling down quickly. Both virgin samples 

mat became too fluid to bear any stress just above 50 °C and finally yielded, as a result of complete 

melting of crystalline domain. On the contrary, both crosslinked samples were able to maintain 

stable rubbery states above their 𝑇𝑚’s. Beyond melting, the storage modulus for the crosslinked 

film leveled out at 1.49 MPa, which was about 3 times higher than crosslinked fiber mat (~0.50 

MPa). We attribute this significant difference to the large fraction of void space existing in 

crosslinked spun fiber mat, with the support of prior SEM imaging data. 

3.4.4 Shape Memory Characterization 

In light of previous work 13,41 from our group, the presence of a stable rubbery plateau above 𝑇𝑚 

should allow such a polymeric sample to be deformed extensively without macroscopic flow, a 

prerequisite for decent shape memory effect. Hence, we should expect shape memory behavior for 

crosslinked samples only, because of the results discussed in previous section. The one-way shape 

memory cycles were plotted in a three-dimensional stress-temperature-strain graph (Figure 3-5(b) 

for crosslinked film and Figure 3-6(b) for crosslinked fiber mat), showing the response of the 

samples to shape fixing and recovery. Quantification of one-way shape memory behavior typically 

involves in the calculation of fixing and recovery ratios using eqn. (3-3) and (3-4), as summarized 

in Table 3-3. We observed that both types of crosslinked samples exhibited excellent fixing and 

recovery ratios, all above 99%, indicating the exceptional capacity of this material to sustain 
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programmed deformation upon loading as well as to recover precisely back to original shape. 

Furthermore, due to the remarkable increase in strain that occurred during crystallization of PCL3k-

bearing TPUs upon cooling (See Figure 3-5(b) and 3-6(b)), it was expected that the crosslinked 

PCL3k-TPUs would be good candidates for two-way reversible shape memory phenomenon. 

Two-way shape memory behavior features reversible elongation and contraction, under constant 

loading, upon cooling and heating through the melting transition, respectively. Two-way shape 

memory cycles for the new materials are shown in Figure 3-5(c), for crosslinked film and in Figure 

3-6(c), for crosslinked fiber mat, revealing great potential to change in shape reversibly without 

noticeable creeps. More interestingly, in both cases, the strain barely changes or slightly increases 

with decreasing temperature, except during the crystallization where the strain spikes up drastically 

with an 𝑅𝑎,𝑚 of ~ 15%, for crosslinked film and of ~ 24%, for crosslinked fiber mat, respectively. 

The crosslinked fiber mat exhibited a higher actuation magnitude possibly because of its lower 

storage moduli above 𝑇𝑚 . On the other hand, it was observed that the recovery magnitude of 

crosslinked film is approximately 10% higher than that of crosslinked fiber mat. We speculate that 

there are primarily two factors playing significant roles in affecting recovery magnitude, one being 

the highly porous structure, and the other being the relaxation of residual stresses imparted during 

the electrospinning and compression molding process. The latter speculation is favorably 

supported by two-way shape memory cycles of crosslinked fiber mat (Figure 3-6(c)), as we found 

a low recovery magnitude particularly for the first cycle (~ 77%). 

The estimation of a critical stress 2,13, 𝜎𝑐, beyond which stress-induced crystallization occurs is 

of great importance for consideration as actuators. It is also known that increasing of tensile stress 

applied would have a strong influence on actuation performance.13 Therefore, two-way shape 

memory cycles at different stress levels were performed on the crosslinked film (Figure 3-5(d)) 
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and crosslinked fiber mat (Figure 3-6(d)). From such testing, the maximum strain increment and 

strain hysteresis were collected and plotted as a function of the stress applied. We observed that 

the strain increment of crosslinked film was elevated from 27.3% up to 42.7% (a 56.4% increase) 

by increasing the tensile stress from 0.30 MPa to 0.70 MPa (a 133% increase) correspondingly. In 

comparison, crosslinked fiber mat revealed a 411% increase of the strain increment from 12.3% 

to 62.9%, as the stress increased from 0.15 MPa to 0.45 MPa (a 200% increase). Figure 3-7a and 

Figure 3-7b were then used, respectively, to calculate critical stress by extrapolating the maximum 

strain linearly to the stress axis, revealing a 𝜎𝑐 = -0.28 MPa, for crosslinked film and a 𝜎𝑐 = 0.08 

MPa, for crosslinked fiber mat, respectively. Given the fact that crystallization-induced elongation 

is always inactivated below critical stress, these low critical stress value implied that, theoretically, 

the external stress would be minimal for this elongation to occur. 

3.4.5 Enzymatic Degradation Study 

For tissue engineering, medical device and drug delivery applications, controlled biodegradation 

properties are highly preferred for polymeric biomaterials. Enzymatic degradation studies, a 

common method by which the biodegradation rate could be measured rapidly in a short amount of 

time, have played an important role in characterizing the polymeric materials. In this work, we 

found a two-step, bulk degradation for the new PCL3k-TPUs, dependent on their crystalline 

structure and their crosslinking state. Figure 6a shows the results of enzymatic degradation profiles 

of all four types of PCL3k-TPU samples, including virgin cast film, crosslinked cast film, virgin 

spun fiber mat, and crosslinked spun fiber mat. In general, we found that all samples have 

experienced a two-stage degradation (Figure 3-8(a)): at the first stage, a much faster degradation 

phenomenon was found roughly over first two weeks, and at the second stage the degradation 

slowed down to the same rate for all samples through the rest of our experimental time range. To 



118 
 

further interpret this special degradation behavior, thermal analysis was done for all samples at 

different time points using DSC. The change in crystallinity for each sample was monitored 

individually over time during the entire degradation study, as shown in Figure 3-8(b). As for virgin 

fiber mat, no data was recorded after day 22 due to insufficient residual mass, which is beyond 

capability of our DSC. Then, except for this case, it was clearly observed that the crystallinities of 

virgin film, crosslinked film and crosslinked fiber mat increased to varying degrees with 

degradation time. Interestingly, crystallinity was observed to increase during early stage of 

degradation, follow by a leveling off that coincided with the observed degradation profiles. This 

observation can be understood by considering the fact that the enzymes would preferentially attack 

the amorphous phase since that amorphous phase is in much lower order than crystalline region.34 

Thus, in fact, the amorphous region was broken down at a higher rate, initially, resulting in a 

relatively fast degradation as well as a quick increase of crystallinity on a percentage basis. 

Consequently, at this point, the crystallinity at surface was assumed to be generically lower than 

the interior of the sample. However, as degradation proceeded, more crystalline domains were 

exposed to the buffer solution containing the lipases, which in return constrained the degradation 

progress to varying extents that depend on the microstructural properties of specific sample. 

Considering molecular weight evolution during enzymatic degradation, GPC tests (Figure 3-8(c)) 

suggested that bulk degradation 42 was occurring over the duration of the study for both virgin film 

and virgin fiber mat, consistent to the results from previous work.30 Moreover, we found no 

obvious shrinkage for both samples by examining the sizes visually (Figure 3-9). On the other 

hand, the decreasing gel fraction during degradation (Figure 3-6(d)) suggests bulk degradation for 

crosslinked cast films and fiber mats. 
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Although sharing similar tendency of the enzymatic degradation, all four types of samples 

behaved differently from each other upon closer inspection. Among the four types of samples, the 

crosslinked film underwent degradation at the lowest rate, which we attribute to its highest 

crystallinity. Beyond our expectation, the crosslinked spun fiber mat showcased a slower 

degradation rate than the crosslinked cast film, despite its processing by the same compression 

molding process that usually eliminates structural discrepancy. We speculate that this could be 

primarily due to the difference on microstructure between two samples. In particular, as we showed 

previously in SEM images, the crosslinked fiber mat possessed a more porous structure, potentially 

allowing more enzymes to attach to and attack the polymers. Additionally, confirming this 

speculation further, we figured out that the density of the crosslinked film (~1.19 g/cm3) was 

approximately 45% higher than that of the crosslinked fiber mat (~0.82 g/cm3) as stated in Table 

3-4. Out of these four types of samples, only virgin fiber mat achieved complete degradation within 

our experimental time span. We attribute this mainly to the larger surface-to-volume ratio due to 

the highly porous structure, resulting in a larger contact area for lipases with polymers. 

The effect of the enzymatic degradation on surface morphology was studied for four different 

types of PCL3k-TPU samples, respectively, using SEM (Figure 3-10). For each type, the degraded 

samples at different select time points were compared to the control sample that was not treated 

with any PBS buffer. We observed that all samples, except virgin fiber mat, revealed uniform 

rough surface after exposed to enzymes, implying a lipase-specific erosion that is mainly 

dominated by a surface-limited mechanism 43. As with gradual increase of surface roughness 

associated with erosion degree, more and larger spherical pores could be found on the surface, 

especially in the later period of the study. These porous structures showed up starting at day 2 for 

virgin film, but not until day 18 for crosslinked film, in coincidence with the conclusions drawn 
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from degradation profiles. For crosslinked fiber mat, the original surface morphology disappeared 

almost completely within 2 d in the course of degradation, leaving an extremely rough surface. 

This phenomenon could be attributed to the unique, non-uniform internal structure (Figure 3-1(d) 

and (h)). Specifically, we speculate that the porosity was relatively higher on the surface versus at 

the center, and thereof, the sample began degrading in a similar way like the films did, once the 

surface layer has been chipped away quickly. Different from the other three, the virgin fiber mat 

exhibited a characteristic “melted” structure where the fine, smooth fibers became relatively fluffy 

and swelled due to some bulk degradation. Moreover, the macroscopic transparency and 

appearance of the enzymatically eroded samples could be found in Figure 3-9. 

3.5 Conclusions 

Novel, versatile thermoplastic polyurethanes containing unsaturation were prepared from a 

biodegradable soft segment, polycaprolactone-diol (PCL-diol), and a small functional diol with 

pendant allyl group, 3,4-dihydroxy-1-butene (DHB), and a diisocyanate using a one-port synthesis 

technique. The molecular and thermal properties of these materials were investigated by GPC, 

DSC and 1H NMR initially, and PCL3k-TPU was picked out for further study due to a suitable 

melting temperature that would allow favorable shape fixing. In this work, PCL3k-TPU was 

successfully processed into films, by solvent casting and fiber mats, by electrospinning, 

respectively. Dilauroyl peroxide (DLP) was used as a thermal initiator to crosslink film and spun 

mat samples covalently via compression molding process. SEM images indicate successful 

formation of fiber at a scale of nanometers, and a unique structure containing partially melted 

fibers and homogeneously distributed phase. Analysis with a DMA illustrated that crosslinked 

PCL3k-TPUs, either in a form of film or spun mat, exhibited outstanding one-way and two-way 

shape memory behavior, both with good shape fixing and recovery. Furthermore, the critical 
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stresses were estimated, indicating that crosslinked PCL3k-TPUs needed no or very little stress for 

crystallization-induced elongation to be initiated, though increasing stress yielded proportionally 

increasing shape actuation. 

An enzymatic degradation study revealed that the processing of samples resulted in quite 

different microstructures, playing a significant role in degradation behavior. We observed that the 

new PCL3k-TPUs underwent bulk degradation in a two-step way that the degradation progressed 

faster in the first a few days than after. Considering the easy processability, exceptional reversible 

actuation, and predictable biodegradability, we envision that this family of latent-crosslinkable, 

biodegradable polyurethanes can be utilized in mechanical and medical applications including 

reversible actuators, sensors, and stents. 
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Table 3-1. Synthesis Summary of CO-based copolymers 

Samples a 

(n≥5) 

Feed molar 

ratio b 

(PCLxk:DHB:H

DI) 

Actual 

molar 

PCL3k:

DHB c 

Yield 

(Mass %) 

Molecular 

weight (Mw, 

kDa) 

PDI 

𝑇𝑚 (°C) 

d 

∆𝐻𝑚 

(J/g) 

PCL2k-TPU 3:2.1:6 15.58:1 89.3±8.1 288±43.7 2.00±0.28 30.8±1.6 30.4±3.5 

PCL3k-TPU 3:2.1:6 9.61:1 90.9±9.3 150.5±38.6 1.79±0.14 45.2±2.6 42.1±1.9 

a Nomenclature: PCLxk stands for polycaprolactone-diol with Mn=x kDa, DHB for 3,4-dihydroxy-

1-butene, HDI for hexamethylene dissocyanate. 

b Tuned ratio by trial-and-error method. 

c Determined by NMR spectra. 

d Peak values of second heating in DSC curve. 

  



129 
 

Table 3-2. Thermal and Structural properties of PCL3k-based Thermoplastic Polyurethanes 

Sample (n≥3) DLP (wt. %) 𝑇𝑚 (°C) 𝑇𝑐 (°C) ∆𝐻𝑚 (J/g) χC (%) a G (%) 

Virgin Cast Film 0.0% 45.44±0.19 10.38±0.49 42.36±0.85 66.79±0.01 0.0±0.0 

Crosslinked Cast Film 2.0% 46.61±0.35 10.77±1.11 43.26±1.07 66.64±0.02 80.2±4.0 

Virgin Spun fiber Mat 0.0% 46.09±0.13 9.08±0.04 41.11±0.43 63.32±0.07 0.0±0.0 

Crosslinked Spun fiber 

Mat 

2.0% 45.67±0.21 8.23±0.78 39.05±3.15 60.15±0.05 90.5±2.2 

a Crystallinities were determined from ΔHcrystal = 64.92 J/g (Neat PCL3k). 
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Table 3-3. 1WSM and 2WSM characteristics for Crosslinked PCL3k-TPUs in Different Forms 

Sample 

Fixing ratio 

(%) 

Recovery ratio 

(%) 

Actuation Magnitude 

(%) 

Recovery Magnitude 

(%) 

Crosslinked Cast 

Film 

99.34±0.01 99.04±0.42 14.88±0.33 96.90±1.64 

Crosslinked Spun 

Fiber Mat 

99.66±0.02 99.48±0.37 23.55±0.64 87.93±8.13 
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Table 3-4. Densities of PCL3k-TPU crosslinked cast film and crosslinked spun fiber mat 

Sample 

(n≥3) 

Length (mm) 

a 

Width (mm) 

a 

Thickness 

(mm) b 

Volume 

(mm3) 

Mass 

Weight 

(mg) c 

Density 

(g/cm3) 

Crosslinked 

Cast Film 

9.353±0.051 8.235±0.065 0.115±0.038 8.858±0.107 10.56±0.872 1.192±0.098 

Crosslinked 

Spun fiber 

Mat 

10.331±0.077 9.247±0.040 0.033±0.009 3.153±0.065 2.58±0.107 0.818±0.034 

a Measured by pixels in SEM images. 

b Measured by ARG-2 Rheometer. 

c Measured by advanced digital scale. 
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Scheme 3-1. Preparation of PCL-based thermoplastic polyurethanes (PCL-TPU) by reacting 

Polycaprolactone-diol (PCL-diol) and 3,4-Dihydroxy-1-butene (DHB) with Hexamethylene 

diisocyanate (HDI). 
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Figure 3-1. Differential Scanning Calorimetry (DSC) analysis graph of (i) PCL2k-TPU and (ii) 

PCL3k-TPU. Heating and cooling rates of 10 °C/min. 
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Figure 3-2. Scanning electron microscope (SEM) images of PCL3k-TPU: a) virgin cast film 

surface; e) crosslinked cast film surface; b) and f) virgin spun fiber mat surface (770 nm average 

diameter) at different magnifications; c) and g) crosslinked spun fiber mat at different 

magnifications; d) and h) cryofracture (cross-section) views of crosslinked spun fiber mat at 

different magnifications. Scale bar = 50 μm in a), b), c), d), and e); 10 μm in f), g), and h).  
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Figure 3-3. 2D Wide-angle X-ray Scattering (WAXS) patterns of a) virgin cast film, b) 

crosslinked cast film, c) virgin spun fiber mat, and d) crosslinked spun fiber mat of PCL3k-TPU; 

e) WAXS profiles of (i) virgin cast film, (ii) crosslinked cast film, (iii) virgin spun fiber mat, and 

(iv) crosslinked spun fiber mat. The X-ray wavelength (λ) is 1.5405 Å. 
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Figure 3-4. Differential Scanning Calorimetry (DSC) analysis graph of virgin cast film (i), 

crosslinked cast film (ii), virgin spun fiber mat (iii), and crosslinked spun fiber mat (iv) of PCL3k-

TPU. Heating and cooling rates of 10 °C/min. 
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Figure 3-5. a) Storage modulus (E') vs temperatures for virgin cast film (black) and crosslinked 

cast film (red) of PCL3k-TPU. E' was recorded at a heating rate of 3 °C/min with frequency of 1 

Hz; b) one-way and c) two-way shape memory cycles for crosslinked cast film of PCL3k-TPU. “*” 

indicates starting point; d) two-way shape memory behavior for crosslinked cast film of PCL3k-

TPU at different stresses, (i) 0.30 MPa, (ii) 0.50 Mpa, and (iii) 0.70 Mpa. The samples were 

deformed under each constant stress at 80 °C, followed by cooling and heating steps (2 °C/min), 

respectively. 
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Figure 3-6. a) Storage modulus (E') vs temperatures for virgin spun fiber mat (black) and 

crosslinked spun fiber mat (red) of PCL3k-TPU. E' was recorded at a heating rate of 3 °C/min with 

frequency of 1 Hz; b) one-way and c) two-way shape memory cycles for crosslinked spun fiber 

mat of PCL3k-TPU. “*” indicates starting point; d) two-way shape memory behavior for 

crosslinked spun fiber mat of PCL3k-TPU at different stresses, (i) 0.15 MPa, (ii) 0.30 Mpa, and (iii) 

0.45 Mpa. The samples were deformed under each constant stress at 80 °C, followed by cooling 

and heating steps (2 °C/min), respectively. 
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Figure 3-7. Maximum strain and strain hysteresis versus stress based on the two-way shape 

memory behavior of a) crosslinked cast film and b) crosslinked spun fiber mat, respectively. 

Maximum strain (■) and strain hysteresis (□). The strain hysteresis was calculated from the 

temperature difference (ΔT) at the half of strain loop in two-way shape memory cycles. 
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Figure 3-8. Enzymatic degradation study of PCL3k-TPU: a) Mass remaining profiles, b) 

crystallinities profiles, c) normalized number-average molecular weight (Mn) remaining profiles 

for virgin samples only, and d) evolution profiles of gel fraction value for crosslinked samples 

only during degradation by Lipase PS (0.4 mg/mL) in a pH 7.4 PBS solution at 37 °C. Virgin cast 

film (●), crosslinked cast film (○), virgin spun fiber mat (▲), and crosslinked spun fiber mat (Δ). 
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Figure 3-9. Photographs of PCL3k-TPU samples during enzymatic degradation: a) virgin cast film; 

b) crosslinked cast film; c) virgin spun fiber mat; d) crosslinked spun fiber mat. Columns from left 

to right refer to control, day 2, day 18, day 34, and day 66, respectively. 
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Figure 3-10. SEM images of PCL3k-TPU samples during enzymatic degradation: a) virgin cast 

film; b) crosslinked cast film; c) virgin spun fiber mat; d) crosslinked spun fiber mat. Columns 

from left to right refer to control, day 2, day 18, day 34, and day 66, respectively. Scale bar = 50 

μm. 
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Figure 3-11. Thermogravimetric analysis (TGA) graph of PCL2k-TPU and PCL3k-TPU. Heating 

rate of 10 °C/min. 
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Figure 3-12. Thermogravimetric analysis (TGA) graph of virgin cast film (i), crosslinked cast film 

(ii), virgin spun fiber mat (iii), and crosslinked spun fiber mat (iv) of PCL3k-TPU. Heating rate of 

10 °C/min. 
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Figure 3-13. 2D Small-angle X-ray Scattering (SAXS) patterns of a) virgin cast film, b) 

crosslinked cast film, c) virgin spun fiber mat, and d) crosslinked spun fiber mat of PCL3k-TPU; 

e) SAXS profiles of (i) virgin cast film, (ii) crosslinked cast film, (iii) virgin spun fiber mat, and 

(iv) crosslinked spun fiber mat. The X-ray wavelength (λ) is 1.5405 Å. 
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Figure 3-14. Water uptake profiles during degradation by Lipase PS (0.4 mg/mL) in a pH 7.4 PBS 

solution at 37 °C. Virgin cast film (●), crosslinked cast film (○), virgin spun fiber mat (▲), and 

crosslinked spun fiber mat (Δ). 
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Chapter 4: Electrospun Polyurethane Blends Exhibiting Shape Memory and 

Self-healing Properties 

4.1 Synopsis 

The ability of shape memory polymeric materials to repair physical damage and to then restore 

original functionality possesses significance in the field of self-healing for a broad range of 

applications. In this chapter, we report on the design, fabrication and characterization of a new 

approach: electrospun shape memory assisted self-healing (SMASH) polymer blends that are built 

upon prior work involving a latent crosslinkable polyurethane (x-PU). This unique blend system 

is prepared by employing a solution in which both a crosslinkable polyurethane and a linear 

polyurethane (l-PU) are mixed homogeneously for electrospinning. After preparing a family of 

blends with varying compositions, comprehensive characterizations and various healing tests were 

done, revealing that 80:20 (w/w x-PU:l-PU) blend presents better healing performance than the 

other compositions. Further, it is found that the 80:20 blend features 98.7% of healing efficiency 

(𝜂) for vertical puncture damage. Introducing anisotropy in the materials resulted in a 40.7% 

increase in η for the 60:40 blend. 

4.2 Introduction 

Polymers and their composites have been extensively applied in a variety of such practical fields 

as transport vehicles, sporting goods, civil engineering, and electronics owing to their light weight, 

good processibility, resistance to corrosion, etc.1,2 However, decomposition, damage, and failure 

could take place naturally for such materials upon exposure to harsh environments wherein there 

exists mechanical, chemical, thermal, UV radiation, or a combination of these factors. Also, 
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unfortunately, eventual failure still is a matter of time for most engineered materials regardless of 

the improved robustness or the development of nondestructive inspection method.3 Inspired by 

biological systems that naturally exhibit regeneration, self-healing (SH), and reproductive, 

biomimetic SH materials offer an exceptional solution to extending their working life and 

condition because of the built-in capability to repair damage as well as to recover functionality 

autonomously or using the resources available inherently.4-6 Such resources can be mechanical,7 

thermal,8 or electrical energy,9 among which thermal energy for healing is the focus of this work. 

The shape memory effect in polymer materials entails an ability to store a temporary shape upon 

deformation (so-called “mechanical programming”) until later being stimulated to return to an 

equilibrium state by external heating or other means.10-13 Hence, a novel concept has risen up with 

introducing thermal-responsive shape memory polymers to facilitate the SH process, providing an 

effective mechanism to partially or completely close and rebond associated cracks or other types 

of damage. This concept has been termed shape memory assisted self-healing (SMASH) by our 

lab originally, generally being demonstrated in at least two approaches. In the first approach, 

locally prepositioned shape memory alloy (SMA) wires14-16 or shape memory polymer (SMP) 

fibers17,18 are used, upon activation, to impose a contractile force that pulls the crack surfaces closer 

together. The second approach relies on bulk shape memory effect from the material to close the 

crack.19-22 For example from our own lab, Rodriguez et al reported a poly(ε-caprolactone) (PCL) 

based molecular composite system, a single-phase, two-component blend that consists of a thiol-

ene crosslinked PCL (n-PCL) network and a high molecular weight (𝑀𝑤) linear PCL (l-PCL) 

interpenetrating the network.23 With “reversible plasticity”, the n-PCL network features a special 

form of shape memory (SM) where a stable temporary state could be achieved through both elastic 

and plastic deformation regions at a temperature (here RT) below its melting transition temperature 
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(𝑇𝑚). This temporary shape could be fully reset to the equilibrium, undeformed shape upon heating 

above 𝑇𝑚. Due to their near-identical 𝑇𝑚 values, the heating step is simultaneously used to trigger 

the SH mechanism in which the crack surfaces are rebonded by the l-PCL chains that diffuse to 

and ultimately bridge the surfaces of damage to allow rebonding a restoration of mechanical 

properties. 

