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Abstract 
 

This thesis addresses several questions focused on the vitamin B12 (B12) dietary uptake 

pathway, in particular that of the enteric B12 transport protein intrinsic factor (IF) and its 

receptor cubilin, and the expression and exploitation of IF/cubilin in pharmaceutical 

development. 

 

Q1: (Chapter 2) Does an 89Zr-B12 conjugate allow for improved background/noise ratio, relative 

to 99mTc and 64Cu B12 conjugates, in in vivo tumor uptake?  

Goal: Conduct positron emission tomography (PET) imaging and biodistribution studies 

in mice bearing MDA-MB-453 breast cancer tumors using a new 89Zr-B12 conjugate. 

Q2: (Chapter 3) What is the uptake of systemically administered holo-intrinisic factor bound to 
89Zr-B12 in vivo? 

Goal: Conduct PET imaging and biodistribution studies in healthy mouse models using 

IF-89Zr-B12 and assign organ distribution to target receptors. 

Q3: (Chapter 4) Are functional cubilin and megalin receptors expressed in human fetal small 

intestinal cells? 

Goal: Design a fluorescent assay to establish functional cubilin and megalin expression 

and conduct western blotting to complement observations. 

Q4: (Chapter 4) Does B12-Exendin-4, a conjugate of B12 and the diabetes drug exendin-4 (Ex-

4; a peptide agonist of the glucagon like peptide receptor 1) show reduced central nervous 

system (CNS) penetrance, thus reducing the common side effect of nausea that is observed in 

patients taking Ex-4? 

Goal: Systemically administer fluorescently labeled Ex-4, B12, and B12-Ex4 and observe 

CNS uptake in rats through immunohistochemistry and confocal microscopy. 

Q5: (Chapter 5) Does systemically administered holo-IF prevent aminoglycoside antibiotic 

induced hearing loss in guinea pigs? 

Goal: Induce hearing loss in guinea pigs with the aminoglycoside kanamycin and prevent 

such loss with co-administration of holo-IF. 
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Figure 7. IHC staining of MDA-MB-453 tumor sections showing (a) 

DAPI, (b) CD320-AF488, and (c) overlay. 

Figure 8. PET imaging of 89Zr-B12 at 4, 24, and 48 h in nude athymic 

female mice. 89Zr-B12 (200-250 µCi/mouse) showed high uptake in the 

kidneys that did not change over 48 h. All other tissues assayed had 

relatively low uptake (see also Table 1, section 2.4.4). 

Figure 9. Ex vivo tissue distribution of 89Zr-B12 at 24 h in nude athymic 

female mice at 24 h. 89Zr-B12 showed high uptake in the kidney (130.26 ± 

14.05 %ID/g) and moderate uptake in the liver (21.5 ± 3.91 %ID/g). n = 4.  
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Figure 10. PET images of representative mice bearing MDA-MB-453 

tumors imaged with 89Zr-B12 (1 nmol/mouse) at 4, 24, and 48 h p.i. time 

points, and co-injected 89Zr-B12 and cold B12 (~200 nmol/mouse) at 4 

and 24 h p.i. time points. Mice were on a B12 deplete diet for 21 days pre-

injection. The tumor location is indicated by a red circle. 

Figure 11. Ex vivo tissue distribution of 89Zr-B12 (0.1 nmol/mouse), in 

nude athymic female mice bearing MDA-MD-453 tumors, at 4, 24, and 48 

h. A blocking study with 100-fold (20 nmol/mouse, co-injected with 

tracer) of unmodified B12 displayed a significant decrease in uptake in all 

tissues. Mice were on a B12 deplete diet for 21 days pre-injection. n = 4.  

Table 1. Biodistribution of 89Zr-B12 at 4, 24, and 48 h p.i. in MDA-MD-

453 mouse models.  

Figure 12. IHC staining of MDA-MD-453 tumor slices (a) with DAPI and 

(b) CD320-AF488, showing the tumors express CD320. 

 

Chapter 3 

Scheme 1. Synthesis of B12-PG. I: B12 was activated with CDT and 

reacted forward with 1-amine-6-azidohexane. II: B12-azide-linker 

‘clicked’ to FPG with Cu(I)/TBTA in DMF/H2O. III: B12-FPG was 

deprotected with 30% piperidine mixture. Overall yield based on B12 

starting material was 95%.  
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Figure 1. RP-HPLC and LC-MS of B12-PG. A) HPLC shows > 95%, Rt= 

9.9 min and B) LC-MS: m/z observed m/z 1637 [M]+1, expected m/z 

1636. 

Figure 2. Labeling of B12-PG with 99mTc showing full metalation. A) 

ultraviolet detection at 360 nm, and B) gamma detection.  

Figure 3. Size exclusion chromatograph of IF-99mTc-B12 (1 nM) confirms 

IF binding to 99mTc-B12. A) detection of apo-IF, Rt: 4 min, B) detection of 

IF-99mTc-B12 through gamma, C) detection of IF-99mTc-B12 at 280 nm, 

D) detection of IF-99mTc-B12 at 360 nm. Column: Zorbax GF-250, 4 µm, 

4.6 x 250 mm, Elution Buffer: 20 mM sodium phosphate and 300 mM 

sodium chloride at pH 7. 

Figure 4. Ex vivo tissue distribution of A) 99mTc-B12 at 1, 3, and 6 h in 

CD-1 mice. Highest uptake observed is within the kidney with low tracer 

uptake in all other tissues. n = 3  

Figure 5. Ex vivo tissue distribution of IF-99mTc-B12 (500 nM) at 1, 3, 

and 6 h in CD-1 mice. Highest uptake is in the kidney and liver. Kidney: 

13.15 ± 1.58, 19.28 ± 3.01, and 28.64 ± 1.67 at 1, 3, and 6 h respectfully. 

Liver: 27.46 ± 3.18, 32.82 ± 6.11, and 30.8 ± 1.55 at 1, 3, and 6 h, 

respectfully. n = 3 for each time point. 

Figure 6. PET imaging of IF-64Cu-B12 (~200 µCi/mouse) at 1 and 20 h 

p.i. High uptake in the liver and kidney is observed with little uptake in all 

other tissues. 
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Figure 7. Ex vivo tissue distribution of IF-64Cu-B12 at 24 h in nude 

athymic female mice. n = 2 

Figure 8. Binding Affinities of Zr-B12 and B12 to human gastric IF with 

a Kd: 1.57 nM and 1.36 nM, respectively. 

Figure 9. PET imaging of IF-89Zr-B12 and 89Zr-B12 at 1 and 24 h in nude 

athymic mice on a B12 replete diet. In comparison to the control (89Zr-

B12) IF-89Zr-B12 showed rapid and significant uptake in the liver, which 

did not change over 24 h.  

Figure 10. Ex vivo tissue distribution of IF-89Zr-B12 and 89Zr-B12 at 24 h 

in nude athymic female mice on a B12 replete diet. In compared to the 

control (89Zr-B12) IF-89Zr-B12 showed high uptake in the liver and a 

decrease in uptake in the kidney. n ≥ 3. 

Figure 11. PET imaging of IF-89Zr-B12  and 89Zr-B12  at 24 h in nude 

athymic female mice on a B12 deplete diet for 21 days. IF-89Zr-B12 in 

mice on normal chow (Figure 8) showed similar uptake at 24 h. A higher 

uptake in the liver was observed for 89Zr-B12 than in mice on a replete 

diet. 

Figure 12. Ex vivo tissue distribution of IF-89Zr-B12 and 89Zr-B12 at 24 h 

in nude athymic female mice on a B12 deplete diet for 21 days. 

Comparison to the control (89Zr-B12) IF-89Zr-B12 showa high uptake in 

liver and decrease uptake in the kidney. n ≥ 3. 
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Figure 13. Comparing the effects of mice on a B12 deplete and replete 

diet 24 h p.i of IF-89Zr-B12. A 3-fold increase in uptake is seen in both the 

liver, kidney, and spleen in deplete mice.  

Table 1. Biodistribution of 89Zr-B12 and IF-89Zr-B12 on B12 replete and 

deplete diets. Data reported in %ID/g. 

Figure 14. Ex vivo tissue distribution of 89Zr-B12 in mice on a deplete or 

replete diet at 24 h plotted as %recovered/organ. Changes in uptake 

occurred in the liver, kidneys, and blood. n ≥ 3.  

Figure 15. Ex vivo tissue distribution of IF-89Zr-B12 in mice on a B12 

deplete or replete diet at 24 h plotted as %recovered/organ. The significant 

changes occurred in the blood, stomach, and large intestine, while the 

liver, kidneys, spleen and pancreas stayed the same. n ≥ 3. 

Figure 16. Ex vivo tissue distribution of IF-89Zr-B12 and 89Zr-B12 in 

mice on a B12 deplete or replete diet at 24 h plotted as %recovered/organ. 

The significant changes occurred with 89Zr-B12  in the liver and kidney, 

while they were not significantly changed in the IF-89Zr-B12. n ≥ 3, *p = 

0.05.  

Table 2. Ex vivo tissue distribution of IF-89Zr-B12 and 89Zr-B12 in mice 

on a B12 deplete or replete diet at 24 h plotted as %recovered/organ. 

Table 3. GC-MS analysis of hrIF showing that fucose, xylose, mannose 

and n-acetylglycosamine are present.  
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Figure 17. Flow cytometry analyses of HEPG2 cells treated with IF-B12-

Cy5 (100 nM) in HBSS for 1 h at 37°C. There was no shift in fluorescence 

with the treated cells compared to non-treated cells indicating no uptake of 

the complex. Ex: 640 nm Em: 660/20 nm. P2 defines a positive result.  

Figure 18. Flow cytometry analyses of JAWSII cells treated with IF-B12-

Cy5 or B12-Cy5 (100 nM each) in HBSS for 1 h at 37°C. A broadening in 

fluorescence was seen using IF-B12-Cy5 and B12-Cy5 treated cells 

compared to non-treated cells indicating a non-IF specific 

uptake/association of the complex. Ex: 640 nm Em: 660/20 nm. P2 defines 

a positive result. 

Figure 19. Flow cytometry analysis of J774A.1 cells treated with IF-B12-

Cy5 or B12-Cy5 (100 nM each) in HBSS for 1 h at 37°C. A shift in 

fluorescence was seen in the IF-B12-Cy5 Indicating IF specific 

uptake/association of the complex. Ex: 640 nm Em: 660/20 nm. P2 defines 

a positive result. 

Chapter 4 
 
Figure 1. Synthesis of B12-Cy5. B12 was activated by replacing the 

terminal ribose 5’OH with an azide for ‘Click’ chemistry as previously 

reported. I: B12 was dissolved in NMP. A solution of MSCl in NMP and 

DIPEA were added in separately, at the same time, in three intervals 1 h 

apart then stirred for 1 hour at RT. II: B12-MsCl was dissolved in HMPA 

and NaN3 was added and stirred overnight at 40°C. III: Huisgen/Sharpless 

CuAAC chemistry was implemented using Sulfo-Cy5 Alkyne and  
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Cu(I)/TBTA in DMF/H2O (4:1) overnight. Final yield: 98%, based on B12 

starting material.  

Figure 2. Excitation and Emission for B12-Cy5. The excitation and 

emission are similar to Cy5 without conjugation (646 and 662 nm, 

respectfully) indicating B12-Cy5 was made and B12 did not quench Cy5 

fluorescence. Excitation in green and emission in red. Solvent: H2O, 

excitation: 645 nm, emission: 682 nm.  

Figure 3. A) RP-HPLC of purified B12-Cy5. Rt: 8.41 min. Purity: 99%. 

Detection at 371 and 640 nm. B) LC-MS Analysis of B12-Cy5 showing 

the compound was made. Expected m/z = 2059, observed m/z = 688 

[M+3H]+3, 2031 [M+2H]+2, 695 [M+Na]+3, 700 [M+K]+3, 1042 [M+Na]+2.  

Figure 4. Flow cytometry analyses of BN16 cells treated with IF-B12-

Cy5 (100 nM) in HBSS for 1 h at 37°C. A three-log shift in fluorescence 

was seen using IF-B12-Cy5 treated cells compared to non-treated cells 

indicating an IF specific uptake/association of the complex, namely 

CUBN. The decrease in uptake at 4°C supports a receptor mediated 

mechanism. Ex: 640 nm Em: 660/20 nm. P2 defines a positive result. 

Figure 5. Flow cytometry analyses of CHO-K1 cells treated with IF-B12-

Cy5 or B12-Cy5 (100 nM) in HBSS for 1 h at 37°C. A no fluorescence 

change was seen in IF-B12-Cy5 or B12-Cy5 treated cells compared to 

non-treated cells indicating a IF was not internalized. Ex: 640 nm Em: 

660/20 nm. P2 defines a positive result. 
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Figure 6. Western blot for CUBN. Lane 1: Thermo Fisher Scientific 

HiMark Pre-Stained HMW Protein Standard, Lane 2: CHO-K1 lysate 

(negative control), Lane 3: BN16 lysate (positive control), Lane 4: BN16 

(membrane), Lane 5: FHs 74 Int., Lane 6: FHs 74 Int. (membrane). 

Figure 7. Flow cytometry analysis of FHs 74 Int. cells treated with IF-

B12-Cy5 or B12-Cy5 (100 nM, and 1 µM) in HBSS for 2 h at 37°C. A 

fluorescence change was seen in IF-B12-Cy5 (1 µM) treated cells 

compared to non-treated or IF-B12-Cy5 (100 nM). A fluorescent shift was 

also seen for B12-Cy5 yet different than IF-B12-Cy5. This indicates 

functional CUBN expression is expressed on FHs 74 Int. cells. Ex: 640 nm 

Em: 660/20 nm. P2 defines a positive result. 

Figure 8. Western Blot for Megalin. Lane 1: CHO-K1 cell lysate 

(negative control), Lane 2: FHs 74 Int. cell lysate, Lane 3: BioRad 

Kaleidoscope Protein Markers, Lane 4: BN16 cell lysate (positive control) 

on a PDVF membrane.  

Figure 9. Flow cytometry analysis of FHs 74 Int. cells treated with TCII-

B12-Cy5 or B12-Cy5 (1 µM) in HBSS for 1 h at 37°C. A fluorescence 

shift was seen in TCII-B12-Cy5 treated cells compared to non-treated and 

B12-Cy5 treated cells. This indicates supports functional megalin 

expression is expressed on FHs 74 Int. cells. Ex: 640 nm Em: 660/20 nm. 

P2 defines a positive result. 

Figure 10. A) Synthesis of B12-Ex4 as previously reported I: EDC and 

HObt in anhydrous DMSO with aminobutyne, overnight at RT, and II:  
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Cu/TBTA in DMF and H2O, overnight and B) Synthesis of B12-Ex4-Cy5, 

I: Purified B12-Ex4 was reacted with sulfo-cyanine5-NHS-ester in PBS 

pH 7.6. Predicted conjugation site is the N-terminus and the lysine 27 

(lysine 12 was modified to have an azido group for click chemistry), yield: 

94%. 

Figure 11. A) RP-HPLC of B12-Ex4-Cy5 showing purity ≥ 91%. It is 

suspected that some of the compound is degrading on the column. Rt: 12.1 

min. Detection at 371 and 640 nm. B) LC-MS Analysis of B12-Ex4-Cy5. 

ESMS Expected m/z = 6284 (M1; B12-Ex4+Cy5) and 6923 (M2; B12-

Ex4+2xCy5), observed m/z = 1258 [M1+5H]+5, 1572 [M1+4H]+4, 1383 

[M2+5H]+5, 1728 [M2+4H]+4.  

Figure 12. Excitation and Emission for B12-Ex4-Cy5. Excitation in green 

and emission in red. Solvent: H2O, excitation: 648 nm, emission: 670 nm. 

Figure 13. B12-Ex4-Cy5 Agonism at the GLP-1R. Cells were infected 

with the H188 FRET cAMP reporter. Agonism shows the fluorescent 

compound retains function at the GLP-1R. Points are in triplicate. EC50: 

13 nM. Full sigmoidal curve could not be obtained due to the solubility of 

the conjugate. 

Figure 14. Systemically delivered fluorescently labeled Ex-4 (F-Ex-4) 

highly penetrates within the DVC and the PVN. A) DVC uptake of F-Ex-

4, B) Inset of A, C) PVN uptake of F-Ex-4, D) Inset of C. Ex4 (yellow),  
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astrocytes (GFAP; green) and neurons (NeuN; red). Sections were 

counterstained using DAPI (blue) to visualize cell nuclei. AP, area 

postrema; CC, central canal; DVC, dorsal vagal complex; NTS, nucleus 

tractus solitaries; 3V, third ventricle; PVN paraventricular hypothalamic 

nucleus. Images were acquired at 10-20x (A,C) or 63x (with 2-3x optical 

zoom) (B,D) magnifications. 

Figure 15. Systemically-delivered fluorescently labeled B12-Cy5 does not 

penetrate the DVC or the PVN. A) DVC uptake of B12-Cy5, B) Inset of 

A, C) PVN uptake of B12-Cy5, D) Inset of C. B12-Cy5 (yellow), 

astrocytes (GFAP; green) and neurons (NeuN; red). Sections were 

counterstained using DAPI (blue) to visualize cell nuclei. AP, area 

postrema; CC, central canal; DVC, dorsal vagal complex; NTS, nucleus 

tractus solitaries; 3V, third ventricle; PVN paraventricular hypothalamic 

nucleus. Images were acquired at 10-20x (A,C) or 63x (with 2-3x optical 

zoom) (B,D) magnifications. 

Figure 16. Systemically-delivered fluorescently labeled B12-Ex4-Cy5 

does not penetrate the DVC or the PVN. A) DVC uptake of B12-Ex4-Cy5, 

B) Inset of A, C) PVN uptake of B12-Ex4-Cy5, D) Inset of C. B12-Cy5 

(yellow), astrocytes (GFAP; green) and neurons (NeuN; red). Sections 

were counterstained using DAPI (blue) to visualize cell nuclei. AP, area 

postrema; CC, central canal; DVC, dorsal vagal complex; NTS, nucleus 

tractus solitaries; 3V, third ventricle; PVN paraventricular hypothalamic  
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nucleus. Images were acquired at 10-20x (A,C) or 63x (with 2-3x optical 

zoom) (B,D) magnifications. 

Chapter 5 

Figure 1. Chemical structures of the anesthetics A) ketamine and B) 

xylazine. 

Figure 2. An example of baseline hearing in guinea pigs through ABR. 

Hearing determined at 8 kHz, 6 kHz, and click (in descending order) for 

both the left and right ear for guinea pig 1. The seven characteristic peaks 

between 10 and 50 ms are at all frequencies. Baseline hearing was 

determined between -10 and 0 mV for all guinea pigs.  

Table 1. Results of the ABR test using kanamycin over 23 days for guinea 

pigs 1-4. ABR’s guinea pigs 2-3 were tested at 3, 5, and 6 weeks. No 

hearing loss was observed in any guinea pigs. 

Figure 3. An example of ABR hearing test in guinea pigs administered 

kanamycin for 23 days. ABR results of guinea pigs 4’s left ear. Hearing 

determined at 8 kHz, 6 kHz, and click (in descending order) for guinea pig 

4 at 0 and 41 days. There was no observable hearing loss. 

Table 2. Results of the ABR test using kanamycin and IF for 23 days for 

guinea pigs 5-8. Hearings tests were conducted at 3, 5 and 6 weeks p.i. 

using ABR’s. There was no hearing loss observed for all guinea pigs. 

Figure 4. An example of ABR hearing test in guinea pigs administered 

kanamycin and IF for 23 days. ABR comparison of guinea pig 7’s left ear  
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between day 0 and week 4 p.i. Hearing determined at 8 kHz, 6 kHz, and 

click (in descending order). There was no hearing loss seen. 

Figure 5. Daily weights of guinea pigs 1-8 during 23 days. Guinea pigs 1-

4 had no IF injected and 5-8 had IF injected twice daily. *Two injections 

of 13 µg/day. Weights for each cohort increased steadily over time 

showing no difference in weight in each study. 

Figure 6. ELISA IF antigenicity results for 2, 3, 6, 12, and 18. Guinea 

pigs that had no IF injected (2, 3, and 12) show no antigenicity while 

guinea pigs (6 and 18) showed high indication of antigens in their blood.  

 

Chapter 7 

Figure 1. Synthetic scheme for Cbi-Ex4. Dicyano-Cbi was functionalized 

with a terminal alkyne through CDT activation of the secondary alcohol 

with subsequent addition of aminobutyne in a one-pot reaction. Once 

purified the Cbi-alkyne and azido-Ex4 were linked using CuAAC 

chemistry. Final yield of 95%, based on B12-Ex4 starting material.  

Figure 2. Characterization of Cbi-alkyne. A) RP-HPLC of Cbi-alkyne 

using an Eclipse XDB-C18 column. 0.1% TFA/H2O with MeCN gradient 

of 1 – 70% MeCN over 15 min, tr= 8.0 and 8.4 min. Analysis shows 

compound is 97% pure. B) LC-MS: Shimadzu LCMS-8040, ESMS 

Expected m/z = 1129, observed m/z = 556 [M-H2O+2H]+2, 1110 [M-

H2O]+. 
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Figure 3. A) RP-HPLC of Cbi-Ex4 using an Eclipse XDB-C18 column. 

0.1% TFA/H2O with MeCN gradient of 1 – 70% MeCN over 15 min, tr= 

8.9 min. Analysis shows compound is 96% pure. B) LC-MS: Shimadzu 

LCMS-8040, ESMS Expected m/z = 5354, observed m/z = 1784 

[M+3H]+3, 1338 [M+4H]+4, 1071 [M+5H]+5, 893 [M+6H]+6. No detection 

of free exendin-4 was seen.  

Figure 4. Dose response of cAMP binding to the H188 reporter in real 

time after administration of Cbi-Ex4 ranging from 1 nM – 3 pM. SES: 

standard extracellular solution with 0.01% BSA and 0.1 mM glucose. 

F/IBMX: forskolin and (3-isobutyl-1-methylxanthine) (IBMX) as a 

positive control. 

Figure 5. Cbi-Ex4 agonsim at the GLP-1 receptor using the FRET H188 

reporter in stability transfected HEK-GLP-1 cells. EC50 of Cbi-Ex4 was 

determined to be 120 pM. 

Figure 6. Dose response of cAMP binding to the H188 reporter in real 

time after administration of HC-Cbi-Ex4 ranging from 1 nM – 3 pM. SES: 

standard extracellular solution with 0.01% BSA and 0.1 mM glucose. 

F/IBMX: forskolin and IBMX as a positive control.  

Figure 7. HC-Cbi-Ex4 agonsim at the GLP-1 receptor using the FRET 

H188 reporter in stability transfected HEK-GLP-1 cells. EC50 of Cbi-Ex4 

was determined to be 3 nM. Full sigmoidal curve could not be obtained 

due to the assay limits. 
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Figure 8. Western Blot of Asian Tree Shrew Blood. HC primary antibody 

(lanes 1-4) and TCII primary antibody (lanes 5-8). 1: recombinant human 

HC, 2: shrew serum, 3: recombinant pig TCII, 4 and 5: BioRad 

Kaleidoscope Protein Markers (10-250 kDa), 6: recombinant pig TCII, 7: 

shrew serum, 8: recombinant human HC. 
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Chapter 1: Introduction 

1.1 Vitamin B12 

Vitamin B12 (B12, cobalamin) is an essential vitamin, one of thirteen required in the human 

diet (Table 1).1,2,3 B12 is produced naturally by select bacteria (and likely certain archea).4,5 

Organisms that cannot produce B12 must acquire the vitamin through their diet, with the human 

requirement being 2.5 µg per day.1 

 

Table 1. A list of all thirteen essential vitamins, molecular weight, solubility, and primary 

biological function.  

 

However, unlike other water-soluble vitamins, the body can store B12, in the liver and 

kidneys, making identification of intake deficiency difficult.3,6 B12 deficiency can lead to 

Vitamin Molecular 
Weight (g/mol) Solubility  Primary Biological 

Function 

A 286.4 Fat Vision Health 

C 176.1 Water Protein metabolism 

D 384.6 Fat Ca2+ Storage 

E 430.7 Fat Antioxidant 

K 450.7 Fat Blood Clotting 

Thiamin (B1) 300.1 Water Energy Metabolism 

Riboflavin (B2) 376.3 Water Energy Metabolism 

Niacin (B3) 123.1 Water Energy Metabolism 

Pantothenic Acid 
(B5) 

219.2 Water Energy Metabolism  

Pyridoxine (B6) 168.1 Water Protein Metabolism 

Biotin (B7) 244.3 Water Energy Metabolism 

Folate (B9) 441.4 Water DNA and Cell Production 

Cobalamin (B12) 1355.3 Water Cell Production 
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pernicious and megaloblastic anemias, as well as various neurological disorders.1,7 There are no 

known cases of B12 toxicity and there is no upper limit to dosing. B12 is an organometallic, 

composed of a Co(III)-carbon bond, with the biological activity is based on the bond dissociation 

energies of such are modulated by the presence of the cobalt in a corrin ring with a 5,6-

dimethylbenzimidazole base (see Section 1.1.2).1,8–10 

 

1.1.1 History of B12 

In 1920, George Whipple discovered that an ‘extrinsic’ factor (later identified as B12) in 

liver was responsible for anemia recovery in dogs.11 Then in 1926, George Minot and William 

Murphy, while studying pernicious anemia in humans, showed a liver supplemented diet 

reversed pernicious anemia in patients.12 These discoveries won Whipple, Minot, and Murphy 

the Nobel Prize in Physiology or Medicine in 1934.13 It wasn’t until 1948 that B12 itself was 

purified from liver.14 In 1956 Dorothy Hodgkin determined the structure of B12 through single-

crystal X-ray crystallography, winning her the 1964 Nobel Prize in Chemistry.8  

 

1.1.2 Structure of B12 

B12 has a midplanar corrin ring composed of four pyrrole rings linked to a central 

cobalt(III) atom.8 The corrin ring is similar to the more commonly known porphyrin structure, 

but with key differences in terms of degree of saturation, symmetry and planarity (Figure 1). The 

f-side chain has a 5,6-dimethylbenzimidazole base that coordinates the central cobalt at the α-

axial position, producing the so-called ‘base-on’ form of B12.7,8 The corrin ring, which has a 

greater number of sp3 carbons than a porphyrin (10 rather than 0) rendering it less planar and 
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less conjugated. The corrin ring also has one less carbon (19 rather than 20) compared to a 

porphyrin due to the lack of a methylene spacer unit between the ‘C’ and ‘D’ rings (Figure 1).  

 

Figure 1. Structure of B12. Highlighted (blue) are the major modifiable sites on B12 for 

conjugation to small molecules or peptides/proteins, whereby binding by the dietary uptake 

proteins can be minimally affected, or selected for. 

 

B12 has a variable β-axial ligand, common forms being methyl, adenosyl, hydroxyl, and 

cyano.1,7 Cyanocobalamin is the form commonly found in B12 supplements and is the form used 

in all synthesis in this thesis.15 The major modifiable sites on B12, for conjugation to small 
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molecules or peptides/proteins, whereby binding by the dietary uptake proteins can be minimally 

affected or selected for, are the β-axial ligand, the b-, and d-side chins and the 5’-hydroxyl group 

on the ribose ring (Section 1.1.5).16–21  

 

1.1.3 Metabolism of B12 

B12 is a cofactor for two enzymes, methionine synthase and methylmalonyl-CoA mutase 

(Figure 2).1,9,10,22,23 There are two primary biologically active forms of B12: methylcobalamin 

and adenosylcobalamin. Cytosolic methionine synthase uses methylcobalamin to produce the 

amino acid methionine from homocysteine.23 In the mitochondria, methylmalonyl-CoA mutase 

uses adenosylcobalamin as a cofactor to produce succinyl-CoA.9 

 

Figure 2. B12 function in the cell as a co-factor with methionine synthase and methylmalonyl-

CoA Mutase.  

Methionine	Synthase	

Homocysteine	

Methionine	

Cytosol	

Methylmalonyl-CoA	

Methylmalonyl-CoA	Mutase	

Succinyl-CoA	

	Methyl-B12	

Mitochondria	

Adenosyl-B12	

5-methyl-THF	

THF	
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Both enzymes use the cobalt-carbon bond to catalyze a methyl transfer to homocysteine 

and a radical-isomerization of methylmalonyl-CoA.7,9,23 The oxidation state of the central cobalt, 

which can be Co(1), Co(II), or Co(III) at physiological conditions, determines B12’s function as 

a cofactor.7 Cyanocobalamin is not biologically active, but can be readily converted into methyl- 

or adenosyl-cobalamin for function.15 

 

1.1.4 Dietary Uptake of B12 

Mammals have developed a complex dietary uptake pathway for B12 involving a series 

of transport proteins and specific receptors across various tissues and organs (Figure 3).1,7 

Transport and delivery of B12 is dependent on three primary carrier proteins: haptocorrin (HC; 

Kd = 0.01 pM),
 
intrinsic factor (IF; Kd = 1 pM),

 
and transcobalamin II (TCII; Kd = 0.005 pM),

 

each responsible for carrying a single B12 molecule.24 B12 is initially released from food by the 

action of peptic enzymes and the acidic environment of the gastrointestinal system and bound by 

HC [also known as transcobalamin I or R-binder (TCI)].1,25 Holo-HC travels from the stomach to 

the duodenum, where the increase in pH (>5) decreases the affinity of HC for B12 and, 

combined with pancreatic digestion of HC, causes B12 release, whereupon it is bound by gastric 

intrinsic factor (IF).24,26–28 
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Figure 3. Dietary uptake pathway for B12 in humans. Abbreviations used: R-protein/TCI: 

Haptocorrin (HC); IF: Intrinsic factor; TCII: Transcobalamin II; Cbl: cobalamin/B12. Image 

used with permission of Xeragenx LLC (St. Louis, MO, USA). 
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Once B12 is bound to IF, it facilitates intestinal transport and passage across ileal 

enterocyte. This passage occurs via receptor-mediated endocytosis through the IF-B12 receptor 

cubilin (CUBN).27,29 CUBN transports holo-IF in concert with a transmembrane protein 

amnionless (CUBAM).30 Following internalization, IF is degraded by lysosomal proteases, such 

as cathepsin L, and B12 is released into the blood stream, either as free B12 or pre-bound to 

transcobalamin II (TCII).1,31 There is some controversy in this area as to whether both occur or 

one dominates over the other, and indeed whether there is third mechanism at play. Cells that 

require B12 express the holo-TCII receptor, CD320.1,22,32 Upon internalization, TCII is degraded 

and B12 is transported from the lysosome for cellular use. Kidney cells also express the megalin 

receptor, which in part reabsorbs filtered holo-TCII from urine for TCII recirculation.33,34 

 

1.1.4.1 Transport Proteins of B12 

HC is a glycoprotein with a molecular mass of between 60-70 kDa and is secreted by the 

salivary glands (crystal structure shown in Figure 4).35 HC is resistant to low pH and has a high 

affinity for B12 (Kd = 0.01 pM) under acidic conditions (pH < 3), allowing it to protect B12 from 

acidic hydrolysis.1,7 HC is also found within the bloodstream where it binds ~80% of total serum 

B12, with a half-life of ~9 days.16,36 The role of holo-HC in the bloodstream is not clear as there 

is no known receptor for holo-HC, albeit it may play a role in bacteriostasis.37,38 IF is a ~50 kDa 

glycosylated protein that is secreted from the gastric mucosa and is resistant to pancreatic 

enzymes, such as trypsin and chymotrypsin (see Section 1.2).28,39 

TCII, ~50 kDa, is a non-glycosylated protein that is secreted into the blood primarily 

from liver cells and bone marrow (crystal structure shown in Figure 4).40–42 Holo-TCII is 

recognized by CD230 and megalin (within the kidney), where upon binding it is rapidly 
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internalized into proliferating cells (within minutes).1,7,43 TCII concentrations found in humans 

are in average of 0.6-1.5 nmol/L.44 TCII concentrations found in rats are 2 nmol/L and in mice 

are 20 nmol/L in mice, important to consider during in vivo experiments.45 

All three transport proteins (HC, IF and TCII) bind to B12 with affinities in the pM range 

but their specificity varies. IF shows the highest specificity for B12, followed closely by TCII, 

with HC having a broad substrate base including B12 analogs such as cobinamide.17,24 It is 

thought because of the affinity of HC for many inactive B12 analogs that it acts as a scavenger, 

removing such from the blood and partially digested B12 from the intestine, preventing bacterial 

access (thus suggesting a role for B12 in bacteriostasis).17,24,35,41 Viewed synthetically, this 

implies that B12 can be readily modified and retain recognition by HC, whereas IF and TCII 

offer significantly less range for modification (for more detail see Chapter 7, Section 7.2).  

Knowledge of the binding between B12 and is various transport proteins is critical if the 

system is to be successfully exploited from bench-top to bedside. In the last 10 years there has 

been a huge advance in critical understanding of transport protein structure as it relates to the 

B12 uptake pathway, with the publication of HC, IF, TCII, and cubilin-IF-B12 structures (Figure 

4).35,39,42 HC, TCII, and IF have similar protein structure and bind B12 in a similar manner, at the 

interface of two domains. 

 



	 9	

 

Figure 4. Transport Proteins Bound to B12. A) TCII, B) HC, and C) IF. PDB code 2BB5, 4KKl, 

2PMV, respectively. 

 

1.1.5 B12 Modification  

B12 modification, essential for the development of B12 chemistry, ideally should have 1) 

an ease of synthesis and 2) retention of recognition of B12 transport proteins.46 B12 modification 

resulting in the recognition of HC, IF, and TCII have been successful with four major sites to 

date: 1) the peripheral corrin ring e-side chain; 2) the peripheral corrin ring b-side chain; 3) the 

5’-hydroxyl group of the ribose ring on the dimethylbenzimidazole base; and 4) the cobalt cation 

(Figure 1, Section 1.1.2).16,19,20,47–49 

B 

A 

C 
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The crystal structure of holo-TCII provides a rationale for why these positions are 

available for modification.42 The phosphate moiety, 2’-hydroxyl group, and a, c, d, and g-side 

chains have various hydrogen bonds between multiple TCII residues and the solvent molecules 

indicating any modifications would disrupt that bonding and stability of the TCII-B12 complex 

(Figure 4). In addition, TCII does not completely encompass B12 and leaves a 1.4 nm solvent-

accessible pocket, showing the phosphate and the ribose moieties protruding. Both the phosphate 

and the ribose moieties have been exploited in conjugate design whereby TCII and IF binding 

was maintained at the nM level.50,51 

Modification to the b- and e-side chains have been a popular choice for chemists.16,48,49 

Such a route requires acid hydrolysis of the amides, typically using 1 N HCl, creating multiple 

mono-acids at the b, d and e-positions, which makes access to targeted specific acids low 

yielding (≤ 15%) and complex to purify.52 A recent result exploiting this approach however, is 

that of Schubiger et al., who showed that, based on the tether length off of the b-acid side chain, 

selectively towards specific transport proteins (IF over TCII, for example) could be achieved (see 

Section 1.1.6 and 1.3.4).16 

The most common site for modification has, however, become the 5’-hydroxyl group, for 

three main reasons: 1) conjugation still allows binding retention of the transport proteins; and 2) 

conjugation to this site is highly facile and selective; and 3) a wide range of modifications have 

been developed for this site, expanding scope for substrate conjugation.19,20,47,50,53,54 The 

“classic” activation with 1,1’-carbonyldiimidazole or 1,1’-carbonyldi(1,2,4-triazole) with an 

addition of a primary amine, producing a carbamate linked conjugation, allows for a wide range 

of molecules to be used.55 Doyle et al. directly modified this position, using 2-iodoxybenzoic 
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acid and 2-hydroxypyridine, to create a carboxylic acid at this position, which could then be 

readily used to produce amide linked conjugates. 47 

Later, Gryko et al. developed a “clickable” B12 conjugate, replacing the 5’-hydroxyl 

with an azide, which allows for a high yielding Huisgen-Sharpless copper-azide-alkyl reaction, 

creating a stable triazole linker with alkyne containing molecules.19 Most recently, Gryko also 

developed a reactive pyridyl disulfide group at this site, allowing the possibility of direct 

disulfide bonds to proteins and molecules, opening up a new area for conjugation that readily 

exploits redox for the first time.20 

 

1.1.6 B12 in Drug Delivery  

There are several excellent reviews in this area that the reader is referred to here. In 

particular the reader is referred to a 2017 review by this author provided in Appendix A of this 

document.56–58 This section will serve as a brief summary of the B12 drug development field. 

Few peptide/protein-based drugs have the ability to survive the gastrointestinal tract 

and/or cross the intestinal wall to make it to the systemic circulation.59 The B12 pathway has 

naturally developed a complex mechanism for this uptake. Researchers can “hijack” this 

pathway to deliver B12-drugs in an oral manner. Early research in B12-peptide/protein oral drug 

delivery was conducted by Russell-Jones and co-workers in the 1990’s focusing on B12 

conjugates of granulocyte colony stimulating factor, erythropoietin, luteinizing hormone-

releasing hormone, ANTIDE-1, and ANTIDE-3.60,61 Since then other groups have shown B12-

molecules being transported via the B12 pathway across intestine cell lines in vitro and in 

vivo53,54,62,63. 
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 In 2016, Mishra et al. showed a B12-chitosan layered nanoparticle that encapsulated 

insulin had a 10-fold increase in effective insulin duration in vivo when administered orally, 

achieving a maximum drop in glucose of ~40%.63 Although data suggests drugs can be delivered 

orally through this pathway there are some limitations. There is a limited pool of CUB expressed 

in the terminal ilium, which limits IF-mediated absorption to ~1.5 µg per meal (1 nmole/dose).64 

Survival of enterocyte passage by a peptide bound to B12 is also unknown, as is whether such a 

conjugate would arrive in serum bound or unbound to TCII (with implications for subsequent 

function). 

In 2015, Doyle et al. published on a subcutaneously administered B12-PYY3-36.65 Peptide 

YY3-36 (PYY3-36) is an endogenous appetite suppressing peptide that is an agonist for the 

neuropeptide Y2 receptor in the intestines and arcuate nucleus of the hypothalamus. Food intake 

(FI) was significantly reduced over a five day course for B12-PYY3-36 (24%) compared to PYY3-

36  (13%), In addition, reduction of FI was more consistent after each dose through the course of 

the rats feeding cycle for B12-PYY3-36 (26%, 29%, and 27%) compared with PYY3-36 treatment 

(3%, 21%, and 16%).65 These findings demonstrate significant pharmacodynamic improvement 

upon simple conjugation of B12 to PYY3-36 for subcutaneous delivery. 

In 2015, Doyle et al. focused on the stability (as defined by retention of peptide/protein 

agonist receptor function) of a B12 conjugate of the glucose controlling (GLP-1R agonist), 

exendin-4 (Ex-4) (see Section 1.5).50,66 Either as the B12-conjugate, or bound by IF, function at 

the GLP-1R relative to undigested controls was investigated using proteases from both the 

gastrointestinal tract (trypsin and chymotrypsin) and kidney (meprin β).50 The addition of IF 

produced up to a four-fold increase in function compared to Ex-4 alone, when digested by 

trypsin, and no statistical decrease in function when challenged by meprin β. These results offer 
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a significant opportunity for exploitation. Increase in gastric stability, even on a small percentage 

scale, could provide a route to achieving the desired effect orally. This work also suggests the 

possibility of utilizing an IF-B12-drug complex in serum, thus expanding use of IF beyond oral 

administration. 

 

1.2 Intrinsic Factor Protein 

 IF is secreted from gastric parietal cells and binds B12 (Kd = 1.0 pM) once released from 

HC, after HC is degraded by pancreatic enzymes.17,67 IF is a glycosylated protein making it 

resistant to pancreatic enzymes, protecting B12 until it reaches the ileum where CUBN is 

expressed and it is internalized.1 When IF is internalized into ileal enterocyte and it is degraded 

in the lysosome by enzymes, such as cathepsin L.68  

 

1.2.1 History of IF 

 IF was initially discovered in 1929 by William Castle. Experiments indicated that 

patients, who had pernicious anemia, showed improvement when administered human gastric 

juices.69 The treatment of gastric juices indicated an ‘intrinsic factor’ was treating the anemia. 

Castle showed that while an increase in ‘extrinsic factor’ (B12) helped treat anemia, another lack 

of  ‘intrinsic factor’ reduced the bodies’ ability to access B12, hence the name (IF).70 

 

1.2.2 The Receptor Cubilin 

CUBN (~500 kDa) is the only know receptor for holo-IF. CUBN binds other ligands such 

as albumin, holo-transferrin, cholesterol, receptor-associated protein, aminoglycosides, and holo-

vitamin B binding protein (Figure 5).71–76 CUBN is limited in expression and is expressed in the 
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renal brush boarder, placental membrane, yolk sac, small intestine, gallbladder, and the inner 

ear.76–80 CUBN is a peripheral membrane protein and is expressed with two transmembrane 

proteins amnionless and megalin that work in concert with CUBN to internalize CUBN 

ligands.78,79,81 

 

1.2.2.1 Structure of Cubilin 

 CUBN is a peripheral membrane protein that has three distinct domains. It has a C-

terminal region, eight epidermal growth factor-related domains, and 27 CUB domains. The 27 

CUB domains are where CUBN ligands are recognized, with CUB5-8 recognizing IF.82,39 The C-

terminal domain anchors CUBN to the membrane and also has been shown create CUBN 

trimmers.83 

 

1.2.2.2 Amnionless 

 Amnionless is a transmembrane protein (40-50 kDa) and is always expressed with CUBN 

(CUBAM).76,84,85 Mutations in the amnionless gene or CUBN gene do not allow either protein to 

be expressed.76,85 Amnionless assists CUBN in the internalization of CUBN ligands and does not 

recognize any substrates. 

