
Syracuse University Syracuse University 

SURFACE SURFACE 

Dissertations - ALL SURFACE 

December 2017 

Semi-Open Space and Micro-Environmental Control for Improving Semi-Open Space and Micro-Environmental Control for Improving 

Thermal Comfort, Indoor Air Quality, and Building Energy Thermal Comfort, Indoor Air Quality, and Building Energy 

Efficiency Efficiency 

Meng Kong 
Syracuse University 

Follow this and additional works at: https://surface.syr.edu/etd 

 Part of the Engineering Commons 

Recommended Citation Recommended Citation 
Kong, Meng, "Semi-Open Space and Micro-Environmental Control for Improving Thermal Comfort, Indoor 
Air Quality, and Building Energy Efficiency" (2017). Dissertations - ALL. 810. 
https://surface.syr.edu/etd/810 

This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for 
inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact 
surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F810&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=surface.syr.edu%2Fetd%2F810&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/810?utm_source=surface.syr.edu%2Fetd%2F810&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


Abstract 

Local air delivery, heating, and cooling combined with local space partition and 

confinement (called semi-open space or SOS) have the potential to provide micro-

environment that is tailored to the individual preference of the occupants, and hence 

increase the percentage of satisfied occupancy from currently 80% to near 100%. This 

research investigates the use of a micro-environmental control system (µX) and semi-open 

space (SOS) to efficiently provide the desired thermal comfort and air quality conditions 

for individual occupants while the ambient air temperature set-points were relaxed for 

reducing the overall energy consumption of the building. A computational fluid dynamics 

(CFD) model was developed and validated. The model in combination with the results 

from full-scale chamber experiments was used to evaluate the performance of proposed 

cooling/heating delivery system and the role of the SOS. During summer time, a cooler air 

was supplied locally. It was found that the cooling performance increased more by 

increasing the supply air flow rate than reducing the supply air temperature when the total 

cooling power is constant, and the cooling performance of the Air Terminal Devices 

(ATDs) was highly dependent on the shooting angle. The cooling efficiency increased 

dramatically with the supply air temperature. Also, both the CFD model simulation and 

experimental work has demonstrated that the heat loss by the manikin was sensitive to the 

distance between the diffuser and the manikin. However, this effect was also related to the 

clothing material on the manikin. During the winter time, the idea of heating a person with 

only a warm air jet was shown to be not efficient, but the confinement box was able to 

improve the heating performance by two to three times. A more ergonomically-friendly 

warming foot mat with a reflective box was very effective to restore people’s thermal 



comfort when the ambient space air was maintained at a lower temperature set-point for 

energy saving. The existence of the cubicle, as an SOS, significantly changed the airflow 

pattern in the office, and hence the thermal environment and air quality distribution. The 

cubicle could “protect” the occupants from the background air flow by reducing the 

average velocity as well as increasing the average temperature in the occupied space. The 

openness of the cubicle weakened the “protection” of the cubicle depending on the 

opening’s orientation and size. The “protection” may not be favored regarding thermal 

comfort and air quality when the emission is inside the cubicle, but it should be encouraged 

when the emission is outside the cubicle. The combination of the µX with the SOS can 

create an independent micro-environment regarding thermal comfort and air quality as 

well as maintain the privacy of the occupant. As a secondary goal, the ability of the CFD 

model to adequately predict the local heat transfer from the human body and its limitation 

were also investigated. The case without the µX compared better with the experiment than 

the case with the µX from the heat transfer point of view. The effect of the clothing material 

could be properly represented by a constant temperature difference or as a layer of thermal 

resistance. Moreover, it was found the fidelity of the surface temperature control for the 

manikin affected the validation of the CFD model. The concept of SOS was defined for 

the first time in this study and SOS’s role in shaping the microenvironment with and 

without local heat, cooling and ventilation were investigated both numerically and 

experimentally. The detailed CFD model developed has accurate representation of the 

effects of the manikin’s geometry and the effect of clothing thermal resistance on the 

boundary conditions for the CFD simulation, which can be used for the investigation of 

effects of air velocity, temperature, room air flow pattern and clothing on the local and 



overall average heat loss from human bodies and the resulting thermal comfort of the 

building occupants under various internal room and partition configurations. 
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1. Introduction 

1.1. Background and Problem Definition 

1.1.1. Motivation 

Buildings, since they were created for the first time, have been offering a shelter to protect 

humans against the natural weather for thousands of years. With the development of human 

society, buildings have been upgraded to provide people with better indoor environment by 

using heating, ventilating and air conditioning (HVAC) systems. Nowadays people spend 

more than 80% of their time indoors. The indoor thermal and air quality conditions play a 

key role in human heath, comfort, and performance.  

 

Since the beginning of the 1970s, energy crisis first came in developed country and then 

spread to the whole world, which led to the need to save energy. More recently, concern 

over climate change has led to a renewed worldwide effort in reducing building energy 

consumption to reduce CO2 emissions. It was reported that heating, ventilation and air 

conditioning (HVAC) for buildings consume approximately 20% of the total energy use in 

developed countries (Hoyt et al. 2009, 2015) and about 13% in the United States (EIA 

2014). Reducing energy consumption by HVAC systems plays a major role in improving 

the building’s overall energy efficiency. The conventional HVAC system typically uses 

total volume heating, cooling, and ventilation system in which the entire indoor air space 

is well mixed and conditioned to achieve the set-point temperature set by a thermostat for 

the space. Since occupants only occupy a fraction of the total air volume in the building, 

this type of system wastes a significant amount of energy to condition the unoccupied 

space. It also creates inevitable discomfort and poor air quality for some occupants because 
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it cannot tailor the condition for individual occupant according to their preferences. It was 

reported that individuals had different thermal sensations under the conventional HVAC 

system due to variation in gender, age, body mass, clothing habits, metabolic rate, and 

thermal adaptation (Indraganti et al. 2015; Karjalainen 2012; Kim et al. 2013). Moreover, 

there are also individual differences between occupants regarding perceived air quality 

(Summer 1971). ASHRAE Standard 55 (ASHRAE 2013c) defines thermal comfort 

conditions under which 80% of the occupants would be satisfied, and ASHRAE Standard 

62 (ASHRAE 2013d) specifies the minimum outdoor air amount per occupant and floor 

area of the indoor space. However, in a large office building survey study, only 11% and 

26% of the buildings achieved the 80% of occupants satisfaction criteria for thermal 

comfort and air quality, respectively (Huizenga et al. 2006). The large interpersonal 

variability in thermal sensation and perceived air quality makes the buildings unable to 

satisfy many people’s thermal comfort requirement, even though a large amount of energy 

has been used to maintain the narrow temperature band and condition the outdoor air. 

 

Building energy consumption is mainly driven by the cooling or heating load which is 

proportional to the temperature difference between indoor and outdoor air according to the 

Fourier’s law for heat transfer (Mills 1999). The typical thermostat set-point range inside a 

building is within 2.2 °C[1] . Several published findings have indicated the significant 

energy saving potential by expanding the temperature set-point range (increasing the set-

point in the summer and reducing the set-point in the winter) (Hoyt et al. 2009, 2015). 

Simulation analysis has shown that expanding the set-point range from 21.4-23.9 °C to 

                                                 
[1] (X) ℃ = (X × 9/5 + 32) ℉. 
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18.9-26.1 °C in a conventional HVAC building would reduce HVAC energy consumption 

by at least 20% depending on the location and climate (Hoyt et al. 2009).  

 

Figure 1-1 Summary of average HVAC energy saving in 5 climates(Hoyt et al. 2015) 

Expanding the temperature band of the building will also adversely impact the occupants’ 

thermal comfort as expected (Hoyt et al. 2015; Verhaart et al. 2015). Broader set-point 

range sacrifices thermal comfort, which affects occupants’ productivity. A study supported 

by the Finnish and American government concluded that an average 2% decrement in work 

performance per ℃ increment in room temperature was reported by multiple studies when 

the temperature is above 25.0 ℃ (Seppanen et al. 2004). Moreover, a few studies also show 

that when the temperature dropped below 20.0 ℃, 0.5-3% reduction in productivity per ℃ 

decrement was also observed (Lan et al. 2012). One should keep in mind that the salary 

costs of office workers are usually about two orders of magnitude more expensive than the 

building facility cost (de Dear et al. 2013). Therefore, efforts have to be made to restore 
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people’s thermal comfort locally when the expanded temperature band was applied to save 

energy. 

 

A personalized environmental control system (PEC) or micro-environmental control 

system, which was first defined by Khalifa (Khalifa 2017), has the potential to restore 

people’s thermal comfort as well as provide fresh outdoor air to the people directly, and 

hence save energy. In recent years, many new methods and systems for improving personal 

environmental quality and reducing energy consumption (Cao et al. 2015; Khalifa 2006; 

Kong et al. 2014; Nielsen 2007), have found applications in the real offices after studied in 

the research laboratories. 

 

Different from the conventional total volume ventilation, the air supply devices of these 

types of systems are mostly mounted in cubicles created by open office partitions. This 

kind of arrangement does not only give relatively independent environment on the 

remaining office space and other cubicles but allow the interaction between them. 

Depending on the configuration of the cubicle and PEC system, the environment in the 

cubicle as well as around the manikin may differ a lot and influence the thermal sensation 

and inhaled air quality, as well as the overall efficiency of heating or cooling. It was shown 

that with local air distribution systems, the cubicle could prevent the contaminant from 

coming into it when the source is outside the cubicle and can partially confine the 

contaminant in it when the source is in the cubicle (Kong et al. 2014). The space in the 

cubicle semi-confined by the office partitions is defined as the Semi-open Space (SOS), 

which plays a key role in determining the micro-environment experienced by the occupant 
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in the cubical. This study aims at studying how SOS and the micro-environmental control 

system can be optimized for improving thermal comfort and indoor air quality while 

reducing building energy consumptions. 

 

1.1.2. Semi-open Space 

Semi-open Space is defined as a subspace created by semi-enclosed partitions in a larger 

open space. Based on this definition, there are a lot of applications of SOS, for instance 

cubicles in the office (Figure 1-2a), hoods in the kitchens (Figure 1-2b), blocked wards in 

the hospital (Figure 1-2c), blocks in the restroom (Figure 1-2d), et al. 

 

(a) 
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(b) 

 

(c) 
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(d) 

Figure 1-2 Examples of Semi-open Space  

(a) office cubicles (“Office cubicles” 2014); (b) residential kitchens (“Residential 

kitchens” 2014); (c) hospital wards (“Hospital wards” 2014); (d) restroom blocks 

(“Restroom blocks” 2014). 

 

These applications may look quite different at first sight; however, they share some features 

from the ventilation and pollution control point of view. A semi-open space, on the one 

hand, is a partially open space with connections between one SOS and the others as well as 

the outside space. On the other hand, SOS also provides a relatively independent space. 

Integrated with an appropriate PEC system, SOS has a big potential of saving energy while 

improving thermal comfort level and air quality around occupants as well as providing 

sound, light, and spatial privacy. 

 

However, so far most of the ventilation studies are focused on the air distribution in open 

space. Only a few researches were done to investigate the performance of SOS (Demetriou 

et al. 2008; Zhang et al. 2007).  Jiang et al. (1997) studied two kinds of office configurations 
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with five ventilation strategies numerically and found that the use of partitions significantly 

affects the uniformity of the supply air distribution. Some work has been done to show the 

influence of partition of workstations on air distribution. However, these workstations were 

neither individually ventilated nor adequately enclosed. Bauman (F.S. Bauman et al. 1991; 

Fred S. Bauman et al. 1992) did a very comprehensive work on the ventilation in an office 

with workstations. In his work the influence of a range of partition configurations and 

environmental parameters, including partition height, solid or airflow partitions, airflow 

gap size, supply air volume, supply/room temperature difference, supply diffuser location, 

heat load density, workstation size and cooling or heating mode, was investigated in a 

ceiling-ventilated room in terms of thermal environment and ventilation efficiency. Many 

useful and interesting results are found (F.S. Bauman et al. 1991): 

• The magnitude of partition effect should diminish with increasing workstation size, 

toward the limiting case—i.e., having the air movement conditions found with no 

partitions present; 

• Air flow partitions may result in small increases in air velocity within small 

workstations, but very limited; 

• The effect of supply air flow rate appears to be very small on the average air velocity; 

• The locations of the diffuser and return vent affect the performance of the 

partitioning very much. The temperature and velocity distribution differs a lot when 

the position is different; 

• In total volume ventilated room, the effect of the partition (gap size) is unpredictable; 

• The existence of air-flow partitions has a negligible effect on temperature (and even 

velocity) distributions in all workstations; 
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• When the test condition is the same (heat load, supply temperature, supply air flow 

rate), the most acceptable comfort conditions are obtained in the larger cubicle; 

• No comfort improvements are predicted due to airflow partitions; 

• Comfort conditions are identical in all three workstations when no partitions are 

present; 

• The existence of the partition increases the mean radiant temperatures; 

• Short circuiting may occur when the partitions are present; 

• The presence of the partitions is a reason for non-uniformity; 

• Heat loads in partitioned workstations had a significant effect on air temperatures, 

mean radiant temperatures, and overall comfort conditions. 

 

Based on the results of their experiments, data are collected, and the performance of the 

SOS can be analyzed (Table 1-1). In a cooling mode with a constant heat source in the 

workstation, most of the temperature inside the workstation is lower than the temperature 

in the outside space, and the largest difference can be as high as 1.1 °C, which means SOS 

can partition the space at least regarding temperature distribution. After this study, another 

work done by Shaw et al. (Shaw, Vaculik, et al. 1993; Shaw, Zhang, et al. 1993) 

investigated the effect of the cubicle partition on the air quality. It was concluded that the 

existence of a cubicle could cause a dead air space inside the cubicle and, hence, an increase 

of mean age of air. Nevertheless, due to the non-uniformity of the mixing ventilation, 

different configurations of the workstation and different supply conditions, the partition 

effect cannot be generalized. 
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Table 1-1 Temperature inside and outside SOS (data from Bauman et al. 1991) 

Case # 

Room 

Temp 

(℃) 

WS1 Temp   (℃) WS2 Temp   (℃) WS3 Temp   (℃) 

Avg ΔT Avg ΔT Avg ΔT 

1A 24.20 23.47 -0.73 23.50 -0.70 23.57 -0.63 

1B 24.20 23.63 -0.57 23.77 -0.43 23.80 -0.40 

3A 26.40 25.60 -0.80 25.67 -0.73 25.93 -0.47 

4A 21.90 21.40 -0.50 21.57 -0.33 21.27 -0.63 

4B 22.10 21.27 -0.83 21.50 -0.60 21.33 -0.77 

5A 23.60 23.43 -0.17 23.43 -0.17 23.10 -0.50 

5B 23.20 22.73 -0.47 23.10 -0.10 22.10 -1.10 

 

 

 

1.1.3. Micro-Environmental Control Strategy 

Total volume HVAC (T-HVAC) system and local/personalized ventilation system provide 

clean and conditioned air to the room but in different ways. T-HVAC systems have 

diffusers located outside the semi-open space. Different air distribution systems offer 

different strategies in providing thermal comfort condition and protection of people against 

pollutants. The pollutants are almost fully mixed in the occupied zone in a room or in a 

vehicle ventilated by mixing ventilation, and they are removed by a diluting process (P. V. 

Nielsen et al. 2003). The displacement ventilation aims for displacing but not mixing the 

polluted room air with clean air, which is supplied close to the floor at a low velocity. In 
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this system, the thermal flows induced by the heat source dominate the air movement in the 

room and an obvious vertical temperature gradient exists in the whole space (P. V. Nielsen 

2011). Often, occupants in rooms with mixing or displacement ventilation have to 

compromise between preferred thermal comfort and perceived air quality, because some 

people are very sensitive to air movement while others are more sensitive to the air quality. 

The disadvantage of the total-volume ventilation principle is that often room air movement 

is changed due to furniture rearrangement and this may increase occupants’ complaints of 

discomfort and poor air quality (Melikov et al. 2002).  

 

The strategy of using a PEC system to improve occupants’ thermal comfort is suggested by 

many standards (Melikov et al. 2013) and is also an effective way to reduce the building’s 

total energy cost. The PEC system is reported to be capable of improving the thermal 

comfort and air quality around the subject, reducing the intensity of SBS symptoms and 

increasing the performance of the subjects (Arens et al. 2006a; Kaczmarczyk et al. 2004; 

A. K. Melikov 2004; H. Zhang 2003). Usually, the micro-environmental control strategies 

are classified into three different categories: air quality control, thermal comfort control 

and comprehensive control which includes both air quality and thermal comfort. Air quality 

control is accomplished by supplying fresh/purified air to the people locally, exhausting the 

contaminated air locally, separating the contaminating source from the occupants (Khalifa 

et al. 2009; Khalifa et al. 2008; Russo et al. 2008; Russo and Khalifa 2010; Russo et al. 

2009; Russo and Khalifa 2010). These systems are also called personalized ventilation (PV) 

system (Kaczmarczyk et al. 2004). In the space where occupants are less movable, for 

example, offices, theaters, and vehicles, the local-supply-fresh/purified-air system can be 
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applied. Moreover, this kind of system is usually designed to provide comfort to occupants 

at the same time, especially in summer, which makes it qualified to be the third category of 

the micro-environmental control strategy. Since it can satisfy the individual needs of each 

occupant by customizing the environment around the human body, it has a big advantage 

over both displacement and mixing ventilation. It was also found that a PV system 

supplying only one forth amount of fresh air of the displacement ventilation could be more 

effective regarding users’ satisfaction (Cermak et al. 2006; N. Gao and Niu 2005). The 

same conclusion was obtained by Melikov that this kind of system may reduce significantly 

the number of occupants dissatisfied with inhaled air quality (Dalewski et al. 2013; Melikov 

et al. 2002).  The local exhaust system is typically utilized in the space where pollutant 

source is strong and clustered, like the kitchen. Some other applications use air or partition 

to separate the pollutants from the occupants, for example, protective ventilation (Cao et al. 

2015). This kind of system is usually used in space when the pollutants are distributed. 

Several kinds of personalized ventilation devices have been developed recently. It is proven 

that some of them can improve the air quality as well as thermal comfort while the others 

cannot. A push-and-pull kind of PV is invented and applied to the aircraft cabin seat. The 

result showed a dramatic decrease (77%) of contaminant concentration inhaled by the 

exposure manikin when the local supply of clean air existed and the contaminant exhaled 

can only be exhausted effectively when the local exhaust and the local supply are used 

simultaneously (Melikov and Dzhartov 2013). A local exhaust ventilation system with a 

privacy cell in air cabin developed by Dygert also shows an advantage compared with back 

seat exhaust, reducing the passenger exposure to 60% no matter where the infectious source 

is (Dygert and Dang 2012). A lot of personalized ventilation terminals have been developed 
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and tested by Nielsen, and the performance of these systems was proved to be significant 

(Kong et al. 2015; Nielsen et al. 2008, 2013; Nielsen et al. 2007; Nielsen et al. 2007). 

 

Another kind of micro-environmental control strategy is only for the control of thermal 

comfort condition. These systems use recirculation air, radiation or conduction to provide 

local cooling or heating to the occupants. Recirculation air is a more common method that 

provides warm or cool air to the person and sometimes helps improve perceived air quality, 

especially in summer condition. The performance of using this system to deliver clean, cool 

and dry air to the breathing zone of each occupant and maintain the thermal comfort level 

depends on the interaction among the supply airflow, occupants-initiated flows (free 

convection flow around the body and the flow of respiration), the airflow of exhalation and 

the room airflow outside workspaces (Melikov 2004). Radiant or conductive heating and 

cooling are realized by using a surface that is hotter or cooler than the surface of a human 

body. The difference between them is that the surface for radiation is usually away from 

the occupant and of higher temperature and the one for conduction is usually touching the 

body closely and of lower temperature. Over the past few years, many kinds of PEC 

systems for controlling thermal comfort have been developed and tested either physically 

or physiologically. Arens and Zhang from U.C. Berkeley made many efforts in this field 

by testing many kinds of PEC systems in their lab including using footwarmers in cold 

environment (Zhang et al. 2015), using moving air for cooling during moderate exercise 

(Zhai et al. 2015) and in offices (Arens et al. 1998; F. Bauman et al. 1993; Pasut et al. 2014; 

Zhai et al. 2013), a heated/cooled chair (Pasut et al. 2013, 2015), and an integrated task-

ambient conditioning system (Zhang et al. 2010). Melikov from DTU also made some 
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contributions to this field by testing a heated/cooled seat on acceptable ambient temperature 

range (Zhang et al. 2007), facially-supply warm air in cold environment (Kaczmarczyk et 

al. 2010), local convective and radiant cooling in warm environment (Melikov et al. 2013), 

and a ductless personalized ventilation (Halvonova and Melikov 2010), and designing an 

integrated locally controlled system for optimal comfort (Melikov and Knudsen 2007; 

Watanabe et al. 2010). Some other researchers have also done related work in this field. 

Huang et al. investigated the demand for air movement in a warm environment (Huang et 

al. 2013). Foda and Sirén developed a design strategy for maximizing the energy-efficiency 

of a localized floor-heating system (Foda and Sirén 2012). Moreover, Deng et al. tested a 

heated seat for improving comfort with the human subject (Deng et al. 2016). 
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Figure 1-3 Categories of micro-environmental control strategy 

 

1.1.4. Multi-scale Zones in a Ventilated Room 

In a room with semi-open spaces, space can be divided into several zones with different 

scales. Typically, three zones are involved: the micro-(environment) zone, the meso-

(environment) zone, and the macro-(environment) zone. The micro-environment zone is 

defined as the perceived real and conceptual space around a person that directly impact 

his/her personal environmental quality/exposure to the total indoor environment. The meso-

environment zone is the zone in the SOS enclosed by the semi-open partitions excluding 

the micro-environment. The macro-environment zone is the zone outside the SOS. Besides, 



16 

 

depending on the environmental control strategy or air distribution strategy, there are non-

occupied zones in the three zones, including the space above 1.8 m from the floor and 

within 1.0 m from external walls/windows or fixed heating, ventilating or air-conditioning 

equipment and 0.3 m from internal walls (ASHRAE 2013c) (Figure 1-4). 

 

In fact, among the three zones, micro-zone is the most important one. However, the 

configuration of the specific micro-zone differs regarding the category of the exposure. 

Imagine one is sitting in a room (Figure 1-4), all the surrounding environment has some 

influence on the sensation of the people. The air of certain temperature flows around his/her 

body, exchanges the energy with it and brings the draft effect to his/her exposed skin. The 

surrounding surfaces exchanges energy with the human body by radiation. People take in 

the air from the vicinity of the nose and mouth, and also expire the stale air back to the 

ambiance. In some cases, the contaminant in the air can even harm the human body through 

the exposed skin, for example, the ozone can lead to the irritation of the skin, VOC can 

significantly dehydrate and irritate the skin (Brasche et al. 2004). The lamps as well as the 

sunshine through the window project lights to space. Windows on the wall also provide the 

view of the outdoor scenery that affects the mood of people to some degree. Noise 

transmitted in the space interferes the thinking of people and also affects the productivity 

of building occupants. Depending on the specific exposure aspect, the micro-zone is 

defined differently, and the following table provides a summary of the definition of micro-

zones for different exposure considerations. 

Table 1-2 Micro-zone regarding different exposure 
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Exposure of interest Related Micro-zone 

Thermal Comfort 

The space around the body in which the temperature and 

velocity of the air can be felt and surrounding surfaces 

which exchanges energy with occupant by radiation. 

Air Quality 

The vicinity of the nose and mouth and space around the 

exposed skin when certain kind of contaminant is 

considered. 

Lighting Condition The space in the work place in front of the occupant. 

View 

Inside and outside the semi-open space which can be 

seen by the occupant. 

Noise 

The space close to the occupant’s ear which the noise can 

be perceived. 
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Figure 1-4 Micro-environment zone definition 

 

Technically “micro-environment” is a big term, but in this work, it is limited to be referred 

to the thermal and air exposures of the occupants.  

 

The multi-scale zones can be geometrically separated but still interact with each other from 

the performance point of view. These zones also differ regarding the human activity within 

the zones. The micro-environment zone is the zone in which occupants spend most of their 

time, while the macro–environment zone is the zone in which occupant spend occasionally 

and is considered as circulation zone. Different requirements of the environment can be 

made according to the purpose of the zones. The multi-scale concept is especially 

applicable to the case with semi-open space since in an open space, the meso-environment 

zone is the buffer zone between the micro- and the macro-environment zone.  
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1.1.5. Problem definition 

The fundamental research question is how to use semi-open space and micro-environmental 

control to efficiently provide the desired thermal comfort and air quality conditions for 

individual occupants while reducing the overall energy consumption of the building. 

Extending the temperature set-points can reduce the temperature differential across the 

envelope, which reduces the heating and cooling loads of the HVAC system and reduces 

energy consumption for air conditioning. Delivering cooling or heating locally to the space 

confined by a semi-open space surrounding the occupant in principle enables the micro-

environmental control of the thermal and air quality conditions for the individual occupant. 

The effectiveness and efficiency of such a micro-environmental control system depend on 

the SOS configuration, methods of local heating and cooling, and air distribution design.  

Air supplied from a local air diffuser tends to entrain and mix with the ambient air, and 

hence its ability to cool or heat is reduced when reaching the human body. On the other 

hand, having a too cold air reaching the human body can cause draft and make the occupant 

thermally uncomfortable. The airflow through the openings of the semi-open space can also 

significantly affect the performance of the micro-environmental control system. This 

research will address these issues, and is designed to focus on the following specific 

questions: 

1) How different the local air delivery methods perform comparing to the total air volume 

system? 

2) How effective is the local air-cooling for micro-environmental control? Can it remove 

the additional heat from the occupant when the ambient temperature in the general 
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space is increased for energy saving? What are optimal design and operating parameters 

(supply air distribution, flow rate, and temperature)? 

3) How to provide local heating?  How effective are different local heating methods? 

4) What is the role of the semi-open space for micro-environmental control? How the SOS 

configuration affect the effectiveness of the micro-environmental control system?  
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1.2. Goal and Objectives 

The primary goal of the proposed study is to investigate why and how semi-open space 

(SOS) and micro-environmental control system (MECS) can improve thermal comfort and 

IAQ while saving energy. Specific objectives are:  

1) Develop experimental and numerical methods for evaluating the performance of the 

micro-environmental control system (MECS) in semi-open space (SOS) for 

improving thermal comfort and indoor air quality in the micro-environment while the 

set-point temperature in the macro-environment is relaxed (increased in case of 

cooling or reduced in case of heating applications) for reducing building energy 

consumption; 

2) Improve the understanding of the various factors affecting the performance, including 

SOS configurations and MECS design and operation parameters, such as air supply 

conditions of the air supply terminal for cooling and working heat flux of the heating 

mat for heating.  

3)  Develop guidelines for the application of SOS and MECS.  

 

As a secondary goal, the ability of CFD to adequately predict the local heat transfer from 

the human body and its limitation is also investigated. Since the application of the semi-

open space is diverse, only the office with cubicles is studied in this work. 

 

1.3. Scope of Work and Dissertation Roadmap 

To achieve the objectives above, the following research works have been performed: 
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1) A review of the fundamentals on thermal comfort, indoor air quality, and room air 

distribution methods have been conducted, and the results are presented in Chapter 2. 

2) A series of preliminary studies were conducted to help improve the understanding of 

the work scope and methods. Three different local air distribution methods have been 

evaluated by conducting full-scale experiments, and the results are presented in Chapter 

3. 

3) A CFD model was developed primarily based on previous studies at Syracuse 

University as well as some other researchers. The performance of three proposed air 

terminal devices (ATDs) and different kinds of heating delivering devices (HDDs) for 

the micro-environment control system were evaluated. Specifically, the following 

subjects were studied: 

For cooling condition:   

a) Influence of the supply air condition, including supply air temperature and flow 

rates; 

b) Effect of the shooting angle, i.e., air supply directions; 

c) Effect of the manikin location relative to the supply air diffuser; 

For heating condition: 

d) The performance of using warm air, i.e., convection, to heat the manikin. 

e) The performance of using radiation and conduction to heat the manikin. 

These studies were conducted using a 3-dimensional domain representing a typical 

office environment with expanded ambient temperature set-points. Results are 

presented in Chapter 4 and 5 of this dissertation for cooling and heating, respectively. 

 



23 

 

4) To further validate the CFD model and provide additional experimental data of using a 

micro-environmental control system to restore thermal comfort while saving energy, a 

full-scale experimental mock-up system of a single workstation equipped with micro-

environmental control system was constructed subsequently. Hot-sphere anemometer 

and thermistor temperature sensor were used to monitor the micro-environment around 

the manikin, and embedded heat flux sensors were used to monitor the heat flow rates 

from different segments of the manikin. The results were compared to the CFD 

simulation, and further analysis was conducted to address the issue about the 

discrepancy between CFD and experiments and improve the understanding of the fluid 

mechanics and heat transfer processes involved. Results are presented in Chapter 4 of 

this dissertation. 

 

5) Upon completion of the experimental facility, a more thorough study of using a micro-

environmental control system with or without semi-open space was conducted. The 

mock-up micro-environmental control system with adjustable air diffuser was tested 

with a dressed manikin. The effects of shooting angle, manikin location, supply air flow 

rates and supply air temperature were tested, and a design chart was developed to help 

with the application of the micro-environmental control system. Then a typical semi-

open space, office cubicle, was created around the workstation, the effect of the semi-

open space of different configurations on the micro-environment was investigated 

through a series of experimental measurements. Results are presented in Chapter 6 of 

this dissertation. 
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6) The performance of the semi-open space was further evaluated by CFD simulation 

regarding air quality and thermal environment management. The effects of opening 

size, opening location/orientation, pollutant source and ventilation strategies were 

investigated, and some guidelines for designing the SOS for micro-environmental 

control were developed.  Results are presented in Chapter 7 of this dissertation. 

 

7) Chapter 8 of the dissertation summarizes the conclusions from this study and identify 

areas for further investigation on the subject.  
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2. Thermal Comfort, Indoor Air Quality and Room Air Distribution 

Indoor environment refers to the building’s environment about the health and wellbeing of 

those who occupy space within it. The purpose of the HVAC system is to provide the 

occupant satisfactory thermal comfort and air quality conditions. Since the modern HVAC 

system was created for the first time, thousands of studies about monitoring, evaluating, 

predicting, and designing indoor environment have been conducted in the past few decades. 