A new SMASH strategy has been introduced by Luo et al, opening the door to develop a phase-

separated morphology in favor of allowing the healing of larger cracks and defects as opposed to 

the single-phase n-PCL/l-PCL blend.24 The overall design was based on a two-step process 

including electrospinning and impregnation, to fabricate an fiber-matrix composite system 

wherein randomly oriented, nonwoven PCL nano- and microfibers are uniformly spread out in a 

continuous, crosslinked epoxy matrix, which enables more significant flow of the liquefied PCL 

well as larger interfacial area and more sustained healing agent delivery because of the high aspect 

ratio fibers. Along this line, Nejad et al undertook such a SMASH strategy, to develop thermally 

activated SH coatings.25 In addition, a second approach involving polymerization induced phase 

separation (PIPS)26-29 of PCL and epoxy was adopted for comparison purposes. Generally, the 

SMASH materials prepared by both approaches revealed excellent and similar structural and 

functional SH outcomes, and, furthermore, the PIPS technique has turned out to be more suitable 

for scale-up application given its processing simplicity. 

In this present work, we report on a novel, simple but effective strategy to prepare a new SMASH 

blend with tailored thermal, mechanical, SM, and SH properties. This blend involves the use of a 

latent crosslinkable PCL-based polyurethane (x-PU) that has been developed and fully 

characterized in our previous work.30,31 In the meantime, a linear PCL-based thermoplastic 

polyurethane (l-PU) was synthesized by reacting poly(caprolactone)-diol (PCL-diol) with 
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hexamethylene diisocyanate (HDI) as illustrated in Scheme 4-1. We next prepared a homogeneous, 

electro-spinnable organic solution consisting of the two polymers with varying x-PU-to-l-PU 

compositions and certain amount of select initiator for thermal curing, and then processed these 

miscible solutions into fibrous webs by electrospinning, respectively. The essential idea was to 

fabricate a single-phase, electrospun blend system that incorporates a covalently crosslinked 

network by crosslinking the x-PU upon hot compaction for SM properties and the l-PU as healing 

agent to provide SH properties. Unlike single-phase n-PCL/l-PCL system or PCL/epoxy blend 

with a phase-separated morphology, the potential advantages of creating such a SMASH material 

include convenient manufacturing, outstanding processibility, minimal heterogeneity that could 

cause local differences on healing performance, triggering temperature close to body temperature 

for biomedical application, the capability to introduce fiber alignment to improve SH properties, 

among others. Molecular, thermal, mechanical, SM, and SH properties were characterized, to 

further investigate and compare the effect of blend composition23,32,33 on these properties. 

Additionally, the SH efficiency of our blend system was evaluated when three different types of 

damage were performed, including a pin-based puncture, surface scratch, and double-edge notches, 

respectively. Last but not least, recognizing that the molecular orientation introduced through 

electrospinning process could exert the recovery force of SMPs to an enhanced extent in the 

direction of the fiber axis,34-38 we hypothesize that improvements in shape recovery would have a 

positive influence on SH outcome because of better damage closure. Consequently, isotropic and 

anisotropic x-PU:l-PU blends were compared, both qualitatively and quantitatively. 

4.3 Experimental 

4.3.1 Materials 
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Poly(caprolactone)-diol (PCL-diol, average 𝑀𝑛  ~ 3,000 g mol-1, purchased from Scientific 

Polymer Products, Inc.) was vacuum dried for 2 d prior to use. Hexamethylene diisocyanate (HDI, 

purum, ≥98%) was purchased from Sigma-Aldrich and stored over 3 Å molecular sieves (Sigma-

Aldrich) for 3 d before further use. Tin-POMS catalyst was purchased from Hybrid Plastics and 

vacuum dried extensively for a week prior to use. Toluene, chloroform, and n-hexanes were all 

purchased from Fisher Scientific. Toluene was dehydrated by refluxing over calcium hydride 

(Sigma-Aldrich) multiple times until collection and stored over 3 Å molecular sieves for 3 d before 

use. 3, 4-Dihydroxy-1-butene (DHB, ≥99%) and dilauroyl peroxide (DLP, Luperox® LP, 97%), 

N, N-Dimethylformamide (DMF, anhydrous, 99.8%), HPLC-grade tetrahydrofuran (THF), and 

deuterated chloroform (Chloroform-d, 99.8% atom D) were purchased from Sigma-Aldrich and 

used as received. 

4.3.2 Synthesis of Polyurethanes 

The latent crosslinkable PCL-based polyurethane (x-PU) was synthesized using a one-step 

method as exactly stated in our previous work.31 On the other hand, we prepared the linear PCL-

based polyurethane (l-PU) in a similar fashion as shown in Scheme 4-1 (b). A Schlenk line (AF-

0452, purchased from Chemglass Life Sciences) was utilized to create an air-free reaction 

environment during the course of polymerization. Moisture was intentionally removed from the 

whole reaction system by evacuating and refilling clean nitrogen at least three times. A 500-mL 

Schlenk flask (AF-0528, single neck, round bottom) was oven dried at 80 °C and flame dried right 

before use. 9 g (3.0 mmol) PCL-diol was dissolved in 100 mL distilled toluene within the 500-mL 

flask that was subsequently heated to and kept at 100 °C for about 30 min, while 100 mg 

(approximately 1 wt. %) Tin-POMS catalyst was dissolved into 5 mL distilled toluene for further 

use. Once the polymer solution became transparent, indicating that polymer was fully dissolved, 
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0.48 mL (3.0 mmol) HDI and 5 mL toluene containing Tin-POMS were added into the flask via a 

syringe under an inert atmosphere of nitrogen. Incubation was maintained at 100 °C for 24 h to 

accomplish polymerization while stirring was kept to assure good mixing. Henceforth, the 

resulting polymer solution was precipitated in a dropwise fashion into an 8-fold excess of n-hexane, 

and then washed with deionized water. The precipitates were collected and dried in the fume hood 

overnight prior to complete drying in vacuum oven at room temperature for another 3 d. 

4.3.3 Molecular Characterization 

The x-PU polymer products thus synthesized were dissolved in deuterated chloroform (CDCl3) 

at a concentration ranging from 20 to 30 mg mL-1. Proton Nuclear Magnetic Resonance (1H NMR) 

spectra were generated using a Bruker Avance III HD 400 MHz spectrometer, to qualitatively 

verify chemical structure of synthesis products as well as to quantitatively analyze PCL-to-DHB 

molar ratio per chain. The relaxation delay time utilized was 1 s at a temperature of 25 °C. Gel 

Permeation Chromatography (GPC) was performed to determine number-average molecular 

weight (𝑀𝑛) and polydispersity index (PDI, 𝑀𝑤 /𝑀𝑛), using a Waters Isocratic HPLC system 

equipped with a temperature-controlled differential refractometer (Waters 2414). Multi-angle laser 

light scattering (Wyatt miniDAWN) was introduced at three characteristic angles (45°, 90°, and 

135°) for in-line absolute molecular weight determination. The flow rate of THF as mobile phase 

in this GPC system was set at 1 mL h-1 constantly. Polymer-THF solutions (2 – 5 mg mL-1) were 

passed through a 0.2 μm PTFE filter (Waters) prior to injection at 40 °C. 

4.3.4 Fabrication of x-PU:l-PU Blends 

A two-step process was implemented to make a series of electrospun x-PU:l-PU blends with x-

PU wt. % increasing from 50 wt. % to 100 wt. % at an increment of 10 wt. % on the basis of the 
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total mass of 2 g. The first step utilized the electrospinning of two-component solution at each 

composition into fibrous web that, as the second step, was hot compacted to crosslink x-PU 

thereafter. Details of both steps are explained below. 

4.3.4.1 Electrospinning 

Seeking to understand the effect of blend composition on various properties, especially the SH 

properties, we aimed to create an x-PU composition gradient ranging from 50 wt. % to 100 wt. %. 

In particular, 6 x-PU-to-l-PU w/w compositions were prepared by solvent blending, including 

50:50, 60:40, 70:30, 80:20, 90:10, and 100:0. Here, 80:20 is taken as a representative example to 

demonstrate the electrospinning process. In the first place, a 17% (w/v) two-component solution 

was prepared by adding 1.6 g x-PU and 0.4 g l-PU along with 40.8 mg (2 wt. %) DLP into a 

mixture of 8 mL chloroform and 4 mL DMF. The resulting solution was then heated to and kept 

at 37 °C with constant stirring. After dissolution completion, the two-component solution was 

processed into a nonwoven fibrous web using a custom electrospinning set-up that has been 

previously reported by our group. 39 The ejecting needle was held at a potential of 16 kV, the tip-

to-collector distance was 10 cm, the rotation rate of a 57.1 mm collecting mandrel was maintained 

at 400 rpm for isotropy, and at 1,500 rpm for anisotropy (fiber orientation), respectively, while the 

drum was held at a potential of 0.5 kV and a flow rate of polymer solution supplying the 22 Gauge 

needle was 1.5 mL h-1, all employed over the 8-hour electrospinning process, which led to a mat 

thickness of approximately 0.50 mm. Complete drying of spun fiber mats was subsequently 

achieved in vacuum oven at room temperature before further use. 

4.3.4.2 Hot Compaction 



154 
 

The dried fibrous webs were treated thermally for crosslinking (or “cured”) by the following 

method. Each individual fibrous web (~ 1.8 g) was first cut into 4 equivalent rectangular pieces 

and they then were stacked to control the resulting thickness, a common structural variable of SH.24 

For anisotropic samples exclusively, all 4 pieces was aligned and piled up along the same 

orientation before being sandwiched between two polished stainless steel sheets coated with mold 

release agent (Pol-Ease® 2300, Polytek). Also, a 0.40 mm thick stainless steel spacer was placed 

in between to control the thickness of the final film. A 6.89 MPa compressive stress and a curing 

temperature of 90 °C were applied throughout entire 2 h of hot compaction, using a Carver 3851-

0 press with heating platens. Afterwards, the platens were cooled down to room temperature, 

following which the compressive pressure was released. 

In order to assess the extent of covalent crosslinking, network gel fraction values of the hot 

compacted blends were examined using solvent-extraction and gravimetry. Each sample was 

weighed for its dry mass before being soaked in 20 mL THF at 37 °C in an Excella shaker for 48 

h, during which the THF was refreshed every 12 h. Then samples were washed with deionized 

water, blotted, and vacuum dried for a week at room temperature to remove residual solvent or 

water. The final dry mass was recorded for calculation of gel fraction. Calculation of gel fraction 

values involves the initial dry mass, 𝑚𝑖, and the final dry mass, 𝑚𝑓, using the equation below: 

𝐺(%) =
𝑚𝑓

𝑚𝑖
× 100                                                              (4 − 1) 

4.3.5 Microstructural Characterization 

To visualize surface morphology and structural geometry of as-electrospun and hot compacted 

blends, Scanning Electron Microscopy (SEM) was conducted using a JEOL JSM-5600 microscope 
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under an accelerating voltage of 10 kV. Both samples were gold-sputtered for 60 s prior to imaging. 

Also, to ascertain the molecular and nano-scale ordering and orientation of isotropic and 

anisotropic samples, wide angle (WAXS) and small angle (SAXS) X-ray scattering analyses were 

performed using a Rigaku S-MAX3000 pinhole camera system. A Rigaku MicroMax-002+ 

generator was operated under an accelerating voltage of 45 kV and a current of 0.88 mA to yield 

a collimated beam of Cu Ka X-rays with a wavelength of 1.5405 Å. WAXS patterns were collected 

and analyzed using a Fujifilm image plates (CR HR-V) with a Fujifilm FLA7000 reader at a scan 

resolution of 100 μm. The sample-detector distance was fixed at 120.7 mm, leading to scattering 

angles 3 ° < 2θ < 40 °. Comparatively, SAXS patterns were obtained at a sample-detector distance 

of 1525 mm on a 2D Multiwire Area Detector. Exposure time was 30 min for both patterns. WAXS 

and SAXS images were further processed and analyzed utilizing SAXSgui software v2.03.04. 

4.3.6 Thermal and Dynamic Mechanical Analysis 

Differential Scanning Calorimetry (DSC) was adopted to investigate thermal properties of all 

samples using the TA Instruments Q200 apparatus. Samples weighing approximately 5 mg 

underwent a thermal program of first heating to 140 °C at 10 °C min-1, cooling to -40 °C at 10 °C 

min-1, and then reheating at 10 °C min-1 to 140 °C while heat flow data was recorded. The melting 

transition temperature (𝑇𝑚, the peak of the endotherm), crystallization transition temperature (𝑇𝑐, 

the peak of the exotherm), the enthalpy of melting (∆𝐻𝑚, area beneath endothermic peak), and the 

enthalpy of crystallization (∆𝐻𝑐, area beneath exothermic peak) were recorded before and after 

thermal curing, respectively, on the basis of second heating curve (to minimize the effects of 

thermal history) and first cooling curve. 
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A TA Instruments Q800 Dynamic Mechanical Analyzer (DMA) was employed to explore the 

thermomechanical properties and also to assess indirectly the level of crosslinking x-PU for hot 

compacted samples. In the multi-frequency controlled-strain mode each sample was equilibrated 

at -60 °C, held isothermal for 10 min, and heated continuously up to 100 °C at 3 °C min-1. An 

oscillating frequency of 1 Hz, amplitude of ca. 20 μm, a preload force of 0.001 N, and a force track 

of 125% were utilized. Rectangle shaped samples with an approximate length-to-width ratio of 4:1 

were used for such testing. 

4.3.7 Reversible Plasticity Shape Memory 

A special form of SM, reversible plasticity shape memory (RPSM), was examined for all 

compositions using DMA in a controlled force mode. Dog bone shaped samples (ASTM D63 Type 

IV, scaled down by a factor of 4) were punched with an average thickness of 0.37±0.05 mm and 

then tested following a custom thermomechanical cycling method developed in light of prior 

work.23,40 Prior to DMA testing, each sample was first preheated in an isothermal oven (Fisher 

Scientific Isotemp 825F) at 80 °C for 15 min and sat at room temperature (RT) for another 15 min 

to ridden thermal history. The sample was next stretched at 25 °C (i.e. RT) from a preloading strain 

(휀𝑖) to a strain of 140% at a rate of 5% min-1 and held at 140% strain for 20 min to allow stress 

relaxation, yielding the deformed strain (휀𝑑). The stress associated with 휀𝑑 was ramped, at a rate 

of 5% min-1, down to the preloading force of 0.001 N, during which the plastic deformation 

sustained was referred to as the fixed strain (휀𝑓). The fixed shape was fully recovered by heating 

to 80 °C at 3 °C min-1 and holding isothermal for 5 min, following which the recovered strain (휀𝑟) 

under preloading force was recorded for each sample tested. In the end of the SM cycle, a cooling 

step was programmed to reset temperature back to 25 °C at 3 °C min-1. To quantify the RPSM 
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behavior, the calculation of the shape fixing (𝑅𝑓) and shape recovery (𝑅𝑟) ratios were conducted 

using the eqn. (2) and (3) correspondingly: 

𝑅𝑓(%) =
휀𝑓 − 휀𝑖

휀𝑑 − 휀𝑖
× 100                                                            (4 − 2) 

𝑅𝑟(%) =
휀𝑓 − 휀𝑟

휀𝑓 − 휀𝑖
× 100                                                            (4 − 3) 

4.3.8 Self-healing Experimentation 

To understand the effect of composition on SH performance, SH experiments were carried out, 

for all cured x-PU:l-PU compositions, using our newly developed tensile geometry of a centered, 

needle puncture, given the high practicability pertaining to repair of puncture damage but rarely 

investigated. To begin with, all hot compacted blend samples were punched into a dogbone 

geometry (ASTM D638-03 Type IV, scaled down by a factor of 4), with an average thickness of 

0.37±0.05 mm, a width of 1.52 mm, and a gauge length of 6.25 mm, under application of a custom-

made dogbone cutting tool (TestResources, Inc., Shakopee, MN). The specimens were thermally 

mended, to erase thermal history, in the way described in shape memory characterization section. 

A custom-made puncture (punch) device (Scheme 4-2) was used to create a single centered, 

vertical puncture with a gauge diameter of 1.6 mm. The puncture damaged sample was stretched 

to a displacement of 2.5 mm (corresponding to a strain of 40%) at 0.1 mm s-1 (1.6% s-1), in a 

Linkam TST350 apparatus (Linkam Scientific Instruments, Ltd.) with a 200 N load cell, to 

propagate the hole macroscopically and extensively. Next, shape recovery and SH process were 

triggered in an isothermal oven at 90 °C, and the whole process took about 1 min only, which was 

monitored by real time imaging using a Zeiss Discovery V8 stereo microscope equipped with a Q-

Imaging CCD camera. In the end, the healed sample was re-stretched to a displacement of 6.25 
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mm (corresponding to a strain of 100%) at 0.1 mm s-1 (1.6% s-1) by the Linkam apparatus, to 

determine whether the damage has been healed properly. 

In general, a TestResources Model 100P Universal Testing Machine (referred as to tensile 

stretcher) was utilized to record the stress vs strain curves of the sample’s virgin, puncture damaged, 

and healed state, respectively. Each sample was loaded in the Testing Machine with a force 

transducer of 25 N and uniaxially stretched at a rate of 1.50 mm min-1 at RT until the strain-to-

failure was reached. Two versions of SH efficiency, i.e. ratio of peak stress 𝜂1 and ratio of strain-

to-failure 𝜂2, were calculated according to: 

𝜂1(%) =
𝜎ℎ𝑒𝑎𝑙𝑒𝑑

𝑚𝑎𝑥

𝜎𝑣𝑖𝑟𝑔𝑖𝑛
𝑚𝑎𝑥 × 100                                                                  (4 − 4) 

𝜂2(%) =
휀ℎ𝑒𝑎𝑙𝑒𝑑

𝑚𝑎𝑥

휀𝑣𝑖𝑟𝑔𝑖𝑛
𝑚𝑎𝑥 × 100                                                                  (4 − 5) 

Here, the virgin (𝜎ℎ𝑒𝑎𝑙𝑒𝑑
𝑚𝑎𝑥 /휀ℎ𝑒𝑎𝑙𝑒𝑑

𝑚𝑎𝑥 ) and healed (𝜎𝑣𝑖𝑟𝑔𝑖𝑛
𝑚𝑎𝑥 /휀𝑣𝑖𝑟𝑔𝑖𝑛

𝑚𝑎𝑥 ) peak loading stress/strain-to-failure 

were harvested from the stress vs strain curves of the sample’s virgin and healed state, respectively. 

Note that, in the following discussion, SH efficiency refers to the ratio of peak stress unless 

specified otherwise. We realize that all the values of stress in tensile testing were calculated by the 

instrument based on the cross-sectional area of undamaged sample and the damaged samples had 

smaller actual cross-sectional areas than those used in calculation. However, we assume that the 

damage size was negligible compared to the size of the whole sample. 

In consideration of the composition variation study above, the best performing composition was 

further tested with two other tensile geometries, including double-edge notches and surface 

scratches, for the purpose of comparing SH capability of such blend under different damage types. 
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Regarding the former tensile geometry, a punch device modified from a custom-made double-edge 

notch punch23 was used to create two collinear, double-edge cracks that were 0.2 mm long on each 

side of the dogbone neck, each oriented along the sample width. The second (latter) tensile 

geometry involved in the use of a custom-made scratch machine with a 100 g weight in the mass 

holder, also designed by our group.25 For this case, the both faces were scratched in the width 

direction and at positions centered along the length of the dogbone films. Following such damage, 

samples underwent exactly the same process employed on the puncture damaged samples: damage 

propagation, shape recovery and SH, and then post-healing stretching. At each step of this 

sequence, SEM imaging was used to explore the SH process at micro-scale level. Meanwhile, the 

stress vs strain curves obtained and plotted for undamaged (“virgin”), notched, scratched or 

punctured samples, and thermally healed states. The healing efficiencies, 𝜂, for various damage 

types were determined using Eqn. (4) and then compared to unveil the effect of damage type on 

SH properties. 

In an effort to examine the ability of structural anisotropy to enhance SM properties and therefore 

SH performance, we prepared a particular set of samples wherein we introduced alignment onto 

the electrospun fibers of the 60:40 blend. The blend selected for the study was the one exhibiting 

the worst performance from among all samples in the composition study. To achieve the high 

orientation, a rotation rate of collecting mandrel, 1500 rpm, was employed during electrospinning. 

This is high in comparison to the lower value of 400 rpm used to prepared randomly oriented fibers 

of the same composition in the prior study. For oriented fibrous webs, we sought to prevent heating 

induced contraction and associated fiber disorientation. For that purpose, samples were clamped 

among all edges during the entire course of hot compaction in the hot press. Following hot 

compaction, both oriented and isotropic samples were cooled down to room temperature naturally 
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to allow crystallization prior to releasing from clamping. We first cut the anisotropic, cured web 

into two dogbone shaped samples, one being oriented along the length (0°) and the other in the 

width direction (90°). These two samples were then tested for puncture-healing performance and 

compared to samples of the same composition but random fiber orientation. To quantitatively 

evaluate the results of the SH testing, all three samples were mounted onto the tensile stretcher and 

stretched to break at a rate of 1.50 mm min-1 at RT, yielding the stress vs strain curves of each 

sample’s virgin, punctured, and healed state, respectively. Finally, healing efficiencies, 𝜂, were 

calculated and used to measure the dependence of SH capability on the structural anisotropy. 

4.4 Results and Discussion 

4.4.1 Blends Preparation 

The results of polyurethane syntheses were summarized accordingly in Table 4-1. Because the 

x-PU was characterized and discussed in details in our previous work,31 we will, here, focus more 

on the l-PU. Specifically, the l-PU has an average 𝑀𝑛 of 33.1 kDa (standard deviation = 5.3 kDa) 

with an average polydispersity idex (PDI) of 1.62 (standard deviation = 0.20), calculated from five 

synthesis batches. It is hypothesized that the low molecular weight of l-PU might lead to the high 

ability to flow in the molten state, implying that the healing agent (i.e. l-PU) should reach to and 

across the damage surfaces more easily. The absence of DHB in the synthesis of l-PU resulted in 

a higher 𝑇𝑚 compared to that of x-PU, mainly because the pendant allyl groups can serve to lower 

crystallinity and 𝑇𝑚 by introducing architectural “defects” in the backbone.42 

Six compositions with varying x-PU and l-PU wt. % content were prepared by solvent blending 

(Table 4-4) followed by an eight-hour electrospinning process and a two-hour hot compaction 

procedure, as described above. The results of electrospinning and following hot compaction were 
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demonstrated in SEM images, accordingly, revealing surface morphology and cross-section 

structure. Figure 4-2(a), (c), (e), (i), and (l) suggested the great capacity of the blends to be easily 

processed into uniform fibrous structure with an average fiber diameter of 2.80 μm ± 1.16 for 

90:10 (x-PU:l-PU), 2.24 μm ± 0.76 for 80:20, 2.22 μm ± 0.59 for 70:30, 2.02 μm ± 0.70 for 60:40, 

and 2.45 μm ± 0.59 for 50:50 (measured by image analysis using ImageJ software, and with a 

sampling size of 100). The appearance of the given blends after hot compaction were visualized 

in Figure 4-2b, d, f, j, and m, correspondingly, indicating evenly distributed, interspersed blend 

film with a smooth surface that has some light traces of fibrous structure. Based on these 

observations, we reason that a portion of the x-PU concentrated fibers have crosslinked before 

being fully melted, yielding preservation of the original fibrous geometry. This interpretation is 

supported further by the cross-sectional SEM views (Figure 4-2g and h, representatively). 