 

1.2.2.3 Megalin 

 Megalin is a transmembrane protein (600 kDa) that can be expressed with CUBN.34 

Megalin has shown to be expressed with CUBN in the kidney, placental membrane, inner ear, 

and visceral yolk sac.71,76,86 Megalin can be expressed without CUBN and is more widely 

expressed than CUBN in tissues such as thyroid, parathyroid gland, and choroid plexus. Megalin 
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recognizes a considerably greater number of substrates than CUBN, while a select few substrates 

bind to both (Figure 5).34 

 

Figure 5.  Megalin and cubilin’s binding substrates, substrates in the center are recognized by 

both receptors.  

 

1.2.2.4 The Crystal Structures of Holo-IF and Cubilin Bound to Holo-IF 

In 2007, Mathew et al. published the crystal structure of IF (produced in Pichia pastoris) 

bound to B12 (Figure 4).39 Results showed IF having two domains, α (~270 residues) and β 

(~110 residues), with B12 bound between the two domain interfaces. All but 19% of B12 is 

buried in the complex. There are nine residues that bind to B12 directly and there are equal 

hydrogen bonds to B12 from each domain. Histidine was not found coordinated to the central 

cobalt of IF, unlike such observed in the TCII crystal structure.42 The glycosylation site was 

determined to be on asparagine-395.39 
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In 2010, Andersen et al. published holo-IF (produced in P. pastoris) bound to CUB 

domains 5-8.27 The structure shows that both the α and β domains bind to CUBN, supporting IF 

has to be bound by B12 to be recognized by CUBN. The α domain binds directly to CUB-6 (25-

299 residues on IF) and the β domain binds to CUB-8 (308-417 residues on IF). CUB-5 and 

CUB-7 do not interact with IF but plays a structural role in combination with Ca2+, which binds 

to all four CUB domains.27 The crystal structure also shows holo-IF remains structurally similar 

to unbound holo-IF.  

 

1.3 Radioimaging Utilizing the B12 Dietary Pathway 

1.3.1 Single Photon Emission Computed Tomography and Positron Emission Tomography 

Imaging 

 Single Photon Emission Computed Tomography (SPECT) is a form of three-dimensional 

nuclear imaging that creates an image by tracing a radioisotope’s gamma ray emissions.87 

Positron Emission Tomography (PET) is also a three-dimensional imaging tool that detects a 

radioisotope’s positron emissions by detecting gamma rays emitted when positrons are released 

and react with electrons.87 The key differences between SPECT and PET imaging are 1) the 

radioisotopes used, 2) PET is higher in sensitivity (two-three orders). PET’s increase in 

sensitivity allows for shorter imaging time, less radio-dose injected, and improved diagnoses.87 

With that said PET has been gaining popularity especially in cancer detection.88 Experiments in 

this thesis use the SPECT radioisotope 99mTechnetium and the PET radioisotopes 64Copper and 

89Zirconium to investigate B12 and IF uptake in vivo (Chapters 2 and 3).89–91 
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1.3.1.1 Radioisotope 99mTechnetium  

 99mTechnetium (99mTc) was discovered in 1938 by Seaborg and Serge.92 Since then it has 

become the most commonly used radioisotope in nuclear imaging, due to its half-life of 6 h and 

is easily generated on site.89 99mTc uniquely emits a gamma ray while not emitting a beta ray.93 In 

combination with its half-life (6 h) and lack of beta ray decay makes 99mTc a safer radioisotope 

compared to isotopes that have longer half-lives and emit beta rays, such as 131I.94 99mTc is 

primarily used for medical imaging in bone scans and cardiac function.95,96  

 

1.3.1.2 Radioisotope 64Copper 

 64Copper (64Cu) is a radioisotope for PET imaging, has a half-life of 12.7 h, and decays 

through three mechanisms, positron, beta, and electron capture.97,98 This half-life allows 64Cu to 

be utilized on small molecules as well on large proteins that have a slow clearance rate (2-4 

days) such as antibodies.90,99 64Cu is a popular PET isotope due to its well-established 

coordination chemistry allowing ease of radiolabeling to multiple ligands.97,98  

 

1.3.1.3 Radioisotope 89Zirconium 

 89Zirconium (89Zr) is a radioisotope for PET imaging and has a half-life of 3.27 d, and 

decays through positron and electron capture.91,100 89Zr has become increasingly popular due the 

conception of immuno-PET imaging.101 Immuno-PET imaging is based on the premise that 

monoclonal antibodies allow for disease-specific agents in diagnostic imaging. In cancer 

research these antibodies allow targeting to specific cancer tumors and, due to PET’s sensitivity, 

can also detect a response to treatment.101 89Zr has an ideal half-life for antibodies targeting, as 
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they are large and therefore slow to accumulate in the tumor (2-4 days), thus 89Zr allows for a 

longer visualization time (1-5 days) and improved background/tumor ratio.   

 

1.3.2 Specific Targeting Using Radio-B12 Conjugates 

A B12 conjugate injected in the systemic circulation can be bound by HC or TCII. 

Initially, it was hypothesized that cancer therapy/imaging using a B12 based delivery mechanism 

would work based on a projected increase in the TCII receptor, CD320, in a variety of cancer 

types such as breast, ovarian, thyroid, uterine, testis, and brain cancer.51,102–104 This 

overexpression of CD320 would provide sufficient uptake of a tracer bound to endogenous TCII 

vs uptake in healthy tissue. Such studies, however, suffered from high background accumulation 

in the liver and kidneys, primarily due to megalin expression. 

 The use of HC binding was not investigated until 2008, when Schubiger et al. made a 

series of B12 conjugates that would selectively bind HC (and IF), but not TCII.16,105,106 The 

hypothesis here was that, given the presence of TCII and HC in serum, and assigning the high 

background to TCII mediated cell entry, targeting only HC would offer improved results. 

Membrane associated HC, expressed de novo, in certain cancer cell lines offered a possible route 

to selectivity, absent from the approach to CD320 uptake.  In 2014, 99mTc-PAMA-cobalamin, 

capable of selectively binding HC in blood serum, used in the detection of breast, colon, lung, 

and pharyngeal cancers in human patients.105 This conjugate showed greater tumor uptake and 

reduced TCII-based background, relative to preceding reports so far. This publication is highly 

significant for B12 drug development, especially since it was performed in human patients. 
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1.3.2.1 A History of SPECT B12 Conjugates 

Table 2 lists the B12-imaging agents reported to date. Historically, imaging using B12 

targeted the CD320 receptor, based on the premise that overexpression of CD320 on rapidly 

proliferating tumor cells would provide necessary tumor to background ratio’s. However, this 

technique proved highly limited due to observed high background uptake across tissues. Early 

investigators used cobalt radioisotopes (57Co, 58Co, 60Co) to radiolabel B12 for imaging, due to 

the naturally occurring cobalt center.107,108 However, the half-life of the radionuclides (272 days, 

71 days, and 77 days, respectively) are too long for successful external images. Since then other 

radioisotopes, 111In (2.8 days), 131I (8 h), and 99mTc (6 h), have been conjugated to 

B12.51,103,109,110 Unfortunately, they still resulted in undesired organ accumulation, limiting their 

use due to high background uptake in healthy cells.  
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Table 2. All B12-radioimaing agents reported to date. DTPA: diethylenetriamine-N,N;N‘,N’’, 

N“‘-pentaacetic acid; PAMA: [pyridine-2-ylmethyl-amino]-acetic acid; 3-c-Histidinate: 1,3-

propanamine-1-carboxymethyl-N-histidinate; 4-c-Histidinate: 1,4-aminobutane-1-

carboxymethyl-N-histidinate; SCN-Bn-NOTA; isothiocyanatobenzyl-1,4,7- triazacyclononane-

N,N’,N’’-triacetic acid. *Conjugate was selected for human studies targeting tumors.  

1.3.2.2 A History of PET B12 Conjugates 

 Only one PET B12 conjugate has been reported to date, in 2014, Doyle et al. published a 

B12-PET imaging probe using a B12-NOTA conjugate labeled with 64Cu.111 PET imaging and 

Molecule Conjugation 
Site Linker Ref 

99mTc-DTPA b-side chain 1,4diaminobutane 51 

111In-DTPA b-side chain 1,4diaminobutane  103 

[99mTcO4]- Beta ligand Imidazolecarboxylic 
acid 110 

    Picolinic acid   

    2,4-dipicolinic acid   

    Serine   

    N,N-dimethylglycine   

131I Beta ligand Cisplatin 109 

[99mTc(CO)3(OH2)3] b-side chain Propyl-PAMA-OEt 16 

    Ethyl-PAMA-OEt   

    Butyl-PAMA-OEt* 105/106 

    Pentyl-PAMA-OEt   

    Hexyl-PAMA-OEt   

b-side chain 3-c-Histidinate 102 

d-side chain 3-c-Histidinate 

b-side chain 4-c-Histidinate 

c-side chain 4-c-Histidinate 
64Cu-NOTA 

 Ribose 5’-OH En-SCN-Bn 111 
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ex vivo biodistribution were conducted with four cancer cell lines: pancreatic (MIA PaCa2), 

ovarian (SKOV-3), colorectal (HCT116), and murine melanoma (B16-F10). The highest percent 

injected dose per gram (%ID/g) reported was 4.84 ± 0.32 at 6 h in the colorectal tumor model. 

However, as was observed with previous studies, the same high background trend was seen, with 

high accumulation in the liver and kidneys.  

 

1.4 Human and Plant N-Glycosylation 

 Protein glycosylation in an important post-translational modification in all eukaryote 

cells. It has been shown that initial steps of N-glycosylation are similar between plants and 

mammals.112,113 Later steps deviate, creating distinct glycosylation profiles for each (Figure 6). 

Plant glycosylation tends to be less sophisticated without branching or being sialylated, in 

comparison to mammal glycosylation.  

                      

Figure 6. Comparing typical N-glycoslyation of Human and Plants. GlcNAc: n-

actylglucoseamine, Man: mannose, Fuc: fucose, SA: sialic acid, Xyl: xylose, Gal: galactose.  

Gal	Xyl	GlcNAc	 Man	 Fuc	 SA	

Human	 Plants	
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1.4.1 Human N- Glycosylation 

 Most Eukaryotes, including humans, utilize glucoseamine (Glc), mannose, and n-

acetylglycoseamine (GlcNAc) as a base for glycosylation, which is attached to select asparagine 

(N) residues.113 Glycosylation can be highly complex with multiple branched sugars (Figure 6). 

Human glycoproteins are terminally sialylated.114 Removal of the terminal sialic acid usually 

exposes galactose, a sugar recognized by the liver, which degrades asialylated glycoproteins.115 

 

1.4.2 Plant N- Glycosylation 

 Plants, similarly to humans, also have a base of Glc, mannose, and GlcNAc attached to N 

residues on proteins (Figure 6).112 However, plant glycosylation is less sophisticated than 

humans, typically not branched, and is not terminally sialylated. Lack of terminal sialic acid can 

facilitate liver based degradation and immune response to plant glycoproteins.116 In addition, 

plants can incorporate different sugars, such as xylose (not seen in humans).  

 

1.4.3 Asialoglycoprotein receptor 

 Asialoglycoprotein (ASGPR) is a glycoprotein that clears glycoproteins, which have a 

terminal galactose, n-acetylgalactoseamine from blood serum.115 ASGPR has also been shown to 

remove cholesterol. ASGPR is highly expressed in the liver sinusoidal endothelial (liver 

capillary lining) cells, and is the receptor responsible for clearing endogenous proteins for re-

cyclization. 
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1.4.4 Mannose Receptor Family 

 The mannose receptor family (MRF) is a group of four glycosylated receptor proteins 

that are expressed in mice and humans.117 They are CD206, CD205, Endo180, and 

phospholipase A2 receptor (PLA2R).117–120 Endo 180 is involved in the turn over of extracellular 

matrix.119 PLA2R is activated by PLA2 molecules and has been shown to be involved with 

membranous nephropathy, an autoimmune disorder that prevents the kidney from functioning 

properly120. The MRF are all type 1 transmembrane proteins, part of the C-lectin family and have 

a common motif with N-terminal cysteine rich domain, fibronectin II domain, and eight-ten 

carbohydrate recognition domains.117 

 

1.4.4.1 CD205 Receptor  

 Cluster of differentiation 205 (CD205) is a member of the MRF and is predominantly 

expressed on hepatic dendritic cells and thymic epithelium.118 CD205 can recognize mannose, 

fucose, n-actylglucosamine, and glucose. However, CD205’s expression can be inconstant 

depending on the stage of the dendritic cell.121 

  

1.4.4.2 CD206 Receptor 

 Cluster of differentiation 206 (CD206) is a transmembrane glycoprotein predominantly 

expressed by macrophages, dendritic cells, and select lympthatic and liver endothelial cells.117,122 

CD206 is expressed in the liver sinusoidal endothelial (liver capillary lining) cells. CD206 

recognizes mannose, fucose, n-actylglucosamine, and glucose. Its extracellular regions include 

N-terminal cysteine rich domain (binds to n-actylglucosamine and glucose), fibronectin II 

domain, and eight carbohydrate recognition domains (binds mannose and fucose). CD206’s main 
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role is to remove unwanted mannose linked glycoproteins from circulation. Due to many 

microbes, such as Mycobacterum tuberculosis, having a mannan-coated cell wall, CD206 plays a 

large role in the immune response.123 

 

1.5 Glucagon-like-peptide Receptor Peptide Agonists  

1.5.1 Glucagon-like Peptide-1 

 Glucagon-like Peptide-1 (GLP-1) is produced in the intestinal L cells and is released after 

a meal.124 GLP-1 is an incretin hormone in humans, which is primarily responsible for 

controlling insulin levels in response to a rise in glucose levels in the blood.125 Most humans 

have a typical fasting plasma level of GLP-1 of 5-10 pmol/L, which can increase upon glucose 

addition.126 The enzyme dipeptidyl peptidase IV (DPP-IV) quickly degrades GLP-1, as it cleaves 

any peptide with an alanine or proline at the second position from the N-terminus, resulting in 

rapid clearance (half-life being 2 minutes).127 The GLP-1 receptor (GLP-1R) is located in the 

pancreatic β- cells as well as the brain, stomach and adipose tissue.128–130 

 

1.5.2 Exendin-4 

During the late 1980s and early 1990s Eng et al., was researching peptides found in the 

Heloderma family of lizards. The team initially discovered exendin-3, a GLP-1R agonist.131 In 

1992, exendin-4 (Ex-4) was discovered as a more potent agonist to GLP-1R. Ex-4 is an incretin 

mimetic, sharing 53% amino acid sequence similarity with GLP-1, and acts similarly to GLP-1 

(Figure 7).132 However, unlike GLP-1, Ex-4 is resistant to the enzyme DPP-IV, with a glycine in 

place of alanine, as the second amino acid. This degradation resistance allows Ex-4 to have a 

half-life of 2.4 h.133 Such resistance to DPP-IV does not, however, translate to other proteases, 
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and exenatide (synthetic Ex-4) therefore must be administered subcutaneously. Exenatide was 

approved as a pharmaceutical as the first incretin mimetic under the name Byetta in 2005.134 

Common side effects of Ex-4 include pronounced nausea, vomiting, and malaise, occurring in 

~50% of patients.135–137 

 

Figure 7. Structure of Ex-4. Note significant helical content (46%) and a C-terminal hair-pin 

(1JRJ).  

 

1.5.3 Glucagon Receptor Family 

The glucagon receptor superfamily includes the glucagon receptor, GLP-1R, glucagon-

like peptide 2, and glucose-dependent insulinotropic peptide receptor.138,139 Although the 

glucagon receptor family and corresponding peptide agonists share many similarities, each 

receptor maintains a high affinity for only one peptide.138 This family is part of the G protein-
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coupled receptors (GPCR).140,141 GPCRs are classified into three classes; class A, B, and C.142 

The glucagon receptor superfamily is part of class B. Class B GPCRs are part of the secretin 

family and are activated by endocrine hormones.141 Upon agonist binding a GPCR undergoes a 

conformational change resulting in the active state, singling a cascade.143 There are three G 

protein subunits, α, β, and γ and each subunit can be tied to a number of different pathways with 

the most well know being Gs, Gq, and Gi.144 Members of the glucagon receptor superfamily 

activate the Gs pathway resulting in an increase in cyclic adenosine monophosphate (cAMP), 

which can be used to follow agonism in receptor assays.144 

 

1.5.4 B12-Exendin-4 

 In 2017, it was shown that B12-Exendin-4 (B12-Ex4) had 1) a reduced effect on feeding, 

2) no significant change in body weight gain and 3) suppresses blood glucose in an oral glucose 

tolerance test (OGTT) and 4) does not elicit malaise and nausea in rats compared to the controls 

(see Appendix A).  B12-Ex-4 was administered in two doses 5 µg/kg and 20 µg/kg, both doses 

showed glycemic control during an OGTT, while only 20 µg/kg had a significant (p<0.05) 

reduced effect on food intake. The overall 24 h body weight change was not significant from the 

controls. In a conditioned taste avoidance test, rats administered B12-Ex4, at 5 µg/kg, showed no 

aversion compared to the controls, Ex-4 (5 µg/kg) and lithium chloride (0.15M).  

Ex-4 is an agonist for the GLP-1R located on the pancreas and in the central nervous 

system (CNS).66,135,137 CNS activation mediates the body weight-suppressive effects and also 

contributes to the common side effects such as nausea and malaise. Due to the unique effects of 

B12-Ex4 (i.e. lack of weight loss and no taste aversion) it was hypothesized that B12-Ex4 was 
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acting at the GLP-1R in the pancreas, as proven by glycemic control, but not activating the GLP-

1R in the CNS, supported by the lack of nausea. This was explored further in Chapter 4, Part II.  

 

1.5.5 H188 FRET Assay to Detect cAMP Levels 

 To determine the agonism of B12-Ex4 conjugates an exchange protein directly activated 

by cAMP-based (EPAC) fluorescence resonance energy transfer (FRET) sensor was used.145,146 

This sensor consists of a cAMP binding activating protein that is sandwiched between a suitable 

donor and acceptor fluorescent proteins. The EPAC used in this assay detects initial cAMP levels 

as it is catalytically dead and cannot produce a response. In 2015, the H188 EPAC was 

developed with a donor cyanine fluorescent protein (CFP) and an acceptor yellow fluorescent 

protein (YFP).146 When cAMP binds the EPAC a conformational change occurs, causing the two 

proteins, CFP and YFP, to move away, creating an increase in FRET response (Figure 8). This 

EPAC was chosen based on its higher sensitivity (~70%) than other FRET assays such as 

AKAR3 (~20%). 
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Figure 8. Conformational change of EPAC after cAMP binding. DEP: disheveled, Egl-10, 

and pleckstrin, GEF: guanine nucleotide exchange factor, REM: ras exchange motif, C: cyanine 

fluorescent protein, Y: yellow fluorescent protein. 

 

1.6 Cubilin and Aminoglycosides 

In 2009, a study by Christensen et al. showed that the receptor CUBN, co-expressed with 

megalin, binds to six different AGA (gentamicin, tobramycin, streptomycin, neomycin, 

kanamycin, and netilmicin) with Kd values ranging from 1.3-3.4 mM.79 The role of CUBN and 

megalin in the inner ear is unknown, but it is hypothesized to help with fluid homeostasis. CUBN 

could also contributing to the ototoxic side effect commonly seen in ~50% of AGA receiving 

patients (explored further in Chapter 5).147–149 

 

1.6.1 Aminoglycosides Antibiotics 

 Aminoglycosides antibiotics (AGA) are a class of antibiotics that target the 30s ribosome 

in bacteria.149 AGAs are isolated from Streptomyces or Micromonospora bacteria and have the 

suffix ‘micin’ or ‘mycin’. Their structures are similar in nature with connected rings (2 or 3) with 
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variable side chains. AGA’s possesses broad spectrum of antibacterial activity including bacteria 

that are gram-negative and gram-positive.150 AGAs were first discovered in 1944, and first put 

into use, are still widely used today, particularly in the treatment of life-threating infections, such 

as sepsis, methicillin-resistant Staphylococcus aureus (MRSA) infection or meningitis.149–151 

However, AGA are not usually a first line drug, primarily due to their renal- and oto-toxicity 

which can occur in ~50% of all patients, especially those receiving large or prolonged 

doses.147,148  

 

1.6.2 Kanamycin 

Kanamycin is an AGA that was discovered in 1957 when it was isolated from S. 

kanamyceticus (Figure 8).152 It has a broad antibacterial spectrum and is cheap to manufacture 

(0.85 – 1.52 $/dose in 2014) making it an important medicine throughout the world. This 

importance can be seen in kanamycin being placed on the World Health Organization’s list of 

essential medicines.153 However, due to kanamycin’s severe renal- and oto-toxicity (higher than 

all AGA, except neomycin) it is not a first line treatment.148 Kanamycin is mainly used as a last-

resort to treat very severe bacterial infections and tuberculosis.154 

 

                 

Figure 9. Chemical structure of the AGA kanamycin.  
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1.6 Summary 

 B12-radio probes, while being studied through SPECT have yet to be fully explored 

through PET imaging. Since PET imaging allows for better sensitively, a new B12-radio probe 

with a longer half-life could improve the background/tumor uptake (Chapter 2). Previous studies, 

while using radiochemistry, have exploited the properties of TCII and HC. IF, being found only 

in the gastro-intestinal tract, when systemically administered could allow for the systemic 

targeting of CUBN, IF’s only known receptor (Chapter 3). The exploitation of the B12 dietary 

uptake pathway in drug discovery research has been increasing in the past few years. Promising 

results warranting further investigation of what “cobalaminating” peptides and drugs will 

accomplish. In exploring this area new assays and probes to explore B12 transport proteins, 

receptors and B12-drug pharmacokinetic profiles have proven essential in these efforts (Chapter 

4). AGA, while proven to be essential medicines, are less commonly used due to their nephro- 

and oto-toxicity. CUBN, capable of binding AGA and expressed in the inner ear, could be 

playing a role in AGA toxicity, warranting further investigation (Chapter 5).  
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Chapter 2: A Vitamin B12 Conjugate of Desferrioxamine-89Zirconium as a PET Imaging 

Agent to Detect CD320 Positive Tumors 

The work reported in this chapter resulted in the paper “89Zr-Cobalamin PET Tracer: Synthesis, 

Cellular Uptake, and Use for Tumor Imaging” in ACS Omega in October 2017 with authors 

Jayme L. Workinger, Akhila N. Kuda-Wedagedara, Ebba Nexo, Nerissa T. Viola-Villegas, and 

Robert P. Doyle. 

 

Work in this chapter was performed by the author unless otherwise indicated. Where indicated 

work was performed in collaboration with Dr. Nerissa Viola-Villegas at Wayne State University, 

Detroit, MI. 

                   

In vivo studies using 89Zr-B12 were completed by the author (shown above) while visiting Dr. 

Nerissa Viola-Villages group at Wayne State University (Detroit, MI). 
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2.1 Introduction 

One of the essential nutrients needed for cell homeostasis and proliferative activity is B12 

due to its involvement in DNA synthesis and protein production (for more detail on B12, see 

Chapter 1, Section 1.1.3).1,2 In particular, the CD320 receptor, responsible for B12 (bound to 

TCII, see Chapter 1, Section 1.1.4) entry to proliferating cells, has been shown to be up-regulated 

in cancer cells.3,4 Herein, we explore the feasibility of a 89Zirconium-labeled B12 (89Zr-B12) as a 

new positron emission tomography (PET) tracer. The hypothesis of this work is that a 89Zr-B12 

conjugate will allow for optimal signal-to-noise ratio for tumor imaging through the CD320 

receptor. Previous CD320 targeting studies have primarily used single photon emission 

computed tomography (SPECT) with only one PET tracer reported to date.5–10 Doyle et al. 

reported a 64Cu-B12 PET imaging agent that had tumor uptake of 2.20 - 4.84 %ID/g at 6 h post 

injection (p.i.) in various tumor lines including ovarian, pancreatic, colorectal, and melanoma.5  

Using 89Zr (t1/2 ~ 3.27 d, for more detail on 89Zr see Chapter 1, Section 1.3.1.3) allows for a 

longer visualization window to optimize signal-to-noise ratio in tumor imaging.11,12 Herein, the 

synthesis, characterization, and in vitro, in vivo, and ex vivo analyses of 89Zr-B12 in a breast 

cancer cell line MDA-MB-453 at 4, 24, and 48 h was investigated. 

 

2.2 Design, Synthesis, and Characterization of 89Zr-B12 

 B12-desferrioxamine (B12-DFO) was synthesized by activating the 5’-hydroxyl group on 

the deoxyribose moiety of B12 with 1,1′-carbonyl-di-(1,2,4-triazole) (CDT) (Figure 1).13 Once 

conversion was observed through RP-HPLC, DFO was added and the mixture was allowed to 

stir overnight at room temperature (RT) to yield B12-DFO (35-45%, based on B12 starting 
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material). B12-DFO was purified with RP-HPLC to >95%. LC-MS showed an observed m/z of 

942[M+2H]2+, and 648[M+3H]3+, expected m/z 1942 (Figure 2). 

 

   

Figure 1. The synthesis and radiolabeling of B12-DFO. Reaction conditions: I) CDT (7.2 eq.) 

was added to B12 (1 eq.) in anhydrous DMSO at 40ºC for 2 h, then DFO (7.4 eq.) was added to 

the reaction mixture and allowed to stir overnight at RT, and II) Radiolabeling was achieved by 

incubating 89Zr(C2O4)2 (1 µCi) with B12-DFO (0.004 µmol) for 20 min at pH 7–7.5. 
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Figure 2. Characterization of B12-DFO. A) RP-HPLC: Rt= 9.4 min. Detection at 360 nm. 

Integrated purity is 97%. B) LC-MS showed 942[M+2H]2+ and 648[M+3H]3+, expected m/z 

1942. 

 

2.2.1 Labeling and Stability of 89Zr-B12 

B12-DFO was labeled with 89Zr(C2O4)2 to provide (89Zr-B12) using previously 

established protocols for zirconium-DFO metalation (Figure 1).14 A radiolabeling efficiency of 

>97% was determined by instant thin layer chromatography (iTLC). The specific activity of the 

tracer was determined by titrating 89Zr4+ and B12 at different mole ratios with an optimum 

specific activity of 250 ± 20 mCi/µmol. Figure 3 shows complete metalation of B12-DFO used 

in the experiments herein. 
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Figure 3. iTLC of 89Zr-B12 binding. The peak around 60 mm shows completely labeled B12-

DFO. 

 

Stability of the tracer was analyzed by incubating the 89Zr-B12 in saline and in human 

serum at 37°C and analyzing fractions at 4, 24, and 48 h using iTLC (Figure 4). There was 0% 

unbound 89Zr4+ observed over 48 h; therefore, the 89Zr-Cbl tracer was stable to demetalation 

during 0–48 h period. 

 

   

Figure 4.  89Zr-B12 stability in A) saline and B) human serum at 37°C at 4, 24, and 48 h. 

Analysis shows the 89Zr-B12 tracer was stable to demetallation up to 48 h, using iTLC.  
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2.2.2 Confirmation of Mouse TCII Binding to Zr-B12 

Mouse TCII binding of 91Zr-B12 (non-radioisotope) was confirmed by radiometric chase 

assay (performed in the lab of Dr. Ebba Nexo, Aarhus University, Aarhus, Denmark) using 57Co-

labeled B12 and compared to free B12.15 91Zr-B12 was metalated as above using 91ZrCl4. Mouse 

TCII binding of 91Zr-B12 (1.6 nM) was maintained in comparison from unmodified B12 (1.3 

nM) (Figure 5). 

      

Figure 5. Mouse TCII binding of 91Zr-B12 (metalated with cold 91ZrCl4) and B12. TCII binding 

of 91Zr-B12 (1.6 nM) was maintained in comparison with unmodified B12 (1.3 nM).    

 

2.3 In Vitro Uptake of 89Zr-B12 in MDA-MD-453 Human Breast Cancer Cells 

Initially, in vitro 89Zr-B12 uptake was tested through a modified internalization assay in 

MDA-MD-453 cells (Figure 6). MDA-MD-453 cells are a mammary gland breast cancer 

model.16,17 Results showed increasing uptake over 24 h with the highest uptake a 37ºC  (1 h: 144 

± 20; 4 h: 210 ± 64; and 24 h: 304 ± 25 CPM/105 cells, data is shown as mean and standard 

deviation, n ≥ 3). Incubation at 4ºC shows a significant decrease in uptake at all time points 
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indicating receptor-mediated uptake (1 h: 36 ± 29; 4 h: 30 ± 8; and 24 h: 83 ± 15 CPM). A 

competitive assay with a co-administration of 89Zr-B12 and cold B12 (100 fold excess) showed a 

decrease in 89Zr-B12 uptake at all time points (1 h: 15 ± 6; 4 h: 30 ± 5; and 24 h: 46 ± 4 CPM), 

indicating that 89Zr-B12 internalization is B12 dependent. This data supports that MDA-MD-453 

tumors can be detected via the CD230 receptor and, as such, these cells were utilized in in vivo 

studies.  

 

       

Figure 6. Internalization of 89Zr-B12 (1 µCi, 4 pmol/well) at 1, 4, 24 h time points incubated at 4 

and 37°C in MDA-MB-453 cells. A competition assay was also performed at each time point 

using unlabeled B12 (40 pmol/well). The fraction of 89Zr-Cbl internalized in MDA-MB-453 cells 

is expressed as counts per minute in 105 cells (CPM/105).  

 

2.3.1 CD320 Immunohistochemistry on MDA-MD-453 Human Breast Cancer Cells and Tumors 

Immunohistochemistry (IHC) results showed CD320 was largely expressed on MDA-

MD-453 cells, supporting the hypothesis that 89Zr-B12 uptake in the tumors is CD320 mediated 
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(Figure 7). Sysel et al. reported similar IHC results for breast cancer xenografts and reported 

high expression of CD320 in breast tumor xenografts (mammary adenocarcinoma) compared to 

other tumor types (i.e. intestinal lymphoma and splenic mass cell tumor).4 The CD320 expression 

supports the practicability of using 89Zr-B12 to detect breast cancer tumors in vivo. 

    

Figure 7. IHC staining of MDA-MB-453 tumor sections showing (a) DAPI, (b) CD320-AF488, 

and (c) overlay. 

 

2.4 In Vivo Uptake of 89Zr-B12 in a Nude Athymic Female Murine Model 

2.4.1 PET Imaging of 89Zr-B12 Uptake in Nude Athymic Female Mice 

PET imaging was completed in nude athymic female mice at 4, 24 and 48 h p.i. (200-250 

µCi/mouse via the tail vein) of 89Zr-B12. As shown in Figure 8, there was high kidney uptake, 

relative to all other tissues, at 4 h that persisted over 48 h. Liver uptake was also observed, albeit 

significantly less than observed in the kidneys. The change in tissue uptake at 24 h was not 

apparent using PET imaging alone, however, the high contrast images were promising for tumor 

models as was hypothesized. 
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Figure 8. PET imaging of 89Zr-B12 at 4, 24, and 48 h in nude athymic female mice. 89Zr-B12 

(200-250 µCi/mouse) showed high uptake in the kidneys that did not change over 48 h. All other 

tissues assayed had relatively low uptake (see also Table 1, section 2.4.4). 

 

2.4.2 Biodistribution of 89Zr-B12 Uptake in Nude Athymic Female Mice 

To more closely examine the uptake of 89Zr-B12 ex vivo biodistribution was completed 

on mice 24 h p.i (Figure 9). Uptake in the liver and kidneys for 89Zr-B12 was 19.19 ± 2.18 and 

88.34 ± 4.49 %ID/g, respectively. Other notable uptake was seen in the pancreas with 5.94 ± 

1.22 %ID/g. Notably little uptake was seen in the bone, which is commonly seen with 89Zr 

experiments as the tracer accumulates due to high phosphate content. Lack of bone uptake 

supports that our tracer is stable in vivo.12 The ex vivo results show that, while tracer 

accumulation in the kidney was very high in comparison to other tissues, said tissues were low, 

defined as under 10 %ID/g. Due to the promising uptake in healthy mouse models the 

investigation of 89Zr-B12 as a PET imaging probe for CD320 receptor positive tumors detection 

was therefore warranted (vide infra). 
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Figure 9. Ex vivo tissue distribution of 89Zr-B12 at 24 h in nude athymic female mice at 24 h. 

89Zr-B12 showed high uptake in the kidney (130.26 ± 14.05 %ID/g) and moderate uptake in the 

liver (21.5 ± 3.91 %ID/g). n = 4.  

 

2.4.3 PET Imaging of 89Zr-B12 in Nude Athymic Female Mice Bearing MDA-MD-453 Human 

Breast Tumors. 

To investigate if 89Zr-B12 is a feasible PET imaging agent to detect cancer tumors, mice 

were used bearing MDA-MD-453 tumors. PET imaging of nude athymic female mice bearing 

MDA-MD-453 tumors and on a B12 deplete diet for 21 days prior to 89Zr-B12 administration 

was completed. A B12 deplete diet was used to increase tracer uptake by lowering endogenous 

B12 levels. 89Zr-B12 showed high kidney and moderate liver uptake that appeared to decrease 

over 48 h (Figure 10). Tumor uptake appeared moderately high and the tracer was retained over 

the 48 h. Regions of interest (ROI) of the tumors showed uptake of 1.09 ± 0.15 at 24 h. Cohorts 

that were co-injected with 200-fold excess unlabeled B12 showed significantly less uptake in the 
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tumors (0.2 ± 0.05 %ID/g). It is important to note that mice used were on a B12 deplete diet for 

21 days to increase tracer uptake. This data showed that 89Zr-B12, while having high kidney 

uptake, had clear and high contrast in MDA-MD-453 tumors, demonstrating its feasibility as a 

PET imaging agent to detect cancer tumors.    

 

       

Figure 10. PET images of representative mice bearing MDA-MB-453 tumors imaged with 89Zr-

B12 (1 nmol/mouse) at 4, 24, and 48 h p.i. time points, and co-injected 89Zr-B12 and cold B12 

(~200 nmol/mouse) at 4 and 24 h p.i. time points. Mice were on a B12 deplete diet for 21 days 

pre-injection. The tumor location is indicated by a red circle. 

 

2.4.4 Biodistribution of 89Zr-B12 in Nude Athymic Female Mice Bearing MDA-MD-453 Human 

Breast Cancer Tumors 

Ex vivo tissue analysis showed 5.11 ± 1.33 %ID/g tumor uptake in MDA-MD-453 

tumors at 4 h and persisted over 48 h (24 h: 4.16 ± 1.09; 48 h: 3.78 ± 0.77 %ID/g) (Figure 11 and 

Table 1). Kidney showed the highest uptake of 89Zr-B12 with 94.42 ± 4.27 %ID/g 4 h p.i. (24 h: 
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103.32 ± 11.50; 48 h: 72.74 ± 8.41 %ID/g) and liver showed uptake of 20.15 ± 3.42 %ID/g at 4 h 

p.i. (24 h: 16.75 ± 1.44; 48 h: 17.99 ± 2.54 %ID/g)  To determine if such tumor uptake was B12 

pathway dependent a competitive binding assay using excess cold-B12 was performed. This 

competitive study demonstrated more than a three-fold decrease in tracer uptake in tumors 

(Table 1), compared to unblocked cohorts at 48 h, when 89Zr-B12 was co-administered with 

cold-B12 (0.04 ± 0.01 %ID/g), consistent with B12 dependent uptake. Liver (0.08 ± 0.01 %ID/g) 

and kidney (1.39 ± 0.18 %ID/g) were also significantly decreased with the co-administration 

with cold-B12. Blood clearance of 89Zr-B12 was 83% after 20 h by which time tumor uptake has 

also decreased but by 20%. Importantly, the tumor uptake observed is comparatively higher than 

any other B12-based PET tracers reported thus far.5-10  

                 

Figure 11. Ex vivo tissue distribution of 89Zr-B12 (0.1 nmol/mouse), in nude athymic female 

mice bearing MDA-MD-453 tumors, at 4, 24, and 48 h. A blocking study with 100-fold (20 

nmol/mouse, co-injected with tracer) of unmodified B12 displayed a significant decrease in 
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uptake in all tissues. Mice were on a B12 deplete diet for 21 days pre-injection. Data is shown as 

mean and standard deviation, n = 4.  

 

One of the limitations noted in this study in using 89Zr-B12 was high kidney uptake 

(defined as >50%ID/g), a common problem across all tracers targeting CD320 to date.5-10 This 

kidney uptake is due to the receptor megalin that is highly expressed in the kidneys, which binds 

and reabsorbs to holo-TCII and hence the TCII-89Zr-B12 complex tracer, is likely causing high 

uptake in the kidneys.24 It is hypothesized that the higher kidney uptake and retention, compared 

to previous tracers, is due to a combination of the overall positive charge of the 89Zr-B12 and a 

higher injected concentrations compared to the negatively charged 64Cu-B12, neutral 111In-B12 

complex and the similarly charged 99mTc-B12 complex.5,7,10 It has been shown that cationic 

species can be retained within the kidney for longer periods compared to neutral or anion 

complex’s.18,19 A positively charged 99mTc-B12 complex reported in 2004 showed moderate 

uptake in the kidneys (15 – 50 %ID/g), however, only 0.5 – 1 ng was injected into the mouse 

model.10 The 89Zr-B12 concentration used herein was 177 – 221 ng, which may account for the 

higher kidney retention seen with this tracer.  
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Table 1. Biodistribution of 89Zr-B12 at 4, 24, and 48 h p.i. in MDA-MD-453 mouse models. 

Data is shown as mean and standard deviation, n ≥ 3.  

 

2.4.5 CD320 Immunohistochemistry on Ex Vivo MDA-MD-453 Human Breast Cancer Tumors 

 Ex vivo MDA-MD-453 tumors were analyzed with IHC, results show CD320 was largely 

expressed on MDA-MD-453 tumor slices, supporting the hypothesis that 89Zr-B12 uptake is 

CD320 mediated in the tumors (Figure 12). 

 

     

Figure 12. IHC staining of MDA-MD-453 tumor slices (a) with DAPI and (b) CD320-AF488, 

showing the tumors express CD320. 

Organs 4 h 24 h 48h 48 h-Block 
Blood 5.28 ± 0.62 0.92 ± 0.25 0.39 ± 0.06 0.009 ± 0.003 
Tumor 5.11 ± 1.33 4.16 ± 1.09 3.78 ± 0.77 0.04 ± 0.01 
Heart 4.12 ± 0.22 2.98 ± 0.29 2.34 ± 0.26 0.01 ± 0.002 
Lungs 5.88 ± 1.92 5.23 ± 1.49 3.58 ± 1.08 0.04 ± 0.005 
Liver 20.15 ± 3.42 16.75 ± 1.44 17.99 ± 2.54 0.08 ± 0.01 
Kidney 94.42 ± 4.27 103.32 ± 11.50 72.74 ± 8.41 1.39 ± 0.18 
Stomach 4.47 ± 1.95 3.74 ± 1.74 4.08 ± 0.88 0.06 ± 0.04 
Small Int. 2.95 ± 0.16 2.59 ± 0.71 1.73 ± 0.31 0.03 ± 0.011 
Large Int. 7.89 ± 2.55 3.49 ± 0.50 2.56 ± 0.53 0.10 ± 0.02 
Spleen 5.47 ± 0.81 4.28 ± 0.57 3.35 ± 0.67 0.04 ± 0.009 
Pancreas 5.17 ± 0.43 6.33 ± 1.21 3.24 ± 1.09 0.02 ± 0.001 
Brain 0.33 ± 0.04 0.20 ± 0.05 0.14 ± 0.02 0.001 ± 0.0002 
Bone 3.11 ± 0.77 5.70 ± 2.12 4.28 ± 0.39 0.09 ± 0.018 
Muscle 1.96 ± 0.25 1.12 ± 0.19 2.00 ± 1.71 0.009 ± 0.003 

Reported as %ID/g n ≥3 
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	 60	

 

2.5 Comparing 89Zr-B12 to Previous Radio-B12 Experiments  

Doyle et al. reported 64Cu-labeled B12 with pancreatic, ovarian, mouse melanoma, and 

colorectal tumor models and the highest %ID/g reported was 4.84 ± 0.32 at 6 h p.i. in the 

colorectal tumor model.5 After 24 h, tumor uptake decreased by 23% with 64Cu-B12 in the 

melanoma model while our uptake decreased by 20%.5 The 64Cu-B12 probe also showed high 

kidney uptake (36.15 ± 2.10 %ID/g at 6 h), which persisted after 24 h; whereas kidney retention 

of our tracer is 3 fold higher at all time points. The blood associated activity decreased by almost 

90% after 24 h for the 64Cu-B12 tracer while 89Zr-B12 blood clearance is 83% after 20 h.5 

Compared to the only B12-based PET tracer reported to date, namely 64Cu-B12, the tracer 

described in this report shows a higher %ID/g in tumor uptake, that persisted throughout a 48 h 

period.5,18–20 Using 89Zr as the isotope is therefore overall advantageous as the background 

uptake decreases significantly overtime, suited to the 89Zr half-life. 

 

2.6 Conclusions 

Herein, a 89Zr-labeled B12 tracer was successfully developed and evaluated an as a viable 

tool for visualizing the CD320 receptor mediated pathway in a breast cancer model. 89Zr-B12 

displayed retained tumor uptake up to 48 h p.i. allowing for a longer imaging window and high 

contrast images. Most notably the achieved tumor uptake, to the best of our knowledge and after 

thorough review of previous literature, in our tumor model is comparatively higher than the other 

B12-based tracers reported thus far. 5-10 These studies showed that 89Zr-B12 can be a practical 

PET imaging agent in the detection of breast cancer models.  
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Chapter 3: The Use of Systemically Administered Intrinsic Factor in Radio-Imaging 

The work reported in this chapter will be submitted titled “Pre-binding of Vitamin B12 

Conjugates to Gastric Intrinsic Factor is Not Effected by Endogenous B12 levels” by authors 

Jayme L. Workinger, Akhila N. Kuda-Wedagedara, Ebba Nexo, Nerissa T. Viola-Villegas, and 

Robert P. Doyle. 

