
Syracuse University Syracuse University

SURFACE SURFACE

Dissertations - ALL SURFACE

December 2017

DETECTION, DIAGNOSIS AND MITIGATION OF MALICIOUS DETECTION, DIAGNOSIS AND MITIGATION OF MALICIOUS

JAVASCRIPT WITH ENRICHED JAVASCRIPT EXECUTIONS JAVASCRIPT WITH ENRICHED JAVASCRIPT EXECUTIONS

Xunchao Hu
Syracuse University

Follow this and additional works at: https://surface.syr.edu/etd

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Hu, Xunchao, "DETECTION, DIAGNOSIS AND MITIGATION OF MALICIOUS JAVASCRIPT WITH ENRICHED
JAVASCRIPT EXECUTIONS" (2017). Dissertations - ALL. 802.
https://surface.syr.edu/etd/802

This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for
inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact
surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F802&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=surface.syr.edu%2Fetd%2F802&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/802?utm_source=surface.syr.edu%2Fetd%2F802&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

ABSTRACT

Malicious JavaScript has become an important attack vector for software exploitation attacks

and imposes a severe threat to computer security. In particular, three major class of problems,

malware detection, exploit diagnosis, and exploits mitigation, bring considerable challenges to

security researchers. Although a lot of research efforts have been made to address these threats,

they have fundamental limitations and thus cannot solve the problems.

Existing analysis techniques fall into two general categories: static analysis and dynamic

analysis. Static analysis tends to produce inaccurate results (both false positive and false negative)

and is vulnerable to a wide series of obfuscation techniques. Thus, dynamic analysis is constantly

gaining popularity for exposing the typical features of malicious JavaScript. However, existing

dynamic analysis techniques possess limitations such as limited code coverage and incomplete

environment setup, leaving a broad attack surface for evading the detection.

Once a zero-day exploit is captured, it is critical to quickly pinpoint the JavaScript statements

that uniquely characterize the exploit and the payload location in the exploit. However, the

current diagnosis techniques are inadequate because they approach the problem either from a

JavaScript perspective and fail to account for “implicit” data flow invisible at JavaScript level, or

from a binary execution perspective and fail to present the JavaScript level view of exploit.

Although software vendors have deployed techniques like ASLR, sandbox, etc. to mitigate

JavaScript exploits, hacking contests (e.g.,PWN2OWN, GeekPWN) have demonstrated that the

latest software (e.g., Chrome, IE, Edge, Safari) can still be exploited. An ideal JavaScript exploit

mitigation solution should be flexible and allow for deployment without requiring code changes.

To combat malicious JavaScript, this dissertation addresses these problems through enriched

executions, which explore arbitrary paths for detection, preserve JS-binary semantics for

diagnosis, and perturbs memory with chaff code for mitigation.

Firstly, JSForce, a forced execution engine for JavaScript, is proposed and developed to

improve the detection results of current malicious JavaScript detection techniques. It drives an

arbitrary JavaScript snippet to execute along different paths without any input or environment

setup. While increasing code coverage, JSForce can tolerate invalid object accesses while

introducing no runtime errors during execution.

Secondly, JScalpel, a system that utilizes the JavaScript context information from the

JavaScript level to perform context-aware binary analysis, is presented for JavaScript exploit

diagnosis. In essence, it performs JS-Binary analysis to (1) generate a minimized exploit script,

which in turn helps to generate a signature for the exploit, and (2) precisely locate the payload

within the exploit. It replaces the malicious payload with a friendly payload and generates a PoV

for the exploit.

Thirdly, ChaffyScript, a vulnerability-agnostic mitigation system, is introduced to block

JavaScript exploits via undermining the memory preparation stage. Specifically, given suspicious

JavaScript, ChaffyScript rewrites the code to insert memory perturbation code, and then generates

semantically-equivalent code. JavaScript exploits will fail as a result of unexpected memory

states introduced by memory perturbation code, while the benign JavaScript still behaves as

expected since the memory perturbation code does not change the JavaScript’s original semantics.

DETECTION, DIAGNOSIS AND MITIGATION OF MALICIOUS JAVASCRIPT
WITH ENRICHED JAVASCRIPT EXECUTIONS

by

Xunchao Hu

B.S. Xi’an Jiaotong University, China, 2009
M.S. Xi’an Jiaotong University, China, 2012

Dissertation
Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Electrical & Computer Engineering

Syracuse University
December 2017

Copyright © Xunchao Hu 2017

All Rights Reserved

To my family

v

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to all who contribute and support my doctoral

dissertation and graduate student life at Syracuse University.

First, it has been my great privilege and great pleasure to work under the supervision of my

advisor, Professor Heng Yin. I could not have completed my research work without his insightful

advice, persistent encouragement, and constant support. Working with Heng is the most brilliant

decision that I have ever made since I came to USA. I also want to express my sincere respect to

his academic enthusiasm and professional dedication.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Wenliang Du,

Prof. C.Y. Roger Chen, Prof. Yuzhe Tang, Prof. Yanzhi Wang and Prof. Joon S. Park for their

insightful comments and hard questions.

I would like to thank my fellow labmates: Mu, Andrew, Qian, Yue, Rundong and Jinghan for

the stimulating discussions, for the sleepless nights we were working together before deadlines,

and for all the fun we have had in the last five years.

Special thanks are given to my family: my parents Jiayong Hu and Fengqin Gu, for giving

birth to me at the first place and supporting me spiritually throughout my life; my brother

Xunxiang Hu, for the continuous encouragement and support throughout my Ph.D. study.

Also, I would like to thank my son Asher Hu. He almost kills my dissertation with endless

noise and extremely bad sleeping schedule.

vi

Last but not the least, I take this opportunity to express my deepest love and overwhelming

thank to my wife, Yingying Liu. This dissertation will not be possible without your love and

support.

vii

TABLE OF CONTENTS

Page

ABSTRACT . i

LIST OF TABLES . xi

LIST OF FIGURES . xii

1 Introduction . 1

1.1 Thesis Statement . 4

2 Background . 6

2.1 JavaScript Exploits . 6

2.1.1 Anatomy of a JavaScript Attack . 8

2.1.2 Unique Features of Malicious JavaScript 10

2.2 Detection . 11

2.3 Diagnosis . 13

2.4 Mitigation . 13

3 A Forced Execution Engine for Malicious JavaScript Detection 16

3.1 Introduction . 16

3.2 Background and Overview . 18

3.3 JavaScript Forced Execution . 23

3.3.1 Forced Execution Semantics . 24

3.3.2 Path Exploration in JSFORCE . 32

3.4 Implementation . 35

3.5 Evaluation . 37

3.5.1 Dataset & Experiment Setup . 37

3.5.2 Correctness . 38

3.5.3 Effectiveness . 40

3.5.4 Runtime Performance . 43

viii

Page

3.5.5 JSFORCE vs. Rozzle . 45

3.6 Case Study . 47

4 Semantics-Preserving Dissection of JavaScript Exploits via Dynamic JS-Binary Analysis 50

4.1 Introduction . 50

4.2 Problem Statement and Overview . 52

4.2.1 Problem Statement . 52

4.2.2 JSCALPEL– Overview . 54

4.3 Multi-level Tracing and Slicing-Source Identification 54

4.3.1 Context-Aware Multi-Level Tracing . 54

4.3.2 Identifying Slicing Sources . 58

4.4 Multi-level Slicing . 59

4.4.1 Binary-level Slicing . 61

4.4.2 JavaScript Slicing . 63

4.4.3 Minimized Exploit Script and PoV Generation 63

4.5 Evaluation . 66

4.5.1 Minimizing Exploits . 68

4.5.2 PoV Generation . 70

4.5.3 Effects of Filtering . 71

4.5.4 Case Study – CVE-2011-1255 . 72

5 Vulnerability-Agnostic Defense of JavaScript Exploits via Memory Perturbation 75

5.1 Introduction . 75

5.2 Technical background and motivation . 77

5.2.1 Defense of JavaScript Exploits . 77

5.2.2 Memory Preparation . 78

5.2.3 Memory Perturbation Techniques . 81

5.2.4 Our Mitigation Solution . 82

5.3 Threat Model and Scope . 83

5.4 Design . 85

5.4.1 Memory Allocation/De-Allocation Candidate discovery 86

ix

Page

5.4.2 Lightweight Type Inference . 88

5.4.3 Chaff Code Generation . 90

5.5 Implementation . 93

5.5.1 HTML Protector . 94

5.5.2 Possible implementation of PDF protector 94

5.6 Evaluation . 95

5.6.1 Security Analysis . 96

5.6.2 Effectiveness . 97

5.6.3 Performance . 99

6 Summary and Future Work . 104

6.1 Conclusion . 104

6.2 Limitations and Future Work . 105

6.2.1 Detection . 105

6.2.2 Diagnosis . 107

6.2.3 Mitigation . 108

VITA . 120

x

LIST OF TABLES

Table Page

3.1 Forced execution of sample in Figure 3.4 . 31

3.2 Correctness Results. 38

3.3 Effectiveness Results. 40

3.4 Detection Results With/Without Rozzle-extended Configuration 44

4.1 Exploit Analysis Results . 67

4.2 Payload Analysis Results. All exploits provide a single JavaScript statement from the
binary perspective, which is the context in which the exploiting instruction executes. 71

4.3 Effects of Filtering on Exploit Analysis. 72

5.1 The overview of memory perturbation techniques . 81

5.2 Experimental results of 10 latest JavaScript-based exploits using CHAFFYSCRIPT . . 97

5.3 Overall Overhead of CHAFFYSCRIPT on Octane benchmark 101

5.4 Memory Overhead of Chrome on Octane benchmark 102

xi

LIST OF FIGURES

Figure Page

2.1 The number of code execution vulnerabilities discovered in popular web browsers
(Chrome, Edge, IE, Safari, and FireFox) reported by CVEDetails [35] 7

2.2 The overall exploitation stages . 7

2.3 (a) describes the components of a modern exploit, (b) presents the relevant JavaScript
code involved in Aurora Exploit and (c) presents the underlying code execution that
results in use-after-free, (d) presents the assembly code for function GetDocPtr. . . 8

2.4 Non-executable (ROP) and executable payloads used in an exploit. 9

3.1 The Malicious JavaScript Sample . 19

3.2 Core JavaScript . 24

3.3 Syntax of JavaScript Types . 25

3.4 JavaScript Sample . 27

3.5 Typing rules . 29

3.6 Num of Path Exploration during Analysis. 41

3.7 Runtime for Detected HTML samples. 42

3.8 Runtime for Undetected HTML samples. 42

3.9 Runtime for Detected PDF samples. 43

3.10 Runtime for Undetected PDF samples. 43

3.11 Case Study Samples . 47

4.1 Architecture of JSCALPEL . 53

4.2 Multi-level analysis of Aurora Exploit. 55

4.3 Semantics-Preserving Multi-level Slicing. 55

4.4 Non-executable (ROP) and executable payloads used in an exploit. 58

4.5 CVE-2012-1876: ROP- and executable-payloads within the same string. 64

4.6 CFI Violation Point . 74

5.1 Samples of memory perturbation techniques summarized in Table 5.1 81

xii

Figure Page

5.2 The overall architecture of CHAFFYSCRIPT. 84

5.3 Chaff code Samples . 91

5.4 Expected memory layout of sample chromev8 OOB write 98

5.5 Memory layout of sample chromev8 OOB write after rewritten by CHAFFYSCRIPT 99

5.6 Rewriting Performance on well-known JavaScript libraries 100

5.7 Runtime performance overhead under different configurations 101

6.1 A JavaScript Sample Interpreted Differently by Different JavaScript Engines 105

6.2 The Case of Evading JSForce . 107

xiii

1

1. INTRODUCTION

JavaScript has been a popular programming language for decades. JavaScript engines are now

embedded in many other types of host software, including client-side web browsers (e.g.,

Chrome, FireFox, Internet Explorer), server-side in web servers and databases (e.g. Node.js), and

in non-web programs such as word processors and PDF software (e.g. Adobe Reader).

Malicious JavaScript take advantage of the interactive nature of JavaScript to exploit binary

vulnerabilities (e.g., use-after-free, heap/buffer overflow) of host software that are otherwise

difficult to exploit. JavaScript provides attackers with a much easier way to conduct heap

spraying [1], information leakage [2], and shellcode generation. Figure 2.3 presents a typical

malicious JavaScript that exploit the vulnerability of IE to gain remote code execution. Malicious

JavaScript are leveraged by the exploit kits used in drive-by-download attacks to remotely exploit

the client side vulnerabilities to install malware on the victim machine. This has led to the

emergence of an ”Exploit-as-a-Service” paradigm within the malware ecosystem [3].

Malicious JavaScript has become an important attack vector for software exploitation attacks.

Attacks in browsers, as well as PDF files containing malicious embedded JavaScript, are typical

examples of how attackers launch attacks using JavaScript. According to a recent report from

Symantec [4], there are millions of victims attacked by malicious JavaScript on the Internet each

day. In particular, three major class of problems, malware detection, exploit diagnosis, and

exploits mitigation, bring considerable challenges to security researchers. Although a lot of

2

research efforts have been made to address these threats, they have fundamental limitations and

thus cannot solve the problems.

Malware Detection In recent years, a number of techniques [5–13] have been proposed to

detect malicious JavaScript code. Due to the dynamic features of the JavaScript language, static

analysis [11, 14–16] can be easily evaded using obfuscation techniques [17]. Consequently,

researchers rely upon dynamic analysis [5–7] to expose the typical features of malicious

JavaScript. More specifically, these approaches rely upon visiting websites or opening PDF files

with a full-fledged or emulated browser/PDF reader and then monitoring the different features

(eval strings [7], heap health [10], etc.) for detection.

However, the typical JavaScript malware is designed to execute within a particular

environment, since they aim to exploit specific vulnerabilities, as opposed to benign JavaScript,

which will run in a more environment-independent fashion. Fingerprinting techniques [18] are

widely adopted by JavaScript malware to examine the runtime environment. A dynamic analysis

system may fail to observe some malicious behaviors if the runtime environment is not configured

as expected. Such configuration is quite challenging because of the numerous possible runtime

environment settings. Hence, existing dynamic analysis systems usually share the limitations of

limited code coverage and incomplete runtime environment setup, which leave attackers with a

broad attack surface to evade the analysis.

Exploit Diagnosis Once a ”zero-day” JavaScript attack is captured, it must be analyzed and its

inner-workings understood quickly so that proper defenses can be deployed to protect against it or

similar attacks in the future. Unfortunately, this analysis process is tedious, painstaking, and

3

time-consuming. From the analysis perspective, an analyst seeks to answer two key questions: (1)

Which JavaScript statements uniquely characterize the exploit? And (2) Where is the payload

located within the exploit? The answer to the first question results in the generation of an exploit

signature, which can then be deployed via an intrusion detection system (IDS) to discover and

prevent the exploit. The answer to the second question allows an analyst to replace the malicious

payload with an amicable payload and use the modified exploit as a proof-of-vulnerability (PoV)

to perform penetration testing.

Prior exploit analysis solutions have attempted to analyze exploits at either the JavaScript

level [5, 9–11, 19, 20] or the underlying binary level [21–25]. While binary level solutions

execute an exploit and analyze the underlying binary execution for anomalies, they are unaware

of any JavaScript level semantics and fail to present the JavaScript level view of the exploit.

JavaScript level analysis fails to account for implicit data flows between statements because any

DOM/BOM APIs invoked at the binary level are invisible at the JavaScript level. Unfortunately,

implicit flows are quite common in attacks and are often comprised of seemingly random and

irregular operations in the JavaScript that achieve a precise precondition or a specific trigger

which exploits a vulnerability in the binary. The semantic gap between JavaScript level and

binary level during the analysis makes it challenging to automatically answer the 2 key questions.

Exploit Mitigation JavaScript has been used to exploit the vulnerabilities found in software. A

typical JavaScript exploit can be divided into three stages. (1). Pre-Exploitation. This stage

examines the versions of underline operating system and software to determine exploits

configuration. (2). Exploitation. This stage prepares the memory, triggers the vulnerability,

disclosures the memory information, injects the payload and achieves the code execution. (3).

4

Post-Exploitation. After stage (2), this stage has gained the execution of code. But it requires

Return Oriented Programing (ROP) to bypass DEP, and then executes payload, keeps persistent in

the infected system.

To mitigate such kind of attacks, different approaches have been proposed. At JavaScript

level, approaches like BrowserShield [26], instrument the sensitive JavaScript operations to stop

known attacks by matching the predefined policies. Program hardening approaches like Control

Flow Integrity [27], Code Pointer Integrity [28], ROP mitigation [29, 30], etc., stop the attacks by

defeating different exploitation stages.

While these exploit mitigation techniques are constantly improving, hacking contests like

Pwn2Own [31], GeekPwn [32], etc., consistently demonstrate that the latest versions of Chrome,

Safari, Internet Explorer, and Edge can still be exploited. There are two reasons for this: First,

most of the latest proposed mitigation techniques require software or compiler tool chain changes

and thus could not be deployed promptly. For instance, ASLR-guard [33] is designed to thwart

information disclosure attacks, but requires compiler changes and cannot be quickly deployed by

software vendors. Second, the deployed mitigation techniques may fail due to newly invented

exploitation techniques (e.g., sandbox bypass technique). An ideal mitigation technique should be

flexible to deploy without requiring code changes and should subvert inevitable exploitation

stage(s).

1.1 Thesis Statement

My thesis work aims to combat malicious JavaScript through enriched executions, which

explore arbitrary paths for detection, preserve JS-binary semantics for diagnosis, and perturb

5

memory with chaff code for mitigation. To achieve this goal, I propose the following three new

techniques to address the specific security problems.

(1) Forced Execution for Malicious JavaScript Detection. To battle malicious JavaScript, I

propose JSForce, a forced execution engine for JavaScript, which drives an arbitrary

JavaScript snippet to execute along different paths without any input or environment setup.

While increasing code coverage, JSForce can tolerate invalid object accesses while

introducing no runtime errors during execution.

(2) Semantics-Preserving Dissection of JavaScript Exploits. To answer the 2 key questions in

exploit diagnosis, I present JScalpel, a system that utilizes the JavaScript context information

from the JavaScript level to perform the context-aware binary analysis. In essence, it

performs JS-Binary analysis to (1) generate a minimized exploit script, which in turn helps to

generate a signature for the exploit, and (2) precisely locate the payload within the exploit. It

replaces the malicious payload with a friendly payload and generates a PoV for the exploit.

(3) Vulnerability-Agnostic Defense of JavaScript Exploits via Memory Perturbation. To

mitigate JavaScript exploits, I propose ChaffyScript, a vulnerability-agnostic mitigation

system that blocks JavaScript exploits via undermining the memory preparation stage.

Specifically, given suspicious JavaScript, ChaffyScript rewrites the code to insert memory

perturbation code, and then generates semantically-equivalent code. JavaScript exploits will

fail as a result of unexpected memory states introduced by memory perturbation code, while

the benign JavaScript still behaves as expected since the memory perturbation code does not

change the JavaScript’s original semantics. ChaffyScript does not require any code change of

host software and is flexible to deploy.

6

2. BACKGROUND

The drive-by-download attacks drive the emergence of “Exploit-as-a-Service” paradigm on the

malware ecosystem [34]. These attacks, mostly launched via malicious JavaScript, have attracted

a lot of research efforts both from academia and industry. In this chapter, the inner-workings of

JavaScript exploits are first discussed to demonstrate how JavaScript is used to launch the attack.