Additionally, it is important to note that those traces of fibrous structure were observed not only 

at the surfaces but also across the entire thickness and that this even distribution could allow the 

blends to provide no-bias SM and SH properties, both geometrically and functionally. 

4.4.2 Thermal and Dynamic Mechanical Analysis 

The thermal properties of six electrospun blends were characterized using DSC, with analysis 

quantities summarized for comparison in Table 4-5. Interestingly each curve revealed single 

endothermic (heating as shown) or exothermic (cooling, not shown) peaks (Figure 4-1(a)) as an 

indirect indication of homogeneity. It was found that increasing l-PU wt. % content shifted 𝑇𝑚 of 

the blend progressively from 44.9 °C for 100:0 to 47.9 °C for 50:50 that is quite close to 𝑇𝑚 of 

neat l-PU at 48.9 °C. The similar trend applies to 𝑇𝑐. However, we observed no such a trend on 

enthalpy of melting and enthalpy of crystallization possibly because they are highly dependent of 

extreme weighing accuracy that might be beyond capability of our weighing scale. Following 
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thermal cure (Table 4-6), the six samples with varying composition showed no significant change 

in 𝑇𝑚 and associated trace (Figure 4-1b), suggesting potential low content of networked polymer, 

as the crosslinks oftentimes can disturb crystalline phase and thus lower 𝑇𝑚.43-45 However, the 

60:40 composition appears to have a slightly higher 𝑇𝑚  than 50:50, which we attributed to 

probable low degree of crosslinking. Both speculations are in agreement with the results of gel 

fraction experiments conducted to determine the network content of the linear/network blends. The 

gel fraction values obtained shows a decrease from 85.7% for 100:0 to 44.3% for 70:30 

monotonically, reaching a minimum at 32.8% for 60:40, and finally returning to 35.4% for 50:50. 

We interpret this unexpected, non-monotonic trend to batch-to-batch variation that, in this case, is 

associated with the fabrication process and/or thermal curing step. 

Thermomechanical testing was conducted, on both as-spun and hot compacted fibrous webs with 

varying compositions, to understand the dependence of the linear viscoelastic properties on 

temperature as well as to determine whether cured samples had the potential of anticipated SM 

properties. This set of experiments is crucial to give context for further characterization of RPSM 

cycle. The storage modulus (𝐸′) as a function temperature was determined for all compositions 

before (Figure 4-3(a)) and after (4-3(b)) thermal curing (Tan δ vs temperature curves are available 

in Figure 4-13). Furthermore, the tensile 𝐸′ decreased from 100 MPa or greater below 𝑇𝑚 sharply 

to ca. 1 MPa or lower beyond 𝑇𝑚 for all cured blends. The steep drop in 𝐸′ throughout melting 

transition was followed by a stable rubber elastic state, a 𝐸′ plateau, proportional to the crosslink 

density. Note that this rubber elastic state is a necessary (but insufficient) characteristics of self-

healing materials that controls the quality of damage closure triggered by SM. 

4.4.3 RPSM Analysis 
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Reversible plasticity shape memory (RPSM) that we sought to exploit here is a form of SM cycle 

wherein the SMP can be fixed into a deformed shape below its 𝑇𝑚 and both plastic and elastic 

strain will not recover until heating above 𝑇𝑚. RPSM cycles for each composition are shown and 

compared in Figure 4-4, in contrast to conventional SM cycle where only the elastic deformation 

is recovered from a desired temporal strain fixed above its critical transition temperature.46 

Generally, RPSM allows promoted contact between the damage surfaces so as to effectively 

facilitate the SH event. 

As a representative composition, a 100:0 sample (Figure 4-4(a)) was stretched to and then kept 

at a strain of 140% at RT. We interpret this behavior to be companied by alignment of the PCL 

crystalline lamellae and constituent polyurethane chains, which experienced cold draw beyond the 

yield point, along the stretching direction. This is demonstrated well by the red curve representing 

a projection of the whole cycle on the stress-strain plane. We, next, allowed the sample to relax 

the stress at this strain that was, later, released for the initial elastic shape recovery. Finally, the 

sample was heated to 80 °C to recover completely, followed by cooling to RT for completion of 

the cycle. The remaining compositions were characterized in such a manner, unveiling a behavior 

similar but with a progressively evolving trend in which more of the strain was gained through 

plastic deformation region than through elastic deformation region (maximum strain before yield 

point), as l-PU wt. % content in the blend increased. This is due to the fact that the Young’s 

modulus of the blend decreased markedly from 92.4 MPa to 8.0 MPa (ca. 91.3% drop) when there 

become more linear l-PU chains (Figure 4-14). 

Table 4-2 summarizes our findings on the shape fixing (𝑅𝑓) and shape recovery (𝑅𝑟) ratios of 

high merits from the RPSM cycles for all compositions. The reader is reminded that all 휀𝑑 values 
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were obtained after 20 min stress relaxation. Consequently, the targeted 140% strain led to 

achieved values at small variance with this value. Upon unloading, all compositions achieved a 

fixed temporary shape with a 휀𝑓 ranging from 95.1% to 122.7%, while, after shape recovery, the 

휀𝑟’s were all found to achieve values within a strain span of 10%, which we considered rather 

small given the fairly large temporal deformation prior to shape recovery. Furthermore, 𝑅𝑓 

increased from 69.4% to 86.5% as l-PU wt. % content increased, but 𝑅𝑟 (all greater than 90%) 

remained almost unaltered. This is important, in the context of improving SH performance, 

because good shape recovery will contribute more profoundly to closing damage surfaces. 

4.4.4 Self-healing Study 

4.4.4.1 Effect of Composition 

The self-healing (SH) capability as a function of l-PU wt. % content for the prepared x-PU:l-PU 

blends with varying compositions was first investigated, on a puncture-damaged basis, using the 

tensile stretcher (described in details in the Experimental Section). Each composition in its virgin, 

puncture damaged, and healed states was strained to failure at RT beyond its yield point, as 

demonstrated correspondingly by each individual stress-strain curve in Figure 4-5. Broadly 

speaking, it was observed that all compositions healed to near completion upon single heating with 

no sight of puncture reopening, which typically indicates good structural restoration. Qualitatively, 

the SH performance can be roughly estimated by comparing the curve at virgin state to that at 

healed state. In particular, the closer the two curves are to overlapping, the better SH was. 

Therefore, 80:20 was considered to show superior SH than the remaining compositions in that 

sense, as its healed sample was capable of experiencing nearly as much ultimate strength and 

strain-to-failure, without failing, as before the puncture damage was applied. It is noted that the 
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yield stress of this and other healed sample was lower than the virgin sample; however, that value 

depends strongly on crystallinity degree, which was not carefully controlled and evolves to greater 

values as the sample is stored at room temperature following the heat-treatment of healing. The 

SH process of an 80:20 sample upon puncture damage was followed in some detail by real time 

imaging using an optical microscope and a Linkam apparatus (Figure 4-6). The virgin sample 

(Figure 4-6a(i)) was pierced at the center and then stretched to ca. 40% strain to propagate the 

damage (ii), after which the hole completed disappeared upon heating at 90 °C for 1 min (iii) and, 

most importantly, didn’t recur by re-stretching to ca. 100% strain (iv). In addition, snapshots were 

taken to show the progress of puncture closure and rebonding while the sample was heated from 

RT to 90 °C and cooled back to RT under load-free condition. It is evident that sample’s response 

to temperature elevation has begun at 35 °C owing to obvious change in shape as well as in 

transparency that reflects the status of crystalline/amorphous structure. The most dramatic change 

happened between 50 °C and 55 °C where the melting transition maximized to allow faster 

polymer chain movement and the puncture became visible no longer. 

To quantify SH performance, the SH efficiency (𝜂), for each composition, was calculated from 

the peak loading stresses/strain-to-failures achieved for the duration of tensile testing of the virgin 

and healed states of puncture damaged samples. According to the results reported in Table 4-3, all 

blends except 100:0 (neat x-PU;  𝜂1=55.8%) revealed a 𝜂1 of 70% or higher, out of which 80:20 

was found to show an approximate maximum 𝜂 at 98.7%. This maximum at an intermediate level 

of l-PU suggests to us that there exists a functional balance between network and linear polymer 

where the amounts of both phases are perfectly optimal to provide sufficient SM well as SH 

properties. Also, the peak loading stresses corresponding to the virgin and healed states of this 

composition were 39.9 and 39.4 MPa, respectively.  Note that the peak loading stresses associated 
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with the damaged state were consistently and noticeably lower than those of undamaged samples. 

However, the brief heating treatment gave rise to adequate SH, which resulted in comparable 

mechanical properties to the undamaged state. Then these 𝜂 values were compiled into a plot of 𝜂 

vs l-PU wt. % to better reveal the 𝜂 trend (Figure 4-7). We realize that replications were not 

completed for statistics, but needed for quantitative conclusions. We speculate, though, that the 

trends observed could be expected to be reliable. 

4.4.4.2 Effect of Damage Type 

In realistic environments, there might be different types of damage happening to our SMASH 

material. Figure 4-8 showed the SH behavior for 80:20 composition under surface scratches (series 

(a)) and edge notches (series (b)). In particular, 80:20 dogbone shaped samples were damaged by 

either surface scratches or double-edge notches (image (i) in each series). Straining to ca. 40% 

caused damage/crack propagation (ii), followed by a 1-min heating step at 90 °C to trigger shape 

recovery and healing phenomenon (iii). Visually, we observed that, in either situations, the cracks 

closed up completely except some very light traces on the original damage sites. The samples were 

finally re-stretched to ca. 100% strain at RT with no evidence observed of crack reopening (iv), 

suggesting complete SH. In addition to that we imaged the cross-sectional view in damage 

evolution during the entire SH event at a micro-scale using SEM (Figure 4-9). In general, we found 

notable structural disruption for healing of all damage types and such disruption can’t be healed 

without assistance of SM. Surprisingly, not even a single mark was spotted at the damage location 

after heating for either punctured or scratched sample, while, minor morphological discontinuity 

for the notched sample was observed in the form of misalignment when the crack surfaces were 

approaching each other under SM effect. We speculate that, for notched samples, this 

misalignment might cause imperfect SH and therefore poorer repair in mechanical features 
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compared to the other two damage types. Thicker films with smaller torsional compliance during 

deformation should mitigate the observed misalignment. More interestingly, fibrous or fiber-like 

structure was observed lining up along the stretching direction only when sample was in tensile 

tension (Figure 4-9(ii) and (iv) in each series). We attribute this observation it to our unique 

electrospun x-PU that partially retains fibrous structure upon curing31 as well as stress-induced 

orientation that is quite useful in yeilding SM properties. 

To quantitatively compare SH performance under different damage types, stress vs strain curves 

were recorded, using the tensile stretcher, for 80:20 at the virgin, damaged, and healed state upon 

puncture (a), scratch (b), and notch (c), respectively (Figure 4-10). It is evident that the healed 

sample restored mechanical properties to a quite large extent, by comparing the blue curve (healed) 

to the black curve (virgin), regardless of the damage type. The yield stress following healing was 

lower than that of virgin states, attributed to lower degree of crystallinity. However, out of three 

damage types, the double-edge notches caused the sample to fail at relatively low tensile strains. 

The reason behind that is that the notches represent the most severe damage type. In terms of 

evaluating mechanical properties before and after SH, 𝜂 for each damage type was recorded from 

corresponding stress-strain plots and summarized in Table 4-7. The data revealed a modest 

difference between puncture damage (𝜂=98.7%) and the other two types (𝜂=85.5% for scratched; 

𝜂=83.0% for notched). As discussed previously, the notched sample demonstrates the worst SH 

outcome because of the most severe degree in structural impairment, along with some healing 

imperfections due to surface misalignment, consistent to the observation by SEM imaging. 

Nonetheless, considering the fact that all healed samples showed a strain-to-failure of 

approximately 2000% or greater, we concluded that our 80:20 x-PU:l-PU blend is fully capable of 
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recovering, both structurally and functionally, from different damage types, including puncture, 

surface scratches, and double-edge notches, replying on the thermal-responsive SM characteristic. 

4.4.4.3 Effect of Anisotropy 

Recently, spatial and molecular orientation has been sought for use with uniaxial device 

fabrication in electrospinning process where fibers are collected onto a rotating mandrel collection 

apparatus.47,48 Also, the reinforced mechanical and SM properties of oriented micro- and 

nanofibers are expected to differ drastically from their non-directional, nonwoven counterparts. 

To investigate and measure how orientation influences on SH performance of our blend systems, 

the 60:40 composition has been intentionally selected for such purpose since it showed the worst 

SH outcome in previous composition study and had the biggest potential for improvement. Further, 

the puncture form of damage was selected, due to ease of testing and demonstrated representative 

nature of damage for comparison purposes. In Figure 4-11, the SH processes were photo recorded 

and compared side by side for isotropic sample (a), oriented sample in 90 degrees off fiber 

direction (referred as to off-oriented sample subsequently; b), and oriented sample exactly in fiber 

direction (c), respectively. The puncture damage was studied exclusively in this case. Each sample 

went through four steps: (i) the initial state after thermally treated to erase thermal history, (ii) 

applying centered, thorough puncture damage, (iii) stretching to ca. 40% strain at RT, (iv) heating 

at 90 °C for 1 min, and (v) re-stretching to ca. 100% strain after being cooled back to RT.  

Broadly speaking, we observed that all samples recovered from tensile deformation upon heating 

and closed the puncture hole completely. However, upon re-straining to a large extent, only the 

sample with its molecular orientation in fiber direction did not reveal any sign of the puncture 

reopening, which precisely met our preliminary anticipation. In contrast, perpendicularly oriented 
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samples hardly showed any significant healing as the hole seemed to reopen as wide as it was 

before heating. As the fiber direction is perpendicular to the film long axis direction, the enhanced 

SM properties could not assist in closing of puncture hole as much as when both directions were 

aligned. To complement the SH observations just discussed, the nature and level of molecular 

orientation was explored using X-ray scattering analysis. We sought, in particular, to quantify the 

level (or not) of molecular orientation for anisotropic and isotropic samples, respectively. Thus, 

WAXS was used to investigate the molecular structure of both anisotropic and isotropic samples 

before and after thermal curing. Figure 4-12(a)(i) suggested clearly that predominant molecular 

orientation has been introduced when high spinning speed was used during electrospinning since 

it showed an extremely oriented WAXS pattern in which two bright bands concentrate as 

equatorial reflections for the 2𝜃=18.4° and 20.8° peaks of the orthorhombic unit cell of PCL. 

Although the compaction/crosslinking process diminished this orientation significantly (Figure 4-

12(a)(ii)), the predominant orientation was not completely lost, with some concentration of the 

same reflections on the equator (top and bottom in this configuration) being evident. Similarly, 

SAXS patterns conveyed the same conclusion that molecular orientation remained post-curing, 

there with orientation of crystalline lamellae (perpendicular to the molecular chains) being evident. 

On the contrary, the isotropic sample disclosed no evidence of any molecular orientation in spite 

of thermal curing. Moreover, WAXS and SAXS plots are available in Figure 4-13(a) and (b). The 

azimuthal profiles, which are based on corresponding SAXS patterns, implied the strongest 

orientation of crystalline lamellae for the as-processed fibrous web, with full width at half-

maximum of the meridional peak at a value of 35.8°. The cured and compacted sample had a 

diminished level of orientation and the isotropic sample was completely unoriented, as expected. 
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The stress-strain curves of the isotropic sample and the sample oriented in fiber orientation were 

compiled into Figure 4-14(a) for comparison purpose. The oriented samples showed superior 

ability to self-heal and restore mechanical properties from puncture damage, as evidenced by the 

curve of its healed state (blue) and that of its virgin state (black) being almost overlapped entirely. 

Moreover, the overall stress of oriented sample was found approximately 10 MPa greater than the 

stress level (yield stress and ultimate strength) of the isotropic sample in order to achieve the same 

strain, which means that the molecular orientation largely reinforced the mechanical strength in 

the direction of fiber alignment. Additionally, the oriented sample revealed much better SH 

capability and some mechanical characteristics compared to its counterpart, the off-oriented 

sample, as shown in Figure 4-14(b). We further quantified the SH behavior for all samples 

mentioned above in this section (Table 4-8). The 𝜂 increased from 70.7% dramatically to 99.5% 

when molecular orientation was imposed and sustained in electrospinning. Besides, much worse 

𝜂 was obtained at a value of 66.7% when the stretching direction happened to be perpendicular to 

fiber alignment, which agrees with results described earlier. 

4.5 Conclusions 

A novel electrospun blend featuring shape memory assisted self-healing (SMASH) properties 

was developed by combining a network of the crosslinkable PCL-based polyurethane (x-PU) with 

linear PCL-based polyurethane (l-PU) using a simple but effective two-step method involving 

electrospinning and hot compaction (thermal curing). By varying the blend composition, the ability 

of each composition to exhibit self-healing (SH) of physical damage thereby restoring 

functionality was studied in-depth, revealing a dependence on l-PU wt. % content. We conclude 

that the 80:20 blend showcased exhibited the best SH capability among all compositions due to 

outstanding reversible plasticity shape memory at room temperature. This same composition 
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revealed excellent structural and functional SH with respect to different types of damage, including 

puncture, surface scratches, and double-edge notches. Given the fact that molecular anisotropy can 

aid in shape memory (SM) properties, a further investigation, which was performed on 60:40 blend, 

which had shown the worst SH performance in the composition study, led to a conclusion that 

fiber orientation improved shape recovery upon temperature triggering so that the closure and 

rebonding of damage were subsequently improved. The associated SH characteristics were 

improved with orientation significantly. 
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Table 4-1. Synthesis Summary of Polyurethanes 

Samples 

(n≥5) 

Feed molar ratio 

a, b 

(PCL3k:DHB:H

DI) 

Actual molar 

PCL3k:DHB c 

Yield 

(Mass %) 

Molecular 

weight 

(Mn, kDa) 

PDI 

𝑇𝑚 (°C) 

d 

∆𝐻𝑚 

(J/g) 

x-PU 3:2.1:6 9.61:1 90.9±9.3 84.1±27.1 1.79±0.14 45.2±2.6 42.1±1.9 

l-PU 1:0:1 - 84.0±6.0 33.1±5.3 1.62±0.20 48.9±0.1 50.5±0.3 

a Nomenclature: PCL stands for polycaprolactone-diol with Mn=3 kDa, DHB for 3,4-dihydroxy-

1-butene, HDI for hexamethylene dissocyanate. 

b Tuned ratio by trial-and-error method. 

c Determined by NMR spectra. 

d Peak values of second heating in DSC curve. 
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Table 4-2. RPSM Characteristics as A Function of l-PU wt.% 

Sample 휀𝑑 (%) 휀𝑓 (%) 휀𝑟 (%) 𝑅𝑓 (%) 𝑅𝑟 (%) 

100:0 141.9 104.2 3.8 73.4 96.4 

90:10 137.1 95.1 1.2 69.4 98.7 

80:20 142.0 104.7 0.8 73.7 99.2 

70:30 137.3 108.1 9.1 78.7 91.6 

60:40 144.9 119.8 2.4 82.7 98.0 

50:50 141.9 122.7 2.5 86.5 98.0 
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Table 4-3. Self-healing Efficiency as A Function of l-PU wt.% 

Sample 휀𝑢,𝑣 (%) 𝜎𝑢,𝑣 (MPa) 휀𝑢,ℎ (%) 𝜎𝑢,ℎ (MPa) 𝜂1 (%) 𝜂1 (%) 

100:0 2050.8 36.4 1752.1 20.3 55.8 85.4 

90:10 2901.2 44.1 2698.2 41.4 93.9 93.0 

80:20 2355.6 39.9 2253.8 39.4 98.7 95.7 

70:30 2145.9 41.3 1726.5 35.2 85.2 80.5 

60:40 2355.6 38.9 1593.6 27.5 70.7 67.7 

50:50 1663.1 20.5 1586.9 15.8 77.1 95.4 
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Table 4-4. Preparation of Electrospinning Solutions for Various Compositions 

Sample (x-PU:l-PU 

w/w) 

x-PU (g) l-PU (g) 

Chloroform 

(mL) 

N,N-Dimethylformamide 

(mL) 

DLP 

(wt. %) 

100:0 2.0 - 8.0 4.0 2.0 

90:10 1.8 0.2 8.0 4.0 2.0 

80:20 1.6 0.4 8.0 4.0 2.0 

70:30 1.4 0.6 8.0 4.0 2.0 

60:40 1.2 0.8 8.0 4.0 2.0 

50:50 1.0 1.0 8.0 4.0 2.0 
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Table 4-5. Thermal and Structural properties of Electrospun Fiber Mats and Linear Polymer 

Sample (x-PU:l-PU w/w) 𝑇𝑚 (°C) ∆𝐻𝑚 (J/g) 𝑇𝑐 (°C) ∆𝐻𝑐 (J/g) 

100:0 44.9 38.8 7.9 41.8 

90:10 45.8 37.6 10.5 39.9 

80:20 46.8 45.6 12.4 41.6 

70:30 47.3 35.2 15.8 38.7 

60:40 47.6 49.5 17.3 41.8 

50:50 47.9 43.3 16.6 46.7 

0:100 a 48.9 52.4 19.7 53.8 

a Precipitate from synthesis was analyzed directly after being fully vacuum dried.  
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Table 4-6. Thermal and Structural properties of Hot Compacted Fiber Mats 

Sample (x-PU:l-PU w/w) 𝑇𝑚 (°C) ∆𝐻𝑚 (J/g) 𝑇𝑐 (°C) ∆𝐻𝑐 (J/g) G (%) 

100:0 44.3 40.8 8.35 39.5 85.7 

90:10 46.7 39.0 14.2 40.6 68.9 

80:20 46.9 39.2 14.6 41.7 61.3 

70:30 47.3 45.6 15.1 39.7 44.3 

60:40 47.1 41.0 15.9 47.0 32.8 

50:50 48.3 45.6 18.8 47.3 35.4 
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Table 4-7. Self-healing Efficiency for Different Types of Damages 

Type of Damage 휀𝑢,𝑣 (%) 𝜎𝑢,𝑣 (MPa) 휀𝑢,ℎ (%) 𝜎𝑢,ℎ (MPa) 𝜂 (%) 

Puncture 2355.6 39.9 2253.8 39.4 98.7 

Scratch 2355.6 39.9 2209.3 34.1 85.5 

Notch 2355.6 39.9 2038.0 33.1 83.0 
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Table 4-8. Self-healing Efficiency as A Function of Anisotropy 

Sample 휀𝑢,𝑣 (%) 𝜎𝑢,𝑣 (MPa) 휀𝑢,ℎ (%) 𝜎𝑢,ℎ (MPa) 𝜂 (%) 

60:40 2355.6 38.9 1593.6 27.5 70.7 

60:40 (90°) 829.5 24.6 753.1 16.4 66.7 

60:40 (0°) 1790.3 40.6 1773.6 40.4 99.5 
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Scheme 4-1. a) Synthesis of linear PCL-based thermoplastic polyurethane (l-PU) using 

polycaprolactone-diol with number-average molecular weight of 3,000 Da (PCL) and 

hexamethylene diisocyanate (HDI); b) Latent crosslinkable PCL-based thermoplastic 

polyurethane (x-PU) synthesized by the previously developed approach. 
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Scheme 4-2. a) The schematic of the custom-made device used to create consistent puncture 

(“wound”). A size 17 pin highlighted in dashed rectangular is installed perpendicularly in the 

center between two wooden platens with smooth surfaces; b) side (cross-sectional) view of the 

custom-made device. 
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Figure 4-1. Differential Scanning Calorimetry (DSC) analysis graph of a) electrospun fiber mats 

and linear polymer: (i) 100:0, (ii) 90:10, (iii) 80:20, (iv) 70:30, (v) 60:40, (vi) 50:50, and (vii) 

0:100; and of b) hot compacted fiber mats: (i) 100:0, (ii) 90:10, (iii) 80:20, (iv) 70:30, (v) 60:40, 

and (vi) 50:50. 