 

Work in this chapter was performed by the author unless otherwise indicated. Where indicated 

work was performed in collaboration with Dr. Nerissa Viola-Villegas at Wayne State University, 

Detroit, MI. 

 

3.1 Introduction  

The American Cancer Society (ACS) predicts 64,000 new cases of renal (kidney) cancer 

to occur in 2017.1 Stage IV, metastasized renal cancer patients have an 8% 5-year survival rate.2 

As with most cancers, the key for survival is in early detection.3,4 The low 5-year survival rate 

has been attributed to small tumor size, the location of the tumors, and patients showing little or 

no symptoms.3–5 The renal proximal tubule, where CUBN is highly expressed, is the origin of 

90% of all renal cancer.5–7 

The receptor CUBN recognizes multiple ligands, including holo-IF (for more detail see 

Chapter 1, Section 1.2.2).7–10 However, there are limited reports of CUBN being expressed 

(mainly the kidney and small intestine) in tissues and none that suggest it is overexpressed in 

cancer tissues.7,10–15 Targeting CUBN then should produce low background due to CUBN’s 

limited expression.10–15 The hypothesis of this work is that systemically administered gastric 

holo-IF protein bound to a radiolabelled B12 conjugate will allow targeting, with specific uptake 
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and low background, of CUBN. The goals of this chapter are to 1) evaluate the distribution of 

CUBN through systemic administration of a radiolabeled IF-B12 complex, and 2) determine 

mechanism of uptake in primary accumulating organs. 

 

3.2 In vivo Analysis of 99mTc-B12  and IF-99mTc-B12  

 This work was done in collaboration with Dr. John Valliant’s research group at 

McMaster University, Hamilton, ON, Canada.  

 

3.2.1 Synthesis and Characterization of B12-propargylglycine (B12-PG) 

 B12-propargylglycine was synthesized by activating the 5’-hydroxyl group on the 

deoxyribose moiety of B12 with CDT in anhydrous DMSO followed by addition of 1-amine-6-

azidohexane priming it for copper-alkyne-azide ‘click’ (CuAAC) chemistry creating B12-azide-

linker.16 B12-azide-linker was ‘clicked’ to fmoc-propargylglycine (FPG) (0.0492 mmol) with 

Cu(I)/TBTA (0.0216 mmol and 0.043 mmol, respectively) in DMF/H2O (4:1) (v/v) overnight to 

produce B12-FPG, which was subquently deprotected with a 30% piperidine mixture for the 

final compound, B12-PG (Scheme 1).17,18,19 The final yield was 95%, based on B12 starting 

material. CuAAC reactions were attempted with PG without success (data not shown). LC-MS 

analysis showed an observed m/z 1637 [M]+1 and the expected being 1636.  
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Scheme 1. Synthesis of B12-PG. I: B12 was activated with CDT and reacted forward with 1-

amine-6-azidohexane. II: B12-azide-linker ‘clicked’ to FPG with Cu(I)/TBTA in DMF/H2O. III: 

B12-FPG was deprotected with 30% piperidine mixture. Overall yield based on B12 starting 

material was 95%.  

 

             

Figure 1. RP-HPLC and LC-MS of B12-PG. A) HPLC shows > 95%, Rt= 9.9 min and B) LC-

MS: m/z observed m/z 1637 [M]+1, expected m/z 1636. 
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3.2.1.1 Labeling and Stability of 99mTc-B12 and IF-99mTc-B12 

 B12-PG was metalated with 99mTc at equal molar ratios for 30 min 30 min at 40 C and 

pH 7 to yield 99mTc-B12. Figure 2 shows RP-HPLC of 99mTc-B12 and full metalation was 

achieved. 99mTc-B12 was purified and reconstituted for IF binding and biodistribution studies.   

 

Figure 2. Labeling of B12-PG with 99mTc showing full metalation. A) ultraviolet detection at 

360 nm, and B) gamma detection.  

 

 99mTc-B12 was then pre-bound by IF and stability was examined (Figure 3). Gamma and 

ultraviolet detection (360 nm) of IF-99mTc-B12 (1 nM) confirmed that 99mTc-B12 was bound by 

IF within 30 min.20 
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Figure 3. Size exclusion chromatograph of IF-99mTc-B12 (1 nM) confirms IF binding to 99mTc-

B12. A) detection of apo-IF, Rt: 4 min, B) detection of IF-99mTc-B12 through gamma, C) 

detection of IF-99mTc-B12 at 280 nm, D) detection of IF-99mTc-B12 at 360 nm. Column: Zorbax 

GF-250, 4 µm, 4.6 x 250 mm, Elution Buffer: 20 mM sodium phosphate and 300 mM sodium 

chloride at pH 7. 

 

3.2.2 Biodistribution of IF-99mTc-B12 in Male CD-1 Mice 

Initially, 99mTc-B12 was injected into CD-1 mice to establish a B12 control (Figure 4). As 

shown rapid uptake in the kidney (41.96 ± 2.28, 63.21 ± 4.93, and 69.05 ± 3.28 %ID/g at 3, 6, 

and 24 h, respectively) with low uptake in all other tissue was observed, as previously reported 

for B12 radio-probes.21–25 Next, IF-99mTc-B12 was injected in male CD-1 mice at 500 nM (0.1 

nmol/mouse) at 1, 3, and 6 h (Figure 5). The 500 nM concentration was based on the max 

concentration before IF is known to aggregate.8,26 
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Figure 4. Ex vivo tissue distribution of A) 99mTc-B12 at 1, 3, and 6 h in CD-1 mice. Highest 

uptake observed is within the kidney with low tracer uptake in all other tissues. n = 3  

 

Figure 5 shows IF-99mTc-B12, at 500 nM, has a clear tissue distribution shift from the 

kidney to the liver (kidney: 13.15 ± 1.58, 19.28 ± 3.01, and 28.64 ± 1.67 and liver: 27.46 ± 3.18, 

32.82 ± 6.11, and 30.8 ± 1.55 at 1, 3, and 6 h, respectively). In comparing the data of IF-99mTc-

B12 with 99mTc-B12 it is clear that there is a significant change in the liver and kidney uptake, 

with a 4-fold increase in liver and three-fold decrease in the kidney observed.  

The switch in liver uptake could be due to a) IF being degraded or b) possible receptor 

recognition of IF in the liver. Figure 5 shows that the liver uptake is consistent from 1 – 6 h, 
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suggesting it is not degrading (accumulation would increase over time) and is likely due to 

receptor recognition.  

 

                       

Figure 5. Ex vivo tissue distribution of IF-99mTc-B12 (500 nM) at 1, 3, and 6 h in CD-1 mice. 

Highest uptake is in the kidney and liver. Kidney: 13.15 ± 1.58, 19.28 ± 3.01, and 28.64 ± 1.67 at 

1, 3, and 6 h respectively. Liver: 27.46 ± 3.18, 32.82 ± 6.11, and 30.8 ± 1.55 at 1, 3, and 6 h, 

respectively. n = 3 for each time point. 

 

3.3 In vivo Uptake of IF-64Cu-B12 in Nude Athymic Female Mice 

 This work was done in collaboration with Dr. Nerissa Viola-Villegas research group at 

Wayne State University. 

3.3.1 PET Imaging of IF-64Cu-B12 in Nude Athymic Female Mice 

 Once the shift in liver uptake with IF-99mTc-B12 was observed this work was continued 
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was injected into nude athymic female mice and imaged 1, 3, 16 and 20 h.22 Figure 6 shows IF-

64Cu-B12 uptake at 1 and 20 h p.i. The same increasing trend is seen with liver uptake (seen in 

biodistribution) IF-99mTc-B12 uptake was similar to the PET imaging of IF-64Cu-B12. However, 

the specific activity (60 mCi/µmol) for 64Cu-B12 was not feasible for continued use and 

therefore only two mice were imaged. This low activity was suspected to be due to isotopic 

decay of 64Cu to Ni during isotope delivery, as three half-lives (half-life being 12.7 h) passed 

once activity was required.27 

 

Figure 6. PET imaging of IF-64Cu-B12 (~200 µCi/mouse) at 1 and 20 h p.i. High uptake in the 

liver and kidney is observed with little uptake in all other tissues. 

 

3.3.2 Biodistribution of IF-64Cu-B12 in Nude Athymic Female Mice 

 After the PET imaging was completed the two mice were sacked and ex vivo tissue 

distribution of IF-64Cu-B12 at 24 h was completed (Figure 7). Biodistribution shows the same 

high liver and kidney trend (24.31 ± 12.31 and 51.31 ± 2.46 %ID/g, respectively). Spleen uptake 

is also high (5.55 ± 3.98 %ID/g) compared to all other tissues but was not seen using 99mTc. It is 
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important to note that comparing uptake between difference radio-tracers and even experiments 

is difficult as amounts, concentrations, activity, and strain of mouse vary. In comparing the 

different data the trends are primarily the focus and not exact numbers. The trends seen herein 

show IF administration is reproducible.  

      

Figure 7. Ex vivo tissue distribution of IF-64Cu-B12 at 24 h in nude athymic female mice. n = 2. 

 

3.4 In vivo Uptake of IF-89Zr-B12 in Nude Athymic Female Mice 

This work was done in collaboration with Dr. Nerissa Viola-Villegas research group at 

Wayne State University. 

 

Using IF-64Cu-B12 and IF-99mTc-B12 showed a rapid and significant uptake in the liver 

and to a lesser degree the kidneys. It was decided, due to the low specific activity with IF-64Cu-

B12, a new radio-isotope, 89Zr, would be used. IF-89Zr-B12 was used to fully explore IF uptake 
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in a mouse model through PET and biodistribution  (for more detail on 89Zr-B12 see Chapter 2, 

Section 2.2). 

 

3.4.1 Human Gastric IF Binding to 91Zr-B12 

 To confirm that 89Zr-B12 will bind to IF a radiometric chase assay, using 57Co-B12, was 

completed with a cold tracer (91Zr-B12) and compared to free B12, as cyanocobalamin (CN-

B12).28 91Zr-B12 was made using B12-DFO and chelated to 91ZrCl4 at pH 7-7.5. Human gastric 

IF binding of Zr-B12 (1.57 nM) was maintained and was similar to free B12 (1.36 nM) (Figure 

8). 

  

   

Figure 8. Binding Affinities of Zr-B12 and B12 to human gastric IF with a Kd: 1.57 nM and 1.36 

nM, respectively. 
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3.4.2 PET Imaging of IF-89Zr-B12 in Nude Athymic Female Mice on B12 Replete Chow 

 Initially, PET imaging was completed in nude athymic female mice on B12 replete chow 

(has B12 within) at 1, 6 and 24 h p.i. (200-250 µCi/mouse via the tail vein) of IF-89Zr-B12. As 

shown in Figure 9 there was significant liver uptake at 1 h, which did not change over the 

subsequent 24 h. Overall, the highest uptake was observed in the liver, compared to the control 

(89Zr-B12 alone), which showed primary uptake in the kidneys. The change in tissue uptake from 

1 to 24 h was not apparent using PET imaging alone and hence biodistribution studies were 

conducted. 

      

Figure 9. PET imaging of IF-89Zr-B12 and 89Zr-B12 at 1 and 24 h in nude athymic mice on a 

B12 replete diet. In comparison to the control (89Zr-B12) IF-89Zr-B12 showed rapid and 

significant uptake in the liver, which did not change over 24 h.  

 

3.4.3 Biodistribution of IF-89Zr-B12 in Nude Athymic Female Mice on Normal Chow 

 To more closely examine the uptake of IF-89Zr-B12 ex vivo biodistribution was 

completed on mice 24 h p.i. Figure 10 (see Table 1, Section 3.4.4) shows the biodistribution for 
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IF-89Zr-B12 and the control 89Zr-B12. For IF-89Zr-B12 the highest uptake was seen in the liver 

and kidneys with 18.46 ± 1.90 and 17.01 ± 5.36 %ID/g (s.d), respectively. In comparison, the 

uptake in the liver and kidneys for 89Zr-B12 was 13.45 ± 2.24 and 81.51 ± 8.67 %ID/g (s.d), 

respectively. Other notable uptake for IF-89Zr-B12 was seen in the spleen and bone (6.53 ± 0.39 

and 3.53 ± 1.91 %ID/g (s.d)) with similar uptake in the control (89Zr-B12). Uptake in all other 

tissues was significantly decreased compared to 89Zr-B12.  

 A similar trend emerges from using all three radio-tracers (99mTc, 64Cu, and 89Zr) that pre-

binding a radiolabeled B12 conjugate to IF causes a clear shift in uptake with a decrease in 

kidney and an increase in the liver. It can be noted that we do not see the 3-fold increase in liver 

uptake as observed before but the significant decrease, 4-fold, in the kidney uptake was similar. 

The overall decrease in uptake across all other tissues points to IF-89Zr-B12 not being recognized 

through the endogenous B12 CD320 receptor that internalizes 89Zr-B12. Bone uptake is 

commonly seen with 89Zr as the tracer due to the high phosphate content.29 The spleen (which 

has been shown to be CUBN negative)30 uptake could possibly indicate an immune response to 

IF, which warrants further investigation (see Chapter 5, Section 5.4).  
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Figure 10. Ex vivo tissue distribution of IF-89Zr-B12 and 89Zr-B12 at 24 h in nude athymic 

female mice on a B12 replete diet. In compared to the control (89Zr-B12) IF-89Zr-B12 showed 

high uptake in the liver and a decrease in uptake in the kidney. Data is shown as mean and 

standard deviation, n ≥ 3. 

 

While these initial observations with IF showed promise, the investigation using mice on 

a B12 deplete diet warranted further investigation. All B12 based radio-tracers that have been 

reported to date have used rodent models on a B12 deficient (deplete) diet.21,22,24 A report on 

using mice on a normal diet was not found. 

 

3.4.4 PET Imaging of IF-89Zr-B12 in Nude Athymic Female Mice on B12 Deficient Chow  

 To more closely examine the effects of a B12 diet IF-89Zr-B12 or 89Zr-B12 was injected 

into nude athymic female mice on a B12 deplete diet for 21 days and PET imaging was 

completed on mice 24 h p.i. Figure 11 shows PET imaging of IF-89Zr-B12 and the control 89Zr-
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B12. For IF-89Zr-B12 the highest uptake was seen in the liver and kidneys and was not 

significantly different than mice on normal diets. However, with 89Zr-B12 a change was 

observed with higher uptake in the liver.  

            

Figure 11. PET imaging of IF-89Zr-B12 and 89Zr-B12  at 24 h in nude athymic female mice on a 

B12 deplete diet for 21 days. IF-89Zr-B12 in mice on normal chow (Figure 9) showed similar 

uptake at 24 h. A higher uptake in the liver was observed for 89Zr-B12 than in mice on a replete 

diet. 

 

3.4.5 Biodistribution of IF-89Zr-B12 in Nude Athymic Female Mice on B12 Deficient Chow 

 To more closely examine the uptake of IF-89Zr-B12 in mice on a B12 deplete diet ex vivo 

biodistribution was completed 24 h p.i. Figure 12 (see Table 1 in Section 3.4.4) shows the 

biodistribution for IF-89Zr-B12 and the control 89Zr-B12. For IF-89Zr-B12 the highest uptake was 

seen in the liver and kidneys with 58.21 ± 8.71 and 61.04 ± 1.69 %ID/g, respectively. In 

comparison the uptake in the liver and kidneys for 89Zr-B12 was 19.19 ± 2.18 and 88.34 ± 4.49 
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%ID/g, respectively. Other notable uptake for IF-89Zr-B12 was seen in the spleen and bone 

(16.90 ± 3.10 and 4.47 ± 1.26 %ID/g (s.d.), respectively). Uptake in all other tissues was 

significantly decreased compared to 89Zr-B12. 

 

               

Figure 12. Ex vivo tissue distribution of IF-89Zr-B12 and 89Zr-B12 at 24 h in nude athymic 

female mice on a B12 deplete diet for 21 days. Comparison to the control (89Zr-B12) IF-89Zr-B12 

showa high uptake in liver and decrease uptake in the kidney. Data is shown as mean and 

standard deviation, n ≥ 3. 

 

 In reviewing the data, there appeared to be a notable effect on uptake of IF-89Zr-B12 

when using mice on a B12 deplete (Figure 13 and Table 1). The overall trend observed was a 

decrease in uptake in most tissues (except liver, spleen, and bone) in comparison to 89Zr-B12.  
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Figure 13. Comparing the effects of mice on a B12 deplete and replete diet 24 h p.i of IF-89Zr-

B12. A 3-fold increase in uptake is seen in both the liver, kidney, and spleen in deplete mice.  

   

Organs 89Zr-B12 
Replete 

IF-89Zr-B12 
Replete 

89Zr-B12 
Deplete 

IF-89Zr-B12 
Deplete 

Blood 1.60 ± 0.29 0.30 ± 0.10 1.13 ± 0.24 0.77 ± 0.01 
Heart 2.6 ± 0.30 1.04 ± 0.04 2.48 ± 0.24 1.80 ± 0.05 
Lungs 3.42 ± 1.51 0.52 ± 0.40 3.07 ± 0.61 1.62 ± 0.27 
Liver 13.45 ± 2.24 18.46 ± 1.90 19.19 ± 2.18 58.21 ± 8.71 
Kidney 81.51 ± 8.67 17.01 ± 5.36 88.34 ± 4.49 61.04 ± 1.69 
Stomach 2.70 ± 1.61 0.87 ± 0.48 5.46 ± 0.92 1.76 ± 0.75 
Small Int. 1.72 ± 0.23 0.59 ± 0.19 3.39 ± 0.41 1.87 ± 0.17 
Large Int. 1.47 ± 0.25 0.47 ± 0.15 3.85 ± 0.56 2.05 ± 0.44 
Spleen 5.95 ± 4.59 6.53 ± 0.39 4.04 ± 0.38 16.90 ± 3.10 
Pancreas 1.48 ± 0.30 0.77 ± 0.15 5.93 ± 1.22 3.0 ± 0.21 
Brain 0.15 ± 0.04 0.08 ± 0.01 0.25 ± 0.01 0.16 ± 0.02 
Bone 4.34 ± 2.29 3.53 ± 1.91 2.65 ± 1.01 4.47 ± 1.26 
Muscle 0.82 ± 0.24 0.27 ± 0.06 1.74 ± 0.18 0.95 ± 0.29 

Reported as %ID/g n ≥ 3  
Table 1. Biodistribution of 89Zr-B12 and IF-89Zr-B12 on B12 replete and deplete diets. Data 

reported in %ID/g. 
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3.5 Utilizing IF to Step Outside of the B12 Pathway 

3.5.1 IF-89Zr-B12 and 89Zr-B12 Biodistribution in Nude Athymic Female Mice on B12  Deplete 

and Replete Chow 

 Due to the interesting rate in uptake of IF-89Zr-B12 in mice on a B12 replete or deplete 

diet it was decided to re-plot the ex vivo distribution data to account for the experiments 

retention differences (i.e. more activity rather than actual differences) and to hence base the 

uptake on the organ and not grams. By accounting for the amount of activity retained in each 

organ, for each experiment and normalizing to activity, a new trend occurs (Figure 14 and 15 and 

Table 2).  

 In looking at the uptake for 89Zr-B12 we can see a notable change in uptake in the liver, 

kidneys, and blood (liver: 32.18 ± 2.61 vs 36.24 ± 1.88, kidney: 53.58 ± 2.72 vs 48.89 ± 1.01, 

blood: 1.60 ± 1.07 vs 0.19 ± 0.05 %recovered/organ for replete vs deplete, respectively). The 

pancreas also showed a change in uptake (0.49 ± 0.18 vs 1.19 ± 0.15 %recovered/organ for 

replete vs deplete, respectively). 
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Figure 14. Ex vivo tissue distribution of 89Zr-B12 in mice on a deplete or replete diet at 24 h 

plotted as %recovered/organ. Changes in uptake occurred in the liver, kidneys, and blood. Data 

is represented as mean and standard deviation, n ≥ 3.  

 

IF-89Zr-B12 showed the most notable change in tissue uptake in the blood and heart 

(blood: 0.72 ± 0.26 vs 0.10 ± 0.01, heart: 0.51 ± 0.09 vs 0.23 ± 0.04 %recovered/organ for 

replete vs deplete) (Figure 15 and Table 2). The uptake in the liver, kidneys, spleen, and pancreas 

were not significantly different in the two models. Liver uptake: 69.67 ± 7.34 vs 72.22 ± 2.02, 

kidneys: 20.56 ± 5.90 vs 20.61 ± 1.81, spleen: 2.37 ± 0.40 vs 2.07 ± 0.14, and pancreas: 0.43 ± 

0.12 vs 0.39 ± 0.03 %recovered/organ for replete vs deplete.  
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Figure 15. Ex vivo tissue distribution of IF-89Zr-B12 in mice on a B12 deplete or replete diet at 

24 h plotted as %recovered/organ. The significant changes occurred in the blood, stomach, and 

large intestine, while the liver, kidneys, spleen and pancreas stayed the same. Data is represented 

as mean and standard deviation, n ≥ 3. 

 

 In comparing the two graphs with the new units, again the same trends are seen as before. 

The liver is increased and the kidney and all other tissue decreased, compared to 89Zr-B12, in the 

IF experiments. Focusing on the liver and kidney uptake where the most significant changes 

occurred, a trend between the two models (deplete vs replete) is apparent (Figure 16 and Table 

2). When using 89Zr-B12 significant changes in liver and kidney uptake were observed in 

comparing both models (deplete and replete) (p = 0.05) (Figure 18). The opposite trend is seen 

when using IF-89Zr-B12, the liver and kidneys are not affected by the endogenous B12 levels in 

the two models, and is supported by the lack of change in most of the other tissues that are 

commonly affected by depleted B12 levels.22–24 
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Figure 16. Select ex vivo tissue distribution of IF-89Zr-B12 and 89Zr-B12 in mice on a B12 

deplete or replete diet at 24 h plotted as %recovered/organ. The significant changes occurred 

with 89Zr-B12 in the liver and kidney, while they were not significantly changed in the IF-89Zr-

B12. n ≥ 3, *p = 0.05.  

 

These results support the hypothesis that pre-binding B12 conjugates to IF allows for the 

utilization of B12 conjugate chemistry without effecting critical endogenous B12 levels. Interest 

in B12 in drug development has been on the rise in recent years.25,31–36 However, it is important 

to note that while these reports are promising, a concern arises in what prolonged dosing of a 

B12-pharmaceutical conjugate would ultimately do to endogenous B12 levels. In 2012, Nexo et 

al. published points of concern for possible B12 deficiency after long B12 dosing periods.37 

Using IF as a platform technology would allow for the use of these established drugs while 

removing the concern for this deficiency because it would be removed from the natural pathway 
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for B12 uptake (for more detail see Chapter 1, Section 1.1.4). In short, in the blood stream TCII 

carries B12 to all cells expressing the CD320 receptor, where it is then internalized and used 

within the cell (this is what is affecting the 89Zr-B12 uptake), while IF-89Zr-B12 is removed from 

this pathway. 

                

Organs 89Zr-B12 
Replete 

IF-89Zr-B12 
Replete 

89Zr-B12 
Deplete 

IF-89Zr-B12 
Deplete 

Blood 1.60 ± 1.07 0.72 ± 0.26 0.19 ± 0.05 0.106 ± 0.01 
Heart 0.74 ± 0.14 0.51 ± 0.09 0.50 ± 0.05 0.23 ± 0.04 
Lungs 1.09 ± 0.57 0.29 ± 0.19 1.12 ± 0.12 0.32 ± 0.03 
Liver 32.18 ± 2.61 69.67 ± 7.34 36.24 ± 1.88 72.22 ± 2.02 
Kidney 53.58 ± 2.72 20.56 ± 5.90 48.88 ± 1.01 20.61 ± 1.81 
Stomach 2.03 ± 0.61 1.36 ± 0.60 2.51 ± 0.59 0.80 ± 0.09 
Small Int. 3.37 ± 0.35 1.82 ± 1.20 4.55 ± 1.59 1.51 ± 0.28 
Large Int. 3.28 ± 0.61 1.85 ± 0.58 3.41 ± 0.87 1.33 ± 0.08 
Spleen 1.09 ± 0.75 2.37 ± 0.40 0.77 ± 0.10 2.07 ± 0.14 
Pancreas 0.49 ± 0.18 0.43 ± 0.12 1.19 ± 0.15 0.39 ± 0.03 
Brain 0.08 ± 0.03 0.08 ± 0.02 0.09 ± 0.01 0.05 ± 0.01 
Bone 0.16 ± 0.07 0.18 ± 0.10 0.11 ± 0.02 0.18 ± 0.06 
Muscle 0.26 ± 0.06 0.13 ± 0.06 0.37 ± 0.07 0.12 ± 0.03 

Reported as %recovered/organ n ≥ 3 
Table 2. Ex vivo tissue distribution of IF-89Zr-B12 and 89Zr-B12 in mice on a B12 deplete or 

replete diet at 24 h plotted as %recovered/organ. 

 

3.6 Investigating the Role of Glycosylation in the Liver Accumulation Observed When Using 

Human Recombinant IF Expressed in the Plant Arabidopsis thaliana 

 As shown in earlier Section 3.4, using IF-89Zr-B12 in animal models had a surprising 

uptake in the liver that had very rapid (within 1 h) and significant (compared to 89Zr-B12). Yet, 

the questions remained of why this uptake is occurring and what is causing this uptake. The liver 

uptake of IF was most likely due to receptor-mediated uptake. This is supported by the rapid 

nature of this uptake (within 1 h) that did not change overtime (within 24 h). If degradation were 

the cause the uptake would be a gradual accumulation over time.  
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 The IF that has been used in these experiments is recombinant human IF (rhIF) that is 

expressed in the plant Arabidopsis thaliana. This IF is used because of the amount and quality of 

protein needed. The rhIF is a commercial product of pure apo-IF, as opposed to other 

commercial human IF that is not purely apo (data completed in house and not shown). 

Glycoproteins in plants are known to have different endogenous sugars than in animals.38 As IF 

is a highly glycosylated protein, the sugars on this rhIF are likely different than endogenously IF 

in humans. Most importantly, plants are known to have the terminal sugars of either mannose or 

galactose while humans always have terminal sialic acid.38,39 It is hypothesized that the terminal 

sugar on rhIF is being recognized by a receptor in the liver.  The most likely receptors would be 

the asialoglycoprotein receptor (ASGPR) or the mannose receptor (CD205 or CD206), which are 

highly expressed in the liver, and such sugars (i.e. galalactose, mannose, fucose, n-

acetylglucosamine) are found in A. thaliana.38,40–43 The glycosylation profile was determined 

through GC-MS and then uptake in cells expressing either the ASGPR, CD205, and CD206 were 

used to assay IF uptake mediated though specific glycosylation profile.  

 

3.6.1 GC-MS Analyses of the Glycosylation on Recombinant Human IF Expressed in Plants 

The glycosylation of IF was examined by GC-MS (Table 3) by SGS M-Scan Inc. The 

rhIF showed a different glycosylation profile than endogenous human proteins have.38 The 

sugars identified were fucose, xylose, mannose and n-acetylglucosamine with the ratios of 

0.17:0.18:1.0:0.24, respectively. Since galactose was not detected the most likely receptor 

causing the liver internalization of IF is the mannose receptor as the ASGPR does not recognize 

any of the sugars above.40  
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Sugar Peak Area Ave. [nmol] 
Detected 

Ratio 
(Man = 1.0) 

Fucose 8471 11.2 0.17 

Xylose 6156 11.8 0.18 

Mannose 81654 66.7 1.0 

n-acetylglucosamine 4508 16.0 0.24 

 

Table 3. GC-MS analysis of hrIF showing that fucose, xylose, mannose and n-

acetylglycosamine are present.  

 

3.6.2 IF-B12-Cy5 Uptake in Human Liver HEPG2 cells 

 HEPG2 cells were used as a cell model for expressing ASGPR as it is the standard in 

vitro cell model for this receptor.44,45 Uptake of IF in HEPG2 cells were investigated through 

fluorescence and flow cytometry. B12-Cy5 (ex: 645 nm em: 682 nm) (for more detail see 

Chapter 4, Section 4.2) was used as the flurophore and was bound to IF to create the fluorescent 

complex IF-B12-Cy5 (incubated with IF in excess and at 4°C overnight to ensure complete 

binding). IF-B12-Cy5 (100 nM) was incubated at 37°C for 1 h in hanks balanced salt solution 

(HBSS). HBSS was used in these experiments to prevent any leaching of the B12-Cy5 from IF to 

TCII found in complete media.46 Cells were analyzed by flow cytometry. IF-B12-Cy5 uptake in 

HEPG2 cells is shown in Figure 17. IF-B12-Cy5 was not internalized in HEPG2 cells supporting 

the GC-MS results that galactose or n-acetylglucoseamine was not present on IF and ASGPR is 

not the cause of liver uptake.   
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Figure 17. Flow cytometry analyses of HEPG2 cells treated with IF-B12-Cy5 (100 nM) in 

HBSS for 1 h at 37°C. There was no shift in fluorescence with the treated cells compared to non-

treated cells indicating no uptake of the complex. Ex: 640 nm Em: 660/20 nm. P2 defines a 

positive result.  

 

3.6.3 IF-B12-Cy5 Uptake Murine Dendritic JAWII Cells 

 JAWII cells are a murine dendritic cell line derived from bone marrow.47 JAWII are 

known to express the mannose receptor CD205, which is a member of the mannose receptor 

family (for more detail see Chapter 1, Section 1.4.4.1).41 The recognition and uptake of IF-B12-

Cy5 through CD205 was investigated by flow cytometry (Figure 18). IF-B12-Cy5 (100 nM) 

treated cells showed a broadening in fluorescence without a defined shift in compared to the 

untreated cells. A control using B12-Cy5 at equal concentration showed the same broadening 

indicating the shift for IF-B12-Cy5 was not an IF dependent uptake. This lack of uptake could be 

due to CD205 being selectively expressed depending on the age of the cell.48  
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Figure 18. Flow cytometry analyses of JAWII cells treated with IF-B12-Cy5 or B12-Cy5 (100 

nM each) in HBSS for 1 h at 37°C. A broadening in fluorescence was seen using IF-B12-Cy5 

and B12-Cy5 treated cells compared to non-treated cells indicating a non-IF specific 

uptake/association of the complex. Ex: 640 nm Em: 660/20 nm. P2 defines a positive result. 

 

3.6.4 IF-B12-Cy5 Uptake in Murine Macrophage J774A.1 Cells 

J774A.1 cells are a murine macrophage cell line that is known to express the mannose 

receptor CD206 (for more details see Chapter 1, Section 1.4.4.2).49,42 The recognition and uptake 

of IF-B12-Cy5 through CD205 was investigated by flow cytometry (Figure 19). IF-B12-Cy5 

(200 nM) treated cells for 1 h showed a clear shift compared to untreated cells, while B12-Cy5 

treated cells did not show a shift in fluorescence. This indicates that IF-B12-Cy5 is being 

recognized through IF specific recognition and supports the GC-MS sugar profile, since CD206 

will recognize and internalize fucose, mannose, and n-acetylglucosamine.42,43 Literature supports 

the results, with the same shift in fluorescence observed when a fluorescent-monoclonal antibody 

for the CD206 receptor was incubated with J774A.1 cells.50,51 A block of the CD206 receptor 

was completed by pre-incubating the cells with mannan (2 mg/mL) 45 min before and during the 
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incubation with IF-B12-Cy5. A 50% decrease in uptake was observed (Figure 19) with the block 

indicating that the IF-B12-Cy5 uptake in mediated by the CD206 receptor in the J774A.1 cells. 

                                 

Figure 19. Flow cytometry analysis of J774A.1 cells treated with IF-B12-Cy5 (orange), B12-

Cy5 (blue) (200 nM each), and IF-B12-Cy5 with mannan (green) (2 mg/mL administered 45 min 

before and during probe) in HBSS for 1 h at 37°C. Untreated cells are red. A shift in 

fluorescence was seen in the IF-B12-Cy5 uptake indicating IF specific uptake/association of the 

complex and a 50% decrease in uptake during a mannan block indicating the CD206 is 

mediating this uptake. Ex: 640 nm Em: 660/20 nm.  

 

3.7 Conclusions 

 PET imaging and ex vivo tissue distribution had a marked difference of IF-B12 uptake 

compared to the control of B12 only using the radio-tracers 99mTc, 64Cu, and 89Zr. High liver 

uptake and a decrease in kidney uptake with all other tissues markedly lower was a trend seen 

using all three tracers including in two mice models (B12 replete and deplete). The absence of 

affect on IF uptake by endogenous B12 levels indicates that IF can allow for the use of B12 

conjugate chemistry (i.e. B12 drug conjugates) while stepping out of the B12 pathway. This 
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would diminish the concern of developing B12 deficiency in subjects being dosed with B12.37 

The liver uptake seen in the PET imaging and biodistribution was determined to be due to the 

terminal sugar on the IF, which was recognized by the CD206 receptor that is highly expressed 

in the liver.42,43 Still, further exploration into IF-89Zr-B12 detecting cubilin positive tumors 

needs to be accomplished (Chapter 7, Section 1.1).52 
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Chapter 4: Development and Validation of B12-Based Fluorescent Probes for B12 

Dependent Receptor Function 

This data was submitted as part of a paper titled “A Vitamin B12 conjugate of Exendin-4 

Produces Hypoglycemia Without Associated Hypophagia or Nausea in Male Rats” with 

coauthors: Elizabeth G. Mietlicki-Baase, Claudia G. Liberini, Jayme L. Workinger, Ron L. 

Bonaccorso, David J. Reiner, Kieran Koch-Laskowski, Lauren E. McGrath, Rinzin Lhamo, 

Lauren M. Stein, Bart C. De Jonghe, George G. Holz, Christian L. Roth, Matthew R. Hayes* and 

Robert P. Doyle*. In revision (June 2017) for ‘Diabetes, Obesity, and Metabolism’ 

Work in this chapter was completed by the author unless stipulated. Where indicated work was 

performed in collaboration with Prof. Matthew Hayes, Department of Psychiatry, University of 

Pennsylvania, Philadelphia, PA.  

4.1 Introduction  

 The B12 dietary uptake pathway is complex with multiple transport proteins and 

associated receptors (see Chapter 1, Section 1.1.4). Despite its complexity, and in large part 

because of it, the B12 pathway has become increasingly popular in drug delivery.1–9 Probes to 

explore B12 transport proteins, receptors and B12-drug pharmacokinetic profiles have proven 

essential in these efforts. Herein, the design, synthesis and characterization of B12-based 

fluorescent probes are discussed and validated for biological function. 
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Part I: Use of a New Fluorescent Vitamin B12 (B12-Cy5) Probe in the Screening of FHs 74 

Int. Cells for Cubilin and Megalin 

4.2. Design, Synthesis, and Characterization of B12-Cy5 

 B12-cyanine5 (B12-Cy5) was synthesized by activating the ribose 5’-hydroxyl group 

with N3, priming it for ‘Click’ chemistry (Figure 1).10–12 This was done as previously reported by 

first activating B12 with mesyl chloride in n-methyl-2-pyrrolidone (NMP) and diisopropylamine 

(DIPA) for 1 h at RT, producing B12-MsCl (yield 65%).10 Once B12-MsCl was purified it was 

reacted forward with NaN3 in hexamethylphosphoramide (HMPA) overnight at RT, creating 

B12-N3 (yield: 52%).10 

        

 

Figure 1. Synthesis of B12-Cy5. B12 was activated by replacing the terminal ribobse 5’OH with 

an azide for ‘Click’ chemistry as previously reported. I: B12 was dissolved in NMP. A solution 

of MSCl in NMP and DIPEA were added in separately, at the same time, in three intervals 1 h 

apart then stirred for 1 hour at RT. II: B12-MsCl was dissolved in HMPA and NaN3 was added 

and stirred overnight at 40°C. III: Huisgen/Sharpless CuAAC chemistry was implemented using 
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Sulfo-Cy5 Alkyne and Cu(I)/TBTA in DMF/H2O (4:1) overnight. Final yield: 98%, based on 

B12 starting material.  

 

 Purified B12-N3 was then reacted with cyanine5 alkyne (purchased commercially) with 

Cu(1)/TBTA (1 mg, 0.005 mmol and 3.5 mg, 0.006 mmol, respectively) in DMF/H2O (4:1 ratio, 

respectively) overnight at RT to yield B12-Cy5 (yield 90%).10–12 B12-Cy5 purified on a RP-

HPLC and characterized by LC-MS and fluorescence (Figure 2 and 3).  LC-MS showed 688 

[M+3H]+3, 2031 [M+2H]+2 with the expected m/z of 2059. Fluorescence analysis showed an 

emission and excitation of 645 and 682 nm. This indicated that the Cy5 molecule was not 

quenched by B12 conjugation, which has been observed in previous B12-fluorophores.13–15 

 

         

Figure 2. Excitation and Emission for B12-Cy5. The excitation and emission are similar to Cy5 

without conjugation (646 and 662 nm, respectfully) indicating B12-Cy5 was made and B12 did 

not quench Cy5 fluorescence.15 Excitation in green and emission in red. Solvent: H2O, 

excitation: 645 nm, emission: 682 nm.  
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Figure 3. A) RP-HPLC of purified B12-Cy5. Rt: 8.41 min. Purity: 99%. Detection at 371 and 

640 nm. B) LC-MS Analysis of B12-Cy5 showing the compound was made. Expected m/z = 

2059, observed m/z = 688 [M+3H]+3, 2031 [M+2H]+2, 695 [M+Na]+3, 700 [M+K]+3, 1042 

[M+Na]+2.  

 

4.2.1 IF-B12-Cy5 Uptake in the Cubilin Positive control cell line BN16  

 Binding B12-Cy5 with IF allows for a fluorescent IF complex to investigate the 

expression of CUBN in vitro. To validate IF-B12-Cy5 as a viable probe for CUBN expression, 

uptake in BN16 (brown Norway rat yolk sac cells) cells were investigated. BN16 cells were used 

because they are the gold standard for CUBN and megalin expression in vitro.16–19  

 BN16 cells were incubated with IF-B12-Cy5 in HBSS for 1h at 100 nM. IF was 

incubated overnight with B12-Cy5 with IF in excess (ratio 0.8:1, respectively). Figure 4 shows 

IF-B12-Cy5 and B12-Cy5 uptake in BN16 cells at 37°C and 4°C. IF-B12-Cy5 incubated at 100 
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nM for 1 h at 37°C shows a three-log order increase in fluorescence. When B12-Cy5 is incubated 

at the same conditions no shift is observed. IF-B12-Cy5 incubated at 100 nM for 1 h at 4°C 

shows a decrease (two-log order) in fluorescence compared to cells treated with IF-B12-Cy5 at 

37°C. This uptake shows 1) uptake is IF mediated and 2) receptor mediated, namely CUBN 

dependent.  

 

          

Figure 4. Flow cytometry analyses of BN16 cells treated with IF-B12-Cy5 (100 nM) in HBSS 

for 1 h at 37°C. A three-log shift in fluorescence was seen using IF-B12-Cy5 treated cells 

compared to non-treated cells indicating an IF specific uptake/association of the complex, 

namely CUBN. The decrease in uptake at 4°C supports a receptor mediated mechanism. Ex: 640 

nm Em: 660/20 nm. P2 defines a positive result. 
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4.2.2 IF-B12-Cy5 Uptake in the Cubilin Negative control cell line CHO-K1  

 Since a positive control for CUBN uptake was established, a negative control cell line 

was also investigated.20 Uptake of IF-B12-Cy5 in the CHO-K1 cell line, known not to express 

CUBN or megalin, was investigated. 

 

       

Figure 5. Flow cytometry analyses of CHO-K1 cells treated with IF-B12-Cy5 or B12-Cy5 (100 

nM) in HBSS for 1 h at 37°C. A no fluorescence change was seen in IF-B12-Cy5 or B12-Cy5 

treated cells compared to non-treated cells indicating a IF was not internalized. Ex: 640 nm Em: 

660/20 nm. P2 defines a positive result. 

 

 IF-B12-Cy5 and B12-Cy5 was not internalized by CHO-K1 cells when incubated at 100 

nM for 1 h at 37°C (Figure 5). The lack in fluorescent shift in the CHO-K1 negative cell line 

along with the uptake seen in BN16 cells validated IF-B12-Cy5 as a valid probe for CUBN 

expression in vitro.  
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4.3 Using B12-Cy5 to Explore the Expression of Cubilin and Megalin in Human Fetal Intestinal 

Cells (FHs 74 Int.) 

 In 2014 Madsen et al. showed that megalin is not expressed in adult terminal illium and 

is not needed for B12 absorption (in concert with CUBN).21 Interestingly, they also showed that 

a biopsy of fetal ileum (16-20 weeks) had low amount of mRNA CUBN and relatively higher 

amounts of mRNA megalin through reverse transcription-polymerase chain reaction.21 They then 

investigated the mRNA levels in a commercially available fetal small intestinal cell line (3–4 

months) (FHs 74 Int., ATCC#: CCL-241), showing both CUBN and megalin.21 However, they 

did not investigate the expression of said receptors. While mRNA levels correlate to protein 

expression it can be variable and even end in non-functional protein.22,23 The hypothesis of this 

work is that there is both functional CUBN and megalin in human small intestinal cells. Herein, 

expression of functional CUBN and megalin in FHs 74 Int. cells are investigated through flow 

cytometry using IF-B12-Cy5 and TCII-B12-Cy5.  