The understanding of the related concepts needs to be clarified to obtain a meaningful 

conclusion. 

  

2.1. Thermal Environment 

Thermal comfort is defined as the condition of mind that expresses satisfaction with the 

thermal environment, which is the environment that affects a person’s heat loss (ASHRAE 

2013c). Evaluating and predicting the thermal environment requires an understanding of 

thermal comfort and existing evaluation methods.  

 

2.1.1. Thermal Comfort 

Thermal comfort is a plurality of sensations and is secured by all factors influencing the 

thermal condition experienced by the occupant (Croitoru et al. 2015). The judgment of 

thermal comfort is a cognitive process which involves many inputs influenced by physical, 

physiological, psychological, and other processes (ASHRAE 2013a).  

 

The common-sense people have is that one feels comfortable at certain temperature and 

humidity and uncomfortable when they exceed the certain range. Thermal comfort is a 
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direct response of the body to some environmental factors, including air temperature, 

humidity, velocity, radiation, conduction, etc. Also, thermal comfort depends on behaviors 

that are initiated by one’s thermal sensation. For example, people put on more clothes when 

they feel cold and take off clothes when they feel hot. In addition, the difference of 

individual cognition of thermal comfort has already been found to be related to age, gender, 

weight, metabolic rate, mood, etc. Based on these, the factors which affect thermal comfort 

can be classified as environmental, adaptive, and intrinsic factors (Figure 2-1). 

 

Figure 2-1 Thermal comfort 

 

Thermal comfort is the result of thermoregulation to maintain thermal balance. To achieve 

thermal balance, the body behaves in a strongly non-linear manner and contains multiple 
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sensors, multiple feedback loops and multiple outputs (Hensen 1990). The controlled 

variables are core temperature and skin temperature. The signal received by the skin or 

deep body is returned to the hypothalamus and triggers the adaption algorithm – shivering, 

respiration, muscle tension, vasodilatation, vasoconstriction, and sweating – to 

continuously make the heat balance.  

 

2.1.2. Thermal Comfort Evaluation 

During the past four decades, hundreds of researchers have been continuously putting 

efforts in explaining and predicting thermal comfort of people. The first thermal comfort 

model was developed for military and aerospace applications. Over the past 30 years, many 

kinds of thermal comfort model have been developed to help with the design and evaluation 

of both the indoor and outdoor environments. Fanger (1970) developed the first widely-

used thermal comfort model – Predicted Mean Vote (PMV) and Predicted Percent 

Dissatisfied (PPD) – by relating the thermal comfort to a steady state heat balance equation. 

This model was then referred by many comfort standards and is still widely used all over 

the world. However, this model also has its limitations, for example, it is mostly accurate 

for clothing insulation between 0.3 and 1.2 clo, for activity level below 1.4 met, and for air-

conditioned buildings (Charles 2003). Therefore, other models have come up afterward. 

 

As mentioned above, since thermal comfort is a cognitive process which involves many 

inputs influenced by physical, physiological, psychological, and other processes (ASHRAE 

2013a), thermal comfort models are categorized as physiological models – explains and 

simulates the physiological response of the human body – and psychological models – 
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explains and predicts the cognitive process for thermal comfort. 

 

2.1.2.1. Physiological Models 

The physiological models simulate the autonomic thermoregulation response of the human 

body to the external stimuli. The first model which explains and gives a prediction of 

thermoregulation process is the 25-node model developed by Stolwijk (Stolwijk 1971). 

This model divided the human body into one central blood compartment and six segments 

each of which has four layers in the radial direction. Because of the division into six parts, 

the model can be used in non-uniform condition, but the environment was still considered 

as a steady state. However, although this model had well constructed a reasonable 

procedure for predicting the thermoregulatory behavior, it was not widely used at that time 

because of the lack of computational resource. This model was originally developed for 

aerospace applications. Some simplified models were developed instead. One of them was 

developed in 1971 by Givoni and Goldman (Givoni and Goldman 1971, 1972). This model 

treated the entire human body as one node and helped predict the core and corresponding 

skin temperature empirically based on any given metabolic rate, environment, and clothing. 

This model is only applicable to a hot environment. Afterward, the well-known Pierce two-

node model was developed by Gagge et al. (Gagge 1973; Gagge et al. 1986). This model 

simplified Stolwijk’s model to a lumped two-node model which represented the skin and 

core of body separately. It calculated the heat generation rate based on metabolic rate and 

additional shivering and muscle tension heat generation. The blood flow, sweating rate, and 

additional heat generation rate are all calculated based on the skin and core temperature 

deviation from the set-point. Different from the 25-node model, this model enables the 
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prediction in transient condition by adding the time derivative of skin and core temperature 

but disables the prediction in non-uniform condition because of the simplification. Another 

well-known two-node model is the KSU two-node model developed by Kansas State 

University (Azer and Hsu 1977). This model is very similar to the Pierce two-node model, 

and the only difference is the control equations for sweating and blood flow. In order to 

address the issue of prediction in nonuniform condition with a simpler model, Kohri et al. 

developed a dispersed two-node mode based on Gagge’s two-node model integrated with 

the model of the distribution of the metabolic heat and the skin blood flow rate developed 

by Yokoyama (Kohri and Mochida 2002, 2003; Yokoyama et al. 1997; YOKOYAMA et 

al. 2000). In this model, the body is divided into 11 parts, and each part has a core layer 

and a skin layer. With the development of computing ability, people started to come back 

to Stolwijk’s model and continued his work. Several direct derivatives include IESD-Fiala 

model (Fiala et al. 1999, 2001), Tanabe’s 65-node model (Tanabe et al. n.d.) and Multi-

element model (Yi et al. 2004). In Fiala’s model, the body is divided into 20 elements, most 

of which consist of 3 sectors. Same with Stolwijk’s model, this model includes a passive 

system, which represents the physical body and heat transfer inside it and with the 

surrounding environment, and an active system, which predicts the thermoregulatory 

reactions. Tanabe divided the human body into 16 elements, each of which has four layers: 

core, muscle, fat, and skin, with a central blood compartment. The convective and radiant 

heat transfer coefficient through the manikin is determined by manikin experiment. The 

multi-element model is the most complicated and realistic human thermoregulation model 

which decomposes the human body into 15 cylindrical parts using 3000 nodes. With several 

significant improvements based on Tanabe’s model, Huizenga et al. developed another 
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model – the UC Berkeley Comfort Model. This model has the potential to simulate an 

arbitrary number of segments. Blood flows through limbs to the extremities with counter-

current heat exchange. Each segment is represented by multiple nodes and a blood object 

with heat exchanged between the adjacent nodes, node and blood and artery and vein. The 

summary of these models was presented in Figure 2-2 and Table 2-1. 
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Figure 2-2 Physiological model development 
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Table 2-1 Summary of the physiological models 

Model Temperature 
Metabolic 

rate 
Static Dynamic Uniform Nonuniform 

One-node Model (Givoni and 

Goldman, 1971) 

Hot 

environment 
N/A √   × √ ×  

25-node Model (Stolwijk, 1971) N/A N/A √ × √ √ 

Pierce Two-node Model (Gagge, 

1973) 

Cool to very 

hot 

Low and 

moderate 
√ √ √ × 

KSU-two-node Model (Azer, 1977) 
Cool to very 

hot 

Low and 

moderate 
√ √ √ × 

Tanabe’s 65-node Model (Tanabe et 

al., 1995) 
N/A N/A √ × √ √ 

IESD-Fiala Model (Fiala et al., 

1999; Fiala et al., 2001) 
5-50 ℃ 0.8-10 met √ √ √ √ 

UC Berkeley Model (Huizenga et 

al., 2001) 
N/A N/A √ √ √ √ 

Dispersed Two-node Model (Kohri 

et al., 2002) 

Cool to very 

hot 

Low and 

moderate 
√ √ √ √ 
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Multi-element Model (Yi et al., 

2004) 
N/A N/A √ √ √ √ 
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2.1.2.2. Psychological Models 

Normally a heat balance type thermal comfort model includes: a detailed multi-segmented, 

multi-layer physical heat exchange model and clothing model that deals with the thermal 

interaction between the human body and its environment; a multi-segmented physiological 

thermoregulation model that simulates the human body in terms of the passive and active 

thermal system; and a psychological thermal sensation model that predicts both local and 

whole body thermal sensation (Cheng et al. 2012; Guan et al. 2003). However, since the 

thermal comfort assessment is a cognitive process, after all, the last one is the essential part 

of the thermal comfort model. During the past few decades, many efforts have been made 

in this area, and many models have been developed. These models are further categorized 

as rational (objective) models and adaptive (subjective) models.  

 

The principle of the rational model is that all the rational models make the inherent 

assumption that there is some predictable comfort response for a given physiological state 

of the body, which means that the psychological comfort response is exclusively related to 

the physiological behavior of the human body (Croitoru et al. 2015). Some of the rational 

models have to work with the physiological model while the others do not. The 

development of rational model starts from the early 1920s, when the “Effective 

Temperature (ET)” was proposed for the first time (Houghton 1923). Moreover, during the 

next fifty years, several indices were developed including “Wet Bulb Globe temperature 

(WBGT)” (Yaglou and Minaed 1957) and “Equatorial Comfort Index (ECI)” (Webb 1959). 

The study performed by Fanger is a milestone for thermal comfort study (Fanger 1970). 

Predicted mean vote (PMV) and Predicted Percent Dissatisfied (PPD) model he developed 
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has affected all the studies afterward and adopted by many standards until now. PMV is an 

index which is used to predict the mean response of a large group according to the 

ASHRAE thermal sensation scale. PMV uses the energy imbalance of the human body to 

give the comfort prediction of the occupants in a given environment: 

𝑃𝑀𝑉 = [0.303 exp(−0.036𝑀) + 0.028]𝐿                          (2 − 1) 

Where M is the metabolic rate and L is the thermal load on the body, defined as the 

difference between internal heat production and heat loss to the actual environment for a 

person hypothetically kept at comfort values of skin temperature and evaporative rate. After 

PMV is determined, the PPD can be estimated using 

𝑃𝑃𝐷 = 100 − 95 exp[−(0.03353𝑃𝑀𝑉4 + 0.2179𝑃𝑀𝑉2)]            (2 − 2) 

The PMV and PPD model is widely used by many designs and assessment standards, such 

as ASHRAE and ISO standard. In ASHRAE Standard 55, an acceptable thermal 

environment is defined with more than 80% of the occupant feel thermally comfortable. 

Albeit the PMV and PPD model has been used for more than 40 years, its validity has been 

questioned because the space we lived in mostly is highly nonuniform and transitional and 

the model failed when used in extreme condition. Therefore, many other models have been 

developed to fill the gap.  

 

During a long time after that, the focus of the research was still on the prediction of thermal 

sensation to the uniform environment. The Pierce two-node model and KSU two-node 

model both came with a model predicting thermal sensation. The Pierce two-node model 

use the calculated skin temperature, core temperature and skin wetness to predict thermal 

sensation (TSENS) and thermal discomfort (DISC) (Gagge et al. 1986). The KSU model 
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determines the thermal sensation directly from the physiological strain (Azer and Hsu 

1977). After entering 1990s, many researchers started to work on predicting human 

response to asymmetrical and transient environments. However, during the first ten years, 

the prediction was still made on the whole-body basis even in nonuniform environment. 

Taniguchi developed a model to relate the average temperature of the facial skin and its 

rate of change to the whole body thermal sensation (Taniguchi et al. 1992): 

𝑇𝑆𝑉 = 0.81 × (𝑇𝑠𝑘,𝑓𝑎𝑐𝑒 − 33.9) + 39.1 × 𝑑𝑇𝑠𝑘,𝑓𝑎𝑐𝑒 𝑑𝑡⁄                 (2 − 3) 

where the overall thermal sensation vote (TSV) was only correlated with the sensation of 

the facial part. This model ignored the influence of other body parts on the overall thermal 

sensation, but it indicated the fact that some body part had a higher impact factor than others 

and it made it possible to evaluate the transient thermal sensation by adding a time 

derivative term. Matsunaga developed an index named equivalent temperature (AET) to 

calculate PMV and evaluate the overall comfort (Matsunaga et al. 1993). The AET is a 

surface area-weighted value for three regions of the human body: head (0.1), abdomen (0.7), 

and feet (0.2). It seems crude that his model assigned the impact factor of each body part 

based on the surface area, but it still reflected the different impact factor of each body part. 

Almost at the same time, de Dear et al. developed a receptor model named Dynamic 

Thermal Stimulus (DTS) Model, which assigned different thermal sensation Area 

Summation Factors (ASFs) to different regions based on thermal sensitivities (de Dear et 

al. 1993): 

𝐷𝑇𝑆 = ∑ 𝐴𝑆𝐹𝑖(𝐾𝑠,𝑖𝑇𝑠𝑘𝑖𝑛,𝑖 +
𝐾𝑑,𝑖𝑑𝑇𝑠𝑘𝑖𝑛,𝑖

𝑑𝑡
)                              (2 − 4) 

Compared with the AET model, this model is more reasonable and can be used to predict 



37 

 

the response to the transient environment. Another transient thermal sensation model was 

proposed by Wang. In this model, the thermal sensation is calculated in two parts-static and 

dynamic (X. Wang 1994):  

𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑆𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 = 𝑈0 + ∆𝑈                                       (2 − 5) 

Where 𝑈0 is Fanger’s PMV model, and ∆𝑈 is based on the rate of heat storage in the skin 

and depends on the whole-body net heat gain. Based on the regression analysis of large 

amount of experiments and physiological IESD-Fiala model, a model named Dynamic 

Thermal Sensation (DTS) Model was developed (Lomas et al. 2003). Different with 

Wang’s model, this model predicts the response to transient condition by including the 

changing rate of the mean skin temperature and predicts the static part by the error signals 

of the skin surface temperature and body core temperature. But the same with Wang’s 

model, it does not consider nonuniform environments. The most advanced and complicated 

model was developed in the new century by the group of U.C. Berkeley (H. Zhang, Arens, 

Huizenga, et al. 2010a, 2010b, 2010c). This psychological model is used together with the 

physiological model developed by them to give the prediction of thermal sensation and 

comfort to both dynamic and nonuniform environment. Different with the model presented 

before, the model contained local sensation and comfort for each body segment. The 

thermal sensation is predicted with four inputs: local skin temperature, mean skin 

temperature and the time derivatives of skin and core temperatures, which can all be 

obtained by using the physiology model. And the comfort is calculated using thermal 

sensation. This model was developed and validated based on a large amount of 

experimental data representing all the major effects that have been observed about the 

human response to the thermal environment and it is the first model addressing human 



38 

 

responses to simultaneous nonuniform and transient thermal conditions. Another model 

which can treat people’s response to nonuniform thermal condition is the clothing 

independent thermal comfort model based on the equivalent temperature (𝑡𝑒𝑞) proposed by 

Nilsson. Equivalent temperature is defined as the temperature of an imaginary enclosure 

with the mean radiant temperature equal to air temperature and still air in which a person 

has the same sensible heat exchange by convection and radiation as in the actual conditions. 

The definition of the equivalent temperature can be related to the whole body as well as 

local parts of a human being. The principle of this model is that the heat loss corresponding 

to a certain level of comfort, or discomfort, is consequently to be the same (Håkan O. 

Nilsson 2007). The model was developed based on the comparison of thermal manikin tests 

and human subject tests in the same conditions. Correlations were constructed between the 

thermal sensation vote for the local or whole body and the heat loss from the corresponding 

manikin segment. Compared with the Berkeley’s model, this method only considers the 

sensible heat loss from the human body and not suitable for transient condition, but it can 

also be used to evaluate the thermal response of local body part as well as the whole body 

to the nonuniform environments. In addition, this model has a prominent feature: the model 

is empirical, and it does not involve the use of the human body thermal physical and 

physiological modelling. Both a thermal manikin for experimental study and numerical 

manikin for CFD simulation with simple constant temperature boundary condition can be 

employed to obtain the evaluation of the thermal environment (Cheng et al. 2012). Because 

of these features, this current study will utilize this method for predicting the thermal 

response. 
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One of the most sweeping changes across the field of thermal comfort research in the past 

20 years is the acceptance of a fundamentally different model of comfort – adaptive model. 

This concept derives from an idea of taking the building occupant as an integral component 

of the comfort ‘system’ (R. de Dear et al. 2013). The adaption process was classified as 

physiological (acclimatization), behavioral (using operable windows, fans, doors, awnings, 

etc.), and psychological (adjusting comfort expectations toward climatic conditions 

prevailing indoors and outdoors) (de Dear, Richard J., Brager 1998). The principle of the 

model is that the occupant cannot only sense the comfort level but also react to achieve 

comfort (F. Nicol and Humphreys 2007). The most important ways for the occupants to 

reach the comfort level were clothes changing and the air movement improvement (J. F. 

Nicol and Raja 1997). The feeling of being in control psychologically leads to faster 

adaption to different conditions and a more extended range of the comfort temperature (de 

Dear, Richard J., Brager 1998). Different with the rational model, this concept loosens the 

restriction of indoor temperature control, but unfortunately current standard only allowed 

it to be applied to natural ventilation buildings. 
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Figure 2-3 Timeline of psychological rational model’s development 
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Table 2-2 Summary of the rational psychological models 

Model 
Environmental 

Condition 
Static Dynamic Uniform Nonuniform 

Local 

Response 

Other 

Limitations 

Effective 

Temperature 

(Houghton 1923) 

N/A 
√   × √ ×  × 

No clothing and 

metabolic rate 

effect included 

Wet Bulb Globe 

Temperature 

(Yaglou and 

Minaed 1957) 

Hot condition 
√   × √ ×  × 

N/A 

Equatorial 

Comfort Index 

(Webb 1959) 

Applicable also 

to extreme 

condition 

√   × √ ×  × 
N/A 

PMV and PPD 

Model (Fanger, 

1970) 

N/A 
√   × √ ×  × 

Mechanical 

ventilated 

buildings; 0.3-

1.2 clo; <1.4 

met 

KSU-two-node 

Model (Azer, 1977) 
Cool to very hot 

√   √ √ ×  × Low and 

moderate 

Pierce Two-node 

Model (Gagge, 

1973) 

Cool to very hot 
√   √ √ ×  × Low and 

moderate 
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Taniguchi’s Model 

(Taniguchi et al., 

1992) 

Vehicle cabin 
√   × √ × × Only consider 

the face 

Matsunaga’s 

Model (Matsunaga 

et al., 1993) 

N/A 
√   × √ √ × 

N/A 

Dynamic Thermal 

Stimulus Model 

(de Dear et al., 

1993) 

N/A 
√   √ √ √ × 

N/A 

Wang’s Model 

(Wang, 1994) 
N/A 

√   √ √ × × 
N/A 

DTS Model 

(Lomas et al., 2003) 

13-48 ℃, 1-10 

met 

√   √ √ × × 
N/A 

Clothing 

Independent 

Thermal Comfort 

Model (Nilsson and 

Holmer, 2003; 

Nilsson, 2007) 

Regular clothing 
√   × √ √ √ 

No evaporation 

effects involved, 

not suitable for 

zero or heavy 

clothing 

UC Berkeley’s 

Model (Zhang, et 

al. 2010a, 2010b, 

2010c) 

N/A 
√   √ √ √ √ 

More focused 

on locally 

cooling in warm 

condition 
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2.2. Air Quality 

ASHRAE Standard 62.1-2016 defines acceptable Indoor Air Quality (IAQ) as “air in which 

there are no known contaminants at harmful concentrations as determined by cognizant 

authorities and with which a substantial majority (80% or more) of the people exposed do 

not express dissatisfaction”. The ventilation systems, creating different patterns of airflow 

field, determine the distribution of fresh air and pollutants, including gaseous and 

particulate components. A good ventilation system should be able to maintain the gaseous 

and particulate contaminants below some acceptable level. Some common indoor 

pollutants include carbon dioxide, carbon monoxide, radon, volatile organic compounds 

(VOCs), mycotoxins, microorganisms, viruses, allergens, and suspended particulate matter. 

Different contaminants have different aerodynamic features and toxicity. Therefore, the 

threshold concentration varies in a wide range. Usually, in order to evaluate the indoor air 

quality, several methods are used by the scientists and engineers: physical measurement, 

subjective evaluation, and computational simulation. 

 

Physical measurement is the most accurate method to evaluate the indoor air quality. The 

actual level of any specific pollutant can be measured either in the field or the lab. This 

method is widely used in many research and engineering projects (Cao et al. 2015; Kong 

et al. 2014; Nielsen et al. 2013). However, the cost of it is expensive and sometimes limits 

its application. Subjective evaluation is the most straight-forward method to determine the 

level of indoor air quality. However, this method can only be used in an environment with 

non-harmful substance, like CO2 or odor. One should note that the air quality perceived by 

the occupants is not necessarily correlated with the actual air quality, since the perceived 
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air quality is affected by not only the pollutant concentration but also the humidity, 

temperature, and velocity of the air. A survey has suggested that increased air movement 

improves occupant’s perceived air quality (Zhang et al. 2007). Another widely used method 

to evaluate indoor air quality is computational simulation, mostly computational fluid 

dynamics (CFD). This method is the cheapest one but requires the most knowledge about 

the pollutant distribution as well as computational calculation, but a big advantage of this 

method is that more detailed results about the distribution of the pollutant could be obtained 

easily. 

 

By using physical measurement and computational simulation, researchers can get the 

specific contaminant’s concentration in the occupied space. However, since there is always 

more than one kind of contaminant in the indoor space, the specific concentration might 

not be that useful. In order to evaluate the ventilation performance more easily, a lot of 

indices have been developed. These indices are classified into two categories: one for 

evaluating the efficiency of delivering the fresh air and one for evaluating the performance 

of removing the pollutant. 

 

2.2.1. Delivering the Fresh Air 

The indices for evaluating the efficiency of delivering the fresh air look into how the fresh 

air is distributed in the indoor space. These indices include Mean Age of Air, Air Exchange 

Efficiency, and Accessibility of Supplied Air.  

 

Mean Age of Air is developed by Sandberg in 1980s (Sandberg 1981). It is defined as “the 
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time, that has elapsed since the air entered the room (Sandberg 1981).” When the supplied 

air is clean and fresh, the smaller the local mean age of air is, the fresher and cleaner the air 

is. The actual Mean Age of Air can be measured using tracer gas. With the development of 

the CFD techniques, Mean Age of Air 𝜏𝑝 can also be calculated by using the following 

transport equation (Li and Jiang 1998): 

𝜕

𝜕𝑥𝑗
(𝑢𝑗𝜏𝑝) =

𝜕

𝜕𝑥𝑗
(Γ

𝜕𝜏𝑝

𝜕𝑥𝑗
) + 1                                  (2 − 6) 

where Γ is the diffusion coefficient of the tracer gas. 

 

Air Exchange Efficiency 𝜂𝑎 denotes the efficiency of the external air flushing a ventilated 

room (Hang and Li 2011). It is defined as the ratio between the room mean age of air under 

piston flow ventilation and the local mean age of air. 

𝜂𝑎 =
𝜏𝑝̅′

𝜏𝑝
× 100%                                                 (2 − 7) 

where 𝜏𝑝̅′ is the room average age of air under piston flow ventilation. Usually in room, the 

shortest possible time to replace the air is defined as the nominal time constant of the room: 

𝜏𝑛 =
𝑉

𝑄
                                                            (2 − 8) 

where 𝑉 is the total volume of the room and 𝑄 is the supply volume flow rate. And under 

the piston flow ventilation, 

𝜏𝑝̅
′ =

1

2
𝜏𝑛                                                       (2 − 9) 

 

Accessibility of Supplied Air is a time-related parameter which reflects the capability of 
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the supplied fresh air to reach a certain location at any time. It can be determined by 

injecting a tracer gas to the supply and monitor the concentration at the target location from 

the time the tracer gas is injected ((Kato et al. 1994)): 

𝐴𝑆
𝑛𝑆,𝑝(𝜏) =

∫ 𝐶𝑝(𝑡)𝑑𝑡
𝜏

0

𝐶𝑆
𝑛𝑆𝜏

                                    (2 − 10) 

where 𝐴𝑆
𝑛𝑆,𝑝

 is the Accessibility of the Supplied Air from diffuser 𝑛𝑆 to reach the location 

𝑝 at time 𝜏, 𝐶𝑝(𝑡) is the tracer gas concentration at the location 𝑝 at time 𝑡, and 𝐶𝑆
𝑛𝑆  is the 

concentration of the tracer gas of the air supplied by diffuser 𝑛𝑆. Accessibility of Supplied 

Air reflects the dynamic feature of the indoor flow field. After a sufficient long time, the 

summation of 𝐴𝑆
𝑛𝑆,𝑝

 of each diffuser will reach 1 and not change. 

 

2.2.2. Removing the Pollutant 

The indices for evaluating the performance of removing the pollutant look into how the 

pollutant travels in the indoor flow field. These indices include Contaminant Removal 

Efficiency, Intake Fraction, and Air Quality Index. 

 

Contaminant Removal Efficiency (𝑒), or Ventilation Efficiency, reflects the capability of 

a ventilation system to remove contaminants. It is defined as  

𝑒 =
𝐶𝑒 − 𝐶𝑠

𝐶𝑝 − 𝐶𝑠
                                                     (2 − 11) 

where 𝐶𝑒  is the contaminant concentration in the exhaust air, and 𝐶𝑠  is the contaminant 

concentration in the supply air. The Contaminant Removal Efficiency of a room is therefore 

defined as  
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𝑒 =
𝐶𝑒 − 𝐶𝑠

𝐶̅ − 𝐶𝑠

                                                     (2 − 12) 

where 𝐶̅ is the averaged contaminant concentration of the room space.  

 

However, due to the existence of the SOS and individual supply system, a relatively 

independent environment is created inside it, which will likely prevent the air inside and 

outside the cubicle from interacting. Together with the different ventilation system, the 

SOS “protect” the environment inside it to different degrees. Therefore, another index 

named Blocking Coefficient which indicates the blocking effect of the SOS is defined as 

𝛽 =
𝐶𝑒 − 𝐶𝑠

𝐶𝑆𝑂𝑆 − 𝐶𝑠
                                                    (2 − 13) 

where 𝐶𝑆𝑂𝑆 is the contaminant concentration of the SOS.  

 

Air with pollution is taken in by the occupants through breathing. Exposure to pollutants 

through breathing can be indicated by the index Intake Fraction (iF), which is defined as 

the integrated incremental intake of a pollutant, summed over all exposed individuals, and 

occurring over a given exposure time, released from a specified source or source class, per 

unit of pollutant emitted (Bennett et al. 2002): 

𝑖𝐹 =
∑ 𝑖𝑛𝑡𝑎𝑘𝑒 𝑜𝑓 𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡 𝑏𝑦 𝑎𝑛 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 (𝑚𝑎𝑠𝑠)𝑝𝑒𝑜𝑝𝑙𝑒,𝑡𝑖𝑚𝑒

𝑚𝑎𝑠𝑠 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑 𝑖𝑛𝑡𝑜 𝑡ℎ𝑒 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 (𝑚𝑎𝑠𝑠)
      (2 − 14) 

When there are multiple occupants in a room, the Intake Fraction of each occupant is 

defined as individual Intake Fraction.  

 

Air Quality Index (AQI) (Russo et al. 2008; Russo and Khalifa 2010; Russo and Khalifa 
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2010) indicates the level of air quality. It is defined as 

 

𝐴𝑄𝐼 =
1 − 𝐶 − (1 − 𝐶𝑒)

1 − 𝐶𝑠 − (1 − 𝐶𝑒)
=

𝐶𝑒 − 𝐶𝑝

𝐶𝑒 − 𝐶𝑠
                                  (2 − 15) 

 

AQI is hence a measure of how effectively the fresh supply air is delivered to the target 

point (e.g., the breathing zone). If the supply air of the PV system is all outdoor air, when 

AQI = 1.0, clean air is present at the target point, and when AQI = 0.0, the air at a certain 

point is perfectly mixed (as it would be in an ideal mixing-ventilation system). The smaller 

AQI means worse air quality. AQI is converted to Ventilation Efficiency (VE) or 

Contaminant Removal Efficiency by: 

 

𝑉𝐸 = 𝑒 =
𝐶𝑒 − 𝐶𝑠

𝐶 − 𝐶𝑠
=

1

1 − 𝐴𝑄𝐼
                                    (2 − 16) 

 

This current work looks into the contaminant distribution in a room equipped with SOS 

under steady state condition, and no breathing effects is going to be considered. Therefore, 

Contaminant Removal Efficiency was chosen to describe the spatial distribution of the air 

quality. 

 

2.3. Room Air and Contaminant Distribution 

Room air and contaminant distribution is determined by the configuration of the ventilation 

system, including the location and size of the supply and return vents, the supply conditions, 

the contaminant source, and the room layout. Depending on those factors, Cao et al. 
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classified the existing ventilation systems into eight categories (Cao et al. 2014). The 

feature of each system is summarized in Table 2-3.
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Table 2-3 Summary of the ventilation systems 

Ventilation 

System 
Principle Advantage Disadvantage Application 

Mixing 

Ventilation 

(MV) 

Dilute the 

contaminated room air 

by mixing the supplied 

fresh air with indoor air 

Uniform room condition; 

Widely used 

Wasting energy in 

unoccupied zone; airborne 

infection 

Almost 

everywhere 

Displacement 

Ventilation (DV) 

Displace the 

contaminated room air 

with fresh and cool air 

by buoyancy 

Higher ventilation 

effectiveness 

Not applicable to heating 

mode; the flow far away 

from the supply becomes 

distorted; cold feet 

Offices 

Personalized 

Ventilation (PV) 

Supply fresh and 

conditioned air locally 

Improve individual thermal 

comfort and air quality 

level; have the potential to 

save energy 

High initial cost and 

maintenance fee 

Offices, theaters, 

vehicles, 

airplanes, etc. 