  



188 
 

 

Figure 4-2. Scanning electron microscope (SEM) images of electrospun fiber mats: a) 90:10, c) 

80:20, e) 70:30, i) 60:40, and l) 50:50; SEM images of hot compacted fiber mats: b) 90:10, d) 

80:20, f) 70:30, j) 60:40, and m) 50:50. Cryofracture (cross-section) views of hot compacted g) 

80:20 and h) 60:40 samples at high magnifications. The scale bar is 50 μm. 
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Figure 4-3. Storage modulus (E') vs temperatures for a) electrospun fiber mats and b) hot 

compacted fiber mats, respectively: 100:0 (black), 90:10 (red), 80:20 (green), 70:30 (blue), 60:40 

(pink), and 50:50 (cyan). E' was recorded at a heating rate of 3 °C/min with frequency of 1 Hz. 
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Figure 4-4. Reversible plasticity shape memory (RPSM) cycle of a) 100:0, b) 90:10, c) 80:20, d) 

70:30, e) 60:40, and f) 50:50, respectively, where each sample was deformed to 140% strain at 

room temperature and recovered at 80 °C. Strain vs temperature curve (blue) and stress vs strain 

curve (red) are plotted for each composition. “*” indicates starting point. 
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Figure 4-5. Stress vs strain curves for the virgin, puncture damaged and healed states of a) 100:0, 

b) 90:10, c) 80:20, d) 70:30, e) 60:40, and f) 50:50, respectively. In particular, the healed 80:20 

sample shows a profile highly identical to the virgin state, indicating complete restoration of 

mechanical properties.  
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Figure 4-6. a) Optical microscope images of a hot compacted 80:20 sample showing (i) the virgin 

state, (ii) puncture damaged and stretched (~40% strain) state at RT(~22 °C), (iii) heated (90 °C) 

and healed state, and (iv) re-stretched state (~100% strain) after cooled back to RT. The scale bar 

is 0.5 mm; b) Snapshots of puncture closure and puncture rebonding when the sample was 

unloaded from the clamps of the LinkAm tensile stage and heated up to the temperatures revealed 

above (stereo micrographs scale bar is 0.5 mm). 
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Figure 4-7. Self-healing efficiency vs l-PCL wt. % content. The damage type is puncture. 𝜂1: ○, 

𝜂2 : ●. 
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Figure 4-8. Optical microscope images of a) a hot compacted 80:20 sample showing (i) the virgin 

state, (ii) scratch (on both sides) damaged and stretched (~40% strain) state at RT(~22 °C), (iii) 

heated (90 °C) and healed state, and (iv) re-stretched state (~100% strain) after being cooled back 

to RT; b) a hot compacted 80:20 sample showing (i) the virgin state, (ii) double-edge notched and 

stretched (~40% strain) state at RT(~22 °C), (iii) heated (90 °C) and healed state, and (iv) re-

stretched state (~100% strain) after being cooled back to RT. The scale bar is 0.5 mm. 
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Figure 4-9. a) SEM imaging cross-sectional views of a) a puncture damaged 80:20 sample, b) a 

scratch damaged 80:20 sample, and c) a notch damaged 80:20 sample for (i) the damaged state, 

(ii) the damaged state upon 40% strain, (iii) the healed state, and (iv) the healed state upon 100% 

strain. The scale bar is 100 μm. The red arrows indicate the damages accordingly. 
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Figure 4-10. Stress vs strain curves for the virgin state, damaged state, and healed state of a hot 

compacted 80:20 sample under application of different types of damages: puncture (bottom), 

scratch (middle), and notch (upper), respectively. 

  



201 
 

 

Figure 4-11. Optical microscope images of a) an isotropic 60:40, b) an oriented 60:40 whose 

stretching direction is perpendicular to original fiber orientation (90°), and c) an oriented 60:40 

whose stretching direction is parallel with original fiber orientation (0°), respectively, showing (i) 

the virgin state, (ii) puncture damaged state, (iii) stretched (~40% strain) state at RT(~22 °C), (iv) 

heated (90 °C) and healed state, and (v) re-stretched state (~100% strain) after cooled back to RT. 

The scale bar is 0.5 mm. The loading direction and film long axis direction are both horizontal. 
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Figure 4-12. a) 2D WAXS patterns and b) SAXS patterns of (i) an oriented, electrospun 60:40, 

(ii) an oriented, hot compacted 60:40, (iii) an isotropic, electrospun 60:40, and (iv) an isotropic, 

hot compacted 60:40. The X-ray wavelength (λ) is 1.5405 Å. 
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Figure 4-13. a) WAXS, b) SAXS, and c) azimuthal profiles (0 and 180° = meridional) of (i) an 

oriented, electrospun 60:40, (ii) an oriented, hot compacted 60:40, (iii) an isotropic, electrospun 

60:40, and (iv) an isotropic, hot compacted 60:40. The X-ray wavelength (λ) is 1.5405 Å. 



204 
 

 

Figure 4-14. Stress vs strain curves for a) oriented 60:40 and isotropic 60:40 in comparison for 

the virgin, puncture damaged and healed states and for b) the virgin, puncture damaged and healed 

states of the sample whose stretching direction is parallel with fiber orientation (0°) and the sample 

whose stretching direction is perpendicular to fiber orientation (90°). 
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Figure 4-15. Thermogravimetric analysis (TGA) graph of electrospun fiber mats: 100:0 (black), 

90:10 (red), 80:20 (green), 70:30 (blue), 60:40 (pink), and 50:50(F) (cyan). 
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Figure 4-16. Tan δ vs temperatures for a) electrospun fiber mats and b) hot compacted fiber mats, 

respectively: 100:0 (black), 90:10 (red), 80:20 (green), 70:30 (blue), 60:40 (pink), and 50:50 (cyan). 
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Figure 4-17. Young’s Modulus (RT) vs l-PCL wt. % content. Damage type is puncture. 
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Chapter 5: Design and Fabrication of Self-reversible Actuators via 

Electrospinning: Influence of Micro-geometry and Molecular Anisotropy 

5.1 Synopsis 

In recent years, thermal-responsive reversible actuation of polymer networks has attracted 

significant attraction of researchers and technologists, alike, due to distinctive attributes of large 

actuation stroke and mechanical softness when compared to alternative approaches. However, the 

functional requirement of a constant externally applied load largely limits broader application of 

such actuation in robotics, biomedical engineering, and optical devices. In this chapter, a simple 

but adaptable approach involving electrospinning is developed to prepare a self-reversible bilayer 

actuator combining a two-way shape memory polymer (2W-SMP) and a thermoplastic elastomer, 

wherein the 2W-SMP exhibits temperature-triggering reversibility in shape changing under 

application of inherent stress from the elastomer. More specifically, micro-geometry and 

molecular anisotropy of such bilayer can be easily introduced and manipulated by varying several 

electrospinning parameters, ultimately yielding distinct actuation behavior. Excitingly, four 

representative actuators, including bending, flattening, twisting, and untwisting actuator, have 

been developed through creative manipulation of both micro-geometry and molecular anisotropy. 

The results show that all actuators revealed free-standing and reversible actuation upon 

heating/cooling cycles. A 131% increase in curvature from 4.62 mm-1 is achieved for bending 

actuator upon second heating at greater than 50 °C while a 28% decrease in pitch length from 0.85 

mm for twisting actuator upon second heating at greater than 50 °C. More surprisingly, both 

flattening and untwisting actuator are capable of changing their programmed shapes to completely 
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flat state upon actuation, what we term as a “flattening actuator”. Cyclic tests demonstrate no 

significant deterioration of actuation for these actuators over multiple cycles. 

5.2 Introduction 

Demand has arisen rapidly for smart materials with the need emerging to develop and 

understand new functional products that are essentially composed of shape memory 

polymers (SMPs).1-4 Such polymers possess the capacity to change their macroscopic 

configuration in response to environmental alteration (e.g. temperature),5,6 attracting much 

interest of study both academically and industrially.7-10 The shape memory (SM) effects in 

polymers can take two quite distinct forms: one-way shape memory (1WSM) and two-way 

shape memory (2WSM), the latter allowing temperature-triggered reversible actuation so 

long as a constant stress “bias” is applied to the material.11,12 As a result, the applicability 

of 2W-SMPs for their use as reversible actuators has been reported, with authors attributing 

such reversible character, particularly and normally, to elongation upon cooling and 

contraction upon heating. However, an obvious hurdle that impedes broader application for 

these materials is the intrinsic requirement of externally applied force bias. We asked, can 

this bias be made internal to the material? In addition, applying external stress sometimes 

can be rather difficult especially when the dimensions of actuators are really small.13 

Therefore, a permanently applied external stress imposes a huge limitation for complex 

shape changing, and methods to attain free-standing reversible actuation are desired for a 

wide range of applications. To date, from a materials processing and fabrication point of 

view, two typical approaches have been developed and extensively used to tackle the 

aforementioned challenge: a molecular approach and a geometric approach. 
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In the former approach, the key to success is to ensure that skeleton-determining function 

and actuation function, on the molecular level, are well separated and sometimes 

interchangeable. Behl et al elaborated an ingenious method to make a free-standing, 

bidirectionally reversible polymer actuator in which one crystallizable domain with lower 

𝑇𝑚  is responsible for actuation while the other crystallizable domain with higher 𝑇𝑚 

determines the skeleton of actuator.14 This skeleton provides a type of template – and 

associated macroscopic shape – for the crystallization of the second phase. A downside of 

this method is that two well spread melting transitions are necessary for quality two-way 

actuation. Along this line, instead of coupling two crystallizable domains with distinct 

𝑇𝑚’s, Behl et al discovered that a single semicrystalline polymer network can carry both 

skeleton-determining- and actuation function as it provides a very broad melting transition 

span.15 In this case, such broad melting transition allows the subdivision of the crystallites 

into two groups, one having a 𝑇𝑚 closer to the lower end of bulk melting transition, thus 

serving as actuation domain, and the other revealing a 𝑇𝑚 more towards the higher side so 

as to control the shape-shifting. Similar to the latter approach, Zhou et al reported on free-

standing reversible behavior of an end-linked poly(octylene adipate) within which, at any 

partial molten state, both chemical network and crystalline skeleton can topographically 

constrain the polymer chains to direct the recrystallization process.16 However, one major 

limitation for all methods involving partial melting is ultimate relaxation of yet-unmelted, 

constraint chains due to annealing at temperatures associated to partial melting. Moreover, 

this mechanism was extended to a poly(ɛ-caprolactone) (PCL) system comprising dual 

network architectures, which were achieved by further crosslinking the prior partially 

crosslinked polymer in a highly stretched state.17 Here, the balancing of elastic stress of the 
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original, load-bearing portion with entropic stress of the lately formed portion resulted in 

an internal stress-induced crystallization upon cooling, finally contributing to reversible 

two-way actuation. It is noted that the actual actuation achieved in this approach might lack 

of consistency from batch to batch due to no precise control over relative degree of the first 

crosslinking to that of the second. 

The second general approach involves creative geometric approaches. It has been pursued 

mostly through a laminate composite theory in which a geometric bias is established by 

combining two layers, one being a strained 2W-SMP with featuring excellent shape fixing 

and recovery, while, the other being a stress-free elastomer that provides the needed stress 

field for 2WSM behavior of SMP layer to occur. Chen et al designed and studied a shape 

memory polyurethane (SMPU) composite exhibiting 2WSM effect without the presence of 

external load.18,19 More specifically, such a laminated composite was prepared by adhering 

a pre-strained PHA-based shape memory polyurethane to a fully relaxed elastic 

polyurethane (EPU), to finally yield a bilayer geometry featuring a metastable “state-of-

ease”. This bilayer demonstrated the ability to bend towards SMPU upon heating and 

recover upon cooling reversibly at temperatures in the span from 25 °C to 60 °C. In the 

meantime, a polymeric laminate, in which a resin plate was attached to a carbon fiber-

reinforced polymer plate with instant glue, was developed by Tamagawa to achieve free-

standing reversible actuation.20 Nonetheless, the methods involving use of adhesive of any 

kind have significant limitation in terms of manufacturing scalability and mechanical 

durability, not to mention the challenge of meeting dimensional requirements for glue to be 

applied properly. Another representative geometric approach for self-reversible actuation 

– from our own group – is based on the form of a bimorph wherein a preprogrammed 
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crosslinked poly(cyclooctene) (PCO) strip was embedded in an acrylate-based polymeric 

matrix, which can provide restoring stress on PCO core once photo-polymerized and cured 

completely.21,22 Although this approach proved quite successful, we realized a couple 

significant drawbacks, including that SMP rips off from the matrix after several cycles due 

to absence of strong bonding in between SMP, that actuation performance deeply depends 

on both fabrication and integration of SMP in terms of local thicknesses, and also that there 

is a minimum thickness threshold for one layer relative to the other in order to present 

noticeable actuation, indicative of little possibility for small actuators. 

To overcome the disadvantages of approaches above, we proposed a simple but more adaptable 

strategy of developing miniature, self-reversible actuators via a sequential electrospinning 

technique.23,24 Here, electrospinning is a fabrication process of applying electric force to draw 

continuous fibers with diameters in the range from nanometers to micrometers. The often-un-

tapped benefit of electrospinning is that the molecular anisotropy introduced in high spinning 

speeds can improve the recovery force of SMP to an extreme extent along the direction of fiber 

axis.25-27 Consequently, increasing the difference between elastic stress of the matrix and entropic 

stress of SMP can greatly contribute to amplifying the two-way actuation. Besides, electrospinning 

offers superior convenience for producing desirable micro-geometry, specifically, a bilayer 

geometry in this work, through programmed, sequential deposition of each component. We 

postulate that strong bonding could be achieved at the interface between two layers due to the 

entanglement of fibers and short-range adhesion promoted through diffusion of “wet” fibers as 

they deposit. For polymer composition, we selected a latent crosslinkable PCL-based polyurethane 

(x-PU), developed elsewhere in this dissertation, with a low 𝑇𝑚 acting as the shape fixing phase, 

and a thermoplastic polyurethane (Pellethane® 5863-80A) with a high 𝑇𝑚 serving as the stress 
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restoring phase. On the one hand, in view of our prior work, it is well demonstrated that the x-PU 

allows not only formation of delicate fibers through facile solvent processing, but also latent 

crosslinking to network which enables good 2WSM behavior.28 Moreover, our preliminary study 

proves the capability of this particular Pellethane to construct fine fibers via ordinary 

electrospinning process. Our fabrication approach was first to create the first layer by 

electrospinning a certain amount of x-PU containing thermal initiator at a high collector rotation 

speed to engender fiber and molecular orientation. Next, a second layer was formed on top of the 

first by electrospinning the same amount of Pellethane at comparatively low collector rotation 

speed to yield an unoriented elastomeric fibrous layer. For comparison, we also prepared samples 

in which the x-PU was unoriented while the Pellethane was oriented, expecting that this sample 

change would bring about distinct actuation behavior. We next cured the electrospun composites 

thermally through hot compaction while a metal spacer was used to control thickness as well as to 

prevent relaxation (shrinkage) particularly along the direction of fiber axis. Finally, rectangle 

specimens were cut from the electrospun bilayer sheets at different angels between the fiber 

orientation and the specimen long axis. This was to enable more complex self-reversible actuations, 

such as twisting. Microstructural, thermal, mechanical, and shape memory properties were 

characterized, to aid in better understanding the mechanisms for various actuation phenomena. 

Last but not least, we demonstrated four principal actuations visually, including bending, flattening, 

twisting and untwisting actuator, by videotaping the bench experiments, following which both 

qualitative and quantitative analyses were performed. 

5.3 Experimental 

5.3.1 Materials 
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The latent crosslinkable PCL-based polyurethane (x-PU, 𝑀𝑛,𝑃𝐶𝐿  of 3,000 g/mol) was 

synthesized by condensation polymerization method described in our previous work.28 The 

thermoplastic polyurethane (Pellethane® 5863-80A) was received from Lubrizol and used as is. 

Dilauroyl peroxide (DLP, Luperox® LP, 97%) and N, N-Dimethylformamide (DMF, anhydrous, 

99.8%) were purchased from Sigma-Aldrich. Chloroform and tetrahydrofuran (THF) were 

purchased from Fisher Scientific. 

5.3.2 Preparation of Electrospun Bilayers 

As a preparation for electrospinning process, 2.0 g x-PU and 61.9 mg (~3 wt. %) DLP 

were dissolved in a mixture of 8.0 mL chloroform and 4.0 mL DMF, while, 2.0 g Pellethane 

in a mixture of 12.0 mL THF and 8.0 mL DMF (Table 5-1). Both solutions were kept at 37 

°C with constant stirring until dissolution completion. 

A schematic showing the fabrication process for electrospun bilayers is presented in 

Scheme 5-1. As a representative example, we specify the fabrication of Bilayer01 here. 

This process simply takes two steps using a custom electrospinning set-up that has been 

reportedly utilized (Scheme 5-1):29 in step 1, the x-PU solution was ejected through the 22 

Gauge needle at a flow rate of 1.5 mL/h for 6 h with the needle being held at a potential of 

16.0 kV, during which the tip-to-collector distance was set at 10 cm and the rotation speed 

of a 57.1 mm collecting mandrel was maintained at 400 rpm while the drum was held at a 

potential of 0.5 kV; in step 2, the x-PU solution, which was supplying the ejecting needle, 

was substituted by the Pellethane solution. Henceforth, the rotation rate was boosted up to 

2,000 rpm and the higher potential was decreased from 16.0 kV to 14.0 kV, all employed 

for the duration of the 10-h electrospinning process, while all other conditions remained 
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unchanged (Table 5-2). The resulting fibrous web was finally vacuum-dried at room 

temperature for 2 d, revealing the structure of a bilayer with an approximate x-PU-to-

Pellethane w/w ratio of 50:50. In contrast to Bilayer01, Bilayer02 was generated the way 

where the x-PU solution was electrospun under a rotation speed of 2,000 rpm while the 

Pellethane solution at 400 rpm. All other parameters were kept comparable to Bilayer01. 

Note that the fiber orientation introduced at high rotation speed always aligns in the 

direction in which the collecting mandrel rotates; i.e., in the “hoop” or circumferential 

direction.  

The dried electrospun bilayers (i.e. Bilayer01 and Bilayer02) were then cured thermally 

by the following method. A rectangle sample was first cut and sandwiched between two 

mold release agent (Pol-Ease®2300, Polytek) coated, polished stainless steel sheets 

separated by a 0.30 mm thick stainless steel spacer, which lay atop the perimeter of the 

sample, acting as “clamps and anchors” to prevent fiber relaxation and contraction. The 

sample was held at 90 °C under a pressure of 1,000 psi for 2 h to achieve complete curing. 

The resulting specimen was finally taken out of the mold and the edges squeezed by the 

spacer were cut away after the specimen was cooled to room temperature. 

To visualize and compare structural geometry of electrospun bilayers before and after thermal 

curing, scanning electron microscopy (SEM) was conducted using a JEOL JSM-5600 microscope 

under an accelerating voltage of 5 kV. Both cured bilayers were gold-sputtered for 60 s prior to 

imaging. Also, to study and ascertain molecular orientation, wide angle X-ray scattering (WAXS) 

analysis was performed using a Rigaku S-MAX3000 for both bilayers before and after thermal 

curing. A Rigaku MicroMax-002+ generator was operated under an accelerating voltage of 45 kV 

and a current of 0.88 mA to yield a collimated beam of Cu Ka X-rays with a wavelength of 1.5405 
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Å. Scattering patterns were collected (see below) for 30 min. The sample-detector distance was 

fixed at 120.7 mm, yielding scattering angles 3 ° < 2θ < 40 °. WAXS images were obtained and 

analyzed using a FujiFilm FLA7000 reader (with Fujifilm image plates CR HR-V) and SAXSgui 

software v2.03.04. 

5.3.3 Thermal, Dynamic Mechanical, and Shape Memory Analysis 

A TA Instruments Q500 was used for the thermogravimetric analysis (TGA) of both 

bilayers so as to estimate the actual composition of each. A small amount (5-10 mg) of 

sample was loaded and heated from 25 °C to 600 °C at a rate of 10 °C/min in an atmosphere 

of nitrogen. Mass percentage for each component in the bilayer was determined using the 

following equations: 

𝑤𝑃𝑒𝑙𝑙𝑒𝑡ℎ𝑎𝑛𝑒
𝑇𝐺𝐴 (%) =

∆𝑀𝑃𝑒𝑙𝑙𝑒𝑡ℎ𝑎𝑛𝑒

∆𝑀𝑃𝑒𝑙𝑙𝑒𝑡ℎ𝑎𝑛𝑒
𝑁𝑒𝑎𝑡 × 100          (1) 

𝑤𝑥−𝑃𝑈
𝑇𝐺𝐴 (%) = 100 − 𝑤𝑃𝑒𝑙𝑙𝑒𝑡ℎ𝑎𝑛𝑒

𝑇𝐺𝐴                     (2) 

Here, 𝑤𝑃𝑒𝑙𝑙𝑒𝑡ℎ𝑎𝑛𝑒
𝑇𝐺𝐴  is the TGA-based weight percentage of Pellethane in the bilayer, 𝑤𝑥−𝑃𝑈

𝑇𝐺𝐴  

is the TGA-based weight percentage of x-PU in the bilayer, ∆𝑀𝑃𝑒𝑙𝑙𝑒𝑡ℎ𝑎𝑛𝑒 is the mass loss 

(percentage of characteristic stage) of Pellethane in the bilayer, and ∆𝑀𝑃𝑒𝑙𝑙𝑒𝑡ℎ𝑎𝑛𝑒
𝑁𝑒𝑎𝑡  is the 

mass loss of neat Pellethane.  