 

4.3.1 Investigating Cubilin Expression in FHs 74 Int. Cells 

4.3.1.1 Western Blot of Cubilin in FHs 74 Int. Cells 

 FHs 74 Int. cells were investigated for CUBN expression by western blot analysis. FHs 

74 Int., BN16 and CHO-K1 cell lysates were run on a 6% SDS-PAGE gel. The membrane 

fractions of FHs 74 Int. and BN16 cells were included as CUBN is a membrane protein. BN16 

cells show a clear hit for CUBN while CHO-K1 and FHs 74 Int. cells do not hit for the protein 

(Figure 6) after incubation with the primary antibody (Santa Cruz) for 24 h. The lack of CUBN 

hit in FHs 74 Int. cells indicate that either 1) CUBN is not expressed or 2) CUBN is expressed in 

very small amounts below detection limit. 
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Figure 6. Western blot for CUBN. Lane 1: Thermo Fisher Scientific HiMark Pre-Stained HMW 

Protein Standard, Lane 2: CHO-K1 lysate (negative control), Lane 3: BN16 lysate (positive 

control), Lane 4: BN16 (membrane), Lane 5: FHs 74 Int., Lane 6: FHs 74 Int. (membrane). 

 

4.3.1.2 Flow Cytometry Uptake of IF-B12-Cy5 in FHs 74 Int. Cells 

 To further investigate CUBN expression, flow cytometry was used due to its high 

sensitivity and quantification of uptake.24,25 IF-B12-Cy5 or B12-Cy5 was incubated with FHs 74 

Int. cells for up to 2 h and ranging concentration of 100 nM – 1 µM. Figure 7 shows IF-B12-Cy5 

uptake at 1 µM for 2 h at 37°C. IF-B12-Cy5 showed a half-log order increase in fluorescence and 

B12-Cy5, incubated under the same conditions as IF-B12-Cy5, showed the same half-log order 

increase. Results at lower concentrations did not show a significant shift (Figure 7). This uptake 

of IF-B12-Cy5 indicates that functional CUBN is expressed in a small amount on FHs 74 Int. 

cells.  

 This low expression observed could be due to the environment of the cells and select 

expression, thereof. Precautions were taken to account for this such as repeating these 

   1        2         3         4         5       6 

3	

460 kDa 
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experiments at various passage numbers (low and high) and allowing the cells to grow on the 

plate for 48-72 h to allow for expression but results did not differ from shown.  

 

       

Figure 7. Flow cytometry analysis of FHs 74 Int. cells treated with IF-B12-Cy5 or B12-Cy5 

(100 nM, and 1 µM) in HBSS for 2 h at 37°C. A fluorescence change was seen in IF-B12-Cy5 (1 

µM) treated cells compared to non-treated or IF-B12-Cy5 (100 nM). A fluorescent shift was also 

seen for B12-Cy5 yet different than IF-B12-Cy5. This indicates functional CUBN expression is 

expressed on FHs 74 Int. cells. Ex: 640 nm Em: 660/20 nm. P2 defines a positive result. 

 

4.3.2 Investigating Functional Megalin Expression in FHs 74 Int. Cells 

 Functional megalin was investigated on FHs 74 Int. cells. To do this TCII-B12-Cy5 was 

used, as holo-TCII is a substrate of megalin (for more detail see Chapter 1, Section 1.2.2.3). 

Megalin expression was investigated using western blots and flow cytometry. 

 

4.3.2.1 Western Blot of Megalin in FHs 74 Int. Cells 

 FHs 74 Int. cells were investigated for megalin expression by western blot analysis. FHs 

74 Int., BN16 and CHO-K1 cell lysates were run on a 6% SDS-PAGE gel. BN16 and FHs 74 Int. 

cells show a clear hit for megalin while CHO-K1 cells do not cross-react for the protein after 
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incubation with the primary antibody (anti-megalin) for 24 h (Figure 8). The megalin cross-react 

in FHs 74 Int. cells and the positive control, BN16 cells, (and lack of a cross-react in the negative 

control) supports the idea that megalin is expressed in FHs 74 Int. cells.  

 

Figure 8. Western Blot for Megalin. Lane 1: CHO-K1 cell lysate (negative control), Lane 2: FHs 

74 Int. cell lysate, Lane 3: BioRad Kaleidoscope Protein Markers, Lane 4: BN16 cell lysate 

(positive control) on a PDVF membrane.  

 

4.3.2.2 Flow Cytometry Uptake of TCII-B12-Cy5 in FHs 74 Int. Cells 

 To further look at megalin expression in FHs 74 Int. cells, flow cytometry was used. 

TCII-B12-Cy5 or B12-Cy5 was incubated with FHs 74 Int. cells for up to 2 h and ranging 

concentration of 100 nM – 1 µM. Figure 9 shows TCII-B12-Cy5 uptake at 1 µM for 2 h at 37°C. 

TCII-B12-Cy5 showed over a log order increase in fluorescence, however, the peak was very 

broad ranging over four-log orders. B12-Cy5 treated cells showed a small shift in fluorescence. 

Results at lower concentrations did not show a significant shift (data not shown). This uptake of 

TCII-B12-Cy5, along with the positive western blot, strongly indicates that functional megalin is 

expressed on FHs 74 Int. cells. 

1 2 3 4 

100 kDa 
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Figure 9. Flow cytometry analysis of FHs 74 Int. cells treated with TCII-B12-Cy5 or B12-Cy5 

(1 µM) in HBSS for 1 h at 37°C. A fluorescence shift was seen in TCII-B12-Cy5 treated cells 

compared to non-treated and B12-Cy5 treated cells. This indicates supports functional megalin 

expression is expressed on FHs 74 Int. cells. Ex: 640 nm Em: 660/20 nm. P2 defines a positive 

result. 

 

The question now becomes why is functional megalin and (to a lesser degree) CUBN 

expressed in the fetal small intestine while megalin is not expressed and CUBN is highly 

expressed in the adult small intestine.21,26 Megalin, being a multi-substrate receptor (see Chapter 

1, Section 1.2.2.3), could be playing a role in nutrient uptake from the amniotic fluid during 

gestation as the fetus drinks the fluid.27,28 The fetus is known to urinate during gestation, the 

nutrients would then be re-circulated by megalin back into the fetus.28 This would give the small 

intestine a ‘kidney-like’ function in the fetus without a need for CUBN (i.e. the fetus gets B12 

from the mother). The expression in the small intestine would then change in adults from 

predominantly megalin to CUBN (a reduced substrate binder, see Chapter 1, Section 1.2.2) to 

allow for B12 uptake after birth.26,29 
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Part II: Use of a New Fluorescent B12-Ex4 (B12-Ex4-Cy5) in the Screening of Rat CNS 

Penetrance 

4.4 Introduction 

 In 2017, it was shown that B12-Ex4 promotes improved glycemia in the absence of 

visceral malaise and anorexia in male rats (see Chapter 1, Section 1.5.2 and Appendix A). The 

rat being a unique model to test these effects, as rats display stress-mediated hyperglycemia to 

Ex4 and pronounced anorexia and malaise due to action within the central nervous system 

(CNS).30 In addition, B12-Ex4 (5 µg/kg) had no significant effects on feeding, and did not 

produce the nausea/malaise elicited by Ex4, as measured by conditioned taste avoidance.31,32 The 

hypothesis of this work is that B12-Ex4 does not cause taste avoidance due to limited penitrence 

of the dorsal vagal complex and paraventricular hypothalamic nucleus in the rat CNS. Therefore, 

to evaluate whether this difference is due to altered CNS penetrance, animals received systemic 

injections of either fluorescein-Ex-4 (F-Ex-4), B12-Cy5 or B12-Ex4-Cy5. B12-Ex4-Cy5 was 

designed to investigate B12-Ex4 uptake in the brain using confocal microscopy.  

 

4.4.1 Synthesis and Characterization of B12-Ex4-Cy5 

 B12-Ex4-Cy5 was synthesized by functionalizing B12 through activating the ribose 5’-

hydroxyl group with 2-iodoxybenzoic acid (IBX) as previously reported (yield 15%, based on 

B12 starting material).33 B12 was then reacted with 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC), hydroxybenzotriazole (HObt), and aminobutyne in 

anhydrous DMSO overnight to create B12-AB (yield 80%).1,5,8 Purified B12-AB was then 

reacted with azido-Ex-4 to make B12-Ex4 (Figure 10, A) using CuAAC chemistry with 
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Cu(1)/TBTA (1 mg, 0.005 mmol and 3.5 mg, 0.006 mmol, respectively) in DMF/H2O (4:1 ratio, 

respectively) overnight at RT (yield 94%).1,11,12  

   

Figure 10. A) Synthesis of B12-Ex4 as previously reported I: EDC and HObt in anhydrous 

DMSO with aminobutyne, overnight at RT, and II: Cu/TBTA in DMF and H2O, overnight and 

B) Synthesis of B12-Ex4-Cy5, I: Purified B12-Ex4 was reacted with sulfo-cyanine5-NHS-ester 

in PBS pH 7.6. Predicted conjugation site is the N-terminus and the lysine 27 (lysine 12 was 

modified to have an azido group for click chemistry), yield: 94%. 

 

 B12-Ex4 (0.5 mg, 0.0001mmol) was dissolved in PBS buffer pH 7.6 and then sulfo-

cyanine5-NHS-ester (1 mg, 0.001mmol) was added to find a volume of 0.5 mL.34 The resulting 
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solution was allowed to mix for 2h at room temperature, protected from light, and then purified 

through RP-HPLC (Figure 11, A). LC-MS analysis (Figure 11, B) showed the indication of B12-

Ex4-Cy5 with 1 and 2 Cy5 molecules with an expected m/z of 6284 (M1; B12-Ex4+Cy5) or 

6923 (M2; B12-Ex4+2xCy5). It is believed that there is loss of a Cy5 during ionization, which is 

why both mono-Cy5 and bi-Cy5 products are observed.  

 

       

Figure 11. A) RP-HPLC of B12-Ex4-Cy5 showing purity ≥ 91%. It is suspected that some of the 

compound is degrading on the column. Rt: 12.1 min. Detection at 371 and 640 nm. B) LC-MS 

Analysis of B12-Ex4-Cy5. ESMS Expected m/z = 6284 (M1; B12-Ex4+Cy5) and 6923 (M2; 

B12-Ex4+2xCy5), observed m/z = 1258 [M1+5H]+5, 1572 [M1+4H]+4, 1383 [M2+5H]+5, 1728 

[M2+4H]+4.   
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Fluorescent and UV analysis showed an excitation and emission profile of 648 and 670 

nm, respectively (Figure 12). This indicated that B12-Ex4 conjugation had no effect on the 

emission/excitation profile of Cy5.  

 

           

Figure 12. Excitation and Emission for B12-Ex4-Cy5. Excitation in green and emission in red. 

Solvent: H2O, excitation: 648 nm, emission: 670 nm. 

 

4.4.2 Agonism of B12-Ex4-Cy5 at the GLP-1R using H188 FRET Reporter Assay   

 Once B12-Ex4-Cy5 was synthesized and characterized the agonism at the GLP-1R, Ex-

4’s endogenous receptor, was determined to confirm functionality (for more detail see Chapter 1, 

Section 1.5).1,35,36 A H188 FRET assay that reports the cAMP binding to an EPAC (exchange 

protein directly activated by cAMP) that increases the FRET ratio.37,38 Figure 13 shows the EC50 

of B12-Ex4-Cy5 to be 13 nM. 

 There was a decrease in GLP-1R agonism with B12-Ex4-Cy5 compared to B12-Ex4 (68 

pM), reported previously.1 This decrease was expected as two Cy5 molecules were added to Ex4 

directly, one being on a lysine in the middle of the protein. This conjugation would no doubt 

cause possible interference in receptor recognition or a shift in the protein structure causing it to 
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be less potent. However, the conjugate was still active at low nM range and was used in in vivo 

experiments. 

                

Figure 13. B12-Ex4-Cy5 Agonism at the GLP-1R. Cells were infected with the H188 FRET 

cAMP reporter. Agonism shows the fluorescent compound retains function at the GLP-1R. 

Points are in triplicate. EC50: 13 nM. Full sigmoidal curve could not be obtained due to the 

solubility of the conjugate.  

   

4.4.3 Sprague Dawley Rat Brain Uptake of B12-Cy5 and B12-Ex4-Cy5 

Confocal microscopy was completed in collaboration with Dr. Matt Hayes group at 

University of Pennsylvania. 

 Previous work has shown that Ex4 crosses the blood-brain barrier to exert effects on 

energy balance and nausea.32,39,40 B12-Ex4 dosing produces the glycemic benefits associated 

with Ex4 without producing the brain mediated effects of hypophagia and nausea. Thus, it is 

hypothesized that B12-Ex4 is not penetrating the central nervous system (CNS) and therefore not 

causing nausea and weight loss. The investigation of B12-Ex4 penetrating the brain was 
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completed in Sprague Dawley Rats treated with F-Ex-4 (previously made fluorescent Ex-4) 

(Figure 14), B12-Cy5 (Figure 15), and B12-Ex4-Cy5 (Figure 16) and evaluated using confocal 

microscopy.41 

 

     

Figure 14. Systemically-delivered fluorescently labeled Ex-4 (F-Ex-4) highly penetrates within 

the DVC and the PVN. A) DVC uptake of F-Ex-4, B) Inset of A, C) PVN uptake of F-Ex-4, D) 

Inset of C. Ex4 (yellow), astrocytes (GFAP; green) and neurons (NeuN; red). Sections were 

counterstained using DAPI (blue) to visualize cell nuclei. AP, area postrema; CC, central canal; 

DVC, dorsal vagal complex; NTS, nucleus tractus solitaries; 3V, third ventricle; PVN 
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paraventricular hypothalamic nucleus. Images were acquired at 10-20x (A,C) or 63x (with 2-3x 

optical zoom) (B,D) magnifications. 

 

F-Ex-4 has been shown to penetrate the brain and Figure 14 confirms that uptake.41 The 

yellow (F-Ex-4) shows that Ex4 is in the dorsal vagal complex (DVC) and paraventricular 

hypothalamic nucleus (PVN). The DVC and PVN were highlighted due to the known 

significance of these areas in mediating the feeding effects of GLP-1R activation.42,43 The green 

is astrocyte staining (GFAP) and the red is neuron staining (NeuN) with a counterstain of DAPI 

(blue) to visualize cell nuclei. B12-Cy5 and B12-Ex4-Cy5 injected into rats show a lack of B12 

and B12-Ex4 in the brain, specifically the DVC and PVN (Figure 15 and 16).  

This lack of penetrance of B12-Cy5 and B12-Ex4-Cy5 suggests that injected B12, and 

therefore B12-Ex4, does not readily penetrate into the CNS.44 This also supports the hypothesis 

that B12 conjugation to Ex4 dramatically reduces, or prevents, Ex4 from entering the DVC and 

PVN and therefore does not cause nausea typically seen after Ex4 treatment.  
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Figure 15. Systemically-delivered fluorescently labeled B12-Cy5 does not penetrate the DVC or 

the PVN. A) DVC uptake of B12-Cy5, B) Inset of A, C) PVN uptake of B12-Cy5, D) Inset of C. 

B12-Cy5 (yellow), astrocytes (GFAP; green) and neurons (NeuN; red). Sections were 

counterstained using DAPI (blue) to visualize cell nuclei. AP, area postrema; CC, central canal; 

DVC, dorsal vagal complex; NTS, nucleus tractus solitaries; 3V, third ventricle; PVN 

paraventricular hypothalamic nucleus. Images were acquired at 10-20x (A,C) or 63x (with 2-3x 

optical zoom) (B,D) magnifications. 
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Figure 16. Systemically-delivered fluorescently labeled B12-Ex4-Cy5 does not penetrate the 

DVC or the PVN. A) DVC uptake of B12-Ex4-Cy5, B) Inset of A, C) PVN uptake of B12-Ex4-

Cy5, D) Inset of C. B12-Cy5 (yellow), astrocytes (GFAP; green) and neurons (NeuN; red). 

Sections were counterstained using DAPI (blue) to visualize cell nuclei. AP, area postrema; CC, 

central canal; DVC, dorsal vagal complex; NTS, nucleus tractus solitaries; 3V, third ventricle; 

PVN paraventricular hypothalamic nucleus. Images were acquired at 10-20x (A,C) or 63x (with 

2-3x optical zoom) (B,D) magnifications. 
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4.5. Conclusions  

 The B12-fluorophores, B12-Cy5 and B12-Ex4-Cy5, were designed, synthesized and 

characterized. In Part I, B12-Cy5 was used to create fluorescent IF and TCII to investigate the 

functional expression of CUBN and megalin in FHs 74 Int. cells. IF-B12-Cy5 showed that 

CUBN is likely expressed minimally, while TCII-B12-Cy5 indicated that megalin expression is 

more prevalent in FHs 74 Int. cells.   

 In Part II, B12-Ex4-Cy5 and B12-Cy5 were used in in vivo studies to investigate B12 and 

B12-Ex4 penetrance into the rat brain, specifically the PVN and DVC. Both B12-Cy5 and B12-

Ex4-Cy5 showed reduced uptake in DVC and PVN, relative to Ex-4, suggesting that B12 

conjugation to Ex-4 prevents it from producing a CNS based response. 
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Chapter 5: Mitigation of Aminoglycoside Toxicity in Pigmented Guinea Pigs Using 

Intrinsic Factor Expressed in Arabidopsis thaliana 

 

Work in this chapter was performed by the author unless otherwise indicated. Where indicated 

the work was performed in collaboration with Stefania Arduini, Au.D. and Dr. Beth Prieve, 

Department of Communication Sciences and Disorders, Syracuse University, Syracuse, NY. 

 

5.1 Introduction  

5.1.1 Mitigating Hearing Loss from Aminoglycosides using Human Gastric Intrinsic Factor 

In 2009, a study by Christensen et al. showed that the receptor CUBN binds to six different 

AGA (gentamicin, tobramycin, streptomycin, neomycin, kanamycin, and netilmicin) (for more 

detail on AGA see Chapter 1, Section 1.6.1) with Kd values ranging from 1.3-3.4 mM.1 CUBN is 

a multi-ligand binding receptor with limited expression (mainly within the kidney and small 

intestine) (for more detail see Chapter 1, Section 1.2.2). Of particular relevance here, CUBN is 

also found within the inner ear co-expressed with megalin.1 The role of CUBN in the inner ear is 

unknown, but it is hypothesized to help with fluid homeostasis.1,2 This work hypothesizes that 

CUBN’s binding of AGA contributes to their ototoxicity and the aim of this work is to inhibit 

CUBN mediated AGA uptake into cells of the inner ear and mitigate associated hearing damage.  

The inhibition of CUBN mediated AGA uptake will be investigated through the 

administration of Intrinsic Factor (IF) with AGA in pigmented guinea pigs (see section 5.2.1 for 

rational).2 IF is a ‘bona fide’ substrate of CUBN and is found only in the gastrointestinal tract 

where it plays a critical role in dietary uptake of B12 (for more detail see Chapter 1, Section 
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1.1.4). CUBN is the only known receptor for holo-IF and has a Kd of 1 pM.3,4 Thus, systemically 

administered holo-IF will target CUBN expressed within the inner ear with high specificity.  

 

5.2 Inducing Hearing Loss in Pigmented Guinea Pigs using Kanamycin  

5.2.1 Pigmented Guinea Pigs 

 Guinea pigs are a common animal model used when doing hearing studies, as their ear 

structure and hearing ranges are similar to humans.5,6,7,8 Pigmented guinea pigs were specifically 

chosen based on reports of kanamycin induced hearing damage.5,6,9  

 

5.2.2 A Discussion on Anesthesia in Pigmented Guinea Pigs 

 Ketamine is a commonly used injectable anesthetic with rodents and small animal models 

(Figure 1, left).10,11 Ketamine is a Schedule III controlled substance in the U.S.A. Ketamine is a 

N-methyl-D-aspartate receptor agonist.12 With most rodents, ketamine alone will cause sufficient 

sedation to handle and examine.10 However, guinea pigs are among the most difficult rodents to 

achieve effective anesthesia due to their highly variable response and post-anesthetic 

complications.13,14 Therefore, a large dose of injectable anesthesia is needed to adequately sedate 

guinea pigs for handling/examinations.15 In our early studies a dose of ketamine at 55 mg/kg was 

used to sedate the guinea pigs, but this alone was not sufficient for the placement of the sub-

dermal needles needed to collect auditory brainstem response’s (ABR) (data not shown).  
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Figure 1. Chemical structures of the anesthetics A) ketamine and B) xylazine. 

 

 After these initial failed attempts at sedating the guinea pigs, a combination anesthetic 

cocktail of ketamine and xylazine was used (Figure 1, right). Xylazine is an alpha-2 agonist that 

inhibits norepinephrine release and blocks its uptake in the locus ceruleus section of the 

brainstem, which causes sedation and muscle relaxation.13,15 This cocktail of ketamine/xylazine 

(55 and 5 mg/kg, respectively, via intraperitoneal injection (IP)) showed appropriate sedation and 

time of sedation for the experiments performed. After experiments that lead to guinea pig death 

due to respiratory failure, atipamezole, was added to the anesthesia regiment. Atipamezole (1 

mg/kg via intramuscular injections (IM)) is an alpha-2 antagonist and reverses the effects of 

xylazine.15  

Thus, a new protocol was designed by this author to enable the safe and effective 

anesthesia for guinea pigs necessary for the studies performed herein. All experiments were 

conducted under permission of the NY Dept. of Health and U.S. Drug Enforcement Agency 

(License # RD0494928). All animal handling and manipulations were conducted in accordance 

with the guidelines set by Syracuse University Animal Care and Use Committee (IACUC) and 

Research Animal Resource Center. 
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5.2.3 Experimental Design 

5.2.3.1 Administering Kanamycin for 23 days 

 Pigmented guinea pigs (n = 4) were injected with kanamycin (250 mg/kg via IP) 

injections for 23 days. Campbell et al. previously reported that this dosage administered via 

subcutaneous (SC) injections induced 60-80 dB hearing loss at 8 kHz.5,9 The administration route 

was changed to IP to keep the route consistent with the injections of IF in later experiments, and 

was necessary  due to IF’s unknown pharmacokinetic profile in guinea pigs. IP injections allow 

for a greater serum uptake of IF and therefore potential effectiveness. Hearing tests were 

performed at 3, 5 and 6 weeks after first injection as per literature.5,9 

 

5.2.4 Auditory Brainstem Response Hearing Tests on Guinea Pigs Using Kanamycin 

5.2.4.1 Auditory Brainstem Response Test 

 An ABR is a neurological test that detects auditory brainstem function in response to 

auditory stimuli.16 ABR is detected with electrodes that can be placed directly on the skin or sub-

dermal needles under the skin. Stimuli from an acoustic transducer in the form of an insert 

earphone or headphone evokes a potential waveform.16 The amplitude (mV) of the signal is 

averaged over multiple scans and charted against time (ms). ABR’s are a common test to 

perform on new-born babies to determine their hearing.17 This experiment herein used ABR to 

determine the hearing of guinea pigs. 

 

5.2.4.2 Auditory Brainstem Response Hearing Baseline for Pigmented Guinea Pigs 

 While there is extensive research on guinea pigs and their hearing it is important to 

establish a baseline hearing for all subjects before any experiment. This is due to different 
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individuals animals having different hearing baselines. Therefore, to properly determine hearing 

loss, comparisons between starting and ending hearing tests for each animal individually is 

empirical. In addition, it was important to establish a typical guinea pig waveform for reference 

to our studies.  

 Figure 2 is an example of baseline hearing in guinea pigs at 8 kHz, 6 kHz, and ‘click’ (in 

descending order). A characteristic waveform profile for guinea pig hearing was established. A 

typical waveform had seven peaks between 20 and 50 ms (Figure 2). Hearing baselines were also 

determined to be between -10 and 0 mV for most guinea pigs.  

           

 

Figure 2. An example of baseline hearing in guinea pigs through ABR. Hearing determined at 8 

kHz, 6 kHz, and ‘click’ (in descending order) for both the left and right ear for guinea pig 1. The 

seven characteristic peaks between 10 and 50 ms are at all frequencies. Baseline hearing was 

determined between -10 and 0 mV for all guinea pigs.  

Left Ear Right Ear 
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5.2.4.3 Kanamycin Induced Hearing Loss in Pigmented Guinea Pigs 

 Hearing loss was determined by examining this characteristic profile of the seven peaks 

and a loss of all peaks, not magnitude, was deemed as hearing loss. Table 1 shows a summary of 

hearing loss with guinea pigs 1-4 after a 23-day administration of kanamycin. Guinea pig 1 died 

before any hearing tests were performed. Guinea pigs 2-4 were tested at 3, 5, and 6 weeks. 

Figure 3 shows an example of baseline hearing compared to hearing at week 6 for guinea pig 4.  

 

GP ID # Drug and Dose Hearing Loss 

1 Kanamycin 250 
mg/kg 23 days 

N/A 

2 Kanamycin 250 
mg/kg 23 days 

No 

3 Kanamycin 250 
mg/kg 23 days 

No 

4 Kanamycin 250 
mg/kg 23 days 

No 

Table 1. Results of the ABR test after kanamycin dosing over 23 days for guinea pigs 1-4. 

ABR’s guinea pigs 2-3 were tested at 3, 5, and 6 weeks. No hearing loss was observed in any 

guinea pigs. 

 

 Analysis of the ABR’s showed interesting results for guinea pigs 2-4. Results showed 

either the same hearing dB as on day 0 or better hearing dB. Thus, no guinea pig was deemed to 

have hearing loss, under our criteria here. However, it is important to note that it was decided to 

base hearing loss on the complete loss of the waveforms as is normal for human hearing analysis. 

The question of whether to actually assign hearing loss to a complete lack of waveform or to 

some of the waveform in the guinea pig studies now comes into play.  
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Unfortunately, there is limited information regarding 1) what a normal waveform for a 

guinea pig looks like and 2) what that waveform should look like to indicate hearing loss. Most 

papers cite hearing loss differences without publishing the ABR waveforms. In this experiment, 

there was an observed loss in part of the waveforms for some of the guinea pigs as well as a 

decrease in intensity for those waveforms when compared to day 0, yet the significance of this is 

unknown. Interestingly however, such differences were not seen in the IF administered guinea 

pigs (see Figure 4).  

 

         

Figure 3. An example of ABR hearing test in guinea pigs administered kanamycin for 23 days. 

ABR results of guinea pigs 4’s left ear. Hearing determined at 8 kHz, 6 kHz, and ‘click’ (in 

descending order) for guinea pig 4 at 0 and 41 days. There was no observable hearing loss. 

 

Day 0  Day 41  
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5.3 Using IF to Mitigate Hearing Loss from Aminoglycoside Toxicity  

5.3.1 Experimental Design 

5.3.1.1 Kanamycin with IF Induced Hearing loss in Pigmented Guinea Pigs 

 Pigmented guinea pigs (n = 4) (5-8) were injected with kanamycin (250 mg/kg via IP) for 

23 days with 6.25 µg of IF injected at 15 min pre-kanamycin and again at 30 min post-

kanamycin. Hearing tests were performed at 3, 5, and 6 weeks. 

 

5.3.2 Auditory Brainstem Response Hearing Tests in Guinea Pigs on Kanamycin and IF for 23 

days  

 Hearings tests were conducted at 3, 5 and 6 weeks after the first injection of kanamycin 

and IF (250 mg/kg/day and 13 µg/day, respectively, via IP). Table 2 shows the results of ABR 

hearing tests for guinea pigs 5-8. Figure 4 shows an example of baseline (day 0) hearing for 

guinea pig 7 compared to hearing at week 4 (day 35).  

 There was no observed hearing loss for guinea pigs 5-8. This lack in hearing loss was a 

targeted outcome but since a positive control could not be established the results are debatable. 

However, it can be noted that the overall waveform for 5-8 was better retained than 1-4, which 

points to IF mitigating AGA toxicity, but cannot be definitively confirmed at this time. The 

inconclusive results are perplexing due to proclaimed literature results. In fact the paper that was 

being followed, Campbell et al. showed a 40 dB shift in hearing after kanamycin injections over 

23 days.5 
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GP ID # Drug and Dose Hearing Loss 

5 Kanamycin 250 mg/kg + 
IF (13 µg/day) 23 days 

No 

6 Kanamycin 250 mg/kg + 
IF (13 µg/day) 23 days 

No 

7 Kanamycin 250 mg/kg + 
IF (13 µg/day) 23 days 

No 

8 Kanamycin 250 mg/kg + 
IF (13 µg/day) 23 days 

No 

Table 2. Results of the ABR test using kanamycin and IF for 23 days for guinea pigs 5-8. 

Hearings tests were conducted at 3, 5 and 6 weeks p.i. using ABR’s. There was no hearing loss 

observed for all guinea pigs. 

 

      

Figure 4. An example of ABR hearing test in guinea pigs administered kanamycin and IF for 23 

days. ABR comparison of guinea pig 7’s left ear between day 0 and week 4 p.i. Hearing 

determined at 8 kHz, 6 kHz, and ‘click’ (in descending order). There was no hearing loss seen. 

 

Day 35  Day 0  
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5.4 Antigenicity of IF expressed in Arabidopsis thaliana in Guinea Pigs 

 The IF used in these experiments is recombinant human IF expressed in A. thaliana (for 

more detail see Chapter 3, Section 3.6). Plant based proteins are well known to be antigenic.18,19 

Since this is the first time IF has been systemically injected, and it was injected over a prolonged 

period time the possibility of antigenicity was investigated.  

 

5.4.1 Effect of IF on Guinea Pig Weight 

 To determine if the IF was causing adverse side effects on guinea pigs their weights were 

monitored for the 23 days and compared to the control models (no IF administered). Figure 5 

shows the weights of the guinea pigs over 23 days. No weight difference was seen in the two 

different cohorts (with or without IF). This indicates that IF is not causing notable side effects on 

the guinea pigs normal behavior.  

 

         

Figure 5. Daily weights of guinea pigs 1-8 during 23 days. Guinea pigs 1-4 had no IF injected 

and 5-8 had IF injected twice daily. *Two injections of 13 µg/day. Weights for each cohort 

increased steadily over time showing no difference in weight in each study. 
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5.4.2 ELISA of Guinea Pig Blood to Detect for IF Antibodies Raised by Guinea Pigs 

 Once experiments were completed on the remaining guinea pigs (2, 3, 6, 12, and 18) was 

sacked and blood samples were collected. Guinea pigs 12 and 18 were from a separate 

experiment using kanamycin and IF for a shorter time (data is not shown). IF antigens in the 

blood samples were determined using a commercial ELISA kit. Figure 6 shows the results of the 

ELISA. Guinea pigs 2, 3, and 12 show no antigens in their blood as expected. Guinea pigs 6 (IF 

injection of 136 µg/day for 23 days) and 18 (0.25 mg once) show a high amount of antigens in 

their blood serum compared to those without IF injected, which indicates that IF causes an 

antigenic response, albeit without appearing to cause harm to the guinea pigs.  

 

      

Figure 6. ELISA IF antigenicity results for 2, 3, 6, 12, and 18. Guinea pigs that had no IF 

injected (2, 3, and 12) show no antigenicity while guinea pigs (6 and 18) showed high indication 

of antigens in their blood.  
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5.5 Summary and Conclusions 

 The results herein, while not confirming IF protection of AGA induced hearing damage, 

produced significant information. 

1. A characteristic waveform profile was shown to have seven peaks for a pigmented guinea 

pig with the lab equipment used.  

2. The standard normal hearing threshold for guinea pigs is around -10 and 0 dB.  

3. A standard and safe aesthesia protocol was developed using a combination cocktail 

(ketamine and xylazine) with the recovery agent (atipamezole).  

4. The prolonged use of IF at short doses does not affect guinea pig development and 

weight gain in comparison to control.  

5. All guinea pigs that had IF injections, whether at large single doses (0.25 mg) or small 

doses over prolonged periods (13 µg/day), showed antigens for IF in their blood serum. 

This result was expected as IF is produced in plants and their glycosylation profile is 

different than in humans triggering an immune response. However, it’s important to note 

that this response was not harmful to the animals.  

 

 In conclusion these experiments allowed a wealth new of information to be obtained 

regarding in vivo guinea pig research. One important observation is that the highest frequency 

observed in these experiments was 8 kHz. AGA are known to effect the higher hearing 

frequencies (12 kHz and higher) more readily.6 Therefore the control experiments could of 

caused hearing damage but it was not seen due to those higher frequencies not being looked at. 

With this said in moving forward the baseline hearing and new anesthesia protocols allow for 
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experiments to be repeated with minimal loss of subjects, observation at higher frequencies will 

be also completed (up to 18 kHz) (see Chapter 7, Section 7.3.2). 
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Chapter 6: Experimental  

6.1 General Materials and Methods 

Laboratory grade solvents and chemicals were purchased from VWR, Sigma Aldrich, and Alfa 

Aesar and used as received. Water was distilled and deionized to 18.2 MΩ using a Barnstead 

Diamond RO Reverse Osmosis machine. Centrifugation for all syntheses was carried out using a 

Sorvall RT machine at a speed of 4000 rpm at 23°C for 5 minutes. Electronic absorption spectra 

were obtained on a Varian Cary 50 Bio spectrophotometer in a 2 mL quartz cuvette between 200 

– 800 nm. Flow cytometry was completed on a Becton Dickinson LSRII Cell Analyzer. 

Fluorescence spectra were obtained on a Agilent Cary Eclipse Fluorescence Spectrophotometer. 

Xeragenx supplied the human intrinsic factor, which was expressed in Arabidopsis thaliana. 

TCII was from R&D Systems. Ex-4 K12-azido were purchased from C.S. Bio Lab (Cambridge, 

MA). Cyanocobalamin (B12), 2-iodoxybenzoic acid (IBX), 2-hydroxypyridine (HYP), dimethyl 

sulfoxide (DMSO), 1-amino-3-butyne, 1,1’-carbonyldi(1,2,4-triazole), trimethylamine (TEA), 

carbodiimide, hydroxybenzotriazole (HOBt), dimethyl formamide (DMF), copper(I) iodine 

(CuI), 1,1’-carbonyl-di-(1,2,4)-triazole (CDT), ZrCl4, n-methyl-2-pyrrolidone (NMP), 

Diisopropylamine (DIPA), mesyl chloride (MsCl), hexamethylphosphoramide (HMPA), sodium 

azide (NaN3), desferoxamine mesylate (DFO), fmoc-propargylglycine (FPG), and piperidine and 

were purchased from Sigma Aldrich. Sulfo-cyanine5-NHS-ester and cyanine5-alkyne were 

purchased from Lumiprobe. p-SCN-Bn-NOTA was purchased from Macrocyclics. Black costar 

plates with a clear bottom were purchased from Thermo Fisher Scientific. 1H NMR was 

preformed on a 400 MHz or 500MHz Bruker spectrometer with the residual solvent peak as an 

internal standard. All mass spectra were preformed on a Bruker autoflex III smartbeam matrix-

assisted laser desorption/ionization time of flight mass spectrometer (MALDI) or a Shimadzu 
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LCMS-8040. Quantification was completed by mass or through a Shimadzu BioSpec-Nano 

spectrophotometer. RP-HPLC was performed using either an Agilent 1200 system or a Shimadzu 

Prominence with an Agilent Eclipse C18 XBD analytical column (5 µm x 4.6mm x 150 mm). 

6.1.1 HPLC Method 

Used for HPLC analysis unless otherwise stipulated. Solvent A: 0.1% TFA water. 

Time (min) %B (MeCN) 

0 1 

15 70 

30 70 

 

6.1.2 Synthesis of B12 Mesylate (B12-MsCl) 

Synthesis was preformed as previously reported.1 In brief, cyanocobalamin (68 mg, 0.050 mmol) 

was dissolved in NMP (0.5 mL). A solution of MSCl (25 mg, 0.21824 mmol) in NMP (135 µL) 

and DIPEA (135 µL) were added in separately, at the same time, in three intervals 1 h apart.  

After addition of the third portion, the reaction was stirred for one hour at room temperature.  

The reaction mixture was then poured into water (50 mL) and washed three times with CH2Cl2. 

The aqueous phase was extracted using a phenol solution (phenol (10 g)/ CH2Cl2 (10 mL)) The 

organic layer was washed three times with water then diluted to 100 mL and back extracted with 

water three times. The aqueous layer was combined and solvent was removed under reduced 

pressure. The residue was dissolved in minimal amount of methanol, precipitated out with cold 

diethyl ether, centrifuged and dried to a red powder. Crude was purified through RP 
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chromatography, as previously reported. The product was collected as a red powder (44.2 mg, 

65% yield, based on B12 starting material). Calculated m/z 1433.0; found: 1433.  

 

6.1.3 Synthesis and Purification of B12-Azide (B12-N3)  

Synthesis was preformed as previously reported.1 B12-MsCl (15 mg, 0.0106mmol) was 

dissolved in HMPA (3 mL) and heated to 40°C.  NaN3 (6.3 mg, 0.0975mmol) was added and the 

reaction mixture was stirred overnight. The reaction mixture was then poured into water (50 mL) 

and washed 3 times with CH2Cl2. The aqueous phase was extracted using a phenol solution 

(phenol (10 g)/ CH2Cl2 (10 mL)) The organic layer was washed 3 times with water then diluted 

to 100 mL and back extracted with water 3 times. The aqueous layer was combined and solvent 

was removed under reduced pressure. The residue was dissolved in minimal amount of 

methanol, precipitated out with cold diethyl ether, centrifuged and dried to as red powder. Crude 

was purified through RP chromatography as previously reported. The product dried down to a 

red powder (7.9 mg, 52% yield, based on B12 starting material). Calculated m/z: 1380.0; found: 

1380. 

 

6.1.4 Synthesis and Purification of B12-Azide-Linker (B12-azide-linker) 

B12 (50 mg, 0.036 mg) was added to 2 mL anhydrous DMSO under Argon atmosphere and was 

heated to 40°C. After B12 was dissolved, 1,1’-carbonyl-di-(1,2,4)-triazole (CDT) (30 mg, 0.184 

mmol) was added to the solution and was allowed to stir for 2 h.2 The reaction was monitored 

using HPLC and after 90% or more conversion 1-amin-6-azidohexane was added (200 µL, 0.184 

mmol) and the reaction was allowed to stir for another 90 min. The reaction was precipitated 
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with diethyl ether, centrifuged and dried to a red powder. Purified on a reverse silica column 

with a 5-15% acetonitrile in 0.1% TFA water. Yield: 86%. Purity and yield was determined by 

RP-HPLC. 

 

6.1.5 Synthesis and purification of B12-azide-linker with Fmoc-propargylglycine (B12-FPG) 

B12-FPG was synthesized through Huisgen/Sharpless ‘Click’ Chemistry.3,4 CuI (4.1 mg, 0.0216 

mmol) was dissolved in DMF and H2O (4:1) (v/v) then tris[(1-benzyl-1H-1,2,3-triazole-4-

yl)methyl]amine (TBTA) (21.8 mg, 0.043 mmol) and was allowed to stir for 30 min at room 

temperature. B12-azide-linker (30 mg, 0.0196mmol) and fmoc-propargylglycine (FPG) (16.5 

mg, 0.0492 mmol) were added sequentially. The reaction was allowed to stir for 24 h at room 

temperature. The reaction was precipitated out with diethyl ether and was purified on a reverse 

phase silica column with 10-25% acetonitrile in 0.1% TFA water. Yield 95%, based on B12 

starting material. Calculated m/z to be 1858.95; found: 1860.0 [M]+1. 1H NMR: (7.76, d, 3H), 

(7.68, s, 1H), (7.60, t, 2H), (7.36, d, 2H), (7.29, d, 2H), (7.19, s, 1H), (7.13, s, 1H), (6.56, s, 1H), 

(6.19, s, 1H), (6.01, s, 1H). 

 

6.1.6 Deprotection of B12-FPG (B12-PG) 

B12-FPG was fully dissolved in DMF and piperidine was added to make the solution a 30% 

piperidine mixture. The solution was then allowed to stir or was shaken for 15-20 min, 

precipitated with diethyl ether, centrifuged and dried in vacuo to a red powder. HPLC and NMR 

confirmed >95% purity. Yield: 100%, based on B12 starting material. Calculated m/z: 1636; 
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found: 1637.0 [M+1]. 1H NMR: (7.73, s, 1H), (7.16, s, 1H), (6.99, s, 1H), (6.40, s, 1H), (6.20, s, 

1H), (5.97, s, 1H).  

 

6.1.7 Synthesis of B12-ethylenediamine (B12-en) 

B12-en was made as previously described.5 B12 (50 mg, 0.036 mg) was added to anhydrous 

DMSO under Argon atmosphere and was heated to 40°C. After B12 was dissolved, 1,1’-

carbonyl-di-(1,2,4)-triazole (CDT) (30 mg, 0.184 mmol) was added to the solution and was 

allowed to stir for 2 h. The reaction was monitored using HPLC and after 90% or more 

conversion, ethylenediamine was added (21.4 mg, 0.184 mmol) and the reaction was allowed to 

stir for another 90 min. The reaction was precipitated with diethyl ether. This reaction was not 

purified and was used as is. Yield: 90%, based on B12 starting material. Calculated m/z: 

1441.48; found: 1442.0 [M]+1. 