Hybrid 

Ventilation (HV) 

Combine MV and DV 

to overcome the 

shortcomings of DV 

Higher ventilation 

efficiency than DV and 

MV 

Possible draught issue at 

foot level 
Offices 

Stratum 

Ventilation 

Supply at the height of 

breathing zone 

Allow higher room 

temperature and save 

energy; better air quality 

Potential airborne infection 

Building in East 

Asia (offices, 

classrooms, etc.) 
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Protected 

Occupied Zone 

Ventilation 

Use a low-turbulent 

plane jet to separate an 

office environment into 

several subzones 

Prevent possible polluted 

air from moving from one 

subzone to another 

Draught issue Offices 

Local Exhaust 

Ventilation 

Exhaust the pollution 

locally from the source 

Very effective when 

contaminant/heat source 

can be identified 

Only applicable when the 

contaminant/heat source is 

clustered 

Kitchens, 

laboratories 

Piston 

Ventilation 

Use low velocity and 

turbulence air supply to 

create a piston flow 

Very effective way to 

remove contaminants in the 

room 

Costly and require a very 

high air change rate 

Clean rooms, 

hospital 

operating rooms 
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This current work is focused on the performance of the micro-environment control system 

and the semi-open space in a MV background.  

 

2.4. Indoor Environment Evaluation and Design Methods 

Various modeling approaches have been used for modeling the thermal distribution and 

air-flow movement. The type of approach used depends on the complexity of the 

phenomena observed, the modeling objectives, the parameters investigated, and the degree 

of required accuracy (Megri and Haghighat 2007).  A brief account of each approach is 

given below.  

 

2.4.1. Analytical Model 

Analytical Models are derived from fundamental equations of fluid dynamics and heat 

transfer, such as mass, momentum, energy and chemical-species conservation equations. 

The analytical models use simplifications in both geometry and thermo-fluid boundary 

conditions to obtain a solution. The analytical models are probably the oldest method for 

predicting ventilation performance. This method is still widely used today due to its 

simplicity, rich in physical meaning and little requirement in computing resource, although 

it may not be accurate for complicated ventilation cases and results may not be sufficiently 

informative (Chen 2009).  

 

2.4.2. Empirical Models 

The empirical model is a model also based on the fundamental laws of transport phenomena. 

However, different from the analytical method, some of the coefficients or forms of the 



53 

 

formula come from experiments or experience. For instance, Cho (Cho et al. 2008) 

investigated the behavior of a wall confluent jet by experiment and simulation. The 

maximum velocity of the jet is determined by  

𝑈𝑚

𝑈0
= 2.96𝑙𝑐

−0.79                                                     (2 − 17) 

in which the throw constant (2.96) is obtained empirically. Similar to analytical models, 

empirical models are valid only for simplified conditions for which they are developed, 

though the empirical models may apply to a wider range of conditions by adjusting the 

empirical model coefficients. 

 

2.4.3. Nodal Model 

Nodal model is the most simplified model for simulating the indoor environment. Usually, 

it is used in the building simulation software when the rooms or zones which share the same 

setting point will be represented by a single node. The heat transfer and air and contaminant 

flow between each two connected nodes are calculated based on the fundamental or 

empirical laws. CONTAMN and COMIS are two typical programs which are using a nodal 

network to calculate the airflow, pressure and contaminant distribution in a building (Chen 

2009). Typically, the local transport phenomena inside each zone or room are ignored, and 

the environment inside them is considered to be uniform.  

 

2.4.4. Zonal Model 

A zonal model is an intermediate approach between nodal model and Computation Fluid 

Dynamic (CFD) model. It deals with the internal transport phenomena inside the room by 
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dividing the room into several subzones. The perfect mixing assumption is adopted for each 

subzone. Individual temperature, contaminant concentration, and mass are assigned to each 

subzone to represent the non-uniform distribution in the space. Challenge in developing a 

zonal model is to define and construct subzones with the corresponding representation of 

mass and energy flow. The zonal models had been developed based on measured airflow 

patterns or mass and energy balance equations (Chen 2009). The former one divides the 

room space based on the knowledge of flow pattern and usually only fit in the specific 

ventilation system and room configuration. The latter one used energy and mass 

conservation laws to calculate the inter-zonal flux and is used more widely. Zonal models 

are a promising way to predict air movement in a room concerning comfort conditions and 

gradient of temperature because they require extremely little computer time and could 

easily be included in multi-zone air movement models (Ahmed Chérif Megri and Mark 

Snyder 2005; Megri and Haghighat 2007; Teshome and Haghighat 2004). 

 

Most of the present zonal model are implemented based on the mass and energy 

conservation laws (Eqn. 2 and 3) in every subzone with several complementary equations 

including ideal gas equation (Eqn. 4), mass flow- pressure difference equation (Eqn. 5 and 

6) and heat exchange fluxes equation (Eqn. 7) (Megri and Haghighat 2007). When the 

moisture or contaminant is involved, some other equations can be utilized to calculate the 

distribution (Mendonça and Inard 2002; Wurtz et al. 2006). 

 

∑ 𝑚̇𝑗→𝑖

𝑗

= 0                                                              (2 − 18) 
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∑ Φ𝑗→𝑖

𝑗

+ Φ𝑠𝑜𝑢𝑟𝑐𝑒 = 𝜌𝑖𝑉𝑖𝑐𝑝

𝜕𝑇𝑖

𝜕𝑡
                                             (2 − 19) 

𝑃𝑖 = 𝜌𝑖𝑟𝑇𝑖                                                                 (2 − 20) 

𝑚̇𝑗→𝑖 = 𝜌𝑗,𝑖𝐴𝐶𝑑(𝑃𝑗 − 𝑃𝑖)𝑛                                                (2 − 21) 

𝑚̇𝑗→𝑖 = 𝜌𝑗,𝑖𝐴𝐶𝑑 [𝑃𝑗 − 𝑃𝑖 −
1

2
(𝜌𝑗ℎ𝑗 + 𝜌𝑖ℎ𝑖)]

𝑛

                             (2 − 22) 

Φ𝑗→𝑖 = 𝑐𝑝(𝑚̇𝑗→𝑖
+ 𝑇𝑗 + 𝑚̇𝑗→𝑖

− 𝑇𝑖) −
𝜆𝐴

𝑙
(𝑇𝑗 − 𝑇𝑖)                              (2 − 23) 

 

Due to the simplification of the transport equation, momentum transport equation is absent 

in most of the zonal model which means these model can only be applied to the flow of low 

velocity. Some researchers (Haghighat et al. 2001) also developed a simplified numerical 

model in which the jet characteristic equation was introduced to generalize tits application 

to the mechanically ventilated building. However, this kind of model would increase 

significantly the complexity of the zonal model which will make the zonal model more 

expensive. 

 

2.4.5. Design Chart 

Nielsen developed a method to help to predict and design the total volume air distribution 

system based on discussions of air flow pattern in a range of ventilation systems, which is 

called “Family Tree” of air distribution systems (Nielsen 1980, 2006, 2011; Nielsen et al. 

2007; Nielsen and Jakubowska 2009; Skistad et al. 2002). The influence of supplied 

momentum flow versus buoyancy forces is discussed, and geometries for high ventilation 

effectiveness are indicated as well as geometries for fully mixed flow. Long time work on 
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the research of various ventilation systems and rich experience makes it possible for him 

to find the key factor of designing a ventilation system. Geometrically the ventilation 

systems are based on the location of supply openings, and the opening ratio of the supply 

diffuser to the wall area (Figure 2-4). For each specific configuration the flow pattern, 

ventilation effectiveness, and comfort level are analysed based on the operation parameters 

– temperature difference between the supply and return air and supply airflow rate. 

 

 

Figure 2-4 Different air distribution systems for cooling with high (left) and low (right) 

location of supply openings (Nielsen 2011) 

 

The goal of implementing a ventilation system is to maintain the environment in the 

occupied space comfortable and clean with appropriate supply flow rate and temperature. 

Therefore, a limit will be applied to the air flow rate and supply temperature to fulfil the 

requirement of thermal comfort and air quality, such as minimum outdoor air, acceptable 

draught and acceptable temperature gradient. To help make the decisions more qualified, a 

design chart is developed and by using this chart, user can find the optimal systems based 

on their demands (Figure 2-5)(Nielsen 2011). 
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Figure 2-5 Design chart of the "Family Tree" (Nielsen 2011) 

 

2.4.6. Computational Fluid Dynamics Model 

Computational Fluid Dynamics (CFD) Model is a numerical method to model the indoor 

environment by solving a set of partial differential equations. In this way, all the details of 

the indoor environment can be obtained if proper boundary conditions, appropriate 

computational mesh, and turbulence model are used. CFD model used to be an expensive 

way for modeling indoor environment, but thanks to the development of computer science, 

the difficulty of representing complex geometry and dealing with dense mesh has been 

overcome. Increasing numbers of work have been done using CFD in many engineering 

fields and with the time going on the commercial CFD software has been the most popular 
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method in modeling indoor environment due to its powerful capability and friendly user 

interfaces. This work utilized the CFD simulation to help design and evaluate the micro-

environment system. More details will be discussed in the next few chapters. 
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3. Performance Evaluation of Different Room Air Distribution Systems 

Before jumping into the systemic study of using micro-environment control system and 

semi-open space for thermal comfort and air quality control, a series of preliminary studies 

were conducted to help improve the understanding of the work scope and methods. Both 

experimental and CFD simulation works were performed to compare the performance of a 

different room air distribution/ventilation systems in a full-scale office room containing 12 

cubicles. The objectives were to improve the understanding of characteristics of the various 

micro-environmental control system and the role of semi-open space for indoor 

environmental control and to develop a CFD model for performance prediction. 

 

3.1. Field Experimental Evaluation of Three Kinds of Ventilation Systems 

3.1.1. Overview 

3.1.1.1. Experimental Setup  

The prototype room is the Total Indoor Environmental Quality (TIEQ) Lab located in the 

Syracuse Center of Excellence (COE) Building, which is depicted in Figure 3-1 with a full 

size of 6.25 m × 10.52 m × 3.15 m [2]. There are 12 cubicles in this room arranging along 

two side walls and two doors on each end. Three ventilation systems are equipped with it: 

a displacement ventilation system with four floor-diffusers in the corridor, a under-floor air 

distribution (UFAD) ventilation system with one floor-diffuser in each cubicle and a 

personalized ventilation system with a PV Exhausto diffuser (referred as “PV” in the 

following) in each cubicle. 

                                                 
[2] (Y) m = (Y × 100) cm = (Y × 3.28) ft = (Y × 39.37) in 
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Figure 3-1 Prototype Room Layout 

 

Figure 3-2 Target Cubicle 

Figure 3-2 shows the test cubicle which has a full size of 1.91 m × 1.84 m × 1.71 m. A desk 

is located in front of the chair with a monitor on it and a computer processor below it. 

Moreover, a lower desk is set on the left-hand side of the chair with a storage box below it. 

The sensor and temperature controller is installed on the front partition of the cubicle while 
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the PV and UFAD are installed above the monitor and at the right back side of the chair, 

respectively. 

 

The fresh and clean air is supplied to the work place through the UFAD system (Figure 3-3 

left), PV system (Figure 3-3 center) or chair ventilation (CV) system (Figure 3-3 right). 

The UFAD diffuser is mounted on the floor of the cubicle fed by a variable-air volume box 

in the under-floor plenum. It consists of 16 long slots and 16 short slots arranged in a ring 

of a 6.35 cm internal diameter and a 19.69 cm external diameter. The PV diffuser is 

mounted 1.33 m above the floor with a tube connected from back to the air handler. It has 

a total length of 36.83 cm and a diameter of 6.86 cm with two grill openings symmetrically 

on both wings. Each opening is 11.43 cm long, divided into six parts by grill evenly. The 

supply air direction can be adjusted by rotating each wing about the central axle of the 

diffuser. A CV terminal consists of an air bag of an area 0.52 m2 [3], which covers the chair 

and two tubes connected on the two sides. A box was used to connect the tube to the supply 

of the air system. A total flow rate of 0.047 m3/s [4] is used for UFAD and 0.009 m3/s flow 

rate is applied to both PV and CV.  

                                                 
[3] (Z) m2 = (Z × 10.76) ft2 
[4] (W) m3/s = (W × 2118.88) cfm 



62 

 

 

Figure 3-3 Terminal of ventilation system: UFAD (left), PV (center), CV (Right) 

       

During the experiment, the flow field around the manikin is monitored regarding both 

velocity and temperature at different heights (0.1 m, 0.6 m, 0.8 m, 1.1 m, 1.4 m and 1.6 m) 

and locations (left front, left, right front and right). A tracer gas test is also conducted in the 

lab using CO2. Four injecting tubes are located at the entrances of the four corner cubicles 

(A, B, K, and L), and another injecting tube is either located under the chair in the cubicle 

or outside the cubicle at the center of the corridor to represent the different location of 

contaminant source. Five sampling ports are placed respectively in the breathing zone of 

the manikin, in the occupied cubicle, in the corridor, in the supply duct, and in the return 

duct. INNOVA-1301_Multipoint Sampler and Doser is used to both inject the CO2 and 

sample the air. INNOVA-1412i_Photoacoustic Gas Monitor is used to analyze the sampled 

air from the lab. 
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Figure 3-4 Measurement Setup 

 

3.1.1.2. Equivalent Temperature 

The personalized ventilation does not only increase the air quality around the people, but 

also improve the thermal comfort. Clothing independent equivalent temperature (𝑡𝑒𝑞) was 

used to evaluate the thermal comfort level with manikin. As mentioned before, this index 

is defined as the temperature of an imaginary enclosure with the mean radiant temperature 

equal to air temperature and still air in which a person has the same heat exchange by 

convection and radiation as in the actual conditions which can be determined using the 

following equation:  

 

𝑡𝑒𝑞 = 𝑡𝑠 −
𝑞𝑇

′′

ℎ𝑐𝑎𝑙
                                                         (3 − 1) 

 

where 𝑞𝑇
′′ is the measured manikin heat loss during the actual condition,  ℎ𝑡𝑒𝑞 is the dry 

heat transfer coefficient, determined during calibration in a standard environment, 𝑡𝑠 is the 
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manikin surface temperature and 𝑡𝑒𝑞  is the temperature of the uniform homogeneous 

environment which is the equivalent temperature (Nilsson 2004). 

 

 

3.1.2. Flow Field Characteristics 

Both velocity and temperature were measured close to the surface of the manikin (within 

0.1 m to the closest surface) to give us some concepts of the flow field in the vicinity of the 

manikin. The velocity comparison (Figure 3-5) shows a much smaller velocity of the CV 

system compared with the other two systems. The max velocity in the CV case is about 

0.09 m/s, which might be due to the large area of the chair ventilation terminal. Based on 

the ASHRAE Standard 55, in the room temperature of 26.0 °C, the mean room velocity is 

suggested to be lower than 0.2 m/s for mixing ventilation system, which is higher than most 

of the velocities measured in either the PV or UFAD case.  

 

Figure 3-5 Velocity comparison of three systems 
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The temperature field of CV was more uniform than the other two (Figure 3-6). Moreover, 

there existed a slight gradient vertically. In the UFAD and PV system, an obvious obstacle 

of the temperature at the waist level could be found, but in CV system there wasn’t any, 

which might be resulted from the fact that the CV supply flow of uniform and low velocity 

did not impact the temperature stratification induced by the thermal plume. 

 

 

Figure 3-6 Temperature comparison of three systems 

 

3.1.3. Thermal Comfort Analysis 

Figure 3-7 showed the equivalent temperature along the body of the manikin in three 

systems. The thermal sensation of the whole body was neutral for all the three systems 

(22.0-23.0 °C), although a little cooler in CV case.  However, an intense variation of 

equivalent temperature for different parts existed for each system. Right upper arm (18.4 
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°C) is the part feeling the coldest in UFAD case, so as the face (15.8 °C) in the PV case and 

the back (16.0 °C) in the CV case. In general, the parts with low equivalent temperature are 

always close to the supply opening and exposed to the cooler supply air more directly, and 

the parts with high equivalent temperature are always far away from the supply. 

 

Figure 3-7 Equivalent Temperature 

 

3.1.4. Air Quality Analysis 

Figure 3-8 gives the Ventilation Efficiency, Blocking Coefficient and Local Ventilation 

Efficiency for both dosing inside and outside the cubicle. The Local Ventilation Efficiency 

is defined as 

𝐿𝑉𝐸 =
𝜀

𝛽
=

𝐶𝑆𝑂𝑆 − 𝐶𝑠

𝐶𝑝 − 𝐶𝑠
                                             (3 − 2) 

which could be used to evaluate the performance of the local ventilation system in the SOS. 

For dosing inside the cubicle, CV gave the best LVE (a little higher than PV) and moderate 

VE which was because more contaminant was held in the cubicle (the Blocking Coefficient 
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was the lowest). For dosing outside the cubicle, PV gave the best LVE but worst VE which 

was because too much contaminant was “sucked” into the cubicle (the Blocking Coefficient 

was the only half of the others’).  

 

Figure 3-8 Local Ventilation Efficiency, Ventilation Efficiency and Blocking Coefficient 
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3.2. CFD Model Development  

3.2.1. Overview 

This subsection presents the development of the CFD model for simulating the flow field 

in the cubicle as discussed in the previous section. The prototype room studied is an office 

room (6.25 m×10.52 m×3.15 m) with 12 cubicles arranged in 2 rows, located in the 

Syracuse Center of Excellent (COE) Building (Figure 3-9). Each cubicle has approximately 

the same configuration and size. The target cubicle was occupied by a manikin and has 

dimensions of 1.91 m×1.84 m×1.71 m high. The air and air contaminant movement in the 

cubicle was simulated by using a commercial CFD software STAR-CCM. The CFD model 

was verified by sensitivity analysis and validated by experimental results. Analysis of the 

flow characteristics in the cubicle was conducted to provide detailed information of the 

performance of the personalized ventilation.  

 

   

Figure 3-9 Target cubicle (left) and TIEQ (right) 

 



69 

 

3.2.2. Experiment Data Set for Model Validation 

Moved to experiment part 

Experiments were conducted previously to give us some basic ideas of the flow field as 

well as validate the CFD model.  A cubicle on the west (right in Error! Reference source n

ot found.) side of the office was selected to be the test cubicle. A 20 body segments thermal 

manikin was used to simulate a real person. The manikin was seated in an office chair in 

front of the computer at a distance approximately 0.10 m from the front desk. A side desk 

and a storage box were placed to the left side of the chair. A monitor with a keyboard and 

a mouse was placed on the front desk and a processor beneath the front desk (Figure 3-1). 

The fresh and clean air was supplied to the work place through UFAD (Figure 3-10 a) and 

PV (Figure 3-10 b) which yielded airflow rates of 55.10 l/s and 9.44 l/s at temperatures of 

18.6 ̊C and 18.4 ̊C. The UFAD was mounted on the floor of the cubicle fed by a variable-

air volume box in the under floor plenum. Detailed information about the configuration of 

the diffusers is presented in Sec. 3.1.1.1. During the test, the manikin was set under a 

comfort mode. Regular light clothes were applied on it. Both the temperature and heat flux 

of the manikin were monitored and recorded. 
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(a)                                                (b) 

Figure 3-10 Terminal of ventilation system: UFAD (a), PV (b) 

 

During the experiment, the flow field around the manikin was monitored regarding both 

velocity and temperature at different heights (0.1 m, 0.6 m, 0.8 m, 1.1 m, 1.4 m and 1.6 m) 

and locations (left front, left, right front and right). The velocity in front of the PV was also 

measured to validate the CFD model. 

 

3.2.3. Governing Equations for CFD Model 

The eddy-viscosity RANS model is the most popular class of turbulence model utilized for 

indoor environment simulations (Dygert et al. 2009). The basic equations include mass, 

momentum and transport equation of other quantities.  

 

𝜕

𝜕𝑥𝑖

(𝜌𝑢𝑖) = 0                                                               (3 − 3) 

𝜕

𝜕𝑡
(𝜌𝑢𝑗) +

𝜕

𝜕𝑥𝑖
(𝜌𝑢𝑖𝑢𝑗) = −

𝜕𝑝

𝜕𝑥𝑗
+

𝜕

𝜕𝑥𝑖
(𝜇

𝜕𝑢𝑗

𝜕𝑥𝑖
− 𝜌𝑢′

𝑗𝑢′
𝑖

̅̅ ̅̅ ̅̅ ̅) + 𝑆𝑗                (3 − 4) 
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𝜕

𝜕𝑡
(𝜌𝜙) +

𝜕

𝜕𝑥𝑖

(𝜌𝑢𝑖𝜙) =
𝜕

𝜕𝑥𝑖
(Γ

𝜕𝜙

𝜕𝑥𝑖
− 𝜌𝑢′𝑖𝜙′̅̅ ̅̅ ̅̅ ) + 𝑆                        (3 − 5) 

 

Boussinesq and Reynolds’ analogies are used to model the turbulent term. 

 

𝜏𝑖𝑗 = −𝜌𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ = 𝜇𝑡

𝜕𝑢𝑖

𝜕𝑥𝑗
                                                       (3 − 6) 

𝐻𝑖 = 𝜌𝑐𝑝𝑢𝑖′𝑇′̅̅ ̅̅ ̅̅ = −𝜌𝑐𝑝𝛾𝑡

𝜕𝑇

𝜕𝑥𝑖
                                                 (3 − 7) 

 

For RANS-based CFD methods, the most difficult task in setting up a CFD simulation is 

the selection of a turbulence model. Researchers have used a wide range of turbulence 

models when studying micro-environment around human body (Dygert et al. 2009; Khalifa 

et al. 2006) which include the zero-equation model (Xu and Chen 2001a, 2001b), standard 

k-ε model (Gao and Niu 2004; Hayashi et al. 2002), the RNG k-ε model (Gao and Niu 2006; 

Khalifa 2006), the v2-f model (Dang 2008), the realizable k-ε model (Russo et al. 2009), 

and the SST k-ω model (Deevy et al. 2008). By comparing different turbulence models 

including k-ε family and k-ω family models, Dygert found the k-ε family gave similar 

predictions and compared well with the test data while k-ω turbulence models showed bad 

agreement in predicting the jet development. In this case, the realizable k-ε turbulence 

model is used. 

 

Another challenge in CFD modeling of room airflows is the simulation of flow close to 

solid surfaces due to the transition of turbulence flow to the flows dominated by viscous 
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effect near the surfaces. The two-layer approach which is developed by Xu is used as an 

alternative to the low-Reynolds’ number approach that allows the one-equation turbulence 

model to be applied in the near-wall region and the two-equation k-ε model to be applied 

in the region away from the wall (Xu and Chen 2001a). With this approach, the whole flow 

field is divided into two regions – the near-wall layer and the far field. In the first layer, the 

turbulent kinetic energy k is calculated by 

 

𝜕𝑘

𝜕𝑡
+ 𝑢𝑖

𝜕𝑘

𝜕𝑥𝑖
= 𝑑𝑘 + 𝑃𝑘 + 𝐺𝑘 − 𝜀                                      (3 − 8) 

 

The eddy viscosity is calculated by 

 

𝜈𝑡 = √𝑢′𝑢′̅̅ ̅̅ ̅̅ 𝑙𝜇                                                       (3 − 9) 

 

The turbulence dissipation rate ε by 

𝜀 =
√𝑢′𝑢′̅̅ ̅̅ ̅̅ 𝑘

𝑙𝜀
                                                      (3 − 10) 

 

where Gk is the gravity production of turbulent kinetic energy, Pk is the shear production of 

the turbulent kinetic energy and lµ and lε are characteristic lengths which are defined well 

in Xu’s work (Xu and Chen 2001a). 
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The values of ε specified in the near-wall layer are blended smoothly with the values 

computed from solving the k-ε equations far from the wall. The equation for the turbulent 

kinetic energy is solved in the entire flow. This explicit specification of ε and µt is arguably 

no less empirical than the low-Reynolds’ number approach, and the results are often as 

good or better. In STAR-CCM+, the two-layer formulations will work with either low-

Reynolds number type meshes 𝑦+~1 or wall-function type meshes 𝑦+ > 30 (CD-Adapco 

2015). 

 

3.2.4. Post Processing 

Cooling efficiency of the ventilation system is examined using Cooling/Heating Efficiency 

Index Φ, an indication of the extent to which the cool supply air reaches the target point 

(e.g., occupied zone), Φ: 

 

Φ =
𝑇 − 𝑇𝑐𝑙𝑜

𝑇𝑠 − 𝑇𝑐𝑙𝑜
                                                          (3 − 11) 

 

 

3.2.5. Verification and Validation 

A computational model was developed using a commercial CFD code (STAR-CCM). To 

simulate the flow field in the cubicle, a seated computer simulated manikin (SCSM) was 

imported into STAR-CCM. The configuration of the SCSM was developed by Khalifa et 

al. ( 2009). In order to make it easier to simulate and to align with a desk, the hair and hands 

were removed. A single cubicle case was created to represent the target cubicle. The 
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polyhedral mesh was used in this study instead of the tetrahedral mesh because it provides 

a balanced solution for complex mesh generation problems. It is relatively easy and 

efficient to build, requiring no more surface preparation than the equivalent tetrahedral 

mesh. It also contains approximately four times fewer cells than a tetrahedral mesh for a 

given starting surface (CD-Adapco 2015).  

 

To obtain valid simulation results, an appropriate grid is necessary. However, increasing 

the number of cells results in much more time for computing. Therefore, an optimal mesh 

is needed to balance the number of cells and the accuracy of the calculation. Creating every 

grid mesh requires meshing the surface of the manikin first. Then a proper boundary layer 

representation can be employed for the manikin surfaces. Next, the remaining surfaces 

including walls, inlets, outlets and floor need to be meshed. Finally, the volume mesh will 

be created. Five grids were created for the grid independence study. The velocity 

distribution and the flow structure of the symmetric plane were compared (Figure 3-11). A 

summary of the five grids is provided in Table 3-1. All the cases consist of polyhedral cells 

with polygonal surface elements, except the prism layer attached on the boundary (Figure 

3-11). 

 

Table 3-1 Grid Summary 

Grid Label Base Size 

(m) 

Number of 

cells 

Number of 

elements on 

the manikin 

Prism 

layer 

Average 

Wall Y+ 

A 0.1(0.1) 107,846 2,128 5 1.21 

B 0.07(0.07) 181,925 3,966 5 1.18 
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C 0.05(0.05) 336,326 4,290 5 1.58 

D 0.05(0.02) 929,342 4,617 15 1.51 

E 0.05(0.015) 1,857,385 7,556 15 1.42 

 

 

 

                                    (a)                                                              (b) 

Figure 3-11 Grid resolution (a) and velocity in front of the face (b) 

 

The accuracy of the calculation mostly depends on the density of volume mesh grids. In 

STAR-CCM, it is controlled by the base size, which other size is defined compared to it. 

Cases with base grid size 0.05 m, 0.02 m and 0.015 m gave acceptable grid independence 

and were better than 0.07 m and 0.10 m. Considering the time consumed in the simulation, 

a base grid size of 0.05 m was used. 

 

In order to validate the simulation model, several cases were conducted and used to 

compare with the experimental results. Since in the experiment, a thermal comfort model, 
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as well as casual clothing, was applied to the manikin, an identical boundary condition 

could not be created in the CFD model. Instead, two approximation methods were used to 

replace the thermal comfort boundary condition: specified heat flux and specified surface 

temperature for individual body parts (Table 3-2). A whole-room case (Table 3-3), as well 

as the single cubicle case, were tested simultaneously.  

 

Table 3-2 Manikin Boundary Condition 

Manikin 

Parts 

PV UFAD 

Temp [°C] Q/A[W/m^2] Temp [°C] Q/A[W/m^2] 

Face 30.0 126.55 32.5 81.22 

Head 31.8 95.50 32.5 82.76 

R Upper Arm  31.4 51.75 32.6 64.01 

L Upper Arm 31.4 55.75 32.6 54.89 

R Forearm  33.6 50.57 33.5 53.81 

L Forearm  33.7 66.99 34.5 67.88 

R Hand 32.5 81.18 32.4 83.98 

L Hand 32.5 84.58 32.4 84.31 

Chest  31.4 72.53 32.3 60.12 

Shoulders 34.4 47.66 34.2 51.38 

Stomach 34.6 44.12 34.2 50.49 

Back  32.5 50.37 31.1 64.87 

R Up Thigh  32.0 34.49 30.2 41.33 
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L Up Thigh 32.0 34.92 30.2 37.09 

R Low Thigh  32.9 40.28 30.6 45.58 

L Low Thigh 33.6 39.47 31.6 43.94 

R Calf 29.3 49.75 30.0 49.05 

L Calf  29.5 48.02 30.2 47.31 

R Foot 29.2 47.21 34.5 45.41 

L Foot 29.2 51.38 31.2 49.60 

 

 

Table 3-3 Cubicle Setting for Whole Room Simulation 

UFAD @ 23.9 ℃ (A person seated in the cubicle D (ATM5)) 
 ATM1 ATM2 ATM3 ATM5(Occ) ATM6 ATM8 

Flowrate (L/s) 55.83 58.83 46.53 48.77 18.21 42.22 

SA Temp 

(°C) 
25.1 25.0 28.9 24.3 23.7 24.4 

RATemp (°C) 24.2 

 AMT9 

(Manikin) 
ATM11 ATM12 ATM13 

ATM1

5 

ATM1

6 

Flowrate (L/s) 55.14 46.36 42.49 43.72 44.24 55.83 

SA Temp 

(°C) 
15.3 24.4 24.6 15.9 24.5 24.7 

RATemp (°C) 24.2 

PV @ 23.9 ℃  (A person seated in the cubicle D (ATM5)) 
 ATM1 ATM2 ATM3 ATM5(Occ) ATM6 ATM8 

Flowrate (L/s) 7.40 7.40 38.75 9.44 2.62 7.60 

SA Temp 

(°C) 
22.4 22.8 28.9 21.7 23.3 22.4 

RATemp (°C) 24.5 

 AMT9 

(Manikin) 
ATM11 ATM12 ATM13 

ATM1

5 

ATM1

6 

Flowrate (L/s) 9.44 8.70 6.50 8.50 35.15 10.25 
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SA Temp 

(°C) 
15.7 16.8 17.0 15.8 15.9 16.2 

RATemp (°C) 24.5 

 

Velocity measurements were taken on the symmetric plane of the PV. The following 

showed the velocity comparison at the symmetric plane of the PV and manikin between the 

experiment and simulation (Figure 3-12). Similar results were obtained with the two 

different boundary conditions, which also agreed well with the measurements (Figure 3-12 

a). Both the single cubicle case and the whole-room case showed quite similar results of jet 

development (Figure 3-12 b) which had dominant effects on the flow pattern around the 

manikin.  