In the meantime, differential scanning calorimetry (DSC) was employed for the same 

purpose and then comparison with TGA. Samples weighing approximately 5 mg was first 

heated to 160 °C at 10 °C/min and cooled to -60 °C at 10 °C/min. Subsequently, a second 

heating was executed at 10 °C/min to 160 °C. The glass transition temperature (Tg, the step 

of heat flow), melting transition temperature (𝑇𝑚 , the peak of the endotherm), and the 
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enthalpy of melting (∆𝐻, area beneath endothermic peak) were recorded, respectively, on 

the basis of second heating curve (to minimize the effects of thermal history). The 

composition for each component was presumably calculated using the equations below 

𝑤𝑥−𝑃𝑈
𝐷𝑆𝐶 (%) =

∆𝐻𝑥−𝑃𝑈

∆𝐻𝑥−𝑃𝑈
𝑁𝑒𝑎𝑡 × 100                      (3) 

𝑤𝑃𝑒𝑙𝑙𝑒𝑡ℎ𝑎𝑛𝑒
𝐷𝑆𝐶 (%) = 100 − 𝑤𝑥−𝑃𝑈

𝐷𝑆𝐶                (4) 

where 𝑤𝑥−𝑃𝑈
𝐷𝑆𝐶  is the DSC-based weight percentage of x-PU in the bilayer, 𝑤𝑃𝑒𝑙𝑙𝑒𝑡ℎ𝑎𝑛𝑒

𝐷𝑆𝐶  is the 

DSC-based weight percentage of Pellethane in the bilayer, ∆𝐻𝑥−𝑃𝑈 is the melting enthalpy 

of x-PU portion in the bilayer, and ∆𝐻𝑥−𝑃𝑈
𝑁𝑒𝑎𝑡  is the melting enthalpy of neat x-PU, which is 

51.76 J/g. We recognize that this is a rough estimation due to the assumption that x-PU 

would crystallize identically regardless of the presence of Pellethane phase. 

A TA Instruments Q800 Dynamic Mechanical Analyzer (DMA) was adopted to explore 

the thermomechanical properties and also to ensure success of crosslinking x-PU in both 

bilayers. Note that neat crosslinked x-PU and neat Pellethane were examined for 

comparison purpose. In the multi-frequency controlled-strain mode each sample was 

equilibrated at -60 °C, held isothermal for 10 min, and heated continuously up to 160 °C at 

3 °C/min. An oscillating amplitude of ca. 20 μm, a preload force of 0.001 N, and a force 

track of 125% were utilized. Rectangle shaped samples with an approximate length-to-

width ratio of 4:1 were used for testing. 

To study 2WSM behavior of the two cured bilayers under externally stress-free conditions, dog 

bone shaped sample (ASTM D63 Type IV, scaled down by a factor of 4) were tested using DMA 

in controlled force mode in the following procedures: each specimen was (1) heated at a rate of 

2 °C/min to 80 °C without applying external force except a preloading force of 0.001 N, (2) then 
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cooled to -20 °C at 2 °C/min, and (3) reheated to the initial elevated temperature at 2 °C/min. The 

lengths were recorded as a function of temperatures while these steps were performed three times 

in succession. This investigation merely serves as a rough prediction to free-standing reversible 

actuation of both cured bilayers since that DMA only measures tensile displacement at various 

temperatures while both bilayers actuate laterally instead of uniaxially. Moreover, the effect of 

heating/cooling rate on thermal hysteresis was beyond the scope of this work. 

5.3.4 Fabrication and Characterization of Actuators 

The fabrication method for each of four principle actuators is described as follows. First, 

the bending and the twisting actuators were prepared from the cured Bilayer01, and with 

the geometry shown in Scheme 5-2 and in Scheme 5-3, respectively. The major difference 

between these two actuators is how they were sectioned from the bulk bilayer sheet in terms 

of molecular and fibrous anisotropy. For the bending actuator, a rectangle strip was cut 

from the bulk sheet to have dimensions of 0.88 mm × 0.69 mm × 0.20 mm (x-PU layer of 

0.09 mm and Pellethane layer of 0.11 mm, image analysis of SEM image by ImageJ 

software, number of measurements: 50) with its longitudinal direction aligning with fiber 

orientation. In contrast, for the twisting actuator, a 2.56 mm × 0.48 mm × 0.23 mm (x-PU 

layer of 0.12 mm and Pellethane layer of 0.11 mm) rectangle, whose length is 45° to fiber 

orientation, was cut. Note that upon cutting we observed the strip to curl naturally to some 

extent towards Pellethane side, which we attributed to elastic recovery of oriented 

Pellethane fibers. On the other hand, the cured Bilayer02, in which x-PU layer was prepared 

to be oriented and the Pellethane layer was prepared to be unoriented, was utilized to make 

the flattening actuator and the untwisting actuator, as specified in Scheme 5-4 and in 

Scheme 5-5, respectively. The flattening actuator was sectioned the same way as was the 
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bending actuator while the untwisting actuator followed how the twisting actuator was 

developed. For actuator geometry, the dimensions were measured, correspondingly, to be 

1.71 mm × 0.88 mm × 0.07 mm for flattening actuator and 3.27 mm × 0.41 mm × 0.07 

mm, both revealing a Pellethane layer of 0.03 mm and a x-PU layer of 0.04 mm. The 

flattening actuator tended, upon cutting, to curl inherently towards the Pellethane side, 

which we attribute to the same cause as the bending actuator. However, the untwisting 

actuator had no obvious curling tendency in the first place. 

To investigate and demonstrate the free-standing reversible actuation of all the actuators stated 

above, two water baths stabilized on a laboratory bench, one with a steady temperature of 58 °C, 

which is well above the 𝑇𝑚 of x-PU but below that of Pellethane, and the other at ca. 0 °C which 

would adequately allow full crystallization of x-PU. Next, each actuator was heated in the hot 

water bath for 5-10 s, leading to a shape change, and then submerged in cold water bath for 5-10 

s for shape reversal. During this sequence of steps (termed “actuation cycle”) no external stress 

was applied and pictures were taken to record the shape evolution. Such an actuation cycle was 

completed several times in succession to examine the quality of reversibility. To quantify the 

magnitude of actuation for both bending and flattening actuator, curvatures (𝒦) at the initial, 

actuated, and reset state during the first and the second cycle were determined from photographs 

taken at each of these states. The curvature was calculated from the radius obtained by using 

ImageJ (the actual length was calibrated using the ruler in the photograph and pixels in the 

photograph was employed to measure curvature). Likewise, helical radius (ℛ) along with helical 

pitch (𝒫, the spacing of one complete helix turn) were measured using the image analysis described 

at each of the three aforementioned states during the first and the second cycle for the twisting and 

untwisting actuators, respectively. Moreover, video was recorded for several self-reversible 
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actuation cycles for each individual actuator. Finally, hypothesized mechanisms for bending and 

flattening actuation phenomenon were postulated and will be discussed below. 

5.4 Results and Discussion 

5.4.1 Preparation of Electrospun Bilayers 

In this work, we creatively have taken advantage of electrospinning technique to prepare 

small, soft bilayers with micro-geometry and molecular anisotropy, both playing profound 

roles in achieving fully free-standing reversible actuation. As previously described, two 

representative electrospun bilayers, Bilayer01 and Bilayer02 which exhibited different 

distributions of molecular anisotropy throughout layers, were fabricated via our custom 

electrospinning strategy. The surface morphology and cross-sectional structure for 

Bilayer01 and Bilayer02 were studied using SEM, as complied in Figure 5-1. In particular, 

as for Bilayer01, Figure 5-1(a) and (b) reveals that fibrous structure of Pellethane before 

and after thermal curing, revealing that Pellethane preserved a fibrous structure after heat 

was applied, though relaxed slightly (in orientation) from the initial highly tensioned state. 

In contrast, the randomly oriented x-PU fibers (Figure 5-1(c)) turned into a crosslinked, 

solid film (Figure 5-1(d)) when heated above 𝑇𝑚. Given that the orientation of Pellethane 

fibers was not so obvious according to SEM imaging, WAXS analysis was conducted to 

better understand molecular orientation for the Bilayer01 sample. In Figure 5-2(a), an 

isotropic diffraction pattern was found for the uncured sample, indicating a lack of 

orientation for the crystalline. We speculate that it was due to the fact that, in this scenario, 

the oriented Pellethane fibers comprised little crystallinity so that the highly crystalline x-

PU fibers, possessing no principal orientation, dictated the WAXS pattern predominately. 
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Interestingly, though, we observed that the azimuthal spread of the pattern divided into two 

bands which were close to the meridional (horizontal) axis after crosslinking, as the 

principal orientation of the Pellethane fibers is supposedly along such axis (Figure 5-2(c)). 

This change in WAXS pattern was attributed to be the root of rearrangement of the x-PU 

chains into the alignment in the equatorial (vertical) axis while the oriented Pellethane 

fibers were imposing compressive stress. This finding is in good agreement with previous 

observation by SEM investigation and is clearly shown via the azimuthal scans shown in 

Figure 5-3, where uncured Bilayer01 sample rendered no noticeable peaks. Intensity 

maxima (and thus indication of orientation) grew dramatically at 0° and 180° corresponding 

to the meridional axis once thermal curing was completed. Furthermore, the cross-sectional 

view of cured Bilayer01 sample (Figure 5-1(e)) lend a strong support to our speculation on 

the peculiar structure of a bilayer as a result of thermal curing, which was composed of the 

x-PU layer (right side) and the Pellethane layer (left side) along with tightly bonded 

interfaces in between. This is particularly germane to our actuator design, which requires 

coordination of moduli mismatch between the two contacting layers to achieve highly 

robust self-reversibility for the actuators without requiring use of adhesive or other special 

treatments.30-32 The latter would increase manufacturing cost and complicate production 

procedures.  

Along this line, the similar analysis was performed on the Bilayer02 samples. As expected, 

molecular anisotropy of the x-PU fibers prior to crosslinking was readily apparent, as shown in 

Figure 5-1(i). Interestingly, fiber orientation was well maintained during thermal crosslinking, 

yielding preservation of molecular anisotropy from the original state, as shown in Figure 5-1(j). 

This is consistent with WAXS observations: Figure 5-2(b) indicates strong orientation in the 
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meridional axis due to the highly crystalline x-PU fibers, and such orientation was lost to some 

degree because of the melting and relaxing of x-PU fibers during cure (Figure 5-2(d)). The 

associated azimuthal scanning profiles showed, for the uncured sample, two large, broad peaks at 

90° and 270° which correspond to the equatorial axis, and that the intensity of these peaks were 

vastly reduced for the cured sample, both supportive of the statement above (Figure 5-3). Note that 

the molecular orientation of Bilayer02 was exactly 90° off comparing to that of Bilayer01, which 

helps to explain the difference in orientation axis between the two bilayers. Unlike Bilayer01, the 

as-spun Pellethane fibers in Bilayer02 appear to be quite isotropic and also in a very loose form 

(Figure 5-1(g)) because low rotation speed of collecting mandrel that was implemented during 

electrospinning process. More surprisingly, the loosely distributed Pellethane fibers became 

stretched upon the thermal crosslinking step as the outcome of balancing its elastic recovery with 

the tension from the aligned x-PU fibers (Figure 5-1(h)). The particular structure of fiber-film 

bilayer was evident with its cross-section imaged in Figure 5-1(f). 

5.4.2 Thermal, Dynamic Mechanical, and Shape Memory Analysis 

The results of the thermal characterization experiments are shown in Figure 5-4 and 5-5. 

Figure 5-4 shows the thermal degradation profiles for the bilayers and their neat 

constituents, as determined using TGA. Neat Pellethane has a characteristic of a two-stage 

degradation behavior, with the first stage occurring between ca. 300 °C and 350 °C along 

with a mass loss of ca. 20% while approximately 70% mass was lost in the second stage 

extending to over 400 °C. In contrast, neat x-PU features a degradation of one single, 

continuous step, and with barely no remaining mass left after that. Even though the 

degradation profiles of the two neat polymers have some overlap, the prominent difference 

allowed us to roughly assess the actual composition of the bilayer samples using eqn. (1) 
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and (2). Hence, Bilayer01 and Bilayer02 were found to consist of 45.6 and 60.4 wt. % x-

PU, respectively (Table 5-3). For a similar and comparative purpose, DSC experiments 

were conducted on the same samples. As such, DSC heat flow profiles as a function of 

temperature are shown in Figure 5-3 (complete profiles are available in Figure 5-6), for the 

cured bilayers and constituent polymers. It was found that neat Pellethane has a Tg at ca. -

15 °C and a 𝑇𝑚 at ca. 140 °C while neat x-PU possesses a 𝑇𝑚 at ca. 46 °C only. Therefore, 

both Bilayer01 and Bilayer02 “inherited” three thermal transitions from the two pure 

polymers despite variation in magnitude of the step change or endothermic peaks. The 

melting enthalpy of x-PU in each bilayer was adopted to calculate its corresponding weight 

content, based on that of neat x-PU, using Eqn. (3) and (4). As a result, 49.1 and 59.3 wt. 

% x-PU were incorporated in Bilayer01 and Bilayer02, respectively, roughly consistent 

with the estimation by TGA analysis. Broadly speaking, the actual composition was not 

significantly different from the prescribed composition of 50 wt. % x-PU in bilayer, 

indicating reasonably good processing reliability and also as an important guidance for 

interpretation of actuation phenomena.  

To determine linear viscoelastic mechanical properties and their temperature 

dependences, DMA experiments were conducted. The tensile storage modulus ( 𝐸′ 

measured at 𝑓= 1 Hz) is plotted for the investigated temperature range for the two bilayers 

and two neat polymers (Figure 5-7). We realize that there exists the asymmetry in both 

geometry and modulus for either of bilayer, which implies no direct correlation between 

such tensile data and actual actuation behavior. Nevertheless, it was observed that the Tg of 

Pellethane and 𝑇𝑚 of x-PU, which are represented by drastic drops in storage modulus, 

matched with what has been determined by DSC experiments. However, it proved very 
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difficult to determine the 𝑇𝑚  of Pellethane by looking for its corresponding modulus 

decrease, primarily because of the occurrence of lateral actuation here (the sample was 

contracting during the DMA experiment). Note that all 𝑇𝑚 ’s detected by DMA might 

appear to be slightly higher than those by DSC since that a small oscillating force and a low 

heating/cooling rate were applied in DMA tests.33-35 Besides, the traces in Figure 5-7 

indicate that the storage modulus over the -55 °C to 50 °C temperature range in an order of 

neat x-PU > Bilayer02 > Bilayer01 > neat Pellethane. This order agrees with prior 

composition evaluation by thermal characterization experiments, given the fact that 

Bilayer01 contains less of more crystalline x-PU as compared to Bilayer02. Furthermore, 

both cured bilayers revealed a storage modulus smaller than 100 MPa at temperatures in 

the 0   ̶  50 °C span so as to be considered as soft materials in terms of their potential 

application for biomedical devices.36 

Moving on to characterization of actuation behavior, here constrained to in-plane deformations 

constrained in a DMA fixture. Figure 5-8(a) and (b) show the tensile two-way actuation under 

stress-free condition for the cured Bilayer01 and cured Bilayer02, respectively. The two-way 

actuation cycles for both bilayers were only evaluated qualitatively, here, for the reason that DMA 

analysis of shape memory is limited to uniaxial displacement and cannot be used to quantify the 

lateral bending/curling intrinsic to the new materials. Surprisingly, both bilayer samples underwent 

compressive 2WSM effect featuring the cooling-induced contraction and heating-induced 

extension, which is quite the opposite of conventional 2WSM behavior. Considering the presence 

of thermal hysteresis, neither the contraction nor the extension was due to normal thermal 

expansion effects. Also, by testing each neat polymer (i.e. Pellethane and crosslinked x-PU) 

individually, the crosslinked semicrystalline x-PU certainly contributed to this reversible behavior 
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while the Pellethane was solely providing an internal compressive stress to the x-PU (Figure 5-9). 

We postulate that the crystallization of x-PU under a compressive stress gave rise to additional 

contraction that was reversed upon heating through 𝑇𝑚, with a thermal hysteresis of approximately 

28 °C when a heating rate of 3 °C/min was used.37 In addition to that, molecular anisotropy played 

a critical role in this special reversible shape memory effect and that will be discussed specifically 

later in this chapter. Concerning the quality of 2WSM in compression, moderate mechanical “creep” 

in uniaxial length was seen for either bilayer. This “drawback” was attributed primarly to the 

lightly crosslinked elastomer, Pellethane, which contributed similar “creep” in strain through 

several cool-heat cycles with absence of external force except a preloading force of 0.001 N 

(Figure 5-9(a)). However, we realized that the small preloading force was still a nontrivial factor 

impacting the sample while actual use of the free-standing actuators would feature no external 

force. Thus the “creep” might not be significant as it is during testing by DMA. In a similar manner, 

because DMA confines the motion of the bilayers only along uniaxial direction, the actuation of 

x-PU, which changes its shape much more dramatically, might drive the Pellethane through elastic 

domain into plastic domain, wherein Pellethane deformed irreversibly to some extent. 

5.4.3 Self-reversible Actuators 

The demonstration of various self-reversible actuators was done by taking snapshots and 

videos of bench work in hot/cold water, followed by image analysis to quantify each 

actuation. Based on the cured Bilayer01, the bending actuator and twisting actuator were 

designed and made accordingly using the method described earlier in this article. The 

results for these actuators are summarized in Figures 10 and 11. In particular, the two-way 

actuation of bending actuator was captured at its initial, actuated, and reset states, as 

indicated in Figure 5-10(a). This actuator, which intrinsically curled (as cut) towards the 
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Pellethane side with a curvature (𝒦) of 3.16 mm-1, curled intensely in the same direction 

upon first heating-induced actuation, yielding an enclosed cylinder shape with a 𝒦 of 10.41 

mm-1. (We considered coating one side a distinct color, but the actuators are very thin and 

some of them are translucent this was not helpful.) The bending actuator was then cooled 

in a cold-water bath set at 0 °C and – importantly – responded by significantly uncurling to 

a film with curvature, 𝒦 = 4.62 mm-1. We reasoned that the change in curvature during the 

first actuation cycle was impacted by thermal-mechanical processing history, as the sample 

was not thermally treated after processing before this test. This note applies to all remaining 

actuators in this work. Beyond this first cycle, the actuation/resetting procedures were 

repeated immediately, revealing that 𝒦= 10.66 mm-1 on heating and 𝒦= 4.69 mm-1 on 

cooling. Henceforth, it was evident that reversible bending actuation was achieved with 

good repeatability. More cycles were followed and quantified here (Figure 5-10(b)), but 

not recorded in the video. However, by inspection, no significant variation in curvatures 

for the hot and cold steps (relative to earlier iterations) was noticed. Furthermore, the 

associated video for entire reversible actuation is available in Video 5-1, where super-rapid, 

highly repeatable free-standing reversible actuation was observed. Similarly, the actuation 

of twisting actuator was recorded step by step as shown in Figure 5-11(a). This actuator 

was initially in a form of helix with a helical radius (ℛ) of 0.22 mm and a spiral pitch (𝒫) 

of 1.56 mm, turning to a more twisted helix that has a ℛ of 0.15 mm and a 𝒫 of 0.60 mm 

once heated through x-PU’s 𝑇𝑚 to 55 °C. Upon cooling to 0 °C, the actuation un-curled and 

lengthened through pitch extension. In particular, the radius and pitches reversed their 

actuation direction to dimensions of to 0.17 mm and 0.85 mm, respectively. The same 

behavior (ℛ increased from 0.15 mm at 55 °C to 0.17 mm at 0 °C while 𝒫 increased from 
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0.61 mm at 55 °C to 0.85 mm at 0 °C) was observed during the second cycle, indicating 

high repeatability with almost no shape memory being lost. A further visual demonstration 

can be found in Video 5-2.  

As stated previously, the flattening actuator and untwisting actuator were built upon the 

cured Bilayer02. It is important that the nature of the state of stress of the oriented x-PU 

causes flattening instead of curling. In contrast to the bending actuator, the flattening 

actuator has an inherent curling trend towards the Pellethane side, which was changed into 

a completely flat shape when shape recovery of x-PU and elastic recovery of Pellethane 

were equilibrated explicitly upon heating (Figure 5-12(a)). Upon heating to 58 °C, the 

sample flattened, with 𝒦 decreasing from 2.77 mm-1 (room temperature, as cut) to ca. 0 

mm-1 (basically flat state), indicating a significant actuation from the largely curled state to 

the flat state upon a single thermal trigger. Upon cooling, the flattened sample returned to 

its curled state. The duration of a couple reversible actuation cycles was documented in 

Video 5-3. Last but not least, the two-way reversible actuation of untwisting actuator was 

investigated and reported in Figure 5-13. Unlike the flattening actuator, this actuator was 

nearly flat before activated for the first time, which could be due to the deviation of 

molecular anisotropy distribution across the whole bulk sheet. Then, identical heat/cool 

program was run for several times and the first two of them were quantified by measuring 

the corresponding ℛ and 𝒫 at various states. The results indicated that the sample coiled 

up upon the first cooling to have a ℛ of 0.29 mm and a 𝒫 of 0.99 mm, then untwisting and 

returning back to utterly flat and untwisted shape upon the second heating, and forming the 

spiral shape again upon second heating. This unprecedented stress-free reversible actuation 
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was videotaped to better reveal how fast the shape actuation and shape resetting were 

attained (Video 5-4).  

In light of related literatures, we recognized that solutions to the large deflection of a thin plate 

or laminate can be used to generally describe the actuation behavior of our actuators based on a 

structure of bilayer, using the equation in the following: 𝐸𝐼 = 𝐸𝑏ℎ3/12, where 𝐸𝐼  stands for 

bending rigidity, 𝐸 for Young’s modulus, ℎ for thickness, and 𝑏 for width.38-40 Therefore, in order 

to optimize the actuation performance for each actuator, these parameters must be tuned in 

coordination appropriately as they have great influence in either the x-PU layer or the Pellethane 

layer. However, the exploration of performance optimization was beyond the scope of the present 

work. 

5.4.5 Actuation Mechanism 

An actuation mechanism for the bending actuator is hypothesized and illustrated in 

Scheme 5-6. Prior to the first heating-induced actuation, the highly oriented Pellethane 

fibers are represented by the straight blue lines, pointing in the longitudinal axis of rectangle 

sample. Here, I describe the development of internal stresses and associated orientations 

during bilayer manufacturing and then during actuation cycle testing. Following 

electrospinning, the Pellethane fibers have a profound tendency to contract via elastic 

recovery after releasing from the collecting drum, which leads to shrinking along the 

principal fiber axis. However, the crosslinked semicrystalline x-PU layer resists such 

tendency of the Pellethane leading to mechanical equilibrium between the two layers, with 

each in a state of stress. In particular, the Pellethane contraction applies a compressive stress 

to the x-PU layer (and constituent fibers), which results in the formation of x-PU crystallites 
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that align width-wise as highlighted in red when the bilayer is being cured at a prescribed 

elevated temperature. This hypothesis was firmly supported by the observation in SEM and 

WAXS studies (Figure 5-1, Figure 5-2(a) and (c)). Upon heating to a temperature 𝑇𝑚,𝑥−𝑃𝑈 

< 𝑇 < 𝑇𝑚,𝑃𝑒𝑙𝑙𝑒𝑡ℎ𝑎𝑛𝑒, the x-PU crystallites melt fully and become absolutely amorphous. It 

is known that in amorphous state polymer chains typically take much more space than in 

the crystalline state where they are packed closely in a high order. From a macroscopic 

viewpoint, the x-PU layer elongates dramatically in the direction of the Pellethane fiber 

axis due to the melting event, while the Pellethane fibers are not affected except the minor 

thermal expansion. Consequently, the bending actuator curls significantly towards the 

Pellethane side. In the following cooling step, the x-PU crystallites are re-established with 

a principal orientation which is perpendicular to the fiber axis of Pellethane, as before heat-

triggered actuation. We postulate that this hypothesized mechanism applies to the actuation 

of twisting actuator. 