Then a discussion on the related work of detection, diagnosis, and mitigation for malicious

JavaScript is presented to illustrate an overview of current research on malicious JavaScript.

2.1 JavaScript Exploits

JavaScript has been a popular programming language for decades. JavaScript engines are now

embedded in many other types of host software, including client-side web browsers (e.g.,

Chrome, FireFox, Internet Explorer), server-side in web servers and databases (e.g. Node.js), and

in non-web programs such as word processors and PDF software (e.g. Adobe Reader).

The interactive nature of JavaScript allows malicious JavaScript to take advantage of binary

vulnerabilities (e.g., use-after-free, heap/buffer overflow) of host software that are otherwise

difficult to exploit. JavaScript provides attackers with a much easier way to conduct heap

spraying [1], information leakage [2], and shellcode generation. The exploit kits used in

drive-by-download attacks leverage JavaScript code to remotely exploit the client side

vulnerabilities to install malware on the victim machine. This has led to the emergence of an

7

Fig. 2.1.: The number of code execution vulnerabilities discovered in popular web browsers
(Chrome, Edge, IE, Safari, and FireFox) reported by CVEDetails [35]

Pre-Exploitation
OS Identification
Software Identification
Version Identification

Exploitation
Memory Preparation
Vulnerability Preparation
Memory Disclosure
Payload Preparation
Code Execution

Post-Exploitation
Return Oriented Programming
Payload Execution
Continuation-of-Execution
Persistence

Fig. 2.2.: The overall exploitation stages

”Exploit-as-a-Service” paradigm within the malware ecosystem [3]. As illustrated in Figure 2.1,

in popular web browsers, hundreds of code execution vulnerabilities are still discovered every

year. This provides the attacker with a broad attack surface.

Figure 2.2 illustrates the high level stages of JavaScript exploits [36]. In the pre-exploitation

stage, malware fingerprints the victim machine to determine the OS version and target software

and then launches the corresponding exploit. The exploitation stage triggers the vulnerability,

bypassing exploit mitigation techniques (e.g., ASLR, EMET [37], Control Flow Guard [38]) and

8

Fig. 2.3.: (a) describes the components of a modern exploit, (b) presents the relevant JavaScript
code involved in Aurora Exploit and (c) presents the underlying code execution that results in
use-after-free, (d) presents the assembly code for function GetDocPtr.

diverts the code execution to the injected payload. The post-exploitation stage executes a

Return-Oriented-Programming (ROP) payload to bypass DEP, drops the malicious payload while

attempting to evade detection from endpoint security products.

2.1.1 Anatomy of a JavaScript Attack

Modern JavaScript attacks can be compartmentalized into four general components.

Figures 2.3 (a) and (b) show these four components within the Aurora exploit. Below, we briefly

describe the four components.

Obfuscation: From the perspective of an attacker, the identity of the exploit server and the

arsenal of exploits – especially zero-day exploits – must be obfuscated to avoid detection by

anti-malware analyzers. For example, in Figure 2.3 JavaScript obfuscation is used to perform a

document.write("Get payload") operation. Malicious scripts often use

9

Fig. 2.4.: Non-executable (ROP) and executable payloads used in an exploit.

document.write() to inject code components at runtime. In Figure 2.3(a), the Aurora script

iterates over this object and finds the document object at runtime. Simple static

analysis-based scanners cannot identify that “i[x][y]” is actually a document.write()

operation. Several other obfuscation techniques are employed by attackers to systematically

defeat various analysis techniques [39]. On the de-obfuscation front, several solutions have been

proposed to deobfuscate JavaScript (e.g., Wepawet [5], JSUnpack [7]).

Fingerprinting: An exploit uses fingerprinting to glean information about victim’s environment.

With such information, exploits specific to vulnerable components are launched to compromise

the victim process. For example, in Figure 2.3(a), the Aurora exploit is only performed if the type

of the browser is identified as being Microsoft Internet Explorer (“MSIE”). Exploit kits are

known to use PluginDetect [40] to fingerprint browsers.

Payload Injection: The exploit injects a malicious payload into the victim process. Payloads can

be broadly categorized as executable or non-executable payloads. Figure 4.4 presents the

payloads and the flow of execution in modern exploits. The goal is to execute a malicious

payload, but since the wide deployment of data execution prevention (DEP), the page containing

the executable payload cannot be directly executed. First, return-oriented programming (ROP) is

10

used to make a page executable by invoking VirtualProtect() on Windows or

mprotect() on Linux. Then, control is transferred to the malicious executable code.

In fact, though uncommon, it is possible for attacks to introduce gadgets [41]. Though our

solution makes no assumptions about how the payload is stored, or what statements are used to

inject the payload, the payload is typically injected using an encoded string that contains the

executable. The statements that inject the payload are usually independent of the exploit code.

Payload detection can be challenging because it is possible for both executable and

non-executable payloads to reside within the same string.

Exploitation: In this step, using one or more carefully crafted JavaScript statements, the

vulnerability in the victim process is exploited. The statements may seem random and may lack

data-dependencies, but they often involve a combination of explicit and implicit data dependency.

Consider the exploit statements for the Aurora exploit presented in Figure 2.3(b, c and d). (b)

presents the HTML (statement 1) and JavaScript (2-26) statements that exploit a use-after-free

vulnerability in mshtml.dll of Internet Explorer browser. Figures 2.3(c and d) present the

underlying C++ and assembly code that is executed as a part of the exploit. Statement 18 corrupts

the memory that was freed in statement 10. The corrupted memory is utilized in a call

instruction arising from statement 26. All the statements in Figures 2.3(c) are pertinent to the

exploit.

2.1.2 Unique Features of Malicious JavaScript

From the discussion in 2.1.1, a typical malicious JavaScript has two unique features- dynamic

nature and interaction between JavaScript level and binary level.

11

Dynamic nature JavaScript is a high-level, dynamic, untyped, and interpreted programming

language. It supports many dynamic features [42] (e.g., call-site dynamism, eval, dynamic

typing, etc.). While providing the flexibility of programming for developers, the dynamic features

of JavaScript empower the attacker to highly obfuscate the malicious JavaScript for evasion

purpose. For instance, eval can be used to hide malicious JavaScript in String. Call-site

dynamism can be used to hide callee name within String to bypass signature-based detection

system. These dynamic features are broadly employed by malicious JavaScript in the obfuscation

process to evade the detection. This inspires us to propose JSForce, a forced execution engine, to

improve the detection rate of JavaScript analysis system.

Interaction between JavaScript level and binary level Malicious JavaScript is used to exploit

the vulnerability of host software. The complete exploitation is a close interaction process

between JavaScript level and binary level. At runtime, native functions provided by host software

are invoked to implement the semantics of interpreted JavaScript. The craft JavaScript triggers the

vulnerability in host software, and diverts the execution to the injected payload. While the

exploitation operations are specified using JavaScript, they affect the memory states and calling

context states of host software at the binary level. This close interaction between JavaScript level

and binary level inspires us the work JScalpel and ChaffyScript.

2.2 Detection

In the last few years, there have been a number of approaches to analyzing JavaScript code.

They can be roughly divided into two categories-static approach, dynamic approach.

12

Static Approach. Several systems have focused on statically analyzing JavaScript code to

identify malicious web pages [11, 14–16]. ZOZZLE [11], in particular, leverages features

associated with AST context information (such as, the presence of a variable named shellcode in

the context of a loop), for its classification. Since dynamic features of JavaScript plague the static

analysis , researchers try to model those features to improve the static analysis result [43–45].

Dynamic Approach. Dynamic analysis is widely deployed to expose behaviors of obfuscated

JavaScript code. Previous work [5–7] execute JavaScript using an emulated JavaScript running

environment and acquire de-obfuscated JavaScript code. To de-obfuscate malicious JavaScript

code, Gen et al. [6] simplify the obfuscated JavaScript code by preserving the semantics of the

observational equivalence. JSGuard [8] proposed a methodology to detect JavaScript shellcode

that fully uses JavaScript code execution environment information with low false negative and

false positive. Liu et al. [46] propose a context-aware approach for detection and confinement of

malicious JavaScript in PDF by inserting context monitoring code into a document. To analyze

JavaScript code with cloaking, Kolbitsch et al. [9] uncover environment-specific malware by

exploring multiple execution paths within a single execution. CODENAME can benefit the

dynamic analysis in terms of improved code coverage and tolerance of invalid host environment

model.

Researchers also try to combine static and dynamic code features to identify malicious

JavaScript programs(Cujo [47]). More precisely, Cujo processes the static program and traces of

its execution into q-grams that are classified using machine learning techniques. Symbolic

execution [19] is also explored for malicious JavaScript analysis.

13

2.3 Diagnosis

Once a malicious JavaScript attack is captured, it must be analyzed and its inner-workings

understood quickly so that proper defenses can be deployed to protect against it or similar attacks

in the future. Unfortunately, this analysis process is tedious, painstaking, and time-consuming.

Researchers have proposed different solutions for exploit diagnosis. PointerScope [21] uses type

inference on binary execution to detect the pointer misuses induced by an exploit. ShellOS [23]

built a hardware virtualization based platform for fast detection and forensic analysis of code

injection attacks. Dynamic taint analysis [22] keeps track of the data dependency originated from

untrusted user input at the instruction level, and detects an exploit on a dangerous use of a tainted

input. Panorama [24] explored whole system taint tracking for malware analysis. Chen et al., [48]

showed that pointer taintedness analysis could expose different classes of security vulnerabilities,

such as format string, heap corruption, and buffer overflow vulnerabilities. Prospector [49]

pinpoints the guilty bytes in polymorphic buffer overflows on heap or stack by tagging data from

network with an age stamp. Nevertheless, those techniques focus only on binary level diagnosis

and are not feasible for complex attacks launched using JavaScript code.

2.4 Mitigation

Mitigation techniques have been evolving with the advancement of exploitation techniques.

To name a few:

Control Flow Integrity Beginning from [27], many CFI defenses have been proposed at the

source code level[50], at the binary level [51] and at runtime[52]. Microsoft deployed control

14

flow guard techniques on its products [38] to mitigate the exploits. Dachshund [53] secures

against blinded constants in JIT code by removing all constants from JavaScript code.

ROP mitigation Microsofts Enhanced Mitigation Experience Toolkit (EMET) [37] is a popular

zero-day exploit prevention utility that provides defense against stack pivot in ROP attacks.

StackArmor [54] randomizes the location of the stack, thereby making it harder for an attacker to

guess the location of a ROP payload on the stack. ROPecker [55] leverages a hardware feature,

the Last Branch Record, to detect the execution of ROP chains.

Randomization Randomization based mitigation is quite effective at stopping exploits, but is

vulnerable to information leakage and side channel attacks [56]. To stop information leakage,

ASLRGuard [33] stopped the leak of data pointers in deriving code addresses by separating code

and data, providing secure storage for code pointers, and encoding the code pointers when they

are treated as data. Buble [57] inserted holes in array objects by modifying the JavaScript engine

to stop heap spray attacks.

The above mitigation techniques usually require changes to source code or binaries and thus

cannot be deployed promptly. In addition, once deployed, they cannot be rapidly upgraded as

exploitation techniques advance.

JavaScript Rewriting JavaScript rewriting has been used by researchers to meet various

security requirements. BrowserShields [26] uses it to stop JavaScript exploits by matching

predefined vulnerability features. But it does not work for 0-day exploits. ConScript [58] rewrites

JavaScript to specify and enforce fine-grained security policies for JavaScript in the browser.

15

Dachshund [53] secures against blinded constants in JIT code via removing all the constants from

JavaScript code. But Dachshund only works against JITSpray attacks.

16

3. A FORCED EXECUTION ENGINE FOR MALICIOUS JAVASCRIPT

DETECTION

3.1 Introduction

Malicious JavaScript has become an important attack vector for software exploitation attacks.

Attacks in browsers, as well as PDF files containing malicious embedded JavaScript, are typical

examples of how attackers launch attacks using JavaScript. According to a recent report from

Symantec [4], there are millions of victims attacked by malicious JavaScript on the Internet each

day.

In recent years, a number of techniques [5–13] have been proposed to detect malicious

JavaScript code. Due to the dynamic features of the JavaScript language, static

analysis [11, 14–16] can be easily evaded using obfuscation techniques [17]. Consequently,

researchers rely upon dynamic analysis [5–7] to expose the typical features of malicious

JavaScript. More specifically, these approaches rely upon visiting websites or opening PDF files

with a full-fledged or emulated browser/PDF reader and then monitoring the different features

(eval strings [7], heap health [10], etc.) for detection.

However, the typical JavaScript malware is designed to execute within a particular

environment, since they aim to exploit specific vulnerabilities, as opposed to benign JavaScript,

which will run in a more environment-independent fashion. Fingerprinting techniques [18] are

widely adopted by JavaScript malware to examine the runtime environment. A dynamic analysis

17

system may fail to observe some malicious behaviors if the runtime environment is not configured

as expected. Such configuration is quite challenging because of the numerous possible runtime

environment settings. Hence, existing dynamic analysis systems usually share the limitations of

limited code coverage and incomplete runtime environment setup, which leave attackers with a

broad attack surface to evade the analysis.

To solve those limitations, Rozzle [9] explores multiple environment related paths within a

single execution. But it requires a predefined environment-related profile for path exploration.

Construction of a complete profile is a challenging task because of the numerous different

browsers and plugins, especially for recent fingerprinting techniques [59, 60]. These

fingerprinting techniques do not rely upon any specific APIs, and thus Rozzle can be evaded

because the predefined profile cannot include those fingerprinting techniques. Also, Rozzle may

introduce runtime errors because it executes infeasible paths which may stop the analysis before

the malicious code is executed. Revolver [12] employs a machine learning-based detection

algorithm to identify evasive JavaScript malware. However, it is dependent upon a known sample

set and is unable to detect 0-day JavaScript malware. Although symbolic execution of

JavaScript [19] can be applied to explore all of the possible execution paths, the performance

overhead of a symbolic string solver [61] and the dynamic features of JavaScript make it

infeasible for practical use.

In this chapter, I propose JSFORCE, a forced execution engine for JavaScript, which drives an

arbitrary JavaScript snippet to execute along different paths without any input or environment

setup. While increasing code coverage, JSFORCE can tolerate invalid object accesses while

introducing no runtime errors during execution. This overcomes the limitations of current

JavaScript dynamic analysis techniques. Note that, as an amplifier technique, JSFORCE does not

18

rely on any predefined profile information or full- fledged hosting programs like browsers or PDF

viewers, and it can examine partial JavaScript snippets collected during an attack. As

demonstrated in Section 4.5, JSFORCE can be leveraged to improve the detection rate of other

dynamic analysis systems without modification of their detection policies. While the high-level

concept of forced execution has been introduced in binary code analysis (X-Force [62],

iRiS [63]), we face unique challenges in realizing this concept in JavaScript analysis, given that

JavaScript and native code are very different languages by nature.

I implement JSFORCE on top of the V8 JavaScript engine [64] and evaluate the correctness,

effectiveness, and runtime performance of JSFORCE with 220,587 HTML files and 23,509 PDF

samples. Our experimental results demonstrate that adopting JSFORCE can greatly improve the

JavaScript analysis results by 206.29% without any noticeable increase in false positives and with

a reasonable performance overhead.

3.2 Background and Overview

To provide the reader with a better understanding of the motivation for our system and the

problems that it addresses, we begin with a discussion of the malicious JavaScript code used in

drive-by-download attacks.

Malicious JavaScript code Malicious JavaScript code is typically obfuscated and will attempt

to fingerprint the version of the victim’s software (browser, PDF reader, etc.), identify

vulnerabilities within that software or the plugins that that software uses, and then launch one or

more exploits. Figure 3.1 shows a listing of JavaScript code used for a drive-by-download attack

against the Internet Explorer browser. Line 1 employs precise fingerprinting to deliver only

19

1 i f ((n a v i g a t o r . appName . indexOf (” M i c r o s o f t I n t e ” + ” r n e t E x p l o r e r ”) ==
1) && (n a v i g a t o r . u s e r A g e n t . indexOf (”Windows N” + ”T 5 . 1 ”) == 1) &&
(n a v i g a t o r . u s e r A g e n t . indexOf (”MSI” + ”E 8 . 0 ”) == 1)) {

2 a t t = b t t + 1 ;
3 }
4 i f (a t t == 0) {
5 t r y {
6 new Ac t iveXObjec t (”UM0QS4dD”) ;
7 } c a t c h (e) {
8 v a r t lMoOul8 = ’\x25 ’ + ’ u9 ’ + ’\x30 ’ + ’\x39 ’ + YYGRl6 ;
9 t lMoOul8 += tlMoOul8 ;

10 v a r CBmH8 = ”%u ” ;
11 v a r vBYG0 = u n e s c a p e ;
12 v a r EuhV2 = ”BODY” ;
13 . . .
14 }
15 }
16 s e t T i m e o u t (” r e d i r () ” , 3000) ;

Fig. 3.1.: The Malicious JavaScript Sample

selected exploits that are most likely to successfully attack the browser. Lines 5-7 contain evasive

code to bypass emulation-based detection systems. More precisely, the code attempts to load a

non-existant ActiveX control, named UM0QS4dD (line 6). When executed within a regular

browser, this operation fails, triggering the execution of the catch block that contains the

exploitation code (lines 7-14).

However, an emulation-based detection system must emulate the ActiveX API by simulating

the loading and presence of any ActiveX control. In these systems, the loading of the ActiveX

control will not raise this exception. As a result, the execution of the exploit never occurs and no

malicious activity is observed. Instead, the victim is redirected to a benign page (line 16) if the

fingerprinting or evasion stage fails. Attackers can also abuse the function setTimeout to

create a time bomb [65] to evade detection. Detection systems can not afford to wait for long

20

periods of time during the analysis of each sample in an attempt to capture randomly triggered

exploits.

Challenges and Existing Techniques Static analysis is a powerful technique that explores all

paths of execution. But, one particular issue that plagues static analysis of malicious JavaScript is

that not all of the code can be statically observed. For example, static analysis cannot observe

malicious code hidden within eval strings, which are frequently exploited by attackers to

obfuscate their code. Therefore, current detection approaches [5–7] rely upon dynamic analysis to

expose features typically seen within malicious JavaScript. More specifically, these approaches

rely upon visiting websites or opening PDF files with an instrumented browser or PDF reader, and

then monitoring different features (eval strings [7], heap health [10], etc.) for detection.

However, dynamic analysis techniques suffer from two fundamental limitations. The first

limitation is limited code coverage. This becomes a much more severe limitation within the

context of analyzing malicious JavaScript. Attackers frequently employ a technique called

cloaking [66], which works by fingerprinting the victim’s web browser and only revealing the

malicious content when the victim is using a specific version of the browser with a vulnerable

plugin. Cloaking makes dynamic analysis much harder because the sample must be run within

every combination of web browser and plugin to ensure complete code coverage. The

widely-used event callback feature of JavaScript also makes it challenging for dynamic analysis

to automatically trigger code. For example, attackers can load the attack code only when a

specific mouse click event is captured, and automatically determining and generating such a

trigger event is difficult.

21

The second limitation is the complexity of the JavaScript runtime environment. JavaScript is

used within many applications, and it can call the functionality of any plugin extensions supported

by these applications. For dynamic analysis, any pre-defined browser setup handles a known set

of browsers and plugins. Thus, there is no guarantee that this setup will detect vulnerabilities only

present in less popular plugins. While it is possible to deploy a cluster of machines running many

different operating systems, browser applications, and browser plugins, the exponential growth of

possible combinations rapidly causes scalability issues and makes this approach infeasible.