 

6.1.8 Synthesis of B12-ethylenediamine-NOTA (B12-NOTA) 

B12-en (20 mg, 0.014 mmol) was dissolved in 100 mM carbonate buffer at pH 10.5 and p-SCN-

Bn-NOTA (7.7 mg, 0.014 mmol) was added and was allowed to stir at room temperature for 24 

h. The reaction was precipitated with diethyl ether, centrifuged and dried to a red powder. The 

reaction was first purified through RP silica using 10-35% acetonitrile in 0.1% TFA water and 

was purified again through HPLC. Calculated m/z to be 1891.22; found: 1893.0 [M+H]+1. 1H 

NMR: (5.93, s), (6.21, s, 1H), (6.39, s, 1H), (6.98, s, 1H), (7.10, s, 2H), (7.22, s, 2H) 

 



	 139	

6.1.9 Synthesis of Tris[(1-benzyl-1H-1,2,3-triazole-4-yl)methyl]amine (TBTA) 

Synthesis was preformed as previously reported.6 Copper(II) acetate monohydrate (11.5 mg, 

0.058 mmol) was dissolved in 10 mL of MeCN resulting in a bright blue mixture. 

Tripropargylamine (0.192 g, 1.47 mmol) and benzyl azide (2.5 mmol) were dissolved 5 mL of 

MeCN then added to the copper solution. Sodium ascorbate (11.50 mg, 0.058 mmol) was 

dissolved in 1 mL water and added to the reaction mixture resulting in a clear solution. The 

reaction mixture was allowed to stir at room temperature for 30 min then was heated to 45°C for 

5 h. A second portion of benzyl azide (2.5 mmol) was added and allowed to stir for an additional 

24 h. The reaction mixture dried in vacuo and the product was redissolved in dichloromethane 

(25 mL). Concentrated NH4OH (10 mL) was added to the solution and allowed to stir until all 

was dissolved. The aqueous layer was extracted with dichloromethane (3 x 25 mL) and the 

combined organic layers were washed with NH4OH and brine (1:1 (v/v) (3 x 10 mL) then dried 

over MgSO4 and finally filtered. The resulting solution was dried in vacuo then redissolved in 

dichloromethane (20 mL) and vigorously stirred while diethyl ether (35 mL) was added 

gradually to the solution resulting in a white precipitate. The solution was filtered and washed 

with diethyl ether allowing for a collection of white powder. Calculated m/z to be 530.6; found: 

533.0 [M+H]+1 

 

6.1.10 Synthesis of 1, 6-diazidohexane 

Synthesis was preformed as previously reported.7 In brief, 1,6-dibromohexane (0.0048 mol, 1 

eq.) was added to a 9:1 (v/v) solution of DMF/H2O. NaN3 (0.014 mol, 3 eq.) was added and 

stirred 24 h at 80°C. The reaction mixture was cooled to room temperature and was extracted 4x 
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with 20 mL diethyl ether. The organic layers were combined and dried over MgSO4, filtered, and 

concentrated under reduce pressure to obtain a clear liquid. Yield: 90%, based on 1,6-

dibromohexane. 1H NMR: (3.20, t, 1H), (1.54, m, 1H), (1.33, m, 1H). 

 

6.1.11 Synthesis of 1-amine-6-azidohexane 

Synthesis was preformed as previously reported.7 In brief, a 1:1 (v/v) mixture of ethyl acetate 

and ether (40 mL) were added to 32 mL of 2M HCl and was allowed to vigorously stir in an ice 

water bath for 20 min. 3.0 g (0.018 mol) of 1,6-diazidohexane was added to the solution and 

after 10 min 4.43g Ph3P (0.0169mol, 0.95 eq) was added in small portions over an hour. The 

reaction was then removed from the ice bath and allowed to stir at room temperature for 24 h. 20 

mL of water was added and the organic layer was discarded. The aqueous layer was extracted 

with 4x 20 mL of diethyl ether then neutralized with 3M NaOH. The aqueous layer was re-

extracted with 4x 20 mL dichloromethane. The organic layer was collected and dried over 

MgSO4, filtered, and concentrated under reduce pressure to yield a light yellow liquid. Yield: 

50%, based on 1,6-diazidohexane starting material. 1H NMR: (3.46, t, 1H), (2.63, t,1H), (1.69, 

m, 2H), (1.42, m, 2H), (1.39, m, 2H) 

 

6.1.12 Synthesis of B12-desferoxamine (B12-DFO) 

B12 (50 mg, 0.036 mg) was added to anhydrous DMSO under Argon atmosphere and was heated 

to 40°C. 1,1’-carbonyl-di-(1,2,4)-triazole (CDT) (30 mg, 0.184 mmol) was added to the solution 

and was allowed to stir for 2 h.2 The reaction was monitored using HPLC and after 90% or more 

conversion, deferoxamine mesylate was added (41.75 mg, 0.023 mmol) and the reaction was 
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allowed to stir for another 2 h. The reaction was precipitated with methanol/diethyl ether. This 

reaction was purified through HPLC. Yield: 20%, based on B12 starting material. m/z to be 

1942; found: 972 [M+2H]+2 and 648 [M+3H]+3. 1H NMR: (5.98, s, 1H), (6.21, s, 1H), (6.42, s, 

1H), (7.01, s, 1H), (7.17, m, 1H). 

 

6.1.13 B12-Exendin-4-Cyanine-5 (B12-Ex4-Cy5) synthesis  

B12-Ex4 was synthesized as previously described.8 B12-Ex4 (0.5 mg, 0.0001mmol) was 

dissolved in PBS buffer pH 7.6 (450 µL) and then Sulfo-cyanine5-NHS-ester (1 mg, 0.001mmol) 

was added (in 50 µL DMSO). The resulting solution was allowed to mix for 2h at room 

temperature, protected from light, and then purified through RP-HPLC on a Shimadzu 

Prominence HPLC using a C18 column (Eclipse XDB-C18 5 um, 4.6 x 150 mm). Solvents: A: 

0.1% TFA water and B: Acetonitrile. Method: B%: 1-70% over 15 min. tR: 12.1 min. Yield: 

98%, based on B12-Ex4 starting material. LC-MS analysis showed the indication of B12-Ex4-

Cy5 with 1 and 2 Cy5 molecules with an expected m/z of 6284 (M1; B12-Ex4+Cy5) or 6923 

(M2; B12-Ex4+2xCy5). Excitation and emission profile of 648 and 670 nm, respectively 

 

6.1.14 B12-Cyanine5 (B12-Cy5) synthesis  

B12-Cy5 was synthesized through Huisgen/Sharpless ‘Click’ Chemistry.3,4 Cu(I) (1 mg, 0.005 

mmol) and TBTA (3.5 mg, 0.006 mmol) were dissolved in 0.5 mL DMF/H2O (4:1 v/v). Once 

color change occurred, the previously synthesized B12-Azide (3 mg, 0.002 mmol) (32) and 

cyanine5 alkyne (0.5 mg, 0.0007mmol) (Lumiprobe) was dissolved in the solution and allowed 

to stir at room temperature overnight protected from light. This was purified through RP-HPLC 
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on a Shimadzu Prominence HPLC using a C18 column (Eclipse XDB-C18 5 um, 4.6 x 150 mm). 

Solvents: A: 0.1% TFA water and B: Acetonitrile. Method: B%: 20-72% over 18 min. tR: 4.7 

min. Yield: 94%, based on B12 starting material. LC-MS showed 688 [M+3H]+3, 1031 

[M+2H]+2 with the expected m/z of 2059. Emission and excitation of 645 and 682 nm, 

respectively. 

 

6.1.15 B12-carboxlyic acid (B12-CA) Synthesis  

B12-CA was synthesized as previously described.9 B12 (100.00 mg, 0.0737mmol) was fully 

dissolved in DMSO. IBX (53.70mg, 0.191mmol) and HYP (35.10 mg, 0.369mmol) were added. 

The reaction was stirred at 60°C for 2 h. It was purified through anion exchange. The product 

was dried to a red powder (12 mg, 12% yield). Calculated m/z to be 1344.0; found: 1345.8. 

 

6.1.16 Synthesis of B12-aminobutyne (B12-AB) 

B12-AB was synthesized as previously described.8 B12-CA (10 mg, 0.00729 mmol), EDC (14 

mg, 0.0731 mmol), and HOBt (19.7 mg, 0.1462 mmol) were mixed in 5 mL anhydrous DMSO 

for 30 min under argon. To this activated mixture, 1-amino-3-butyne (5.99 µL, 0.0731 mmol) 

was added, and the reaction mixture was stirred for 16 h at rt. The crude reaction was purified via 

RP-HPLC using a gradient of 10% MeCN, 90% H2O/0.1% TFA, increased to 27% MeCN over 

17 min, with a flow rate of 1.0 mL/min and UV detection at 360 nm; Rt= 12.1 min. Yield was 

79-80%, based on B12 starting material. LC-MS expected m/z 1421, found m/z 711[M]+2. 1H 

NMR (400 MHz, D2O): 7.21 (s, 1H), 7.002 (s, 1H), 6.92 (s, 2H), 5.99 (s, 1H). 
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6.1.17 Synthesis of B12-Exendin-4 (B12-Ex4) 

B12-Ex4 was synthesized as previously described.8 Cu(I) (1 mg, 0.005 mmol) and TBTA (3.5 

mg, 0.006 mmol) were dissolved in 0.5 mL DMF/H2O (4:1 v/v). Once color change occurred, the 

previously synthesized B12-AB (3 mg, 0.002 mmol) (32) and azido-exendin-4 (1 mg, 0.0002 

mmol) was dissolved in the solution and allowed to stir at room temperature overnight and then 

purified through RP-HPLC, solvents: A: 0.1% TFA water and B: Acetonitrile. Method: B%: 1-

70% over 15 min. Rt: 12.1 min. Yield: 98%, based on B12 starting material. Expected m/z 5658, 

observed m/z 1415[M]+4. 

 

6.2 General Radio-Chemistry Materials and Methods 

All animal handling and manipulations were conducted in accordance with the guidelines 

set by WSU Animal Care and Use Committee (IACUC) and Research Animal Resource Center. 

Breast cancer cells (MDA-MB-453) were obtained from the American Type Culture Collection 

(ATCC). Charcoal stripped Fetal bovine serum (FBS) and Dulbecco’s modified eagles medium 

(DMEM) were purchased from Sigma and KD medicals, respectively. Penicillin-streptomycin 

solution with 10,000 units penicillin and 10 mg/mL streptomycin in 0.9% NaCl was obtained 

from Corning. MALDI imaging was completed on a MALDI-TOF (Bruker Ultraflex). Analysis 

of the radiotracer was done using instant thin layer chromatography (iTLC, Eckert & Ziegler 

Mini Scan), respectively. An EDTA (50 mM) mobile phase was used for instant thin layer 

chromatography (iTLC). PET imaging was done using a µPET scanner (Concord).  
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6.2.1 Binding of radio-B12 to IF 

A 1:0.8 ratio was used for IF:compound. The radiolabeled compound (unpurified) was mixed 

with IF for 30 min at RT then purified through a size exclusion spin filter (30 kDa) volume was 

adjusted with saline solution. 

 

6.2.2 Intrinsic Factor and 99mTc-B12 Binding Study 

10 µL intrinsic factor (20 µM) and 10 µL B12-PG (20 µM) were mixed at room temperature and 

allowed to react for up to 3 h. At each time point 20 µL was taken out of the reaction mixture and 

was ran down a size exclusion column on the HPLC (Zorbax GF-250, 4 µm, 4.6 x 250 mm) with 

a 20 mM sodium phosphate and 300 mm NaCl elution buffer (pH 7).  

 

6.2.3 Radiolabeling of B12-PG with 99mTc(I) (99mTC-B12) 

B12-PG (1.9x10-4 M) was reacted with 99mTc(I) (1 eq) at 40°C for 30 min at pH 7. Reaction was 

monitored and purified through RP-HPLC (gamma detection). Yield: 99%, based on HPLC.  

 

6.2.4 Radiolabeled 99mTc-B12 Stability/Challenge Study 

99mTC-B12 was re-synthesized as mentioned previously, purified and lyophilized down. It was 

reformulated in a solution of either: saline, saline with histidine, and saline with cysteine at either 

10-5 M or 2x10-3 M and monitored at time points through RP-HPLC.  
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6.2.5 Radiolabeling of B12-NOTA 

5 mCi of 64Cu to 25 µg of compound in ammonium acetate buffer pH 5.5 in 200 µL and allowed 

to sit at RT for 30 mins. SA was determined by iTLC on reverse phase silica plates using 50 mM 

EDTA in ammonium acetate buffer.  

 

6.2.6 Mouse TCII and human gastric IF Binding to Zr-B12 

Mouse TCII or human gastric IF binding of cold 91Zr-B12 was confirmed by radiometric chase 

assay using 57Co-labeled B12 and compared to free B12 as cyano-cobalamin.10 Significant mouse 

TCII binding of 91Zr-B12 (6.8 nM) was maintained in comparison from unmodified B12 (0.12 

nM). 

 

6.2.7 89Zr-radiochemistry with B12-DFO 

 Optimum conditions for radio labeling of B12-DFO were tested by titrating with 89Zr and 

analyzing the incubated solution using iTLC.11 Optimum labeling activity was found to be 250 ± 

50 mCi/µmol. Approximately 1 mCi (37 MBq) of 89Zr(C2O4)2 (3D imaging, AZ) was diluted 

with 0.9% saline and the pH was adjusted to 7–7.5 by adding 1 M Na2CO3. A solution of B12-

DFO (0.004 µmol, 10.8 µg) was added to the pH adjusted 89Zr solution and incubated for 20 min 

at ambient temperature. Radio labeling efficiency of >97% was determined by iTLC.  

 

 

 



	 146	

6.2.8 Synthesis of Zr-B12 

B12-DFO (0.25 mg) was dissolved in Na2CO3 solution (0.5 mL) with ZrCl4 (1 eq.) for 30 min. 

Binding was confirmed through HPLC.  

 

6.2.9 In vitro stability of 89Zr-B12 and IF-89Zr-B12  

Stability of 89Zr-B12 was tested by incubating the tracer (200 µCi, 100 µl) in saline (0.9 % NaCl) 

and 50% (1:1 serum/saline) human serum (Sigma) at 37 °C and fractions (50 µCi) were analyzed 

for free 89Zr at 4, 24, and 48 h intervals using iTLC (Eckert & Ziegler Mini Scan). Samples 

incubated in serum were filtered using molecular weight cutoff (MWCO 30 KDa, Amicon) filter 

prior to the analysis.                    

  

6.2.10 Cell lines and small animal xenografts  

For imaging and in vivo uptake experiments, female nude mice (Envigo) were kept under B12 

deficient diet (Teklad B12 free custom diet, Envigo) for three weeks. Cells were subcutaneously 

implanted on the shoulder with MDA-MB-453 breast cancer cells (5 × 106 cells/mouse) after two 

weeks of B12 free diet. Cells were injected in media/matrigel (Corning LLC) 1:1 mixture of 200 

µl after anesthetizing the mice with 1-2% Isofluorine (Baxter). The tumor volume until was 

calculated using the formula Length × width2 × ½. Mice with tumors 100-200 mm3 were used for 

imaging experiments. 
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6.2.11 PET imaging experiments  

89Zr-B12 was intravenously administered (5.4–6.8 MBq/mouse, 0.8–1 nmol) in sterile saline in 

mice bearing MDA-MB-453 xenografts. PET imaging was done using a µPET scanner 

(Concord) at 4, 24, and 48 h post injection time points. The mice were fully anesthetized using 1-

2% Isofluorine during imaging time period (10 or 15 min. scans). Images were reconstructed 

using filtered back projection algorithm. ASIPro VMTM software package (Concord) was used 

to draw volume of interest and calculate %ID/g values. Competitive inhibition experiment was 

done by co-injecting ~200-fold excess of the cold tracer (200 nmol). 

 

6.2.12 Ex-vivo distribution and competitive saturation 

The tissue distribution of 89Zr-B12 was studied by administering 10-25 µCi (0.04–0.1 nmol) of 

the tracer on the lateral tail vain of the rodent. For the competitive saturation assay, ~20 

nmol/mouse of cold B12 was co-injected with 89Zr-B12. Euthanasia was performed with CO2 

asphyxiation was performed at 4, 24, and 48 h post injection.  

 

6.2.13 Immunohistochemistry of MDA-MB-453 cells and Tumors  

Excised tumors were embedded in OCT (optimum cutting temperature) media and were sliced to 

10 µm thin slices using a cryomicrotome at –30 °C and placed on a super frost glass slide 

(Fisher) and stored at –80 °C, until radioactivity was completely decayed (3 weeks). The fixed 

tissue sections with precooled acetone (–20°C) by immersing the sections for 10 min. Sections 

were washed twice with 1x PBS (100 mL, 5 min each wash) and were then incubated in 0.3% 
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H2O2 for 10 min followed by washing step with 1x PBS twice. Sections were then incubated 

with 100 µL of FBS in PBS (10%) in a humidified chamber at ambient temperature for 1h. 

Excess FBS was rinsed out and added 1: 100 diluted anti-rabbit polyclonal primary antibody 

(Abcam, MA) and incubated overnight at 4 °C in a humidified chamber. Sections were washed 

twice with 1x PBS and added 100 µl of 1:1000 diluted anti-goat polyclonal secondary antibody 

(Abcam, MA) that was conjugated to Alexa Flour 488 (AF488). Sections were incubated another 

30 min with the secondary in the humidified chamber prior to adding drop of anti-fade solution 

mix with DAPI. Slides were covered with a glass slide and kept at 4°C covered in foil until 

imaged using Fluorescence microscope (Nikon E800) with 2x power for whole tumor images 

and 40x for individual areas. 

 

6.3 General Cell Methods and Materials 

All in vitro cell studies were performed in a Labconco Purifier I laminar flow hood 

disinfected with 70 % ethanol and sterilized with UV light. Fetal bovine serum (FBS) was 

purchased from VWR. Penicillin-streptomycin solution with 10,000 units penicillin and 10 

mg/mL streptomycin in 0.9% NaCl was obtained from Thermo Fisher. DMEM with high 

glucose, F12-K media was purchased from VWR. Hybri-Care 45-x media was purchased from 

ATCC. Epidermal growth factor (EGF) was purchased from Sigma. 0.05 % Trypsin with 0.53 

mM EDTA was supplied by Thermo Fisher. The J774A.1, CHO-K1, FH-74 Int. cell lines were 

purchased from ATCC. HEPG2 cell line was purchased from ATCC. HEK-293 (GLP-1R) cells 

were made previously in the Holz lab.8 BN16 cells were a gift from Dr. Mette Madsen, 

University of Aarhus, Demark. 
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J774A.1 and BN16 were cultured as adherent monolayers in DMEM supplemented with 

10 % FBS and 1 % pen/strep. CHO-K1 were cultured as adherent monolayers in F12-K 

supplemented with 10 % FBS and 1 % pen/strep. Fh-74 Int. cells were cultured as adherent 

monolayers in Hybri-Care 43-x supplemented with 10 % FBS, 1 % pen/strep and 30 ng/mL of 

EGF. HEK-GLP-1R were cultured as adherent monolayers in DMEM supplemented with 10 % 

FBS and 1 % pen/strep and 0.1% geneticin. Cells were incubated at 37 °C with 5 % CO2. 

In vitro plate assays were completed using a Molecular Devices FlexStation III running 

SoftMaxPro software. A dose response curve was generated by plotting the log of the 

concentration (M) versus the absorbance using Prism GraphPad 6. Each point for each 

concentration was at least completed in triplicate.   

 

6.3.1 IF Binding to B12-Cy5 

B12-Cy5 was bound by IF (0.85 nm to 0.1 nm, respectively) by mixing in HBSS at 4 ºC 

overnight. 

 

6.3.2 Flow Cytometry Analysis Using B12-Cy5 

Cells were plated at 30,000 cells/well on a 6-well plate and allowed to adhere 24-48 h. Cells 

were washed 3x with HBSS and then incubated with IF-B12-Cy5 or TCII-B12-Cy5 in 1 mL of 

100-500 nM for 1-2 h. Cell were either stripped mechanically or with trypsin. Cells were placed 

in 1 mL of media and analyzed within 30 min. All cells were excited at 640 nm and detected at 

660/20 nM. 
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6.3.3 GLP-1 assay for Cy5-B12-Ex4, Cbi-Ex4 and HC-Cbi-Ex4 

Agonism at the GLP-1 receptor was monitored using HEK-293 cells stably transfected with the 

GLP-1 receptor. Cells were plated on a rat-tail-collagen-coated 96-well plate at 60,000 cell/well 

and allowed to adhere. The cells were infected with an adenovirus to express the H188 FRET 

reporter using a 25 MOI for 16-20 h in 75 µL of DMEM-1% FBS. After the virus incubation the 

cells were placed in 200 µL standard extracellular matrix with glucose and 0.1% BSA. 

Conjugates were added to each well at 5x the required concentration. Agonism was determined 

through an increase in 485/553 nm FRET ratio that indicates cAMP level increase through 

cAMP binding to an EPAC (exchange protein directly activated by cAMP).12 

 

6.3.4 Immunohistochemical procedures for the mouse brain 

Adult male Sprague Dawley rats were purchased from Charles River. Animals were singly 

housed in hanging wire mesh cages under a 12h:12h light/dark cycle in a temperature- and 

humidity-controlled environment. Standard rodent chow (Purina 5001) and tap water were 

available ad libitum. Procedures were approved by the Institutional Care and Use Committee of 

the University of Pennsylvania, a copy of which was filed with Syracuse University. Rats (275-

300g; n=4 per group) were given IP injection of fluorophore-labeled Ex-4 [Flex; 5ug/kg; 

0.0001nM; AnaSpec13], Cy5-B12-Ex4 (5ug/kg; 0.03nM) Cy5-B12 (5ug/kg) or Cy5-B12-Ex4 

delivered at an equimolar dose to Flex (0.0001nM). Three hours after injection, rats were 

transcardially perfused using 0.1M PBS followed by 4% paraformaldehyde (PFA). The brains 

were collected and maintained overnight in 4% PFA. Subsequently, the brains were transferred 
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to 20% sucrose in PBS for 24h. Brains were cut into 30 µm coronal section on a cryostat (Leica) 

and stored in cryoprotectant until processing for immunohistochemistry. 

Free-floating hindbrain sections were collected at the level of the area postrema (from 

bregma, AP -13.0 to -14.8 mm) and hypothalamus (from bregma, AP 0.0 to -3.5 mm). Briefly, 

sections were washed in 50% EtOH and subsequently incubated for 20 minutes in 1% sodium 

borohydride. After blocking of endogenous peroxidase, sections were incubated in 

immunoblocking buffer (5% normal donkey serum and 0.2% Triton-X in PBS) for 1h. Primary 

antibodies were applied as a cocktail that included mouse anti-NeuN (1:1000, Millipore) and 

rabbit anti-GFAP (1:2000, DAKO). After overnight incubation at 4° C, the sections were washed 

in PBS and incubated for 2h with fluorescent secondary antibodies, also applied as a cocktail: 

Alexa Fluor 594 donkey anti-mouse and donkey anti-rabbit Alexa Fluor 647 or donkey anti-

rabbit Alexa Fluor 488 (1:500 for all antibodies; Jackson ImmunoResearch). Then, sections were 

subsequently rinsed in PBS, mounted, and coverslipped with DAPI mounting medium. 

 

6.3.5 Confocal imaging of mouse brain slices  

Sections were visualized with a Leica SP5 X confocal microscope using the 20x dry- and 63x 

oil-immersion objectives and the 405, 488, 633 and 594 laser lines. Each laser channel was 

separately scanned using a multitrack PMT configuration to avoid cross-talk between fluorescent 

dyes or any cross-reactivity between secondary antibodies. To evaluate double-labeling, z-stack 

sectioning was performed at 0.5-1 µm intervals using 20x dry or 63x oil-immersion objectives. 

Images were acquired using the Zeiss LSM software, cropped and optimized in Fiji (Image J 

version 2.0.0). 



	 152	

6.3.6 Western Blot Conditions for Cubilin and Megalin 

SDS-page gels (6%) were run at 125 v, and 45 amps. Transfer occurred on a BioRad Trans-Blot 

Turbo Transfer System on a PVDF membrane. Membrane was blocked in PBST with milk 

overnight at 4°C. Primary antibody was incubated for 24 h at 4°C in PBST with milk then 

washed 6x 5 min. Secondary antibody was incubated (1:2000) in PBST for 1 h and washed 6x 5 

min. Membrane was then viewed by chemiluminescence X-ray exposure. Cubilin primary 

antibody (Santa Cruz) was incubated at 1:100 dilution. Megalin primary antibody (a gift from 

Dr. Mette Madsen) was incubated at 5 µg/mL.  

 

6.3.7 Western Blot Conditions for HC and TCII in Shrew Blood 

SDS-page gel (12%) was run at 125 volts and 45 amps. Transfer occurred on an iBlot system on 

a nitrocellulose membrane. Membrane was blocked in PBST with milk for 1 h. Primary antibody 

was incubated overnight at 4°C in PBST with milk then washed 6x 5 min. Secondary antibody 

was incubated (1:2000) in PBST for 1 h and washed 6x 5 min. Membrane was then viewed by 

chemiluminescence X-ray exposure. HC primary (Abcam) was incubated at 2 µg/mL and TCII 

(Santa Cruz) was incubated at a 1:100 dilution. 

 

6.4 General Guinea Pig Materials and Methods 

 All animal handling and manipulations were conducted in accordance with the guidelines 

set by Syracuse University Animal Care and Use Committee (IACUC) and Research Animal 
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Resource Center. Ketaset from Henry Schein (Syracuse, NY). Xylazine and Kanamycin sulfate 

(≥98%) was from Sigma. Atipamezole was purchased from Sigma (≥98%). Pigmented male 

guinea pigs initially weighing 200-300 g (Elm Hill Labs, Chelmsford, MA) were maintained on a 

Lab Diets Certified Guinea Pig Diet 5026 and given free access to water. Animals were allowed 

3-4 days of acclimation before studies begun. 

 

6.4.1 Kanamycin and IF Injections 

Two separate studies was completed: First, 4 guinea pigs were selected and given kanamycin 

sulfate (250 mg/kg/day) for 23 days in sterile saline solution via IP. Second, 4 guinea pigs were 

selected and given kanamycin sulfate (250 mg/kg/day) with a pre-injection of holo-IF (6.25 µg, 

15 min before kanamycin) and a post-injection of IF (6.25 µg, 30 min after kanamycin) all 

injections in sterile saline and IP. Guinea pigs were weighed each day for appropriate dosing. 

 

6.4.3 Anesthesia Protocol for Pigmented Guinea Pigs 

A combination anesthetic cocktail of ketamine/xylazine (55 mg/kg and 5 mg/kg via IP, 

respectively) was injected. After sufficient sedation was observed (about 10-15 min) the ABR’s 

were performed. During this time guinea pig blood flow and breathing rates were monitored. 

After ABR’s were completed atipamezole (1 mg/kg via IM) was administered and guinea pigs 

were monitored continuously until full recovery. After administration of the anesthesia, and until 

recovered, guinea pigs were placed on heated pads to maintain body temperature. 
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6.4.4 Auditory Brainstem Response Hearing Tests  

Auditory Brainstem Responses (ABRs) were recorded using the Biologic AEP system to 

determine auditory thresholds. Thresholds were obtained for each animal preceding 

administration of treatment, during treatment, and for up to 6 weeks p.i. Animals were 

anesthetized prior to ABR recordings by IP injections of ketaset (50mg/kg) and xylazine (5 

mg/kg). ABRs were generated to a click, 6 kHz and 8 kHz tonebursts, of rarefaction polarity, at a 

rate of 27.7 per second.  Filter settings were set to 100 Hz-3000 Hz with a gain of 100,000.  

Roughly 350 sweeps were collected for each waveform; less sweeps were obtained in cases of 

clearly identifiable waveforms. A one channel vertical montage was set up using disposable, 

subdermal needle electrodes placed SC; inverting M1 and M2 (posterior to pinna), non-inverting 

CZ, and common on the rump. Waveforms were obtained at 10 dB intervals until no ABR was 

present or until -10 dBnHL.  Thresholds at each frequency were defined as the lowest intensity to 

yield a reproducible deflection in the evoked response trace and verified at least twice. Threshold 

shifts were calculated for individual animals by comparison to their pre-treatment thresholds. 

 

6.4.5 Guinea Pig IF Antibody ELISA Kit  

A commercial ELISA kit was used (Tecan) to screen blood serum from guinea pigs with small 

modifications. The recognizing antibody was changed to IGg guinea pig HRP (Santa Cruz), used 

at a 1:5000 dilution; everything else was performed at manufacture protocol.  
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Chapter 7: Current and Future Work 

7.1 Using Systemically Administered IF-B12 to Detect Cubilin Positive Tumors 

 As discussed in Chapter 3, in vivo intravenous injection of 89Zr-IF shows a clear shift 

from kidney to liver uptake (for more detail see Chapter 3, Section 3.4). This established control, 

showing limited uptake in tissues, now allows for the investigation 89Zr-IF as a way to detect a 

CUBN positive tumor. To explore rIF as a probe to detect CUBN positive tumors a new cell line, 

BN16 cells, will be used as a tumor model. BN16 cells are the gold standard for in vitro CUBN 

experiments.1,2 In Chapter 4, BN16 cells demonstrate a clear increase in uptake when IF-B12-

Cy5 is administered at low doses compared to the controls (see Chapter 4, Section 4.2.1). 

However, BN16’s have yet to be xenographed into animal models.  

 Initially BN16 cells will be investigated as a valid tumor xenograph by injected cells 

under the skin of nude athymic female mice. Once tumor growth has been established rIF will be 

injected as previously described in Chapter 3 with imaging and biodistribution completed. This 

will establish rIF as an imaging tool to detect metastasized kidney cancer.  

 

7.2 Using Haptocorrin Binding Substrates to Increase Peptide Half-life 

 HC is a B12 transport protein found both in the GI track and the blood serum in humans 

(for more detail refer to Chapter 1, Section 1.1.4.1). HC role in the blood serum is unknown as 

there is no known receptor that recognizes and internalizes it.3,4 This lack of receptor recognition 

leads to HC half-life to be ~9 days in humans as opposed to TCII being within minutes (as it is 

recognized by the CD320 receptor expressed on proliferating cells).3,5,6 Also HC binds to 

“incomplete” B12 analogs, namely B12 analogs lacking the dimethylbenzyimidazole group 
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located on the f-side chain (refer to Figure in Chapter 1), a unique trait of HC compared to that of 

TCII and IF.5,7 

 Short half-life is a crucial challenge for therapeutic peptides. Peptides as therapeutics 

offer increased specificity, potency and reduce side effects compared to synthesized small 

molecule chemical drugs.8 However, peptides have a susceptibility to be digested by enzymes 

and cause antigenicity.8,9  To combat this peptides can be changed by chemical modification or 

exchanging labile amino acids to increase its half-life and therefore creating a better 

pharmacokinetic profile.8,10,11 

 The hypothesis for this work is that a cobinamide (Cbi) - peptide conjugate when injected 

into the blood would be bound by HC and would retain HC’s long half-life and therefore the 

peptide would have better pharmacokinetic profile. The rational for this project is that 1) HC will 

bind Cbi and remain in the blood for ~ 9 days and 2) Doyle et al. have shown that B12 transport 

proteins offer peptide protection from degradation.3,5,12 The peptide of interest for this project is 

Ex4 (for more detail refer to Chapter 1, Section 1.5.2) as Ex4’s and B12-Ex4 pharmacokinetic 

profile have been previously explored.12,13,14 

 

7.2.1 Design, synthesis and characterization of Cobinamide Peptide Conjugates 

The synthesis of Cbi-alkyne was completed in collaboration with Dr. Dorota Gryko’s lab 

at the Polish Academy for Sciences in Warsaw, Poland.  
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The author visiting the Institute of Organic Chemistry at the Polish Academy of Sciences, 

Warsaw, Poland, to study B12 chemistry for one month, in Prof. Dorota Gryko’s group.  

 

 Cobinamide-exendin-4 (Cbi-Ex4) was synthesized by conjugating off of the secondary 

alcohol on the f-side chain located on Cbi. The alcohol was activated with CDT at 40 C for 1 h in 

triethylamine then aminobutyne was added and the reaction was allowed to stir for another two 

hours resulting in the synthesis resulting in Cbi-alkyne with a yield of ~80% (Figure 1). Cbi-

alkyne was purified through on an RP-column and is shown in Figure 2. Two peaks are 

indicative of two isomers with a hydroxo-group located on the alpha and beta positions (α-

cyano-β-aqua- and α-aqua-β-cyano-) causing this effect. LC-MS shows the expected m/z [M-

H2O]: 1110 (Figure 2). 
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Figure 1. Synthetic scheme for Cbi-Ex4. Dicyano-Cbi was functionalized with a terminal alkyne 

through CDT activation of the secondary alcohol with subsequent addition of aminobutyne in a 

one-pot reaction. Once purified the Cbi-alkyne and azido-Ex4 were linked using CuAAC 

chemistry. Final yield of 95%, based on B12-Ex4 starting material.  

 

         

Figure 2. Characterization of Cbi-alkyne. A) RP-HPLC of Cbi-alkyne using an Eclipse XDB-

C18 column. 0.1% TFA/H2O with MeCN gradient of 1 – 70% MeCN over 15 min, tr= 8.0 and 

8.4 min. Analysis shows compound is 97% pure. B) LC-MS: Shimadzu LCMS-8040, ESMS 

Expected m/z = 1129, observed m/z = 556 [M-H2O+2H]+2, 1110 [M-H2O]+. 
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The alkyne moiety on the Cbi primes it for the use of Huisgen/Sharpless CuAAC ‘Click’ 

chemistry with azido-Ex4 with Cu(I)/TBTA with a yield of ~95% (Figure 1).15,16 Cbi-Ex4 was 

purified to ≥ 96% as shown in Figure 3. LC-MS analysis showed the expected m/z = 5354, 

observed m/z = 1338 [M+4H]+4, 1071 [M+5H]+5, 893 [M+6H]+6.  

 

              

Figure 3. A) RP-HPLC of Cbi-Ex4 using an Eclipse XDB-C18 column. 0.1% TFA/H2O with 

MeCN gradient of 1 – 70% MeCN over 15 min, tr= 8.9 min. Analysis shows compound is 96% 

pure. B) LC-MS: Shimadzu LCMS-8040, ESMS Expected m/z = 5354, observed m/z = 1784 

[M+3H]+3, 1338 [M+4H]+4, 1071 [M+5H]+5, 893 [M+6H]+6. No detection of free exendin-4 was 

seen.  

 

7.2.2 Agonism of Cbi-Ex4 at the GLP-1 receptor 

 To use HC as a platform to increase peptide half-life it is imperative that we retain 

function of the peptide of interest. Cbi-Ex4 agonism at the Ex4 receptor, GLP-1, was explored 

using the FRET reporter H188 in stably transfected HEK-GLP-1 cells (as described in Chapter 1, 
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section 1.5.3).17 Cbi-Ex4 showed dose response and pM function at the GLP-1 receptor (Figure 4 

and 5). Cbi-Ex4 EC50 was determined to be 120 pM (Figure 5). 

 

 

Figure 4. Dose response of cAMP binding to the H188 reporter in real time after administration 

of Cbi-Ex4 ranging from 1 nM – 3 pM. SES: standard extracellular solution with 0.01% BSA 

and 0.1 mM glucose. F/IBMX: forskolin and (3-isobutyl-1-methylxanthine) (IBMX) as a 

positive control. 
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Figure 5. Cbi-Ex4 agonsim at the GLP-1 receptor using the FRET H188 reporter in stability 

transfected HEK-GLP-1 cells. EC50 of Cbi-Ex4 was determined to be 120 pM. 

 

 The EC50 of 120 pM shows a slight loss in function as compared to Ex-4 which has been 

determined to be 33 pM.1218 This decrease was expected as previous work from Doyle et al. 

showed that conjugation of Ex4 to B12 decreased to 68-405 pM (not all data published).12 This 

could be due to the Cbi interacting with the peptide, causing hydrogen bonds with critical amino 

acids resulting in a decrease in flexibility and therefore receptor recognition and agonism as seen 

previously in cobalamin based peptides.19 The removal of the rigid dimethylbenzylimidazole 

group found in B12 and not in Cbi would bring the peptide closer to the corrin ring, allowing for 

these hydrogen bonds to form and decrease in agonism to be observed.  

 

7.2.3 Agonism of HC-Cbi-Ex4 at the GLP-1 receptor 

 Once Cbi-Ex4 activity at the GLP-1 receptor was determined, investigating agonism once 

bound by HC was warranted. Once injected Cbi-peptide will be bound by HC in the blood serum 

allowing for the increased half-life but its essential for the peptide to retain function at its 
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receptor once bound. HC was bound to Cbi-Ex4 overnight at 4°C in SES with 0.01% BSA at a 

1.2:1 ratio (HC:Cbi-Ex4) to ensure there was no unbound Cbi-Ex4. HC-Cbi-Ex4 agonism at the 

GLP-1 receptor was determined using the FRET reporter H188 in stably transfected HEK-GLP-1 

cells (as described in Chapter 4, Section 4.4.3). HC-Cbi-Ex4 showed a dose response as shown 

in Figure 6.  

 

 

   

Figure 6. Dose response of cAMP binding to the H188 reporter in real time after administration 

of HC-Cbi-Ex4 ranging from 1 nM – 3 pM. SES: standard extracellular solution with 0.01% 

BSA and 0.1 mM glucose. F/IBMX: forskolin and IBMX as a positive control.  

 

Comparing the dose response from Figure 4 to Figure 6, which has the same range in 

administration of the compounds, shows a significant decrease in response once Cbi-Ex4 is 

bound by HC. The EC50 of HC-Cbi-Ex4 was determined to be 3 nM, presented in Figure 7.  
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Figure 7. HC-Cbi-Ex4 agonism at the GLP-1 receptor using the FRET H188 reporter in stability 

transfected HEK-GLP-1 cells. EC50 of HC-Cbi-Ex4 was determined to be 3 nM. Full sigmoidal 

curve could not be obtained due to assay limits. 

  

This decrease in function of Cbi-Ex4 once bound to HC (in comparison to Cbi-Ex4 

alone) was an anticipated as this trend has been seen before in Bonaccorso et al. where they 

observed a decrease in agonism when IF bound to B12-Ex4 (68 pM vs 120 pM with B12-Ex4 

and IF-B12Ex4, respectively).12 However, this significant decrease in function, a 25 fold 

decrease, was not expected. This decrease is likely contributed to by the length of the “linker” 

between Cbi and Ex4. When HC binds Cbi conjugates it has the characteristic association to the 

central Co(III) and the corrin ring, surrounding it such as two hands would surround a 

baseball.Citation As shown in the structure of Cbi vs B12 (Figure 1 and Chapter 1, Section 1.1.2, 

respectively) the loss of the dibenzylmethylimidazole group from B12 “shortens” the conjugate 

and thus once bound by a transport protein, namely HC, this brings Ex4 to a closer proximity to 

HC. This closer proximity would allow for more intermolecular interactions between the two 

proteins (Ex4 and IF) creating a disruption in the receptor recognition of Ex4 and accounting for 
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decreased EC50. In the future the Cbi-Ex4 linker length warrants investigation into its effects of 

agonism at the GLP-1 receptor for Cbi-Ex4 and HC-Cbi-Ex4.  

 

7.2.4 Future in vivo Work Using HC-Cbi-Ex4 as a Platform Technology to Increase Peptide 

Half-life 

7.2.4.1 Tree Shrews as in vivo Models for HC-Cbi-Ex4 

 When considering in vivo experiments using HC to increase half-life an essential 

component of those models would be to have the two distinct transport proteins TCII and HC in 

their blood. The traditional models used for in vivo experiments (i.e. rats and mice) have been 

shown to have a hybrid transport protein to act as both TCII and HC, having characteristics of 

both proteins.20 This hybrid TCII is able to bind incomplete analogs of B12 (such as Cbi),  as 

does HC and also deliver bound conjugates to proliferating cells such as TCII.20 This creates a 

half-life of about 1 h for this hybrid and therefore could not be used.3,20 Select animal models 

have been shown to have both proteins such as rabbit, pig, and bovine.21,22  

In continuation of the studies at UPenn with Dr. Hayes (as discussed in Chapter 4, 

Section 4.4) a mammalian model with a known neurological network is also desired for this 

project. The animal model to meet these criteria is the Tree Shrew, an animal classified in the 

Primate order.23 

 

7.2.4.2 Analysis of Asian Shrew Blood for HC and TCII 

While the Asian Tree Shrew genome has not been fully sequenced, BLAST has 

confirmed the genes for TCII and HC are present. Western Blot analysis was used to confirm 

that HC and TCII are present within Shrew blood. As shown in Figure 8 analysis shows hits for 
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HC and TCII using their respective primary antibody without cross reactivity to each other. The 

molecular weight for the observed bands is at ~50 kDa which is expected for HC and TCII 

protein. These results support the BLAST search in that the Asain Tree Shrew has both HC and 

TCII in their blood and therefore will be used in future in vivo experiments at UPenn using Cbi-

Ex4 and Cbi-Cy5. 

                                   

Figure 8. Western Blot of Asian Tree Shrew Blood. HC primary antibody (lanes 1-4) and TCII 

primary antibody (lanes 5-8). 1: recombinant human HC, 2: shrew serum, 3: recombinant pig 

TCII, 4 and 5: BioRad Kaleidoscope Protein Markers (10-250 kDa), 6: recombinant pig TCII, 7: 

shrew serum, 8: recombinant human HC. 

 

7.3 Mitigating Hearing Loss in Pigmented Guinea Pigs from Aminoglycoside Toxicity 

 As discussed in Chapter 5 base-line earing in pigmented guinea pigs using ABR’s have 

been established. However, numerous attempts to cause hearing damage have not ben 

unsuccessful. In May 2017, a grant from the Kirsh Foundation was granted to investigate the role 

of CUBN in the uptake of AGA’s. The following is the research plan to be executed in Fall 2017.  