 

 

(a)                                                                     (b) 

Figure 3-12 Velocity validation (a) of different boundary conditions; (b) of different 

simulation space 

 

Temperature measurements were taken along the four vertical poles around the manikin. 

The results showed a better agreement obtained by the specified surface temperature 
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compared with the specified surface heat flux (Figure 3-13 a). The whole-room case gave 

almost the same agreement as the single cubicle case did (Figure 3-13 b), which means a 

simplified single cubicle case is good enough to represent the flow field. 

 

 

(a)                                                                     (b) 

Figure 3-13 Temperature validation along the right front pole (a) of different boundary 

conditions; (b) of different simulation space 

 

 

3.2.6. PV and UFAD Comparison 

Based on the experiment results, an evaluation of thermal comfort based on the equivalent 

temperature is calculated. Defined by the ASHRAE 62 (1989), “the equivalent temperature 

is the temperature of an imaginary enclosure with the mean radiant temperature equal to air 

temperature and still air in which a person has the same heat exchange by convection and 

radiation as in the actual conditions.” After calibration, the heat transfer coefficients for 

each part has been obtained. Using Eqn. 3-1, the equivalent temperature for each part can 

be calculated. The thermal comfort zone given by Nilsson (H O Nilsson 2004) with the 
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calculated equivalent temperature indicates a thermal comfort evaluation for each part. 

Overall, PV and UFAD give almost the same thermal comfort level for most parts of the 

manikin, while for the chest, face, and scalp, PV gives cooler impact on the manikin, and 

for the right upper arm UFAD gives lower equivalent temperature because a part of the 

supply air from the UFAD blew through the upper arm (Figure 3-14). 

 

 

Figure 3-14 Equivalent temperature 

 

The AQI for the air quality is calculated with the software. A better performance was 

achieved by the PV (Figure 3-15 a). In UFAD case, a uniform profile was created in most 

space of the cubicle due to the strong mixing performance of the UFAD. In contrast, an 

obvious PV jet with cleaner air provided a local dilution in the breathing zone. The lowest 

AQI took place near the floor for both cases but in PV case, another low AQI region showed 

up below the front desk which is a stagnation region. The AQI in the vicinity of the mouth 



81 

 

and nose which PV can provide (0.483) is about four times of that UFAD can provide 

(0.115). 

 

As shown in Figure 3-15 (b), cooling effect took place differently in different cases. For 

the UFAD case, the cooler air was supplied from the floor, some part of the supplied air 

was obstructed by the chair and front desk. Moreover, then the air spread out and was 

transported to the region where the manikin was. However, for the PV case, the cooler air 

was transported to the manikin face directly with a little entrainment which led to the lower 

equivalent temperature at the head, face and chest level which needs to be cooled the most 

(Figure 3-15). Some part of the cooler air went around the head and then sank down to the 

floor level due to the heavier density caused by lower temperature. 

 

 

(a)                                                                     (b) 

Figure 3-15 AQI (a) and cooling efficiency (b) comparison 
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3.2.7. PV Performance under Different Airflow Rates 

In order to investigate the flow field and performance of the PV under different airflow 

rates. A velocity profile measurement was conducted to give a velocity distribution over 

the PV outlet. The velocity was measured on a 12×5(×2) grid. Based on the measurement, 

a boundary condition was created in the STAR-CCM (Figure 3-16). One can see that the 

largest velocity took place in the central two slots of the PV especially for the large flow 

rate (7.08 L/s and 9.44 L/s). 

 

 

Figure 3-16 PV outlet velocity profile 

 

Under different air flow rates, the same specified surface temperature is given for each case. 

A clear increasing temperature (22-25 °C) can be seen with decreasing air flow rate in 
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Figure 3-17. A jet detouring occurred in the case of 2.36 L/s, and 4.72 L/s which is due to 

a larger density difference and the local cooling region is also changed from head level to 

stomach. In the case of 7.08 L/s and 9.44 L/s, a remaining jet showed up behind the head 

of the manikin and spread through the partition of the cubicle, but in the case of 4.72 L/s 

and 2.36 L/s, the jet is stopped by the manikin and descended to the lower level. The thermal 

plume at the head level of the manikin has been destroyed by the jet of 4.72, 7.08 and 9.44 

L/s, but only the one in the 2.36 L/s case still existed. 

 

 

Figure 3-17 Temperature distribution on the manikin symmetry plane 

 

In the view from the back of the manikin (Figure 3-18), our observation was confirmed: a 

cooler region existed around the manikin head in the cases 7.08 L/s and 9.44 L/s, with a 

thermal plume going up above the head in the case 2.36 L/s. Moreover, the thermal plumes 

of the cases 7.08 L/s and 9.44 L/s are stopped from the shoulder level, but the one of 4.72 

L/s has been destroyed at a lower level. 
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Figure 3-18 Back view of the temperature distribution 

 

From the velocity field (Figure 3-19), a more obvious flow field is indicated. For the cases 

of 7.08 L/s and 9.44 L/s, the air supplied by the PV went through the head and spread over 

the back partition, most part dropped to the lower level beneath the chair and was driven 

back up by the thermal plume. For the cases 4.72 L/s and 2.36 L/s, the jet was prevented 

by the manikin and flushing to the lower level through the slot between the manikin and 
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the front desk. Based on ASHRAE standard 55 (2013), in the room temperature of 26 °C, 

the mean room velocity is suggested to be lower than 0.2 m/s which is not satisfied in the 

case of 4.72, 7.08 and 9.44 L/s. 

 

 

Figure 3-19 Velocity field on the manikin symmetry plane 

 

Air quality is also tested with the tracer gas simulation. SF6 is emitted from the floor 

uniformly as the tracer gas at a rate of 1E-6 kg/(m2s). After getting to steady state, the mass 

fraction field at the symmetry plane of the manikin was tested (Figure 3-20). One can easily 

find that, with the air flow rate increasing, the average mass fraction of the contaminant 

decreased a lot. The highest fraction always took place near the floor. Moreover, due to the 

recirculation flow at the lower part, most of the contaminant was pushed to the front 

partition. The contaminant fraction at the breathing zone in the 2.36 L/s case (0.29%) was 

much larger than the other three (0.093%, 0.040% and 0.032% for 4.72, 7.08 and 9.44 L/s) 
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which is resulted from the fact that the jet of 2.36 L/s descended too fast to reach the 

breathing zone. 

 

 

Figure 3-20 Tracer gas mass fraction field at manikin symmetry plane 

 

3.3. Summary and Conclusions  

This work shows a comparison of three local ventilation systems regarding flow field 

characteristics, thermal comfort performance and air quality improvement and develops a 

validated CFD case to help evaluate the detailed performance of two ventilation systems. 

The measurement results indicate that a better or at least equivalent micro-environment 

around the manikin, regarding thermal comfort and air quality, will be created by either the 

PV or CV system with only 1/5 amount of the air provided by the UFAD system. This work 

also shows that the performance of each system depends on the location of the contaminant 

source and correlation with the cubicle configuration though how it works is still 
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ambiguous. A computational mesh with a base grid size of 0.05 m was found to have 

sufficient grid independence in the simulation results. Based on the comparison between 

experiment and simulation, the CFD model with the realizable k-ε turbulence model in 

combination with the two layer-model for boundary layer over solid surfaces was found to 

provide satisfactory predictions.  
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4. Micro-environmental Control for Efficient Local Cooling 

The concept of using the micro-environmental control system (μX) to save energy has just 

been raised for several years, and there are still many unanswered questions. The main 

issues about using the μX include the capability of the μX to restore thermal comfort with 

affordable energy consumption, the best configurations of the μX under different condition 

(cooling and heating), and ergonomic and aesthetic concerns. To address these issues, this 

chapter is focused on developing and validating a CFD model and using it to help 

investigate the effect of the supply condition on the jet cooling performance and evaluate 

the performance of three existing Air Terminal Devices (ATDs) which can be implemented 

in the µX for supplying sufficient cooling. 

 

4.1. Overview 

A µX has been developed under the ARPA-E project (Khalifa and Koz 2016). It consists 

of a micro-scale vapor compression system, of which the evaporator is embedded in the 

phase change material (PCM). The compression system is designed to run during the night 

to freeze the PCM to avoid dumping heat around the occupants as well as reduce the peak 

electricity rate. A certain amount of cooling is stored in the PCM and released as a cool 

breeze through a proper air terminal device (ATD) to make the office worker comfortable 

for up to 10 hours during the day when the office room temperature is increased from 23.9 

°C to 26.1 °C (Khalifa 2017). In this way, although an extra portion of energy is consumed 

by the µX during the night, the total cooling energy consumption is reduced by around 20% 

based on the in-house simulation results for in 7 different climates in the U.S. based on an 

unpublished work done by our group. 
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The computational and experimental domain represented a full-scale office, 4.88 m × 3.66 

m × 3.05 m high, with a linear diffuser mixing system (Figure 4-1). A workstation was 

located in the center of the room. A laptop was placed on the desk, and a µX was put under 

the desk to provide local cooling to a manikin. The µX was of the size 0.42 m × 0.19 m × 

0.48 m, which was about the size of a desktop computer. It sucked the air through the holes 

on two sides and supplied the air through an ATD. The cooling power, P, provided by the 

mockup µX is calculated as 

𝑃 = 𝜌 ∙ 𝑉̇ ∙ 𝑐𝑝 ∙ (𝑇1 − 𝑇𝑗𝑒𝑡)                                        (4 − 1) 

where 𝜌 is the density of the air (kg/m3), 𝑉̇ is the supply air volume flow rate (m3/s), 𝑐𝑝 is 

the specific heat of the air (J/(kg·°C), 𝑇1 is the room air temperature, and 𝑇𝑗𝑒𝑡 is the supply 

air jet temperature (°C). 

 

The µX is designed to supply 50 W cooling power during a summer day, different 

combinations of supply flowrate and supply temperature were tested using CFD model. 

The operating condition of the µX was selected based on the evaluation of the cooling 

performance as well as the thermal comfort. Three types of ATDs were investigated (Figure 

4-1). Type I was a single-diffuser ATD placed under the desk which has a diffuser area of 

13.10 cm × 7.20 cm. Type II was a round-diffuser ATD placed above the desk facing the 

occupant, and the diffuser had a radius of 5.50 cm. Type III is a split-diffuser ATD placed 

under the desk, which had two diffusers with an area of 6.05 cm × 7.20 cm each. A manikin 

with 20 separately heated segments was seated in an office chair in front of the desk to 

simulate an occupant working in the office.  
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Figure 4-1 Computational domain and three types of ATDs studied 

4.1.1. Experimental Facility 

Full-scale laboratory testing has been used as a reliable testing method for indoor air 

quality, thermal management, and associated energy estimation studies (Cao et al. 2015; 

Kong et al. 2016; Nilsson et al. 2007). The present work utilized a full-scale polished 

stainless-steel chamber system which the CFD model simulated (Figure 4-2). An HVAC 

system was used for conditioning the chamber, and the room temperature was controlled 

by the return air temperature. A linear air diffuser was constructed to provide better-defined 

boundary conditions for comparison with the CFD simulations. The outlet had the 

dimensions of 0.017 m × 0.900 m. The supply air flow rate was set at 0.075 m3/s which 

corresponded to an air change rate of 5 h-1. The supply air jet was directed to the wall of 
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the chamber and then distributed to the rest of the room before it was exhausted. The supply 

velocity is around 4.9 m/s which is a little higher than the design velocity of 4.1 m/s. 

However, the main purpose of the linear diffuser is to create a uniformly mixing condition 

in the occupied space as well as minimize the local draft on the manikin.  

 

In order to ascertain that the environment inside the chamber is fully mixed, three 

temperature trees using thermistors were placed around the manikin, measuring the 

temperature at six different heights, 0.10 m, 0.40 m, 0.70 m, 1.00 m, 1.30 m, and 1.50 m. 

Since it was reported that the thermal plume of the manikin was about 0.20 m thick 

(Bolashikov et al. 2010; Licina et al. 2014), two temperature trees were placed 0.30 m away 

from the side of the manikin, and the other one was placed 1.00 m behind the manikin. Ten 

thermocouples were also used in this study to monitor the surface temperature of the 

chamber wall (two on the floor, two on the ceiling, two on each side wall and one on each 

end wall). To ascertain no draft except the µX supply air was perceived by the manikin, air 

velocity measurement was taken with hot-sphere anemometers on the left of the manikin at 

the same heights of the temperature measurement. A 20-segment manikin, which was made 

to represent a 50th percentile Western Male body form with a total surface area of 1.8 m2 

and height of 1.80 m, was seated by the desk to simulate a working person. Temperature 

and heat flux sensors were distributed over each segment of the manikin to monitor or 

control the surface temperature and heat flux. In this study, the manikin’s surface 

temperatures were controlled at set-points, while allowing the heat flux to vary with the 

environmental condition. The head, face, and forearms were set to be 33.9 °C to represent 

exposed skin surface, and the other segments were set to be 31.7 °C which represents 
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surfaces of light clothing (Dygert et al. 2009; Kong et al. 2015). The heat flux through each 

segment was monitored and recorded for comparison with the CFD simulation results. 

 
Figure 4-2 Schematic of the test chamber 

Inside the chamber, a mockup µX was built. The system consisted of a window air 

conditioning unit, an orifice flange flow rate meter, an in-duct fan, a plenum box, an electric 

heater, an air diffuser and connecting ducts between them (Figure 4-2). Different from the 

real µX, instead of sucking air from its immediate surroundings inside the room, the 

window air conditioner was placed outside the chamber to supply overcooled air (~10 °C) 

through a hole in the chamber wall in order to minimize the disturbance to the chamber’s 

airflow and prevent the exhaust heat from the window air conditioner from going into the 

chamber. The overcooled air was reheated to the set-point before it was supplied to the 

manikin.  
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Figure 4-3 Experimental Facility 

4.1.2. Computational Model 

All CFD simulations in this study were performed using a commercial CFD software 

(STAR-CCM+ 9.04.011). This software utilizes a more user-friendly interface and includes 

almost every function needed for CFD simulation including creating the geometry, 

generating the mesh, calculating and post-processing. It has been used more and more in 

recent years and performed well compared to other software (Peng et al. 2016).The flow 

field was calculated as incompressible ideal gas based on the standard 𝑘 − 𝜀 turbulence 

model in combination with a two-layer wall treatment model. It enables the turbulent 

dissipation rate 𝜀 and turbulent viscosity 𝜈𝑡 to be calculated smoothly from the freestream 
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through the buffer layer to the viscous sub-layer (Kong et al. 2015). All the equations were 

solved with the SIMPLE algorithm and a second-order accurate scheme. Since the chamber 

space is symmetric, the computational domain of half of the chamber was first created using 

the commercial grid-generation software Pointwise and then the grids were regenerated 

using STAR-CCM+. Polyhedral grids with prism layer mesh were used in this study. A 

rather fine grid (around 5M cells) was applied around the manikin (Figure 4-4). In order to 

generate a mesh with good discretization, the surface and volume mesh was generated 

based on the guideline given by Russo (Russo 2011). The surface cells on the manikin 

varied from 2.50 mm to 10.00 mm and twenty layers of prism cells were distributed all over 

the surface in a total thickness of 25.00 mm with a stretching ratio of 1.2. This gave a y+ 

value on the surface of the manikin lower than 0.8 which was considered to be sufficiently 

good. A relatively uniform mesh was applied in the mixing region between the manikin 

and the diffuser. The length scale of the surface cell of the diffuser was on the order of 2.00 

mm.  

 

Figure 4-4 Mesh grids of the CFD model 
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4.1.3. Boundary Conditions Used in CFD Simulation 

This chapter summarized two parts of this work. The first part was validating the CFD 

model. In this part of work, CFD simulation results were compared with experimental 

measurements. Two validation cases were run and compared with experimental data. One 

was for the manikin sitting in a room of raised temperature (26.1 °C) without the µX (Case 

I), and the other one was for the manikin sitting in a room of raised temperature (26.1 °C) 

with the µX (Case II). The boundary conditions of the cases for validation are summarized 

in Table 4-1.  

Table 4-1 Boundary Conditions for Validation 

Surface Boundary Condition Type Setting 

Ceiling Constant Temperature 

25.7 °C for Case I; 

25.5 °C for Case II 

Floor Constant Temperature 

24.3 °C for Case I; 

24.5 °C for Case II 

Manikin Head, Face, and 

Forearm 

Constant Temperature 33.9 °C  

Remaining Manikin 

Surface 

Constant Temperature 31.7 °C  

Linear Diffuser Velocity Inlet 

5 m/s, Turbulence Intensity 

(T.I.) = 0.1; 

Turbulent Length Scale =  

0.0023 m; 
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27.8 °C for Case I; 

28.3 °C for Case II 

Exhaust Opening Pressure Outlet N/A 

µX Diffuser (Type I) Velocity Inlet 

Measured Vel. & T.I.; 

Turbulent Length Scale= 

0.0065 m; 

23.09 °C for Case II 

Laptop Heat Source 17.0 W 

Symmetric Plane Symmetry Plane N/A 

The Other Surfaces Adiabatic Wall N/A 

 

The percentage of radiant heat loss from an occupant is significant, ranging from 50% to 

66% (Wang et al. 2014). It is, therefore, important to get an accurate account of the radiant 

heat loss for predicting the total heat loss. According to the law of radiant heat transfer 

between gray surfaces, the radiant heat transfer 𝑄̇1−2 between surface 1 and 2 is governed 

by: 

𝑄̇1−2 =
𝜎(𝑇𝑠1

4 − 𝑇𝑠2
4 )

1 − 𝜖1

𝜖1𝐴1
+

1
𝐴1𝐹1,2

+
1 − 𝜖2

𝜖2𝐴2

                                    (4 − 2) 

where 𝜎 is the Stefan-Boltzmann constant (5.67×10-8 W/(m2-K4)), and 𝑇𝑠1 and 𝑇𝑠2 are the 

absolute temperature of surface 1 and 2 (K), 𝜖1 and 𝜖2 are the emissivity of surface 1 and 

2, 𝐴1 and 𝐴2 are the area of surface 1 and 2 (m2), and 𝐹1,2 is the view factor from surface 1 

to 2. Therefore, the emissivity and temperature of all the surfaces have to be determined 
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ahead of the simulation. In this study, the emissivity of the manikin surface was given by 

the manufacturer as 0.92, and the emissivity of the surrounding chamber wall was assumed 

to be 0.27 (polished stainless steel, obtained from the material specification). The surface 

temperature used in the simulation was obtained from experimental measurements. 

 

The inlet velocity (Figure 4-5) of the µX diffuser was set in the computational model to 

match the experimental setup. A total air flow rate of 0.014 m3/s was used in the simulation 

with a maximum velocity of 2.2 m/s. Values for turbulent intensity varied in the experiment 

from 5.0 % to 15.0 %. A value of 10.0 % was used in the simulation throughout for 

simplification. 
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Figure 4-5 Velocity traverse grid and profile of the diffuser (Type I) 

The second part of this work is evaluating the performance of different ATDs in cooling 

the manikin. The CFD cases simulated the scenario that the office room was kept at 26.1 

°C, i.e., 2.2 °C higher than the normal set-point for cooling. Room supply air of certain 

temperature was provided to the chamber to make the exhaust air temperature to be 26.1 

°C. In this study, for the case without µX, the supply temperature was kept at 25.4 °C, and 

for the case with the µX, the supply temperature was kept at 26.0 °C. Also, since for a 

conditioned building the wall temperature (mostly internal walls) should be close to room 

temperature according to the heat balance, it is reasonable to apply 26.1 °C as the wall 

surface temperature. The µX was designed to supply constant 50.0 W cooling power during 
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the day in the summer. Different combinations of supply air temperatures and flow rates 

reflecting the 50 W cooling power according to Eqn. 4-1 were tested first and then the best 

combination was selected based on cooling performance and thermal comfort.  

 

4.1.4. Determination of the Convective Heat Transfer Coefficient 

This study calculated the natural convective heat transfer coefficient of each segment of a 

seated manikin using the results of the CFD simulations. The total heat flux of each segment 

𝑞̇𝑡 consists of radiant heat flux 𝑞̇𝑟 and convective heat flux 𝑞̇𝑐. And the convective heat flux 

equals to the product of the convective heat transfer coefficient ℎ  and temperature 

difference between the surface 𝑇0 and room air 𝑇1.  

𝑞̇𝑡 = 𝑞̇𝑟 +  𝑞̇𝑐 = 𝑞̇𝑟 + ℎ ∙ (𝑇0 − 𝑇1)                                  (4 − 3) 

The convective heat transfer coefficient obtained in this study was compared with some 

previous studies (de Dear et al. 1997; Sørensen and Voigt 2003; Yang et al. 2009). de Dear 

et al. (1997) used a purely experimental approach which measured the total sensible heat 

flux with a thermal manikin and isolated the convective part from it by covering the 

manikin with the low-emissivity material. The accuracy of this method depended on the 

measurement accuracy, including temperature and heat flux measurements. Yang et al. 

(2009) used a hybrid method, with which they measured the total sensible heat flux using 

a thermal manikin and subtracted the radiant heat flux obtained from numerical simulation 

to get the convective heat flux. The accuracy of this method also depended on the accuracy 

of the measurement since obtaining the radiant heat flux by numerical simulation also 

required accurate surface temperature measurement. Sørensen and Voigt  (2003), as well 

as the current work, used CFD models to calculate the convective heat flux by solving a 
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series of fluid mechanics equations. The accuracy of this method depended on the use of 

the turbulence model and grid quality. 

 

4.1.5. Heat Removal Performance and Thermal Comfort  

To raise the room air set-point from 23.9 °C to 26.1 °C, the μX is needed to manage the 

local thermal envelop so as to not sacrifice thermal comfort. Since from Fanger’s work, 

most of the thermal comfort models evaluated the thermal comfort based on the heat 

balance, in this current chapter the approach used for evaluating whether the μX can restore 

thermal comfort is according to the thermal balance analysis. A person sitting in an office 

is assumed to generate a total of 115 W (seated, very light work in offices), which is equal 

to the amount of heat that needs to be released to the surrounding environment to achieve 

thermal balance for the occupant. Among the 115 W, 70 W is considered to be sensible 

heat loss (convective and radiant) and 45 W is considered to be latent heat loss (evaporative 

and respiratory) (ASHRAE 2013b). This study only focused on the sensible part. The heat 

flow rate from the human body 𝑞" under steady state can be expressed as: 

𝑞" = 𝐴 ∙ (1/𝑅) ∙ (𝑇0 − 𝑇1)                                             (4 − 4)                                                            

Where 𝐴 is the body surface area (m2 / ft2), 𝑇0 is the averaged human surface temperature 

(°C), 𝑇1 is the ambient temperature (assuming the mean radiant temperature equals to the 

air temperature, °C) and R is the total sensible thermal resistance (m2∙K/W). If the thermal 

resistance does not change when 𝑇1 changes to the raised set-point 𝑇2, the change in heat 

flow rate ∆𝑞" is: 

∆𝑞" = 𝐴 ∙ (1/𝑅) ∙ (𝑇2 − 𝑇1)                                            (4 − 5)                                                           

Divide Eqn. 2 by Eqn. 1, 
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∆𝑞"=q ∙
(𝑇2 − 𝑇1)

(𝑇0 − 𝑇1)⁄                                            (4 − 6)                                                           

 Assuming that the surface temperature at a comfortable state is around 33.9 °C (Cheng et 

al. 2012) for exposed parts (head and forearm) and 31.7 °C for clothed parts (Dygert et al. 

2009; Houdas and Ring 1982; Kong et al. 2015) which gives an averaged surface 

temperature around 32.0 °C (Russo et al. 2009), when the ambient temperature changes 

from 23.9 °C to 26.1 °C, a difference of 19.2 W needs to be removed by the µX. 

 

The objective of this chapter is to develop and validate a CFD model, and use it to help 

investigate the effect of the supply condition on the jet cooling performance and evaluate 

the performance of three existing ATDs which can be implemented in the µX for supplying 

sufficient cooling to remove a minimum of 19.2 W to restore an occupant’s thermal balance 

when the ambient room air is raised by 2.2 oC.  
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4.2. Results and Discussion 

4.2.1. Validation 

As mentioned earlier, the validation work included two cases, with and without the µX. 

Case I dealt with the flow field without the µX, in which the natural convection dominated 

the heat exchange between the manikin and ambiance. Case II focused on the flow field 

with the µX, in which both the natural and forced convection played important roles.  

 

The total heat loss from the manikin as well as the averaged heat flux of each segment was 

recorded and compared with the CFD results. For the case without the µX, the total heat 

loss predicted by CFD was 74.4 W. Compared to the total heat loss by experiment 74.0 W, 

the error was about 0.5 %. The heat flux distribution over the 20 segments also agreed well 

with the measured data (Figure 4-6). For the case with the µX, the CFD simulation gave a 

total heat loss of 108.3 W. Compared to the total measured heat loss of 115.1 W, the error 

was around 5.9 %. These errors are smaller than those found in previous studies (Martinho 

et al. 2008). The heat flux distribution gave a more detailed description of the source of the 

error. A significant discrepancy was observed for the stomach as well as the back part of 

the manikin, which the air was blowing onto. One explanation would be that the CFD model 

under-predicted the forced convective heat transfer from the manikin. Another explanation 

was that the manikin did not maintain the same surface temperature as in the simulation. 

According to the description of the manufacturer, the manikin surface temperature of each 

segment was controlled by a distributed sensor wire and a distributed heating wire. Even 

though they claimed that the temperature distribution over each segment was very uniform, 

an obvious non-uniformity of temperature was still observed because it is not possible to 
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control the surface temperature everywhere. This non-uniform surface temperature 

distribution was different with the boundary condition used in the CFD case, and therefore, 

was very likely to result in the difference in heat flux prediction. More discussion is 

included in Section 4.2.6. Nonetheless, the difference between the predicted and measured 

heat fluxes are relatively small and is considered to be acceptable to evaluate different 

ATDs. 
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Figure 4-6 Comparison between CFD and experimental results 
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4.2.2. Convective Heat Transfer Coefficient of Different Body Segments 

The current work calculated the convective heat transfer coefficient of each segment of a 

seated manikin. Different from the work done by other researchers, this work was the only 

one using a manikin representing an adult male instead of a female. Figure 4-7 shows the 

comparison between the results of this study and their results. The comparatively better 

agreement was observed for the chest, back, thigh, pelvic, and foot while larger variances 

were obtained for the head, arm, and calf. This difference partially results from the different 

shape of the manikin. The difference in height, surface area and shape could change the 

development of the thermal boundary layer and thus the convective heat transfer 

coefficient. However, considering the difference between three previous studies, this reason 

may not be the primary one. A more convincing explanation could be that the ways used to 

calculate the convective heat flux were different in these works. As mentioned in Sec. 4.1.4, 

three methods were utilized in these works including the current work. Among these three 

methods, de Dear et al. (de Dear et al. 1997) using the pure experiment seems to be the 

most reliable method assuming all the measurements were accurate enough because the 

other two methods involved numerical errors which were hard to quantify. 
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Figure 4-7 Convective heat transfer coefficient of different segments of the human body 

 

4.2.3. Determination of Suitable Air Supply Temperature and Flow Rates 

Localized cooling provided by the µX sometimes can cause insufficient cooling or local 

discomfort if the supply condition, such as the target area, supply velocity, supply 

temperature, is not controlled properly. Since the µX is designed to give 50.0 W of cooling 

during the work hours in the summer, several combinations of supply air temperature and 

flow rates (Table 4-2) were tested using the validated CFD model. The ambient air and 

surface temperature were kept at 26.1 °C, and the manikin was placed 0.20 m away from 

the desk. A rectangular air diffuser (13.1 cm ×7.2 cm) was mounted under the desk aiming 

at the stomach of the manikin. The manikin surface was set as a constant temperature 

boundary which had a temperature of 33.9 °C on the head and 31.7 °C on the remaining 

surface. The total heat loss of each case with the µX was subtracted by the total heat loss 

without the µX to give the extra heat removed by the air jet.  
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4.2.3.1. Cooling Ability 

Table 4-2 shows the relationship between the extra heat removed by the air jet and the 

supply air flow rates as well as supply air temperature. While the flow rate ranged from 

0.008-0.038 m3/s, the extra heat removed by the jet varied linearly with it even though the 

supply temperature was reduced. It is because when the flow rate increased, the velocity of 

the air blowing onto the manikin was also increased, resulting in an increase in the 

convective heat transfer coefficient.  

 

Table 4-2 Cooling ability of different combinations of supply temperature and flow rates 

Case A B C D E 

Supply Temperature 21 °C 22 °C 23 °C 24 °C 25 °C 

Flow Rate 

0.008 

m3/s 

0.010 

m3/s  

0.014 

m3/s  

0.020 

m3/s  

0.038 

m3/s  

Extra Heat Removed 

(W) 

22.5 25.8 33.5 44.9 78.1 

 

4.2.3.2. Thermal Comfort 

According to the tested result, all the combinations could fulfill the requirement of 

removing 19.2 W extra heat from the manikin, but the further concern should be paid to the 

comfort. ASHRAE standard 55 suggests a method of using operative temperature to 

determine the limits of local air speed. “Operative temperature is the uniform temperature 

of an imaginary black enclosure and air within it in which an occupant would exchange the 
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same amount of heat by radiation plus convection as in the actual non-uniform 

environment.” It is determined based on the local air temperature and mean radiant 

temperature (ASHRAE 2013c). In this study, the local operative temperature and air speed 

were collected along a vertical line 1.00 cm away from the manikin. Figure 4-8 shows the 

simulation obtained operative temperature and air velocity in front of the manikin. The 

region enclosed by the solid (red) lines represents the acceptable conditions for thermal 

comfort (ASHRAE 2013c). The measured velocities for Cases A and B were lower than 

the upper limit (1.2 m/s) while Case D and E were much higher. Case C showed a maximum 

velocity approximating to the limit. Moreover, because it is reported that supply air from a 

personalized ventilation system should have a temperature ranging from 23.0 to 26.0 °C to 

avoid significant discomfort to occupants (Melikov 2004), the selected combination used 

in the following study was Case C. 