Rozzle [9] attempts to address this code coverage problem by exploring environment-related

paths within a single execution. For instance, because att in Figure 3.1 depends upon the

environment-related API’s output, Rozzle will execute lines 5-15 and reveal the malicious

behaviors hidden in lines 8-14 by executing both the try and catch blocks. But, it requires a

predefined environment-related profile for path exploration. Construction of a complete profile is

a challenging task because of the numerous different browsers and plugins, especially for newer

proposed fingerprinting techniques [18, 59, 60]. These new techniques do not rely upon any

specific APIs. For instance, the JavaScript engine fingerprinting technique [60] relies upon

JavaScript conformance tests such as the Sputnik [67] test suite to determine a specific browser

and major version number. There are no specific APIs used for the fingerprinting. Thus, Rozzle

cannot include it within the predefined profile and explore the environment-related paths. Rozzle

also introduces runtime errors into the analysis engine, which may stop the analysis before any

malicious code is executed. In contrast, JSFORCE does not rely upon predefined profile for path

exploration and handles runtime errors using the forced execution model presented in

Section 3.3.1. By overcoming those limitations of Rozzle, JSFORCE achieves greater code

coverage.

22

Revolver [12] employs a machine learning-based detection algorithm to identify evasive

JavaScript malware. However, it requires that the malicious sample is present within a known

sample set so that its evasive version can be determined based upon the classification difference.

By design, it can not be used for 0-day malware detection.

Symbolic execution has also been applied to the task of exposing malware [65]. This

technique, while improving code coverage over dynamic analysis, suffers from scalability

challenges and is, in many ways, unnecessarily precise [9]. Within the context of JavaScript

analysis, symbolic execution becomes more challenging [19]. JavaScript applications accept

many different kinds of input, and those inputs are structured as strings. For example, a typical

application might take user input from form fields, messages from a server via

XMLHttpRequest, and data from code running concurrently within other browser windows. It

is extremely difficult for a symbolic string solver [61] to effectively supply values for all of these

different kinds of inputs and reason about how those inputs are parsed and validated. The rapidly

evolving JavaScript language and its host programs (browsers, PDF readers, etc.) make the

modeling of the JavaScript API tedious work. Furthermore, the dynamic features (such as the

eval function) of JavaScript make symbolic execution infeasible for many analysis efforts.

Overview JSFORCE, our proposed forced-execution engine for JavaScript, is an enhancement

technology designed to better expose the behaviors of malicious JavaScript at runtime. Different

detection policies can be applied to examine malicious JavaScript. While the forced execution

concept is first introduced for binary code analysis (X-Force [62]), we face unique challenges,

such as type inference and invalid object access recovery, in enabling the forced execution

concept for JavaScript.

23

We now illustrate how the forced execution of JavaScript code works. Consider the snippet

shown in Figure 3.1. JSFORCE forces the execution through the different code paths of the

snippet. So, the exploitation code within the catch block (lines 7-14) will be executed, no

matter how the ActiveX API is simulated by the emulation-based analysis system. Moreover,

JSFORCE will immediately invoke the callback function passed to setTimeout to trigger the

time bomb malware.

JSFORCE’s path exploration forces line 2 to be executed, regardless of the result of the

fingerprinting statement (line 1). Since btt is not defined within the code snippet under analysis,

which is a common scenario because collected JavaScript code may be incomplete due to

multi-stages of the attack, the execution of line 2 raises a ReferenceError exception when

running within a normal JavaScript engine. When the exception is captured, JSFORCE creates a

FakedObject named btt, which is fed to the JavaScript engine to recover from the invalid

object access. However, the type of btt is unknown at the time of FakedObject’s creation.

JSFORCE infers the type based upon how the FakedObject is used. For example, if this

FakedObject is added to an integer, JSFORCE will then change its type from FakedObject

to Integer. We call this faked object retyping.

3.3 JavaScript Forced Execution

This section explains the basics of how a single forced execution proceeds. The goal is to have

a non-crashable execution. We first present the JavaScript language semantics and then focus on

how to detect and recover from invalid object accesses. We then discuss how path exploration

occurs during forced execution.

24

3.3.1 Forced Execution Semantics

⟨EXPRESSIONS⟩ ::= c CONSTANT
| x VARIABLE
| x.f FIELD ACCESS
| x.prot PROTO ACCESS
| e op e BINARY OP
| this THIS
| {f1 ∶ e1, ..., fn ∶ en} OBJECT LITERAL
| {function(p1, ..., pn){S}} FUNCTION DEF
| f(a1, ..., an) FUNCTION CALL
| new f(a1, ..., an) NEW

⟨STATEMENTS⟩ ::= skip SKIP
| S1 ∶ S2 SEQ
| varx VAR DECL
| x ∶= e ASSIGN
| x.f ∶= e ASSIGN
| if e then S1 else S2 CONDITIONAL
| while e do S WHILE
| try{S}catch{S}finally{S} TRY CATCH
| return e RETURN

Fig. 3.2.: Core JavaScript

The JavaScript Language JavaScript is a high-level, dynamic, untyped, and interpreted

programming language. Figure 3.2 summarizes the syntax of the core JavaScript, which captures

the essence of JavaScript. At runtime, the JavaScript engine dynamically interprets JavaScript

code to 1) load/allocate objects, 2) determine the types of objects, and 3) execute the

corresponding semantics. Given an arbitrary JavaScript snippet, execution may fail because of

undefined/uninitialized objects or incorrect object types. For instance, the execution of line 2 in

Figure 3.1 raises a ReferenceError exception because btt is not defined. To tolerate such

invalid object accesses, forced execution must handle such failures.

25

Types:
τ ∶∶= ∑i∈T,T⊆{�,u,b,s,n,o}ϕi

Rows:
% ∶∶= str:τ, %

∣ %τ
Type environments:

Γ ∶∶= Γ(x ∶ τ)
∣ ∅

Type summands
and indices:

ϕ� ∶∶= Undef
ϕu ∶∶= Null
ϕb ∶∶= Bool(ξb)
ξb ∶∶= false ∣ true ∣ ⊺

ϕs ∶∶= String(ξs)
ξs ∶∶= str ∣ ⊺

ϕn ∶∶= Number(ξn)
ξn ∶∶= num ∣ ⊺

ϕf ∶∶= Function(this ∶ τ ;%→ τ)
ϕo ∶∶= Obj(∑i∈T,T⊆{b,s,n,f,�}ϕi)(%)

ϕfo ∶∶= FObj
ϕff ∶∶= FFun

Fig. 3.3.: Syntax of JavaScript Types

The basic idea behind forced execution is that, whenever a reference error is discovered, a

FakedObject is created and returned as the pointer of the property. During the execution of the

program, the expected type of the FakedObject is indicated by the involved operation. For

instance, adding a number object to a FakedObject indicates that the FakedObject’s type

is number. When the type of a FakedObject can be determined, we update it to the

corresponding type.

Potentially, we could assign FakedObject with the type Object and reuse the dynamic

typing rules of the JavaScript engine to coerce the FakedObject to an expected type.

Nevertheless, the dynamic typing rules of the JavaScript engine are designed to maintain the

26

correctness of JavaScript semantics and do not suffice to meet our analysis goal of achieving

maximized execution. This can be attributed to two reasons. First, while the JavaScript engine

can cast the FakedObject:Object to proper primitive values, it cannot cast the

FakedObject:Object to proper object types. For instance, when a FakedObject with the

type Object is used as a function object, the JavaScript engine will raise the TypeError

exception according to ECMA specification [68]. Second, the casting of FakedObject to

primitive values by the JavaScript engine can lead to unnecessary loss of precision. To understand

why, consider the following loop:

1 c = a / 2 ;

2 f o r (i = c ; i <10000; i ++)

3 {

4 memory [i] = nop + nop + s h e l l c o d e ;

5 }

Since a is not defined, a FakedObject will be created. With the built-in typing rule of the

JavaScript engine, c will be assigned the value NaN. The loop condition i < 10000 will always

evaluate to false. Thus, the loop body, which contains the heap spray code, will never be

executed. Although the path exploration of JSFORCE will guarantee that the loop body will be

executed once, without executing the loop 10,000 times, it will likely be missed by heap spray

detection tools because of the small chunk of memory allocated on the heap.

Therefore, to overcome the above two issues, JSFORCE introduces two new types, FObj and

FFun, to the JavaScript type system. The JavaScript type system defined in [69] is extended to

27

1 v a r a = n u l l ;
2 v a r b = c + 1 ;
3 v a r d = a . l e n g t h ;
4 v a r func = n u l l ;
5 a = ” H e l l o World ” ;
6 v a r e = new abc () ;
7 i f (b < 5) {
8 f unc = f u n c t i o n (x) {

9 r e t u r n x
10 } ;
11 }
12 d = func (6) ;
13 v a r f = Math . abs (d) ;
14 a r r a y [5] = f ;

Fig. 3.4.: JavaScript Sample

support these two new types. Figure 3.3 summarizes the new syntax of these JavaScript types.

Type FObj is for FakedObject. At the moment FakedObject is created, we assign type

FObj as the temporary type of FakedObject. It can be subtyped to any types within the

JavaScript type system. When FakedObject is used as a function object, FakedObject is

casted to FakedFunction with type FFun. The FakedFunction with type FFun can take

arbitrary input and always returns FakedObject:FObj. Following JSFORCE’s dynamic

typing rules, a in the above loop sample will be typed to Number because it is used as a

dividend. c is then assigned to Number and the loop body is executed repeatedly until the loop

condition i<10000 is evaluated to false. By introducing these two new types and their typing

rules, JSFORCE solves the two issues mentioned in the above paragraph. In the following

paragraphs, we detail the JavaScript forced execution model.

Reference Error Recovery To avoid raising ReferenceError exceptions, we introduce the

FakedObject and recover the error by creating the FakedObject whenever necessary.

There are two cases that lead to reference errors. The first case (ER 1) is a failed object lookup.

Every field access or prototype access triggers a dynamic lookup using the field or prototype’s

name as the key. If no object is found, the lookup fails. Such failures happen when the running

28

environment is incomplete or some portion of the JavaScript code is missing. For example, a

browser plugin referenced by the JavaScript is not installed, or only a portion of the JavaScript

code is captured during the attack.

To handle this error, JSFORCE intercepts the lookup process and a FakedObject named as

the lookup key is created whenever a failed lookup is captured. The corresponding parent object’s

property is also updated to the FakedObject. Line 2 in Figure 3.4 presents such an example.

The JavaScript engine searches the current code scope for the definition of c, which is not

defined. JSFORCE returns the FakedObject as the temporary value of c so that the execution

can continue.

The second case (ER 2) occurs when the object is initialized to the value null or

undefined, but later has its properties accessed. JSFORCE modifies the initialization process to

replace the null to a FakedObject if an object is initialized as value null or undefined.

For example, the variable a defined on line 1 in Figure 3.4 is assigned the value FakedObject

instead of null under the forced execution engine. The variable a may later be updated to

another value during execution, but this does not sabotage the execution of JavaScript code.

Faked Object Retyping When a FakedObject is used within an expression, it must be

retyped to the expected type. Otherwise, incorrect typing raises a TypeError exception and

stops the execution. JSFORCE infers the expected type of FakedObject by how the

FakedObject is used. Figure 3.5 summarizes the dynamic typing rules introduced by

JSFORCE. The rules are divided into the following five categories:

1) R-ASSIGN. This rule deals with assignment statements. When a FakedObject e0 is

assigned to a new value e1, e0 is updated to the new value e1 with the type τ . The

29

R-ASSIGN
Γ ⊢lhs e0 ∶ ϕfo Γ ⊢ e1 ∶ τ

Γ ⊢ref e0 = e1 ∶ τ

R-CALL1
τ0 ⊵ Obj(Function(this ∶ τ

′; ⌈0⌉ ∶ τ1, ..., ⌈n–1⌉ ∶ τn, %→ τ))(%′)
Γ ⊢ref e0 ∶ ϕfo/τ

⊢upd e0 ∶ ϕfo, %
′@τ ↤ ϕff ,Γ ⊢ref e0(e1,, en) ∶ ϕfo/ ⊥

R-CALL2
τ0 ⊵ Obj(Function(this ∶ τ

′; ⌈0⌉ ∶ τ1, ..., ⌈n–1⌉ ∶ τn, %→ τ))(%′)
Γ ⊢ref e0 ∶ τ0/τ

′

Γ ⊢ e1 ∶ τ1 ...Γ ⊢ e
(i–1) ∶ τ(i–1) Γ ⊢ ei ∶ ϕfo Γ ⊢ e

(i+1) ∶ τ(i+1) ... Γ ⊢ en ∶ τn

⊢upd ei ∶ ϕfo@τ ↤ τi,Γ ⊢ref e0(e1,, en) ∶ τ/ ⊥

R-NEW
τ0 ⊵ Obj(Function(this ∶ τ

′; ⌈0⌉ ∶ τ1, ..., ⌈n–1⌉ ∶ τn, %→ τ))(%′)
Γ ⊢ref e0 ∶ ϕfo/τ

⊢upd e0 ∶ ϕfo, %
′@τ ↤ ϕff ,Γ ⊢ref new e0(e1,, en) ∶ ϕfo/ ⊥

R-BINOPERATOR1
Γ ⊢ e1 ∶ ϕfo Γ ⊢ e2 ∶ τ

′
¬(e2 is ϕfo)

⊢upd e1 ∶ ϕfo@τ ↤ τ ′,Γ ⊢ e1 op e2 ∶ τ
′

R-BINOPERATOR2
Γ ⊢ e1 ∶ ϕfo Γ ⊢ e2 ∶ ϕfo

⊢upd e1 ∶ ϕfo@τ ↤ ϕn,⊢upd e2 ∶ ϕfo@τ ↤ ϕn,Γ ⊢ e1 op e2 ∶ τ

R-INDEX1
Γ ⊢ e1 ∶ ϕfo τ1 ⊵ Obj(ϕ1)(%1) Γ ⊢ e2 ∶ ϕn

⊢upd e1 ∶ ϕfo@τ ↤ τ1,Γ ⊢lhs e1[e2] ∶ ϕfo

R UNARYOPERATOR
Γ ⊢ e1 ∶ ϕfo

⊢upd e2 ∶ ϕfo@τ ↤ ϕn,Γ ⊢ op e1 ∶ τ

R-INDEX2
Γ ⊢ e1 ∶ τ1 τ1 ⊵ Obj(ϕ1)(%1) Γ ⊢ e2 ∶ ϕfo ⊢upd %1@ϕn ↦ τ ′

⊢upd e2 ∶ ϕfo@τ ↤ ϕn,Γ ⊢lhs e1[e2] ∶ τ
′

Fig. 3.5.: Typing rules

JavaScript engine handles this naturally, so no interference is required. For example,

variable a in Figure 3.4 is assigned FakedObject at line 1 by JSFORCE. At line 4, the

variable a is retyped as a string object.

2) R-CALL1 and R-NEW. These two rules describe the typing rule for the scenario when a

FakedObject:FObj is used as a function call or by the new expression. Function calls

and the new expression both expect their first operand to evaluate to a function. So,

JSFORCE updates the FakedObject:FObj to FakedFunction:FFun for this

situation. The FakedFunction is a special function object which is configured to accept

30

arbitrary parameters. The return value of the function is set to a FakedObject:FObj so

that it can be retyped whenever necessary.

3) R-CALL2. This rule describes the case where the callee is a known function, but a

FakedObject:FObj is passed as a function parameter. JSFORCE types the

FakedObject:FObj to the required type of the callee’s arguments. The JavaScript

language has many standard built-in libraries such as Math and Date. When a

FakedObject:FObj is used by the standard library function, we update the type based

upon the specification of the library function [68]. Currently, JSFORCE implements

retyping for several common libraries (e.g., Math, Number, Date).

4) R-BINOPERATOR1/2 and R-UNARYOPERATOR. These three rules describe how to update

the type if the FakedObject:FObj is involved in an expression with an operator.

JSFORCE updates the FakedObject:FObj’s type based upon the semantics of the

operator. For unary operators, it is straightforward to determine the type from the operator’s

semantics. For instance, the postfix operator indicates the type as number. For binary

operators, the typing becomes more complicated. If both operands are

FakedObject:FObj and the operator does not reveal the type of the operands,

JSFORCE types them to number. This is because the number type can be converted to

most types naturally by the JavaScript engine. For example, the number type in JavaScript

can be converted to the string type, but it may fail to convert a string to a number.

Later during execution, if the types can be determined, JSFORCE will update the type to the

correct type. If only one of the two operands is FakedObject:FObj, JSFORCE

determines the type based upon the other operand’s type and the operator’s semantics.

31

Statement Action Rule
1: var a = null; a↤ FakedObject ER 2

2: var b = c + 1;
c↤ FakedObject ER 1

c↤ RanNumber
R BINOPE
RATOR1

3: var d = a.length; a.length↤ FakedObject ER 1
4: var func = null; func↤ FakedObject ER 2
5: a = ”Hello World”; a↤ ”HelloWorld” R ASSIGN

6: var e = new abc();
abc↤ FakedObject ER 1
abc↤ fakedFunction R NEW

7: if(b <5) NO ACTION NONE

12: d = func(6)
func↤ fakedFunction R CALL1
d↤ FakedObject R ASSIGN

13: var f = Math.abs(d) d↤ RanNumber R CALL2

14: array[5] = f;
array ↤ FakedObject ER 1
array ↤ arrayObject R INDEX1
array[5] ↤ f R ASSIGN

Table 3.1: Forced execution of sample in Figure 3.4

5) R-INDEX1 and R-INDEX2. These two rules describe how to update the type when there are

indexing operations. A FakedObject:FObj is updated to an ArrayObject ∶ φo

whenever a key is used as an array index to access elements of the FakedObject.

JSFORCE creates an ArrayObject and initializes the elements to FakedObject:FObj.

The length of the ArrayObject is set to 2*CurrentIndex. If an Out-Of-Boundary access

is found, JSFORCE doubles the length of ArrayObject. If the array index is

FakedObject, JSFORCE types it to number and initializes it as 0, which avoids

Out-Of-Boundary exceptions. If both the index object and base object are

FakedObject:FObj, the R-INDEX2 rule is first applied to update the index object to

number, then the R-INDEX1 rule is applied to update the base object to ArrayObject.

32

Example Table 3.1 presents a forced execution of the sample shown in Figure 3.4. In the

execution, the branch in lines 8-11 is not taken. At line 1, JSFORCE assigns a

FakedObject:Fobj to a, instead of null. This is because at line 3 the access to property

length raises an exception if a is null. On line 2, we can see a FakedObject:FObj is first

assigned to c. Once c is added to 1, JSFORCE updates the value of c to a random number. Lines

6 and 7 show that if a FakedObject:FObj is used in the function call or new expression,

JSFORCE updates it to FakedFunction:FFun. The return value of the faked function is still

configured to FakedObject:FObj, so that at line 13, d is updated to hold a random number.

JSFORCE also automatically recovers from other exceptions by intercepting those exceptions

to eliminate the exception condition. For example, JSFORCE will update a divisor to a non-zero

value if a division-by-zero exception is raised.

3.3.2 Path Exploration in JSFORCE

One important functionality of JSFORCE is the capability of exploring different execution

paths of a given JavaScript snippet to expose its behavior and acquire complete analysis results.

In this subsection, we explain the path exploration algorithm and strategies.