 The primary goal of the project are to 1) develop a cell based assay to explore the role of 

the receptor CUBN in AGA induced hearing damage, and 2) to conduct studies in vivo in a 

guinea pig model to investigate whether AGA induced hearing damage can be 

reduced/eliminated by IF. 

IF based interference with select AGA toxicity to best choose the antibiotic for in vivo 

studies. Such studies will allow us to best optimize the antibiotic to target, and the exact form of 
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IF to use in such targeting, in the in vivo studies as described below. 

7.3.1 In vitro Validation of IF Interference with AGA Toxicity 

Fluorescent analogs of the AGA antibiotics gentamicin, neomycin, and tobramycin will 

be synthesize and characterize.24,25,26 We will screen for internalization of each fluorescent AGA 

in a CUBN positive cell line, namely BN16 cells, with CHO cells as negative control.2 Uptake 

using confocal imaging and flow cytometry including the use of siRNA for CUBN knock-down 

to confirm, and quantify, the role of CUBN in their internalization. Inhibitory concentrations (IC) 

of each AGA antibiotics will be established initially in BN16 cells and then doses at 0.5, 1x and 

2x the IC50 will be used for each AGA antibiotic to be screened. Once toxicity level and role of 

CUBN have been confirmed, studies that challenge this uptake through administration (pre- 

and/or co-) of hIF will be conducted at various concentrations in relation to the AGA. IF-B12-

Cy5 will be used in these studies to allow the tracking of both components (IF and AGA’s) of the 

design. IC50 values will be measured again in the presence of hIF.  

 

7.3.2 In Vivo Mitigation of Aminoglycoside Toxicity Using IF 

As discussed in Chapter 5 the small animal model suitable for AGA hearing loss studies 

are pigmented guinea pigs (for more detail see Chapter 5, Section 5.2.1). This study will utilize 

the AGA kanamycin, an AGA known to cause hearing loss in humans and guinea pigs.27 While 

extensive conditions and dose regimens have been explored in guinea pigs, the use of a test range 

of 250-400 mg/kg of kanamycin administered SC once a day for 23 days, a schedule known to 

produce ~ 40 dB hearing loss.27 This regimen will be validated in a cohort (n = 4) by measuring 
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hearing loss beginning on day 14 and then at one-week intervals for 3 weeks. The hearing range 

measured will be between 4,000-18,000 Hz and will be conducted with ABR’s with the animals 

under anesthesia. Once completed and affirmed, a cohort of guinea pigs (n = 4) will be 

administered AGA via SC as described above with a co-injection of IF by IP. 5-10 min after 

kanamycin injection with a trailing dose of hIF given at 2 hour post initial administration as this 

is the Cmax of most AGA administered via SC injection.28 As before, pre-dose hearing will be 

measured by ABR’s, with post-dose hearing ABR’s measurements beginning on the 14th day and 

continuing weekly for 3 months. hIF will be tested at two different concentrations to establish a 

dose-response, namely the established ration concentrations determined for blocking AGA 

uptake with IF as described above and 5x that concentration. All cohorts will be pre- and co-

administered mannan with IF (30 min pre-administration) to inhibit possible glycoprotein 

receptor (mannose receptor, see Chapter 3, Section 3.6.4) mediated uptake of the hIF protein by 

the liver (as determined in Chapter 3, Section 3.4.2). 
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Solution Structure and Constrained Molecular Dynamics
Study of Vitamin B12 Conjugates of the Anorectic Peptide
PYY(3–36)
Kelly E. Henry,[a] Deborah J. Kerwood,[a] Damian G. Allis,[a] Jayme L. Workinger,[a]

Ron L. Bonaccorso,[a] George G. Holz,[b] Christian L. Roth,[c] Jon Zubieta,[a] and
Robert P. Doyle*[a, b]

Introduction

Peptide YY (PYY), a member of the pancreatic polypeptide

family,[1–8] was first isolated from porcine intestinal tissue ex-
tracts in 1980[9] and was later shown to be a critical enteroen-

docrine hormone involved in appetite regulation.[10–12] PYY has
two main circulating forms: PYY(1–36) and a truncated form,

PYY(3–36).[13] PYY(1–36) is released in concert with caloric
intake or exercise and is cleaved by dipeptidyl peptidase IV
(DPP-IV)[14] in the gut to produce PYY(3–36). PYY(1–36) has an

appetite-stimulating effect through activation of the orexigenic
Y1 receptor (Y1-R) located in the intestines, blood vessels, and
brain.[15] The two-amino-acid N-terminal (Tyr-Pro) truncation to
PYY(3–36) results in an approximate 100-fold decrease in activi-

ty at the Y1-R,[5, 16] and generates an agonist of the anorexigen-

ic Y2 receptor (Y2-R) located in the intestines (vagal afferent

sensory neuron signaling)[17, 18] and brain,[19, 20] which exerts a G-
protein-coupled receptor (GPCR) Gi-mediated anorectic effect.

We recently reported a B12–PYY(3–36) conjugate that dem-
onstrated similar activity to native PYY(3–36) at the Y2-R in vi-

tro, but improved function over PYY(3–36) upon subcutaneous
(s.c.) administration in vivo in a lean rat model (conjugate 3 as
described herein below).[21] In earlier work, we focused on con-

jugating to B12 through the ribose hydroxy group, as it is well
established in the field that this is an optimal site for such con-
jugation, as it does not hinder recognition of B12 by its carrier
proteins.[22–25] Likewise, we focused on an N-terminal region of

PYY(3–36) for conjugation (specifically the K4 residue), because
again it has been well documented that modifications at (or

indeed complete loss of) this area do not significantly affect
Y2-R agonism.[26–28] These assumptions bore out, as the EC50

values at the Y2-R obtained for the conjugate produced (and

noted as conjugate 3 herein) were similar to that of unconju-
gated PYY(3–36) used for comparison. These were established

using a Fura-2 assay that monitors intracellular Ca2 + mobiliza-
tion under conditions in which the Y2-R signals through a pro-

miscuous Gq GTP binding protein.[21] Questions that remained

from this work, however, were what affect, if any, does B12 con-
jugation actually have on the PYY(3–36) secondary structure

and whether MD simulations could be used to better under-
stand, and possibly predict, any structural modifications ob-

served. To investigate these questions, two conjugates located
at the same coupling sites (ribose on B12 and K4 on PYY(3–36)

Vitamin B12–peptide conjugates have considerable therapeutic

potential through improved pharmacokinetic and/or pharma-
codynamic properties imparted on the peptide upon covalent
attachment to vitamin B12 (B12). There remains a lack of struc-

tural studies investigating the effects of B12 conjugation on
peptide secondary structure. Determining the solution struc-

ture of a B12–peptide conjugate or conjugates and measuring
functions of the conjugate(s) at the target peptide receptor

may offer considerable insight concerning the future design of
fully optimized conjugates. This methodology is especially

useful in tandem with constrained molecular dynamics (MD)

studies, such that predictions may be made about conjugates

not yet synthesized. Focusing on two B12 conjugates of the
anorectic peptide PYY(3–36), one of which was previously
demonstrated to have improved food intake reduction com-

pared with PYY(3–36), we performed NMR structural analyses
and used the information to conduct MD simulations. The

study provides rare structural insight into vitamin B12 conju-
gates and validates the fact that B12 can be conjugated to

a peptide without markedly affecting peptide secondary struc-
ture.
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but with a slightly varying spacer length (one methylene unit
difference) were assayed for agonism of the Y2-R using a new

fluorescence resonance energy transfer (FRET)-based assay that
faithfully reports the normal signal transduction process by

which the Y2-R signals through Gi proteins to lower levels of
intracellular cyclic adenosine monophosphate (cAMP).[29] NMR

structures were solved for these conjugates, and their in-solu-
tion NMR structures were compared with those previously re-
ported by Keire et al.[30] and Nygaard et al.[7] Subsequent un-

constrained and NMR constrained MD simulations were then
also performed.

Results and Discussion

In vitro evaluation of conjugates 3 and 4

All assays were performed at least in triplicate. Conjugates 3
and 4 were tested for their abilities to lower cAMP levels.

Figure 1 shows the dose–response relationships for 3 and 4
relative to K4PYY, showing both conjugates are less active than
K4PYY and that 4 is more active than 3. Both conjugates are,

however, within one-half log order of K4PYY.

This difference in EC50 values in comparing conjugates with
K4PYY was initially presumed to be a compromise between

steric hindrance and/or unfavorable flexibility resulting in
modifications/interactions that negatively affect the peptide
structure–activity profile. At this point we decided to pursue

NMR and molecular dynamics (MD) studies to further explore
these in vitro observations.

NMR analysis of 3 and 4

Proton chemical shifts for 3 were assigned by analyzing TOCSY,
DQF-COSY, and 2D NOE spectra at 25 8C. The experiments were

also performed at 20 and 30 8C, at which slight shifts of some
proton signals resolved overlapping peaks. The NMR spectra of

3 have some similarity to those of PYY(3–36), such as line
broadening of many signals,[7] indicating increased dynamics,

and a decrease in the chemical shift range of the backbone
amide protons relative to full-length PYY. All backbone amide
protons were assigned with the exception of Leu24, which
could not be definitely determined due to overlap. Figure S17

(Supporting Information) shows the proton chemical shift dif-
ference between 3 and PYY(3–36). There are chemical shift dif-

ferences for residue Lys4, which is not surprising, as this is the
attachment site for B12. Figure 2 shows an overlay of 3 after

MD calculations and PYY(3–36). The first chemical shift differ-
ence to consider is that for the methyl and a protons of Ala7.

In PYY(3–36), the methyl group of residue Ala7 is pointing
toward the a helix, whereas in conjugate 3 the methyl group

is oriented away from the a helix. A 2D NOE cross-peak be-
tween the Ala7 methyl group and the ring protons of Tyr20

was observed in PYY(3–36),[7] but in 3 only a very weak cross-

peak was observed in the longest mixing time 2D NOE experi-
ment. This difference in orientation would also put the Ala7
a proton in distinct environments. The backbone amide pro-
tons have different chemical shifts for the b turn residues and

residues in the N-terminal side of the a helix, specifically resi-
dues Gly9, Ala12, Ser13, Glu15, Leu17, and Arg19. This can be

explained by the unraveling of the a helix and increased dy-
namics at the N-terminal side in the PYY(3–36) structure. Con-
jugate 3 maintains an a-helical structure similar to that of full-

length PYY, and the residue with the largest chemical shift dif-
ference for the amide proton, Leu17, has a chemical shift value

closer to that of the full-length peptide: PYY Leu17 NH
8.40 ppm,[7] 3 Leu17 NH 8.36 ppm, PYY(3–36) 7.95 ppm.[7] Ny-

gaard et al. suggest that the Pro2–Tyr27 interaction is impor-

tant for the stability of the PP fold, and that loss of this interac-
tion in PYY(3–36) creates both conformational and dynamic

changes in the structure, especially around the turn region.[7]

Close inspection of 3 indicates possible hydrogen bonds from

Glu6 to Tyr27 and Ser23, which may stabilize the PP fold in the
conjugate.[7]

Figure 1. Dose–response curves monitored as percent inhibition of Ex-4
action at AKAR3 by K4PYY and conjugates 3 and 4 at the Y2-R. EC50 values:
K4PYY: 1�0.2 nm, 3 : 6�2 nm, 4 : 2�0.2 nm. EC50 values are the average
�SEM.

Figure 2. Overlay of PYY(3–36) (blue) versus 3 (tan). The structure of PYY(3–
36) was obtained from the RCSB Protein Data Bank (www.pdb.org); PDB ID:
2DF0. The program Chimera (UCSF; www.cgl.ucsf.edu/chimera/)[31] was used
to display the image.
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To elaborate on the structural studies, we decided to also in-
vestigate the solution structure of 4 to allow a direct compari-

son with 3. Based on the NMR spectra, the conjugate struc-
tures appear very similar with only minor differences in the

proton chemical shift assignments (Supporting Information
Figure S18) and greater than 95 % similarity in the 2D NOE

spectra (Supporting Information Figure S19).
The major difference observed between 3 and 4 is the

proton chemical shift change at B7 and B2 on the dimethyl-

benzimidazole (DMB) ligand (see Supporting Information Fig-
ure S12 for B12 atom numbering scheme). The C20 methyl pro-
tons are closer to the B4 and B2 protons in 4 based on the
presence of a weak cross-peak between the C20 methyl pro-

tons and B2, which is only seen in the longest mixing time 2D
NOE spectra of 3, and a cross-peak between the methyl pro-

tons and B4, which is stronger for 4. Weak cross-peaks are ob-

served in 4 between a propionamide proton of the g side
chain of B12 (Supporting Information Figure S12) and the Ha of

D11 as well as the methyl protons of A12. The a helix motif as
a whole is critical for association and subsequent agonism.[26]

This is consistent with reported Y2-R interactions, as the C-ter-
minal pentapeptide region is well established as the critical

region, or “address”, of the main interactions with Y2-R, while

the a helix is considered the “message”, indicating that both
areas are critical in Y2-R agonism.[26]

NMR constrained MD studies of 3 and 4

Molecular dynamics simulations of 3 and 4 were performed
both with and without the NMR constraints defined for 3 to

consider differences in behavior and potential alternative struc-
tures in the simulations. The observed structural changes

across the simulations identified intra-PYY(3–36) interactions
that might, through their stabilization in the isolated conju-

gate, promote the decreased activity of 3 relative to 4. The un-
constrained MD simulation data then provide an additional set

of structures for considering accessible geometries beyond the
restrained set. The average structures from representative MD

time ranges for 3 and 4 are shown in Figures 3 (front/side
view) and 4 (top view). Apparent from these views, and the

full simulations in general, are the persistence of 1) much of

the a helical structure and 2) localization of the B12 fragment
itself to the unstructured region approaching the loop into the
a helix (in the images, this loop is at the base of all structures,
including residues Glu10, Asp11, and Ala12). Across all of the
simulations, several hydrogen bonding motifs are found to
persist at the onset of the simulations and over the time evolu-

tion of the structure dynamics that serve to effectively anchor
the B12 at this loop region. Those which specifically anchor the
B12 to this region in all simulations are shown in Figure 5, visu-

alizing the two most persistent motifs for these structures :
a pair of hydrogen bonds from a single B12 amide side chain to

Pro8 and Glu16 (left, Motif 1) and an amide side chain to Pro8
hydrogen bond and coordination of a hydroxy group H atom

on Ser13 to the B12 cyano nitrogen atom (right, Motif 2). The

structural basis for preservation of the loop region itself across
all simulations is evident in Figure 6, which shows that (left)

Glu16 is engaged in several persistent hydrogen bonding inter-
actions with Gly9, Glu10, and Asp11, whereas at the far end of

the loop (right), Glu6 is in close proximity to hydrogen bond
acceptors on Tyr27 and Ser23. The NMR distance lists, ranges,

and time-averaged MD structures for 3 and 4 are provided in

the Supporting Information.

Figure 3. Side-on views (aligned along the a helix) of RMSD average structures (across 10 ns sampling increments) for restrained (left) and unrestrained (right)
MD simulations of A) 3 and B) 4.

ChemMedChem 2016, 11, 1015 – 1021 www.chemmedchem.org Ó 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim1017

Full Papers

http://www.chemmedchem.org


The differences between structures 3 and 4, both with and

without NMR constraints, are largely localized to the C-terminal
side of the a helix and occur to varying degrees in all of the

simulations. With the B12 largely predicted to be confined to
the PYY(3–36) loop due to several strong hydrogen bonding

interactions, and with the well-known attenuation of PYY(3–

36) activity with modifications to or removal of the C-terminal
region, the most logical explanation for any change in behav-

ior to come from these single conjugate simulations is some
structural change at the C-terminal region of PYY(3–36). This

may occur from B12 binding-induced conformational changes
at the PYY N terminus, causing changes in activity, meaning

any observed interactions between the B12 binding-constrained

N terminus and concomitantly proximal C-terminal regions are
of great interest. Despite the small change in tether length for

these two cases, RMSD analyses and average structure genera-
tion produced two distinct structures that, for each case, re-

vealed binding interactions deemed consistent with the trends

in activity.
MD simulations of 3 and 4 highlight hydrogen bonding in-

teractions that may govern the differences observed in Y2-R
agonism and subsequent calcium mobilization and inhibitory

cAMP effects. PYY(3–36) does not tolerate any interaction at
the C terminus with respect to Y2-R stimulation.[32] If the

Figure 4. Top-down views (aligned along the a helix) of RMSD average structures (across 10 ns sampling increments) for restrained (left) and unrestrained
(right) MD simulations of A) 3 and B) 4.

Figure 5. Two persistent hydrogen bonding interaction motifs between the B12 and PYY(3–36) unstructured region (residues 3–10) across all simulations.
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answer to the decreased activity of 3 lies solely on some re-

sponse internal to the conjugate, one might argue from the
MD simulations that the shortened tether length enhances the

stiffness of the unstructured region (residues 3–9) by decreas-

ing its conformational flexibility upon hydrogen bonding be-
tween the B12 and the near-loop region. This result would pro-

vide a less flexible N-terminal region and a more persistent hy-
drogen bonding pocket for the C-terminal region with which

to interact. By the loss of flexibility, necessary at the C-terminal
region for biological activity, reduced activity would be predict-

ed (and is observed). Kaiser et al. recently reported data show-

ing that unwinding of C-terminal residues of neuropeptide Y
(NPY) is critical for Y2 receptor binding and activation.[32] Solu-

tion NMR experiments showed that the ligand is tethered to
the second extracellular loop by hydrophobic contacts and re-

vealed NPY to undergo remarkable structural changes within
the C terminus. The C-terminal pentapeptide plays a role in ex-

tensive and susceptible interactions in NPY; a network that is

also relevant for PYY(3–36) in regards to Y2-R agonism.
Changes in the C-terminal amino acids can easily disturb re-
ceptor binding or switch receptor selectivity for both NPY and
PYY(3–36) as observed in numerous earlier structure-activity

studies.[33] The ultimate conclusion from Kaiser et al. directly re-
lates to our work, as the binding mode of NPY [and in our

case, B12 conjugates of PYY(3–36)] might have more general
implications for peptide binding GPCR systems.

The MD simulations from this study do indicate that if the

origin of the decreased activity of 3 is entirely due to factors
internal to the B12–PYY(3–36) conjugate itself, then constraint

of the C-terminal region by hydrogen bonding interactions
with the N-terminal region could explain it—and that this kind

of internal mechanism may have its origin in the reduction of

tether length.

Conclusions

B12–PYY(3–36) conjugates 3 and 4 with various methylene
spacer lengths between the B12 and PYY(3–36) show similar

Y2-R agonism to that of PYY(3–36). Both intra- and intermolec-

ular interactions between B12 and the peptide and small
changes in the secondary structure of the peptide brought on

by conjugation were observed. Based on the information col-

lected from the NMR constrained MD studies, it would have
been possible to offer a detailed assessment of the potential

function of both conjugates. These observations suggest that
MD could be used a priori to guide conjugate rational design

and minimize the number of conjugates that would need to
be screened—information of considerable benefit in develop-

ment terms. Conjugates and modifications of B12 have gar-

nered much interest in recent years for their clinical and me-
dicinal applicability.[34] Based on the studies described herein,

an ideal B12–peptide conjugate would be one with an appro-
priate linker length to allow optimal function of both the pep-

tide and B12, which could be predicted by MD via inter- and in-
tramolecular interactions that are known to be useful and/or
harmful to the overall function of each component.

Experimental Section

Synthesis of alkyne precursors (1 and 2) and conjugates (3 and
4): Two B12–alkyne precursors were prepared by activation of a B12–
carboxylic acid (B12-CA) derivative[35] with 1-ethyl-3-(3-dimethylami-
nopropyl)carbodiimide (EDC) and hydroxybenzotriazole (HOBt) in
anhydrous DMSO under argon (Scheme 1). Full characterization of
the alkyne precursor 1 and 2, including RP-HPLC, MALDI-ToF MS,
and NMR can be found in the Supporting Information (Figure S1–
11, Table S1). For conjugate synthesis, click chemistry[36] was imple-
mented using a copper iodide (CuI) and tris[(1-benzyl-1H-1,2,3-tria-
zol-4-yl)methyl]amine (TBTA) method, adapted from Gryko
et al.[37, 38] Copper(I)-catalyzed alkyne–azide cycloaddition (CuAAC)
synthesis of conjugates 3 and 4 via the alkyne precursors 1 and 2
and a K4-azido PYY(3–36) (K4PYY) is described in Scheme 2 (spacer
length n = 2, 3 for precursors 1 and 2). K4PYY was initially tested
against PYY(3–36) amide (Sigma–Aldrich), and there was no ob-
served difference in Y2-R agonism. Subsequently, K4PYY was used
as the control for all assays. Characterization of the B12-PYY(3–36)
conjugates 3 and 4, including HPLC and MALDI-ToF MS, can be
found in the Supporting Information (Figure S13–16).

Figure 6. Two persistent hydrogen bonding motifs that define the PYY(3–36) loop region (left) and stabilizing interactions between the unstructured N-termi-
nal region and the a helix.
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In vitro assay of 3 and 4 at the Y2 receptor coupled to Gi : Conju-
gates 3 and 4 were tested for their abilities to lower levels of
cAMP in an in vitro assay using HEK293 cell monolayers
(Figure 7).[29] These cells were engineered so that they stably ex-
press the human GLP-1 receptor (GLP-1R), while also transiently ex-
pressing the human Y2-R. Furthermore, these cells were virally
transduced with the genetically encoded FRET reporter AKAR3,
which is used to monitor cAMP-dependent protein kinase (PKA) ac-
tivation intracellularly. This assay is unique in that it allows FRET-
based detection of the ability of PYY(3–36) to counteract the
action of a GLP-1R agonist (Exendin-4; Ex-4) to raise levels of cAMP.
When the cells are first treated with Ex-4 (33 pm ; injection 1) so
that levels of cAMP are elevated, AKAR3 exhibits increased FRET,
measured as a decrease in the 485/535 nm emission ratio
(Figure 7). This change of FRET occurs after an approximate lag
time of 50 s. If PYY(3–36) is then applied at the 180 s time point
(injection 2), a functional antagonism of the action of Ex-4 is mea-
sured so that the change of FRET is decreased. Note that no

change of FRET is measured in response to the adminis-
tration of a negative control standard extracellular saline
(SES; Figure 7). By varying the concentration of added
conjugate, it is possible to determine dose–response re-
lationships, and to also determine EC50 values describing
inhibitory actions of PYY(3–36) conjugates versus 33 pm
Ex-4 in this assay. Figure 7 illustrates these responses to
the first injection of either Ex-4 or SES, and the second
injection of K4PYY or SES. To normalize these raw data
for subsequent dose–response analysis, “end-point”
values of FRET were measured during the last 10 sample
intervals (Figure 7). As illustrated in Figure 1, the dose-
dependent inhibitory actions of PYY(3–36) conjugates
are then quantified relative to a value of 100 % that cor-
responds to the maximal inhibitory effect measured
when testing 300 nm PYY(3–36) in this assay.

NMR studies of 3 and 4 : NMR studies were executed ini-
tially to observe any structural differences between the
conjugates and free peptide in solution. Because in vivo
studies had previously established in vivo function for 3,
extensive structural studies were first performed with 3
and a direct comparison made to published PYY(3–36).[7]

Full NMR studies of 4 were then completed to serve as

Scheme 1. Synthesis of B12–alkyne precursors 1 and 2. Reagents and conditions : EDC, HOBt, anhydrous DMSO; reactions carried out under argon for 16 h at
RT.

Scheme 2. Copper(I) alkyne–azide cycloaddition synthesis of B12–PYY(3–36) conjugates 3
and 4 via alkyne precursors 1 and 2 with a two- or three-methylene-unit spacer between
the 5’-amide on B12 and the triazole linkage to K4PYY. Reagents and conditions : CuI, TBTA;
reactions were carried out for 16 h at RT. PYY(3–36) adapted from PDB ID: 2DF0.

Figure 7. D485/535 FRET ratio through the course of a run. The first injection
occurs at 100 s followed by a second injection at 180 s.

ChemMedChem 2016, 11, 1015 – 1021 www.chemmedchem.org Ó 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim1020

Full Papers

http://www.rcsb.org/pdb/explore/explore.do?structureId=2DF0
http://www.chemmedchem.org


a comparison with 3. Full descriptions of methods and conditions
are provided in the Supporting Information.

MD studies of 3 and 4 : To complement the NMR studies, MD sim-
ulations of 3 and 4 were completed in attempts to explain the
minor differences of Y2-R agonism between the two conjugates.
These MD studies took the form of 50 ns simulations to probe the
potential variation in simulation geometries and time-averaged
structures that arise from different tether lengths. MD simulations
were performed using the GROMACS (ver. 5.0.4)[39] software pack-
age. The NMR distance lists, ranges, and tabulated distances from
the time-averaged MD structure for 3 are provided in the Support-
ing Information.
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1. Background and Scope on Utilizing the Vitamin B12 Dietary 
Pathway for Drug Development

1.1 Vitamin B12 and its dietary uptake

The consumption of vitamin B12 (B12), also known as cobalamin (Cbl), 
is essential for humans. B12 is produced naturally by select bacteria (and 
likely certain archea) (Doxey et al. 2015) and organisms must acquire the 
vitamin through their diet (about 2.5 µg per day for humans) (Martens et al. 
2002; Nielsen et al. 2012). There are two primary biologically active forms of 
B12: methylcobalamin and adenosylcobalamin. Methionine synthase uses 
methylcobalamin to produce the amino acid methionine from homocysteine, 
and methylmalonyl-CoA mutase uses adenosylcobalamin as a cofactor to 
produce succinyl CoA (Nielsen et al. 2012; Kräutler 2005). Mammals have 
developed a complex dietary uptake pathway for B12 involving a series of 
transport proteins and specifi c receptors across various tissues and organs 
(vide infra) (Nielsen et al. 2012; Gherasim et al. 2013). It is the understanding 
and exploitation of this uptake pathway that offers considerable scope for 
drug development.

B12 is a water-soluble vitamin with a highly complex structure, comprising 
a midplanar corrin ring composed of four pyrrole rings linked to a central 
cobalt (III) atom (Hodgkin et al. 1955). The corrin ring is similar to the more 
commonly known porphyrin structure, but with key differences in terms of 
degree of saturation, symmetry and planarity (see Figure 1).
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Several functional groups are synthetically available for modifi cation 
on B12 (see Figure 1). Only select modifi cation sites, however, maintain the 
recognition needed to utilize the full B12 uptake pathway (see Figures 1 and 2). 
Modifi cations can, however, be made to target specifi c proteins while reducing 
affi nity for others, a fact recently exploited to target haptocorrin-positive 
tumors (Waibel et al. 2008). An in-depth discussion of modifi cation sites for 
either complete, or targeted pathway access, can be found in Section 1.2.

Transport and delivery of B12 through the gastrointestinal tract is 
dependent on three primary carrier proteins: haptocorrin (HC; Kd = 0.01 pM),

 

intrinsic factor (IF; Kd = 1 pM),
 
and transcobalamin II (TCII; Kd = 0.005 pM),

 

each responsible for carrying a single B12 molecule (Fedosov et al. 2002). B12 
is initially released from food by the action of peptic enzymes and the acidic 
environment of the gastrointestinal system and bound by HC (also known as 
R-binder or transcobalamin I (TCI)) (Nielsen et al. 2012). HC is a glycoprotein 
with an apparent molecular mass of between 60–70 kDa and is secreted by 
the salivary glands (Furger et al. 2013). HC has a high affi nity for B12 under 
acidic conditions (pH < 3), allowing it to protect B12 (Holo-HC) from acid 

Figure 1. Structure of vitamin B12. R is –methyl or -adenosyl in active cofactors. In center is the 
corrin ring, which has a greater number of sp3 carbons than a porphyrin rendering it less planar 
and less conjugated, and with one less carbon (19 rather than 20) due to the lack of a methylene 
spacer unit between the ‘C’ and ‘D’ rings as is found in a porphyrin. Listed are the common 
variable R groups found on B12. H2O/OH are the same group but is dependent on pH (OH at 
alkaline pH and H2O at neutral and acidic). Also highlighted are the major modifi able sites on B12 
for conjugation to small molecules or peptides/proteins, whereby binding by the dietary uptake 
proteins can be minimally affected or selected for, based on drug development requirements. 
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Figure 2. Dietary uptake pathway for B12 in humans. Abbreviations used: R-protein/TCI: 
Haptocorrin (HC); IF: Intrinsic factor; TCII: Transcobalamin II; Cbl: cobalamin/B12. Image 
produced and used with permission of Xeragenx LLC (St. Louis, MO, USA).

hydrolysis. Holo-HC travels from the stomach to the duodenum, where the 
increase in pH (> 5) decreases the affi nity of HC for B12 and, combined with 
pancreatic digestion of HC, causes B12 release, whereupon it is bound by 
gastric intrinsic factor (Glass 1963).
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IF is a ~50 kDa glycosylated protein that is secreted from the gastric 
mucosa (Mathews et al. 2007). Once B12 is bound to IF, it facilitates transport 
to the ileum and passage across intestinal enterocytes. This occurs by receptor-
mediated endocytosis via an IF-B12 receptor cubilin (CUB) (Christensen et 
al. 2013). CUB transports holo-IF in concert with a transmembrane protein 
amnionless (AM), creating a CUBAM receptor for holo-IF (Fyfe et al. 2004). 
Following internalization, IF is degraded by lysosomal proteases, such as 
cathepsin L, and B12 is released into the blood stream, either as free B12 or 
pre-bound to transcobalamin II (TCII) (Nielsen et al. 2012; Beedholm-Ebsen et 
al. 2010). There is some controversy in this area as to whether both methods 
occur or one dominates over the other, and indeed whether there is a third 
mechanism at play also. Cells that require B12 express the holo-TCII receptor, 
CD320. Upon internalization, TCII is degraded and B12 is transported from 
the lysosome for cellular use (Kräutler 2005). Kidney cells also express the 
megalin receptor, which in part reabsorbs fi ltered holo-TCII from urine 
(Moestrup et al. 1996).

Knowledge of the binding between B12 and is various transport proteins is 
critical if the system is to be successfully exploited from bench-top to bedside. 
In the last 10 years there has been a huge advance in our critical understanding 
of protein structure as it relates to the B12 uptake pathway, with the publication 
of HC, IF, TCII, and cubilin-IF-B12 structures (Furger et al. 2013; Mathews et 
al. 2007; Wuerges et al. 2006; Andersen et al. 2010). The fi rst solution structure 
of a B12 conjugate, that of B12 coupled to the anorectic peptide PYY3–36, was 
also recently reported (using NMR methodology) (Henry et al. 2016). 

Researchers have a better understanding now of how B12 interacts 
with its transport proteins, and how these transport proteins interact with 
their receptors. The implications this can have on drug delivery and sites of 
potential conjugation can then be better predicted, detailed, rationalized and 
hence optimized. These endeavors need fundamental knowledge of properties 
and behavior of B12 in biological systems but also require new or improved 
synthetic routes to introduce the exact desired modifi cation into the vitamin 
necessary for specifi c exploitation.

1.2 Modifying B12: the crossing of synthetic and end-goal 
considerations

There are multiple sites for chemical modifi cation on the B12 molecule, 
depending on whether retention of recognition by all transport proteins, 
or the selective recognition of a subset is required. Therefore, it is critical 
to consider solvent-accessible surfaces of B12 transport proteins and how 
such proteins physically bind B12. For IF, this exposure is ~13% (~163 Å2), 
with TCII at ~6.5% (~80 Å2) and HC, having the least accessible area at 3.2% 
(~40 Å2) (Figure 3) (Wuerges et al. 2007). These exposures allow for a wide 
range of modifi cation at select sites on B12 conjugates while retaining (A) 
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general pathway acceptance or (B) for selecting specifi c parts thereof (both 
(A) and (B) are discussed separately below in Section 1.2). 

B12 and the molecule of interest (‘drug’) can be: (1) coupled directly 
together; (2) held apart by “spacer” units to give distance between B12 and 
the molecule; or (3) have the desired drug contained within the carrier, 
unconjugated, but with the carrier covalently bound to B12. Several functional 
groups are available for modifi cation on B12, including propionamides, 
acetamides, hydroxyl groups, the cobalt(III) ion and the phosphate moiety 
(Proinsias et al. 2013). However, the sites for modification capable of 
maintaining the recognition of all three transport proteins is limited due to 
the manner in which B12 is bound by each protein. 

All three transport proteins (HC, IF and TCII) bind to B12 with high 
affi nities, but the specifi city varies. IF shows the highest specifi city for B12, 
followed closely by TCII, with HC have a broad substrate base including B12 
analogs such as cobinamides (Fedosov et al. 2002; Fedosov et al. 2007). It is 
thought because of the affi nity of HC for many inactive B12 analogs that it 
acts as a scavenger, removing such from the blood and partially digested B12 
from the intestine, preventing bacterial access (thus suggesting a role for B12 
in bacteriostasis). Viewed synthetically, this implies of course that B12 can 
be readily modifi ed and retain recognition by HC, whereas IF and TCII offer 
signifi cantly less range for modifi cation. 

1.2.1 General pathway acceptance

Conjugation of molecules to B12 resulting in the recognition of HC, IF, and 
TCII have been successful with fi ve major sites to date: (1) the peripheral 

Figure 3. Crystal Structures of the Three Transport Proteins Bound to B12. The ribose 5’OH is 
solvent accessible in all three transport proteins as shown by the arrows. (a) TCII, (b) IF, (c) HC. 
The structure of TCII, IF, and HC was obtained from www.pdb.org; (PDB code 2BB5, 2PMV, 
4KK1 respectfully). The program Protein Workshop Version 3 was used to display the image. 
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corrin ring e-propionamide (Alsenz et al. 2000); (2) the peripheral corrin ring 
b-propionamide (Waibel et al. 2008); (3) the 5’-hydroxyl group of the ribose 
ring on the dimethylbenzimidazole ‘tail’ (Petrus et al. 2007); (4) the 2’-hydroxyl 
group of the ribose ring (Wang et al. 2007); and (5) the cobalt cation (Tran et 
al. 2016). 

The crystal structure of holo-TCII provides a rationale for why these 
positions are favored for modifi cation. The phosphate moiety, 2’ hydroxyl 
group, and a, c, d, and g-propionamides have various hydrogen bonds between 
multiple TCII residues and the solvent molecules indicating any modifi cations 
would disrupt that bonding and stability of the TCII-B12 complex (Wuerges 
et al. 2006). In addition, TCII does not completely encompass B12 and leaves 
a 1.4 nm solvent-accessible pocket of B12. This pocket shows the phosphate 
and the ribose moieties protruding and both have been exploited in conjugate 
design whereby TCII and IF binding has been maintained (Figure 3). 

The 2’-hydroxyl group has been modifi ed through activation by diglycolic 
anhydride but this has not been extensively used in the B12 conjugation fi eld, 
given the ease of 5’-OH coupling (Wang et al. 2007). Conjugation to the b- and 
e-propionamides have been a popular choice for chemists for conjugation 
(Alsenz et al. 2000; Waibel et al. 2008). Such a route requires acid hydrolysis 
of the amides, typically using 1 N HCl (Pathare et al. 1996). This synthetic 
route creates multiple mono-acids at the b, d and e-positions, which makes 
access to targeted specifi c acids low yielding (d 15%) and complex to purify 
(Pathare et al. 1996). A recent result exploiting this approach however, is that of 
Schubiger et al., who showed that, based on the tether length off of the b-acid 
side chain, selectively towards specifi c transport proteins (IF over TCII, for 
example) could be achieved (see Section 2.5) (Waibel et al. 2008). 

The most common site for modifi cation has, however, became the 5’ 
hydroxyl group, for three main reasons: (1) molecules conjugated here still 
allow binding retention of the transport proteins (Bonaccorso et al. 2015; 
McEwan et al. 1999; Fowler et al. 2013); and (2) conjugation to this site is highly 
facile and selective (Clardy-James et al. 2012; ChromiĔski and Gryko 2013); and 
(3) a wide range of modifi cations have been developed for this site, expanding 
scope for substrate conjugation (Clardy-James et al. 2012; Wierzba et al. 2016; 
ChromiĔski and Gryko 2013; McEwan et al. 1999). The “classic” activation with 
1,1’-carbonyldiimidazole or 1,1’-carbonyldi(1,2,4-triazole) with an addition 
of a primary amine, producing a carbamate linked conjugation, allows for a 
wide range of molecules to be used (McEwan et al. 1999). Doyle et al. directly 
modifi ed this position, using 2-iodoxybenzoic acid and 2-hydroxypyridine, 
to create a carboxylic acid at this position, which could then be readily used 
to produce amide linked conjugates (Clardy-James et al. 2012; Bonaccorso et 
al. 2015; Henry et al. 2016; Henry et al. 2015). Later, Gryko et al. developed 
a “clickable” B12 conjugate, replacing the 5’hydroxyl with an azide, which 
allows for a high yielding Huisgen-Sharpless copper-azide-alkyl reaction, 
creating a stable triazole linker with alkyne containing molecules (ChromiĔski 
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and Gryko 2013). Most recently, Gryko et al. also developed a reactive pyridyl 
disulfi de group at this site with moderate yield (~60%) (Wierzba et al. 2016). A 
reactive thiol group creates the possibility of direct disulfi de bonds to proteins 
and molecules, opening up a new area for conjugation that readily exploits 
redox for the fi rst time. 

Another increasingly popular site for modifi cation is the cobalt atom. 
Transport proteins accommodate signifi cant change at the cobalt ȕ-ligand site, 
a feature exploited in the biochemistry of B12  (Kräutler 2005). Comparing 
the binding constants of different biological axial ligands such as methyl, 
hydroxyl, 5’-adenosylcobalamin, and cyano-cobalamin show no signifi cant 
difference (Fedosov et al. 2002). In synthetic approaches the Co(III) is typically 
reduced to Co(I) and then reacted with electrophiles, similar to the biological 
enzymatic process by methionine synthases (Ruetz et al. 2013; Kräutler 2005). 
Modifi cations at the cobalt ion have been limited by the fact that most products 
are extremely light sensitive (Ruetz et al. 2013; Ruiz-Sánchez et al. 2007). 
However, in 2013, two groups published light stable phenylethynylcobalamin 
in two separate syntheses: (1) radical reduction chemistry (Ruetz et al. 2013) 
and (2) reduction free synthesis (ChromiĔski et al. 2013). These syntheses 
allowed for a wide tolerance to functional groups, allowing for more complex 
ligands on this site to be conjugated or subsequently reacted forward. Another 
way of modifying the cobalt ion is by metalating the cyano axial group. 
Fluorophores, radionuclides, cisplatin, vanadate, chlorambucil, and colchicine 
have been attached to this site (see Table 1).

In 2016, Gryko et al. published moderate-to-high yielding (~40–80%) 
modifi cations to the phosphate moiety, the fi rst complete investigation of this 
group to also include binding studies (Proinsias et al. 2016). The phosphate 
modifi cation showed preferential binding to IF based on the length of the 
linker attached to the phosphate. Interestingly, these conjugates are acid, heat, 
and UV light sensitive possibly allowing for a future new class of cleavable 
B12 conjugates for drug delivery.

A more recent approach in B12 modifications is creating a dual 
functionalization of the (a) cobalt ion and (b) 5’ hydroxyl group. These 
conjugates are used for detection and delivery by designing a detectable 
component with a drug on the same molecule. The detectable component, such 
as a radionuclide or fl uorophore, is conjugated to the 5’ hydroxyl group and a 
drug is either added directly to the cobalt atom or attached via a linker (Tran 
et al. 2016; Shell et al. 2014). In 2014, Lawrence et al. used this idea to target 
erythrocytes with the 5’-hydroxyl moiety and delivered a cleavable drug via 
the cobalt linker (see Section 2.4) (Smith et al. 2014).

While understanding the maintenance of transport protein binding and 
modifi ed B12 conjugate design and synthesis has made signifi cant strides, it is 
important to note that little is known about the effects a modifi ed holo-protein 
complex had on recognition and binding to its receptor. In 2010, Andersen et 
al. published the crystal structure of cubilin(5–8)-IF-B12 (Andersen et al. 2010). 
This structure provides an outline of how the holo-IF interacts with cubilin, 
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allowing researchers a new tool to determine the implications of modifi cation 
on receptor binding (a study not yet conducted to our knowledge). 

1.2.2 Targeting specifi c transport proteins

A B12 conjugate injected in the systemic circulation can be bound by HC or 
TCII. Initially, it was hypothesized that cancer therapy/imaging using a B12 
based delivery mechanism would work based on a projected increase in the 
TCII receptor, CD320, in a variety of cancer types such as breast, ovarian, 
thyroid, uterine, testis, and brain cancer (Mundwiler et al. 2005; Collins and 
Hogenkamp 1997). This overexpression of CD320 would provide suffi cient 
uptake of a tracer bound to endogenous TCII vs uptake in healthy tissue. Such 
studies, however, suffered from high background (Section 2.5).

The use of HC binding was not investigated until 2008, when Schubiger 
et al. made a series of B12 conjugates that would selectively bind HC (and 
IF), but not TCII (Waibel et al. 2008). The hypothesis here was that, given the 
presence of TCII and HC in serum, and assigning the high background to 
TCII mediated cell entry, targeting only HC would offer improved results. 
Membrane associated HC, expressed de novo, in certain cancer cell lines offered 
a possible route to selectivity, absent from the approach to CD320 uptake 
(Carmel 1975). In 2014, a select conjugate, 99mTC-PAMA-cobalamin capable 
of selectively binding HC in blood serum, used in the detection of breast, 
colon, lung, and pharyngeal cancers in human patients, showed greater tumor 

Figure 4. IF-B12-PYY3–36. Highlighted is the B12-PYY3–36 (gold) and IF (gray).
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uptake and reduced TCII-based background (see Figure 4) (Sah et al. 2014). 
This publication is highly signifi cant for B12 drug development, especially 
since it was performed in a human patient.