Along similar lines, Scheme 5-7 elucidates the potential mechanism for the flattening actuator. 

In this actuator design, the molecular anisotropy of x-PU was intentionally introduced through the 

process of electrospinning, aligning along the longitudinal direction of specimen. On the contrary, 

the Pellethane fibers were processed to be unoriented, but still exhibit a nontrivial shrinking 

tendency in all directions, including the direction of x-PU’s molecular orientation. Upon heating 

beyond the x-PU melting transition, the oriented x-PU phase melts and contracts in the direction 

of original orientation. Here, two main factors are probably in play, which engender such 

contraction of x-PU: (1) volumetric considerations discussed above; (2) compressive stress from 

the Pellethane fibers. Due to the permanent, covalent crosslinks, the x-PU crystallites are formed 

again in the original orientation, upon cooling below 𝑇𝑚  of x-PU, in accordance with the 
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permanent shape of x-PU. Likewise, the actuation of untwisting actuator can be interpreted on this 

basis. However, note that we have no other direct evidence, thus far, to back our hypothesized 

mechanisms beyond the results obtained in SEM and WAXS experiments (Figure 5-1, Figure 5-

2(b) and (d)). We recommend development and experimental validation of a theoretical model of 

the type applied previously by H. Qi and coworkers 21,22 to test these ideas. 

5.5 Conclusions 

Soft, stimulus-responsive, self-reversible actuation is quite advantageous in applications where 

use of external constraints or stress is largely restricted. In this paper, a novel, convenient 

fabrication process for thermal-triggering free-standing actuators via electrospinning process was 

developed. The model actuators consist of a covalently crosslinked, semicrystalline polyurethane 

with a lower 𝑇𝑚 and a thermoplastic elastomeric polyurethane with a higher 𝑇𝑚. Micro-geometry 

and molecular anisotropy were implemented to investigate their influence on the resulting 

actuation behavior of various designs. Actuation characterization was done for multiple cycles in 

succession along with microstructural, thermal, dynamic mechanical, and shape memory analysis, 

to thoroughly understand the science behind. The results showed that different actuations were 

achieved under completely no externally stress-free environment in effect of micro-geometry and 

molecular orientation, including bending, twisting, flattening, and untwisting actuation. Two 

simple actuation mechanisms corresponding to specific design were presented to explain the 

specific actuation phenomenon as well as the origin of distinct actuations. 
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Table 5-1. Solution Preparation for Electrospinning 

Sample Mass (g) 

Chloroform 

(mL) 

THF 

(mL) 

DMF 

(mL) 

DLP (wt. %) 

x-PU 2.0 8.0 - 4.0 3.0 

Pellethane 2.0 - 12.0 8.0 0.0 
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Table 5-2. Fabrication of Bilayers via Electrospinning 

Samp

le 

x-PU Pellethane 

Ejec

tion 

Rate 

(mL/

h) 

Rota

ting 

Spee

d 

(rpm

) 

Ti

m

e 

(h

) 

Volt

age 

(kV) 

Ejec

tion 

Rate 

(mL/

h) 

Rota

ting 

Spee

d 

(rpm

) 

Ti

m

e 

(h

) 

Volt

age 

(kV) 

Bilay

er01 a 

1.5 400 6 16.0 1.5 2000 10 14.0 

Bilay

er02 b 

1.5 2000 6 16.0 1.5 400 10 14.0 

a Pellethane is anticipated to be oriented. 

b x-PU is anticipated to be oriented. 
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Table 5-3. Composition Evaluation 

Sample 

𝑤𝑥−𝑃𝑈
𝑇𝐺𝐴  

(wt. %) a 

𝑤𝑃𝑒𝑙𝑙𝑒𝑡ℎ𝑎𝑛𝑒
𝑇𝐺𝐴  

(wt. %) a 

𝑤𝑥−𝑃𝑈
𝐷𝑆𝐶  

(wt. %) b 

𝑤𝑃𝑒𝑙𝑙𝑒𝑡ℎ𝑎𝑛𝑒
𝐷𝑆𝐶  

(wt. %) b 

Bilayer01 45.6 54.4 49.1 50.9 

Bilayer02 60.4 39.6 59.3 40.7 

a Calculated based on characteristic decomposition steps from TGA profiles.  

b Calculated from crystallinity of x-PU portion relative to that of neat x-PU (∆𝐻𝑚,𝑋−𝑃𝑈
𝑁𝑒𝑎𝑡  = 

51.76 J/g). 
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Table 5-4. Thermal Characteristics of Cured Fibrous Bilayers 

Sample 𝑇𝑔 (°C) 𝑇𝑚 (°C) ∆𝐻𝑚  (J/g) 𝑇𝑐  (°C) 

Bilatyer01 -21.4 44.1 25.4 14.0 

Bilayer02 -25.0 45.7 30.7 17.6 
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Scheme 5-1. A two-step approach of fabricating bilayers via electrospinning. Step 1: x-PU 

(red) is first spun into one layer; Step 2: x-PU was substituted by Pellethane (blue) that forms 

the other layer. Rotating speed of collecting mandrel is adjusted to create molecular and 

geometric anisotropy when switching solutions. 

  



241 
 

 

Scheme 5-2. Geometry of bending actuator from cured Bilayer01. Yellow arrow indicates the 

fiber orientation introduced during electrospinning. The x-PU layer in red while the Pellethane 

layer in blue. * The average thickness of each layer was measured based on SEM image using 

ImageJ. 
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Scheme 5-3. Geometry of twisting actuator from cured Bilayer01. Yellow arrow indicates the 

fiber orientation introduced during electrospinning. The x-PU layer in red while the Pellethane 

layer in blue. * The average thickness of each layer was measured based on SEM image using 

ImageJ. 
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Scheme 5-4. Geometry of flattening actuator from cured Bilayer02. Yellow arrow indicates 

the fiber orientation introduced during electrospinning. The x-PU layer in red while the 

Pellethane layer in blue. * The average thickness of each layer was measured based on SEM 

image using ImageJ. 
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Scheme 5-5. Geometry of untwisting actuator from cured Bilayer02. Yellow arrow indicates 

the fiber orientation introduced during electrospinning. The x-PU layer in red while the 

Pellethane layer in blue. * The average thickness of each layer was measured based on SEM 

image using ImageJ. 
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Scheme 5-6. Hypothetic actuation mechanism of bending actuator prepared from cured 

Bilayer01. The x-PU chains are in red while the Pellethane in blue. Originally, highly oriented 

Pellethane fibers are imposing compressive stress onto x-PU chains some of which formed 

crystallites align in cross-wise direction. Upon heating above 𝑇𝑚 of x-PU but not high enough 

to relax Pellethane fibers, x-PU crystallites melt and become amorphous domain which 

occupies more space than in its fully crystallized state. Consequently, the actuator bends 

towards Pellethane side. Upon cooling, the shape transformation is reversed due to 

recrystallization process. 
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Scheme 5-7. Hypothetic actuation mechanism of flattening actuator prepared from cured 

Bilayer02. The x-PU chains are in red while the Pellethane in blue. Originally, x-PU fibers 

are highly oriented so that corresponding crystallites align along the direction of fiber axis. 

Meanwhile, Pellethane fibers are randomly distributed and applying a certain amount of 

compressive stress onto x-PU, yielding a naturally curled bilayer towards Pellethane side. 

Upon heating above 𝑇𝑚  of x-PU but not high enough to relax Pellethane fibers, x-PU 

crystallites melt and contract to lower entropic energy. Consequently, the actuator becomes 

flat upon heating and the shape transformation is reversed due to recrystallization process 

upon cooling. 
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Figure 5-1. Scanning electron microscope (SEM) images of Bilayer01: Pellethane side a) 

before curing and b) after curing, x-PU side c) before curing and d) after curing, and e) cross-

sectional view of cured sample; of Bilayer02: Pellethane side g) before curing and h) after 

curing, x-PU side i) before curing and j) after curing, and f) cross-sectional view of cured 

sample. Scale bar = 10 μm in a), b), c), d), g), h), i) and j); 50 μm in e) and f). 
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Figure 5-2. 2D WAXS patterns of bilayers before and after thermal curing: a) uncured 

Bilayer01, b) uncured Bilayer02, c) cured Bilayer01, and d) cured Bilatyer02. The X-ray 

wavelength (λ) is 1.5405 Å. Both the principle orientation of fiber axis and strip’s long axis 

are horizontal. 
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Figure 5-3. Azimuthal scanning profiles for bilayers before and after thermal curing: (i) 

uncured Bilayer01, (ii) cured Bilayer01, (iii) uncured Bilayer02, and (iv) cured Bilayer02. 

The X-ray wavelength (λ) is 1.5405 Å. 
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Figure 5-4. Thermogravimetric analysis (TGA) profiles of neat Pellethane (black), Bilayer01 

(red), Bilayer02 (blue), and neat x-PU (pink). Heating rate of 10 °C/min. 
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Figure 5-5. Differential Scanning Calorimetry (DSC) analysis graph of cured bilayers and 

substituent polymers: (i) neat Pellethane, (ii) cured Bilayer01, (iii) cured Bilayer02, and (iv) 

cured x-PU. The second heating was recorded at a rate of 10 °C/min. 
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Figure 5-6. Differential Scanning Calorimetry (DSC) analysis graph of a) uncured 

electrospun bilayers: (i) first heating and (ii) second heating of Bilayer01, and, (iii) first 

heating and (iv) second heating of Bilayer02; and of b) cured bilayers and substituent 

polymers: (i) neat Pellethane, (ii) Bilayer01, (iii) Bilayer02, and (iv) neat x-PU. Heating rate 

is 10 °C/min. 
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Figure 5-7. Tensile storage modulus (E') vs temperatures for cured bilayers and substituent 

polymers: neat Pellethane (black), Bilayer01 (red), Bilayer02 (blue), and neat x-PU (pink). E' 

was recorded at a heating rate of 3 °C/min with frequency of 1 Hz. 
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Figure 5-8. Tensile two-way actuation under stress-free condition for a) Bilayer01 and b) 

Bilayer02, both cured thermally. The samples were heated to 80 °C without applying external 

stress except preloading force of 0.001 N, following which alternate cooling and heating 

process was adopted at a rate of 2 °C/min. 
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Figure 5-9. a) Tensile two-way actuation under stress-free condition for neat Pellethane. The 

samples were heated to 80 °C without applying external stress except preloading force of 

0.001 N, following which alternate cooling and heating process was adopted at a rate of 2 

°C/min; b) two-way shape memory cycles for crosslinked x-PU under 220 kPa. The sample 

was deformed under each constant stress at 80 °C, followed by cooling and heating steps (2 

°C/min). 

  



256 
 

 

Figure 5-10. a) Snapshots of two-way actuation of bending actuator. The sample changed 

from a bent shape to a more bent/curled shape by heating in a ~58 °C water bath. Then its 

shape recovered by cooling in a ~0 °C water-ice bath. The reversible actuation can be repeated 

by alternate heating and cooling; b) Quantification of reversible two-way actuation of bending 

actuator. Curvature (𝒦) was calculated from Radius which was directly measured using 

ImageJ. 
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Figure 5-11. a) Snapshots of two-way actuation of twisting actuator. The sample changed 

from a twisted shape to a more twisted shape by heating in a ~55 °C water bath. Then its shape 

recovered by cooling in a ~0 °C water-ice bath. The reversible actuation can be repeated by 

alternate heating and cooling; b) Quantification of reversible two-way actuation of twisting 

actuator. Spiral radius (ℛ) and spiral pitch (center-to-center spacing, 𝒫) were estimated using 

ImageJ. 
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Figure 5-12. a) Snapshots of two-way actuation of flattening actuator. The sample changed 

from a curled shape to a flat shape by heating in a ~58 °C water bath. Then its shape recovered 

by cooling in a ~0 °C water-ice bath. The reversible actuation can be repeated by alternate 

heating and cooling; b) Quantification of reversible two-way actuation of flattening actuator. 

Curvature (𝒦) was calculated from Radius which was directly measured using ImageJ. 
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Figure 5-13. a) Snapshots of two-way actuation of untwisting actuator. The sample changed 

from a twisted shape to a flat shape by heating in a ~55 °C water bath. Then its shape recovered 

by cooling in a ~0 °C water-ice bath. The reversible actuation can be repeated by alternate 

heating and cooling; b) Quantification of reversible two-way actuation of untwisting actuator. 

Spiral radius (ℛ) and spiral pitch (center-to-center spacing, 𝒫) were estimated using ImageJ. 
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Figure 5-14. Tan 𝛿  vs temperatures for cured bilayers and substituent polymers: neat 

Pellethane (black), Bilayer01 (red), Bilayer02 (blue), and neat x-PU (pink). 
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Figure 5-15. 2D WAXS profiles of bilayers before and after thermal curing: (i) uncured 

Bilayer01, (ii) uncured Bilayer02, (iii) cured Bilayer01, and (iv) cured Bilayer02. The X-ray 

wavelength (λ) is 1.5405 Å. 
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Figure 5-16. 2D WAXS patterns of bilayers before and after thermal curing: a) neat 

Pellethane and b) neat x-PU. The X-ray wavelength (λ) is 1.5405 Å. 
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Figure 5-17. 2D WAXS profiles of (i) neat Pellethane, (ii) cured Bilayer01, and (iii) cured x-

PU. The X-ray wavelength (λ) is 1.5405 Å. 
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Video 5-1. Self-reversible two-way actuation of bending actuator. The sample was actuated at ~ 

58 °C above 𝑇𝑚 of x-PU, turning to a more bent shape towards Pellethane side as Pellethane fibers 

were exerting compressive stress onto x-PU. Then the initial shape was recovered by cooling at ~ 

0 °C. Such free standing reversible actuation can be repeated by alternate heating and cooling. 
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Video 5-2. Self-reversible two-way actuation of twisting actuator. The sample was actuated at ~ 

55 °C above 𝑇𝑚 of x-PU, turning to a more twisted, spiral shape with Pellethane side being inside 

as Pellethane fibers were exerting compressive stress onto x-PU. Then the initial shape was 

recovered by cooling at ~ 0 °C. Such free standing reversible actuation can be repeated by alternate 

heating and cooling. 
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Video 5-3. Self-reversible two-way actuation of flattening actuator. The sample was actuated at ~ 

58 °C above 𝑇𝑚  of x-PU, turning to a completely flat shape as oriented x-PU contracted 

extensively. Then the initial shape was recovered by cooling at ~ 0 °C. Such free standing 

reversible actuation can be repeated by alternate heating and cooling. 
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Video 5-4. Self-reversible two-way actuation of untwisting actuator. The sample was actuated at 

~ 55 °C above 𝑇𝑚 of x-PU, turning to a flat shape as oriented x-PU contracted extensively. Then 

the initial shape was recovered by cooling at ~ 0 °C. Such free standing reversible actuation can 

be repeated by alternate heating and cooling.  
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Chapter 6: Conclusions and Future Work 

6.1 Overall Summary 

In my research, I designed, synthesized, and fabricated several thermomechanically active 

polymer networks based on latent crosslinking of semicrystalline polymers, as presented in 

previous chapters of this dissertation. The fundamental understandings of tuning shape memory 

effects, especially two-way reversible shape memory (2WSM), were explored to provide general 

guideline for future applications. A novel, latent-crosslinkable, electrospinnable, biodegradable 

polyurethane was developed and the processing–thermal curing relationships in its molecular, 

thermal, and shape memory properties were investigated systematically. A blend system, which 

exhibited the shape memory assisted self-healing (SMASH) effect, and a bilayer system, which 

revealed the free-standing reversible actuation upon temperature triggering, were realized and 

studied where both relied on the electrospinning technique and the unsaturated polyurethane. The 

following are the conclusions and recommended studies for future directions for the work 

discussed in some of the previous chapters. 

6.2 Latent-crosslinkable PCL-based Polyurethane 

6.2.1 Conclusions 

Chapter 3 focused on the development of a novel, versatile thermoplastic polyurethanes 

containing unsaturation using a biodegradable soft segment, polycaprolactone-diol (PCL-diol), 

and a small functional diol with pendant allyl group, 3,4-dihydroxy-1-butene (DHB), using a one-

port synthesis technique. The molecular and thermal properties of these materials were 
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investigated by GPC, DSC and 1H NMR initially, and PCL3k-TPU was picked out for further study 

due to a suitable melting temperature that would allow favorable shape fixing. In this work, PCL3k-

TPU was successfully processed into films, by solvent casting and fiber mats, by electrospinning, 

respectively. Dilauroyl peroxide (DLP) was used as a thermal initiator to crosslink films and 

electrospun mat samples covalently via compression molding process. SEM images indicate 

successful formation of fiber at a scale of nanometers, and a unique structure containing partially 

melted fibers and homogeneously distributed phase. Analysis with a DMA illustrated that 

crosslinked PCL3k-TPUs, either in a form of film or spun mat, exhibited outstanding one-way and 

two-way shape memory behavior, both with decent shape fixing and recovery. Furthermore, the 

critical stresses were estimated, indicating that crosslinked PCL3k-TPUs needed no or very little 

stress for crystallization-induced elongation to take place. Last but not the least, enzymatic 

degradation study suggests that the processing of samples resulted in quite different 

microstructures, playing a significant role in degradation behavior. It is also found that our PCL3k-

TPUs undergoes bulk degradation in a two-step way that the degradation progressed faster in the 

first a few days than after. Considering the easy processability, exceptional reversible actuation, 

and predictable biodegradability, we envision that this material can be utilized in mechanical and 

medical applications including reversible actuators, sensors, and stents. 

6.2.2 Future Work 

In light of the work specified in Chapter 2, there are a few things that can be done to tune 

thermomechanical properties of PCL3k-TPU in order to fulfill certain requirement for various 

purposes. Firstly, molecular weight of soft segments in this material correlates quite directly to the 

overall 𝑇𝑚 given the results of PCL2k-TPU shown in Chapter 3. Either increasing or decreasing 

molecular weight could lead to extending of 𝑇𝑚 limits towards the higher temperature end or lower 
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temperature end (up to a limit), respectively. However, the resulting polyurethane could turn from 

solid to liquid when molecular weight of soft segments was so small that 𝑇𝑚 gets below room 

temperature. Also, crystallinity would decrease extensively with molecular weight, resulting in a 

serious decline in mechanical strength and shape memory capability of the material. On the other 

side, it could be not so beneficial if molecular weight went too high, because crosslink density 

would decrease as the crosslinking sites would be separated by one or more huge soft segments in 

each single polymer chain. Secondly, the alteration of crosslinker concentration could essentially 

shift the melting point as well as affect the mechanical stability of the material in the cured state. 

Thirdly, one of the most important impact of our work is that the PCL3k-TPU can serve as an 

important design paradigm, wherein the soft segment, here PCL, can be replaced by other 

biodegradable segment so as to achieve distinct physical, chemical, or biological properties 

ultimately. For instance, the well-known “stealth” effect accounts for the overwhelming use of 

poly(ethylene glycol) (PEG) in biomedical applications due to the excellent hydrophilicity of PEG, 

especially as the coating for drug delivery, that allows enhancement of water solubility in the 

body.1 So, based on our model polymer, a latent-crosslinkable PEG-based polyurethane can be 

developed for some biodegradable drug-delivery vehicle with featuring shape memory. A previous 

study reported from our group involving a PCL network with chemically incorporated PEG-based 

peptide exhibited biocompatibility.2 Thus, another idea would be to add bioactive factors or 

peptides to the PCL3k-TPU to increase the biological activity if it proves necessary. The main 

bioactive materials include bioactive ceramics, bioactive glasses, and bioactive glass-ceramics.3-5  

Currently, many soft polymeric materials have been widely used in applications such as tissue 

engineering scaffolds,6,7 graft stents,8,9 etc. due to their enhanced mechanical properties and 

biocompatibility. Although, to our best knowledge, there doesn’t exist a design or device on the 
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market thus far requiring all the features that the PCL3k-TPU equips, we envision that such 

scaffolds and stents can be developed using this material. In particular, one important aspect of 

being good scaffolds and stents is the evolution of mechanical strength during biodegradation.10-

13 As presented in Chapter 3, the biodegradability of PCL3k-TPU has been reported with the 

presence of some lipase at a certain concentration. However, the mechanical strength as a function 

of degradation time was not investigated yet. The extension of the present work should help us to 

better estimate the potential of the material to be used as scaffolds or stents and also improve our 

basic understanding of the degradation mechanism from a different angle. To be applicable for in 

vivo implantation, further experiments on cytocompatibility needed. As far as we know, it was 

reported that cytotoxicity tests were performed on human endothelial cells for several catalysts 

commonly used in the synthesis of polymers for biomedical use, including 

tetramethylbutanediamine (TMBDA), 1-4 diazo (2,2,2) octane (DABCO), dibutyl-tin-dilaurate 

(DBTDL), and stannous octane (SnOct).14 The extent of cytotoxicity at a concentration of 2 wt. % 

was in the following order: DABCO < TMBDA < SnOct < DBTDL. It is clear that DBTDL 

exhibited the highest cytotoxicity given that specific dose. Therefore, it becomes necessary to 

probe the optimal concentration of the Tin-based catalysts used for synthesis of the PCL3k-TPU, 

at which concentration most cells would remain alive/active and the key mechanical properties of 

the material would not be compromised significantly in the meanwhile. The previous work 

suggested a range of catalyst concentrations from 0.01 wt. % to 0.5 wt. %. Then the polymers 

generated at each catalyst concentration would be examined separately using MTT or related cell 

assay, while ordinary thermal and mechanical characterization would be done correspondingly for 

comparison purpose. We expect that the catalyst concentration below 0.05 wt. % may result in a 

cell viability greater than 70%.  
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Recently, it has become attractive to develop new methods to synthesize reversible networks 

crosslinked with dynamic covalent linkage as the resulted networks would enable particular 

autonomous behavior on a molecular basis like self-healing. One outstanding advance of making 

such reversible networks is the improvement in the either processing or adjusting ability in 

practical use, owing to the fact that a dynamic linkage can make the material resettable, but without 

requiring to destruction of the whole molecular structure, after covalent crosslinking. Promisingly, 

our synthesized PCL3k-TPU can be modified and tailored through a proper method of using some 

dynamically reversible linkages, in order to broaden the range of application in the reality. We 

realized that the thermally-induced Diels-Alder (DA) reaction, a [4 + 2] cycloaddition of a diene 

and a dienophile, is of extraordinary interest for the future work (Scheme 6-1).15 More specifically, 

pendent furfuryl groups (PFu) could be incorporated through a thermally-induced thiol-ene radical 

addition reaction which takes advantage of the carbon-carbon double bonds pendent to the 

backbone of PCL3k-TPU. The DA linkages would form, allowing covalent crosslinking of the 

material in the presence of a maleimide-bearing crosslinker. Then, the cleavage of such linkages 

could be triggered by heating to moderate or elevated temperatures at which retro-DA reaction is 

favored. Thus, the modified PCL3k-TPU is anticipated to be thermally dynamic and reconfigurable 

to its “permanent” shapes. We envision that this could be fairly useful in applications where 2WSM 

effect is needed with both permanent and temporary shapes being reprogrammable to a certain 

extent. Besides utilizing covalent or physical crosslinking alone to achieve 2WSM effect, a 

combination thereof may make something unexpected but more astonishing to happen in the end. 