In practice, attackers constantly adopt the dynamic features of JavaScript to aid in evading

detection. This results in incomplete path exploration under two circumstances. The first is when

strings are dynamically generated. For instance, document.write is often abused to inject

dynamically decoded malicious JavaScript code into the page at runtime. The second is when

event callbacks are used. As discussed in Section 3.2, attackers can abuse event callbacks to stop

the execution of malicious code. JSFORCE solves this by employing specific path exploration

33

Algorithm 1 Path Exploration Algorithm
Definitions: switches - the set of switched predicates in a forced execution, denoted by a sequence of predicate offsets
in the source file(SrcName:offset). For example, t.js ∶ 15 ⋅ t.js ∶ 83 ⋅ t.js ∶ 100 means the branch in source file t.js
with the offset 15, 83, 100 is switched. EX , WL - a set of forced executions, each denoted by a sequence of switched
predicates. preds ∶ Predicate × boolean - the sequence of executed predicates.
Input: The tested JS
Output: FULL EX
1: FULL EX ← ∅

2: SRC ← {JS}
3: while SRC do
4: WL← {∅}

5: EX ← ∅

6: js← SRC.pop()
7: while WL do
8: switches←WL.pop()
9: EX ← EX ∪ switches

10: (preds, newJS) ← EXECUTECODE(js, switches)
11: SRC ← SRC ∪ newJS
12: t← len(switches)
13: preds← remove the first t elements in preds
14: for all (p, b) ∈ preds do
15: if !covered(p,¬b) then
16: WL←WL ∪ switches ⋅ (p, b)
17: end if
18: end for
19: end while
20: FULL EX ← FULL EX ∪ {EX ∶ js}
21: end while
22: procedure EXECUTECODE(JS, switches)
23: preds← switches
24: CBQ← ∅

25: newJS ← ∅

26: for all stmt ∈ JS do
27: if isNoneEvalFunctionCallStmt(stmt) then
28: if CalleeTakesStrings(stmt) then
29: newJS ← newJS ∪GetJSFromString(stmt)
30: end if
31: if CalleeRegisterCallback(stmt) then
32: CBQ← CBQ ∪ExtractCBFunc(stmt)
33: end if
34: else if isBranchStmt(stmt) then
35: if GetSwitch(stmt) ∈ switches then
36: Execute according to switches
37: else
38: preds← preds ⋅GetPredicate(stmt)
39: end if
40: end if
41: end for
42: for all cb ∈ CBQ do
43: (preds′, newJS′) ← EXECUTECODE(cb,∅)
44: newJS ← newJS ∪ newJS′

45: preds← preds ⋅ preds′

46: end for
return (preds, newJS)

47: end procedure

34

strategies. Within the execution, if faked functions take strings as input, JSFORCE examines the

strings and executes the code if they contain JavaScript. This strategy is only applied on faked

functions since original functions (eval) can handle the strings as defined. JSFORCE also

detects the callback registration function and invokes the callback function immediately after the

current execution terminates.

JSFORCE treats try-catch statements as if-else statements, ie., it executes each try

block and catch block separately. Ternary operators are also treated as if-else statements:

both values are evaluated.

There are several different path exploration algorithms: linear search, quadratic search, and

exponential search [62]. The goal of path exploration in JSFORCE is to maximize the code

coverage to improve the detection rate of malicious payload with an acceptable performance

overhead. Quadratic and exponential searches are too expensive, so JSFORCE employs the linear

search only.

Algorithm 1 describes the path exploration algorithm, which generates a pool of forced

executions that achieve maximized code coverage. The complexity is O(n), where n is the

number of JavaScript statements. n may change at runtime because JavaScript code can be

dynamically generated. Initially, JSFORCE executes the program without switching any

predicates since switches is initialized as ∅ (line 8) for the first time. JSFORCE executes the

program according to the switches at line 10 and returns preds and dynamically generated

code newJS. In lines 12-17, we determine if it would be of interest to further switch more

predicate instances. Lines 11-13 compute the sequence of predicate instances eligible for

switching. Note that it cannot be a predicate before the last switched predicate specified in

switches. Switching such a predicate may change the control flow such that the specification

35

in switches becomes invalid. Specifically, line 16 switches the predicate if the other branch has

not been covered. In each new forced execution, we essentially switch one more predicate.

The procedure ExecuteCode (lines 22-47) describes the execution process. It collects

dynamically generated JavaScript code (lines 28-30) and the executed predicates (lines 34-38).

The new generated JavaScript code, newJS, will be executed after the path exploration of the

current js finishes. The registered callback functions (lines 31-33) are also queued and invoked

after the current execution finishes (lines 42-46). As an example, recall the callback function

redir() used in line 16 of Figure 3.1. Instead of waiting for the timeout, JSFORCE will trigger

the redir() function immediately after the current execution finishes.

3.4 Implementation

JSFORCE is implemented by extending the V8 JavaScript engine [64] on the X86-64

platform. It is comprised of approximately 4,600 lines of C/C++ code and 1,500 lines of Python

code. We address some prominent challenges of its implementation in this section.

Reference Error Recovery & Faked Object Retyping In V8, an abstract syntax tree (AST) is

generated for every function, which is then compiled into native code (known as Just-In-Time

code). V8 adopts an inline caching technique [70] to accelerate property accesses. If the property

access fails, the execution jumps to the V8 runtime system which handles any inline cache

misses. If the runtime system is unable to handle an inline cache miss, either due to reference

error or type check error, it raises the corresponding exception and stops the execution.

We modify the inline cache miss handling process to enable reference error recovery and faked

object retyping. For reference error recovery, JSFORCE creates and returns the FakedObject

36

for failed object lookup by changing the V8 property access failure handling functions like

Runtime LoadIC Miss. For faked object retyping, JSFORCE inserts additional code into

runtime methods like Runtime BinaryOpIC Miss that is executed prior to the exception

being raised. This additional code follows the rules described in Section 3.3.1 to conduct the

retyping process if the involved operation contains a FakedObject.

Predicates Flip We have two approaches available to flip the predicates. The first approach is to

flip the predicates within the Just-in-Time code. The Just-in-Time code can be optimized (inline

caching, etc.) by V8 in accordance with the execution profile. To enable predicates flipping, a

runtime function must be inserted before every branch so that JSFORCE can manipulate the

predicate value. This approach may affect the optimization process of Just-in-Time code.

JSFORCE takes the second approach: if the branch A of a predicate needs to be taken,

JSFORCE replaces the other branch with this branch A. At runtime, no matter which branch is

taken, the branch A is executed. For instance, we want to take the {A} branch of the statement

if(e){A}else{B}. JSFORCE changes it to if(e){A}else{A}, so that {A} is executed at

runtime.

Loops and Recursions Sometimes, JSFORCE may cause a loop to execute for a very long time,

due to the introduction of faked objects. To solve this problem, JSFORCE inserts a time counter

for every loop statement (for...in and for...of are excluded, as they will always

terminate), and it will terminate the loop if the execution time exceeds a limit. Similarly, if

JSFORCE forces a predicate that guards the termination of a recursive function call, a very deep

recursion may result. To address deep recursion, JSFORCE monitors the stack depth. Once the

37

maximum call stack size (defined by V8) is reached, calls to that function are omitted by

JSFORCE.

3.5 Evaluation

In this section, we present details on the evaluation of correctness, effectiveness and runtime

performance of JSFORCE using a large number of real-world samples.

3.5.1 Dataset & Experiment Setup

Dataset The complete dataset used for our evaluation consists of two sample sets: a malicious

sample set and a benign sample set. For the malicious set, we collected a sample set with 172,995

HTML files and 23,509 PDF files from various databases including VirusTotal [71],

Contagio [72], MalTrafficAnalysis [73], and Threatglass [74]. Among those, all samples from

VirusTotal were new samples evaluated within a month of being submitted, with the samples

provided from other sources being relatively old. For the benign sample set, we crawled the Alexa

top 100 websites [75] and collected 47,592 HTML files.

Experiment Setup For JavaScript code analysis, we leverage the jsunpack [7] tool. Jsunpack is

a widely used malicious JavaScript code analysis tool that utilizes the SpiderMonkey [76]

JavaScript engine for code execution. Six distinct configurations are predefined within jsunpack

to maximize the exploration of JavaScript code by trying different browsers and language

settings. For the sake of our evaluation, we replaced the SpiderMonkey from jsunpack with

JSFORCE and relied upon the detection policies in jsunpack for malicious code detection. Most

38

Category Total Detected by JSFORCE Percentage
True Positive 389 389 100%
False Positive 47,592 9 0.019%

Table 3.2: Correctness Results.

of our experiments are based upon the comparison between the original jsunpack and the

JSFORCE-extended jsunpack. Note that the experiments performed within this section are only

intended to show the improvement of detection results over the original ones when adopting

JSFORCE. The detection policy itself is another important research topic which is orthogonal to

the focus of JSFORCE. We conducted our experiments on a test machine equipped with Intel(R)

Xeon(R) E5-2650 CPU (20M Cache, 2GHz) and 128GB of physical memory. The operating

system was Ubuntu 12.04.3 (64bit).

3.5.2 Correctness

In this section, we evaluate the correctness of the analysis result for JSFORCE. The goals of

this evaluation are two-fold. First, we wish to know the true positive rate of our analysis results,

meaning that we wish to verify whether a JavaScript program is undoubtedly malicious if it is

tagged as one by the analysis tools. Second, we wish to understand any false positives in the

results so as to determine whether any benign JavaScript code can be mistakenly labeled as

malicious.

True positive With our first goal in mind, we queried VirusTotal [71] for malicious HTML files

and collected 389 samples which are precisely labeled with specific CVE (Common

Vulnerabilities and Exposures) numbers that match CVEs listed in jsunpack. Furthermore, we

39

manually reviewed each of the samples and confirmed the existence of shellcode or malicious

signatures. This step is to guarantee all the samples we tested are real malicious samples that

should be detected by our tool. Then, we analyzed the samples using jsunpack with JSFORCE.

The experimental result is listed in the first row of Table 3.2 as “true positive”. It shows that

JSFORCE could successfully detect all of the samples, resulting in a 100% true positive rate. To

better understand these results, we further inspected the detailed analysis results to see why our

tool tagged samples as malicious. Our inspection results revealed that all of the payload and

malicious signatures extracted by the JSFORCE are indeed malicious, proving that our tool can

achieve very high true positive rate with accurate analysis details.

False positive For our second goal, we analyzed our benign sample set using JSFORCE and

then observed whether any of the samples could be incorrectly labeled as malicious. As shown in

the second row of Table 3.2, the JSFORCE tags 9 out of 47,592 samples as malicious. We first

manually confirmed that all 9 samples are clean and thereupon study why the false positives

happen. It has been verified by manual inspection that all of the false positives are caused by the

inaccurate detection policy, to be more specific, the over-relaxation of the shellcode string

matching policy enforced by jsunpack. The reason why our tool could detect them as malicious is

that it explores JavaScript code in a more complete fashion in consequence of our forced

execution technique. Therefore, based upon the above experimental results, we argue that using

JSFORCE will keep a very low false positive rate for JavaScript code analysis, and is able to assist

in accomplishing more thorough results. Theoretically, JSFORCE can generate higher code

coverage than jsunpack and lead to better analysis results. But, the question is by how much.

With that, we conducted another set of experiments to show the effectiveness of JSFORCE.

40

Sample Set Total without
JSFORCE

with
JSFORCE

Improvement Detected
By Both

Missed
With JSFORCE

Old HTML 66,325 193 357 84.9% 193 0
New HTML 106,018 2,250 20,649 817.3% 2250 0
HTML Total 172,995 2,443 21,006 759.8% 2443 0
Old PDF 22,081 6,306 6,475 2.7% 6306 0
New PDF 1,428 32 170 431.2% 32 0
PDF Total 23,509 6,338 6,645 4.8% 6338 0

Table 3.3: Effectiveness Results.

3.5.3 Effectiveness

For the evaluation of effectiveness, we would like to demonstrate that JSFORCE can indeed

help the malicious JavaScript code analysis by performing efficient forced execution. In order to

achieve that, we utilize our malicious HTML and PDF sample sets and run the sample sets against

jsunpack both with or without JSFORCE for the evaluation. In the interest of showing how useful

our faked object retyping is, we also conduct another experiment that disables the retyping and

only keeps the reference error recovery component and path exploration component.

Experimental Results Table 5.2 illustrates the experimental results for effectiveness. It

demonstrates that JSFORCE could greatly improve the detection rate for JavaScript analysis. We

can see detection rate improvements of 759.84% and 4.84% for HTML and PDF samples,

respectively, when using JSFORCE-extended jsunpack instead of the original version for analysis.

And all the samples detected by original jsunpack are also flagged by JSFORCE-extended

jsunpack. We further break down the numbers into old and new sample sets and perceive that the

extended version could perform much better than original jsunpack in analyzing new samples.

For new HTML samples, jsunpack with JSFORCE is able to detect 817.3% more samples while

41

0 20 40 60 80 100 120 140 160 180 200

Number of paths

0

10

20

30

40

50

60

70

80

90

100

C
um

ul
at

iv
e

pe
rc

en
ta

ge

undetected samples
detected samples

Fig. 3.6.: Num of Path Exploration during Analysis.

for old samples, the number is 84.97%. Similar results are also observed for PDF samples. After

manual inspection, we confirmed that this is because many of the old samples have been analyzed

for quite sometime and jsunpack already has the signatures stored in its database, leaving only a

small margin for JSFORCE to improve upon. For the faked object retyping evaluation, we reran

the test using 106,018 new HTML malicious samples with retyping component disabled. The

result shows that only 8,677 samples can be detected by JSFORCE in contrast to 20,649 with

retyping enabled. This result reveals the usefulness of our faked object retyping component

during analysis. Nevertheless, through our experiments, we are able to draw the conclusion that

JSFORCE is quite effective for boosting the effectiveness of JavaScript analysis.

42

0 10 20 30 40 50 60

time(seconds)

0

10

20

30

40

50

60

70

80

90

100
C

um
ul

at
iv

e
pe

rc
en

ta
ge

with JSForce
w/o JSForce

Fig. 3.7.: Runtime for Detected HTML samples.

0 50 100 150 200 250 300

time(seconds)

0

10

20

30

40

50

60

70

80

90

100

C
um

ul
at

iv
e

pe
rc

en
ta

ge

with JSForce
w/o JSForce

Fig. 3.8.: Runtime for Undetected HTML sam-
ples.

Number of Paths Explored Potentially, there may be a large number of paths that exist inside

of a single JavaScript program. The effectiveness and efficiency of JSFORCE are closely related

to the number of paths explored during analysis. Hence, we would like to show some statistics on

the number of paths that JSFORCE explored during analysis.

The result depicted in Figure 3.6 shows that JSFORCE is able to detect the maliciousness of

samples with a limited number of path explorations. An interesting observation is that over 96%

of the samples were detected by exploring only a single path. Even though most of the analysis

for detected samples can be finished by exploring just one path, the path exploration of JSFORCE

is still essential. Note that 98% of the samples missed by the default jsunpack, but detected by the

JSFORCE-extended version, explore at least two paths. So, the analysis could still receive an

enormous benefit from JSFORCE in terms of path exploration. Please refer to the Section 6 Case

Study for more details on this topic. As for any undetected samples, JSFORCE will explore the

entire code space during analysis, which requires a larger amount of path exploration and longer

analysis runtime.

43

0 20 40 60 80 100 120 140 160 180 200

time(seconds)

0

10

20

30

40

50

60

70

80

90

100
C

um
ul

at
iv

e
pe

rc
en

ta
ge

with JSForce
w/o JSForce

Fig. 3.9.: Runtime for Detected PDF samples.

0 50 100 150 200 250 300

time(seconds)

0

10

20

30

40

50

60

70

80

90

100

C
um

ul
at

iv
e

pe
rc

en
ta

ge

with JSForce
w/o JSForce

Fig. 3.10.: Runtime for Undetected PDF samples.

3.5.4 Runtime Performance

In this section, we evaluate the runtime performance of JSFORCE by using our malicious and

benign datasets with a comparison between the original jsunpack and the JSFORCE-extended

version.

Runtime for Detected Samples In this section, we compare the runtime performance using the

HTML and PDF samples that can be detected by jsunpack both with and without JSFORCE. The

reason why we chose this sample set is that we wished to observe whether the JSFORCE-extended

version can achieve efficiency comparable to the original jsunpack when using a detectable

malicious sample. The results are displayed in Figures 3.7 and 3.9. The results conclude that

JSFORCE-extended version has better runtime performance than jsunpack for over 90.9% of

HTML and 83.6% of PDF samples. This conclusion is quite surprising as the JSFORCE-extended

version tends to explore multiple paths while jsunpack only probes for one.

44

AnalysisSystem SampleSet
Conf. w/o
Rozzle

Conf. With
Rozzle

DetectedBy
BothConf

MissedBy
Rozzle-extendedConf.

Nozzle
Offline 1,662 11,559 1,178 484(29%)
Online 74 224 50 24(32%)

Zozzle Online 2,735 2,660 2,510 225(8%)

Table 3.4: Detection Results With/Without Rozzle-extended Configuration

In theory, jsunpack should have better runtime performance. However, after investigation, we

found that many of the JavaScript samples require specific system configurations (such as specific

browser kernel version) to run. As a result, when jsunpack performs analysis, it will run the

JavaScript programs under multiple settings. This results in multiple executions, which take

additional time to complete. In contrast, the JSFORCE-extended version handled this issue with

forced execution, resulting in better runtime performance in practice.

Runtime for Undetected Samples Figures 3.8 and 3.10 show the runtime performance of

JSFORCE for undetected samples. We empirically set the time limit to be 300 seconds in

consequence of the fact that experiment shows almost all (99.6%) HTML and PDF samples can

be analyzed within 300 seconds. As demonstrated in the figures, the average analysis runtime for

HTML and PDF samples are 12.02 and 8.15 seconds, while the analysis for a majority (80%) of

HTML samples and PDF samples are finished within 8.54 and 7.4 seconds, respectively. When

compared with the original jsunpack, the JSFORCE-extended version achieves an average runtime

of 16.08 seconds and 7.97 seconds for undetected HTML and PDF samples while jsunpack

finishes execution in 1.13 seconds and 1.37 seconds, correspondingly. Our conclusion from these

experiments are that the performance overhead of JSFORCE is quite reasonable and can certainly

meet the requirements of large scale JavaScript analysis.

45

3.5.5 JSFORCE vs. Rozzle

Ideally, we would like to perform a head-to-head comparison between JSFORCE and Rozzle

using the same dataset. Unfortunately, it is impossible given that neither the Rozzle system nor

the dataset used by Rozzle is available for evaluation. It is also nontrivial to implement Rozzle by

ourselves. Nevertheless, we can still highlight several advantages of JSFORCE over Rozzle, from

the experimental results reported in that paper.

First, while Rozzle-extended analysis system does, JSFORCE-extended analysis system does

not miss samples detected by the original analysis system. Table 3.4 summarizes the detection

results presented in Rozzle paper. Using Rozzle, the experiments extend two malicious JavaScript

detection systems - Nozzle [10] and Zozzle [11], and then compare the detection results with the

original system using one offline sample set and one online sample set. For the offline

experiment, with Rozzle, Nozzle can detect 11,559 samples and gains a significant

improvement(11,559 vs. 1,662) over original Nozzle. But it misses 484 (29%) samples which can

be detected by original Nozzle. For online experiments, Rozzle-extended configuration also

misses 24 (32%) for Nozzle, 225 (8%) for Zozzle respectively. Rozzle paper argues this is

because that the runtime errors, introduced when infeasible paths are executed, terminates the

execution before the malicious behaviors are exposed. However, since JSFORCE only collects the

path information and no changes are made on the path when the sample is first executed, no

runtime errors are introduced by JSFORCE. Thus as demonstrated in Section 3.5.3,

JSFORCE-extended analysis system can detect all the samples identified by original analysis

system while providing the same magnitude improvement as Rozzle’s.