1.2.3 Structural investigations of B12 conjugates

As mentioned above there are three ways in which B12 and a molecule can be 
connected (elaborated upon in Section 1.2). Connecting through a “linker” to 
create length is favored in conjugates mainly for ease of synthesis (a result of 
favored modifi cation techniques). In considering modifi cation a few questions 
arise; (a) are all linker lengths created equal, and (b) do you need a certain 
“space” to better allow binding to transport proteins as well as allow the 
peptide to function properly? 

In 2016, Doyle et al. published a structural study, using NMR and molecular 
dynamics, to predict agonism at the peptide receptor for a B12-peptide (Henry 
et al. 2016). They used two B12-peptides (both based on B12 conjugates of the 
anorectic Y2-receptor agonist Peptide YY (PYY3–36)) with a difference of one 
methylene unit length and assessed the B12-peptide’s agonism at its receptor 
as well as performed constrained molecular dynamics (MD) with each. The 
data (collected by NMR and used to constrain MD) showed that the conjugate 
with a longer tether had more hydrogen bonding to B12 and predicted lower 
agonism at the Y2-R target receptor, a result confi rmed by in vitro cell assay 
(Henry et al. 2016). Such work offers the possibility of using constrained MD 
to predict function a priori and minimize the need to synthesize extensive 
libraries of compounds for screening. This data also showed for the fi rst 
time in a solution structure, that a B12-peptide/protein can be made without 
prominently affecting the peptides secondary structure (and hence function). 

2. Recent Highlights in B12 Drug Development

There are several excellent reviews in this area that the reader is referred to 
here (Zelder 2015; Clardy et al. 2011). What is noted below are recent specifi c 
highlights and general overview considerations that endeavor to ask where 
the fi eld is going and what the big hurdles/goals are in the fi eld of B12 drug 
development. 

2.1 Oral delivery 

Few peptide/protein-based drugs have the ability to survive the gastrointestinal 
tract and/or cross the intestinal wall to make it to the systemic circulation. The 
B12 pathway has naturally developed a complex mechanism for this uptake. 
Researchers can “hijack” this pathway to deliver B12-drugs in an oral manner. 
Early research in B12-peptide/protein oral drug delivery was conducted by 
Russell-Jones and co-workers in the 1990’s focusing on B12 conjugates of 
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granulocyte colony stimulating factor, erythropoietin, luteinizing hormone-
releasing hormone, ANTIDE-1, and ANTIDE-3 (see Table 2) (Russell-Jones et al. 
1995; Russell-Jones, Westwood and Habberfi eld 1995). Since then other groups 
have shown B12-molecules being transported via the B12 pathway across 
intestine cell lines in vitro and in vivo (Petrus et al. 2009; Dix et al. 1990; Verma 
et al. 2016). More recent highlights include that of a B12-PYY3–36 conjugate, 
which, when administered orally achieved clinically relevant levels of PYY3–36 
in blood of a rat model (~200 pg/mL after 1 h) (see Table 2 and Figure 4) (Fazen 
et al. 2011). This conjugate was not, however, shown to have any functional 
effect. In 2016, Mishra et al. showed a B12-chitosan layered nanoparticle that 
encapsulated insulin had a 10-fold increase in effective insulin duration in 
vivo when administered orally, achieving a maximum drop in glucose of ~40% 
(Verma et al. 2016).

Although data suggests drugs can be delivered orally through this 
pathway there are some questions left unanswered such as; (a) would oral 
administration be feasible because of the limit of uptake due to the expression 
of CUB, (b) amount of drug that gets into the blood serum and (2) would 
pre-binding of B12-drug to IF allow more effi cient uptake? It is known that 
there is a limited pool of CUB expressed in the terminal ilium, which limits 
IF-mediated absorption to around 1.5 µg per meal (1 nmole/dose) (Schjonsby 
and Andersen 1974). Survival of enterocyte passage by a peptide bound to B12 
is also unknown, as is whether such a conjugate would arrive in serum bound 
or unbound to TCII (with implications for subsequent function) (see Section 3).

2.2 Subcutaneous delivery

As mentioned above a “hijacking” of the B12 pathway can be exploited 
for oral delivery. However, this “hijacking” is not limited to the use of 
oral administration. In 2015, Doyle et al. published on a subcutaneously 
administered B12-PYY3–36 (Henry et al. 2015). Peptide YY3–36 (PYY3–36) is an 
endogenous appetite suppressing peptide that is an agonist for the NPY2 
receptor in the intestines and arcuate nucleus of the hypothalamus. Food intake 
(FI) was signifi cantly reduced over a fi ve-day course for B12-PYY3–36 (24%) 
compared to PYY3–36 (13%). In addition, reduction of FI was more consistent 
after each dose through the course of a rat feeding cycle for B12-PYY3–36 (26%, 
29%, 27%) compared with PYY3–36 treatment (3%, 21%, 16%)ref. These fi ndings 
demonstrate signifi cant pharmacodynamic (PD) improvement upon simple 
conjugation of B12 to PYY3–36 for subcutaneous delivery. Of interest also was 
the fact that, when looking at the pharmacokinetic (PK) parameters of the B12 
conjugate compared to free PYY3–36, it is clear there is minimal improvement 
in terms of serum half-life, clearance, volume of distribution. Of note, in PK 
terms, was the observed increased Cmax for B12-PYY3–36 compared to PYY3–36, 
but at the same T1/2 (suggesting B12 conjugation did not increase subcutaneous 
uptake rate, but did improve amount that was passaged). 
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2.3 Peptide and protein protection

One of the major open questions in the fi eld has been whether binding a 
peptide/protein to B12, with or without subsequent B12 binding protein 
interaction, could offer any protection against proteolysis. In 2015, Doyle et al. 
attempted to address this focusing on the stability (as defi ned by retention of 
peptide/protein agonist receptor function) of a B12 conjugate of the glucose 
controlling (GLP-1 receptor agonist) incretin exendin-4 (Ex-4) (Bonaccorso 
et al. 2015). Either as the straight B12-conjugate, or bound by IF, function at 
the GLP1-R relative to undigested controls was investigated using proteases 
from both the gastrointestinal tract (trypsin and chymotrypsin) and kidney 
(meprin ȕ). The addition of IF produced up to a four-fold increase in function 
compared to Ex-4 alone, when digested by trypsin, and no statistical decrease 
in function when challenged by meprin ȕ (Bonaccorso et al. 2015). These 
results offer a signifi cant opportunity for exploitation. Increase in gastric 
stability, even on a small percentage scale, could provide a route to achieving 
the desired effect orally. This work also suggests the possibility of utilizing 
an IF-B12-drug complex in serum, thus expanding use of IF beyond oral 
administration. If the fact that IF is not found in serum produces antigenicity, 
it is likely that switching IF for HC would achieve similar improvements in 
protease protection, and mitigate the antigenicity (thus, suggesting here using 
the pathway for PK improvements). 

2.4 Photo-cleavable conjugates

In 2014, Lawrence et al. published a series of B12-fl urophores that were 
modifi ed on the cobalt atom. This series was designed, and proven, to be 
selectively photocleavable at different wavelengths, tissue-penetrating light 
(600–900 nm), in a mixture (Shell et al. 2014). The photocleavable-B12 system 
was then used as a platform to selectively deliver drugs. Initially, B12-cAMP 
and B12-doxorubicin (B12-Dox) activity was shown in vitro. B12-Dox showed 
cell viability equal to that of the control doxorubicin and B12-cAMP showed 
a light only induced cell morphology change typical of cAMP-dependent 
protein kinase activity (Shell et al. 2014).

A follow up paper, also published in 2014 by Lawrence et al., used 
the photocleavable-B12 platform to deliver three anti-inflammatories: 
methotrexate, colchicine, and dexamethasone (see Table 2) (Smith et al. 
2014). They used the 5’-hydroxyl group to target erythrocytes by using a 
C18 hydrophobic linker and functionalized the cobalt atom with each drug. 
After loading the erythrocyte with the B12-drug and a modifi ed fl uorophore 
(added as a separate molecule) they were able to photocleave the drug into the 
surrounding media and observe cell morphology changes (Smith et al. 2014). 
This approach then was able to selectively deliver drugs to targeted cell lines. 



Vitamin B12 and Drug Development 353

2.5 Imaging

Table 3 lists the B12-imaging agents reported to date. As mentioned above 
in Section 1.2.2, historically, imaging using B12 targeted the CD320 receptor, 
based on the premise that overexpression of CD320 on rapidly proliferating 
tumor cells would provide necessary tumor to background ratio’s (Collins and 
Hogenkamp 1997; Mundwiler et al. 2005). However, this technique proved 
highly limited due to observed high background uptake across tissues. In 
2014, Burger et al. published a human in vivo study using a 99mTc probe, based 
on a B12-conjugate modifi ed at the b-acid with a 4-carbon linker (B12-PAMA) 
in patients with fi ve types of cancer: lung, colon, hypopharyngeal, prostate, 
and breast (Sah et al. 2014). The conjugate was shown initially to be selectivity 
bound by HC, but not to be bound by TCII (Waibel et al. 2008). Initial results 
showed uptake in select cancers but with moderate background (see Figure 
5). After pre-dosing with excess B12, background was further reduced with 
an average uptake of ~4.5% was observed (Sah et al. 2014). 

In 2014, Ikotun et al. published a B12-PET imaging probe based on a B12-
NOTA conjugate with 64Cu (Ikotun et al. 2014). Small animals tumor studies 
were conducted with four cancer cell lines: pancreatic, ovarian, colorectal, and 
murine melanoma. However, as was observed with 99mTc studies, the same 
high background trend was seen. The tumor % ID/g achieved was ~4%. 

2.6 Anti-vitamins

For a full comprehensive review of anti-vitamins, we refer you to two recent 
reviews by Zelder and Kräutler (Kräutler 2015; Zelder et al. 2015). 

B12 based anti-vitamins are a new class of B12 conjugates. Anti-vitamins 
are defi ned as molecules that counteract biological action of vitamins. B12 
based conjugates interfere with B12’s ability during the enzymatic process 
by preventing the redox potential of the cobalt atom. There are two types of 
antivitamins: ones they prevent B12 from (a) forming into methylcobalamin 
and adenosylcobalamin (Ruetz et al. 2013), and (b) converting into a base 
“off” form (Zhou and Zelder 2010). These conjugates are designed to “lock” 
the cobalt atom and therefore remove its capability to act as a B12 vitamin.

Zelder et al. has focused on modifying the dimethylbenzimidazole (DMB) 
group within B12 (see Figure 1) (Zhou et al. 2012). By altering DMB’s linker 
to resemble peptides, creating a rigid backbone, the B12 is locked into a “base 
on” form. These conjugates have been shown in vitro to inhibit L. Delbruekii 
growth in a concentration dependent manner (Zhou et al. 2012). Kräutler et 
al. have modifi ed the R axial group, shifting the cobalt redox potential more 
negative and therefore making reduction very diffi cult (Ruetz et al. 2013). The 
inert ‘aryl-cobalamins’ thus produced have been shown to bind to transport 
proteins but are not functional in B12 dependent enzymes (Mutti et al. 2013). 
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Figure 5. SPECT-CT Scans Targeting Haptocorrin in Human Patients. Partial-body scans after 
distribution of 

99m
Tc-PAMA-cobalamin at 10, 30, 60, 120, 240 min, and 24 h. (A) Without Cbl pre-dose 

has high blood-pool uptake over 24 h and no tracer accumulation in the tumor (hypopharynx), 
(B) After 20-mg Cbl pre-dose has reduced blood-pool activity and high uptake in bronchial 
carcinoma (arrow) stable over 24 h, (C) After 1,000-mg Cbl pre-dose has reduced liver uptake 
and only faint uptake in metastatic right axillary lymph node (arrowhead). This research was 
originally published in the Journal of Nuclear Medicine by I. A. Burger et al. 2014; 55: 43–49. 
© by the Society of Nuclear Medicine and Molecular Imaging, Inc.
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B12 anti-vitamins could be used to attempt to effectively starve cancer 
cells of B12. The overall effect on the patient would most likely be concomitant 
pernicious anemia. Looked at another way, these antivitamins could also be 
used in animal models, to study the effects of B12 defi ciency in a variety of 
diseases. 

2.7 Considerations for murine models of B12 conjugates in In vivo 
studies 

Upon careful consideration of structural design and in vitro target validation, 
the next obvious step is to move into animal models, and in particular that 
of rodent models. What needs to be made clear here is the fact that there 
are several major concerns about using murine models for extrapolation to 
humans. 

The fi rst major issue in the use of murine models lies in the fact that, 
humans, as described in Section 1.1, have two B12 binding proteins in serum, 
namely TCII and HC (Nielsen et al. 2012). As demonstrated in a 2011 paper 
by Nexo et al., mouse TCII has a single serum protein with features of both 
TCII and HC (Hygum et al. 2011). This work can be extrapolated to rats and 
other common small animal models such as guinea pigs by BLAST analysis. 
Developing systems to prevent TCII binding (to lower background uptake in 
imaging studies or to prevent loss of function upon serum delivery in oral 
studies, for example) by modifying the B12 structure (as discussed in Section 
1.2.2 and 2.5) are signifi cantly hampered then, since the broader specifi city 
of binding inherent in the murine TCII prevents the desired effect from 
being manifest. In such situations, it is likely that models, such as the rabbit 
(documented to contain both the serum TCII and HC proteins as in humans) 
would be a more appropriate choice (Nexø and Olesen 1981). Cow (Polak et al.  
1979), monkey, pig, and dog (Hygum et al. 2011) have also been documented 
to contain each of the two serum proteins, although these are not typically 
fi rst pass in vivo screen models.

Another issue with the choice of murine models is the variation in 
unsaturated TCII concentrations both within model (depending on diet) and 
then (in terms of nmol/L) between the mouse (> 20 nmol/L), rat (2 nmol/L) 
and human (0.6–1.5 nmol/L). The concern here has to be with knowing the 
concentration of unsaturated TCII in the actual model as measured on the 
specifi c diet that model is being provided. Factoring this information into the 
concentration range difference inherent across the species noted, the fact that 
the murine models have a single serum TCII protein with HC-type properties 
and understanding that typically 80% of total bound B12 in human serum is 
bound to HC, not TCII, all must be considered when looking to use a murine 
model in in vivo B12 conjugate drug development studies (Nielsen et al. 2012). 

When considering model choice for oral studies, the B12 uptake capacity 
must also be noted. In humans the uptake capacity is in the range of 1 nmoles 
per dose (Schjonsby and Andersen 1974), whereas in rats, for example, it is in 
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the order of 10 pmoles per dose (Nexø et al. 1985). Combining such an uptake 
capacity with the increased serum TCII levels noted above, makes extrapolating 
anything observed (or not observed) from murine model to human relevance 
exceedingly diffi cult. 

3. Open Questions and Possible Directions

The use of B12 supplementation in the treatment of B12 defi ciencies or in 
tandem with other drugs to treat or mitigate disease is well documented. 
A recent review of clinical trials data through the US National Institutes 
of Health (www.clinicaltrials.gov; accessed April 7th 2016; search term: 
vitamin B12) reveals 79 open studies (of 346 total studies), all of which are 
focusing on B12 supplementation in the methyl-, hydroxo-, or cyano-B12 
forms primarily, and all aiming to investigate such for improved uptake 
responses in the elderly, in children, those with feeding issues, etc., or looking 
at whether such can lower homocysteine levels in vegetarians, or positively 
effect neurological development, etc. While there has been considerable 
progress and developments made in exploring and pushing pharmaceutical 
development based on exploiting the B12 dietary pathway and its various 
components through use of B12 conjugation (or in general terms, covalent 
attachment to B12 or B12 analogs such as cobinamides), there remains no 
FDA approved drug based on such a system, or indeed any open trials noted 
under the criteria above). 

Several questions that remain to be addressed then are: 

 1.  Whether a drug (particularly a nucleic acid or peptide/protein), can be 
successfully and reproducibly delivered orally upon conjugation to B12 
and produce a clinically relevant response, especially beyond the rodent 
model. Empirical studies of function upon oral dosing would answer 
this directly but interesting side questions that remain are (a) whether a 
bound nucleic acid or peptide/protein, can survive the lysosome upon 
cubilin mediated uptake, and (b) if the conjugate arrives in the blood 
pre-bound to TCII or not (or both). 

   Question 1a is important because partial destruction upon enterocyte 
passage would undermine, or change, PK function, but also may provide 
false positive data for successful delivery of certain levels of drug, if 
part of the surviving B12-peptide conjugate for example, retained the 
target epitope (e.g., using ELISA). Validating, in vitro, IF protection 
against lysosomal degradation would be a missing link between the 
gastrointestinal track and blood for a B12-conjugate.

   Question 1b a is critical when one considers that, if/when bound to 
TCII, there is a strong likelihood that the delivered pharmaceutical will 
be rapidly endocytosed into proliferating cells. This rapid clearance and 
non-specifi c targeting would be expected to have a detrimental effect on 
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drug function where it is necessary to target receptors on a particular 
organ, for example. Establishing the surety of conjugate arrival in the 
blood, but loss of function due to TCII binding, would then warrant an 
investigation of oral uptake using B12 modifi ed to maintain IF recognition 
but not that by TCII. Even if it is shown that the primary mechanism 
of B12 delivery into blood is bound to TCII, it is clear from the work of 
Nexo et al. that at least 50% of the B12 dose enters the blood when TCII 
is removed (Beedholm-Ebsen et al. 2010). This reduced uptake would 
then need to be factored into uptake capacity calculations.

 2.  Whether the B12 pathway can be used to (a) increase or decrease drug 
delivery across the blood-brain barrier (BBB), and (b) whether upon BBB 
passage, it can change localization within the brain. These questions are of 
interest because, in general, it is diffi cult to passage drugs to the brain and 
any effect on such can be a positive. In some cases, removing brain uptake, 
while maintaining general systemic effects, is warranted. A B12-peptide 
conjugate that maintained glucoregulatory control via the pancreas 
while removing CNS activation that triggers food intake reduction (and 
under-wanted malaise/nausea) would be of interest for example. Along 
a similar line, modifying localization within specifi c brain architectures 
by, for example, targeting a B12-peptide to the paraventricular neurons 
and keeping them from the arcuate nucleus would make for a platform 
technology with, probably inherent and defi nable, characteristics that 
could be applied to a particular drug subset.

 3.  Whether the pathway can be used to develop a new pharmacokinetic (PK) 
platform technology along the lines of targeting serum albumin to improve 
serum half-life in vivo. A recent patent (R. P. Doyle; Syracuse University, 
62/323,013)), describes HC targeting substrates such as dicyano-
cobinamide peptide conjugates to achieve this half-life improvement. With 
a half-life in blood of ~9 hours and no known receptors in healthy cells 
when fully glycosylated, HC is an exciting avenue for PK improvement. 
The unsaturated binding concentration for HC in serum is 0.3 nmol/L 
(compared to ~1 nmol/L for TCII in humans with 80% of B12 and B12 
analogs bound up by HC and the remaining 20% by TCII) so, while B12 
itself would be expected to be bound up by both HC and TCII, some of 
the administered drug would be lost to TCII if such were used (Sheppard 
et al. 1984). Exploiting this area of the dietary pathway remains mostly 
unexplored, although it worth noting again here that Alberto et al. did 
attempt to target de novo expressed membrane associated HC in cancer 
cells for imaging (Waibel et al. 2008; Sah et al. 2014). 

 4.  Whether prolonged administration of a B12-drug would have detrimental 
effects on healthy B12 dependent physiology. Nexo et al. produced a study 
over 27 days in mice administered high doses of dicyano-cobinamide 
(4.25 nmol/h) by osmotic pump and followed B12 bio-markers such 
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as the plasma levels of cysteine, total homocysteine, methionine and 
methylmalonic acid (Lildballe et al. 2012). This study showed no 
signifi cant changes in plasma levels for the markers in question over the 
time-period under study. The production of so-called ‘antivitamin B12’ 
will allow further elaboration of this area, as would the incorporation 
of the B12-conjugate under investigation into a B12 dependent assay to 
gauge if such B12 remained functional (or to what degree it remained 
functional, at least). 

The future of the fi eld lies in expanding and exploiting on the successes 
of the past several years. What is evident from the work to date is that there 
is considerable potential in the use of B12 and/or its transport proteins, be 
it for delivery, targeting, improved PK/PD, etc. The full potential of the B12 
dietary uptake pathway has not been realized and the authors believe that 
with such realization, will come clinical development.
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Abbreviations 

HoloTC : holotranscobalamin
HC : haptocorrin
TCII : transcobalamin
holoHC : holohaptocorrin
IF : intrinsic factor
B12/Cbl/ : vitamin B12
cobalamin
CUB : cubilin
AMN : amnionless
CUBAM : cubilin/amnionless receptor
BBB : blood brain barrier
NMR : nuclear magnetic resonance
PYY : peptide YY
FI : food intake
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PD : pharmacodynamics
PK : pharmacokinetics
Cmax : maximum serum concentration
T1/2 : half-life
Ex4 : exdendin-4
99mTc : 99m-technetium
PAMA : pyridine-2-ylmethyl-amino]-acetic acid
NOTA : 1,4,7- triazacyclononane-N,N’,N’’-triacetic acid
PET : positron emission tomography
SPEC-CT : single-photon emission computed tomography
64Cu : 64-copper
DMB : dimethylbenzimidazole.
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ABSTRACT: Vitamin B12, or cobalamin (Cbl), is an essential
nutrient. Acquisition, transport, and cellular internalization of
Cbl are dependent on specific binding proteins and associated
receptors. The circulating transport protein transcobalamin
(TC) promotes cellular uptake via binding to specific receptors
such as CD320, a receptor upregulated in several cancer cell
lines. In this study, we report the successful synthesis of
89Zirconium-labeled Cbl that was derivatized with desferriox-
amine (89Zr-Cbl). We document the purity of the tracer and its
binding to TC compared with that of unmodified cyano-Cbl
(CN-Cbl). In vitro studies employing the CD320 receptor-
positive breast cancer cell line MDA-MB-453 showed a 6- to
10-fold greater uptake of 89Zr-Cbl when compared with the
uptake in the presence of 200-fold excess of CN-Cbl at 37 °C. We used nude mice with MDA-MB-453 tumors to study the
feasibility of employing the tracer to visualize CD320 positive tumors. In vivo positron emission tomography images displayed a
clear visualization of the tumor with 1.42 ± 0.48 %ID/g uptake (n = 3) at 4 h after injection (p.i.) with the tracer retained at 48 h
p.i. Ex vivo biodistribution studies using 89Zr-Cbl exhibited the highest uptake in kidney and liver at 48 h p.i. Results document
the feasibility of synthesizing a Cbl-based tracer suitable for both in vivo and ex vivo studies of Cbl trafficking and with the
potential to visualize tumors expressing TC receptors, such as CD320.

■ INTRODUCTION

Vitamin B12 (cobalamin, Cbl) is a critical nutrient that is
physiologically required to maintain cell growth and differ-
entiation.1−4 Cbl is involved in the biosynthesis of nucleic acids,
lipids, and proteins, and its deficiency leads to a reduction in
functional methionine synthase and metabolism of methyl-
malonic acid in humans, leading to megaloblastic anemia and/
or various neurological disorders.1−4

Cbl gains entry into cells upon binding to transport proteins
and subsequent receptor mediated transport. Cbl in blood is
bound to the transport protein transcobalamin (TC) (holo-
TC), which, in turn, is recognized by specific receptors such as
CD320.1−4 Upregulation of CD320 receptors has been
reported in several malignancies including breast, prostate,
thyroid, cervical, colorectal, and stomach cancers.5 The
important role of Cbl in cellular proliferation and the
upregulation of CD320 in tumor cells has made Cbl uptake
an attractive candidate for tumor imaging, mainly using single-
photon emission computed tomography with 99mTechnetium-
or IIIIndium-labeled Cbl.6−13 One Cbl-positron emission

tomography (PET) imaging agent, labeled with 64Cu (t1/2 ∼
12.7 h), has also been reported.14

Herein, the utility of Cbl as a vector was explored for
delivering the PET radionuclide 89Zr (t1/2 ∼ 3.27 days). We
hypothesized that 89Zr would (1) retain the sensitivity of PET
imaging and (2) provide a longer visualization window by
providing a greater signal-to-noise ratio compared with prior
tracers reported, allowing for an improved tumor targeting and
imaging. Following radiosynthesis, we evaluated the in vitro
uptake and in vivo pharmacokinetics of the CD320-positive
MDA-MB-453 breast cancer in athymic nude mice.

■ RESULTS

Synthesis of Cbl-Desferrioxamine (Cbl-DFO). Cbl-
desferrioxamine (Cbl-DFO) was synthesized by forming a
carbamate linkage between the 5′-hydroxyl of deoxyribose
moiety in Cbl and the amine group of DFO (Scheme 1, Figure
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S1).15 Cbl was activated using 1,1′-carbonyl-di-(1,2,4-triazole)
(CDT), followed by the addition of DFO, which links through
the primary amine. Purification and characterization confirmed
that the conjugate was of ≥97% purity (Figures S2−S4). The
yield of Cbl-DFO was 40 ± 5% based on the Cbl content in the
starting material. Calculated mass (m/z): 1942 [M]; observed:
972 [M + 2H]2+ and 648 [M + 3H]3+.

Radiolabeling of Cbl with 89Zr. Cbl-DFO was labeled

with 89Zr (89Zr-Cbl) using a previously established protocol

(Scheme 1).16 A radiolabeling efficiency of ∼97% was

determined by instant thin-layer chromatography (iTLC,

Figure S5a). The specific activity of the tracer was determined

by titrating 89Zr4+ and Cbl at different mole ratios with an

Scheme 1. Synthesis and Radiolabeling of Cbl-DFO

Figure 1. In vitro stability of 89Zr-Cbl (a) in saline at 37 °C, (b) in human serum at 37 °C, (c) TC binding of 91Zr-Cbl and CN-Cbl, expressed as the
fraction bound compared to binding without added competitor and (d) internalization of 89Zr-Cbl (0.1 μCi, 3.7 KBq, 0.4 pmol/well) with MDA-
MB-453 cells at 1, 4, 24 h time points incubated at 4 and 37 °C. A competition assay was also performed at each time point using unlabeled Cbl (Cbl
40 pmol/well co-incubated with 0.1 μCi, 0.4 pmol/well of 89Zr-Cbl). The fraction of 89Zr-Cbl internalized in MDA-MB-453 cells is expressed as
cpm/105. **** and ** indicate p ≤ 0.0001 and p ≤ 0.01, respectively. Data are shown as mean and standard deviation, n ≥ 3.
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achieved optimum specific activity of 250 ± 20 mCi/μmol
(mean ± standard deviation, n = 3).
In Vitro Stability of 89Zr-Cbl. Stability of the tracer was

analyzed by incubating 89Zr-Cbl in saline and in human serum
at 37 °C. Bound versus unbound radio metal was analyzed at 0,
4, 24, and 48 h after incubation using iTLC (Figure 1a,b). The
intact tracer was located closer to the origin (40−80 mm),
whereas unbound tracer was found at 100−140 mm. After 48 h
of incubation, free 89Zr was <1% in both saline and serum.
TC Binding Studies. Mouse TC binding of 91Zr-Cbl was

studied by radiometric chase assay using 57Co-labeled Cbl
employing a previously described design.17 91Zr-Cbl was
synthesized similar to 89Zr-Cbl, but with 91ZrCl4. Mouse TC

binding of 91Zr-Cbl displaced 57Co-labelled Cbl in a manner
comparable to that of CN-Cbl (Figure 1c), indicating that the
modification of Zr-Cbl did not compromise binding to TC.
The same results were obtained for binding to human intrinsic
factor (data not shown).

In Vitro Uptake. An internalization assay was performed to
test the uptake of 89Zr-Cbl on CD320 receptor cell line MDA-
MB-453 at 4 and 37 °C (Figure 1d). The internalized fractions
of 89Zr-Cbl were expressed as counts per minute (cpm)
normalized to 105 cells (cpm/105 cells). Internalization of 89Zr-
Cbl was higher at 37 °C versus 4 °C at all time points with 144
± 20 versus 36 ± 12 cpm/105 cells at 1 h (p < 0.0001), 210 ±
64 versus 30 ± 9 cpm/105 cells at 4 h (p = 0.01), and 304 ± 25

Figure 2. PET images of representative mice bearing (a) MDA-MB-453 tumors imaged with 89Zr-Cbl (∼1 nmol/mouse, 9 MBq) at 4, 24, and 48 h
p.i. time points, (b) MDA-MB-453 tumors imaged with 89Zr-Cbl (∼1 nmol/mouse, 9 MBq), co-injected with 200-fold excess of unradiolabeled Cbl
at 4 and 24 h p.i., (c) %ID/g values for selected organs in MDA-MD-453 tumor-bearing mice, and (d) tumor-to-muscle ratios at all imaging time
points. The tumor location is indicated by a white circle.

Figure 3. Ex vivo tissue distribution of (a) 89Zr-Cbl in mice (n = 4) bearing MDA-MB-453 tumors at 4, 24, and 48 h p.i. and (b) a blocking study
with 200-fold unmodified Cbl co-injected with 89Zr-Cbl (n = 4) and tissue collection 48 h p.i. Data are displayed as mean ± standard deviation, with
89Zr decay accounted for in the analyses.
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versus 83 ± 15 cpm/105 cells at 24 h (p < 0.0001). Competitive
assays using excess Cbl at 37 °C displayed lower binding at all
time points (p < 0.01). All of the data are reported as mean ±
standard deviation of four independent measurements.
PET Imaging. PET imaging was performed after the

administration of ∼1 nmol/mouse (200−250 μCi, 7.4−9.3
MBq) of 89Zr-Cbl to nude mice bearing a CD320 positive
MDA-MB-453 tumor (n = 3). The image showed visualization
of the tumor with tracer uptake of 1.42 ± 0.48 %ID/g at 4 h p.i.
with retention observed up to 48 h p.i. (Figure 2a). Cohorts (n
= 3) that were co-injected with 200-fold excess unlabeled Cbl
(Figure 2b) showed significantly less uptake in the tumors
(0.20 ± 0.05 %ID/g) at 24 h p.i. (p ≤ 0.001). Other tissues that
displayed high tracer uptake were the kidney and liver with 8.92
± 1.45, 8.80 ± 1.06, and 8.10 ± 0.58 %ID/g for kidney and
4.27 ± 0.51, 4.48 ± 0.65, and 4.47 ± 0.69 %ID/g for liver at 4,
24, and 48 h p.i., respectively (Figure 2c). Tumor-to-muscle
ratio (∼3:1) did not change significantly over 48 h p.i.,
indicating that the maximum tumor-to-background ratio was
achieved at 4 h p.i. (Figure 2d). All percent injected dose per
gram of tissue (%ID/g) values are reported as mean ± standard
deviation.
Ex Vivo Tissue Analysis. Biodistribution data obtained

from tumor-bearing mice injected 0.1 nmol (25 microcuries, 0.9
MBq) of 89Zr-Cbl showed 5.11 ± 1.33, 4.16 ± 1.09, and 3.78 ±
0.77 %ID/g (mean ± standard deviation, n = 4) tumor uptake
in MDA-MB-453 tumors at 4, 24, and 48 h p.i., respectively
(Figure 3a, Table S1). The kidneys showed the highest uptake
of the tracer with 94.42 ± 4.27, 103.33 ± 11.50, and 72.74 ±
8.41 %ID/g and the liver showed the second highest uptake
with 20.15 ± 3.42, 16.75 ± 1.44, and 17.99 ± 2.54 %ID/g at 4,
24, and 48 h p.i., respectively. Administration of a 200-fold
excess of unmodified Cbl (as CN-Cbl) together with the tracer
(n = 4 mice) resulted in an approximately 100-fold decrease
(0.04 ± 0.01 %ID/g) in tracer uptake in tumors at 48 h and
also a decreased uptake in the kidney (1.39 ± 0.18 %ID/g) and
the liver (0.08 ± 0.01 %ID/g). These results are consistent with
a Cbl-specific uptake of 89Zr-Cbl (Figure 3b, Table S1) and all
of the %ID/g values were reported as mean ± standard
deviation.

■ DISCUSSION
In this proof-of-concept study, we report the successful
production of a Cbl-derived 89Zr tracer suitable for use in
PET studies. Studies on nude mice bearing a human breast
cancer cell tumor allow us to demonstrate the use of the tracer
for PET visualization of the tumor.
In agreement with previous data,17,18 we found that 91Zr-Cbl

bound to mouse TC in a manner comparable to that of CN-Cbl
(Figure 1c). Next, an in vitro assay was performed in the breast
cancer cell line MDA-MB-453 to demonstrate a specific uptake
of 89Zr-Cbl.19 We demonstrated a greater than 4-fold uptake of
89Zr-Cbl at 37 °C versus 4 °C; blocking with 200-fold excess
unlabeled Cbl had a similar reduced uptake (Figure 1d). These
results support the idea that the targeting properties of 89Zr-Cbl
in MDA-MB-453 cells rely on a Cbl-dependent internalization
mechanism, likely through the CD320 receptor.
In vivo imaging with 89Zr-Cbl showed an uptake in MDA-

MB-453 tumors with 1.42 ± 0.48 of %ID/g, whereas ex vivo
tissue distribution studies showed a tumor uptake of 5.11 ±
1.33 %ID/g at 4 h p.i. (Figures 2 and 3). Notable uptake was
also observed in the liver and kidneys with 4.27 ± 0.51 and 8.92
± 1.45 %ID/g at 4 h p.i., respectively (Figure 2c). An in vivo

block using 200-fold excess of unradiolabeled Cbl showed a
significantly reduced uptake (p < 0.001) of the tracer, indicating
that the in vivo tumor initialization is Cbl dependent, supported
in the in vitro internalization assay. Muscle-to-tumor ratio
showed that the maximum tumor-to-background ratio was
achieved at 4 h p.i.
To compare the uptake values with those described in the

literature, the biodistribution data will be used for a more
accurate comparative analysis for the rest of the discussion.
Tumor uptake persisted throughout the 4−48 h imaging period
without a significant change (5.11 ± 1.33 at 4 h vs 3.78 ± 0.77
at 48 h, p > 0.1), whereas blood clearance was evident between
4 and 24 h with approximately ∼80% decrease (5.28 ± 0.62 at 4
h vs 0.92 ± 0.25 %ID/g at 24 h) in the circulating 89Zr-Cbl; the
final blood activity was observed to be 0.39 ± 0.06 %ID/g at 48
h p.i.
The tumor uptake achieved in our model is comparable to

that of the other Cbl-based tracers reported thus far.6−14 Ikotun
et al. investigated the tumor uptake of 64Cu-labeled Cbl in
pancreatic, ovarian, murine melanoma, and colorectal tumor
models, with the highest %ID/g being 4.84 ± 0.32 at 6 h p.i. in
the colorectal tumor models.14 In the melanoma model, the
tumor uptake was highest (3.43 ± 0.87 %ID/g) at 1 h, which
decreased to 2.64 ± 0.10 %ID/g after 24 h, whereas 89Zr-Cbl
had a higher accumulation and did not show a significant
decrease in tumor accumulation over 4−48 h, p > 0.1.
One of the limitations of our 89Zr-Cbl tracer is the observed

kidney uptake (94.42 ± 4.27 %ID/g at 4 h), a problem across
all of the Cbl tracers to date. Renal processing is the most
prominent route for Cbl accumulation/storage and/or
reabsorption and is driven by megalin, a known TC-Cbl
receptor expressed in kidney proximal tubuli.20,21 In addition,
this is the first positively charged PET tracer reported, the effect
of which is unknown. An overall positive charge on the Cbl (as
89Zr-Cbl conjugate), or indeed simply the result of modification
of the β-axial position, may affect the Cbl cellular processing
across tissues, as has been shown previously for two forms with
varying α-ligands (OH-Cbl and CN-Cbl) Cbl species, and
warrants further investigation.12,22−24

89Zr-Cbl shows feasibility as a PET tracer to identify MDA-
MB-453 tumors in vivo. The longer window for PET imaging
allowed for reduced uptake in the kidneys, a problem to date in
Cbl radiotracers, while still maintaining a moderate tumor
uptake over 48 h p.i. This tracer is promising since, to our
knowledge, tumor uptake is the highest reported to date for a
B12 based PET probe.

■ CONCLUSIONS

We have successfully developed and evaluated the first 89Zr-
labeled Cbl tracer as a viable tool for visualizing TC-mediated
Cbl uptake into a CD320 positive tumor. 89Zr-Cbl displayed
retained tumor uptake up to 48 h p.i., allowing for a longer
imaging window. Our data paves the road for future studies to
understand the kinetics of Cbl transport and to study the use as
a tool for visualizing tumors capable of accumulating Cbl.

■ EXPERIMENTAL METHODS

General. Reagents listed below were purchased and used
without further manipulations: dimethyl sulfoxide (DMSO,
99%, Sigma), vitamin B12 (Cbl, ≥98%, Sigma), 1,1′-carbonyl-di-
(1,2,4-triazole) (CDT, ≥90%, Fluka), and acetonitrile (MeCN,
99.8%, Pharmaco-Aaper). Compounds were confirmed to be
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>96% pure by high-performance liquid chromatography
(HPLC), proton nuclear magnetic resonance (1H NMR),
and/or inductively coupled plasma.
Proton nuclear magnetic resonance (1H NMR) was

performed using 400 MHz Bruker spectrometer with the
residual solvent peak as an internal standard. Electrospray
ionization (ESI) mass spectrometry analyses were carried out
on a Shimadzu LCMS-8100. Breast cancer cells (MDA-MB-
453) were obtained from the American Type Culture
Collection. Charcoal stripped fetal bovine serum (FBS) and
Dulbecco’s modified Eagle’s medium (DMEM) were purchased
from Sigma and KD medicals, respectively. Penicillin−
streptomycin solution with 10 000 units of penicillin and 10
mg/mL streptomycin in 0.9% NaCl was obtained from
Corning.
Analysis of the radiotracer was performed using instant thin-

layer chromatography (iTLC, Eckert & Ziegler Mini Scan) with
an ethylenediaminetetraacetic acid (EDTA) (50 mM) mobile
phase.
Synthesis of Cbl-DFO. Cbl-DFO was synthesized through

the activation of the 5′-ribose-hydroxyl group with CDT. CDT
(34 mg, 0.261 mmol, 7.2 equiv) was added with cyano-Cbl (50
mg, 0.0368 mmol, 1 equiv) in anhydrous DMSO (3 mL) at 40
°C for 2 h. DFO (208 mg, 0.313 mmol, 7.4 equiv) was added to
the reaction mixture and mixed overnight. Purification of Cbl-
DFO was done using reversed-phase (RP)-HPLC (Agilent
1200) with a C18 column (Agilent Eclipse XDB-C18 5 μm, 4.6
mm × 150 mm) at a flow rate of 1 mL/min. Detection was
done using a UV−vis detector at 360 nm. RP-HPLC method:
(A) 0.1% trifluoroacetic acid water and (B) MeCN as solvents
with the following gradient: 1% B to 70% B over 15 min, (Rt =
9.4 min). Purity was ≥97% via RP-HPLC. Yield: 30−40%. 1H
NMR analysis of the aromatic region: 7.178 (s, 1H), 7.016 (s,
1H), 6.426 (s, 1H), 6.218 (s, 1H), 5.989 (s, 1H). Liquid
chromatography−mass spectrometry (LC−MS) analysis: ex-
pected m/z: 1942; observed: 972 [M + 2H]2+ and 648 [M +
3H]3+.

89Zr-Radiochemistry. Optimum conditions for radiolabel-
ing of Cbl-DFO were tested by titrating with 89Zr and analyzing
the incubated solution using iTLC. Optimum labeling activity
was found to be 250 ± 20 mCi/μmol (9250 ± 740 MBq/
micromole). Approximately 1 mCi (37 MBq) of 89Zr(C2O4)2
(3D Imaging, LLC) was diluted with 0.9% saline and the pH
was adjusted to 7−7.5 by adding 1 M Na2CO3. A solution of
Cbl-DFO (0.004 μmol, 10.8 μg) was added to the pH-adjusted
89Zr solution and incubated for 20 min at ambient temperature
(Scheme 1). Radiolabeling efficiency of >97% was determined
by iTLC using silica iTLC strips and EDTA mobile phase
(Figure S5a). The identity of the tracer was characterized via
matrix-assisted laser desorption ionization mass spectrometry
(MALDI-MS) analysis using Cbl-DFO labeled with cold Zr4+ as
standard. Expected: 2030.2 [M+]; observed: 2005.2 [M+-CN− +
H+]+ (Figure S5b).
In Vitro Stability of 89Zr-Cbl. Stability of 89Zr-Cbl was

tested by incubating the tracer (200 μCi, 7.4 MBq, 100 μL) in
saline (0.9% NaCl) and 50% (1:1 serum/saline) human serum
(Sigma) at 37 °C, and the solutions were analyzed at 0, 4, 24,
and 48 h intervals using iTLC (Eckert & Ziegler Mini Scan).
Mouse TC Binding to 91Zr-Cbl. Nonradioactive 91Zr-Cbl

was synthesized for TC binding studies by reacting Cbl-DFO
with 91ZrCl4 as described above. The conjugate was
characterized by ESI-MS (data not shown). Mouse TC binding
of 91Zr-Cbl was confirmed by radiometric chase assay using

57Co-labeled Cbl and compared with free Cbl (cyanocobala-
min) employing a previously described protocol.17 Mouse TC
was derived as previously described.25

In Vitro Uptake. Modified internalization assay was
performed. MDA-MB-453 cells were cultured in Cbl-free
media (DMEM with 10% charcoal stripped FBS) and plated in
six-well plates. Each well contained 200 000 cells plated and
incubated overnight. To each well, 89Zr-Cbl (0.1 μCi, 3.7 KBq,
0.4 pmol of Cbl per well) was added. For the blocking
experiment, unmodified Cbl was added (40 pmol per well).
Plates were incubated for 1, 4, and 24 h intervals at either 37 or
4 °C. At the end of each time point, wells were serially washed
with phosphate-buffered saline (1×), acid (1 mM acetic acid
and 1 mM glycine), and base (1 M NaOH, 1 mL, 5 min). Each
wash was collected and measured for bound activity using a γ
counter (Perking Elmer 2480 WIZARD). Control wells were
trypsinized and counted using a cell counter (Contessa II).
Internalized activity was normalized to 105 cells.