A PCL-POSS chemical/physical double network was previously elaborated by a former member 

of our research group, exhibiting two rubbery plateaus separated well from each other.16 

Unfortunately, an apparent downside is the use of a tetrathiol crosslinker through thiol-ene click 
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chemistry which inherently impedes the processability as discussed already in Chapter 3. However, 

this finding can guide exploration of future directions for continuation of our present work if of 

special interest is the development of a triple shape memory polymer with the ability to reset its 

permanent shape.  

Considering the excellent ability to process and the ease to chemically crosslinking post-

synthesis, we imagine that the PCL3k-TPU would have a great potential in the field of 3D printing. 

3D printing has gained a great deal of public attention, in comparison to traditional manufacturing, 

for production of complex biomedical devices such as implants, scaffolds for tissue engineering, 

diagnostic platforms and drug delivery systems.17 The simplified schematic setup of a polymer 

jetting 3D printer with separate support and build material channels, where each layer is planarized 

and cured by UV exposure immediately after its deposition, is shown in Figure 6-1 for presentation 

purpose.18 However, it is known that the state of the art 3D printing techniques are severely limited 

by printable material and also subject to several disadvantages like mechanical stiffness and low 

resolution. To overcome these main limitations, there are two printing routes that seem more 

reasonable with our material as opposed to other solid free form fabrication technologies. Given 

that the PCL3k-TPU was cured effectively by a thermal treatment in the present work, one way to 

go is the so-called indirect 3D printing in which a negative mold is first printed and then the final 

polymer is cast within it. Certainly, the mold material should have an extremely high softening 

temperature along with good thermal and solvent resistance, and also have some feature that we 

can use for demolding once the positive shape was formed and finalized. As a result, we could 

easily make any desirable shape out of the crosslinkable polyurethane using this method and then 

crosslink it thermally as what has been done in Chapter 3, when a proper mold material is identified. 

Another approach would include photo-crosslinking instead of thermal crosslinking in order to 
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prevent the original constructs from being sabotaged during curing step. However, a few technical 

hurdles must be addressed to begin with. It is evident that continuous UV exposure would generate 

a significant amount of heat which could melt the semicrystalline material to eventually lose the 

shape programmed initially, a phenomenon also referred to as shape recovery. A proper strategy 

of photo-crosslinking is necessarily required in this regard. It may be a good idea to alternate UV 

exposure (on and off) to avoid accumulating too much heat that would trigger shape recovery. 

However, such an approach may be difficult to implement at an industrial scale. Moreover, another 

primary concern is the net efficiency for photo-crosslinking of an opaque polymer. It is obvious 

that, in that sense, the polymer chains at the surface would have a relatively higher degree of 

crosslinking as compared with those closer to the geometric center due to some kind of shielding 

effect of the surface molecules on the transmittance of UV light. Even though we don’t have a 

good solution to this yet, perhaps creation of high porosity through porogen-leaching may help.19,20 

If a certain number of interconnected pores were created across the entire construct, the 

crosslinking difference between the surface and inside should be minimized as possible. Note that, 

to attain high degree of crosslinking, it could be equally important to pick a suitable photo-

crosslinker which is able to distribute evenly rather than to aggregate together. Therefore, it is 

worth to try suspending porogens among the material and leaching it without affecting the material 

to yield numerous pores which may likely result in a global uniformly crosslinked network. 

6.3 Self-reversible Actuators 

6.3.1 Conclusions 

Chapter 5 explains explicitly the advantage of soft, stimulus-responsive, self-reversible actuation 

in applications where use of external constraints or stress is largely restricted. In this chapter, a 
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novel, convenient fabrication process for thermal-triggering free-standing actuators via 

electrospinning process was developed. The model actuators consist of a covalently crosslinked, 

semicrystalline polyurethane with a lower 𝑇𝑚 and a thermoplastic elastomeric polyurethane with 

a higher 𝑇𝑚 . Micro-geometry and molecular anisotropy were implemented to investigate their 

influence on the resulting actuation behavior of various designs. Actuation characterization was 

done for multiple cycles in succession along with microstructural, thermal, dynamic mechanical, 

and shape memory analysis, to thoroughly understand underlying mechanisms. The results showed 

that different actuations were achieved without application of an external stress and with variations 

of micro-geometry and molecular orientation. Such variations afforded a variety of reversible 

actuation phenomena, including bending, twisting, flattening, and untwisting actuation. Two 

simple actuation mechanisms corresponding to specific design were presented to explain the 

specific actuation phenomenon as well as the origin of distinct actuations. We envision that this 

approach, considering necessary modification and optimization, can be used in biomedical and/or 

mechanical applications such as micro-robotics, biomedical devices and artificial muscles, shape 

changing substrates, among others.  

6.3.2 Future Work 

In the current study, we recognized that solutions to the large deflection of a thin plate or laminate 

can be used to generally describe the actuation behavior of our actuators specified in Chapter 5, 

which were based on a structure of bilayer, using the equation in the following: 𝐸𝐼 = 𝐸𝑏ℎ3/12, 

where 𝐸𝐼 stands for bending rigidity, 𝐸 for Young’s modulus, ℎ for thickness, and 𝑏 for width. 

Therefore, in order to optimize the actuation performance for each actuator, these parameters must 

be tuned in coordination appropriately as they have great influence for either layer. Since the 

thickness of each layer is proportional to the corresponding ejection time during electrospinning, 
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a gradient of ejection times for each component would be used to develop a composition gradient 

for the final bilayer ranging from 10:90 to 90:10 w/w at a fixed increment of 10 wt. %. The other 

parameter (i.e. width) in that equation remains unaltered. Then a profile of actuation performance 

as a function of thickness would be obtained for us to further understand the actuation behavior 

and to find out the optimized fabrication parameters for optimal actuation performance.   

In Chapter 5, all the actuators revealed a contractile 2WSM effect, regardless the design and 

geometry. Based on our knowledge of common 2WSM materials, we speculated that 2WSM 

behavior in tension should exhibit a significantly larger actuation magnitude than that in 

compression. So, it would be fantastic if we could find an elastomeric material that exerts tensile 

stress onto the SMP, and also if the final actuator can reprogram both actuated (upon heating) and 

reset shape (upon cooling) to varying degrees even after completion of crosslinking. McMullin et 

al introduced a family of biodegradable thermoplastic elastomers (TPEs) containing POSS as a 

physical crosslink (Scheme 6-2), demonstrating not only a dependence of thermal and mechanical 

properties on the POSS content but also a high elasticity with greater than 70% recovery.21 More 

importantly, this material is absolutely electrospinnable, and its equilibrium shapes can be changed 

by melting and subsequent recrystallizing the POSS segments. Hence, the future plan was 

illustrated in Scheme 6-3. In particular, we can dual-spin the x-PU containing an amount of 

crosslinker and the TPE (here the POSS-based, reconfigurable TPE) at the same time, or to make 

bilayers like what has been done in Chapter 5. During electrospinning, there should be no need for 

introducing any molecular anisotropy. Hot compaction would be conducted to chemically 

crosslink the x-PU. Subsequently, the sample would be heated to ca. 15 °C above 𝑇𝑚 of the POSS, 

then stretched uniaxially to a large extent, and finally cooled down to a low temperature below all 

𝑇𝑐’s while the external stress is maintained. At this point, if POSS content was enough to hold the 
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TPE’s new permanent state, the TPE should apply tensile stress to the covalently crosslinked x-

PU whose permanent shape is unchangeable unless chemical bonds were broken. Note that small 

recovery after unloading would be acceptable as entropic recovery of x-PU and elasticity of TPE 

may need to reach a new stress equilibrium. Therefore, an easy design could be a free-standing 

uniaxial actuator that may be capable of adjusting its reversible actuation magnitude upon resetting 

the “permanent” state of TPE component. Moreover, making a tri-layer that has one component 

sandwiched by the other can provide a better geometrical symmetry to avoid any bias generated 

during thermal curing.  

During the exploration of twisting or untwisting actuation in self-reversible actuator 

development, further designs were inspired as well. Today it has been of increasing interest to 

develop helical fibers that resemble plant tendrils at the nanoscale due to potential applications in 

fields such as nanoscale sensors, filtration materials, and oil sorbents.22-24 In this regard, Wu et al 

invented an enlightening approach for the fabrication of the helical nanofibers with polyurethane 

and poly(m-phenylene isophthalamide) by the co-electrospinning system with an offer-centered 

core-shell spinneret (Figure 6-2).25 Applying this idea to our case, we could use exactly the same 

co-electrospinning setup but feed the core-syringe and the shell-syringe with the x-PU and the 

Pellethane, respectively. The biggest advantage of doing so is that the Pellethane sheath can 

perfectly confine the flow of the melted x-PU and thus maintain the integrity of the fibrous 

structure during thermal curing. High rotating speed of the collecting drum could be adopted in 

order to create molecular orientation. Then the helical fibers would be heated to crosslink under 

the condition that physical restriction is in place to prevent the stress relaxation of the Pellethane 

shell, assumed that any pre-existed molecular anisotropy would be erased by rearrangement of 
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polymer chains. By switching Pellethane with the aforementioned TPE, we can develop a helical 

self-reverisble actuator at the nanoscale, and with the ability to adjust the helical pitch and radius. 

In the context of resettable 2WSM effect, another idea was inspired on a dual-electrospinning 

basis. Previously, a poly(tetrahydrofuran)-based polyurethane incorporating backbone carrying 

unsaturation (x-THF) was synthesized and then crosslinked with peroxide to form networks which 

exhibited promising 2WSM effect. Besides, Meng et al demonstrated a single-phase, self-

reversible actuator through internal stress-induced crystallization of dual-cure networks (Figure 6-

3), which provided good guidance on a potential direction for the present work.26 So, a dual-cure 

network consisting of the x-PU and x-THF could be engendered, using dual-electrospinning 

process, to achieve triple shape memory as well as resettable 2WSM effect as the 𝑇𝑚’s of the two 

polymers are separated sufficiently. There will be two approaches as described below: one is to 

crosslink the two polymers with the same crosslinker simultaneously and then to program each 

temporary shape one by one; the other is to use different crosslinkers, which require different 

activation temperatures for effective crosslinking, to crosslink the two polymers separately so that 

one polymer can be crosslinked in a strained state at a temperature after the other has already been 

cured fully at another temperature. In addition, thanks to the dual-electrospinning technique, a 

functionally graded shape memory composite would be possible by adjusting the ejection rate for 

each polymer during the electrospinning process, theoretically similar to what a former group 

member has accomplished.27 We envision that this functionally graded, self-reversible actuator, if 

worked out well, can offer great potential for material-based temperature actuators as well as in 

applications where controlled shape actuation is on demand.   
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Scheme 6-1. Thermoreversible DA/retro-DA reactions of dynamically-crosslinked networks 

prepared from a reactive mixture containing PFu having pendent furfuyl groups and a 

bismaleimide model crosslinker. (Adapted with permission from Jung, S.; Liu, J.; Hong, S.; 

Arunbabu, D.; Noh, S.; Oh, J.: A New Reactive Polymethacrylate Bearing Pendent Furfuryl 

Groups: Synthesis, Thermoreversible Reactions, and Self-Healing. Polymer 2017, 109, 58 – 

65.). 
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Scheme 6-2. Example schematic of a POSS-incorporating polyurethane synthesis. (Adapted with 

permission from McMullin, E.; Rebar, H. T.; Mather, P. T.: Biodegradable Thermoplastic 

Elastomers Incorporating POSS: Synthesis, Microstructure, and Mechanical Properties. 

Macromolecules 2016, 49, 3769 – 3779.). 
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Scheme 6-3. Example schematic of fabrication process for the free-standing actuators which may 

exhibit reversible two-way actuation in tension. First is to dual-spin the x-PU containing an amount 

of crosslinker and the TPE at the same time. Hot compaction would be conducted to chemically 

crosslink the x-PU. Subsequently, the sample would be heated to ca. 15 °C above 𝑇𝑚 of the POSS, 

then stretched uniaxially to a large extent, and finally cooled down to a low temperature below all 

𝑇𝑐’s while the external stress is maintained. 
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Figure 6-1. Simplified presentation of a polymer jetting 3D printer with separate support and 

build material channels; where each layer is planarized and cured by UV exposure 

immediately after its deposition. (Adapted with permission from Hofmann, M.: 3D Printing 

Gets A Boost and Opportunities with Polymer Materials. ACS Macro Lett. 2014, 3, 382 – 

386.). 
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Figure 6-2. Schematic of off-centered co-electrospinning system. (Adapted with permission 

from Wu, H.; Zheng, Y.; Zeng, Y.: Fabrication of Helical Nanofibers via Co-electrospinning. 

Ind. Eng. Chem. Res. 2015, 54, 987 – 993.). 
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Figure 6-3. Cartoon showing preparation of dual-cure network stress-free actuators. (Adapted 

with permission from Meng, Y.; Jiang, J.; Anthamatten, M.: Shape Actuation via Internal 

Stress-induced Crystallization of Dual-cure Networks. ACS Macro Lett. 2015, 4, 115 – 118.). 
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Appendix 

A1. Poly(tetrahydrofuran)-based Polyurethane 

A1.1. POSS-incorporating PU 

Motivation: Seeking to achieve reversible actuation in the 20 – 40 °C, a different approach was 

proposed to use a multiblock polymer architecture consisting of two blocks in which the “soft” 

block is the crystalline switching block with relatively low melting transitions, the “hard” block 

with a higher thermal transition (𝑇𝑔 or 𝑇𝑚), and the two are linked together by a linker molecule.1,2 

In such approach, the primary synthetic variables include: the composition and molecular weight 

(MW) of each block, the weight percentage of the hard block, and the total MW of the multiblock 

copolymer. It is recognized that the composition and MW of each block will impact their melting 

points. This is particularly important for the soft block since that will regulate the actuation and 

recovery temperatures, which need to be near ambient temperature. Consequently, both the 

composition and MW of the soft block will be varied. Initially, we will hold fixed the value of the 

hard block’s MW at 30% and quickly “freeze” the design of the hard block when a synthesis 

approach and melting temperature value for that block are satisfied. A third block or modification 

to the linker molecule can be introduced to enable the polymers to be dispersed in a waterborne 

suspension if that process is deemed useful in the future. However, development of that polymer 

chemistry is beyond the scope of the proposed work. 

Methods: Based on our knowledge and experience with the known polymer chemistry that might 

meet the requirements, poly(tetrahydrofuran)-diol (pTHF) with a nominal 𝑀𝑛  of 2,900 g/mol, 

TMP diolisobutyl POSS (POSS), and hexamethylene diisocyanate (HDI) were chosen via step-
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growth polymerization for such chemistry (Scheme A1.1.1). In order to attain good crosslink 

density and high total MW, two synthesis strategies were developed in the following: the one-step 

reaction and the two-step, end-capping reaction, the former featuring a one-ports synthesis in 

Toluene at 90 °C for 10 h, using the Tin POSS catalyst (Hybrid Plastics®). In the latter strategy, a 

prepolymer, supposedly with relatively low MW, is first produced from pTHF and HDI only for 

varying times under a mild reaction condition (70 °C), and then POSS is added to continue the 

reaction for an extended time (8 h), but at a higher temperature (90 °C), to form the final 

polyurethane architecture. The pTHF:POSS:HDI feed ratio, mass of catalysts used, or a 

combination thereof was varied for optimization purpose. The prepolymer reaction time, for the 

second route exclusively, was varied to understand the dependence on final MW. Note that the 

cage-like structure in POSS, here, acts as a physical crosslink.3 Last but not the least, thermal, 

dynamic mechanical, and shape memory experiments were carried out to characterize the material. 

Note that the samples, which were prepared for the experiments mentioned above, were all 

annealed by heating to and being held at 130 °C for 1 h, then cooling slowly to and being held at 

50 °C for 1 h, and further cooling to -20 °C, for the purpose of maximizing the POSS crystallization. 

Preliminary Results: A summary of all the synthesis attempts was shown in Table A1.1.1. The 

results of DSC tests were posted in Figure A1.1.1, revealing two individual melting transitions on 

heating which represented the melting of pTHF and that of POSS, respectively. The storage 

modulus was plotted for two representative samples prepared, correspondingly, by the two 

synthesis routes, as shown in Figure A1.1.2. The one-way and two-way shape memory cycles for 

the PU1:2:3C1.5N5 sample were shown in Figure A1.1.3 and A1.1.4, respectively. It was evident 

that the polyurethane synthesized without the prepolymer step exhibited good, repeatable 1WSM 

except the training cycle (first cycle) while the 2WSM behavior was promising but showing 
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moderate “creep” in strain, which requires further improvement in order to be useful in practical 

application.  

A1.2. Saturated PU, Acylation, and Crosslinking 

Motivation: Solid polymer electrolytes have attracted worldwide interest as potential 

replacement for solvent electrolytes that largely limit the thermal stability, energy density, and 

safety of commercial secondary lithium cells.4,5 Poly(tetrahydrofuran) (pTHF) came up as an 

excellent candidate who resembles poly(ethylene oxide) (PEO) and improves the ionic 

conductivity of lithium batteries when doped with alkali salts.6,7 However, neither pTHF nor PEO 

could provide the room temperature ionic conductivity sufficient for battery applications and also 

have operating temperatures high enough to maintain the solid form of polymer electrolytes. 

Moreover, we hypothesized that nanofibers with principal molecular orientation would have a 

positive influence on ionic conductivity since the interlaying of fibers generates large surface area 

facilitating high electrolyte uptake and easy transport of ions.8 We realized that it is necessary to 

improve thermal stability of the material to boost the operating temperature up to high values by 

crosslinking the material to become a thermoset. Concerning that, Theron et al elaborated a 

brilliant way to modify, crosslink and reactively electrospin a thermoplastic medical polyurethane 

for vascular graft application, wherein acylation of urethane linkage resulted in pendent allyl 

groups actively available for covalent crosslinking.9 On the other hand, it was reported that 

peroxide can crosslink saturated polymer upon hydrogen adsorption.10 It seems possible to achieve 

successful crosslinking of high MW pTHF without need of acylation. Therefore, our approach is 

to develop a high MW pTHF that allows acylation to create allyl crosslinking sites as well as 

formation of fine nanofibers. Subsequent tuning and improving will be a must to tackle the ultimate 

goal, but that was beyond the scope of this dissertation. 
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Methods: A simple and effect step-growth polymerization was performed based on pTHF-diol 

and HDI or a different diisocyanate (Scheme A1.2.1). Some microstructural and thermal 

characterization were done as preliminary studies for this work. The acylation procedures using 4-

pentenoyl chloride were specified in Scheme A1.2.2. The acylated samples were demonstrated by 

taking photos of physical appearance, and NMR analysis was utilized to assess success of 

crosslinking. In terms of the polymers that were not treated by acylation processing, HDI-N4 was 

used to mix with diauroyl peroxide (DLP, LuperoxTM, Sigma-Aldrich), which likely has a better 

affinity with polyurethane DCP, through solvent casting in order for covalent crosslinking. The 

curing time, crosslinker concentration, or a combination thereof was varied to understand the 

optimal curing condition for this method. Gel fraction measurements were conducted to 

quantitatively evaluate the extent of crosslinking, which was followed by related mechanical and 

shape memory analysis. On the other side, for electrospinning process, 1 g un-acylated polymer 

was fully dissolved in a solvent mixture comprising 12 mL THF and 8 mL DMF, the ejecting 

needle was held at a potential of 12 kV, the tip-to-collector distance with 10 cm, the rotation rate 

of a 57.1 mm collecting drum was maintained at 1000 rpm while the drum was held at a potential 

of 0.5 kV and a flow rate of polymer solution supplying the 22 Gauge needle was 2.0 mL/h, all 

employed over the 10-hour process.  

Preliminary Results: The synthesis results were compiled in Table A1.2.1. The thermal 

properties of all synthesized polymers were presented in Figure A1.2.1, showing that the 𝑇𝑚’s 

spread over the 18 – 24 °C range. The HDI-N2 and HDI-N4 were chosen for further analysis as 

well as acylation processing due to their relatively high MWs. The pictures showing acylated HDI-

N2 and HDI-N4 were available in Figure A1.2.2. Furthermore, NMR spectra for these two samples 

were shown in Figure A1.2.3, revealing very unremarkable characteristic peaks for the allyl 
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function groups, perhaps, due to not-so-successful acylation processing. To investigate peroxide 

crosslinking of saturated polymers, the curing studies on HDI-N4 were concluded in Table A1.2.2. 

DMA was employed to investigate the thermomechanical properties of the HDI-N4 samples at 

various states: uncured, cured with 1.0 wt. % DLP for 1 h, and cured with 1.0 wt. % DLP for 1.5 

h, respectively, as indicated in Figure A1.2.4. It was observed that both cured samples showed a 

rubbery plateau in modulus after melting transition as compared to the uncured. Also, it seems that 

the rubbery plateau would be extended towards the higher temperature end in some degree when 

crosslinker concentration was increased and higher gel fraction values were obtained. In addition, 

1WSM and 2WSM cycles for both D1T1.0 and D1T1.5 were plotted in Figure A1.2.5 and A1.2.6, 

respectively, suggesting promising shape memory properties but with severe “creep” in strain most 

likely due to low degree of crosslinking. In the end, the unacylated HDI-N4 was processed into a 

fibrous web, both sides of which were imaged using SEM, as shown in Figure A1.2.7. 

A1.3. Backbone-carrying Unsaturation 

Motivation: Previously, to make pTHF networks that can show good 2WSM effect, we tried to 

acylate the high MW pTHF and then crosslink it thermally with the presence of thermal initiator, 

or crosslink the high MW pTHF directly. Neither approaches turned out to be completely 

successful for the reasons stated above. A kind of chemically more active crosslinking site is 

required to be incorporated through a modification method featuring a higher conversion rate. In 

view of prior experience and our knowledge of polymer chemistry, cis-2-butene-1,4-diol (BeD),11-

13 a small molecule that possesses a backbone-carrying carbon-carbon double bond which allows 

covalent crosslinking, is chosen to insert into the old chemical formula.  
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Methods: BeD, pTHF-diol, and HDI were polymerized together in the presence of 1 wt. % Tin 

POMS catalyst through a one-port reaction process where toluene was the solvent and inert 

reaction atmosphere was applied during the 12-h course (Scheme A1.3.1). The dried product was 

cast, with 1 wt. % DLP, into a film which was then crosslinked by compression molding. Thermal, 

dynamic mechanical, and shape memory analysis were carried out to characterize the material at 

different crosslinking states.  

Preliminary Results: The DSC profiles were recorded in Figure A1.3.1 for the crosslinkable 

pTHF-based PU before and after curing, respectively. A nice rubbery plateau was found only for 

the cured sample, as indicative of decent crosslinking (Figure A1.3.2). The 2WSM behavior of the 

cured sample was showcased in Figure A1.3.3, suggesting a temperature-regulating reversibility 

with improved mechanical stability in comparison to the predecessors of the material.  