46

Second, JSFORCE can still function even when the environment setup is incomplete, thanks to

the forced execution model (Section 3.3.1), whereas Rozzle may fail due to the runtime errors.

This is especially important for low-interaction honey clients like jsunpack. Those

low-interaction honey clients emulate the behaviors of browsers or PDF readers, and it is quite

challenging to construct a complete environment setup for the tested samples. As discussed in

Section 3.6, of the malicious samples missed by jsunpack, 96.5% are because of the runtime

errors caused by incomplete emulation of the running environments for JavaScript code. Since

low-interaction honey clients are widely deployed in industry, we argue that JSFORCE would

benefit the industry more than Rozzle.

Third, as discussed in the limitation part of Rozzle paper, Rozzle is less effective for the case

that the evasive code triggers the malware execution only when a user interaction occurs, or when

a timer fires. We searched the samples missed by jsunpack with the keywords like “onclick” or

“settimeout”. we found that 80.6% of them deploy timers or user interaction callbacks.

JSFORCE’s path exploration algorithm discovers the callback functions during the execution, and

invokes them after the current run terminates. However, Rozzle may miss the malicious code

hidden in callback functions.

Fourth, Rozzle cannot handle latest fingerprinting techniques discussed in Section 3.2. While

we have not found samples deploying these techniques in our dataset, we believe that the attacker

will deploy those new fingerprinting techniques with the advancement of anti-evasion techniques

in the future. So JSFORCE is one step ahead of the attacker.

47

t r y {++(document [” body ”]) ;

} c a t c h (e) {[s h e l l c o d e]}

[a]

window . addEvent (’ l o a d ’ ,

f u n c t i o n () {[s h e l l c o d e]})

[b]

f u n c t i o n frmAdd () {

v a r i f r m = document . c r e a t e E l e m e n t (’ i f r a m e ’) ;

i f r m . s t y l e . p o s i t i o n = ’ a b s o l u t e ’ ;

document . body . appendCh i ld (i f r m) ;} ;

frmAdd () ;

[c]

v a r se show newupdates = new Hash . Cookie (’

se show newupdates ’ , { d u r a t i o n : 3600}) ;

[d]

g a p i . l o a d (” g a p i . i f r a m e s ” , f u n c t i o n () { [. . .] }) ;

[e]

Fig. 3.11.: Case Study Samples

3.6 Case Study

To better understand the benefits of JSFORCE, we conducted a case study on 10,975 unique

JavaScript code samples missed by jsunpack but detected by JSFORCE-extended version. The

reasons of failed detection using jsunpack can be divided into the following two categories.

Malicious code branch is not triggered Of those 10,975 samples missed by jsunpack, we

found that 10,792 (98.33%) samples are explored by at least two paths when using JSFORCE.

Although jsunpack attempts to run the sample several times with different configurations to

increase the chance of triggering the malicious code branch, it is usually ineffective to do so. This

is because it is impossible to emulate every single combination of browser/PDFReader/plugin. In

contrast, JSFORCE can explore these paths regardless of the configuration.

The sample in Figure 3.11(a) hides malicious code within a catch block. The attacker

attempts to increase the value document[body] as a number, which will raise an exception

when executed within a real browser. However, it does not raise an exception in jsunpack since its

48

SpiderMonkey engine returns NaN for this operation. In fact, the V8 engine used in JSFORCE

also exhibits the same behavior as SpiderMonkey. But, the catch block is triggered by the path

exploration process, so the malicious behavior is still revealed.

Other samples hide code within event callbacks. For instance, the sample in Figure 3.11(b)

registers a callback function using the window.addEvent function. jsunpack fails to invoke

the callback function due to the incorrect definition of window.addEvent used by jsunpack.

At runtime, JSFORCE identifies window.addEvent as a callback registration function because

an anonymous function is passed to it as the parameter. Then, this anonymous function is queued

and invoked at the end of execution.

Execution fails due to runtime errors Another reason why jsunpack may fail to detect

malicious JavaScript code is that the execution can fail due to runtime errors. As we conducted

the evaluation, only 230 out of the 10,975 samples could be executed without any runtime errors

under the six configurations. Moreover, 10,592 out of 10,975 (96.5%) failed all six

configurations, rendering jsunpack completely useless when facing them. These exceptions

terminate the execution before the malicious code is executed. The raised exceptions are because

of the inaccurate emulation of the running environment for JavaScript code. Examining these

exceptions can help security researchers improve jsunpack by supplying more precise emulation

environment, which is another benefit that JSFORCE can provide.

One interesting thing about jsunpack is that it tries to fix ReferrenceError by providing a

definition for this undefined object once ReferrenceError is captured. While this fix

eliminates the ReferrenceError, it often introduces SyntaxError or TypeError at runtime.

ifrm.style is not defined in the sample in Figure 3.11(c). So jsunpack generates code var

49

ifrm.style = 1 for this sample. Unfortunately, it contains an unexpected token dot. This

raises a SyntaxError exception. Another way to improve this is to assign ifrm.style an

Object so that SyntaxError is avoided and ifrm.style can be typed following the typing

rules of the JavaScript engine. However, as discussed in Section 3.3.1, this can still cause an

exception or lead to unnecessary loss of precision. This case demonstrates the advantage of type

inference model deployed by JSFORCE. Although JSFORCE cannot tolerate SyntaxError, the

type inference model guarantees no further TypeError or SyntaxError will be introduced.

The sample in Figure 3.11(d) raises a TypeError exception since Hash.Cookie is not a

constructor. Another sample in Figure 3.11(e) also raises a TypeError exception because

gapi.load is not a function. JSFORCE can avoid this by applying faked object retyping

technique. From another perspective, these two cases manifest the weakness of jsunpack that

Hash.Cookie and gapi.load are not correctly defined. Therefore, as another application,

JSFORCE can be used to evaluate the weakness of dynamic JavaScript analysis systems, so

security researchers can further improve the systems respectively.

50

4. SEMANTICS-PRESERVING DISSECTION OF JAVASCRIPT

EXPLOITS VIA DYNAMIC JS-BINARY ANALYSIS

4.1 Introduction

Previously unknown, or “zero-day”, exploits are of particular interest to the security

community. Once a malicious JavaScript attack is captured, it must be analyzed and its

inner-workings understood quickly so that proper defenses can be deployed to protect against it or

similar attacks in the future. Unfortunately, this analysis process is tedious, painstaking, and

time-consuming. From the analysis perspective, an analyst seeks to answer two key questions:

(1) Which JavaScript statements uniquely characterize the exploit? and (2) Where is the payload

located within the exploit? The answer to the first question results in the generation of an exploit

signature, which can then be deployed via an intrusion detection system (IDS) to discover and

prevent the exploit. The answer to the second question allows an analyst to replace the malicious

payload with an amicable payload and use the modified exploit as a proof-of-vulnerability (PoV)

to perform penetration testing.

Program slicing [77] is a key technique in exploit analysis. This technique begins with a

source location of interest, known as slicing source, such as a statement or instruction that causes

a crash, and identifies any statements or instructions that this source location depends on. Prior

exploit analysis solutions have attempted to analyze exploits at either the JavaScript

level [5, 9–11, 19, 20] or the underlying binary level [21–25].

51

While binary level solutions execute an exploit and analyze the underlying binary execution

for anomalies, they are unaware of any JavaScript level semantics and fail to present the

JavaScript level view of the exploit. JavaScript level analysis fails to account for implicit data

flows between statements because any DOM/BOM APIs invoked at the binary level are invisible

at the JavaScript level. Unfortunately, implicit flows are quite common in attacks and are often

comprised of seemingly random and irregular operations in the JavaScript that achieve a precise

precondition or a specific trigger which exploits a vulnerability in the binary. The semantic gap

between JavaScript level and binary level during the analysis makes it challenging to

automatically answer the 2 key questions.

In this chapter, I present JSCALPEL, a system that creatively combines JavaScript and binary

level analyses to analyze exploits. It stems from the observation that seemingly complex and

irregular JavaScript statements in an exploit often exhibit strong data dependencies in the binary.

JSCALPEL utilizes the JavaScript context information from the JavaScript level to perform

context-aware binary analysis. Further, it leverages binary analysis to account for implicit

JavaScript level dependencies arising due to side effects at the binary level. In essence, it performs

JavaScript and binary, or JS-Binary analysis. Given a functional JavaScript exploit, JSCALPEL

performs JS-Binary analysis to: (1) generate a minimized exploit script, which in turn helps to

generate a signature for the exploit, and (2) precisely locate the payload within the exploit. It

replaces the malicious payload with a friendly payload and generates a PoV for the exploit.

I evaluated JSCALPEL on a corpus of 15 exploits, 9 from Metasploit1, 4 exploits from 3

different exploit kits and 2 wild exploits. On average, I was able to reduce the number of unique

JavaScript statements by 49.8%, and precisely identify the payload, in a semantics-preserving

1Metasploit Framework – http://www.metasploit.com/, a popular penetration testing framework.

52

manner, meaning that the minimized exploits are still functional. In addition, we were able to

replace the payload with amicable payload to perform penetration testing. Finally, I presented the

wild exploit CVE-2011-1255 as a case study. I demonstrate how the exploit is minimized and

payload is located.

4.2 Problem Statement and Overview

4.2.1 Problem Statement

We aim to develop JSCALPEL– a framework to combine JavaScript and binary analyses to aid

in analysis of JavaScript-launched memory corruption exploits. It is motivated by two key

observations.

First, analysis performed at only the JavaScript level is insufficient. In Figure 2.3(b),

JavaScript level analysis of Aurora captures the explicit data dependencies between statements 9

and 26 and statements 6 and 18. However, because no explicit dependency exists between

statements 18 and 26, the two groups of statements will be incorrectly deemed to be independent

of each other. Second, while complete, analysis performed at only the binary level is also

insufficient. In Figure 2.3(d), binary level analysis can expose the manipulation of pointers,

however it can not expose exploit-related JavaScript statements in Figure 2.3 (c) due to the lack of

JavaScript context. A binary-level analysis will show the memory written by the binary

instructions of statement 18 is utilized through reads performed by binary instructions of

statement 26, revealing a straight-forward data dependency between statements 18 and 26.

Input: JSCALPEL accepts a raw functional exploit and a vulnerable program as input. The

vulnerable program can be any program like (PDF reader, web browser, etc.) as long as it can be

53

Fig. 4.1.: Architecture of JSCALPEL

exploited through JavaScript. The exploit consists of HTML and malicious JavaScript

components. The exploit can be obfuscated or encrypted. JSCALPEL makes no assumptions about

the nature of payloads. That is, the payload could be ROP-only, executable-only or combined.

Output: JSCALPEL performs JS-Binary tracing and slicing and generates 3 specific outputs. (1)

A simplified exploit HTML that contains the key JavaScript statements that are required to

accomplish the exploit, and (2) the precise JavaScript statements that inject the payload into the

vulnerable process’ memory along with the exact payload string – both non-executable and

executable – within the JavaScript. Finally, (3) an HTML page, where the malicious payload is

replaced by a benign payload is generated as a Proof-of-Vulnerability (PoV).

Delta debugging [78] is firstly proposed to generate the minimized C programs that crash the

compiler and might be a feasible approach to minimize the exploit JavaScript to cause a crash.

However, the effectiveness of this approach is unknown, because of the complex and sophisticated

nature of JavaScript. Attackers can insert arbitrary junk code to make delta debugging ineffective.

In contrast, JSCALPEL can precisely pinpoint the JavaScript statements that cause a crash and

locate the malicious payload and our experiment has proven its effectiveness.

54

4.2.2 JSCALPEL– Overview

Figure 4.1 presents the architecture of JSCALPEL, which leverages Virtual Machine Monitor

(VMM) based analysis. It consists of multiple components. A multi-level tracer is used to gather

JavaScript and binary traces. A CFI module is used to determine the binary level “slicing

sources”, which are the violations that cause the exploit along with the various payload

components. The multi-level slicer augments JavaScript level slicing with information from

binary level slicing to obtain the relevant exploit and payload statements. Finally, JSCALPEL

packages the relevant exploit statements within an HTML page to generate the minimized script.

It also replaces the malicious payload with a benign payload to generate a PoV.

4.3 Multi-level Tracing and Slicing-Source Identification

We implement JSCALPEL on top of DECAF [79], a whole-system dynamic analysis

framework. The tracing consists of two parts, JavaScript and binary tracers. JavaScript tracing is

performed using a helper module that is injected into the browser address space. It interacts with

the JavaScript debug interface within the browser to gather the JavaScript-level trace. The binary

tracer and the exploit detection module are implemented as 2 plugins of DECAF. Below, we

detail each of the components.

4.3.1 Context-Aware Multi-Level Tracing

JavaScript Tracer Prior approaches that gather JavaScript trace [5, 6] modify JavaScript

engine or the browser to identify the precise statements being executed, however such an

55

Fig. 4.2.: Multi-level analysis of Aurora Exploit. Fig. 4.3.: Semantics-Preserving Multi-level
Slicing.

approach requires access to JavaScript engine (and/or browser) source code which is not available

for close sourced browsers like IE.

We take a JavaScript debugger-based approach. Our approach has two key advantages. (1)

Most browsers – open-sourced or otherwise – support a debugging interface to debug the

JavaScript statements being executed, and (2) Because the debugger runs within the browser

context, it readily provides the JavaScript-level semantics. That is, we can not only gather the

exact statements being executed, but also retrieve the values of variables and arguments at various

statements. From within the VMM, we hook the JavaScript debugger at specific APIs to retrieve

the various JavaScript statements and the corresponding contexts. The accumulation of the

JavaScript statements yields the JavaScript trace.

JavaScript tracer runs as an injected module within Internet Explorer. It implements the

“active script debugger” [80] interface and performs three specific actions:

1) Establish Context: Through the script-debugger interface, the tracer is notified when

execution reaches JavaScript code. Specifically, if a SCRIPT tag is encountered within an

56

existing script or the script generated through eval statement, the tracer is activated with

the information regarding the statement being executed. Until the next statement executes,

the tracer associates the context to the current JavaScript statement.

2) Record Trace: At the beginning of every JavaScript statement, the tracer records the exact

statement semantics along with the variable values and arguments to APIs (if any).

3) Drive Binary Tracer: A stub function is defined to coordinate the JavaScript tracer and the

binary tracer. Before the statement executes, the binary tracer is activated along with the

context information passed as the arguments of stub function such that the binary trace is

associated with the particular JavaScript statement.

Binary Tracer Binary tracer is triggered by the JavaScript tracer with the context information

pertaining to a particular JavaScript statement. One way to gather a binary trace would be to

monitor and capture the entire execution of the browser process at an instruction level. However,

such a solution is resource intensive and inefficient. In order to be practical, our solution is

selective about what is traced and when it is traced. Our goals towards an effective binary trace

are to: (1) include all the relevant binary instructions that contribute to the attack, and (2)

minimize the trace footprint as much as possible.

Firstly, since binary tracer is driven by JavaScript tracer, it has the precise JavaScript context.

Tracing is limited and selectively turned on only when the execution is in a JavaScript statement.

It is likely that the multithreading of the browser will introduce unrelated execution trace. But it

does not jeopardize the analysis since all the binary instructions that contribute to the attack are

included. Secondly, the effects of statements at a JavaScript-level manifest as memory reads and

57

writes at a binary-level. Therefore, we implement a lightweight tracing mechanism. Instead of

logging every binary instruction, we only log the memory read or write operations. We leverage

memory IO specific callbacks supported by DECAF to record the values of eip, memory address,

memory size, value in the memory and esp for each memory IO instruction. We also record the

addresses of basic blocks that are executed and dump their raw bytes from virtual memory space

of the monitored process at the end of every JavaScript statement. Furthermore, the binary tracer

maintains information about active allocations made by the victim process. This information is

used to identify self-modifying (or JIT) code. When such code is encountered, the code is

dumped to the disk. When needed, the raw bytes are decoded to retrieve the actual instructions.

The propagation of the slicing sources between registers and memory is identified by the memory

IO logs and the binary instruction logic. While preserving the completed information as full

instruction trace does for slicing process, this lightweight trace minimizes the trace size and also

speeds up the slicing process.

Binary tracer is implemented as a plugin to DECAF. In the plugin, the stub function of

JavaScript tracer is hooked to coordinate the binary tracing and JavaScript tracing. When the stub

function is invoked by JavaScript tracer, the Binary tracer first reads the parameters of stub

function from the stack where JavaScript Tracer passes the JavaScript statement and debugger

information, then starts the logging of binary trace and generates a combined JS-Binary trace

which contains the JavaScript and binary traces for each of the JavaScript statements. Meanwhile,

a JS-binary map is built to keep track of corresponding JavaScript statement for every binary

instruction.

58

Fig. 4.4.: Non-executable (ROP) and executable payloads used in an exploit.

Obfuscation and Encryption Resistance The nature of JavaScript tracing provides inherent

resistance to obfuscation and encryption because it captures each statement that is executed along

with the runtime information like variable values, arguments, etc. Therefore, the intermediate

statements (like the ones in Figure 2.3(a)) that are used to calculate a value are each captured with

their concrete values. Similarly, encrypted statements must be decrypted before they are executed,

and the decrypted statements execute. Therefore, JSCALPEL encounters and records the

decrypted statements that execute.

In fact, JSCALPEL performs preliminary preprocessing by performing constant folding with

the help of the script execution trace. This simple optimization will not cause over simplification

and generates a functionally equivalent de-obfuscated and decrypted version of the script. Then

JSCALPEL executes the de-obfuscated version to perform the analysis. This preprocessing

reduces the amount of analyzed JavaScript statements.

4.3.2 Identifying Slicing Sources

JSCALPEL makes use of a CFI module to identify slicing sources. Several solutions have been

proposed to implement CFI [81]. Since JSCALPEL already relies on a VMM for trace gathering,

it can leverage a VMM based CFI defense. We opt the techniques presented in Total-CFI [25]

59

because (1) it is a recent and practical solution, (2) it has been demonstrated to work on recent

real-world exploits and finally (3) it imposes low overhead. It monitors the program execution at

an instruction level and each point where the CFI is violated is noted as a slicing source. Albeit

the recent advancement of exploitation techniques [82] can bypass the coarse-grained CFI

techniques like Total-CFI, JSCALPEL’s CFI module can be enhanced to include more policies to

adapt the development of exploitation techniques.

Specifically, the first violation is the slicing source for the exploit-related code, whereas the

subsequent violations (if any) arise from the executable payload or ROP-payload. In Figure 4.4,

the first violation is caused by the exploiting code, then the violations that occur up to the

execution of executable payload serve as sources for ROP-payload. Moreover, the CFI module

continues execution to check for executable payloads. If after the first violation, the execution

ever reaches a region that within the list of allocated regions, the address is noted and it serves as

the binary slicing source for the executable payload.

4.4 Multi-level Slicing

Multi-level slicing employed by JSCALPEL is based on the following hypothesis.

Hypothesis Implicit data dependencies at JavaScript level often manifest as direct data

dependencies at binary level.