Cell Lines and Small Animal Xenografts. All of the
animal handling and manipulations were conducted in
accordance with the guidelines set by WSU Animal Care and
Use Committee (IACUC). For imaging and in vivo uptake
experiments, female nude mice (Envigo) were kept under Cbl-
deficient diet (Teklad Cbl-free custom diet, Envigo) for 3
weeks. Cells were subcutaneously implanted on the shoulder
with MDA-MB-453 cancer cells (5 × 106 cells/mouse) after 2
weeks of Cbl-free diet. Cells were injected in 1:1 media/
matrigel (Corning LLC) at a volume of 200 μL. The tumor
volume until was calculated using the formula length × width2

× 0.52. Mice with tumors of 100−200 mm3 dimensions were
used for imaging experiments.

PET Imaging Experiment. 89Zr-Cbl was intravenously
administered (200−250 μCi/mouse, 7.4−9.3 MBq, 0.8−1
nmol) in sterile saline in mice bearing MDA-MB-453
xenografts. PET imaging was done using a μPET scanner
(Concord) at 4, 24, and 48 h p.i. time points, while the mice
were anesthetized with 1−2% isoflurane. Images were
reconstructed using filtered back projection algorithm. ASIPro
VMTM software version 6.3.3.0 (Concord) was used to analyze
the images to acquire volumes-of-interest expressed as percent
injected dose per gram of tissue (%ID/g). Competitive
inhibition was done by co-injecting ∼200-fold excess of
unmodified Cbl (200 nmol) with the radiotracer.

Ex Vivo Distribution and Competitive Saturation. The
tissue distribution of 89Zr-Cbl was studied by administering
10−25 μCi (0.37−0.93 MBq, 0.04−0.1 nmol) of the tracer on
the lateral tail vain of the rodent. For the competitive saturation
assay, ∼20 nmol/mouse of cold CN-Cbl was co-injected with
89Zr-Cbl. Euthanasia was performed via CO2 asphyxiation at 4,
24, and 48 h p.i.
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Abstract 

Aims: While pharmacological glucagon-like peptide-1 receptor (GLP-1R) agonists are FDA-

approved for treating type 2 diabetes mellitus (T2DM) and obesity, major side effects are 

nausea/malaise and hypophagia. We recently developed a conjugate of vitamin B12 bound to the 

GLP-1R agonist exendin-4 (Ex4), which displays enhanced proteolytic stability and retention of 

GLP-1R agonism. Here, we evaluate whether the conjugate (B12-Ex4) can improve glucose 

tolerance without producing anorexia and malaise. 

Materials and Methods: We evaluated the effects of systemic B12-Ex4 and unconjugated Ex4 on 

food intake and body weight change, oral glucose tolerance, and nausea/malaise in male rats, and 

effects on intraperitoneal glucose tolerance in mice. To evaluate whether differences in the 

profile of effects of B12-Ex4 versus unconjugated Ex4 are due to altered CNS penetrance, rats 

received systemic injections of fluorescein-Ex4 (Flex), Cy5-B12 or Cy5-B12-Ex4 and brain 

penetrance was evaluated using confocal microscopy. Uptake of systemically administered Cy5-

B12-Ex4 in insulin-containing pancreatic beta cells was also examined. 

Results: B12-Ex4 conjugate improves glucose tolerance, but does not elicit the malaise and 

anorexia produced by unconjugated Ex4. While Flex robustly penetrates into the brain (dorsal 

vagal complex, paraventricular hypothalamus), Cy5-B12 and Cy5-B12-Ex4 fluorescence were 

not observed centrally, supporting a lack of CNS penetrance in line with the observed reduction 

in CNS-associated Ex4 side effects. Cy5-B12-Ex4 colocalizes with insulin in the pancreas, 

suggesting direct pancreatic action as a potential mechanism underlying the hypoglycemic 

effects of B12-Ex4. 

Conclusions: These novel findings highlight the potential clinical utility of B12-Ex4 conjugates 

as possible future T2DM therapeutics with reduced incidence of adverse effects. 



 

Introduction 

 Multiple incretin-based therapeutics are approved for the treatment of type 2 diabetes 

mellitus (T2DM) due to their ability to elicit pancreatic insulin secretion and reduce blood 

glucose levels. These pharmacotherapies include compounds designed to increase endogenous 

concentrations of the incretin hormone glucagon-like peptide-1 (GLP-1) by inhibiting the 

endopeptidase DPP-IV, as well as synthetic peptide-based GLP-1 receptor (GLP-1R) agonists 

resistant to DPP-IV degradation1. In addition to being the more potent class of GLP-1-based 

therapeutics for reducing glycemia, GLP-1R agonists significantly reduce food intake and body 

weight in both humans and animal models1-3. This anorectic effect is attractive when considering 

the utilization of GLP-1R agonists as an on- or off-label treatment option for obesity, and indeed, 

the GLP-1R agonist liraglutide is FDA-approved for the treatment of obesity4. However, a 

sizeable percentage of individuals with T2DM do not have obesity or overweight5-7 and may 

want to avoid weight loss. Furthermore, it is important to note that the hypophagic effects of all 

GLP-1R agonists on the market are accompanied by pronounced incidence of nausea, vomiting, 

and malaise3,8,9. In fact, ~20-50% of T2DM patients prescribed GLP-1-based medication 

experience nausea and/or vomiting, leading to discontinuation of drug treatment in ~6-10% and 

reduced dose tolerance in another ~15%10-14. These adverse effects are surprisingly under-

investigated, as they limit the widespread use, efficacy, and potential ubiquitous utility of GLP-1R 

agonists (e.g. liraglutide, exenatide) for the treatment of metabolic disease. 

 A wealth of literature provides convincing evidence that a significant portion of the 

increase in glucose-stimulated insulin secretion following exogenous GLP-1R ligand 

administration is mediated by direct activation of GLP-1R expressed on pancreatic β-cells [see 1-



3,15 for review], mimicking the paracrine effects of pancreatic-derived GLP-1 that may not occur 

with endogenous L-cell-derived GLP-116-18. Importantly, activation of GLP-1R expressed on 

vagal afferent fibers and/or in discrete nuclei in the central nervous system (CNS) also 

contributes to exogenous GLP-1R agonist-mediated improvements in glycemic control1-3,15,19-21. 

Interestingly, these dual sites of action (i.e. vagal and direct CNS activation) also mediate the 

intake- and body weight-suppressive effects of exogenous systemic GLP-1R agonist 

administration21-23. Both liraglutide and exenatide can penetrate into the CNS and activate central 

GLP-1R-expressing nuclei leading to hypophagia and weight loss22,24. Remarkably, however, 

GLP-1R agonist-induced illness behaviors (e.g. nausea, conditioned taste avoidance, hypophagia, 

emesis) are mediated by GLP-1Rs expressed within the CNS and not by vagal afferent GLP-1Rs 

when these compounds are delivered systemically8. Although other T2DM medications (e.g., DPP-

IV inhibitors) may improve glycemic control with minimal effects on energy balance25,26, long-

lasting GLP-1R agonists provide several advantages such as improved glycemic control and less 

frequent administration27-29. Thus, from a therapeutic standpoint, designing a novel GLP-1R 

agonist that is resistant to DPP-IV degradation, does not penetrate readily into the CNS, but retains 

enhanced pharmacokinetic and pharmacodynamics action on pancreatic β-cells would 

theoretically provide an improved pharmacological tool for glycemic control in T2DM patients 

without eliciting unwanted hypophagia and nausea.  

 Recently, we demonstrated that covalent conjugation of the GLP-1R agonist exendin-4 

(Ex4) to vitamin B12 (Cyanocobalamin; B12) between the vitamin 5’-OH group and the K12 

position of Ex4 retains picomolar agonism of the GLP-1R, either as the free conjugate (B12-Ex4) 

or bound to Intrinsic Factor (IF), a B12 transport protein critical for B12 absorption in humans30. 



This work also confirmed that IF bound B12-Ex4 with low nanomolar affinity (as occurs with 

cyanocobalamin)30.  

 Interestingly, while Ex4 readily penetrates the CNS22,31, little is known about the 

penetrance of B12 in the brain. Uptake of B12 into the brain is putatively a receptor-mediated 

process with megalin (a receptor capable of TCII-B12 uptake in the kidney, for example) being 

expressed in the choroid plexus32,33. Additional evidence points to the importance of the CD320 

receptor, as genetic ablation in mice results in severe cobalamin deficiency in the mouse brain34,35, 

as well as the transmembrane protein amnionless, natural mutations of which result in Imerslund-

Gräsbeck syndrome and congenital cobalamin malabsorption36. Collectively, this information 

points to a receptor-mediated process of B12 blood-brain barrier penetrance, but little is known of 

where B12 is transported in the brain, and to what extent37, relative to total concentrations. It is 

evident that CNS uptake is considerably lower compared to other organs, especially the liver and 

kidney38,39.  To this end, we hypothesized that a B12-Ex4 conjugate retains the incretin profile of a 

GLP-1R agonist to improve glucose tolerance but prevents development of nausea/malaise by 

reduced CNS penetration of the agonist. 

 The rat is a unique animal model for pre-clinical testing of the B12-Ex4 conjugate. Rats, 

unlike humans and mice, demonstrate an unexpected hyperglycemic response to systemic Ex4 

delivery. This hyperglycemic effect is unique to the Ex4 molecule (among approved GLP-1R 

agonists) in the rat and is due in part to CNS-mediated sympathetic activation40. Further, rats show 

well-documented hypophagic effects to GLP-1R ligands mediated partly by accompanying acute 

effects on nausea/malaise, similar to humans, but not to mice8,9.  Rats were therefore used as the 

primary model to evaluate the effects of B12-Ex4 on glycemic control, energy balance, and 

nausea/malaise, and these effects were compared with the response profile after peripheral 



administration of unconjugated Ex4. Given that Ex4 produces hypoglycemic effects in mice41,42, 

similar to the effect observed in humans, blood glucose levels in mice were assessed in a glucose 

tolerance test after B12-Ex4 or Ex4. The data presented here provide evidence for a second-

generation class of “cobalaminylated” GLP-1R agonists for the treatment of T2DM, with a 

pronounced profile of effects that include glucoregulation without anorexia or body weight loss, 

and most importantly an absence of nausea/malaise.  

 

Materials and Methods 

Animals. Adult male Sprague Dawley rats (Charles River) were singly housed in hanging wire 

mesh cages. Four-month old C57BL/6J mice (Jackson Laboratory) were singly housed in plastic 

cages. All animals were housed under a 12h:12h light/dark cycle in a temperature- and humidity-

controlled environment. Standard rodent chow (Purina 5001) and tap water were available ad 

libitum except where noted. Procedures were approved by the Institutional Care and Use 

Committee of the University of Pennsylvania. 

 

Compounds. B12-conjugated exendin-4 (B12-Ex4) was produced, characterized and screened for 

agonism at the GLP-1R as previously described30. One addition to the characterization was the 

measure of TCII binding of B12-Ex4 (Figure 1D) , which was conducted at the Department of 

Clinical Medicine- Clinical Biochemistry, University of Aarhus, Denmark as described43. B12-

Ex4, Ex4 (Bachem), and lithium chloride (LiCl; Sigma Aldrich) were dissolved in sterile 0.9% 

NaCl for peripheral injections. Injections were separated by at least 48h. For most in vivo 

experiments, injections were administered using a within-subjects, Latin square design. The 



exception was the conditioned taste avoidance (CTA) study, which used a between-subjects 

design. 

 

Effects of B12-Ex4 on energy balance. Shortly before the onset of the dark phase, rats (n=12) 

were given subcutaneous (SC) injection of B12-Ex4 (1, 5, or 20µg/kg) or vehicle (1ml/kg sterile 

saline). Chow intake was measured at 1, 3, 6, and 24h post-injection. Food spillage was 

accounted for in all intake measurements. Body weight was also measured at 0 and 24h. 

 

Effects of B12-Ex4 on glycemic control during an oral glucose tolerance test (OGTT). Rats 

(n=12) were deprived of food overnight before testing. On the morning of testing, just after the 

onset of the dark phase, water was also removed from the cage. A small drop of blood was 

collected from the tail tip and analyzed for blood glucose (BG) level using a standard glucometer 

(AccuCheck). Immediately after this baseline BG reading (t=-30min), each rat received SC 

injection of B12-Ex4 (5 or 20µg/kg) or vehicle (1ml/kg sterile saline); doses of drug were 

selected based on the results of the feeding study. Thirty minutes later (t=0min), BG was 

measured and each rat received an oral gavage of glucose (2g/kg). Subsequent BG readings were 

taken at 20, 40, 60, and 120min after glucose gavage. After the final BG reading, food and water 

were returned. 

 

Effects of systemic Ex4 on glycemic control and energy balance. The effects of unconjugated 

Ex4 were evaluated in an OGTT, using methods similar to those described above, with two 

major differences: SC injections were Ex4 (5 or 20µg/kg) or vehicle (1ml/kg sterile saline), and 

food intake and body weight change after the completion of the OGTT were monitored. Pre-



weighed food was returned to the rats after the OGTT, and chow intake was measured for ~21.5h 

(e.g., until 24h after the SC injections). Spillage was accounted for in food intake measurements. 

Body weight was recorded at 0 and 24h. For the OGTT, n=10 rats were tested; food and body 

weight data were collected from n=9 due to a technical error in food intake measurement. 

 

Effects of B12-Ex4 on expression of a conditioned taste avoidance (CTA). Rats (n=8-10 per drug) 

were evaluated for expression of a CTA to a flavor paired with B12-Ex4 (5µg/kg, IP). Ex4 

(5µg/kg, IP) and LiCl (0.15M) were used as positive controls. A two-bottle test was used so each 

rat had access to a flavor that had been paired previously with vehicle (1 ml/kg saline, IP) and a 

flavor that had been paired previously with drug (B12-Ex4, Ex4, or LiCl). See Supplemental 

Methods for more details.   

 

Effect of B12-Ex4 on glycemic control in mice during an intraperitoneal glucose tolerance test 

(IPGTT). The experimental procedure for IPGTT in mice was similar to that used for OGTT in 

rats. Briefly, mice (n=13; 8 females, 5 males) were food and water deprived for 4h before and 

during the IPGTT. Testing was completed mid-light phase. Blood was collected from the tail tip 

and analyzed for BG. Immediately after this baseline reading (t=-30min), each mouse received 

IP injection of Ex4 (5µg/kg), B12-Ex4 (same equimolar dose to Ex4), or saline (10µl/g). Thirty 

minutes later (t=0min), BG was measured and each mouse received an IP injection of glucose 

(2g/kg). Subsequent BG readings were taken at 20, 40, 60, and 120min after glucose injection. 

After the final BG reading, food and water were returned. Area under the curve (AUC) was 

calculated from 0-120 min (e.g., beginning at the time of glucose administration).  

 



B12-Exendin-4-Cyanine-5 (Cy5-B12-Ex4) synthesis. B12-Ex4 was synthesized as previously 

described30. B12-Ex4 (0.5mg, 0.0001mmol) was dissolved in PBS buffer pH 7.6 (450µL) and 

sulfo-cyanine5-NHS-ester (1mg, 0.001mmol) (Lumiprobe) was added (in 50µL DMSO). The 

resulting solution was allowed to mix for 2h at room temperature, protected from light, and then 

purified through RP-HPLC on a Shimadzu Prominence HPLC using a C18 column (Eclipse 

XDB-C18 5µm, 4.6 x 150mm). Solvents: A: 0.1% TFA water and B: Acetonitrile. Method: B%: 

1-70% over 15min. tR: 12.1min. Yield: 98%. Emission and excitation were 648 and 670nm, 

respectively using a Varian Cary UV Spectrophotometer and Agilent Cary Eclipse Fluorescence 

Spectrophotometer, solvent H2O/MeCN. LC-MS analysis (Shimadzu LCMS-8040, Method: 

0.1% formic acid and 35% methanol water at 0.2mL/min, DL temp: 150°C, heat block temp: 

400°C.): expected m/z: 6923 [B12-Ex4-(Cy5)2], observed: 1383 [M+5H]+5, 1728 [M+4H]+4. See 

Figure 1 for more information. 

 

B12-Cyanine-5 (Cy5-B12) synthesis. Cy5-B12 was synthesized through Huisgen/Sharpless 

‘Click’ Chemistry44,45. Cu(I) (1mg, 0.005mmol) and Tris[(1-benzyl-1H-1,2,3-triazol-4-

yl)methyl]amine (3.5mg, 0.006mmol) were dissolved in 0.5mL DMF/H2O (4:1 v/v). Once color 

change occurred, the previously synthesized B12-Azide (3mg, 0.002mmol) 46 and Cyanine-5 

alkyne (0.5mg, 0.0007mmol) (Lumiprobe) was dissolved in the solution and allowed to stir at 

room temperature overnight protected from light. This was purified through RP-HPLC on a 

Shimadzu Prominence HPLC using a C18 column (Eclipse XDB-C18 5 µm, 4.6 x 150mm). 

Solvents: A: 0.1% TFA water and B: Acetonitrile. Method: B%: 20-72% over 18min. tR: 4.7min. 

Yield: 94%. LC-MS analysis (Shimadzu LCMS-8040, Method: 0.1% Formic acid and 35% 

methanol water at 0.2mL/min, DL temp: 150°C, heat block temp: 400°C.): expected m/z: 2059 



observed: 1031 [M+2H]+2, 1042 [M+Na+2H]+2, and 1050 [M+K+2H]+2. Emission and excitation 

were 645 and 682nm, respectively using a Varian Cary UV Spectrophotometer and Agilent Cary 

Eclipse Fluorescence Spectrophotometer, solvent H2O. See Figure 1 for more information. 

 

GLP-1 assay for Cy5-B12-Ex4. Agonism at the GLP-1 receptor was monitored using HEK-293 

cells stably transfected with the GLP-1 receptor cultured in DMEM with 10% FBS, 1% 

pen/strep, and 250µg/mL genetecin/g-418. Cells were plated on a rat-tail-collagen-coated 96-

well plate at 60,000 cell/well and allowed to adhere overnight. The cells were infected with an 

adenovirus to express the H188 FRET reporter using a 25 MOI for 16-20h in 75µL of DMEM-

1% FBS. After viral incubation, the cells were placed in 200µL standard extracellular matrix 

with glucose and 0.1% BSA. Conjugates were added to each well at 5x the required 

concentration. Agonism was determined through an increase in 485/553nm FRET ratio 

indicative of an increase in cAMP level through cAMP binding to an EPAC (exchange protein 

directly activated by cAMP)47. 

 

Immunohistochemical procedures and confocal imaging. Rats (n=4/group) were given IP 

injection of fluorophore-labeled Ex-4 (Flex; 5µg/kg; 0.0001nM; AnaSpec48), Cy5-B12-Ex4 

(5µg/kg; 0.03nM), Cy5-B12 (5µg/kg), or Cy5-B12-Ex4 delivered at an equimolar dose to Flex 

(0.0001nM). Rats were transcardially perfused 3h after injection, using 0.1M PBS followed by 

4% paraformaldehyde (PFA). Brains were collected and sections from the area postrema and 

hypothalamus were processed via immunohistochemistry for NeuN and GFAP, mounted, and 

coverslipped with DAPI mounting medium. Sections were visualized via confocal microscopy. 

See Supplemental Methods for more detail. 



 To evaluate the penetrance of B12-Ex4 in the pancreas, rats (n=3) were given IP injection 

of Cy5-B12-Ex4 (5µg/kg) and transcardially perfused 3h later with 4% paraformaldehyde in 

PBS. Pancreases were collected and sagittally sectioned, processed via immunohistochemistry 

for insulin, and coverslipped with DAPI mounting medium. Sections were visualized with 

confocal microscopy and three-dimensional rotational animations were rendered from the 

collected z-stack images using Imaris 8.1.2 (Bitplane). See Supplemental Methods for more 

information. 

 

Statistical analyses. See Supplemental Methods. 

 

Results 

B12-Ex4 has potent beneficial effects on glycemic control, but minimal impact on feeding and 

body weight in rats.  

Ex4 and other GLP-1R agonists reduce blood glucose levels, and are used clinically to 

treat T2DM49. In addition, the food intake- and body weight-suppressive effects of GLP-1R 

agonists have highlighted the utility of these pharmacotherapies for the treatment of obesity50. To 

evaluate whether the metabolic effects of B12-Ex4 are similar to those of other GLP-1R agonists 

such as unconjugated Ex4, the effects of SC injection of B12-Ex4 on energy balance and 

glycemic control were evaluated. To confirm TCII binding of B12 in its Ex4 conjugated form 

(i.e. B12-Ex4), a radio chase assay using 57Co-labelled B12 was conducted43 and confirmed low 

nanomolar binding (~ 75nM) was maintained (Figure 1D). 

First, to test whether B12-Ex4 has similar intake- and body weight-suppressive effects as 

Ex4, rats were given SC injection of B12-Ex4 (0, 1, 5, or 20µg/kg in 1ml/kg sterile saline), and 



subsequent food intake (1, 3, 6, 24h) and body weight gain were measured. The highest dose of 

B12-Ex4, 20µg/kg, significantly suppressed food intake at 3h and 6h post-injection (Figure 2A; 

drug x time interaction, F9,99=3.69, p<0.001; 0µg/kg versus 20µg/kg, p<0.05 at 3h and 6h). No 

other significant effects on food intake were observed at other times or by other doses of drug 

(all other p>0.05). There was also no significant effect of B12-Ex4 on 24h body weight change 

(Figure 2B; F3,33=0.50, p=0.69), which is consistent with the fact that cumulative 24h energy 

intake was similar among the treatment conditions.  

Next, the glycemic effects of B12-Ex4 (5 or 20µg/kg) or vehicle (1ml/kg sterile saline, 

SC) were evaluated via OGTT. B12-Ex4 significantly reduced blood glucose levels in the OGTT 

(Figure 2C; main effect of drug, F2,22=4.01, p<0.04; drug x time interaction, F10,110=17.29, 

p<0.000001). Posthoc analyses showed that both doses of B12-Ex4 significantly suppressed BG 

at 20 and 40min after glucose gavage (versus vehicle, all p<0.05). A dose-responsive effect is 

also suggested by the finding that 20µg/kg B12-Ex4 had more potent BG-suppressive effects 

than 5µg/kg at 20min after glucose gavage (p<0.05). Interestingly, BG levels were increased by 

both doses of B12-Ex4 at 60min and by the higher dose at 120min (all p<0.05). Importantly, 

injection of B12-Ex4 had no effect on blood glucose levels on its own (t=0, all p>0.05).  

 

Systemic injection of Ex4 produces hyperglycemia, hypophagia, and weight loss.  

The rat is a particularly interesting model to test the effects of an Ex4-based drug on 

glycemic and energy balance control, because rats exhibit a hyperglycemic response to acute 

peripheral administration of Ex4 due to sympathetic activation40, but also show pronounced 

reductions in feeding and body weight gain51-53. To evaluate the effects of SC administration of 

unconjugated Ex4 on these measures, and to be able to more directly compare the effects of B12-



Ex4 to those of Ex4, an OGTT was administered to rats after SC injection of Ex4 (5 or 20µg/kg) 

or vehicle (1ml/kg), and subsequent chow intake and body weight were monitored after the 

OGTT. Similar to previous findings40, systemic Ex4 produced a pronounced hyperglycemic 

response in the rats (Figure 3A, main effect of drug, F2,18=8.84, p<0.01; drug x time interaction, 

F10,90=11.89, p<0.000001). Injection of either dose of Ex4 increased BG on its own (e.g., before 

administration of glucose; at t=0min, vehicle versus 5 or 20µg/kg, p<0.05). BG levels remained 

significantly elevated in Ex4-treated rats at 40, 60, and 120min after the glucose gavage (vehicle 

versus 5 or 20µg/kg, all p<0.05).  

When food was returned after the last BG reading, Ex4-treated rats ate significantly less 

than did vehicle-treated controls in the subsequent 21.5h (Figure 3B, F2,16=43.74, p<0.000001; 

vehicle versus 5 or 20µg/kg, p<0.05) and gained less body weight (Figure 3C, F2,16=8.31, 

p<0.01; vehicle versus 20µg/kg, p<0.05). These results demonstrate the unique constellation of 

effects produced by peripheral Ex4 administration in the rat, and more importantly, highlight the 

distinct differences between Ex4 and B12-Ex4 for glycemic and energy balance control. 

 

Ex4 elicits expression of a robust CTA that is not observed with B12-Ex4.  

GLP-1R agonists such as Ex4 have undesired side effects including nausea/malaise8,49. 

To evaluate whether B12-Ex4 produces nausea/malaise, rats were evaluated for expression of a 

conditioned taste avoidance (CTA) to B12-Ex4 (5µg/kg, IP). Additional groups of rats were 

evaluated in this experiment for CTA to Ex4 (5µg/kg, IP) or to LiCl (0.15M, IP), which is well 

known to produce nausea and CTA in rodents8,54,55. As shown in Figure 3D, acceptance of the 

drug-paired flavor was significantly higher in the B12-Ex4-treated group compared to either LiCl 



or Ex4 (F2,24=5.29, p<0.01; B12-Ex4 versus LiCl or Ex4, p<0.05; LiCl versus Ex4, p>0.05), 

suggesting that B12-Ex4 does not produce the same nausea/malaise as Ex4. 

 

The glycemic effects of B12-Ex4 in mice are comparable to those of Ex4. 

 To confirm the ability of B12-Ex4 to improve glycemic control in species that do not 

exhibit Ex4-induced stress-mediated hyperglycemic responses, the glycemic effects of equimolar 

doses of B12-Ex4 and Ex4 were tested via IPGTT in mice. In contrast to rats, and more in line 

with human data, Ex4 administration strongly attenuated the increase in blood glucose levels 

after IP glucose administration. Similarly, B12-Ex4 reduced blood glucose levels in the IPGTT 

(Figure 4A; main effect of drug, F2,24=41.04, p<0.0001; drug x time interaction, F10,120=13.29, 

p<0.0001). Posthoc analyses showed that both compounds significantly suppressed BG at 20, 40, 

60, and 120min after glucose injection (all p<0.05). Interestingly, injection of B12-Ex4 or Ex4 

also reduced BG levels prior to IP glucose injection (t=0, all p<0.05). Although Ex4 had a more 

potent effect on BG at 20min compared to B12-Ex4 (p<0.05), area under the curve analyses 

revealed that both compounds had similar hypoglycemic effects post-glucose load compared to 

saline (Figure 4B; NEED STATS HERE).  

 

Unlike Ex4, B12-Ex4 does not readily penetrate into the CNS. 

 Previous work shows that Ex4 crosses the blood-brain barrier to exert effects on energy 

balance and illness/malaise22,31,48. As B12-Ex4 treatment produces the glycemic benefits 

associated with Ex4 without producing the centrally-mediated effects of hypophagia and nausea, 

this suggests that B12-Ex4 may be excluded from the CNS. To evaluate this possibility, rats 

were treated systemically with a fluorescent-tagged version of B12-Ex4 (Cy5-B12-Ex4), and 



penetrance into the brain was evaluated using confocal microscopy. The results were compared 

with CNS penetrance of a fluorescent-tagged version of Ex4 (Flex), which has been shown to 

penetrate into the CNS48, and fluorescent-tagged B12 (Cy5-B12). The presence of each of these 

fluorescent compounds was evaluated in the dorsal vagal complex (DVC; Figure 5) and 

paraventricular nucleus of the hypothalamus (PVN; Figure 6), due to the known importance of 

these areas in mediating the feeding effects of GLP-1R activation56,57 and the hyperglycemic 

response observed in rats after systemic Ex440. Consistent with previous data48, Flex was 

observed in both sites. In contrast, Cy5-B12 and Cy5-B12-Ex4 were not detected in either 

nucleus, suggesting that exogenously-injected B12 does not readily penetrate into these regions 

of the CNS, and hence that conjugation of B12 to Ex4 greatly reduces or prevents Ex4 from 

entering the same areas. 

 

B12-Ex4 is colocalized on insulin-producing pancreatic beta cells. 

The finding that peripherally administered B12-Ex4 is not detected in the DVC or PVN 

suggests that the glycemic effects of the compound are likely mediated via peripheral actions. 

The pancreas is a prime candidate for a peripheral site of action for B12-Ex4. GLP-1R agonists 

can act directly on pancreatic beta cells to stimulate insulin release, thereby improving blood 

glucose levels58-60. To assess whether B12-Ex4 is taken up by insulin-producing pancreatic beta 

cells, rats were given systemic injection of Cy5-B12-Ex4 (5µg/kg) and colocalization with 

insulin was analyzed in the pancreas with confocal microscopy. Results show robust 

colocalization of Cy5-B12-Ex4 with insulin in pancreatic sections (Figure 7; Supplemental 

Materials, Videos 1 and 2), supporting the hypothesis that B12-Ex4 acts at the pancreas to 

improve glycemic control.  



 

Discussion 

 GLP-1-based pharmacotherapies for T2DM have been revolutionary in providing largely 

safe and efficacious means to reduce chronic hyperglycemia [see 1,3,15 for review]. However, due 

to side effects of current GLP-1-based compounds including anorexia, nausea, and vomiting, 

nearly one in four T2DM patients are not able to benefit from the full pharmaceutical advantages 

of these pharmacotherapies10-14. There is clearly a critical need to develop a new generation of 

GLP-1 pharmacotherapies that provide hypoglycemic benefit without eliciting detrimental side 

effects. Although the hypophagic effects of GLP-1R agonists are often attractive to clinicians and 

overweight/obese T2DM patients, much of the same CNS circuitry underlying GLP-1R ligand-

mediated anorexia is also partially responsible for mediating nausea/malaise8. Moreover, weight 

loss may be undesirable for some T2DM patients, such as individuals with a normal BMI. As the 

hypophagia and illness-like effects of existing GLP-1R agonists require CNS penetrance and direct 

central action8,21-23, we sought to create a GLP-1R agonist conjugate that minimizes anorexia and 

nausea by reducing CNS penetrance, but that retains potent pharmacodynamics and 

pharmacokinetic profile on peripheral GLP-1R populations to exert glycemic benefits. This report 

shows for the first time the ability of B12-Ex4 [see 30 for previous biochemical GLP-1R agonism 

analyses] to improve glucose tolerance in rodents without producing hypophagia, body weight 

loss, or CTA. Immunohistochemical data suggest that this unique profile involves a direct effect of 

B12-Ex4 on pancreatic beta cells coupled with a virtual absence of CNS penetrance of the 

compound. 

 The rat provides a unique model for the proof-of-concept testing needed for the 

preclinical evaluation of B12-Ex4. Rats show an unexpected hyperglycemic response to Ex4, due 



in part to a CNS-mediated activation of the sympathetic nervous system40. In addition, like 

humans, rats show a pronounced profile of behavioral effects to systemic Ex4 including reduced 

food intake and body weight, as well as illness-like behaviors, again due to CNS action8,22,61. 

B12-Ex4 did not produce the same suppression of food intake, reduction in body weight, and 

induction of CTA as did Ex4 in rats. The effect of B12-Ex4 on glycemic control was also 

evaluated in mice, a species in which Ex4 produces a hypoglycemic response similar to that 

observed in humans. In mice, B12-Ex4 elicited a hypoglycemic response similar to that of 

unconjugated Ex4 in an IPGTT. Collectively, these data provide an ideal preclinical set of 

outcomes to support the therapeutic potential of this conjugate as a future antidiabetic drug for 

humans.  

The in vivo behavioral data were supported by our immunohistochemical analyses 

showing a virtual absence of B12-Ex4 CNS penetrance in the DVC and PVN, two areas of the 

brain showing unconjugated Ex4 penetrance and believed to mediate in part the hyperglycemic, 

hypophagic, body weight suppressive, and malaise-producing effects of Ex4 in rats. Future 

studies are warranted to identify the mechanisms responsible for the minimal CNS uptake of B12 

and the molecular mechanisms by which B12 conjugation reduces CNS Ex4 access. It will also 

be important to address whether higher doses of B12-Ex4 are able to penetrate the CNS. The 

5µg/kg dose of Cy5-B12-Ex4 used for this study was selected because 5µg/kg B12-Ex4 had no 

effect on feeding or body weight in rats, but produced hypoglycemia in the OGTT, suggesting 

that a lower dose of B12-Ex4 elicits an optimal profile of glycemic and energy balance effects. 

In contrast, a higher dose of B12-Ex4 (20µg/kg) reduced blood glucose but also caused a small 

but significant transient suppression of feeding, suggesting that higher doses may have a slightly 



different pattern of effects. Nevertheless, these results clearly underscore the lack of CNS 

penetrance but retention of glycemic benefits by lower doses of B12-Ex4.  

As B12-Ex4 is not extensively penetrating into the CNS, pancreatic GLP-1R represents 

the likely cellular substrate mediating the hypoglycemic effects of B12-Ex4. Further analyses 

supported this hypothesis, as immunohistochemical data showed colocalization of Cy5-B12-Ex4 

with insulin in the pancreas. This suggests that B12-Ex4 may exert its glycemic effects via act 

direct action at pancreatic beta cells, while CNS-mediated effects of GLP-1R activation such as 

anorexia, nausea, and malaise are minimal or absent due to lack of penetrance of B12-Ex4 into 

the brain.  

 The current data provide novel mechanistic evidence that B12 conjugation to a GLP-1R 

agonist can be used as a means to retain the hypoglycemic properties of GLP-1R agonists but 

greatly reduce the CNS-mediated anorexia and illness effects observed with all current approved 

GLP-1-based ligands. These studies are far from the complete set of in vivo glycemic analyses 

needed for B12-Ex4, but certainly justify the need for more comprehensive future analyses. 

Further investigations are warranted to examine the acute actions of B12-Ex4 in diabetic animal 

models, as well as to evaluate the metabolic effects of chronic B12-Ex4 administration. It will 

also be critical to evaluate whether, and to what extent, B12-Ex4 may localize within other CNS 

nuclei not examined here. Collectively, these data highlight the discovery that B12 conjugation 

to Ex4 results in a next-generation incretin therapeutic with the clinically desired hypoglycemic 

effects but not concomitant hypophagia, body weight loss and, most notably, illness-like 

behaviors, ideal for the future of T2DM treatment in humans. This method of conjugation may 

also be broadly beneficial to other therapeutics that would benefit from reduced CNS penetrance. 
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Figure Legends 

Figure 1. (A) Synthetic scheme for Cy5-B12, Cy5 alkyne was “clicked” onto a B12-azide 

conjugate. (B) RP-HPLC of Cy5-B12 showing purity ≥ 98% and LC-MS showing 

1031[M+2H]+2, 1042[M+Na+2H]+2, and 1050 [M+K+2H]+2, consistent with the conjugate. (C) 

Excitation and emission spectra of Cy5-B12 at 645 and 682nm, respectively. (D) Human 

recombinant TCII binding of B12-Ex4 and cyano-B12 with a Kd of 0.75 and 0.98nM, 



respectively. (E) Synthetic scheme for Cy5-B12-Ex4, Cy5-NHS ester was conjugated to Ex4’s 

lysine 26 and N-terminal. (F) RP-HPLC of Cy5-B12-Ex4 showing purity ≥ 91% and LC-MS 

showing m/z = 1728 [M+4H]+4, consistent with conjugate containing two molecules of Cy5 per 

B12-Ex-4 component. (G) Excitation and emission spectra of Cy5-B12-Ex4 at 648 and 670 nm, 

respectively. (H) Cy5-B12-Ex4 agonism at the GLP-1 receptor reported using the FRET reporter 

H188; EC50 = 13nM. 

 

Figure 2. B12-Ex4 potently suppresses blood glucose in an oral glucose tolerance test but has 

minimal effects on energy balance control. Food intake and body weight change were measured 

after SC administration of B12-Ex4. Only the highest dose of drug, 20µg/kg, produced any 

reduction in feeding (A). No changes in 24h body weight gain were observed as a result of B12-

Ex4 administration (B). In a separate experiment, SC injection of B12-Ex4 (0 µg/kg indicated by 

white circles, 5µg/kg by lighter blue circles, 20µg/kg by darker blue circles) reduced blood 

glucose in an oral glucose tolerance test from 20-40min after injection (C). *, significantly 

different from vehicle (p<0.05); &, significantly different from 5 µg/kg (p<0.05). Key in (A) also 

applies to (B). Data are mean ± SEM. 

 

Figure 3. Systemic administration of Ex4 produces a different profile of metabolic effects than 

B12-Ex4. In contrast to the potent suppression of blood glucose produced by B12-Ex4, SC 

injection of Ex4 (0µg/kg indicated by white squares, 5µg/kg by lighter red squares, 20µg/kg by 

darker red squares) produced a robust hyperglycemic response (A). Food intake (B) and body 

weight gain (C) were suppressed by SC Ex4. To compare the induction of nausea/malaise by Ex4 

with that potentially produced by B12-Ex4, rats were tested for expression of a conditioned taste 



avoidance (CTA) of a flavor paired with IP injection of B12-Ex4 (5µg/kg), Ex4 (5µg/kg), or 

LiCl as a positive control (0.15M). The percent acceptance of the drug-paired flavor is shown as 

a box-and-whiskers plot in (D). Both Ex4 (individual responses represented by black circles, 

overall group response represented in light gray box) and LiCl (individual responses represented 

by white circles, overall group response represented in white box) produce avoidance of the 

drug-paired flavor, as indicated by a reduced acceptance of the flavor. These effects are 

significantly different from acceptance of the drug-paired flavor in B12-Ex4-treated animals 

(individual responses represented by white squares, overall group response represented in dark 

gray box). *, significantly different from vehicle (p<0.05); &, significantly different from all 

other groups (p<0.05). Key under (B) and (C) applies to both panels. Data in (A-C) are mean ± 

SEM. 

 

Figure 4. Systemic administration of B12-Ex4 or Ex4 suppresses blood glucose in mice. In an 

intraperitoneal glucose tolerance test, Ex4 (5µg/kg) and B12-Ex4 (dose equimolar to Ex4) 

suppressed blood glucose levels prior to (t=0min) and after (t=20, 40, 60, 120min) IP glucose 

administration (A) Area under the curve analyses from 0-120min (e.g., post-glucose load) show 

that B12-Ex4 and Ex4 both reduce AUC compared to saline vehicle (B). [NEED DESCRIPTION 

OF SIGNIFICANCE SYMBOLS HERE] Data are mean ± SEM. 

 

Figure 5. Systemically-delivered fluorescently labeled Ex-4 (Flex) highly penetrates within the 

DVC, whereas Cy5-B12 and Cy5-B12-Ex4 do not. Images were acquired at 10-20x (A,C,E,G) or 

63x (with 2-3x optical zoom) (B,D,F,H) magnifications. Brains were processed for 

immunohistochemistry to label Flex, Equimolar-Flex, Cy5-B12 and Cy5-B12-Ex4 (yellow), 



astrocytes (GFAP; green) and neurons (NeuN; red).  Sections were counterstained using DAPI 

(blue) to visualize cell nuclei. (B) Flex and (D) equimolar-Flex immunoreactivity is readily 

visualized in neurons and astrocytes in the DVC. (F) Cy5-B12 and (H) Cy5-B12-Ex4 are not 

present either in neurons or in astrocytes within the DVC. AP, area postrema; CC, central canal; 

DVC, dorsal vagal complex; NTS, nucleus tractus solitarius. 

Figure 6. Systemically-delivered fluorescently labeled Ex-4 (Flex) highly penetrates within the 

PVN, whereas Cy5-B12 and Cy5-B12-Ex4 do not. Images were acquired at 10-20x (A,C,E,G) or 

63x (with 2-3x optical zoom) (B,D,F,H) magnifications. Brains were processed for 

immunohistochemistry to label Flex, Equimolar-Flex, Cy5-B12 and Cy5-B12-Ex4 (yellow), 

astrocytes (GFAP; green) and neurons (NeuN; red).  Sections were counterstained using DAPI 

(blue) to visualize cell nuclei. (B) Flex and (D) equimolar-Flex immunoreactivity is readily 

visualized in neurons in the PVN. (F) Cy5-B12 and (H) Cy5-B12-Ex4 are not present either in 

neurons or in astrocytes within the PVN. 3V, third ventricle; PVN paraventricular hypothalamic 

nucleus. 

Figure 7. Systemically-delivered Cy5-B12-Ex4 is colocalized with insulin in the pancreas. The 

representative still images from three-dimensional rotational videos (Supplemental Materials) 

demonstrate that Cy5-B12-Ex4 (yellow) is colocalized with insulin (red) in pancreatic beta cells. 

Sections were counterstained with DAPI (blue). Videos and corresponding representative images 

were taken from a z-stack (2µm step size) at 40x (A; Video 1) and from a z-stack (1µm step size) 

at 40x with 4-5x optical zoom (B; Video 2). 
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