 

Figure 4-8 Local operative temperature and air velocity 



109 

 

4.2.4. Evaluation of ATDs 

Once the supply condition is determined, the next challenge would be how to manage the 

air flow properly. A good ATD is supposed to have excellent performance on thermal 

comfort, perceived air quality, and ergonomics (Kaczmarczyk et al. 2006). Many kinds of 

ATDs have been designed and studied by other researchers, for example, desk mounted 

ATDs (Melikov et al. 2002), seat embedded ATDs (Kong et al. 2014, Nielsen, et al. 2007), 

pillow ATDs (Nielsen et al. 2008), etc.. In this study, three types of desk mounted ATDs 

were selected and tested using the validated CFD model (Figure 4-1). 

 

In the current section, the CFD model had the same configuration as used in the validation 

work. The computational domain represented a workstation for one office worker. The 

room’s background temperature was maintained at 26.1 °C with an air exchange rate of 5 

h-1 and the supply condition of the µX is 0.014 m3/s and 23.0 °C. It was assumed that the 

office worker could move by the desk in a semicircle with a radius of 0.61 m. The direction 

of the supply air could be adjusted for all the three ATDs. 
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Figure 4-9 Movement range of the occupant (left) and the shooting angle of the ATDs 

(right) 

The performance of the three ATDs was evaluated while the manikin was located within 

the movement range and the jet was shooting at different angles. Figure 4-10 illustrates the 

cooling performance of the Type I ATD while the manikin was sitting along the center line. 

Six different angles, 0°, 5°, 10°, 20°, 30°, and 40° were tested. The optimal angle for 

cooling always lay between 0° and 10° regardless of the distance from the diffuser (Y). The 

most extra heat removed by the µX while the manikin was sitting 0.20m, 0.45m, and 0.61m 

away from the desk was respectively 33.6 W, 32.4 W, and 30.3 W. When the manikin was 

sitting very close to the desk (0.20 m), the jet from the diffuser could work in a rather broad 

angle (> 40°). Even when the manikin was sitting at the edge of the semi-circular movement 

range, within 23°, the µX would still work.  
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Figure 4-10 Cooling performance of Type I ATD shooting at different angles with the 

manikin sitting along the center line 

Based on the results shown in Figure 4-10, the performance of the ATD was highly 

dependent on the target region which the jet blew onto. For those three locations, the target 

region of the jet moved upwards when the angle increased. Within 10° the jet was always 

blowing to the stomach region. When the angle was increased to larger than 10°, the jet 

started to blow onto the chest, and the heat loss started to decrease. This is mainly because 

when the angle increased, the jet blew on a smaller part of the body and some part of the 

jet even could not touch the body when the angle is too large. The extra heat removed by 

the jet was still higher than 19.2 W until the target zone moved to the upper part of the chest 

(30° for Y=0.45 m and Y=0.61 m, Figure 4-11). After that, some part of the jet missed the 

human body and detoured around to the back of it.  
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Figure 4-11 Velocity field at the symmetric plane of the manikin when it sits 0.45m and 

0.61m away from the desk 

When the manikin was placed to one side, the jet had to be adjusted horizontally also. 

According to the previous results, the jet was always aimed at the stomach region to ensure 

the best cooling performance. The results were shown in Figure 4-12. The bold red figures 

indicated the best cooling performance of the jet shooting at the optimal angle at each 

location. For example, for Type I ATD, when the manikin was put 0.45 m away from the 

manikin, the column of data shown by the side of the black star of 0.45 m indicates the 

extra heat removed by the jet when the shooting angle was respectively 0°, 5°, 10°, 20°, 

30°, and 40° from the bottom to the top. The highest extra heat removed was obtained when 

the manikin sat in the 10-o’clock direction of the diffuser (30o angle).  
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Similar studies have been done for the other two ATDs (Figure 4-12). For Type II and Type 

III ATDs, only the results of the jet shooting at the stomach were shown in the figure. It 

turns out that all three ATDs could fulfill the requirement to remove 19.2 W from the 

manikin. The worst scenario always appeared at the edge of the movement range. Among 

the three ATDs, Type I ATD worked the best in terms of the extra heat removed. 
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Figure 4-12 Summary of the cooling performance of the three ATDs 
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4.2.5. Effect of Furniture  

As mentioned by previous researchers (Dygert et al. 2009), the presence of the furniture 

can influence the interaction between the thermal plume and the jet, resulting in a 

discrepancy in the performance of the jet. For example, the seat on which the manikin sat 

can prevent the thermal plume around the legs from rising up, leading to a weaker thermal 

plume around the upper part of the body. In this study, the effect of the seat backrest was 

evaluated. In the experiment, the manikin was sitting in a chair with a perforated backrest. 

Different from having a solid backrest, in this case, the jet was able to penetrate the 

backrest. So a case without a backrest was run and compared with the case with a solid 

backrest. The yellow line in Figure 4-6 shows the averaged heat flux of each segment in 

the case without the backrest, and the gray line shows the averaged heat flux of each 

segment in the case with a solid backrest. The comparison indicates a difference in the heat 

flux (~10 W/m2) from the back. Figure 4-13 shows the velocity field behind the manikin, 

and it is believed that with the solid backrest, the air which came to the back of the manikin 

was split into two portions. One was transported away from the manikin, and the other one 

was converged to the center of the back. However, without the solid backrest, most of the 

air was converged to the region behind the back and took more heat from the back. 

Therefore, the solid backrest provided some “insulation” to the people, especially when the 

people were laid back. This “insulation” protects the people from being cold in cold 

environment but may exacerbate the discomfort in a hot environment. In addition to the 

backrest, it is noted that factors such as chair handles, clothing, and hair, can also influence 
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the heat transfer by changing the surface temperature, creating obstacles for the thermal 

plume and even changing the shape of the manikin.  

 

Figure 4-13 Velocity field behind the manikin 

 

4.2.6. Effect of the Surface Temperature  

As mentioned in Section 4.2.1, in addition to the turbulence-model effect as noted by 

previous work (Martinho et al. 2008), the discrepancy between the experimental and CFD 

results was possibly because of the non-uniform temperature distribution on the manikin 

surface. The CFD simulation used constant surface temperature on the manikin skin. To 

properly validate the CFD model, the experiment should have had the same setting as the 

CFD simulation. However, creating an absolutely uniform surface temperature on a 

manikin in the experiment is almost impossible, since it is impractical to monitor and 

control the temperature of every point of the manikin’s surface. The manufacturer states 
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that “every segment of the manikin has one distributed sensor wire, zig-zagging the entire 

area of the segment. The accuracy of measurement and control of the temperature is ± 0.1 

°C”. However, much larger differences have been found during the experiment. In order to 

show that, a thermocouple was used to measure the surface temperature of the manikin 

during the experiment (Figure 4-14). 

 

Figure 4-14 Surface temperature measurement on the manikin 

The surface temperature within one segment was found to vary quite a bit. The smallest 

one was found on the stomach, while the largest one was found on the left forearm. Since 

only very limited numbers of points were measured for each segment, it may not be able to 

represent the true variance, but it still proved that the surface temperature was non-uniform. 
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A clearer surface temperature distribution on the manikin could be seen by using a thermal 

camera (Figure 4-15). The non-uniform surface temperature distribution was confirmed, 

and at least a 1.0 °C surface temperature difference was found on almost all the segments. 

Each segment always had a higher temperature in the central part and lower temperature at 

the edge.  

 

Figure 4-15 Surface temperature distribution on the manikin 

The difference between the measured surface temperature and temperature set-point has 

also been observed (Figure 4-14, Figure 4-15). Average values of the measured surface 

temperature were used to represent the temperature for each segment. More segments were 

experiencing a higher temperature than the set-point (Table 4-3).  
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Table 4-3 Comparison between set-point temperature and measured temperature 

 

 
Set-point Temp., °C Measured Temp., °C Temp. Difference, °C 

Face 33.9 33.2 -0.7 

Head 33.9 34.2 0.3 

Shoulder 31.7 32.1 0.4 

Chest 31.7 31.9 0.2 

Back 31.7 32.1 0.4 

Stomach 31.7 32.0 0.3 

Right Upperarm 31.7 32.2 0.5 

Left Upperarm 31.7 32.5 0.8 

Right Forearm 33.9 33.9 0.0 

Left Forearm 33.9 33.7 -0.2 

Right Thigh 31.7 31.5 -0.2 

Left Thigh 31.7 31.5 -0.2 

Right Calf 31.7 31.7 0.0 

Left Calf 31.7 31.7 0.0 

Right Foot 31.7 31.9 0.2 

Left Foot 31.7 32.9 1.2 

Note: Red value means the measured temperature is higher than the set-

point;  

blue value means the measured temperature is lower than the set-point. 

In order to show the effect of the surface temperature on the heat loss of the manikin, a 

CFD case using the measured surface temperature was run to compare with the case using 

the set-point temperature. A better agreement was found by using the measured surface 

temperature. The difference of total heat loss between the CFD and experiment was reduced 

from 4.6 W to 2.1 W compared with the case using set-point temperature. This study 

indicates that accurate prediction of the heat loss from the manikin requires a surface 

temperature that is as close to the experiment as possible. 
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4.2.7. Other Considerations 

The application of the ATDs is not only based on physical measurement, such important 

factors as ergonomics and aesthetics could also play an important role in human judgment 

and general perception (Kaczmarczyk et al. 2006). Among the three ATDs tested, the Type 

I ATD worked the best since it could remove the most extra heat from the manikin with the 

same amount of cooling power. However, it may interfere with people’s thighs and bring 

some difficulties if people use a keyboard tray. The round panel (Type II ATD) was 

reported to be able to provide thermal comfort as well as perceived air quality 

(Kaczmarczyk et al. 2006), but implementing this type of ATD requires drilling a hole on 

the desk to connect the diffuser with the µX which can be disruptive and unfavorable. Type 

III ATD leaves more space under the desk, and also avoids making any modification to the 

furniture. However, this kind of diffuser needs more complex duct connection and may 

have the problem of balancing the air of two openings.  

 

4.3. Summary and Conclusions 

A CFD model has been developed, validated and applied to evaluate the performance of 

three types of ATDs selected for a micro-environment control system (µX). It was found: 

1) The CFD-predicted heat loss from the manikin agreed within 6% of the measured 

results from the full-scale chamber tests. Also, it was found that the heat loss of 

the manikin was very sensitive to the furniture placement and surface temperature 

of the manikin.  

2) Convective heat transfer coefficients of all the segments of the manikin were 

calculated in the current work and compared with previous studies. The difference 
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in height, surface area, and shape of the manikin could change the development of 

the thermal boundary layer and thus the convective heat transfer coefficient. 

However, more discrepancy was due to the methods of measurement. 

3) Cooling performance was increased more by increasing the supply air velocity 

than reducing the supply air temperature when the total cooling power was 

constant. Considering the extra heat removed and discomfort caused by the jet, the 

combination of 23.0 °C supply air temperature and 0.014 m3/s flow rate was 

recommended as the operating condition for the micro-environment control 

system. 

4) The performance of three types of ATDs (Air Terminal Devices) was evaluated 

using the validated CFD model over a semicircle range of 0.61 m radius around 

the µX diffuser. The manikin could be cooled sufficiently in the movement range 

using any of the three ATDs tested, while Type I ATD (a single diffuser in the 

center) worked the best. The cooling performance of the ATDs is highly dependent 

on the shooting angle (target area). The best performance was always achieved 

when the jet was blown onto the stomach of the manikin because in this case, the 

jet could blow onto the largest area of the body. 

Based on this study, one of the three ATDs has been selected for incorporation into the µX. 

The final product will be tested with a thermal manikin and 32 human subjects in the near 

future. More discussion in terms of thermal sensation and comfort for each individual body 

part, draft effect, perceived air quality is going to be addressed based on more 

measurements and evaluation of the subjects.
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5. Micro Environmental Control for Efficient Heating 

This chapter is focused on using the previously validated CFD model to help evaluate 

different methods of heating the occupant locally for restoring thermal comfort, including 

convection, radiation, and conduction.  

 

5.1. Overview 

The focus of application of the micro-environmental control system has been on cooling 

the person in the warm environment. There were only quite few studies looking into the 

use of it in the cool condition (Deng et al. 2016; Pasut et al. 2015; Verhaart et al. 2015; 

Zeiler et al. 2015; Zhang et al. 2015). Different from cooling the person in the warm 

environment, in a cool condition the occupants tend to wear more clothes (long sleeve shirt 

and thicker trousers), which gives a total clothing value of around 1.0 clo (compared to 0.5 

clo in summer) (ASHRAE 2013c). In addition, since in a cool environment the ambient air 

temperature is much cooler than the body temperature, there is no “free convection” 

available for adding heat to the body, and one can only reduce heat loss from the body from 

convective heat transfer mechanism. To add heat to the body, conduction or radiation is 

necessary. Furthermore, the sensitivity of different part of the human body to the cool 

environment is significant. All these facts combine to make personalized heating more 

complicated than cooling. 

 

This chapter used the validated CFD model developed in the previous chapter for 

evaluating different heating methods. The computational domain represented a full-scale 

office, 4.88 m × 3.66 m × 3.05 m, with a linear diffuser mixing system (Figure 4-1). A 
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workstation with a laptop on top of it was in the center of the room. The μX for heating is 

designed to provide 60 W heating power constantly during the day of winter. Based on 

some previous study, the feet are significantly sensitive to the cool environment and 

dominate the discomfort of the entire body in a cool environment (Arens et al. 2006b). 

Warm feet are essential for the perception of comfort in a cool environment (Zhang et al. 

2015). Therefore, in any form, the heating power was supplied to the feet first. This 60 W 

heating power was converted firstly to a blow of warm air to heat the occupant by 

convection. The supply flow rate and supply temperature were determined using Eqn. 4-1. 

Different supply air velocities were tested as well as the supply temperature. Then the idea 

of using a confinement box with the warm air was tested. In the end, another method using 

a footwarmer to heat the feet by conduction and radiation was evaluated. 

 

5.1.1. Boundary Conditions for CFD Simulations 

This chapter summarized three parts of work. The first part talks about determining the 

supply condition of using convection to heat the occupant. In this part, two split diffusers 

were located in front of the feet of the occupant (Figure 5-1). First of all, the effect of the 

supply velocity was evaluated. A total amount of 0.0024 m3/s air at 40 ℃ was supplied to 

the feet. The opening size of the supply diffusers was 0.0500 m × 0.0500 m, 0.0625 m × 

0.0500 m, and 0.0833 m × 0.0500 m based on different supply velocity (0.3 m/s, 0.4 m/s 

and 0.5 m/s). Then different combinations of the supply temperature and supply flow rates 

were tested. The temperature varied from 40 ℃ to 36.8 ℃ and 31.3 ℃, and the flow rate 

changed according to the supply temperature based on Eqn. 4-1. The optimal supply 

velocity was applied to all the three cases and the opening size of the supply diffusers 
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respectively 0.0500 m × 0.0500 m, 0.0625 m × 0.0500 m, and 0.0833 m × 0.0500 m. The 

boundary condition of this first part was summarized in Table 5-1. 

 

Figure 5-1 Split diffuser to the feet 

 

Table 5-1 Summary of the boundary conditions of split diffuser test 

 

Case 

Room 

Temperature 

(℃) 

Diffuser Size 

(m2) 

Supply 

Velocity 

(m/s) 

Supply 

Temperature 

(℃) 

Supply 

Flow 

Rate 

(cfm) 

Baseline 

Case 

A 18.9 N/A N/A N/A N/A 

B 21.1 N/A N/A N/A N/A 

Velocity 

Test 

C 18.9 0.0500×0.0500 0.5 40.0 5.0 

D 18.9 0.0625×0.0500 0.4 40.0 5.0 

E 18.9 0.0833×0.0500 0.3 40.0 5.0 

Supply 

Combination 

Test 

C 18.9 0.0500×0.0500 0.5 40.0 5.0 

F 18.9 0.0625×0.0500 0.5 36.8 6.3 

G 18.9 0.0833×0.0500 0.5 31.3 8.3 

 

The second part of this work is using a confinement box around occupant’s legs with the 

split diffuser to help improve the heating performance. The confinement box was defined 

as a well-insulated box with an opening in the front (Figure 5-2 a). A confinement box of 
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three different sizes - 0.40 m × 0.45 m × 0.50 m, 1.00 m × 0.45 m × 0.50 m, and 1.60 m × 

0.45 m × 0.50 m - was tested in this work respectively. The front opening was assumed to 

be covered with plastic strips made of polyvinyl chloride (PVC). The PVC strip has a 

thickness of 0.003 m (Figure 5-2 b) which gives a thermal resistance of 0.0158 m2·K/W 

(PVC conductivity is 0.19 W/m·K). Also, because it is assumed that the occupant is going 

to put their legs through the strip door, the strip door was modeled as porous baffle 

interface. It was assumed that the strip door could be taken as a perforated screen with a 

porosity of 0.5. According to Idelchik’s “Hydraulic Resistance Handbook” (Idelchik 1960), 

the porous media resistance coefficient 𝜉 was calculated as  

𝜉 =
∆𝐻

𝜌𝑣2

2𝑔

≅ [𝜉𝜑 + 𝑎0̅̅ ̅𝑅𝑒(𝜉0 − 𝑓)̅
2

]
1

𝑓̅2
                                      (5 − 1) 

where ∆𝐻  is the pressure loss (𝑘𝑔/𝑚2), 𝜌  is the air density (𝑘𝑔/𝑚3), 𝑣  is the stream 

velocity (𝑚/𝑠) , 𝑔  is the gravitational acceleration (𝑚/𝑠2) , 𝑓̅  is the porosity (0.5), 

𝜉𝜑 , 𝑎0̅̅ ̅𝑅𝑒 , 𝑎𝑛𝑑 𝜉0  are all parameters depending on the Reynolds number 𝑅𝑒  and can be 

found easily in the handbook, 

𝑅𝑒 =
𝑣0𝑑ℎ

𝜈
                                                         (5 − 2) 

where 𝑣0 is the mean velocity of the stream in the orifices, 𝑑ℎ is the hydraulic diameter of 

the orifices, and 𝜈 is the kinematic viscosity. The boundary condition of this first part was 

summarized in Table 5-2. 

Table 5-2 Summary of the boundary conditions using confinement box 

 
Cas

e 

Room 

Temperatur

e (℃) 

Box Size (m3) 
Box Opening 

Size (m2) 

porous 

media 

resistance 
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coefficien

t 𝜉 

Baseline 

Case 

A 18.9 N/A N/A N/A 

B 21.1 N/A N/A N/A 

Confinemen

t Box Test  

H 
18.9 0.40m×0.45m×0.50

m 

0.40m×0.50

m 
4.968 

I 
18.9 1.00m×0.45m×0.50

m 

1.00m×0.50

m 
6.904 

J 
18.9 1.60m×0.45m×0.50

m 

1.60m×0.50

m 
7.344 
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(a) 

 

(b) 

Figure 5-2 Split diffuser with the confinement box (a) CFD model; (b) Example of the 

strip door (http://www.ganikpvccurtains.com/) 

 

The third part of the work is testing a footwarmer to heat the occupants by conduction and 

radiation. The footwarmer consists of a heating mat under the feet, a reflective box covering 

the front part of the feet and a heating lamp placed inside the box. The heating mat was 

http://www.ganikpvccurtains.com/
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designed to be electrically heated with a heat flux of 175 W/m2 uniformly through an area 

of 0.50 m × 0.45 m. The reflective box was assumed to be a box of 0.45 m × 0.15 m × 0.15 

m, with reflective material covering the interior surface (reflectivity equals to 1). The 

heating lamp was simulated by a strip (0.45 m × 0.024 m) placed on the top surface inside 

the box with a total heat flow rate of 20 W. Three tests were conducted, including heating 

with only the mat, heating with the mat and reflective box, and heating with the mat, 

reflective box and heating strip. 

Table 5-3 Summary of the boundary conditions using footwarmer 

 

Case 

Room 

Temperature 

(℃) 

Box Size (m3) 

Mat 

Heating 

Flux (W) 

Heating 

Lamp 

Power (W) 

Baseline 

Case 

A 18.9 N/A N/A N/A 

B 21.1 N/A N/A N/A 

Footwarmer 

Test 

K 18.9 N/A 175 0 

L 18.9 0.45m×0.15m×0.15m 175 0 

M 18.9 0.45m×0.15m×0.15m 175 20 

 

 

Figure 5-3 Footwarmer heating 
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5.1.2. Clothing Assembly 

Usually, when people used CFD to simulate the flow field around the human body, they 

used either constant surface temperature or heat flux as the boundary condition (Dygert et 

al. 2009; Nilsson et al. 2007; Russo et al. 2009). Some researchers involved clothing 

insulation in their simulation but ignored the difference between different segments (Cheng 

et al. 2012). However, this μX is focused on some particular body parts, where the local 

resistance matters. ASHRAE Handbook (ASHRAE 2013a) specifies the clothing insulation 

value of individual garments commonly worn, but these values were previously determined 

on a whole-body basis. To specify the clothing insulation of each body part, this work 

converted the whole-body clothing resistance of a clothing element i (𝑅𝑐𝑙,𝑤ℎ𝑜𝑙𝑒,𝑖, 𝑚2𝐾/𝑊) 

to its local clothing resistance (𝑅𝑐𝑙,𝑙𝑜𝑐𝑎𝑙,𝑖, 𝑚2𝐾/𝑊) by: 

𝑅𝑐𝑙,𝑙𝑜𝑐𝑎𝑙,𝑖 =
𝐴𝑡

𝐴𝑐𝑜𝑣,𝑖
𝑅𝑐𝑙,𝑤ℎ𝑜𝑙𝑒,𝑖                                       (5 − 3) 

where 𝐴𝑡 is the total body surface area (m2) and 𝐴𝑐𝑜𝑣,𝑖 is the covered body area of clothing 

element i (m2) (Lai and Chen 2016). The clothing insulation of all the segments are 

summarized below (Table 5-4). The total clothing value of the human body is 0.92 clo 

which is closed to the typical winter clothing value of 1.00 clo. 

Table 5-4 Local clothing insulation 

 
Clothes 

Insulation 
Thermal 

resistance 
 clo m2.K/W 

Face 
None 0.000 0.000 

Head 

Chest 

Long-sleeve dress shirt + Suit 0.630 0.241 Shoulder 

Back 
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Left Upper Arm 

Right Upper Arm 

Left Arm 

Right Arm 

Left Thigh 
Straight trousers 0.240 0.090 

Right Thigh 

Left Calf Straight trousers + Calf length 

socks 
0.270 0.111 

Right Calf 

Left Foot 
Calf length socks + shoes 0.050 0.067 

Right Foot 

Whole Body  0.920  

 

 

5.1.3. Thermal Comfort 

To reduce the room temperature from 21.1°C to 18.9 °C, the μX is needed to manage the 

local thermal envelope to achieve local thermal comfort. How to evaluate the performance 

of the μX regarding thermal comfort is the critical question for this work. As discussed in 

Section 2.1.2.2, many models have been developed for predicting the thermal comfort in a 

certain environment. However, since this work is focused on evaluating the thermal 

response of the human body to non-uniform static environment and evaporation is not 

included, the Clothing Independent Thermal Comfort Model was adopted (Nilsson 2007). 

This model was developed based on equivalent temperature, which is defined as the 

temperature of an imaginary enclosure with the mean radiant temperature equal to air 

temperature and still air in which a person has the same sensible heat exchange by 

convection and radiation as in the actual conditions, and it can be calculated using Eqn. 3-

1. However, to make the comfort evaluation clothing independent, Eqn. 5-4 was developed 
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so that for any clothing combination, the thermal sensation, as a Mean Thermal Vote 

(MTV), can be evaluated based on the heat loss of individual body part. 

𝑡𝑒𝑞,𝑧𝑜𝑛𝑒 = 𝑡𝑠 − 𝑅𝑇(𝑎1 + 𝑎2𝑀𝑇𝑉𝑧𝑜𝑛𝑒)                                (5 − 4) 

where 𝑅𝑇 is the total insulation, including resistance of clothing and air layer; 𝑎1, 𝑎2are the 

linear regression constants ( Nilsson 2007). Combining Eqn. 3-1 and 5-4, the MTV can be 

correlated to the local heat loss directly.  

 

In order to evaluate the performance of the μX in the environment of reduced air 

temperature (18.9 °C), the MTV of each case using different kinds of μX were predicted 

according to the CFD results of this current study, and compared with the one of the case 

of regular set-point (21.1°C).  

 

5.2. Results and Discussion 

5.2.1. Split Diffuser 

5.2.1.1. Effect of the Supply Velocity 

As mentioned before, the first method we tried was using the hot air jet to heat the feet 

locally. Different from the cooling case, since the surrounding air (18.9 °C) is cooler than 

the skin temperature (33.9 °C), there is no “free heating” existing like the cooling case. One 

has to make sure the hot jet can get to the human body before it is mixed with the 

surrounding air. So first of all, three different supply velocities, 0.3 m/s, 0.4 m/s and 0.5 

m/s, were tested when the supply flow rate and temperature were fixed at 0.0024 m3/s air 

at 40 ℃. The simulation results are summarized in Table 5-5. 

Table 5-5 Summary of heating with hot jet at different velocities 
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Case A B C D E 

µX Supply Temp (℃)   40 40 40 

µX Supply Vel (m/s)   0.5 0.4 0.3 

µX Supply Flow Rate (cfm)   5 5 5 

Room Return Temp (℃) 18.9 21.1 18.9 18.9 18.9 

Averaged Heat Flux (W/m2) 59.3 50.3 56.2 59.1 59.3 

Total Heat loss (W) 103.3 87.6 97.8 102.9 103.2 

Reduced Heat Loss (W)  15.7 5.5 -0.4 -0.1 

Note: Reduced Heat Loss is heat loss difference compared with Case A. 

 

From Table 5-5, When the room air temperature was reduced from 21.1°C to 18.9 °C, the 

total heat loss was increased from 87.6 W to 103.3 W, which made a 15.7 W difference. 

After turning on the μX, the total heat loss was reduced by 4.8 W only when the supply 

velocity was 0.5 m/s. When the supply velocity was set to be 0.4 m/s and 0.3 m/s, the total 

heat loss was even increased instead of reduced. The reason for that could be seen in Figure 

5-4. The surface heat flux was indicated by color. The streamline initiated from the diffuser 

was also plotted with color to indicate the temperature of the air along the streamline. It can 

be observed from the figure that 1) the heat flux of each segment was highly affected by 

the clothing insulation when the μX was off (Case A and B); 2) the air was mixed with the 

surrounding air quite fast (the streamline turned from red into blue), which means the hot 

jet can only work in a very short distance from the diffuser (the air temperature has to be 

higher than the skin temperature to warm the body); 3) with 0.5 m/s supply velocity, the 

hot jet was blown on most area of the foot, while with 0.4 m/s and 0.3 m/s supply velocity, 
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the hot jet was deflected upwards by the buoyancy before it got to the foot. This explains 

why only when the supply velocity was 0.5 m/s, the hot jet started to work.  

 

Figure 5-4 Surface heat flux of the cases with different supply velocities 

 

Figure 5-5 shows the predicted MTV of each segment of the occupant when different 

supply velocities were applied. Without the μX, when the room temperature was reduced 

from 21.1°C to 18.9 °C, the whole-body MTV was reduced from slightly cool (-0.488) to 

a little more than cool (-1.166), while all the local MTVs decreased by 0.28 - 0.74. The 

maximum decrement happened on the face, which is mostly because the face is naked. The 

second maximum decrement happened on the feet partially confirmed that the feet were 
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more sensitive in cold environment. There is a big variation of the local MTV (from -2.647 

to 0.122 in the 18.9 °C case and from -1.909 to 0.410 in the 21.1°C case) observed when 

the μX was off. Low MTVs happened on the face, head, calf, and foot; neutral MTVs 

happened on the torso, arm, and thigh.  

 

When the μX was turned on, the whole-body MTV was changed as well as some local 

MTVs. However, these changes were only significant when the supply velocity was 0.5 

m/s (Case C). Since the hot jet was directed to the foot, the highest increment happened on 

the feet. With 0.5 m/s supply velocity, the hot air of 40 ℃ is able to bring the local MTV 

of the feet from -2.384 (cold) to -0.805 (slightly cool) which is even closer to the neutral 

than the original environment (Case B), and bring the whole-body MTV from -1.166 (cool) 

to -0.929 (slightly cool) although it was still lower than the original (Case B). Nevertheless, 

for the case with 0.4 m/s and 0.3 m/s, the result was disappointing. Compared with the case 

without the μX (Case A), there was almost no improvement at all for both whole-body 

MTV and local MTV. This is consistent with the previous heat loss analysis. 
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Figure 5-5 Mean Thermal Vote of the cases with different supply velocities 

 

5.2.1.2. Determination of Suitable Air Supply Temperature and Flow Rate 

Since the supply velocity was decided, similar to the cooling case, the next step was to 

determine the combination of the supply condition so as to maximize the heating 

performance to restore thermal comfort. The μX was designed to provide 60 W heating 

power constantly, and three combinations of supply temperature and velocity were tested. 

The results are summarized in Table 5-6. 

Table 5-6 Summary of heating with hot jet of different supply combinations 

Case A B C F G 
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µX Supply Temp (℃)   40.0 36.8 31.3 

µX Supply Vel (m/s)   0.5 0.5 0.5 

µX Supply Flow Rate (cfm)   5 6.3 8.3 

Room Return Temp (℃) 18.9 21.1 18.89 18.89 18.89 

Averaged Heat Flux (W/m2) 59.3 50.3 56.2 57.2 58.0 

Total Heat loss (W) 103.3 87.6 97.8 99.5 100.9 

Reduced Heat Loss (W)  15.7 5.5 3.7 2.3 

Note: Reduced Heat Loss is heat loss difference compared with Case A. 