A2. PCL-diols and PCL-based PUs Bearing Unsaturation in Backbone 

Motivation: Continuing on the work done to develop crosslinkable polyurethane, there exists a 

different approach to incorporate the unsaturation by making unsaturated polyolefin instead of 

adding a small, unsaturated diol. However, there may be several pros and cons for this idea: first 

of all, it would be easier to control distribution of the crosslinking sites when only the polyolefin 

bearing the unsaturation and the linker are needed for the reaction; higher chances would be 

expected to achieve high total molecular weight if the stoichiometry was involved for two reagents 

other than three; nonetheless, crosslink density would be negatively affected when the molecular 

weight of the polyolefin got too high. Poly(ɛ-caprolactone) (PCL) is an aliphatic linear polyester, 

biodegradable and biocompatible polymer which is FDA approved and widely used in 

pharmaceutical products and wound dressings.14 It can be synthesized by either ring-opening 



295 
 

polymerization of ɛ-caprolactone or by free radical ring-opening polymerization of 2-methylene-

1,3-dioxepane.15 More importantly, its melting point that falls in the range closely near room 

temperature may enable broader applications than the pTHF, and its good solubility makes it a 

great processing-wise. Thus, on one hand, we propose to synthesize a family of crosslinkable PCL-

diols (x-PCL) with varying MW via ring-opening polymerization of ɛ-caprolactone (CL) using 

BeD as the initiator. The x-PCL is next polymerized with HDI to form a polyurethane architecture 

bearing C=C unsaturation in the backbone, allowing chemical crosslinking through addition of 

DLP. On the other hand, a segmented polyurethane architecture is developed following the method 

discussed previously regarding the preparation of crosslinkable pTHF-based PU for comparison 

purpose. The ideas conceived here may be particularly useful in applications where a backbone-

carrying unsaturation is desired versus pendent allyl groups as detailed in Chapter 3. 

Methods: To fabricate the x-PCL, BeD and CL were added at a mole ratio of 1:30 into 100 mL 

distilled toluene and then incubated at 100 °C for 24 h under nitrogen atmosphere (Scheme A2.1). 

The resulting polymers were precipated in cold hexanes and subject to 3-d vacuum drying prior to 

further use or processing. In the meantime, a pure PCL was prepared as a control. Along the line, 

the x-PCL obtained from last step was reacted with HDI at a feed mole rate of 1:1, using Tin 

POMS catalyst for the duration of the 24-h polymerization, to build up high molecular weights 

(Scheme A2.2). The crosslinkable PCL-based PU was then mixed with 1 wt. % DLP through 

solvent casting, following which thermal curing was performed by compression molding at 90 °C 

for 2 h. As an alternative method, PCL-diol with a 𝑀𝑛 of 2 or 3 kDa, BeD, and HDI were added 

at a feed mole ratio of 1:1:2, simultaneously, in 100 mL distilled toluene at 100 °C for 12 h under 

nitrogen environment, as illustrated in Scheme A2.3. Molecular, thermal, mechanical, and shape 

memory characterization were conducted to understand the materials produced by each route as 
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well as to compare the two routes. Select synthesis batch was chosen for electrospinning (a solvent 

mixture of 10 mL CHCl3 and 2 mL DMF; time was 8 h; voltage was 16 kV) to see if the material 

can be processed into a fibrous web at the micro- or nano-scale. However, thermal crosslinking of 

fibrous web is beyond the scope of the present study. 

Preliminary Results: For the former, two-step method, a summary of synthesis results was 

included in Table A2.1. In addition to that a few photos were taken to visually demonstrate the 

physical appearance of some representative samples obtained as described above (Figure A2.1). 

Thermogravimetric analysis was done using TGA as shown in Figure A2.2. Figure A2.3 revealed 

a 𝑇𝑚  of the synthesized x-PCLs in the 41 – 55 °C range. The chemical composition for a 

representative x-PCL sample was analyzed and confirmed with successful incorporation of C=C, 

as shown in Figure A2.4. After HDI added for continued polymerization, the synthesis results were 

summarized in Table A2.2. Note that melting point was reduced significantly while the x-PCL 

became corresponding x-PCL-based PU due to the incorporation of HDI which impeded 

crystallization of PCL phase. The thermal features upon second heating were studied selectively 

for the x-PCL-TPU N3, N5, and N6 sample, as found in Figure A2.5. Furthermore, the NMR 

spectra of x-PCL-TPU N5 and N6 were provided, respectively in Figure A2.6a and b, to especially 

verify the incorporation of C=C unsaturation. Particularly, for x-PCL-TPU N5, three attempts were 

made to create fibrous mats using electrospinning technique at varying ejecting rate of polymer 

solutions which were 1.0 mL/h, 1.5 mL/h and 2.0 mL/h, and, corresponding results were shown 

individually in Figure A2.7. The x-PCL-TPU N5 crosslinked by 1 wt. % DLP was tested using 

DMA, revealing a decent rubbery plateau after occurrence of melting transition (Figure A2.8). 

Switching gear to the latter, one-step method, we can find related synthesis results in Table A2.3. 

The chemistry of the synthesized polymers was investigated using NMR analysis, which indicated 
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successful addition of C=C in the backbone of both PCL2k-based and PCL3k-based PUs as shown 

in Figure A2.9. The BeD-PCL2k-TPU N2 and BeD-PCL3k-TPU N1 were weighed 2 g separately, 

adding in a solvent mixture of 8 mL CHCl3 and 2 mL DMF, and finally electrospinning at an 

ejecting rate of 1.5 mL/h under 16 kV for 10 h. Both resultant fibrous webs were imaged using 

SEM (Figure A2.10), showing that a lot of beads were generated and bonded with fibers during 

the 10-h electrospinning process. We attributed this to the relatively low molecular weight of the 

material. 

A3. Uniaxially Self-reversible Actuator 

Motivation: Given the fact that we managed to develop a couple self-reversible actuators based 

on the x-PU and Pellethane, it is worth of giving a try on a design featuring uniaxial actuation. 

Also, the effect of molecular anisotropy on the uniaxial actuation performance is investigated to 

understand how to amplify the actuation magnitude the most. We speculate that this can offer a 

meaningful guidance on development of other actuator designs.   

Methods: The x-PU containing 3 wt. % DLP was dual-spun with the Pellethane (5863-80A) to 

form a homogeneously distributed, interspersed fibrous mat made of these two polymers, as 

schematically shown in Scheme A3.1. The concentrations of x-PU and of Pellethane were 0.167 

g/mL and 0.100 g/mL, respectively. A potential of 16 kV was held at the ejecting needle of the 

syringe supplying x-PU at 1 mL/h and a potential of 14 kV was held at the ejecting needle of the 

syringe supplying Pellethane at 1.7 mL/h while the collecting mandrel rotating at 400 rpm was 

grounded. After 10-h dual-electrospinning process, the fibrous web obtained was completely dried 

for 2 d prior to subsequent hot compaction, which lasted for 2 h at 90 °C under a compressive load 

of 1000 lb., using a hot press. Microstructural, thermal, dynamic mechanical, and shape memory 
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analysis were carried out to better evaluate the design and actual execution of fabrication. Speaking 

of influence of molecular anisotropy, two variables were considered: the rotation speed of the 

collecting mandrel and prestrain ahead of crosslinking. The spinning speed was altered from 400 

rpm to 1000 while 0%, 50%, or 200% prestrain was utilized (i.e. sample 1: 400 rpm + 0% prestrain; 

sample 2: 1000 rpm + 0% prestrain; sample 3: 400 rpm + 50% prestrain; sample 4: 400 rpm + 200% 

prestrain). More specifically, the prestrain was introduced by stretching the as-spun samples using 

a custom manual stretcher, and then held at that strain throughout a 2-h curing step at 90 °C. 

Subsequently, the sample was unloaded from the manual stretcher and was post-cured for another 

2 h at prescribed elevated temperature. At last, the uniaxial actuators prepared on different 

conditions were analyzed using DMA to explore the stress-free 2WSM behavior. 

Preliminary Results: Figure A3.1 showed the physical appearance of the fibrous web fabricated 

by dual-electrospinning x-PU and Pellethane before and after thermal curing. It was evident that 

continuous, fine fibers were formed and these fibers turned to solid film upon heating. The DSC 

profiles of the fibrous web prior to and after hot compaction were plotted in Figure A3.2. The 

regular DMA testing was done on the crosslinked sample as revealed in Figure A3.3. Then, a 

tensile two-way reversible actuation under varying external forces was conducted, using DMA in 

the controlled force mode, to record the strain, stress, and temperature as a function of time (Figure 

A3.4). A tensile stress of ca. 0.8 MPa was exerted on the sample for the first two cycles and that 

stress was next removed for the following two cycles. It was observed that, for the two cycles in 

the beginning, the sample behaved the way typical 2WSM polymers do, while, more interestingly, 

the two-way reversible actuation was still realized, largely reduced in amplitude though, after 

external load was removed. We reasoned this phenomenon as an enlightening indicator of free-

standing reversible actuation regulated by ambient temperature variation. Figure A3.5 showed the 
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uniaxial two-way actuation of all four samples, which were specified in the methods section, under 

externally stress-free condition. It was clearly observed that all sample revealed recognizable 

2WSM effect to varying degrees except sample 1 which was prepared using rotation speed at 400 

rpm without any prestraining. Among the samples tested in this experiment, sample 2 rendered the 

most promising 2WSM behavior in terms of actuation magnitude. Thus, we postulated that the 

electrospinning process has a more profound influence on molecular anisotropy as well as 

actuation performance than mechanical prestraining does. However, further studies such as WAXS 

experimentation are required to support this hypothesis and to then understand the mechanism.   
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Table A1.1.1. Summary of Polyurethane Syntheses 

Sample 
Yield 

(Mass %) 

pTHF:POSS:HDI 

actual ratio 

Molecular Weight 

(Mn, kDa) 
PDI 

PU1:2:3C3R3N1* 26.3% 2.05:1.00:2.57 718 1.33 

PU1:2:3C3R2N2 36.4% 1.06:1.00:1.93 62 1.21 

PU1:2:3C3R2N4 26.5% 0.75:1.00:1.69 78 1.48 

PU1:2:3C1.5N5 46.5% 0.70:1.00:1.67 172 1.45 

PU1:1:2C3N7 77.8% 1.44:1.00:2.81 118 1.66 

 

* Nomenclature: PU stands for polyurethane, 1:2:3 for the pTHF:POSS:HDI actual ratio 

determined by NMR analysis, C3 for 3 mg catalyst used in the reaction, R3 for 3 h reaction time 

for making the prepolymer, and N1 for the very first batch of synthesis.  
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Table A1.2.1. Synthesis Results of High MW pTHF-based PUs 

 

Feed mole ratio 

(pTHF:HDI) 

Yield 

(Mass %) 

Molecular weight 

(Mn, kDa) 

PDI 𝑇𝑚 (°C) a ∆H𝑚 (J/g) 

HDI-N1* 1:1 81.7 35.1 2.70 24.1 31.55 

HDI-N2 1:1 74.2 102 1.74 20.6 27.64 

HDI-N3 1:1 81.6 38.0 1.56 22.1 28.10 

HDI-N4 1:1 82.3 219 1.61 21.7 29.97 

TDI-N1 1:1 63.9 58.3 3.22 16.8 30.74 

* Nomenclature: HDI (TDI) for hexamethylene diisocyanate (toluene 2,4-diisocyanate), N1 for 

batch 1. 

a Tm’s are values at peaks by DSC (heating at 10°C/min). 
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Table A1.2.2. Synthesis Results of High MW pTHF-based PUs 

 DLP Concentration (wt. %) Curing time (h) Curing temperature (°C) Gel fraction (%) a 

D1T1.0 * 1.0 1.0 90 34.6 

D1T1.5 1.0 1.5 90 42.1 

D1T2.0 1.0 2.0 90 39.8 

D2T1.5 2.0 1.5 90 46.6 

D2T2.0 2.0 2.0 90 51.7 

* Nomenclature: D1 for 1 wt.% DLP, T1.0 for 1 hour for curing time. 

a Solvent extraction in THF (average from three tests). 
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Table A2.1. Synthesis Results of Crosslinkable PCL-diols 

 
Feed mole ratio a 

(BeD:CL) 

Yield 

(Mass %) 

Molecular weight 

(Mn, kDa) 

PDI 

𝑇𝑚 

(°C) b 

∆𝐻𝑚 

(J/g) 

PCL control 0:1 22.6 5.39 1.10 52.7 64.92 

x-PCL N6* 1:30 39.0 6.60 1.10 55.7 67.95 

x-PCL N7 1:30 99.4 5.58 1.03 49.9 64.46 

x-PCL N8 1:20 94.6 3.56 1.08 52.7 66.83 

x-PCL N10 1:20 94.5 2.71 1.11 41.2 72.53 

x-PCL N11 1:20 97.7 4.97 1.30 48.2 61.82 

* Nomenclature: BeD for cis-2-Butene-1,4-diol, PCL for polycaprolactone, N6 for attempt 6 

a To estimate target degree of polymerization: DP=[M]/[I], where [M] is concentration of 

monomers (CL), [I] is concentration of initiators (BD). 

b Tm’s are values at endothermic peaks by DSC (heating at 10°C/min) 
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Table A2.2. Synthesis Results of x-PCL-based Polyurethanes 

 
Yield 

(Mass %) 

Molecular weight 

(Mn, kDa) 

PDI 𝑇𝑚 (°C) a ∆𝐻𝑚 (J/g) 

x-PCL-TPU N1 * 37.8 178 1.66 38.5 31.92 

x-PCL-TPU N3 b 94.3 239 1.58 39.6 33.79 

x-PCL-TPU N4 66.2 192 2.10 N/A c N/A 

x-PCL-TPU N5 75.8 59.7 1.23 42.3 42.13 

x-PCL-TPU N6 72.8 49.7 1.24 44.3 4410 

* Nomenclature: x-PCL for crosslinkable polycaprolactone, TPU for thermoplastic polyurethane, 

N1 for attempt 1. 

a Tm’s are values at endothermic peaks by DSC (heating at 10°C/min) 

b N1, N3, and N4 used x-PCL N8 as starting material; N5 and N6 originated from x-PCL N10 

c N/A due to premature gelation 
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Table A2.2. Synthesis Results of BeD-PCL-TPUs 

 
Yield 

(Mass %) 

Molecular weight 

(Mn, kDa) 

PDI 𝑇𝑚 (°C) a ∆𝐻𝑚 (J/g) 

BeD-PCL2k-TPU N1* 88.7 167 1.08 51.4 31.80 

BeD-PCL2k-TPU N2 86.0 47.5 1.39 47.9 35.59 

BeD-PCL2k-TPU N3 87.2 40.3 1.54 48.2 30.65 

BeD-PCL3k-TPU N1 84.3 19.3 1.86 51.8 36.5 

BeD-PCL3k-TPU N2 76.9 58.8 1.76 49.2 29.0 

* Nomenclature: BeD for cis-2-Butene-1,4-diol, PCLxk for polycaprolactone with nominal 𝑀𝑛 of 

x kDa, N1 for attempt 1. 

a Tm’s are values at endothermic peaks by DSC (heating at 10°C/min) 
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Scheme A1.1.1. Preparation of multiblock copolymer incorporating POSS. 
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Scheme A1.2.1. Synthesis of high molecular weight pTHF-based polyurethane. 
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Scheme A1.2.2. Acylation of high molecular weight pTHF-based PU with 4-pentenoyl chloride.  
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Scheme A1.3.1. Synthesis of pTHF-based PU with backbone-carrying carbon-carbon double 

bonds, using pTHF-diol of 2.9 kDa, HDI, and cis-2-butene-1,4-diol, a small molecule having 

crosslinking sites.  
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Scheme A2.1. Preparation of crosslinkable PCL-diol from ɛ-caprolactone and cis-2-butene-1,4-

diol (BeD) in effect of Tin(II) 2-ethylhexanpate. 
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Scheme A2.2. Synthesis of crosslinkable PCL-based PU bearing unsaturation in the backbone 

using x-PCL and HDI. 
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Scheme A2.3. Synthesis of PCL-based PU with backbone-carrying carbon-carbon double bonds, 

using x-PCL, HDI, and cis-2-butene-1,4-diol, a small molecule having crosslinking sites. 
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Scheme A3.1. a) Schematic showing the dual-electrospinning of x-PU and Pellethane; b) Cartoon 

illustrating the thermal curing process of the spun fiber webs via hot compaction. 
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Figure A1.1.1. Differential Scanning Calorimetry (DSC) analysis graph of a) PU1:2:3C3R2N2 

and b) PU1:2:3C1.5N5. Heating/cooling rate is 10 °C/min. 
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Figure A1.1.2. Storage modulus (𝐸′) profiles as a function of temperature for a) PU1:2:3C3R2N2 

and b) PU1:2:3C1.5N5. The frequency is 1 Hz. 
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Figure A1.1.3. One-way shape memory cycle of PU1:2:3 C1.5N5. The sample was deformed to 

20% strain at 40 °C. A temporary shape was fixed by cooling at a rate of 2 °C/min and unloading, 

and then the original shape was recovered by heating at 2 °C/min.   
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Figure A1.1.4. Two-way shape memory cycle of PU1:2:3C1.5N5 under application of an external 

stress of 0.65 MPa. The sample was stretched under high temperature (40 °C). The deformation 

step is followed by a cooling process at a rate of 2 °C/min, inducing an increase in strain. Then, 

the increased strain decreases by a heating process at a rate of 2 °C/min to 40 °C. 
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Figure A1.2.1. Differential Scanning Calorimetry (DSC) analysis graph of a) high MW pTHF-

based PUs: (i) HDI-N1, (ii) HDI-N2, (iii) HDI-N3, (iv) HDI-N4, and (v) TDI-N1; of b) acylated 

HDI-N4: (i) before peroxide curing and (ii) after peroxide curing. Heating/cooling rate is 

10 °C/min. 
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Figure A1.2.2. Pictures detailing the physical appearance of acylated a) HDI-N2 and b) HDI-N4. 
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Figure A1.2.3. NMR spectra for a) acylated HDI-N2 and b) acylated HDI-N4. 
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Figure A1.2.4. Storage modulus (𝐸′) profiles as a function of temperature for the HDI-N4 samples: 

uncured (black), D1T1.0 (red), and D1T1.5 (blue). The frequency is 1 Hz. 
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Figure A.1.2.5. One-way shape memory cycle of a) D1T1.0 and b) D1T1.5. The sample was 

deformed to 100% strain at 50 °C. A temporary shape was fixed by cooling at a rate of 2 °C/min 

and unloading, and then the original shape was recovered by heating at 2 °C/min. 
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Figure A1.2.6. Two-way shape memory cycle of a) D1T1.0 and b) D1T1.5. The sample was 

stretched to ca. 150% strain at a high temperature. The deformation step is followed by a cooling 

process at a rate of 2 °C/min, inducing an increase in strain. Then, the increased strain decreases 

by a heating process at a rate of 2 °C/min. 
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Figure A1.2.7. Scanning electron microscope (SEM) images of the electrospun HDI-N4 sample: 

a) top side and b) bottom side (in contact with the foil wrap). Scale bar = 50 μm. 
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Figure A1.3.1. Differential Scanning Calorimetry (DSC) analysis graph of the crosslinkable 

pTHF-based PU: (i) before curing and (ii) after curing. Heating/cooling rate is 10 °C/min. 
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Figure A1.3.2. Storage modulus (𝐸′) profiles as a function of temperature for the crosslinkable 

pTHF-based PU: uncured (black) and cured with 1 wt. % DLP at 90 °C for 2 h (red). The frequency 

is 1 Hz. 
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Figure A1.3.3. Two-way shape memory cycle of the cured pTHF-based PU. The sample was 

stretched to ca. 80% strain at a high temperature. The deformation step is followed by a cooling 

process at a rate of 2 °C/min, inducing an increase in strain. Then, the increased strain decreases 

by a heating process at a rate of 2 °C/min. 
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Figure A2.1. Pictures showing the physical appearance of synthesized x-PCLs and control PCL. 
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Figure A2.2. Thermogravimetric analysis (TGA) profiles of PCL control (black), x-PCL N6 (red), 

x-PCL N7 (green), x-PCL N8 (yellow), x-PCL N10 (blue), and x-PCL N11 (pink). Heating rate of 

10 °C/min. 
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Figure A2.3. Differential Scanning Calorimetry (DSC) analysis graph of the x-PCLs: (i) control 

PCL, (ii) x-PCL N6, (iii) x-PCL N7, (iv) x-PCL N8, (v) x-PCL N10, and (vi) x-PCL N11. Heating 

rate is 10 °C/min. 
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Figure A2.4. NMR analysis for pure BeD, control PCL, and a representative x-PCL. The 

characteristic peaks associated to the protons in the chemical structure are used to determine 

success of chemical synthesis. 
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Figure A2.5. Differential Scanning Calorimetry (DSC) analysis graph of the x-PCL-based PUs: 

(i) x-PCL-TPU N3, (ii) x-PCL-TPU N5, and (iii) x-PCL-TPU N6. Heating rate is 10 °C/min. 
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Figure A2.6. NMR analysis for a) x-PCL-TPU N5 and b) x-PCL-TPU N6. 
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Figure A2.7. Scanning electron microscope (SEM) images of the electrospun x-PCL-TPU N5 

sample generated at different ejecting rates: a) 1.0 mL/h, b) 1.5 mL/h, and c) 2.0 mL/h. Scale bar 

= 50 μm. 
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Figure A2.8. Storage modulus (𝐸′) profiles as a function of temperature for x-PCL-TPU: uncured 

(black) and cured with 1 wt. % DLP at 90 °C for 2 h (red). The frequency is 1 Hz. 
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Figure A2.9. NMR analysis for a) BeD-PCL2k-TPU N2 and b) BeD-PCL3k-TPU N1. 
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Figure A2.10. Scanning electron microscope (SEM) images of a) electrospun BeD-PCL2k-TPU 

N2 and b) electrospun BeD-PCL3k-TPU N1. Scale bar = 10 μm. 
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Figure A3.1. Scanning electron microscope (SEM) images of the dual-spun fibrous web made of 

x-PU and Pellethane a) before thermal curing and b) after thermal curing. Scale bar = 50 μm. 
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Figure A3.2. Differential Scanning Calorimetry (DSC) analysis graph of fibrous web (i) before 

and (ii) after hot compaction. Heating rate is 10 °C/min. 
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Figure A3.3. Storage modulus (𝐸′) profiles as a function of temperature for the crosslinked fibrous 

web. The frequency is 1 Hz. 
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Figure A3.4. Tensile two-way shape memory testing of the crosslink fibrous web. The sample was 

deformed and kept at the stress corresponding to ca. 80% strain for the first two cycles, while no 

external stress was applied during the last two cycles, during all which alternate heating and 

cooling at 2 °C/min were employed. 
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Figure A3.5. Tensile two-way shape memory cycles under externally stress-free condition: (i) 

sample 1 (400 rpm + 0% prestrain), (ii) sample 3 (400 rpm + 50% prestrain), (iii) sample 4 (400 

rpm + 200% prestrain), and (iv) sample 2 (1000 rpm + 0% prestrain). All samples followed the 

temperature variation recorded in the bottom figure. 
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