Memory corruption exploits typically corrupt the memory by causing precise memory writes

to key locations that are read by the program and result in corruption of program counter. Chen et

al., show that a common characteristic of many classes of vulnerabilities is pointer

taintedness [48], where a pointer is said to be tainted if the attacker input can directly or indirectly

60

Algorithm 2 Binary level backward slicer

Input: binray trace B,slicing source S and JS-
Binary map M and JavaScript trace list J

Output: JavaScript slice O
1: S ← {slicing source

(exploit point or payload location)}
2: O ← ∅

3: for i = len(J); i > 0; i++ do
4: Bi ← getBin-
InsTraceForJS(M,J[i],B)

5: for k = len(Bi);k > 0;k++ do
6: bik ← Bi[k]
7: L← ∅

8: if S is all memory locations then
9: Mw ←GetMemWriteRec(bik)

10: if S ∩Mw == ∅ then

11: continue
12: end if
13: end if
14: if getDestOperand(bik) ∈ S then
15: S ← S ∪ updateSlice-

Source(bik, S)
16: L← L ∪ {bik}
17: end if
18: end for
19: if L! = ∅ then
20: O ← O ∪ {J[i]}
21: L← ∅

22: end if
23: end for

reach the program counter. In essence taint propagation reflects runtime data-flow within the

program. Therefore, at a binary level, memory corruption exploits such as use-after-free, heap

overflow, buffer overflow, etc. often exhibit simple data-flow, which can be captured through

data-dependency analysis.

Figure 4.3 presents the overview of slicing employed by JSCALPEL. In order for the

simplified exploit to be functional, it is necessary that the simplification preserves the semantics

between the original and simplified scripts. Given the slicing sources and the JS-binary trace,

JSCALPEL first performs a binary backward slice from the slice source provided by CFI violation

and generates sources for JavaScript-level slicing. Slicing at the binary level ensures that no

required statement is missed. Then, slicing is performed at a JavaScript level to include all the

statements that sources are either data- or control-dependent on.

61

4.4.1 Binary-level Slicing

The goal of binary slicing is to identify all the JavaScript statements that are instrumental in

coercing the control flow (i.e., statements that modify the program counter) or injecting the

payload into memory.

Algorithm 2 describes the backward slicing method using the lightweight binary trace. For

every JavaScript statement J[i], the corresponding binary instruction trace Bi is extracted. A map

called “JS-Binary map” M – a mapping between the JavaScript statements and the binary

instructions that execute within the statement context – is used. Then for every binary instruction

bik ∈ Bi, if all of the elements in the slicing source S belong to memory locations, then the slicer

checks if the current binary instruction bik has memory write operations Mw ⊆ S and if it is false,

the slicer jumps to the next instruction bi(k+1). Otherwise, the slicer does as traditional slicer to

disassemble the binary instruction bik and updates the slicing source S and determine if bik should

be added in the binary slice L based on the propagation rules for every x86 instruction. If L is not

empty when the slicing on Bi is finished, J[i] is added to the JavaScript slice O as the hidden

dependency slice which may be ignored by pure JavaScript-level slicing.

In theory, a binary backward slice from the slicing sources must include all the JavaScript

statements that are pertinent to the attack. However, in practice we found a key problem with such

an approach. It is too permissive and ends up including all the JavaScript statements in the script.

The main reason is the binary-level amalgamation of JavaScript and browser code along with

JavaScript code. In order to track the exploit-specific information-flow, the flow through pointers

must be considered. However, at a binary level, due to the complex nature of a JavaScript engine,

dependencies are propagated to all the statements thereby leading to dependency explosion.

62

We exclude data propagation arising from code corresponding to the script engine and debug

interface. Particularly, we apply the following filters to minimize the dependency explosion

problem.

Stack Filtering Once the dependency propagates to stack pointer esp or stack frame ebp, all

data on the stack becomes dependent [83]. To avoid this, dependencies arising due to esp or ebp

are removed during slicing. In certain cases, the stack data could be marked dependent, but when

the callee returns, the dependency is discarded if it exists on a stack variable. So JSCALPEL

records the current stack pointer for every read/write, and during backward slicing, when call

instruction is encountered in the trace, the slicer checks the current stack pointer and clears the

dependencies propagating from the callee’s stack.

Module Filtering During the slicing process, the propagation to or from the JavaScript engine

module or script debugger is stopped. In principle, every Javascript statement executed by the

same Javascript engine instance shares the data and control dependency introduced by the

Javascript engine and debugger module. This kind of dependency is outside of “exploit specific”

dependency and should be excluded from slicing.

Other Filters Between two consecutive JavaScript statements, we found that sometimes there

are data flows via CPU registers because of the deep call stack incurred by JavaScript engine and

script debugger. To avoid unintended dependencies, the slicer clears the register sinks at the end

of the slicing for every JavaScript statement. During our experiments (Section 4.5), we found the

above filters good enough to reduce the dependency-explosion problem without missing any

required statements.

63

4.4.2 JavaScript Slicing

The output of binary tracer provides the slicing sources for the JavaScript slicer. Suppose

binary slice S contains n instructions. For each instruction Si, let Ji be the JavaScript statement

that represents the context under which Si executes. Then, the JavaScript slicing sources are

O = ⋃ni=0 Ji. For every JavaScript statement in the slicing sources, we add the object used by this

JavaScript statement to the slicing sources and include this JavaScript statement in the slice.

Given the JavaScript trace, the slicer uses WALA’s [84] slicing algorithm to include all the related

JavaScript statement in the slice.

4.4.3 Minimized Exploit Script and PoV Generation

The statements are first simplified and then embedded into the exploit HTML page to obtain

the minimized exploit. Also, the identified executable payload is replaced by an amicable payload

to obtain a PoV in the form of a test case for the Metasploit framework.

Simplification As a final step, JSCALPEL performs constant folding and dead-code elimination

at JavaScript level to simplify the slice. It is focused on strings and constants. Specifically, for

each variable v, the definitions are propagated to the uses. This is repeated for all the variables in

all the statements until no more propagations are possible. Finally, if a definition of a variable

has no more uses, the definition is considered dead-code and is removed only if the statement is

not a source for the JavaScript slicing. This distinction is important because, the need for slice

sources is already established from binary slicing. The resulting processed script is used to

exploit the browser and is accepted only if the exploitation succeeds. Finally, all the statements in

64

Fig. 4.5.: CVE-2012-1876: ROP- and executable-payloads within the same string.

the script that are not a part of the slice are removed. During our experiments, we found that the

simplicity of simplification incorporated by JSCALPEL is sufficient to bring about significant

reduction in the sizes of the scripts as highlighted in Section 4.5.

Collocated ROP and Executable Payloads In some exploits, the payload and the ROP-gadgets

are contained within the same string or array. For example in Figure 4.5 the same string contains

both ROP-payload and the executable shellcode. In such cases, JS-Binary analysis identifies the

statement as both exploit and payload statement. This is an expected behavior. However, in order

to replace the payload to generate the PoV, we must precisely identify the location of the start of

the payload within the string. First, the JavaScript string that contains the payload is located in the

memory. Then, from the payload-slice source we obtain the address of the entry point of the

payload. Binary slicing from the payload-slice source leads us to the offset within the JavaScript

string that corresponds to the payload. The substring beginning from the offset is replaced for

PoV generation.

ROP-Only Payload Shacham [85] showed that a set of Turing complete gadgets can be created

using program text of libc. Though we cannot find any instances of ROP-only payload during our

experiments, it is possible to compose the entire payload using only ROP-gadgets without any

65

executable payload. Since JSCALPEL can locate the ROP-only payload precisely, a

straightforward way is to replace malicious ROP-only payload with benign ROP-only payload.

JSCALPEL can generate dependent JavaScript statements in the script for any given

binary-level source and the JS-Binary trace. Along with the exploit point and the payload entry

point, CFI component of JSCALPEL captures multiple violations caused due to the ROP-gadget

chain as separate binary-level slicing sources. The sources are then subject to multi-level tracing

the slicing to extract the payload in JavaScript.

Disjoint Payload Detecting the entry point of executable payload is sufficient to replace the

payload and generate the PoV. However, sometimes an analyst may want to locate the entire

executable payload. This is not a problem if the payload is allocated by the same string in the

JavaScript. However, it is not necessary to be so.

JSCALPEL can only detect an executable payload when it executes. Therefore, it is unaware

of all the various fragments of payload that may be injected into the memory. As a result,

JSCALPEL will only be able to detect the JavaScript statement (and all its dependencies) that

injects the entry point of the payload. It may miss some JavaScript statements that inject

non-entry point payload if such statements are disjoint with the JavaScript statements that inject

the entry point, and the sources for those statements are missing. Note that this is not quite a

limitation for JSCALPEL, because the payload entry point is sufficient to generate a PoV. One way

to increase the amount of payload recovered is for the CFI module to allow the payload to execute

longer and capture more binary-level sources for the payload.

66

4.5 Evaluation

We evaluate JSCALPEL on a corpus of 15 exploits. These samples exploit the vulnerabilities

discovered from 2009 to 2013 and target at Internet Explorer 6/7/8. In contrast to the large

number of browser vulnerabilities discovered every year, this sample set is relatively old and

small. The reasons are twofold. First, DECAF leveraged by JSCALPEL is based on emulator

QEMU and only supports 32-bit operating system. Not all of the exploits can function correctly

on DECAF. Second, it is difficult to collect working exploits although many vulnerabilities are

discovered every year. We went over Internet Explorer related exploits in Metasploit, and tried to

set up a working environment for each of them. We were able to set up 15 exploits on the real

hardware. The remaining exploits either require specific browser/plugin versions that we were

unable to find, or do not use JavaScript to launch the attacks. We then tested these 15 exploits on

DECAF and 9 of them worked correctly. The 6 exploits failed to work on DECAF, because they

exhibited heavy heap spray behavior, which could not finish within a reasonable amount of time

in DECAF. Based on a whole-system emulator QEMU, DECAF translates a virtual memory

address into its corresponding physical address completely in software implementation, and thus

is much slower than the MMU (Memory Management Unit) in a real CPU. In the future, we will

replace DECAF with Pin to avoid this expensive memory address translation overhead. We also

crawled the Virustotal with the keyword “exploit type:html”, and finally found 2 functional

exploits on DECAF. In addition, from 16 exploit kits used in EkHunter[86], we managed to get 4

functional exploits from exploitkit, Siberia and Crimepack. As a result, our testset includes 9

exploits from Metasploit framework, 4 exploits from 3 different exploit kits and 2 wild exploits.

67

Table 4.1: Exploit Analysis Results

Source CVE
Exploitation
Component

Payload
Injection Simplified Exploit

I II III IV V VI VII VIII IX X

Metasploit

2009-0075 9 6 ✓ 17 ✓ 14 30 30 0.00
2010-0249 3 6 7 19 ✓ 10 45 22 0.51 †*
2010-0806 2 10 ✓ 10 ✓ 14 803 13 0.98 ‡* †
2010-3962 1 1 ✓ 1 ✓ 15 105 17 0.83 ‡* †
2012-1876 32 1 7 30 ✓ 14 67 47 0.30 ‡* †
2012-1889 1 2 ✓ 2 ✓ 67 77 77 0.00
2012-4969 16 1 7 8 ✓ 53 117 70 0.40 †*
2013-3163 9 1 7 13 ✓ 32 43 42 0.02 ‡†§
2013-3897 26 1 7 41 ✓ 23 187 63 0.66 §

Wild
2011-1255 40 1 7 16 ✓ 26 97 44 0.55 ‡†H

2012-1889 1 2 ✓ 2 ✓ 27 53 12 0.77 ‡†H

exploitkit 2010-0806 2 6 ✓ 6 ✓ 13 109 29 0.73 †*
Siberia 2010-0806 2 6 ✓ 6 ✓ 12 103 22 0.79 ‡†*

Crimepack
2010-0806 2 1 7 6 ✓ 11 198 30 0.85 ‡†*
2009-0075 4 6 7 12 ✓ 12 36 33 0.08 ‡†*

I. # of JS slicing sources. II. # of stmts from JS analysis only.
III. Can stmts from JS-only analysis cause crash? IV. # of stmts from JS-Bin analysis
V. Can stmts from JS-Bin analysis cause crash? VI. # of stmts from JS-Bin analysis
VII. # of unique JS stmts of original exploit. VIII. # of unique JS stmts of simplified exploit
IX. potency of minimization. X. Obfuscation & fingerprinting Techniques.(‡: Randomization Obf. †: Data Obf. *: Encoding Obf.
§: Logic Structure Obf. H: Fingerprinting tech)

To identify the CVE number of exploits from exploit kits and wild, we ran JSCALPEL to

extract exploitation component first and then manually searched Metasploit database and National

Vulnerability Database [87] for a match. While CVE-2012-1889 exploits the vulnerability in

msxml.dll, all the remaining samples exploit mshtml.dll.

Though we evaluated JSCALPEL on Internet Explorer only, potentially it can work on other

browsers or any other programs (e.g., Adobe Reader) that have JavaScript debug interface. The

experiments were performed on a server running Ubuntu 12.04 on 32 core Intel Xeon(R) 2 GHz

CPU and 128 GB memory. The code comprises of 890 lines of Python, 2300 lines of Java and

4000 lines of C++.

68

4.5.1 Minimizing Exploits

Table 4.1 presents the results for exploit analysis. Given one exploit, we first ran JSCALPEL to

get the multi-level trace and CFI violation point. Then multi-level slicing was conducted to yield

exploitation component and payload injection component. Based on this knowledge, our

experiments demonstrate that for each exploit, JSCALPEL was able to generate a simplified

exploit and PoV which were able to successfully exploit the vulnerability and launch the payload.

Exploitation Analysis The binary-level slicing was conducted on the multi-level trace starting

from the CFI violation point. It mapped binary level slicing results to JavaScript statements with

the help of JS-binary map. The number of JavaScript statements identified by binary-level

analysis is listed in Column I. They were used as the slicing sources for JavaScript level slicing.

This multi-level slicing extracted the exploitation related statements the number of which were

listed in Column IV. Column V shows if the extracted statements can crash the browser. For the

exploits with the same CVE number like CVE-2009-0075 and CVE-2010-0806, the results of

Column IV can be different due to the different implementation of exploitation. But we can see

that for all of the exploits, the extracted statements can crash the browser, meaning that the

semantics of exploitation component are preserved.

In comparison, the JavaScript-level only analysis cannot achieve this as presented in Column

II and III. Column II lists the number of JavaScript statements obtained from backward slicing

only at the JavaScript level starting from the statement that causes the first CFI violation. Column

III indicates if the statements extracted from JavaScript-level slicing can cause the browser to

crash. We can see that for 8 out of 15 exploits, the extracted statements do not cause a crash,

which means these exploits are overly simplified in these cases. For the exploits with the same

69

CVE number like CVE-2010-0806 and CVE-2009-0075, the JavaScript-level only analysis

results were different, because the different obfuscation techniques used in these exploits

introduced or eliminated unexpected dependency at JavaScript level.

Payload Injection The CFI violation information provides the exact location of the payload in

memory. The multi-level slicing yields the payload injection statements of which the number is

listed in Column VI of Table 4.1. Column 3 in Table 4.2 lists the payload definition statements.

For each of the exploit, our JS-Binary analysis was able to precisely pinpoint the payload

injection statements for PoV generation. By contrast, solutions like JSGuard [8] or NOZZLE [10]

cannot do the same, because they lack the JavaScript context and can only pinpoint the payload in

the memory. Solutions by scanning the exploit code directly cannot always identify the correct

payload injection statements since the payload is often obfuscated.

Minimized Exploit For each of the exploits, we combined the payload injection statements

(Column VI) with the exploitation component (Column IV) to generate a minimized working

exploit. In the experiment, we observed that each minimized exploit was indeed functional,

meaning that it can exploit the vulnerability and launch the payload successfully. The Column VII

lists the number of unique JavaScript statements observed at the execution of the original exploit.

Column VIII lists the number of unique JavaScript statements observed in the execution of the

minimized exploit.

The minimized exploit excludes the JavaScript statements that belong to obfuscation code or

fingerprinting code. We characterize those codes in Column X of Table 4.1. They cover different

obfuscation or fingerprinting techniques. These techniques are designed to bypass the detection

70

tool and make the analysis challenging. So the minimized exploit can ease the manual analysis

process by removing these JavaScript statements. To quantify the degree of code complexity

reduction in these minimized exploits, we adopt a metric called “potency of minimization” from

an existing work [88]. A minimization is potent if it makes the minimized program P ′ less

obscure (or complex or unreadable) than the original program P . we choose the number of

unique JavaScript statements observed in the execution as the metric because it represents the

number of inspected statements by an analyst. This is formalized in the following definition:

DEFINITION (POTENCY OF MINIMIZATION) 1. Let U(P) be the number of unique

JavaScript statements observed at the execution of P . τpot, the minimization potency with respect

to program P , is a measure of the extent to which the minimization reduces the obscurity of P . It

is defined as

τpot
def
= 1+ U(P ′)

U(P) .

On average, the minimization potency was 0.498, which means we were able to eliminate

49.8% of statements in the trace, whereas the maximum is 0.98. The potency of minimization of

CVE-2009-0075 and CVE-2012-1889 from Metasploit are both 0, because no obfuscation

techniques are applied to them. We did observe that for the exploits from the wild and exploit

kits, the average potency of minimization (0.63) was higher than that (0.41) for the exploits from

Metasploit. This means that it is generally more difficult to analyze the real world exploits.

4.5.2 PoV Generation

PoV generation is an end result of payload analysis. By replacing the payload in the

minimized exploit with a benign one, a PoV is generated for penetration test. Column 3 in

71

Table 4.2: Payload Analysis Results. All exploits provide a single JavaScript statement from the
binary perspective, which is the context in which the exploiting instruction executes.

Source CVE Payload definition stmt I II

Metasploit

2009-0075 var shellcode = unescape(“%u1c35%u90a8%u3abf...”) 3024 7

2010-0249 var LLVc = unescape(“%u1c35%u90a8%u3abf%u..”) 3024 7

2010-0806 var wd$ =
unescape((function(){
return “%u4772%u9314%u9815...”})) 3072 7

2010-3962 var shellcode = unescape(“%u0c74%ud513%uf...”) 3072 7

2012-1876 for (var a3d = unescape(“%uec01%u77c4%u...”),...) 3072 ✓

2012-1889 var code = unescape(“%uba92%u91b5%ub0b1...”) 3072 7

2012-4969 var GBvB = unescape(“%uc481%uf254%uffff...”) 618 7

2013-3163 p += unescape(“%ub860%u77c3%ud038...”) 36696 ✓

2013-3897 sprayHeap({shellcode:unescape(“%u868a%u77c3...”}) 696 ✓

wild
2011-1255 var sc = unescape(“%u9090%u9090%u9090%u1c3...”) 3024 7

2012-1889 var mmmbc=(“Data5756Data3352Data64c9...”) 2880 7

exploitkit 2010-0806 var qq = unescape(”%ucddb%u74d9%uf424%u...”) 649 7

Siberia 2010-0806 var qq = unescape(”!5350!5251!..”.replace(...”) 1750 7

crimepack
2010-0806 var rktchpv= unescape(”%u06b8%u5c67%udae4...”) 648 7

2009-0075 var ysazuzbwzdqlr=unescape(”%u06b8%u5c67%u...”) 648 7

I. Payload Length II. Collocated payload?

Table 4.2 lists the payload definition statements, where the payload content is first introduced or

defined in the JavaScript code. The definition statement is usually accompanied by other

statements required to inject the payload. Payload length (Column 4 in Table 4.2) is the size of the

payload that was identified. In one of the samples (CVE-2013-3163), the encoder was embedded

within the payload and therefore, the size of the payload was much larger than other exploits. In 3

out of 15 exploits, we found the ROP and executable payloads to be collocated within the same

string. In each exploit, the payload was replaced with a benign payload and a PoV was generated.