 

Table 5-6 indicates that the performance of the μX benefited more from lower supply flow 

rate, which is opposite to the cooling case. The maximum reduced heat loss 4.8 W is given 

by the combination of 0.0024 m3/s (5 cfm) supply flow rate and 40 ℃  supply temperature, 

and it decreased to 3.7 W and 2.3 W when the flow rate was increased to 0.0030 m3/s (6.3 

cfm) and 0.0039 m3/s (8.3 cfm). The reason for that can be better indicated in Figure 5-6. 

With 0.5 m/s supply velocity, the hot jet could always blow over the top surface of the foot. 

However, the red area (the area with smaller heat flux) on the foot decreased with the 

increasing of the flow rate. The first reason is that because the supply temperature decreased 

with the increasing of the flow rate, Case F and G have smaller temperature differences 

between the jet air and the skin, which determines the heating capability of the jet. The 

second reason is that since the supply temperature was lower in Case F and G, the jet started 

to cool foot earlier than Case C. Therefore, more heat was taken away from the heel. 
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Figure 5-6 Surface heat flux of the cases with different supply combinations 

 

Figure 5-7 shows the predicted MTV of each segment of the occupant when different 

supply combinations were applied. It is observed that the whole-body MTV were improved 

by the hot jet compared with Case A and the improvement was the most for Case C (∆MTV 

= 0.238). The local MTV of the foot were all increased for the three cases compared with 

Case A, and they were all even better than the original environment (Case B). However, 

one has to notice that even the best case C could only improve the overall MTV from -

1.166 to -0.929, which is far less than -0.488. Therefore, heating with the hot jet alone was 

proved to be not sufficient. 
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Figure 5-7 Mean Thermal Vote of the cases with different supply combinations 

 

5.2.2. Effect of Confinement Box 

The idea of using a confinement box with hot air supply came from the idea of slowing 

down the mixing process between the hot air and surrounding cooler air. The driving force 

of heat transfer is a temperature difference. However, based on the previous finding, the 

hot jet mixed too fast with the surrounding air so that its heating performance was severely 

limited. A well-insulated confinement box of different sizes, containing the feet and calves, 

was tested in this work. 0.0024 m3/s of hot air at 40 ℃ was supplied at 0.5 m/s. The results 

are summarized in Table 5-7. 
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Table 5-7 Summary of heating with hot jet and confinement box 

Case A B H I J 

Box length (m)   0.40 1.00 1.60 

Box Width (m)   0.45 0.45 0.45 

Box Height (m)   0.50 0.50 0.50 

Room Return Temp (℃) 18.9 21.1 18.89 18.89 18.89 

Averaged Heat Flux (W/m2) 59.3 50.3 51.9 52.8 52.9 

Total Heat loss (W) 103.3 87.6 90.3 91.9 92.1 

Reduced Heat Loss (W)  15.7 13.0 11.4 11.2 

 

Table 5-7 indicates the idea of using hot air jet with confinement box worked much better 

than the jet alone regarding the reduced heat loss. The reduced heat loss was increased from 

5.5 W to 13.0 W, which is almost three times when the box was 0.40 m long. This is very 

likely because the hot air was successfully confined in the box and warmed the legs quite 

a bit. The reduced heat loss decreased with the increasing of the size of the box, which is 

possibly because when the box was larger, there was more air exchange through the front 

opening of the box. The reason for that can be better indicated in Figure 5-8. When the box 

was 0.40 m wide (Case H), the hot air exiting from the diffuser was blown onto the top 

surface of the foot. However, different with the case without the confinement box, most of 

it turned upwards, flew around the calf, and left the box from the upper part of the opening. 

Together with a recirculation region created in the upper front corner of the box, the 

temperature of the air dropped much more slowly. And therefore, smaller heat flux was 

observed all over the foot and calf. After the box was enlarged, the opening size of the box 
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was also enlarged, which resulted in that the hot air escaped from the box faster and more 

heat exchange between the air inside and outside the box.  

 

Figure 5-8 Surface heat flux of the cases with confinement box 

 

Figure 5-9 shows the MTV prediction of the cases using the confinement box. For better 

comparison between the case with and without the box, the MTVs of the Case C are also 

included. With the confinement box, the μX improved the whole-body MTV from -1.166 

(Case A) to -0.606 (Case H) at most which is very close to the original MTV level in normal 

condition (Case B). Compared with Case C, the confinement box was able to increase the 

improvement of whole-body MTV from 0.237 to 0.560 with the same amount of heating 

power. Regarding the local MTVs, the confinement box brought most of the local MTVs, 

except the head, face, and feet, towards the warm side more or less. It is understandable 

that the box did not improve the thermal comfort of the head and face. However, it is very 

interesting that the box made the feet feel cooler than without the box. An explanation is 

that with the box, on the one hand, the hot air was not able to flow all over the foot, and 
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like shown in Figure 5-8 the hot air rose upwards and left the box there with entrained air; 

on the other hand, the cool air outside the box entered from the back of the feet and cool 

the heel of the feet.  Different with the case without the confinement box, the most obvious 

change happened on the calves. Without the confinement box, the jet could improve the 

MTV of the calf by only a little, from -0.935 (Case A) to -0.780 (Case C). However, with 

the confinement box, the improvement was extended to 0.181 (Case H), which is on the 

warm side. 

 

Figure 5-9 Mean Thermal Vote of the cases with confinement box 

 



142 

 

5.2.3. Footwarmer 

Although combining the hot jet with the confinement box can improve the thermal comfort 

in the environment with reduced set-point (18.9 ℃), this idea might still be unfavorable 

because it put too many constraints around the legs. Therefore, another method of using a 

footwarmer was tested in this section. The principle of this method is heating the feet by 

conduction and radiation. The primary part of the footwarmer is a 0.50 m × 0.45 m heating 

mat with a heating flux of 175 W/m2. Two additional parts were added to the mat to improve 

the heating performance: a reflective box and a heating lamp. The results were summarized 

in Table 5-8. 

Table 5-8 Summary of heating with footwarmer 

Case A B K L M 

Mat Heating power (W) 

N/A 

40 40 40 

Reflective Box × √ √ 

Heating Lamp Power (W) N/A N/A 20 

Room Return Temp (℃) 18.9 21.1 18.89 18.89 18.89 

Averaged Heat Flux (W/m2) 59.3 50.3 51.1 49.6 45.8 

Total Heat loss (W) 103.3 87.6 89.0 86.3 79.8 

Reduced Heat Loss (W)  15.7 14.3 16.9 23.4 

 

Table 5-8 indicates the performance of the footwarmer. By using the heating mat alone, 

the reduced heat flow rate was as high as 14.3 W which was higher than all the previous 

cases. With the help of the reflective box, this number was raised to 16.9 W, which is the 

first time to be able to recover the 15.7 W difference resulted from the reducing of 

background set-point. One should also note that both case K and case L only used 40 W 
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heating power, and when the remaining 20 W heating power was used by a heating lamp, 

another 6.5 W heat loss was reduced from the manikin, which bought the reduced heat loss 

up to 23.4 W. These results show that, from the reduced heat point of view, the footwarmer 

heating the occupant in a cooler environment by conduction and radiation is more efficient 

than convection. More details can be observed in Figure 5-10. With only the heating mat, 

the bottom side of the foot was heated by the heating mat with a constant heat flux of 175 

W. Moreover, when the front part of the feet is covered by the reflective box, the radiant 

heat from the heating mat reflected by the box was transferred to the top surface of the foot. 

When the heating lamp was added, more radiant heat provided by the heating lamp and 

reflected by the box was transferred to the foot. In addition, it should be noticed that the 

reflective box played a role like a small confinement box to hold some part of the 

convective hot air from the mat and lamp inside the box, and this hot air also exchanged 

heat with the foot by convection. 

 

Figure 5-10 Surface heat flux of the cases with footwarmer 
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Figure 5-11 shows the MTV prediction of the cases using footwarmer. Case K, L and M 

successfully recover the whole-body MTV to around the original level (Case B). With only 

the heating mat, the whole-body MTV was -0.549 which is a little lower than -0.488 (Case 

B); with the additional reflective box and heating lamp, the whole-body MTV was raised 

even beyond the original level to -0.433 and -0.154 respectively. Regarding the local MTV, 

it is obvious that most of the contribution came from the feet and partially from the calves. 

The heating mat directly brought the MTV of the feet from -2.384 (cold) to 3.003 (hot) with 

an increment of 5.387 and the MTV of the calves from -0.935 to -0.774 with an increment 

of 0.161. With the help of the reflective box and heating strip, the local MTV of the feet 

was brought up to 3.850 (Case L) and 4.162 (Case M), and the local MTV of the calves 

was brought to -0.633 (Case L) and -0.297 (Case M). The big increment of MTV on the 

feet is very much due to the heat conducted through the heating mat. Without the heating 

mat, the feet transferred heat through the socks and the sole of the shoes to the floor with 

low temperature (18.9 °C). However, with the heating mat, instead of losing heat to the 

floor, the feet got heat from the mat. This big difference turned over the local thermal 

sensation of the feet and compensated the whole-body MTV as well. 
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Figure 5-11 Mean Thermal Vote of the cases with footwarmer 

 

5.3. Summary and Conclusions 

The μX was designed to give constant 60W heating power during the day in winter. Three 

approaches were evaluated in this study using the previously validated CFD model. It was 

found:  

1) Different from the cooling case, heating a person with the hot jet is more 

complicated, since shooting hot air to an occupant in a cold environment may not 

be able to make them feel warm because it may entrain cooler air to blow on the 

human body. Only when supply air temperature was higher than 40 ℃, the jet 

started to heat the person. The supply velocity needs to be at least 0.5 m/s. Lower 
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supply air velocity made the jet deflected too fast. However, even with this supply 

condition, the jet can at most reduce the total heat loss by 5.5 W, which is not 

sufficient to recover the thermal comfort.  

2) Another idea of using a confinement box to hold the hot air around the legs and feet 

was proved to be promising. This confinement box was open in front. For holding 

the hot air, a strip door can be used on the opening. With this confinement box, the 

hot air can be retained around the legs for a while before it was mixed with the 

cooler air. This reduced the heat loss to two or three times compared to the single 

jet air heating approach. 

3) The best performance was obtained by using a footwarmer to heat occupant’s feet. 

Instead of using convection to heat the body, both conduction and radiation were 

used. A warming footpad with constant heat flux was put under people’s feet. 

Together with a reflective box covering the front part of the feet and heating lamp 

placed inside the box, more than 23 W heat loss can be reduced.  
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6. Experimental Evaluation of the Micro-Environmental Control in a Semi-Open 

Space 

The previous two chapters used validated computational simulation to help evaluate 

different strategies of using micro-environmental control system with expanded 

temperature set-point. These studies have shown the excellent predicted performance of the 

μX. This chapter presents the methods and results of an experimental study in which a 

dressed manikin sitting in a full-scale chamber was used to evaluate the performance the 

μX. The study also included the tests on the effects of the cubicle as a semi-open space in 

combination with μX. 

 

6.1. Overview 

6.1.1. Experimental Facility 

Since the effectiveness of the μX for cooling the occupant sitting in an office is highly 

influenced by the surrounding flow, a full-scale indoor environment quality chamber was 

used to simulate a real office with a workstation. Figure 6-1 shows a rendering of the 

experimental facility and its relationship to the surrounding lab space. The experimental 

setup is the same as described in Sec. 4.1.1.  

 

In all tests conducted, a heated anatomically correct multi-segment thermal manikin (Figure 

6-2) was placed in the workstation to reproduce the heat loading of an occupant. The 

manikin was dressed in typical summer clothes and its skin temperature was maintained at 

a defined set-point (33.9 ℃) by a computer-controlled feedback system (Khalifa et al. 
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2009). The manikin garments are summarized in Table 6-1. The total clothing insulation 

based on ASHRAE Handbook is 0.43 clo (ASHRAE 2013c). 

Table 6-1 Summary of the garment dressing the manikin 

Garment Segment 

Recommended 

clothing insulation 

(clo) 

None 

Face 

Head 

Left Forearm 

Right Forearm 

Left Hand 

Right Hand 

0.00 

Short-sleeve polo shirt 

Chest 

Shoulder 

Back 

Left Upper Arm 

Right Upper Arm 

0.19 

Men’s Briefs 
Left Thigh 

Right Thigh 
0.04 

Straight trousers  

Left Thigh 

Right Thigh 

Left Calf 

Right Calf 

0.15 

Socks 

Left Calf 

Right Calf 

Left Foot 

Right Foot 

0.03 

Shoes 
Left Foot 

Right Foot 

0.02 

Total  0.43 
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Figure 6-1 Flow diagram of the IEQ chamber
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Figure 6-2 Clothed multi-segment thermal manikin 

 

To make the shooting direction adjustable, a car diffuser (Figure 6-3) with adjustable 

louvers was installed. This diffuser has dimensions of 0.133 m × 0.064 m with five vertical 

blades and three horizontal blades, which can direct the jet by ±10˚ vertically and ±30˚ 

horizontally. 

 

 

Figure 6-3 Diffuser with louvers installed 
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A common form of the semi-open space in the office is the partitioned cubicle. People use 

it to provide some private space in large offices. In this study, we looked into the effects of 

the cubicle space on indoor environment management. A 1.8 m × 1.8 m cubicle was 

constructed using partitions made of plywood boards and polystyrene boards (Figure 6-4). 

The height of the partitions is 1.8 m, and the cubicle was placed around the workstation 

Figure 6-5a. The cubicle can be opened on all four sides by sliding the partition along a 

track placed on the floor. Thus, the effects of opening location and openness were 

investigated by opening the cubicle from the front, side, and back (with respect to the 

background coming flow) with an opening ratio of 50% and 100% (Figure 6-5b&c). 

 

Figure 6-4 Partition of the cubicle 
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(a) 

    

(b) 
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(c) 

Figure 6-5 Cubicle around the workstation 

 

6.1.2. Experimental Conditions 

This chapter mainly consists of two parts: that of testing the μX with a clothed manikin in 

an open-space office at raised cooling setpoint and that of testing the effect of the cubicle 

on micro-environmental control. To simulate an open-space office, the workstation with a 

clothed manikin was placed in the center of the chamber (Figure 6-6a) with a linear diffuser 

placed above it. The linear diffuser provides background temperature conditioning of the 

space by blowing conditioned air towards the end wall. In order to minimize the possibility 

of short circuiting and maximize the mixing of the air, the return outlet was located on the 

opposite wall. Before each set of tests, the chamber had to be pre-conditioned to the set-

point, and this preparation process usually takes more than 5 hours. The total supply air 

flow rate was maintained at 0.075 m3/s which corresponded to an air change rate of 5 h-1. 

The supply air was conditioned by an air conditioning unit (Figure 6-6b) placed by the side 
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of the chamber to make sure the return air temperature reached the set-point. When the μX 

was turned off, the chamber was running at a 100% recirculation mode. When the μX was 

turned on, the chamber supply air flow rate was reduced to make up for the air supplied by 

the μX.  

 

(a) 
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(b) 

Figure 6-6 IEQ chamber (a) and its HVAC system (b) 

 

The performance of the μX in cooling condition was tested first. The effect of the distance 

between the diffuser and the manikin, the effect of the shooting angle, the effect of the flow 

rate, the effect of the supply temperature, and the effect of the clothing were evaluated in 

sequence. Typically, people sitting in an office have a range of movement with a radius of 

0.61 m away from the desk. Therefore, tests with three distances (0.20 m, 0.45 and 0.61 m) 

between the stomach and the μX diffuser were conducted. The tested shooting angle 

included 0˚ and 10˚. The effects of the supply flow rate and temperature were investigated 

separately. The air flow rate supplied by the μX was set at three levels: 0.0073 m3/s (15.5 

cfm), 0.0139 m3/s (29.4 cfm) and 0.0189 m3/s (40.0 cfm), and three supply temperatures – 
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20.0 ℃, 23.0 ℃, and 26.0 ℃ - were tested for each flow rate. In the end, in order to explore 

the effect of the different clothing garment, a tight sports shirt was used to replace the polo 

shirt. The experimental condition of each set of the test was summarized in Table 6-2. 

Table 6-2 Experiment conditions of the μX tests 

Case # 

Room 

Return 

Temp 

(℃) 

Distance 

from the 

diffuser 

(m) 

µX 

Shooting 

Angle (˚) 

µX 

Supply 

Flow Rate 

(cfm) 

µX 

Supply 

Temp 

(℃) 

Upper 

Body 

Garment 

BL 

26.1 

N/A 

Polo shirt 

D1-A0-

F2-T2 
0.20 0 29.4 23.1 

D2-A0-

F2-T2 
0.45 0 29.4 23.1 

D3-A0-

F2-T2 
0.61 0 29.4 23.1 

D1-A1-

F2-T2 
0.20 10 29.4 23.1 

D2-A1-

F2-T2 
0.45 10 29.4 23.1 

D3-A1-

F2-T2 
0.61 10 29.4 23.1 

D1-A0-

F1-T1 

0.20 

0 15.5 20.2 

D1-A1-

F1-T1 
10 15.5 20.2 

D1-A0-

F1-T2 
0 15.5 23.1 

D1-A1-

F1-T2 
10 15.5 23.1 

D1-A0-

F1-T3 
0 15.5 26.1 

D1-A1-

F1-T3 
10 15.5 26.1 

D1-A0-

F2-T1 
0 29.4 20.2 

D1-A1-

F2-T1 
10 29.4 20.2 

D1-A0-

F2-T2 
0 29.4 23.1 
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D1-A1-

F2-T2 
10 29.4 23.1 

D1-A0-

F2-T3 
0 29.4 26.1 

D1-A1-

F2-T3 
10 29.4 26.1 

D1-A0-

F3-T1 
0 40.0 20.2 

D1-A1-

F3-T1 
10 40.0 20.2 

D1-A0-

F3-T2 
0 40.0 23.1 

D1-A1-

F3-T2 
10 40.0 23.1 

D1-A0-

F3-T3 
0 40.0 26.1 

D1-A1-

F3-T3 
10 40.0 26.1 

BL-S N/A 

Sport 

Shirt 

D1-A0-

F2-T2-S 
0.20 0 29.4 23.1 

D3-A0-

F2-T2-S 
0.61 0 29.4 23.1 

Code explanation: Dα-Aβ-Fγ-Tδ(-S). D (Distance): α=0-0.2m; 1-0.45m; 2-0.61m. A 

(Angle): β=0-0˚; 1-10˚. F (Flowrate): γ=1-15.5cfm; 2-29.4cfm; 3-40.0cfm. T (Supply 

Temperature): δ=1-20.2℃; 2-23.1℃; 3-26.1℃. (-S): Sport Shirt. 

 

After the test of the μX, the cubicle came in. The partitions of the cubicle were placed 

around the workstation and could be opened on all the four sides. Firstly the cubicle was 

tested as fully closed, and then the cubicle was opened in half and whole on each side. 

Without the μX, the cubicle was tested in a simulated total-volume-ventilated room with a 

set-point of 26.1 ℃ or 23.9 ℃; and after that, it was tested with the μX on as well. In these 

tests, the manikin was always placed 0.20 m away from the desk edge and dressed in a polo 

shirt. When the μX was on, 0.0139 m3/s (29.4 cfm) of air at 23.0 ℃ was supplied 

horizontally (shooting angle = 0˚) to the manikin. The manikin surface heat flux from each 
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segment was recorded as well as the temperature distribution inside the cubicle. The 

experimental condition of each set of tests was summarized in Table 6-3. 

 

Table 6-3 Experimental conditions of the cubicle tests 

Case 

Code 

Cubicle 

Opening 

Room 

Return 

Temp 

(℃) 

μX  
Case 

Code 

Cubicle 

Opening 

Room 

Return 

Temp 

(℃) 

μX  

FC-0-0-

H 
 

26.1 Off 

FC-0-1-

H 
 

26.1 On 

OF-1-0-

H 
 

OF-1-1-

H 
 

OF-2-0-

H 
 

OF-2-1-

H 
 

OL-1-0-

H 
 

OL-1-1-

H 
 

OL-2-0-

H 
 

OL-2-1-

H 
 

OB-1-0-

H 
 

OB-1-1-

H 
 

OB-2-0-

H 
 

OB-2-1-

H 
 

FO-2-0-

H 
 

FO-2-1-

H 
 

 

Case 

Code 

Cubicle 

Opening 

Room 

Return 

Temp 

(℃) 

μX  

Case code explanation: XX-A-B-C 
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FC-0-0-

L 
 

23.9 Off 

XX: Opening direction; FC-Fully Closed; 

OF-Open from the Front; OL-Open from 

the Left; OB-Open from the Back; FO-

Fully Open. 

A: Opening size; 0-fully closed; 1-half 

open; 2-fully open. 

B: μX operating condition; 0-off; 1-on. 

C: Background temperature set-point; H-

High (79℉); L-Low (75℉) 

OF-1-0-

L 
 

OF-2-0-

L 
 

OL-1-0-

L 
 

OL-2-0-

L 
 

OB-1-0-

L 
 

OB-2-0-

L 
 

FO-2-0-

L 
 

 

6.2. Micro-Environmental Control System in Cooling Condition 

6.2.1. Effects of the Distance between the Diffuser and the Manikin 

To quantify the effects of the distance between the diffuser and the manikin, six sets of 

experiments were conducted. The supply flow rate and temperature were fixed at 0.0139 

m3/s (29.4 cfm) and 23.0 ℃. The manikin was moved from 0.20 m, to 0.45 m and 0.61 m 

away from the diffuser. Both 0˚ and 10˚ shooting angles were tested in the experiment. The 

experimental results were summarized in Table 6-4. It was found that with the same 

shooting angle, the total heat loss increased with the distance. Especially when the shooting 

angle was 0˚, the total heat loss increased from 96.4 W for 0.20 m distance to 102.4 W for 
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0.61 m distance, which gives a difference of 6.0 W. This is different with what we found 

previously when the manikin was naked. The possible reason for that was the existence of 

the clothes changed the surface properties of the manikin. With a loose polo shirt, many 

wrinkles together with the knit structure changed the flow over the chest and stomach. 

When the diffuser was closed to the manikin, the jet was narrow and not able to spread 

thoroughly over the manikin surface because of the wrinkles; however, when the diffuser 

was far away, the jet was able to develop and blow on larger area of the manikin surface, 

so even though the jet’s spread was constrained, a little more heat was removed. This 

explanation can be verified by Figure 6-7. When the manikin was further away from the 

manikin, more heat was removed from the chest, forearms, hands, and thighs.  

Table 6-4 Experimental results of the cases with different distances between the diffuser 

and the manikin 

 BL 
D1-A0-

F2-T2 

D1-A1-

F2-T2 

D2-A0-

F2-T2 

D2-A1-

F2-T2 

D3-A0-

F2-T2 

D3-A1-

F2-T2 

Distance 

from the 

Diffuser 

(m) 

0.20 0.20 0.20 0.45 0.45 0.61 0.61 

Shooting 

Angle (˚) 
 0 10 0 10 0 10 

Room 

Supply 

Temp 

(℃) 

24.84 

(± 0.65) 

25.99 

(± 0.42) 

25.95 

(± 0.42) 

25.99 

(± 0.41) 

26.01 

(± 0.48) 

25.66 

(± 0.33) 

25.65 

(± 0.27) 

Room 

Return 

Temp 

(℃) 

26.09 

(± 0.06) 

26.15 

(± 0.05) 

26.17 

(± 0.05) 

26.16 

(± 0.04) 

26.22 

(± 0.06) 

26.12 

(± 0.05) 

26.08 

(± 0.03) 

µX 

Supply 
 23.01 

(± 0.05) 

23.02 

(± 0.06) 

23.13 

(± 0.05) 

23.16 

(± 0.07) 

22.84 

(± 0.10) 

23.03 

(± 0.08) 
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Temp 

(℃) 

µX 

Supply 

Flowrate 

(cfm) 

 29.6 29.8 29.4 29.3 29.4 29.5 

Averaged 

Heat 

Flux 

(W/m2) 

41.10 

(± 0.39) 

53.19 

(± 0.18) 

54.81 

(± 0.22) 

53.83 

(± 0.23) 

56.78 

(± 0.21) 

56.46 

(± 0.23) 

56.75 

(± 0.16) 

Total 

Heat loss 

(W) 

74.5 (± 

0.7) 

96.4 (± 

0.3) 

99.4 (± 

0.4) 

97.6 (± 

0.4) 

102.9 

(± 0.4) 

102.4 

(± 0.4) 

102.9 

(± 0.3) 

Extra 

Heat 

Loss (W) 

 21.9 24.9 23.1 28.4 27.8 28.4 
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Figure 6-7 Segmental heat flow rates of the cases with different distances 

 

6.2.2. Effect of the Shooting Angle 

Another interesting finding which we can get from Table 6-4 is that with the same distance 

the 10˚ shooting angle removed more heat from the manikin, which is consistent with the 

previous results found in Sec. 4.2.4. At the distance of 0.20 m, 0.45 m, and 0.61 m, the jet 
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with a shooting angle of 10˚ was able to remove 2.9 W, 5.3 W, and 0.5 W more than that 

of 0˚ shooting angle. Figure 6-7 shows that most of the difference comes from the stomach 

and chest. Since the supply air flow rate, supply temperature, and the distance did not 

change, this increment is exclusively due to a higher convective heat transfer coefficient, 

which resulted from two reasons: on the one hand, when the shooting angle was changed 

from 0˚ to 10˚ by adjusting the louver, the cross-section of the jet was reduced, and the jet 

supply velocity was increased; on the other hand, the larger shooting angle made the jet 

blow onto a larger area of the body. This effect could be confirmed by more test results in 

Figure 6-8. Note that the extra heat removed is the manikin heat loss difference between 

the case with the μX and without the μX (Case BL). For all the combinations of supply 

flow rate and temperature tested except 15.5 cfm + 26.1 ℃ case, the 10˚ shooting angle 

removed more heat than the 0˚.  
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Figure 6-8 Effect of the shooting angle 

 

6.2.3. Effect of the Supply Flow Rate and Supply Temperature 

In Sec.4.2.3, the effect of the supply flow rate and temperature has been partially 

investigated by CFD. However, that part of work focused more on the combinatorial effect 

of them (ensuing 50 W cooling power) instead of the individual effect. This current and the 

next subsection focused on the individual effect of the supply flow rate and temperature. 

Figure 6-9 looks into the effect of the supply flow rate for each combination of shooting 

angle and supply temperature. It was shown that the extra heat flow rate increased with the 

air flow rate no matter what shooting angle or supply temperature it was. Figure 6-10 looks 

into the effect of the supply temperature for each combination of shooting angle and supply 
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flow rate. It shows that the extra heat removed was negatively correlated with the supply 

temperature.  

 

 

Figure 6-9 Effect of the supply flow rate 
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Figure 6-10 Effect of the supply temperature 

 

However, in order to quantify the cooling efficiency, the extra heat loss was divided by the 

cooling power provided to the µX and the fan power (ebm papst 2017a, 2017b, 2017c) 

consumed to give us the overall cooling efficiency: 

𝜂 =
𝑄̇𝑡𝑜𝑡𝑎𝑙,𝑖 − 𝑄̇𝑡𝑜𝑡𝑎𝑙,𝐵𝐿

𝑃
                                              (6 − 1) 

The results show that the cooling efficiency dramatically increased with the supply 

temperature (Figure 6-11). With 20.2 C supply temperature, the cooling efficiency was 

between 25-40%. With 23.1 C supply temperature, the cooling efficiency was between 40-

60%. But with 26.1 C supply temperature, the cooling efficiency was way over 300%.  
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Figure 6-11 Cooling efficiency 

 

6.2.4. Effect of the Clothing Material 

As the first layer between the human body and surrounding environment, the clothes play 

an important role in determining the thermal comfort of the human body. The comfort of 

the garment is the complex effect of textile properties which are basically dependent on the 

chemical structure and morphology of the constituent fibers. Comfort properties of textile 

products such as yarns, fabrics, mats and any other products that are used for wearing 

purposes embrace different mechanical properties including heat and moisture transfer 

(Song 2011). This subsection includes the work of testing the μX using a manikin dressed 

in either a polo shirt or a sports shirt (Figure 6-12). An obvious difference between these 

two garments is that there are many wrinkles with a loose shirt which create some air 
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pockets between the skin surface of the manikin and the clothes, while the sports shirt is 

tightly attached to the skin surface. 

    

Figure 6-12 Manikin dressed in a polo shirt (left) and a sports shirt (right) 

The experimental results are summarized in Table 6-5. It was found that the clothing 

material did affect the heat loss from the manikin a lot. Although both of the two shirts are 

short sleeve shirt, the manikin with the sports shirt released above 10.0 W more than the 

manikin with the polo shirt. Another interesting finding is that when the manikin was 

dressed in a sports shirt, the extra heat loss taken by the manikin was negatively correlated 

to the distance between the diffuser and the manikin. This is different from the case with a 

polo shirt. The reason was explained in Sec. 6.2.1 and can be confirmed by Figure 6-13. 

When the manikin was dressed in the sports shirt, there were no wrinkles, and the clothes 

surface was as smooth as a naked manikin. When the jet hit on it, regardless of how far the 
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manikin was away from the diffuser, it was easy for the jet to spread, and because of the 

development of the jet, its cooling capacity decreased with the distance. 

Table 6-5 Experimental results with different clothing material 

 BL 
D1-A0-

F2-T2 

D3-A0-F2-

T2 
BL-S 

D1-A0-

F2-T2-S 

D3-A0-

F2-T2-S 

Distance 

from the 

Diffuser (m) 

0.20 0.20 0.61 0.20 0.20 0.61 

Shooting 

Angle (˚) 
 0 0  0 0 

Room Supply 

Temp (℃) 

24.84 (± 

0.65) 

25.99 (± 

0.42) 

25.66 (± 

0.33) 

23.54 (± 

0.16) 

25.00 (± 

0.10) 

24.97 (± 

0.11) 

Room Return 

Temp (℃) 

26.09 (± 

0.06) 

26.15 (± 

0.05) 

26.12 (± 

0.05) 

26.10 (± 

0.04) 

26.12 (± 

0.02) 

26.12 (± 

0.04) 

µX Supply 

Temp (℃) 
 23.01 (± 

0.05) 

22.84 (± 

0.10) 
 

23.16 (± 

0.04) 

23.00 (± 

0.05) 

µX Supply 

Flowrate 

(cfm) 

 29.6 29.4  29.5 29.5 

Averaged 

Heat Flux 

(W/m2) 

41.10 (± 

0.39) 

53.19 (± 

0.18) 

56.46 (± 

0.23) 

47.50 (± 

0.20) 

68.48 (± 

0.13) 

67.57 (± 

0.16) 

Total Heat 

loss (W) 

74.5 (± 

0.7) 

96.4 (± 

0.3) 

102.4 (± 

0.4) 

86.1 (± 

0.4) 

 124.2 (± 

0.2) 

 122.5 (± 

0.3) 

Extra Heat 

Loss (W) 
 21.9 27.8  38.0 36.4 
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Figure 6-13 Segmental heat flow rates of the cases with different clothing material 

 

6.3. Effects of the Semi-Open Space 

Office cubicles, as a common form of the semi-open space, have become increasingly 

popular in the past few decades, because it can give the occupants privacy as well as 

promote communication and collaboration among them. However, it has drawn attention 
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from the researchers and engineers that the partitions in the office can lead to a large 

variation of IAQ and thermal comfort level ( Bauman et al. 1991; Bauman et al. 1992; Lee 

and Awbi 2004; Posner et al. 2003). Very few studies have been done on this when a micro-

environmental control system is used. This section discusses the effects of the cubicle on 

the thermal environment based on experimental results. 

 

6.3.1. With v.s. Without the Cubicle 

The cubicle was tested first under the mixing ventilation. The conditioned air was supplied 

from the ceiling and entered the occupied space from the front (Figure 6-1). The test was 

conducted with the cubicle fully closed and then fully opened one side at a time. The test 

results are summarized in Table 6-6. Without the cubicle, the manikin released 74.5 W heat 

to the ambiance. However, with the cubicle, the total heat loss of the manikin was reduced 

by 1 to 8 W depending on the opening direction and opening size. When the cubicle was 

fully closed (some cubicles have sliding doors), the manikin released only 66.4 W heat with 

the same return air temperature. There are two reasons for this. On the one hand, the cubicle 

partitions prevent the background airflow from blowing on the manikin. As shown in 

Figure 6-14, the spatially averaged velocity was reduced from 0.104 m/s to 0.090 m/s. 

Especially at the lower level closed to the floor, because the supply air was cooler than the 

room temperature, the air velocity was always much higher when there was no cubicle. On 

the other hand, because of the cubicle partition, most of the heat released was kept in the 

cubicle. Figure 6-15 compares the temperature in the occupied space with and without the 

cubicle. With the closed cubicle, the temperature measured inside the cubicle were all 
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higher than the temperature without the cubicle. The average temperature with the cubicle 

was around 0.4 ℃ higher than that without the cubicle.  

 

Figure 6-14 Velocity in the occupied space (26.1 ℃)  
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Figure 6-15 Temperature in the occupied space with v.s. without cubicle (26.1 ℃) 

Similar phenomena can be observed from the results of the cases when the room 

temperature set-point was 23.9 ℃. Table 6-7 shows the test results of the 23.9 ℃ set-point. 

With a lower set-point, the difference between the case with a closed cubicle and without 

a cubicle was even more significant. Without the cubicle, the manikin released 100.24 W 

heat to the ambiance. However, when the cubicle was fully closed (some cubicles have 

sliding doors), the manikin released only 85.87 W heat with the same return air temperature. 

The explanation mentioned before is confirmed by these cases. The average velocity was 

reduced from 0.115 m/s to 0.081 m/s (Figure 6-16), and the average temperature with the 

cubicle was around 0.6 ℃ higher than that without the cubicle (Figure 6-17). 
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Figure 6-16 Velocity in the occupied space (23.9 ℃) 
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Figure 6-17 Temperatures at different heights from the floor in the occupied space with 

v.s. without cubicle (return air temperature: 23.9 ℃) 
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Table 6-6 Summarized test results of the partitioned office without μX at 26.1 ℃ return air temperature 

 FC-0-0-H OL-1-0-H OL-2-0-H OB-1-0-H OB-2-0-H OF-1-0-H OF-2-0-H FO-2-0-H 

Open Direction N/A Left Left Back Back Front Front Fully 

Opening With (ft) N/A 3 6 3 6 3 6 6 

Room Supply 

Temp (℃) 

23.89 (± 

0.73) 

23.81 (± 

0.57) 

23.88 (± 

0.39) 

23.02 (± 

0.71) 

23.88 (± 

0.34) 

23.38 (± 

0.41) 

23.63 (± 

0.35) 

24.84 (± 

0.65) 

Room Return 

Temp (℃) 

26.06 (± 

0.08) 

26.10 (± 

0.07) 

26.09 (± 

0.05) 

25.93 (± 

0.08) 

26.16 (± 

0.05) 

26.17 (± 

0.05) 

26.14 (± 

0.05) 

26.09 (± 

0.06) 

µX Supply Temp 

(℃) 
N/A 

µX Supply 

Flowrate (cfm) 
N/A 

Averaged Heat 

Flux (W/m2) 

36.60 (± 

0.23) 

39.73 (± 

0.22) 

38.69 (± 

0.22) 

40.41 (± 

0.34) 

38.38 (± 

0.15) 

37.25 (± 

0.30) 

40.25 (± 

0.13) 

41.10 (± 

0.39) 

Total Heat loss 

(W) 

 66.4 (± 

0.4) 

 72.0 (± 

0.4) 

 70.1 (± 

0.4) 

 73.3 (± 

0.6) 

 69.6 (± 

0.3) 

 67.5 (± 

0.5) 

 73.0 (± 

0.2) 

74.5 (± 

0.7) 

Adjusted Total 

Heat loss (W) 
66.0 72.0 70.1 71.7 70.1 68.1 73.4 74.4 
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Table 6-7 Summarized test results of the partitioned office without μX at 23.9 ℃ return air temperature 

 FC-0-0-L OL-1-0-L OL-2-0-L OB-1-0-L OB-2-0-L OF-1-0-L OF-2-0-L FO-2-0-L 

Open Direction N/A Left Left Back Back Front Front Fully 

Opening With (ft) N/A 3 6 3 6 3 6 6 

Room Supply 

Temp (℃) 

20.70 (± 

0.21) 

20.00 (± 

0.29) 

20.70 (± 

0.20) 

20.69 (± 

0.19) 

20.69 (± 

0.27) 

20.85 (± 

0.86) 

20.89 (± 

0.62) 

20.36 (± 

3.19) 

Room Return 

Temp (℃) 

23.97 (± 

0.05) 

23.78 (± 

0.05) 

23.92 (± 

0.03) 

24.03 (± 

0.05) 

23.93 (± 

0.05) 

23.91 (± 

0.07) 

23.88 (± 

0.05) 

23.87 (± 

0.28) 

µX Supply Temp 

(℃) 
N/A 

µX Supply 

Flowrate (cfm) 
N/A 

Averaged Heat 

Flux (W/m2) 

47.37 (± 

0.35) 

53.50 (± 

0.18) 

52.15 (± 

0.26) 

51.97 (± 

0.21) 

51.27 (± 

0.15) 

50.86 (± 

0.49) 

53.79 (± 

0.27) 

55.29 (± 

2.04) 

Total Heat loss (W) 
 85.9 (± 

0.6) 

 97.0 (± 

0.3) 

 94.6 (± 

0.5) 

 94.2 (± 

0.4) 

 93.0 (± 

0.3) 

 92.2 (± 

0.9) 

 97.5 (± 

0.5) 

100.2 (± 

3.7) 

Adjusted Total 

Heat loss (W) 
85.0 94.4 93.0 93.7 91.4 90.4 95.8 100.9 
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6.3.2. Effect of the Opening Size of the Cubicle 

The effect of the opening size of the cubicle was tested in the study. The front, left or back 

sides of the cubicle were either half or fully opened in each pair of the experiments. The 

test results for the cases with higher temperature set-point were listed in Table 6-6. It was 

unexpected that the case with half opening on the back side had a total heat loss of 73.3 W, 

which was the highest of all the six cases. This was partially because the return air 

temperature of this case was 25.93 ℃, which was a little less than that in the other cases. 

For a better comparison, the total heat loss was adjusted based on the set-point and the 

measured value of the return air temperature: 

𝑄̇𝑎𝑑𝑗. = 𝑄̇𝑚𝑒𝑎𝑠. ∙
𝑇𝑠𝑘𝑖𝑛 − 𝑇𝑟,𝑠𝑒𝑡

𝑇𝑠𝑘𝑖𝑛 − 𝑇𝑟,𝑚𝑒𝑎𝑠
 

where 𝑄̇𝑎𝑑𝑗. is the adjusted total heat loss, 𝑄̇𝑚𝑒𝑎𝑠 is the measured total heat loss, 𝑇𝑠𝑘𝑖𝑛 is 

the manikin skin surface temperature (33.9 ℃), 𝑇𝑟,𝑠𝑒𝑡  is the set-point of the return air 

temperature (26.1 ℃), and 𝑇𝑟,𝑚𝑒𝑎𝑠  is the measured return air temperature.  

 

The adjusted total heat loss removes the effect of return air temperature difference and 

allows the comparison to be focused on the effect of the opening size of the partition. After 

the adjustment, it is shown that when the cubicle was opened from the left and back side, 

the total heat loss was within 71.0 ± 1.0 W, with the half open cases a little higher than the 

fully open cases. However, when the cubicle was opened from the front, a much larger 

difference was observed between half open and fully open. With half openness, the total 

heat loss from the manikin was 68.1 W, but this number increased to be 73.4 W with full 

openness, which is the closest to the number of the fully-open case (FO-2-0-H). It is easy 
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to understand that when the front side was fully opened, the total heat loss from the manikin 

was the second highest following the fully-open case (FO-2-0-H) because the cooler supply 

air could get to the occupied space without any block. However, it is interesting to find that 

half-open case yielded the second lowest total heat loss, which is even lower than the cases 

with an opening from the left and back side. A possible explanation can be obtained from 

Figure 6-18, which compares the temperature distribution in the occupied space when the 

cubicle was opened half or completely in the front. It can be observed that when the cubicle 

was half open because the opening was the left half part of the front side cooler air entered 

the cubicle through the left lower part of the front side – in case OF-1-0-H, Left 0.1m, and 

Left 0.4m had lower temperatures than OF-2-0-H. However, because either the amount of 

this part of air was too small or it went out of the cubicle before mixing, the remaining 

space - especially the right half side of the cubicle – was hotter than the case of OF-2-0-H.  

 

Figure 6-18 Temperature in the occupied space with opening in the front (26.1 ℃) 
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The similar conclusion could be drawn from the results of the cases with lower set-point 

(Table 6-7). Among all the partially opened cubicle cases, the one fully opened in the front 

(OF-2-0-L) yielded the highest total heat loss while the one half-opened in the front (OF-

1-0-L) yielded the lowest total heat loss. The explanation is the same with that mentioned 

previously (Figure 6-19). 

 

Figure 6-19 Temperature in the occupied space with opening in the front (23.9 ℃) 

 

6.3.3. Cubicle with μX  

The cubicle was then tested with the μX. The results are summarized in Table 6-8. It can 

be observed that different from the cases without the μX, the effect of the cubicle on the 

thermal response of the manikin was not that obvious (Figure 6-20). The difference of the 
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total heat loss of the manikin between with and without the cubicle was smaller compared 

with that of the cases without the μX. Figure 6-20 illustrates the percentage of increased 

heat loss compared with the case with a fully closed cubicle. When the room background 

temperature was set to be 23.9 ℃ and without the μX, opening the cubicle resulted in as 

high as 18.7% increment in the total heat loss. This number was reduced to 12.7% when 

the room temperature was set to be 26.1 ℃ and further reduced to 6.9% when the μX was 

turned on. This means that the μX helps reduce the dependence of the micro-environment 

of the human body on the background environment, which is the macro-environment. 

 

Figure 6-20 Percentage of increased heat loss compared with the case with fully closed 

cubicle 
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Table 6-8 Summarized test results of the partitioned office with μX at 26.1 ℃ return air temperature 

 FC-0-1-H OL-1-1-H OL-2-1-H OB-1-1-H OB-2-1-H OF-1-1-H OF-2-1-H FO-2-1-H 

Open Direction N/A Left Left Back Back Front Front Fully 

Opening With (ft) N/A 3 6 3 6 3 6 6 

Room Supply Temp 

(C) 

24.93 (± 

0.50) 

24.73 (± 

0.22) 

24.97 (± 

0.21) 

25.03 (± 

0.30) 

25.09 (± 

0.88) 

25.00 (± 

0.21) 

24.93 (± 

0.63) 

28.42 (± 

0.10) 

Room Return Temp 

(C) 

26.13 (± 

0.06) 

26.06 (± 

0.03) 

26.02 (± 

0.05) 

26.23 (± 

0.04) 

26.17 (± 

0.07) 

26.15 (± 

0.03) 

26.20 (± 

0.05) 

26.15 (± 

0.05) 

µX Supply Temp 

(C) 

23.21 (± 

0.13) 

23.04 (± 

0.11) 

22.86 (± 

0.11) 

23.12 (± 

0.05) 

23.10 (± 

0.05) 

23.17 (± 

0.05) 

23.18 (± 

0.05) 

22.96 (± 

0.04) 

µX Supply Flowrate 

(cfm) 
29.3 29.3 29.3 29.5 29.3 29.4 29.4 29.1 

Averaged Heat Flux 

(W/m2) 

51.87 (± 

0.32) 

53.36 (± 

0.24) 

54.97 (± 

0.22) 

53.66 (± 

0.16) 

54.38 (± 

0.52) 

52.21 (± 

0.22) 

54.11 (± 

0.26) 

55.48 (± 

0.28) 

Total Heat loss (W) 
 94.0 (± 

0.6) 

 96.8 (± 

0.4) 

 99.7 (± 

0.4) 

 97.3 (± 

0.3) 

 98.6 (± 

0.9) 

 94.7 (± 

0.4) 

 98.1 (± 

0.5) 

 100.6 (± 

0.5) 
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6.4. Thermal Response Evaluation 

The thermal response of the manikin was evaluated using the Clothing Independent 

Thermal Comfort Model (Håkan O. Nilsson 2007). The Mean Thermal Vote (MTV) of 

each segment, as well as the whole body, was predicted based on the heat flux 

measurement. Figure 6-21 shows the whole-body MTV prediction of the cases with 

different distances between the manikin and the diffuser. The case FO-2-0-L represents the 

case with the normal set-point of 75.0 ℉ and without the μX, which represents the 

comfortable scenario (Slightly cool, -0.90). After the set-point was raised to 79.0 ℉, the 

MTV was shifted to the warm side. While with the μX, the whole-body MTV could be 

drawn back to the cool side and around the number of FO-2-0-L. 

 

Figure 6-21 Whole-body MTV prediction of the cases with different distances 
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Figure 6-22 shows the whole-body MTV of the cases with different supply temperatures 

and flow rates. With 15.5 cfm supply flow rate, the μX brought the MTV to the cool side 

but was not able to fully recover the thermal sensation level at 75 ℉ set-point. Even with 

only 20.0 ℃ supply temperature, the predicted MTV was at most -0.71 which is closer to 

the neutral than -0.90. However, with 29.4 cfm supply air, the μX could bring the MTV 

value to the comfort level except when the supply temperature was 26.0 ℃. The cases with 

40.0 cfm supply flow rate could bring the whole-body MTV all the way to the cold side of 

the comfort level (>1). Moreover, when the supply temperature was 20.0 ℃, with 10˚ 

shooting angle, the MTV level was as low as -1.83.  

 

 

Figure 6-22 Whole-body MTV prediction of the cases with different supply temperatures 

and flow rates 
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The cubicle does also change the thermal response of the occupants. Figure 6-23 illustrates 

the predicted MTV of the cases with and without the cubicle. The effect of the cubicle was 

more obvious when the cubicle was not equipped with the μX. At 26.1 ℃ background 

temperature, a fully closed cubicle raised the MTV from 0.20 to 0.54, which exacerbates 

the thermal sensation; and at 23.9 ℃ background temperature, the cubicle could even raise 

the MTV by 0.7 unit at most. Partially opened cubicle yielded MTVs between the one with 

fully closed cubicle and the one without cubicle. However, with the μX, the predicted MTV 

was much around the same level, no matter how the cubicle was opened.  

 

Figure 6-23 Whole-body MTV prediction with and without the cubicle 
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6.5. Summary and Conclusions 

Experiments using a thermal manikin and a full-scale chamber were conducted to evaluate 

the performance of the μX under different conditions and investigate the effects of the 

cubicle as a semi-open space on the thermal environment of occupants. The results indicate 

that 

1) The heat loss by the manikin is sensitive to the distance between the diffuser and 

the manikin as well as the clothing material. With a loose polo shirt, the heat loss 

from the manikin increased with the distance, while with a tight sports shirt, the 

heat loss from the manikin decreased with the distance, when the distance was 

changed from 0.20 m to 0.61 m. 

2) Increasing the shooting angle from 0˚ to 10˚ resulted in additional heat loss from 

the manikin. This is attributed to a higher supply air velocity due to a smaller jet 

cross section and a larger surface area of the manikin which the jet blew onto. 

3) The heat loss from the manikin was found to be positively correlated with the supply 

air flow rate, but negatively correlated with the supply temperature. However, the 

overall cooling efficiency dramatically increased with the supply temperature. 

4) The existence of the cubicle was found to be able to “protect” the occupants from 

the background air flow by reducing the average velocity and increasing the average 

temperature in the occupied space. The openness of the cubicle weakened the 

“protection” of the cubicle to different extends depending on the opening direction 

and size. Fully opening against the coming air flow weakened the “protection” the 

most while half opening against the coming air flow had the least effect on the 

“protection” among the experimental configurations tested. 
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5) The cubicle equipped with the μX could help reduce the dependence of the micro-

environment around the occupant on the background environment, which is the 

macro-environment, regardless how the cubicle was opened. 

6) The Clothing Independent Thermal Comfort Model was used in this study to predict 

the thermal response of occupants under the different test conditions. The μX was 

proved to be able to restore the thermal sensation level at higher ambient 

temperature. The combination of supply temperature at 23.1 ℃ and supply flow 

rate of 29.4 cfm and the combination of supply temperature at 26.1 ℃ and supply 

flow rate of 40.0 cfm yielded the same level of thermal sensation of the comfort 

condition.  

7) Although the existence of the cubicle helped protect the occupants from the 

background air flow, it also exacerbated the thermal condition of the occupied 

space. The involvement of the μX proved to be able to restore the thermal condition 

in the cubicle.   
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7. CFD Study of the Ventilated Semi-Open Space 

The experimental results of the effect of the Semi-Open Space, the cubicle, on the thermal 

response of the occupant were discussed in the last Chapter. This Chapter discusses how 

the Semi-Open Space would affect the air quality. In this chapter, this effect will be studied 

using the validated CFD model. 

 

7.1. Overview 

A CFD model based on the guidelines given by Russo’s validated CFD case (Russo 2011) 

was developed and further validated by the experimental work presented in Chapter 4. A 

cubicle with the same dimensions as the one tested in Chapter 6 was built into the CFD 

model. The air quality in all regions in the room was compared for scenarios with and 

without a cubicle. The effect of the openness of the cubicle was also investigated as well 

as the opening direction. This chapter also included the studies on the effects of the cubicle 

as an SOS in combination with a μX with local air purification.  

 

The room and cubicle configurations modeled are the same as those used in Chapter 1 and 

0. A 1.8 m × 1.8 m cubicle was created symmetrically around the desk and seated occupant. 

The height of the cubicle partition was 1.8 m. Same with the experiments, the cubicle could 

be half or fully opened from four sides. The boundary condition of each segment of the 

manikin was set to be constant heat flux. The heat flux value came from the experimental 

results. The room wall was set to be the same with the indoor temperature set-point – 26.1 ℃ 

for the cases with the μX and 23.9 ℃ for the case without the μX. The room air temperature 

(supply air temperature) was set to be 26.0 °C with the μX and 22.8℃ without the μX. 
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Since this work focuses on how the cubicle configuration, as well as the micro-

environmental control system, affects the indoor air quality instead of the actual distribution 

of certain contaminant, a tracer gas (sulfur hexafluoride, SF6) was used to represent the 

pollutant emission. Two emission sources, the wall and the desk, were simulated in this 

chapter (Figure 7-1). The emission from the wall is used to present the case in which 

pollutant sources are outside the cubicle and that from the desk to represent the sources 

inside the cubicle. The μX placed under the table has two openings on both sides of it. 

When the μX is on, the air purification starts to work by taking in contaminated air and 

supplying clean air. 

 

Figure 7-1 Simulation domain with SOS 

 

Sec. 2.2 introduced several analysis methods for air quality. In the current work, the 

Contaminant Removal Efficiency (also called Ventilation Efficiency, 𝜀 ) and Blocking 



191 

 

Coefficient (𝛽), were used to quantify the performance of the ventilation strategies and 

SOS. The Contaminant Removal Efficiency or Ventilation Efficiency was calculated using 

Eqn. 2-11 where 𝐶𝑝  is the pollutant concentration in the breathing zone, which is 

conventionally defined as the zone within a 0.3 m radius of a worker’s nose and mouth 

(Figure 7-2, OJIMA 2012). Blocking Coefficient was calculated using Eqn. 2-13 where 

𝐶𝑆𝑂𝑆 is represented by the volume averaged SF6 concentration in the cubicle. 

 

Figure 7-2 Sampling grid in the breathing zone 

 

7.2. Effects of the SOS 

The partitions around the workstation changes the airflow pattern around it, hence the 

contaminant distribution. However, the performance of the cubicle is dependent on many 
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factors, including the opening direction and size of the cubicle, location of the contaminant 

source, as well as whether the μX is on or off. 

 

7.2.1. Pollutant Mass Fraction Level in the Breathing Zone and the Cubicle 

Pollutant mass fraction in the occupied space is a direct indication of the air quality. Figure 

7-3 shows the mass fraction level of the SF6 when the pollutant was emitted from the desk. 

When the μX was off, no local air purification was provided and the case with a fully closed 

cubicle gave the highest pollutant mass fraction in the breathing zone, which is because the 

emission source was inside the cubicle and the partitions prevented the pollutant from going 

outside. When the cubicle was fully opened, the pollutant in the breathing zone was diluted 

and removed so that the mass fraction was reduced by a half. When the cubicle was partially 

open, the pollutant concentration in the breathing zone was dependent on the direction and 

the size of the opening that determined the air flow inside the cubicle and were all lower 

than the one for the fully closed case. Since the emission source (desk) was very closed to 

the breathing zone, the pollutant concentration in the breathing zone was sometimes high 

when the air carrying pollutant flew towards the breathing zone (OF-2 and OL-1) and 

sometimes low when the air carrying pollutant was pushed away from the breathing zone 

(OB-1, OB-2, and OL-2). After turning on the μX, the effect of local purification was 

obvious regardless whether there was a cubicle. The pollutant mass fraction was reduced 

to different extents, and the biggest improvement was found in the fully closed cubicle. 

With the local air purification, even though the clean air was not supplied to the breathing 

zone directly, the pollutant in the breathing zone had still been diluted because after hitting 
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on the body some part of the clean air was spread or transported by the thermal plume 

upward to the breathing zone. 

 

Figure 7-4 shows the mass fraction level of the SF6 in the breathing zone when the pollutant 

was emitted from the wall. Different from the cases of desk source, the pollutant mass 

fraction in the breathing zone was quite close to each other among the cases without local 

purification. This is because when the emission was from the walls, the distribution of the 

pollutant was very uniform and the air was well mixed before it entered the cubicle. When 

the μX was turned on with local purification, regardless how the cubicle was arranged, the 

mass fraction was reduced by almost the same amount.  

 

 

Figure 7-3 SF6 mass fraction in the breathing zone with desk emission 
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Figure 7-4 SF6 mass fraction in the breathing zone with wall emission 

 

The pollutant mass fraction in the cubicle is also a very important parameter for evaluating 

the air quality since the occupant may not sit in the chair all the time. Figure 7-5 shows the 

mass fraction level of the SF6 in the cubicle when the pollutant was emitted from the desk. 

When the μX was off, the fully closed (FC) cubicle gave the highest SF6 mass fraction, 

while the fully open (FO) cubicle reduced the mass fraction by half and the other cases in 

which the cubicle was partially opened gave the mass fractions between them and closer to 

the FO case. The explanation for that is the cubicle partition played a role in confining the 

pollutant in the cubicle and opening the cubicle either partially or completely allowed the 

fresh air to enter and dilute the air in the cubicle. Among those cases with partially or fully 

opened cubicles, the FO case worked the best because it allowed the air to enter the cubicle 

from all the directions, and then the case with a cubicle open from the front (OF-1 and OF-
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2) worked the second best which allowed most of the upcoming air (from the front) to enter 

the cubicle. Different from the mass fraction behavior in the breathing zone, because both 

the emission source and the μX (local purification) were inside the cubicle, turning on the 

μX could reduce the level of the pollutant concentration by almost the same amount 

regardless of the opening configurations. 

 

Figure 7-6 shows the mass fraction level of the SF6 in the cubicle when the pollutant was 

emitted from the wall. Since as mentioned before the air in the space was well-mixed both 

inside and outside the cubicle, the pollutant mass fraction level is highly similar with the 

one in the breathing zone (Figure 7-4). Among all the cases, the μX could reduce the mass 

fraction by the same amount. 

 

Figure 7-5 SF6 mass fraction in the cubicle with desk emission 
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Figure 7-6 SF6 mass fraction in the cubicle with wall emission 

 

7.2.2. Contaminant Removal Efficiency 

In order to examine the performance of the ventilation system under different 

configurations of the cubicle and with or without the μX, Contaminant Removal Efficiency 

(e) was calculated at the breathing zone. Figure 7-7 shows the calculated Contaminant 

Removal Efficiency in the breathing zone of all the cases with the desk or wall source. Note 

that an e of 100% represents well-mixed air quality, a value greater than 100% shows 

cleaner air is present than well-mixed air and a value less than 100% shows dirtier air is 

present than well-mixed air. The results show that when the pollutant was emitted from the 

desk, the air quality in the breathing zone was not well mixed for any of the cases with or 

without the μX. The worst efficiency was given by the FC case. And the use of the μX 

could improve the efficiency by more than 20 percent when there was a fully closed cubicle 
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or no cubicle at all. However, when the cubicle was opened partially the advantage of using 

the μX became unclear and sometimes negative (OB-1 and OF-1). This means that when 

the cubicle was partially opened, adding a local purification in the μX is not necessarily 

better than adding purification process in the background mixing ventilation. When the 

pollutant was emitted from the wall, as mentioned before, a well-mixed condition was 

established in the room including the cubicle, so the e in the breathing zone of any cases 

was a little higher than 100%. However, different from the case of the desk source, the use 

of the μX with local purification always brought an improvement of the air quality in the 

breathing zone. Comparing the cases with the desk emission and wall emission, the 

ventilation system (with and without the μX) always worked better (mostly two times) 

when the pollutant was emitted from the wall than the one when the pollutant was emitted 

from the desk.  

 

Figure 7-7 Contaminant Removal Efficiency in the breathing zone 
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Figure 7-8 shows the Contaminant Removal Efficiency contours for the cases with desk 

emission. The contours show a range from 0 to 200%. The dark blue region indicates 

cleaner than well-mixed air and the red regions indicate dirtier air. It was demonstrated that 

the pollutant distribution in the cubicle was highly non-uniform, especially in the region 

closed to the desk. The breathing zone was located in the region with large gradient and 

dirtier air, which explains why the contaminant removal efficiency of these cases were 

always low. The dirty air carrying the pollutant from the desk was mixed with the 

surrounding air in the cubicle and then was pulled out of the cubicle due to the entrainment 

of the supply jet of the background mixing ventilation. The make-up air entered the cubicle 

in different ways depending on the opening direction and size of the manikin and diluted 

the air in the breathing zone. A local jet of clean air was observed when the μX was turned 

on. However, since the local supply air was maintained at a lower temperature than the 

ambient room air for improving thermal comfort, most of the local clean air, instead of 

entered the breathing zone, was transported downward to the lower region and mixed with 

the dirty air carrying the pollutant from the bottom side of the desk. This may be the reason 

why the μX brought little improvement of the air quality in the breathing zone. 
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Figure 7-8 Contaminant Removal Efficiency with desk emission 

 

Figure 7-9 shows the Contaminant Removal Efficiency contours for the cases with wall 

emission. Different from the cases of desk emission, the pollutant distribution of the wall 

emission cases was much more uniform, especially inside the cubicle. This is because the 

pollutant was emitted from the four side walls uniformly and the mixing ventilation did a 
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good job in mixing the room air. Nevertheless, when the μX was turned on, a clean jet, as 

well as a clean region, showed up around the occupant. This clean region effectively 

reduced pollutant concentration in the breathing zone and increased the contaminant 

removal efficiency. Comparing these cases with the cases with desk emission, the reason 

why this time the μX could improve the air quality more effectively is that in the lower 

region of the cubicle there was no pollutant source and therefore the cooler clean air 

remained clean before it was taken by the thermal plume to the breathing zone. 
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Figure 7-9 Contaminant Removal Efficiency with wall emission 

 

7.2.3. Blocking Coefficient 

Blocking Coefficient (β) was an index to quantify the performance of the SOS. It is a ratio 

between the exhaust pollutant concentration and the pollutant concentration in the SOS. 

Figure 7-10 illustrates the blocking coefficient of the cubicle of all the cases with the desk 

or wall source. Note that a β of 100% represents the cubicle did not have any blocking 

effect, a value greater than 100% shows cleaner air is contained in the cubicle and a value 

less than 100% shows dirtier air is contained in the cubicle. When there was no cubicle, the 

blocking coefficient was always around 100% regardless where the emission source was. 

When the pollutant was emitted from the desk, β was always less than 100%. A fully closed 

cubicle (FC) gave a blocking coefficient less than 40%, and a partially opened cubicle gave 

a blocking coefficient between 60% and 80%. In this case, the µX did not make a big 

difference because it reduced the pollutant level in the cubicle as well as the pollutant level 
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in the exhaust. When the pollutant was emitted from the wall, the β was always higher than 

100%. Without the µX, β was a little higher than 100% with a maximum at around 120%. 

Turning on the µX could significantly improve the blocking coefficient, and the most 

improvement was given by the fully closed cubicle in which the blocking coefficient was 

increased by 30%. This is because the fully closed cubicle could hold most of the clean air 

made by the µX inside the cubicle. 