4.5.3 Effects of Filtering

The filters help to exclude the unexpected dependencies. In Table 4.3, we evaluated the effects

of filtering on minimizing exploits. We found that preprocessing is effective in cases where the

72

Table 4.3: Effects of Filtering on Exploit Analysis.

Source CVE
Unique
JS
stmts

JS
after pre-
processing

No
Filter

Stack
Filter

Module
Filter

All
Filters

Metasploit

2009-0075 30 30 30 14 28 9
2010-0249 45 32 32 4 32 3
2010-0806 803 27 27 13 27 2
2010-3962 105 17 16 16 16 1
2012-1876 67 51 50 41 50 32
2012-1889 77 78 78 2 77 1
2012-4969 117 77 77 16 75 16
2013-3163 43 43 41 4 41 9
2013-3897 187 64 64 26 64 26

wild
2011-1255 97 66 66 45 66 40
2012-1889 53 53 51 1 1 1

exploitkit 2010-0806 109 32 31 31 31 2
Siberia 2010-0806 103 27 26 26 26 2

crimepack
2010-0806 198 195 194 22 194 2
2009-0075 36 35 25 5 5 4

scripts are obfuscated because, during obfuscation, multiple statements are used to accomplish

the tasks of a single statement like eval. Column 3-4 lists the number of the unique JavaScript

statements in the slicing results under different filter configurations. With no filters, we did not

find any significant reduction in the slicing results. This emphasizes the need for filtering. Stack

Filter and Module Filter individually produced varying amount of size reduction depending on the

exploit, but in general, the combination proved to be most effective. For example, for

CVE-2010-3962, the combination of all the filters reduced the number of statements to a single

statement, while none of the filters were individually effective.

4.5.4 Case Study – CVE-2011-1255

In order to highlight the advantages of JSCALPEL, we perform a study of the wild exploit,

CVE-2011-1255 [89], which exploits a “Time Element Memory Corruption Vulnerability” of the

73

Timed Interactive Multimedia Extension implementation in Microsoft Internet Explorer 6 through

8. The exploit (MD5:016c280b8f1f155 80f89d058dc5102bb) targets Internet Explorer 6 on

Windows XP SP3. Given the exploit sample, JSCALPEL successfully generated the minimized

exploit code, payload injection code and penetration test template for Metasploit. We would like

to highlight that a sample for CVE-2011-1255 was previously unavailable on Metasploit DB and

JSCALPEL was able to generate one.

Simplified Exploit Statements JSCALPEL loads the simplified page and logs the JS-Binary

trace until the CFI violation-point (detailed in Figure 4.6) is reached. The violation point 1©

represents the hijacked control flow transfer from 0x7ddd44a1 to the payload location

0x0c0c0c0c through an indirect call instruction – call DWORD[ecx+0X8]. Note that the

exploit does not contain any ROP-gadgets and that the entire payload is executable. From the

violation, either ecx or [ecx + 0x8] may be manipulated by the attacker and therefore both

will have to be considered as possible slicing sources. From the memory IO log (point 2©), the

location of [ecx+0x8] is extracted as 0x0c0c0c14. Both ecx and the memory location

0x0c0c0c14 are provided as the slicing sources for the binary-level slicer to uncover the

implicit data dependency pertaining to the exploit.

The binary level slicer identified 40 JavaScript level sources. JavaScript slicer included an

additional 64 statements to generate the simplified exploit. Using the simplified exploit, we were

able to trigger the vulnerability in IE 6.

Simplified Payload-Injection Statements and Payload Location Similar to simplifying the

exploit statements, JSCALPEL uses payload location 0x0c0c0c0c as the slicing source for

74

Fig. 4.6.: CFI Violation Point

identifying the payload-injection statements, and gathers the simplified statements. The

binary-level slicer confirmed the statement 36: a[i] = lh.substr(0, lh.length)

as the JavaScript statement that injects payload into memory. Then, this statement was used as the

slicing source for JavaScript-level slicer. Finally, JSCALPEL identified all the payload injection

JavaScript statements.

The payload is located at 0x0c0c0c0c. Therefore, JSCALPEL extracts the page at

0x0c0c0c0c to analyze the payload. JSCALPEL first trims the padding instruction like nop

from the payload. Next, JSCALPEL compares it with the constant strings in the payload injection

JavaScript statements to identify the exact payload string. JSCALPEL identified (var sc =

unescape("%u9090%u9090%u90

90%u9090%u1c35%u90a8%u3abf%ub2d5....")) as the JavaScript statement

containing the payload. Since the entire payload is executable, JSCALPEL replaced the entire

payload to generate the Metasploit test case. We generate a Ruby template script for Metasploit

framework, and we were able to successfully test it on Internet Explorer 6 on Windows XP SP3.

75

5. VULNERABILITY-AGNOSTIC DEFENSE OF JAVASCRIPT

EXPLOITS VIA MEMORY PERTURBATION

5.1 Introduction

To mitigate JavaScript exploits, software vendors have deployed many mitigation techniques

like Address Space Layout Randomization (ASLR), Data Execution Prevention (DEP), control

flow guard [38], sandbox [90], EMET [37], etc.. These mitigation techniques increases the bar on

exploitation. Attackers have to combine complex memory preparation, memory disclosure, code

reuse and other techniques to launch a successful exploit.

While these exploit mitigation techniques are constantly improving, hacking contests like

Pwn2Own [31], GeekPwn [32], etc., consistently demonstrate that the latest versions of Chrome,

Safari, Internet Explorer, and Edge can still be exploited. There are two reasons for this: First,

most of the latest proposed mitigation techniques require software or compiler tool chain changes

and thus could not be deployed promptly. For instance, ASLR-guard [33] is designed to thwart

information disclosure attacks, but requires compiler changes and cannot be quickly deployed by

software vendors. Second, the deployed mitigation techniques may fail due to newly invented

exploitation techniques (e.g., sandbox bypass technique). We argue that an ideal mitigation

technique should be flexible to deploy without requiring code changes and should subvert

inevitable exploitation stage(s).

76

I observe that a typical JavaScript exploit adopts memory preparation to manipulate the

memory states. This is a critical stage for JavaScript exploits since attackers need to put

something (e.g., ROP chain, shellcode) into a known memory location prior to execution of that

code. This offers the chance for defenders to stop the exploits by disturbing this memory

preparation stage.

In this chapter, I propose CHAFFYSCRIPT, a vulnerability-agnostic mitigation system that

blocks JavaScript exploits via undermining the memory preparation stage. Specifically, given

suspicious JavaScript, CHAFFYSCRIPT rewrites the code to insert memory perturbation code, and

then generates semantically-equivalent code. JavaScript exploits will fail as a result of unexpected

memory states introduced by memory perturbation code, while the benign JavaScript still behaves

as expected since the memory perturbation code does not change the JavaScript’s original

semantics.

I have implemented a prototype of CHAFFYSCRIPT, which consists of three main

components: a memory allocation/free candidates discovery module to identify the potential

memory preparation operations, a lightweight type inference module to prune the unnecessary

memory preparation candidates, and a chaff code generation module to insert memory

perturbation code alongside memory preparation operations. As a demonstration of the

deployment flexibility afforded by our approach, we have integrated CHAFFYSCRIPT into a web

proxy to protect users against malicious HTML files. Our evaluation results show that: 1) the

probability of guessing the correct memory states after CHAFFYSCRIPT is extremely low

(Section 5.6.1), 2) CHAFFYSCRIPT can thwart the latest JavaScript exploits effectively

(Section 5.6.2) and 3) it incurs runtime overhead 5.88% for chrome and 12.96% for FireFox at

77

most, and the memory overhead is 6.1% for the minimal JS heap usage, and 8.2% for the

maximal JS heap usage during runtime on Octane benchmark [91] (Section 5.6.3).

5.2 Technical background and motivation

5.2.1 Defense of JavaScript Exploits

Defense against JavaScript exploits has evolved to react to advances in exploitation

techniques. Any defensive techniques that stop one of the exploitation stages (described in

Figure 2.2) can prevent the exploits from infecting victim machines. Some exemplar defenses

include:

1) Cloaking the OS/software version during the pre-exploitation stage to stop attackers from

launching the correct exploits.

2) Tools like BrowserShield [26] instrument the execution of JavaScript to match the

predefined vulnerability feature and block the execution once a match is found.

3) Randomization-based techniques like Readactor [92] try to stop the attacks by preventing

memory disclosures.

4) Tools like ROPecker [55] exploits the Last Branch Record hardware feature to detect the

execution of ROP chains.

5) Control Flow Integrity (CFI) [27] based techniques [38, 50] are used to prevent execution

of injected payloads.

78

While these exploitation mitigation techniques are constantly improving, hacking contests like

Pwn2Own [31], GeekPwn [32], etc., consistently demonstrate that the latest versions of Chrome,

Safari, Internet Explorer, and Edge can still be exploited. There are two reasons for this: First,

most of the latest proposed mitigation techniques require software or compiler tool chain changes

which may cause compatibility issues and thus cannot be deployed promptly. Second, the

deployed mitigation techniques may fail due to newly invented exploitation techniques. For

instance, DEP mitigation can be defeated by ROP attacks. The JITSpray [93] makes the ROP

defense useless since ROP is not needed anymore to bypass DEP in JITSpray based attack. To

conclusion, we argue that an ideal mitigation technique should be easy to deploy without the

change of code, and undermine the inevitable exploitation stages.

5.2.2 Memory Preparation

Based on our observations, the memory preparation stage is a critical stage for JavaScript

exploits because attackers need to put something (e.g., ROP, shellcode) into in a known memory

location prior to execution of that code. The memory preparation step can take many forms like

well-known heap spraying. While most of these techniques are difficult to detect with high

confidence, it often offers the first chance for defenders to detect that something malicious is

happening.

Memory Management of the JavaScript Engine Before the discussion of memory

preparation techniques, we first take V8 [94] as an example to present an overview of memory

management within a JavaScript engine. JavaScript engines dynamically manage memory for

running applications so that developers don’t need to worry about memory management like

79

coding in C/C++. V8 divides the heap into several different spaces- a young generation, an old

generation, and a large object space. The young generation is divided into two contiguous spaces,

called semi-space. The old generation is separated into a map space and an old object space. The

map space exclusively contains all map objects while the rest of old objects go into the old space.

Each space is composed of a set of pages. A page is a contiguous chunk of memory, allocated

from the operating system with system call(e.g., mmap). Pages are always 1 MB in size and 1

MB aligned, except in a separate large object space. This separate space stores objects larger than

Page::kMaxHeapObjectSize, so that theses large objects are not moved during garbage collection

process.

The allocated objects will be put into different spaces based on their size, type, and age.

Garbage collection process are responsible for 1) scavenging young generation space my moving

live objects to the other semi-space when semi-space becomes full; 2) major collection of the

whole heap to free unreferenced objects and aggressive memory compaction to clean up

fragmented memory. The other JavaScript engines like SpiderMonkey [76], ChakraCore [95],

JavaScriptCore [96], etc.. share the similar design of memory management. Attackers commonly

abuse the memory management features to manipulate the memory states, known as memory

preparation.

Memory Preparation techniques Memory allocation and free operations are used to

manipulate the memory. We can categorize these techniques based upon how they change the

memory layout:

1) Emit data in a target address. This is usually implemented with a heap spray technique like

Heap Fengshui [97] and its successors [98]. These techniques spray crafted objects into the

80

heap. The size and type of the objects are carefully chosen to exploit the memory

management of the JavaScript engine. ¶

2) Emit objects adjacent in memory. This is implemented by allocating two objects with the

same type and size sequentially so the JavaScript engine will likely keep them adjacent in

the heap; this technique is widely used by attackers. ·

3) Create holes in memory. This is implemented by allocating adjacent objects first, then

freeing one of them. A hole is created among those adjacent objects. ¸

4) De-fragment the heap. This is usually implemented via calling a garbage collection API

provided by host software (e.g., CollectGarbage() in IE) or via a carefully crafted

JavaScript snippet that forces the garbage collection process as discussed in Section 5.4.1.¹

In theory, attackers can use any JavaScript types to prepare memory, but in practice String

and Array are used most frequently. This is because the implementations of these two types,

especially Typed Array, are very close to native arrays in C/C++. Compared with the other

primitive types (Boolean, Null, Number, Symbol) and objects (e.g., Math), it is much easier to

control the content and layout of memory with these two types.

Realizing that memory preparation is an essential step towards successful JavaScript exploit, a

natural question rises in our mind - How can we disrupt this stage without code change of the host

software? The answer is: memory perturbation.

81

Table 5.1: The overview of memory perturbation techniques

Category Approaches
Memory
Change

Code Transformation
Overhead

Storage

a. Split Variables 1 , 2 High
b. Change Encoding 1 High
c. Promote scalars to objects 1 , 2 High
d. convert static data to procedure 1, 2 Medium

Aggregation
e. Merge scalar variables 1,2 High
f. Split, merge, fold, flatten arrays 2 High

Ordering
g. Reorder instance variables 2 Medium
h. Reorder arrays 2 High

Inserting
i. Insert noise data allocation/free 2 Low
j. Insert holes into arrays 2 High

1: content change 2: layout change

var x= 48;
var y =9;
C = x +y;

var z = x <<32| y;
C = z>>32 + z &0xFFFFFFFF;

e
var b

=[2,3,4,5,6];
var b1 = [2,3];
var b2=[4,5,6];

f.split

f.merge

var a = [2, 3,
4, 5, 6,7]

var b =[[2,3,4],
[5,6,7]]

f.fold

f.flatten

var a =[6]
var b =[7]

var b =[7];
var a = [6];

var c = [1,2,3];
var d =c[2];

var c=[3,2,1];
var d=c[0];

h
var a =[6];
var b =[7];

var a =[6];
var noise = [8];
var b =[7];

i

var d =[7,8,9];
var c = d[2];

var d = [7,8,hole,9]
Varc=d[3]

var A = true;
If(A){}

var c = 1;
var d = 0;

If(and(c,d)){}
a

var A=5;
C = A*2;

var A=5^key;
C = A^key*2;

var c = 2017;
var c = new

Number(2017);
c var s ="HELLO"

function getHello(){
 var s="ABCDHELLO";
 return s.substr(4,9);
}

d

Fig. 5.1.: Samples of memory perturbation techniques summarized in Table 5.1

5.2.3 Memory Perturbation Techniques

Memory perturbation involves manipulation of the content or layout of memory without

changing the semantics of the code. This technique is similar to the data obfuscation technique

used in code obfuscation [88] to defeat malicious reverse engineering attacks. However, in the

82

context of JavaScript-based exploit defense, our goal is to subvert the memory preparation stage

through memory perturbation, so that exploits are defeated at runtime due to unpredictable

memory states.

Table 5.1 provides an overview of memory perturbation techniques. In general, memory

perturbation techniques can be divided into 4 categories as affecting the storage, aggregation,

ordering or inserting of the data in memory. Figure 5.1 presents sample code snippets for each of

the approaches referenced in Table 5.1. While each of the approaches can induce similar memory

changes in terms of memory layout or content, the overhead associated with each of these

approaches is quite different. For instance, Approach i only needs one statement insertion

operation for the code transformation. It does not need any further program analysis to keep the

semantics intact since the inserted statement does not affect the original code’s data and control

flow. However, Approach f requires additional program analysis to keep the program semantics

intact. This is because after the array is restructured, a whole program def-use analysis has to be

conducted to identify all the affected code and then update the code accordingly (update array

index, array name, etc.). Column D of Table 5.1 presents the code transformation overhead for

each approach.

5.2.4 Our Mitigation Solution

Based upon the previous discussion, we proposed a vulnerability-agnostic defense approach

for JavaScript exploits -CHAFFYSCRIPT. The basic idea of CHAFFYSCRIPT is to sabotage the

memory preparation stage via memory perturbation without changing the original JavaScript’s

semantics. Specifically, given suspicious JavaScript, CHAFFYSCRIPT rewrites the code to insert

83

chaff code to perturb memory states, and then generates semantically-equivalent code. Since the

chaff code changes the memory states at runtime, JavaScript exploits will fail as a result of

unexpected memory states, while the benign JavaScript still executes as expected since the

transformed code by CHAFFYSCRIPT is semantics-equivalent. Compared with current mitigation

techniques, CHAFFYSCRIPT has the following advantages:

1) Vulnerability-agnostic nature. CHAFFYSCRIPT does not rely on any specific vulnerability

features as BrowserShield [26] does. Thus it is vulnerability-agnostic and can be used to

defend against 0-day attacks.

2) Flexible deployment. JavaScript rewriting can be implemented without the change of host

software. This makes the deployment of CHAFFYSCRIPT very flexible. Users can disable

or enable CHAFFYSCRIPT promptly based upon their needs.

3) Stronger protection. As evaluated in Section 5.6.1, CHAFFYSCRIPT provides much

stronger protection than randomization-based approaches (e.g., ASLRGuard [33]).

In the following sections, we will elaborate details on the threat model and scope, design and

implementation of CHAFFYSCRIPT.

5.3 Threat Model and Scope

We assume a commodity operating system with standard defense mechanisms, such as

no-executable stack and heap, and ASLR. We assume attackers are remote, so they do not have

physical access to the target system, nor do they have prior control over other programs before a

successful exploit.

84

Memory
Allocation/Free

Candidates
Discovery

Lightweight
Type Inference

Chaff Code
Generation

Suspicious
JavaScript

Defanged
JavaScript

Memory Perturbation

Fig. 5.2.: The overall architecture of CHAFFYSCRIPT.

We assume an adversary uses JavaScript to exploit memory corruption vulnerabilities in a

program and achieve arbitrary code execution. We also assume that the adversary uses memory

preparation to manipulate the memory layout. This is a fair assumption since memory preparation

is a general stage used in the exploitation. We impose no restrictions on the exploitation

techniques.

Random number is used by CHAFFYSCRIPT to increase the difficulty of guessing the correct

memory states after memory perturbation techniques are deployed as discussed in Section 5.4.3.

So one assumption of CHAFFYSCRIPT is that the attacker cannot compromise random number

generator. This is a fair assumption since different secure random number generators [99] have

been deployed to stop such kind of attacks.

CHAFFYSCRIPT works against JavaScript exploits that require precise memory preparation.

These exploitations include but are not limited to control data attack, non-control data

attack [100], and side channel attack [56].

Out-of-scope threats. Cross-site scripting (XSS) [101] and Cross-site forgery(CSRF) [102]

are out of our scope.

85

5.4 Design

In this section, we present the design of CHAFFYSCRIPT. Based on previous discussion, we

know that a successful JavaScript-based exploit requires sophisticated memory preparation. So

the goal of CHAFFYSCRIPT is to: undermine the memory preparation via memory perturbation

without changing the original JavaScript’s semantics.

In theory, all of the memory perturbation techniques discussed in Section 5.2.3 could be used

to undermine the memory preparation stages of JavaScript exploits. That said, to be practical an

on-line defense approach should incur minimal code transformation overhead and thus cannot

afford complex program analysis. With that in mind, we only apply Approach i in

CHAFFYSCRIPT for memory perturbation, which is good enough for defeating JavaScript

exploits as demonstrated in Section 5.6. Specifically, CHAFFYSCRIPT conducts JavaScript

rewriting by inserting chaff code to 1) allocate random chunks of memory along with existing

memory allocation operations, and 2) disable memory free operations by adding additional

reference to freed objects.