 

Figure 7-10 Blocking Coefficient of the cubicle 

 

7.3. Summary and Conclusions 

Simulations using the previously-validated CFD model were conducted to investigate the 

effects of the cubicle as a semi-open space on the indoor air quality and evaluate the 

performance of the μX with air purification in combination with the cubicle. The results 

indicate that 
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1) The effect of the cubicle on the pollutant distribution is highly dependent on the 

location of the pollutant source. The pollutant level of the breathing zone is highly 

sensitive to the cubicle configuration. When the pollutant was emitted inside the 

cubicle and close to the breathing zone (from the desk), a fully closed cubicle could 

make the pollutant level in the breathing zone twice as the case without a cubicle. 

The opening direction and opening size of the cubicle changed the flow field inside 

it and therefore yielded different levels of pollutant concentration in the breathing 

zone. However, when the pollutant was emitted outside the cubicle (in this case it 

was emitted from the wall, but it could also represent the emission from other 

cubicles or office appliances in the hall way), the cubicle did not make a big 

difference in the air quality in the breathing zone because the pollutant distribution 

is fairly uniform in the space. 

2) The pollutant level in the cubicle is also highly sensitive to the cubicle 

configuration. When the pollutant was emitted inside the cubicle, similar with the 

breathing zone, the pollutant concentration in a fully closed cubicle was twice as 

the one without cubicle. However, different from the breathing zone, partially 

opened cubicle did not show that big variation in the pollutant concentration level 

in the cubicle. The averaged pollutant concentration in the partially opened cubicle 

was only a little higher than the one without a cubicle. The pollutant concentration 

in the cubicle with wall emission was almost the same as the one in the breathing 

zone since the concentration field was very uniform in this case. 

3) The combination of using the µX and the cubicle was tested with desk or wall 

emission. When the pollutant was emitted from the desk, turning on the µX could 
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reduce the pollutant level in the breathing zone, but was not necessarily as efficient 

as the background mixing ventilation. Only when the cubicle was fully closed or 

fully opened (without a cubicle), the µX showed a significant advantage. This 

means that when the cubicle was partially opened, the µX with local purification 

may not provide better air quality than cleaning more return air. However, when the 

pollutant was emitted from the walls (outside the cubicle), the µX with air 

purification could improve the air quality by almost the same amount regardless of 

opening configurations in terms of the Contaminant Removal Efficiency. 

4) The performance of the cubicle was quantified by using Blocking Coefficient. 

When the pollutant was emitted from the desk, the cubicle had a negative effect on 

the air quality inside the cubicle. A fully closed cubicle made the pollutant 

concentration inside the cubicle twice as much as the well-mixed condition, and 

partially opened cubicle increased the pollutant level by a half compared with the 

well-mixed condition. However, when the pollutant was emitted from the wall, the 

performance of the cubicle had been reversed, and the positive effect was even 

further increased when the µX was applied. 
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8. Performance Evaluation of the Selected Cooling/Heating Delivery Devices 

Chapter 4, and 5 used CFD simulation to investigate the performance of different air 

terminal devices (ATDs) and heating delivery devices (HDDs) under the conditions of 

expanded temperature set-point. The current chapter presents results from the full-scale 

chamber and thermal manikin experiments that were performed to confirm that the selected 

cooling/heating delivery devices can maintain the heat balance for restoring occupants’ 

thermal comfort while the set-point temperature for the ambient space air is increased in 

the cooling season or decreased in the heating season. It is noted that this part of the work 

was driven by an ARPA-E project which looks for techniques to restore occupant’s thermal 

comfort while reducing building energy by relaxing indoor temperature set-point. ARPA-

E defines the problem in the way presented in Sec. 4.1.5, and the objective is “when the 

ambient temperature is raised from 75 ˚F to 79 ˚F, a removal of 23 W is needed to be taken 

by the µX system; when the ambient temperature is lowered from 70 ˚F to 66 ˚F, a supply 

of 18 W is needed to be provided by the µX system” (ARPA-E 2014). 

 

8.1. Performance Evaluation of Three Different ATDs for Cooling 

Three different ATDs were tested in the full-scale chamber with a workstation and a 

thermal manikin for the ARPA-E project for selecting one to incorporate into the final 

design of µX. An HVAC system was used for conditioning the chamber, and the room 

temperature was controlled to be 79 °F by the return air temperature. The manikin was 

dressed in typical summer clothing (a short-sleeve sports shirt, men’s briefs, trousers, socks, 

and shoes) with a constant skin temperature at 33.9 ℃. Air at conditions similar to those 

produced by µX was supplied to the diffusers through a laboratory system comprising a 
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window air conditioning unit, an orifice flange flow meter, an in-duct fan, an electric heater, 

an air diffuser, and connecting ducts was constructed (Figure 4-2). Three different diffusers 

were tested including a single diffuser, split round diffusers and split rectangular diffusers 

(Figure 8-2). The air of three combinations of air flow rate and supply temperature which 

contains 50 W cooling power (according to Eqn. 4-1) were supplied by the laboratory 

cooling system. 

 

Figure 8-1 Layout of diffuser/manikin experiment 

 

Figure 8-2 Three types of diffusers (ATDs) tested 

 

L D=13.3 6.4cm

A=85.12cm2

Single Diffuser Split Diffusers

D=6.87cm

A=37.16cm2

L×D=9.84×3.97cm
A=39.06cm2
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The heat loss from the manikin was recorded with and without the µX surrogate system 

active. The test results for the single rectangular diffuser at 50 W of air cooling and 29 cfm 

of air flow are summarized in Table 8-1. The extra heat loss was a lot above 23 W with a 

minimum at 36.4 W when the manikin was placed 0.61 m away from the diffuser.  

Table 8-1 Performance of single rectangular diffuser at 23 cfm and 50 W 

Single Diffuser                   

13.3 cm × 6.4 cm 

79 ℉ 

μX off μX on μX on μX on 

X (m) 0 0 0 0.35 

Y (m) 0.2 0.2 0.61 0.5 

Room Supply Temp 

(℉) 

74.4 

(±0.3) 

77.0 

(±0.2) 

77.0 

(±0.1) 

76.08 

(±0.2) 

Exhaust Temp (℉) 
79.0 

(±0.1) 

79.0 

(±0.1) 

79.0 

(±0.1) 

79.1 

(±0.1) 

μX Supply Temp (℉) N/A 
73.7 

(±0.1) 

73.6 

(±0.1) 

73.4 

(±0.1) 

μX Supply Flowrate 

(cfm) 
N/A 29.5 29.5 29.4 

Averaged Heat Flux 

(W/m2) 

47.50 

(±0.20) 

68.48 

(±0.13) 

67.57 

(±0.16) 

73.70 

(±0.22) 

Extra Heat Removed 

(W) 
N/A 38.04 36.4 47.51 

 

Table 8-2 shows the test results for the single rectangular diffuser and the split round 

diffusers at 50 W of air cooling and 23 cfm of air flow, showing the reduced performance 

resulting from lowering the air flow rate from 29 to 23 cfm. It can be seen that while both 

types of diffusers can remove well in excess of 23 W of extra heat from the manikin. In the 

23 cfm case, the split round diffuser delivered a higher performance. This can be attributed 

to two factors: (1) jets issuing from round diffusers usually have a longer core region, thus 

project the cold air further, and (2) split diffusers discharge air from two sides of the 

manikin and cover a larger surface area of the manikin than the single central diffuser. 
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Table 8-2 Performance of single rectangular and split round diffusers at 23 cfm and 50 W 

Single Diffuser                   

13.3 cm × 6.4 cm 

79 ℉ 

μX off μX on μX on μX on 

X (m) 0 0 0 0.35 

Y (m) 0.2 0.2 0.61 0.5 

Room Supply Temp 

(℉) 

74.4 

(±0.3) 

77.8 

(±0.2) 

77.8 

(±0.2) 

77.7 

(±0.4) 

Exhaust Temp (℉) 
79.0 

(±0.1) 

79.0 

(±0.1) 

79.0 

(±0.1) 

79.1 

(±0.1) 

μX Supply Temp (℉) N/A 
72.0 

(±0.1) 

72.0 

(±0.2) 

72.0 

(±0.2) 

μX Supply Flowrate 

(cfm) 
N/A 22.7 23 22.8 

Averaged Heat Flux 

(W/m2) 

47.50 

(±0.20) 

66.08 

(±0.23) 

64.51 

(±0.30) 

70.72 

(±0.25) 

Extra Heat Removed 

(W) 
N/A 33.69 30.85 42.09 

Split Round Diffuser    

D=6.87 cm 

79 ℉ 

μX off μX on μX on μX on 

X (m) 0 0 0 0.35 

Y (m) 0.2 0.2 0.61 0.5 

Room Supply Temp 

(℉) 

74.4 

(±0.3) 

77.3 

(±0.3) 

77.7 

(±0.3) 

77.6 

(±0.3) 

Exhaust Temp (℉) 
79.0 

(±0.1) 

79.1 

(±0.1) 

79.2 

(±0.1) 

79.1 

(±0.1) 

μX Supply Temp (℉) N/A 
71.9 

(±0.2) 

72.2 

(±0.1) 

72.0 

(±0.1) 

μX Supply Flowrate 

(cfm) 
N/A 23.2 22.8 23 

Averaged Heat Flux 

(W/m2) 

47.50 

(±0.20) 

71.99 

(±0.11) 

72.95 

(±0.20) 

67.18 

(±0.25) 

Extra Heat Removed 

(W) 
N/A 42.38 44.13 35.68 

 

Table 8-3 presents the test results for the single rectangular diffuser and the split round and 

rectangular diffusers at 50 W of air cooling and 17 cfm of air flow. It was found that all the 

three diffusers could fulfill the requirement of removing an extra 23 W from the manikin 

when 50 W of cooling was supplied through the diffuser air flow.  
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Table 8-3 Performance of single rectangular and split round diffusers at 17 cfm and 50 W 

Single Diffuser                   

13.3 cm × 6.4 cm 

79 ℉ 

μX off μX on μX on μX on 

X (m) 0 0 0 0.35 

Y (m) 0.2 0.2 0.61 0.5 

Room Supply Temp 

(℉) 

74.4 

(±0.3) 

78.9 

(±0.2) 

78.4 

(±0.2) 

78.4 

(±0.2) 

Exhaust Temp (℉) 
79.0 

(±0.1) 

79.1 

(±0.1) 

79.1 

(±0.1) 

79.1 

(±0.1) 

μX Supply Temp (℉) N/A 
69.7 

(±0.1) 

69.7 

(±0.1) 

69.6 

(±0.1) 

μX Supply Flowrate 

(cfm) 
N/A 16.9 17.1 16.9 

Averaged Heat Flux 

(W/m2) 

47.50 

(±0.20) 

62.71 

(±0.22) 

61.02 

(±0.28) 

62.93 

(±0.45) 

Extra Heat Removed 

(W) 
N/A 27.58 24.51 27.97 

Split Round Diffuser    

D=6.87 cm 

79 ℉ 

μX off μX on μX on μX on 

X (m) 0 0 0 0.35 

Y (m) 0.2 0.2 0.61 0.5 

Room Supply Temp 

(℉) 

74.4 

(±0.3) 

77.4 

(±0.3) 

77.7 

(±0.3) 

77.7 

(±0.3) 

Exhaust Temp (℉) 
79.0 

(±0.1) 

79.1 

(±0.1) 

79.1 

(±0.1) 

78.9 

(±0.1) 

μX Supply Temp (℉) N/A 
69.8 

(±0.1) 

69.8 

(±0.1) 

69.7 

(±0.1) 

μX Supply Flowrate 

(cfm) 
N/A 17 16.8 17.2 

Averaged Heat Flux 

(W/m2) 

47.50 

(±0.20) 

65.40 

(±0.11) 

65.65 

(±0.23) 

64.63 

(±0.19) 

Extra Heat Removed 

(W) 
N/A 32.45 32.91 31.06 

Split Rectangular 

Diffuser 9.84 cm × 

3.97 cm 

79 ℉ 

μX off μX on μX on μX on 

X (m) 0 0 0 0.35 

Y (m) 0.2 0.2 0.61 0.5 

Room Supply Temp 

(℉) 

74.4 

(±0.3) 

77.8 

(±0.3) 

77.8 

(±0.3) 

77.6 

(±0.3) 
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Exhaust Temp (℉) 
79.0 

(±0.1) 

79.1 

(±0.1) 

79.1 

(±0.1) 

79.0 

(±0.1) 

μX Supply Temp (℉) N/A 
69.7 

(±0.1) 

69.7 

(±0.1) 

69.7 

(±0.3) 

μX Supply Flowrate 

(cfm) 
N/A 17 17 17 

Averaged Heat Flux 

(W/m2) 

47.50 

(±0.20) 

62.26 

(±0.20) 

62.39 

(±0.33) 

60.72 

(±0.43) 

Extra Heat Removed 

(W) 
N/A 26.75 27.00 23.97 

 

It was concluded that the split round diffusers could always give the best performance 

regarding extra heat removed while all the three diffusers could remove more than 23 W 

heat from the manikin with at least 17 cfm air flow rate. 

 

8.2. Performance Evaluation of the Heating Delivering Device (HDDs) 

The performance of the Heating Delivering Device (HDD) was tested in a full-scale 

chamber with a workstation and a thermal manikin for the ARPA-E project to make sure 

the proposed HDD could fulfill the requirement of reducing 18 W heat loss. An HVAC 

system was used for conditioning the chamber, and the room temperature was controlled 

to be 66 °F by the return air temperature. The manikin was dressed in typical winter clothing 

(a long-sleeve T-shirt, a suit, men’s briefs, trousers, socks and shoes, Figure 8-3) with a 

constant skin temperature at 33.9 ℃. A heating foot mat with a reflective box covering the 

front part of the feet was tested with a heating power of at most 60 W. An infrared heating 

bulb of maximum 20 W was installed in the reflective box to provide an extra option for 

heating. The heating mat is electrically heated and of a dimension 45 cm × 45 cm. The 

reflective box is 50 cm × 15 cm × 15 cm and with reflective material and insulation on both 

interior and exterior side (Figure 8-4). 
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Figure 8-3 Manikin test with the heating delivering device 

 

Figure 8-4 Heating delivering device 
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The heat loss from the manikin was recorded with and without the HDD active. The test 

results for using only the heating mat were summarized in Table 8-4. The heating power 

of the mat was increased from 0 to 40 W with the heating bulb turned off. The reduced heat 

loss was increased from 0 to a little above 10 W. It is observed that after the heating power 

reached 30 W, the reduced heat loss stopped increasing. This is because the manikin surface 

temperature was controlled by electric heaters and after the heating power from the mat 

reached 30 W, the heater on the feet of the manikin stopped generating heat. Therefore, the 

performance of the heating mat with heating power higher than 30 W was predicted by 

linear regression using the data below 30 W heating power. It was shown that with only the 

heating mat, the HDD could reduce around 19.4 W heat loss from the manikin, which is 

higher than the 18 W ARPA-E requirement (Figure 8-5Error! Reference source not found.). 

Table 8-4 Test results of the heating mat only 

Case 

66 ℉ 

μX off μX on μX on μX on μX on μX on μX on μX on 

Room Supply 

Temp (℉) 

55.5 

(±1.2) 

57.2 

(±0.9) 

54.5 

(±0.9) 

58.1 

(±0.9) 

54.6 

(±0.9) 

56.0 

(±1.0) 

54.6 

(±0.9) 

56.1 

(±2.0) 

Exhaust Temp 

(℉) 

66.0 

(±0.1) 

66.1 

(±0.1) 

66.1 

(±0.1) 

66.1 

(±0.1) 

66.2 

(±0.1) 

66.3 

(±0.1) 

66.3 

(±0.1) 

66.3 

(±0.1) 

Mat Heating 

power (W) 

N/A 

10 15 20 25 30 35 40 

Reflective 

Box 
√ √ √ √ √ √ √ 

Heating Bulb 

Power (W) 
N/A N/A N/A N/A N/A N/A N/A 

Averaged Heat 

Flux (W/m2) 

67.44 

(±0.34) 

65.09 

(±0.29) 

64.26 

(±0.14) 

64.52 

(±0.36) 

63.13 

(±0.32) 

61.78 

(±0.25) 

61.51 

(±0.14) 

61.80 

(±0.21) 
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Total Heat 

Loss (W) 

122.27 

(±0.62) 

118.01 

(±0.53) 

116.51 

(±0.25) 

116.98 

(±0.65) 

114.45 

(±0.57) 

112.00 

(±0.45) 

111.52  

(±0.26) 

112.05 

(±0.38) 

Reduced Heat 

Loss (W) 
N/A 4.26 5.76 5.29 7.82 10.27 10.75 10.22 

 

The infrared heating bulb was installed inside the reflective box to provide another option 

of heating since it was reported that the heating bulb could provide enough heating in a 

cooler environment (Zhang et al. 2015). The experiment results were presented in Table 

8-5. The heating bulb was always turned on at 20 W, and the heating power from the mat 

was increased from 0 to 25 W. After the heating power reached 25 W, the heater in the feet 

was turned off, and the linear regression was used to determine the performance of the 

heating mat with an infrared bulb. The results were shown in Figure 8-5. The performance 

of the heating bulb was less effective than the heating mat. With 20 W heating bulb and 40 

W heating mat, the HDD could only reduce the heat loss by 14 W. 

Table 8-5 Test results of the heating mat and bulb 

Case 

66 ℉ 

μX off μX on μX on μX on μX on μX on 

Room Supply Temp 

(℉) 
55.5 (±1.2) 55.6 (±1.0) 57.9 (±0.7) 54.3 (±0.9) 54.3 (±0.9) 54.2 (±0.9) 

Exhaust Temp (℉) 66.0 (±0.1) 66.0 (±0.1) 66.1 (±0.1) 66.1 (±0.1) 66.2 (±0.1) 66.2 (±0.1) 

Mat Heating 

power (W) 

N/A 

0 10 15 20 25 

Reflective Box √ √ √ √ √ 

Heating Bulb 

Power (W) 
20 20 20 20 20 
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Averaged Heat Flux 

(W/m2) 

67.44 

(±0.34) 

64.57 

(±0.23) 

64.05 

(±0.21) 

62.60 

(±0.16) 

62.10 

(±0.19) 

61.83 

(±0.17) 

Total Heat Loss (W) 
122.27 

(±0.62) 

117.07 

(±0.42) 

116.12 

(±0.37) 

113.49 

(±0.29) 

112.59 

(±0.35) 

112.10 

(±0.30) 

Reduced Heat Loss 

(W) 
N/A 5.20 6.15 8.78 9.68 10.17 

 

 

 

Figure 8-5 Prediction of the performance of the HDD using linear regression 

 

8.3. Summary and Conclusions 

This chapter summarizes the results of the tests in the full-scale environmental chamber 

with the thermal manikin to compare the performance of the 3 diffuser ATD layouts and 

the 2 HDDs. Results show that all diffuser configurations are capable of achieving or 

exceeding the target 23W of extra heat removal from the thermal manikin within the 

specific range of movement (0.61m). The essential part of the HDD is a heating foot mat 



215 

 

with a reflective box. An additional infrared bulb was also tested with them. The results 

show that the combination of using the heating mat with the reflective box can reduce more 

than 18W heat loss from the manikin, but the combination with the infrared bulb cannot 

achieve the target of 18W. 
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9. Conclusions and Recommendations for Future Study 

The primary goal of this study is to investigate why and how micro-environmental control 

system (μX) and semi-open space (SOS) can improve thermal comfort and IAQ while 

saving energy. As a secondary goal, the ability of the CFD model to adequately predict the 

local heat transfer from the human body and its limitation are also investigated. 

 

9.1. Effects of the SOS and μX on Thermal Comfort and Air Quality Conditions 

Although it has been widely recommended throughout the world to save the energy 

consumption of the buildings by relaxing the indoor temperature set-point (increasing the 

set-point in summer and reducing it in winter), it is always arguable that occupant’s 

productivity may be reduced thereby. This current work used both simulation and 

experiments to evaluate several candidate methods for restoring thermal comfort in the 

environment with extended ranges of temperature set-points.  

 

During summer time, the room temperature was raised to 26.1 ℃ for energy saving while 

a cooler air was supplied locally. This concept was tested by CFD simulation first and then 

by full-scale experiments. It has been shown by CFD simulation and then verified by 

experiments that the cooling performance increased more by increasing the supply air 

velocity than reducing the supply air temperature when the total cooling power is constant, 

and the cooling performance of the Air Terminal Devices (ATDs) is highly dependent on 

the shooting angle – the best performance always happened when the jet was aimed at the 

stomach. The experiments further show that the overall cooling efficiency was positively 

correlated with the supply temperature. In addition, both the simulation and experimental 



217 

 

work has demonstrated that the heat loss by the manikin was sensitive to the distance 

between the diffuser and the manikin. However, this effect was also related to the clothing 

material on the manikin because it determined the surface condition (curvature, porosity, 

and smoothness) and hence heat transfer coefficient. Three different ATDs were evaluated 

by CFD simulation, and the best performance was given by the Type I ATD (single diffuser 

in the center). The thermal comfort analysis was conducted based on both heat balance 

analysis and the Clothing Independent Thermal Comfort Model. The combination of supply 

air temperature of 23.1 ℃ and supply flow rate of 29.4 cfm and the combination of supply 

temperature of 26.1 ℃ and supply flow rate of 40.0 cfm yielded the same level of thermal 

sensation of the comfortable condition. 

 

While many studies have focused on providing local thermal comfort in hot environment, 

very few looks into providing local heating in a cool environment. This work used the 

validated CFD model to evaluate several heating methods when an occupant with typical 

winter clothing was sitting in an office of reduced set-point at 18.9 ℃ for energy saving. 

This amount of heating power could be converted to a blow of hot air to heat the occupant 

by convection, conductive heat from a foot-warmer or radiant heat from an infrared heating 

bulb. The idea of heating a person with warm air was tested first. With 60 W of heating 

power, a jet with a temperature of at least 40 ℃ was able to heat the occupant (reduce heat 

loss). The minimum supply velocity is 0.5 m/s. Velocity below that made the jet deflected 

too fast to reach the surface of the manikin. However different from cooling the occupants 

with air jet, since shooting hot air to an occupant in a cold environment may entrain cooler 

air to blow on the human body, it was not that efficient and could only reduce the heat loss 
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by no more than 5.5 W. The addition of a confinement box was demonstrated to be able to 

improve the heating performance of the warm air jet to two or three times by retaining the 

hot air around the legs and feet for a while before it was mixed with the surrounding cooler 

air. This new idea is promising to restore occupants’ thermal comfort but can be 

ergonomically disadvantageous because it might put too many constraints around the legs. 

Inspired by the work done other researchers who concluded that feet were the most sensitive 

part of the body to a cold environment, another method of using a foot-warmer was tested. 

The results showed that a warming foot mat with constant heat flux was very effective. 

Together with a reflective box covering the front part of the feet, the heating mat consuming 

40 W electricity could reduce the heat loss by 16.9 W, which would fully recover the whole-

body thermal comfort. To further improve the thermal comfort, an additional 20 W heating 

bulb was shown to be able to bring the overall Mean Thermal Vote (MTV) closer to the 

neutral level.  

 

Full-scale chamber experiments with a clothed thermal manikin were conducted specially 

for confirming that the selected ATDs and HDDs were able to restore the heat balance when 

the room temperature set-point was relaxed for saving energy. It was shown that all diffuser 

configurations, with as low as 17 cfm flow rate, were capable of achieving or exceeding 

the target 23W of extra heat removal from the thermal manikin within the specified range 

of movement (0.61m), and the combination of using the heating mat with the reflective box 

can reduce more than 18W heat loss from the manikin. 
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The cubicle commonly used in the open-floor office is a typical Semi-Open Space (SOS). 

Usually, the cubicle is partially open on one or at most two sides. The existence of the 

cubicle partition significantly changes the airflow pattern in the office, and hence the 

thermal environment and air quality distribution. The effects of the cubicle on the thermal 

environment were evaluated using full-scale experiments. The results indicate that the 

cubicle could “protect” the occupants from the background air flow by reducing the average 

velocity as well as increasing the average temperature in the occupied space. The openness 

of the cubicle weakened the “protection” of the cubicle depending on the opening direction 

and size. Fully opening toward the incoming air flow weakened the “protection” the most 

while half opening toward the incoming air flow had the least effect on the “protection.” 

One should also note that the “protection” may not be favored in terms of thermal comfort 

especially in summer, because it weakened the cooling performance of the background 

ventilation. However, this negative effect can be mitigated by equipping the cubicle with 

the μX, which could also help reduce the dependence of the micro-environment on the 

background environment. 

 

The effects of the cubicle and the combination of the µX with air purification in the cubicle 

on the air quality were evaluated using CFD simulation. The results indicate that the 

performance of the cubicle was highly sensitive to the location of the emission location and 

it should be used and designed with caution.When the pollutant was emitted inside the 

cubicle, the use of the cubicle was unfavored since it prevented the contaminant from being 

diluted by the mixing ventilation. However, when the pollutant was emitted from outside 

cubicle, the use of it should be encouraged since it helps prevent the contaminant from 
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entering the cubicle. The use of the µX with local purification could always improve the 

air quality in the breathing zone, and especially when the emission source was outside the 

cubicle, it demonstrated a big advantage. However, this combination might not be more 

efficient than adding the same amount of purified return air to the background mixing 

ventilation system when the emission source was inside the cubicle. In general, the use of 

the µX with local purification is beneficial regarding improving the air quality in the 

breathing zone and the cubicle.  

 

9.2. Validity of CFD Models 

Not only are the results of the μX and SOS assessment study significant to this line of work, 

but also the validation work stands out on its own. Before this work, several studies have 

been conducted to provide the guidelines for modeling indoor environment using CFD. 

However, there were no studies previously on validating the CFD models with a micro-

environment control system against the fully-scale experiments. The validated 

computational model can further be used to investigate other indoor configurations and 

identify potential problems and risks, and provide the guideline for the future work. 

Specifically, 

 

1) The CFD cases, to predict the whole-body and local heat transfer from a manikin 

of constant surface temperature with or without the μX, was compared with the 

experiments, in which a naked thermal manikin with constant surface temperature 

setting was sitting in an environment with or without the μX. The results showed 

that the overall heat loss of the manikin without the μX predicted by the CFD agreed 
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extremely well with the experiment (CFD 0.5% higher than the experiment), while 

with the μX, the CFD result became 5.9% less than the experiment, which is still 

good. The heat transfer discrepancy of each segment of the manikin between the 

CFD and the experiment varied depending on the segment and the μX status. The 

variation of the discrepancy among all the segments is mostly due to the difference 

of the geometry and small uncertainty in the location of each segment.  

 

2) The presence of the furniture has been reported to affect the development of the 

thermal plume and the supplying jet. In this study, the effect of the seat backrest 

was evaluated. A difference of the heat flux (~10 W/m2) was observed at the back 

due to the seat backrest. The reason for that is the solid backrest stopped the jet from 

detouring to the back to enhance the heat transfer. Other than the furniture, the 

clothing insulation is another challenge of using CFD for prediction. In Chapter 4, 

the effect of the clothing was represented by a temperature reduction on the manikin 

surface (except head, face, forearms, and hands) from the constant skin surface 

temperature at 33.9 ℃. However, this assumption might not be able to give the best 

match especially when people are wearing heavy clothes since the clothes surface 

temperature would change with the micro-environment (immediate ambient 

temperature, μX supply conditions, etc.). Another widely-used method is to model 

the clothing insulation as a layer of thermal resistance with constant value as 

Chapter 5. Usually, researchers use the value recommended by ASHRAE, but this 

recommended value could be very rough since it does not account for different 
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clothing materials and wrinkles or possible air pocket between the clothes and the 

skin. 

 

3) When the manikin was exposed to a running μX, a significant discrepancy was 

observed for the stomach between the CFD and experiment. In the previous study, 

people always trust the experiments and tried to find the reasons from the CFD side. 

The effects of the grid size, selection of the turbulence model and the boundary 

condition have been studied. However, nobody has questioned the experiments, for 

example, whether the experiment maintained the same conditions as specified. In 

Chapter 1, the fidelity of the surface temperature control of the experiment was 

examined, and it was found that the surface temperature of the manikin was not as 

uniform as expected. There was at least a 1.0 ℃ surface temperature difference 

found on almost all the segments when the manikin was sitting in a room without 

the μX. This is because each segment of the manikin was controlled by a single 

heater to make sure the average surface temperature to reach the set-point and there 

was always an inevitable difference of heat transfer coefficient over each segment. 

This non-uniformity would become even more obvious when there is a local cooling 

or heating effect on any one of the segments, which made the experimental results 

different from the CFD results. 

 

9.3. Recommendations for Future Work 

While this work has shown many encouraging results of using micro-environmental control 

system for maintaining thermal comfort and useful knowledge about the performance of 
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the semi-open space in the office environment, it also identifies certain issues that would 

provide useful guidelines for future work.  

 

1. This work conducted the CFD simulations as well as the experiments in a lab space, 

where the conditions were always assumed ideal, for example, the tested chamber 

has a clean enclosure surface (no windows); there is only one workstation, no other 

heat source existed, etc. Also, in both the CFD simulations and the experiments, the 

occupant was always simulated with constant and uniform skin temperature, which 

does not account for the thermoregulation process of the human body. These issues 

will affect the micro-environment of the human body and possibly alter some of the 

conclusions found in this work.  

 

2. The performance of the μX was predicted and evaluated either by CFD or 

experiments with a manikin, the conclusions about using it to restore thermal 

comfort of occupants in the environment of relaxing set-point need to be reinforced 

using human subject test.  

 

3. As mentioned above, in order to further validate the CFD model, a manikin with 

higher fidelity is needed. One possible solution would be dividing the manikin into 

more segments to ensure more uniform condition on each of them. 
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4. An appropriate way to model the clothes on the manikin is needed in the future if 

one would like to get more reliable results of modeling occupants’ thermal response 

using CFD simulations. 

 

5. The effects of the cubicle on the air quality have been studied by using CFD 

simulations. The model needs to be further validated, and the conclusion needs to 

be confirmed by using experiments. 
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