Figure 5.2 demonstrates the overview of CHAFFYSCRIPT. Given a suspicious JavaScript, it

first traverses the code to discover memory allocation/free candidates. Then a lightweight type

inference process is conducted on these candidates to identify the interesting memory

allocation/free candidates that are usually used for memory preparation by attackers; this reduces

unnecessary chaff code insertions and improves runtime performance. Finally, the chaff code is

generated and inserted into the original JavaScript code to get a defanged JavaScript. At runtime,

the chaff code will allocate random memory or disable memory free operations to undermine the

86

memory preparation stage of JavaScript-based exploits. Benign JavaScript still executes normally

since the chaff code does not change the original code’s expected semantics.

Next, we will discuss the detailed design of the three CHAFFYSCRIPT modules: memory

allocation/free candidate discovery, lightweight type inference, and chaff code generation.

5.4.1 Memory Allocation/De-Allocation Candidate discovery

As discussed in Section 5.2, there are two kinds of operations that affect the memory state:

object allocation and de-allocation. CHAFFYSCRIPT inspects JavaScript code to identify the

following memory manipulation candidates:

Memory Allocation Candidates As discussed in Section 5.2.2, String and Array are two

common data types used by attackers to fill memory. CHAFFYSCRIPT traverses JavaScript code

to identify potential memory allocation candidates for String and Array operations. However,

precise type inference for JavaScript is quite expensive [103]. So, to be simple, the new

expression (e.g. var c = new Array(5)), value initialization expression (e.g.var c = [3,7]), and

built-in function callsite (e.g., var c = a.substr(0,10)) are all considered as memory allocation

candidates since they can trigger memory allocation in the heap. Note that the callee name can be

dynamically generated in JavaScript. Thus, we cannot statically determine if it is a targeted

built-in function callsite. To be complete, the callsites with dynamically generated callees are also

considered as memory allocation candidates. In JavaScript String objects are immutable, so

operations that change String objects (e.g. - the ’+’ and ’+=’ operators) will also cause memory

allocation. CHAFFYSCRIPT also considers expressions with the ’+’ and ’+=’ operators as

potential memory allocation candidates.

87

Memory De-allocation Candidates In JavaScript, there are three ways to explicitly free

memory: assign null to the object, use the delete operator and explicitly trigger garbage

collection. The first two methods remove the reference to the allocated object. For instance,

delete object.property removes the reference to the property object. However, it does not directly

free the property object in memory. When the property object is no longer referenced by any

other objects, garbage collection process will eventually free it in memory. CHAFFYSCRIPT still

considers null assignment and delete calls as memory de-allocation candidates because attackers

often use them to create holes in memory, so objects allocated later can fill these holes to trigger

some vulnerabilities (e.g.,Use-after-Free).

Explicit garbage collection (GC) calls are usually used by attackers to defragment the

heap [1]. Some browsers like Internet Explorer and Opera provide public APIs (e.g.,

CollectGarbage() for IE) to trigger garbage process. CHAFFYSCRIPT can easily identify this kind

of garbage collection process by matching the API name. However, the other browsers’ garbage

collection process can only be triggered when certain memory states are achieved; in these cases

there are no APIs to explicitly trigger the process. In these cases, attackers usually fill objects in

memory to trigger the garbage collection process. For instance, the following code can fill up the

1MB semi-space page of V8 engine and force V8 to scavenge NewSpace.

1 f o r (v a r i =0 ; i < ((1024*1024) / 0 x10) ; i ++)

2 {

3 v a r a = new S t r i n g () ;

4 }

88

This kind of GC trigger is implicit and difficult to identify. Nevertheless, it includes memory

allocation operations and will be considered as a memory allocation candidate and will still be

captured by CHAFFYSCRIPT. GC events using DOM objects instead of String and Array are not

captured by CHAFFYSCRIPT, but this is only one of the memory preparation techniques used by

attacker. Furthermore, JavaScript exploits usually combine multiple memory preparation

techniques, thus allowing CHAFFYSCRIPT to be effective even when hybrid memory preparation

methods are used.

The host software also provides APIs to allocate and free objects. For instance, on browser,

users can adopt the DOM API to add or remove node objects from the DOM tree. While in

theory, it is possible for attackers to manipulate those APIs during memory preparation, as

discussed in Section 5.2.2, it is challenging to do that since the layout and content of DOM

objects are difficult to control. If new memory preparation techniques are applied by attackers,

CHAFFYSCRIPT just needs to update the memory allocation/de-allocation candidate discovery

stage to block those techniques.

5.4.2 Lightweight Type Inference

The collection of memory allocation candidates is a superset of the memory allocation

candidates of String and Array objects. If we insert chaff code along with all the candidates, the

runtime performance would be unacceptable. To improve the runtime performance of defanged

JavaScript, we conduct lightweight type inference to prune the memory allocation candidates that

are not related to String and Array objects. It is executed as two steps: static type inference and

dynamic type inference.

89

Static type inference CHAFFYSCRIPT only keeps the memory allocation candidates that

operate on variables typed as one of String, Array, ArrayBuffer, Int8Array, Uint8Array,

Uint8ClampedArray, Int16Array, Uint16Array, Int32Array, Uint32Array, Float32Array, and

Float64Array. We can infer the types of the variables in expressions statically based upon how

they are used. CHAFFYSCRIPT uses the three following type inference rules:

1) the constructor of the new operator indicates the type of created object. For instance, the

constructor Int16Array in var b = new Int16Array(256) indicates the type of b is

Int16Array.

2) the return value of a built-in function indicates the type based on its description. For

instance, var c = s.split(”a”) indicates that the type of c is Array.

3) for expressions with the ’+’ or ’+=’ operators, if the type of the operands are String, then

the result is also a String.

These three simple rules do not require complex program analysis and can be used to efficiently

determine the type of variables to filter out the memory allocation candidates. If static type

inference cannot determine the types of all the variables used in memory allocation candidates,

dynamic type inference are conducted to check the type at runtime.

Dynamic type inference Static type inference does not always work for two reasons. First,

since a function call’s name can be dynamically generated, we cannot determine an object’s type

based upon the function’s return value. Second, the three typing rules are very weak and cannot

determine the type of variables in some cases. For instance, the three typing rules cannot be

applied on candidates var d = a + b + c. It is possible to determine the type of a, b and c via

90

backward analysis, but that is likely too expensive for our online defense system use case.

Instead, we conduct dynamic type inference with the help of JavaScript features. In JavaScript, a

variable’s type can be extracted at runtime using the instanceof operator. With this operator,

CHAFFYSCRIPT inserts the dynamic type inference after the memory allocation candidate to

check if it operates on targeted types. While dynamic type inference incurs runtime performance

overhead, it is less expensive than statically inferring the type of variables.

Our static type inference is very conservative; any untyped variables are enforced to conduct

dynamic type inference. As a result, the dynamic type inference makes it impossible for attackers

to bypass our type inference process.

5.4.3 Chaff Code Generation

The goal of inserted chaff code is to affect the memory states at runtime. It achieves this goal

via the following two methods.

disable memory free operations. For memory free candidates using public APIs like

CollectGarbage() in IE, CHAFFYSCRIPT directly removes the API call from the original code.

This does not change the semantics of original JavaScript code because garbage collection APIs

does not have data or control dependency on the original code.

For memory free candidates using the delete operator or assigning a null value, the above

method does not work because simply removing such code will change the semantics of the

original code. The attackers’ goal of freeing an object is to create holes in memory, so later

allocated objects can occupy the freed memory. If we keep a reference to the object before the free

operation is executed, the later allocated object can not occupy the position since the allocated

91

memory still has a reference to it. Figure 5.7.(a,b) illustrates an example of such transformation.

In code snippet [a], x is assigned the value null. In the transformed code [b], CHAFFYSCRIPT has

added a new variable 4613335ea9901 to store a reference to ”abcdefgh”. Although x is assigned

to null, the object ”abcdefgh” will not be scavenged since 4613335ea9901 keeps a reference to it.

v a r x = ” a b c d e f g h ” ;

x = n u l l ;

c o n s o l e . l o g (x) ;

[a]

v a r x = ” a b c d e f g h ” ;

v a r 4613335 ea9901 = x ;

x = n u l l ;

c o n s o l e . l o g (x) ;

[b]

v a r y = new A r r a y B u f f e r (1 0 2 4) ;

[c]

v a r y = new A r r a y B u f f e r (1 0 2 4) ;

v a r e512da1951cdd7 = new A r r a y B u f f e r (y . b y t e L e n g t h + RANDOM) ;

93 f208876cd2bd . push (e512da1951cdd7) ;

[d]

Fig. 5.3.: Chaff code Samples

Insert chaff code following the memory allocation candidate. As discussed in Section 5.2, if

two objects of the same type are allocated sequentially and with the same size, it is likely their

positions on heap are adjacent to each other. Attackers exploit this feature to manipulate the

memory layout and content. CHAFFYSCRIPT is also able to exploit this detail to defeat this

exploit. After every memory allocation candidate, CHAFFYSCRIPT insert code to allocate

additional memory with the same type, but with variable-length padding at the end(RANDOM).

Figure 5.7([c],[d]) presents an example of such code transformation. As you see in code snippet

[d], a new ArrayBuffer is allocated with size (y.byteLength + RANDOM). With this randomness,

it is almost impossible for attackers to guess the combinations of memory states as evaluated in

Section 5.6.1.

92

To generate RANDOM, CHAFFYSCRIPT provides two approaches to increase an attacker’s

uncertainty. The first one is at runtime; every time the inserted chaff code is executed, a new

random number is generated for RANDOM. So if a given piece of chaff code is executed 1000

times, and the range of RANDOM is 0-50, it will create 501000 possible memory states at runtime.

The second approach happens when we are inserting the chaff code into original JavaScript code;

a random number is generated for RANDOM. This value is used to randomly increase the size of

the memory chunk allocated by this piece of chaff code. For example, if 15 places are inserted by

the chaff code, and the range of RANDOM is 0-50, 5015 possible memory states will be created at

runtime. Both approaches can defeat the JavaScript exploits with different security guarantees

and performance overhead as discussed in Section 5.6.

The range of RANDOM cannot be too big. Otherwise, the objects allocated by chaff code

might be allocated in a different location. Thus that fails to break adjacent arrays (·). In our

implementation, we set it as 0-50. This range works against memory preparation techniques while

providing enough randomness as demonstrated in Section 5.6.1.

Since our inserted code is independent of the original code, attackers may abuse garbage

collection to scavenge the allocated chaff memory and neutralize the effects of inserted chaff

code. To avoid this, CHAFFYSCRIPT keeps a reference to every allocated piece of chaff memory.

This prevents scavenging of chaff memory by the garbage collection process because there is

always at least one reference to the allocated chaff memory. We call the added code as GC

escaper.

The variable names used in the chaff code are generated randomly. This prevents attackers

from identifying memory allocated by the chaff code alongside their own memory preparation

93

code. Thus attackers cannot leverage variable naming conventions to identify memory used as

part of our countermeasures, thus making bypass of these countermeasures impossible.

5.5 Implementation

We implemented CHAFFYSCRIPT using esprima [104]. It is a JavaScript parser used to

generate Abstract Syntax Tree (AST) with full support for ECMAScript 6. Since it is written

using JavaScript, it can be easily embedded into different documents like HTML or PDF. This

makes the deployment very flexible. Estraverse [105] is used to traverse the AST, discover

memory allocation/free candidates and perform lightweight type inference. The chaff code

insertion is implemented via directly manipulating the original code with the offset information

collected from AST generation process. We do not operate on AST directly to insert the chaff

code because generation code from AST is more expensive than from manipulating original code.

Section 5.6.3 evaluates the difference of rewriting performance for these two approaches.

The general workflow of CHAFFYSCRIPT can be summarized in the following steps:

1) CHAFFYSCRIPT takes JavaScript code as input and derives its AST.

2) CHAFFYSCRIPT traverses the generated AST to discover memory allocation/free

candidates and conduct lightweight type inference.

3) CHAFFYSCRIPT generates chaff code snippets and inserts them into the original JavaScript

code to generate the defanged JavaScript.

The deployment of CHAFFYSCRIPT is very flexible. It can be deployed as a browser

extension, a web proxy, a standalone rewriting engine or one component of a JavaScript engine.

94

In this section, we demonstrated one deployment approach to protect users against malicious

HTML files.

5.5.1 HTML Protector

Ideally, it is most user-friendly to deploy CHAFFYSCRIPT as a browser extension.

Unfortunately, JavaScript rewrite, used to implement code transformation in CHAFFYSCRIPT, is

not natively supported in browser extensions. Instead, we deploy CHAFFYSCRIPT as a web

proxy. The downside is that a user needs to install an external program (and certificate) as

opposed to only an extension. The benefit is that this proxy-based solution is

browser-independent and can be easily deployed with minimal configuration.

The prototype was implemented in Node.js [106], using the http-mitm-proxy package [107].

CHAFFYSCRIPT becomes an integral part of the Web proxy. We followed Dachshund [53]’s

approach to handle dynamically generated code. Specifically, the dynamic code generation

functions (e.g.,eval, SetTimeout, Function, SetInterval) were hooked via new injected JavaScript

code. To rewrite dynamically generated code, we used synchronous XMLHttpRequest requests

from hooked JavaScript functions to the proxy. The response from the proxy contains the

defanged JavaScript code.

5.5.2 Possible implementation of PDF protector

While we did not, it is possible to integrate CHAFFYSCRIPT as a standalone rewrite engine to

protect users against malicious PDF files. We can adopt peepdf[108] to extract JavaScript from

PDF files and write the defanged JavaScript back. For dynamically generated code, we can use

95

the same approach as HTML protector. For instance, Net.HTTP can be used to pass dynamically

generated code to the rewrite engine, and retrieve the defanged code.

The attacker may embed malicious JavaScript in an unusual way as demonstrated in [109] to

evade the JavaScript extraction. Thus the embedded malicious JavaScript will be ignored by

peepdf, and PDF protector fails to protect users against such malicious PDF files. It is always

possible for attackers to find new methods to hide the malicious JavaScript code in PDF files.

However, this is not a weakness of CHAFFYSCRIPT. Extraction of JavaScript from malicious

PDF files is another security problem and out of CHAFFYSCRIPT’s scope. Future work could

look at leveraging new JavaScript extraction techniques to improve the implementation of PDF

protector. For instance, one solution is to leverage the state-of-art JavaScript Extractor developed

in [109] to confirm that peepdf has extracted all of the embedded JavaScript code in a PDF file.

5.6 Evaluation

In this section, we present the evaluation of CHAFFYSCRIPT. The evaluation tries to answer

the following questions:

1) How secure is CHAFFYSCRIPT’s approach in theory, compared to general randomization

approaches?

2) How secure is CHAFFYSCRIPT’s approach against practical JavaScript-based exploits?

3) How much overhead does CHAFFYSCRIPT impose, in particular rewriting, runtime, and

space?

96

Experimental setup. We conducted our evaluations of CHAFFYSCRIPT to check its security

enhancements and potential performance impacts. The performance overhead experiment was run

under Chrome 57 and Firefox 54. All the experiments are conducted on a test machine equipped

with intel Core i7-4790 CPU @ 3.60GHz 8 with 16GB RAM.

5.6.1 Security Analysis

In this subsection, we present an analysis to determine the probability that an attacker could

predict the memory layout after memory perturbation is introduced by CHAFFYSCRIPT. The

randomness introduced by CHAFFYSCRIPT is determined by the following parameters:

1) RANDOM - the size variation range of created object by chaff code.

2) M - number of inserted chaff code.

3) N - executed times of chaff code at runtime.

The probability of guessing the correct memory states is defined as the follow equation.

probability =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

RANDOM -M predefine RANDOM

RANDOM -N GenRANDOM atruntime

If RANDOM is predefined when CHAFFYSCRIPT inserts the chaff code, the probability is

RANDOM -M . If a random number is generated for RANDOM every time the chaff code is

executed, the probability is RANDOM -N . If it is too big, the allocated objects by chaff code

may not be adjacent to the objects allocated by original code. Thus it cannot break memory

preparation ·. In our implementation, we set RANDOM as 50 and it worked well on defeating

JavaScript exploits as evaluated in Section 5.6.2.

97

The value of M and N is case by case. Column 4 and Column 5 in Table 5.2 records the value

of M and N for 10 exploits. The average of M was 15, and average of N was 130876. The

probability for JavaScript exploits in our implementation should be 50-15 and 50-130876. This

provides much stronger randomness than ASLR [33] (2-64 at most). The highest probability of

the 10 exploits was 50-10 which is still stronger than 2-56. Through this analysis, we conclude that

the probability for an attacker to predict the memory layout is extremely low after memory

perturbation is introduced by CHAFFYSCRIPT.

Table 5.2: Experimental results of 10 latest JavaScript-based exploits using CHAFFYSCRIPT

CVE setup MemoryPreparation M N Defeated?

CVE-2015-2419
IE11
32bit WIN7

¶ · ¹ 28 12594 Y

CVE-2015-1233
chrome 41.0.2272.118
WIN10 32bit

¶ · ¹ 9 8194 Y

CVE-2015-6086
IE11
32bit WIN7

¸ ¹ 12 1280 Y

CVE-2015-6764
chrome 46.0.2490.0
WIN10 32bit

¶ · ¹ 14 393224 Y

CVE-2016-9079
FireFox 50.0.1 32bit
Windows8.1

¶ · ¹(JITSpray) 13 20564 Y
¶ · ¹ 28 17408 Y

ms16-063
(cve-2016-3202)

IE11
WIN7 32bit

¶ · ¸ ¹ 12 110005 Y

CVE-2016-1646
chrome46.0.2490.0
WIN10 32bit

¶ · ¹ 18 393226 Y

chromev8 OOB write
chrome60.0.3080.5
linux14.04 64bit

· 10 10 Y

X360 videoPlayerActiveX
VideoPlayerActiveX 2.6
IE10 WIN7 64bit

¶ · 9 352258 Y

M: # of inserted chaff code N: Executed times # of chaff code at runtime

5.6.2 Effectiveness

Although in theory CHAFFYSCRIPT can stop JavaScript exploits, we wanted to know how

well it performed at defeating real JavaScript exploits without the knowledge of the targeted

98

BuggyArray(0x80) FixedArray(0x18) JSArray(0x30)

FixedDoubleArray(0x20) JSArray(0x30) FixedArray(0x18)

ArrayBuffer

Fig. 5.4.: Expected memory layout of sample chromev8 OOB write

vulnerabilities. To do that, we set up exploitation environments for 10 exploits and confirmed that

without CHAFFYSCRIPT, all 10 of these exploits functioned correctly. These 10 exploits are

representative of latest JavaScript exploits because:

1) The vulnerabilities targeted by these 10 exploits are quite new (from 2015 to 2016).

2) The target host software of these exploits covered the most popular web browsers (IE11,

Chrome, and Firefox)

3) These 10 exploits used all of the memory preparation techniques presented in Column 3 in

Table 5.2.

4) These 10 exploits covered the popular exploitation techniques - JITSpray and HeapSpray.

5) These 10 exploits not only targeted at vulnerabilities in host software, but also in the

browser plugin (X360 videoPlayerActiveX).

For every exploit, we manually confirmed that it could be stopped using CHAFFYSCRIPT.

Column 6 in Table 5.2 presents the result. As shown in the results, CHAFFYSCRIPT defeated all

10 of the exploits without requiring knowledge of vulnerabilities targeted. This experiment proves

that CHAFFYSCRIPT can effectively defeat JavaScript exploits without knowledge of the targeted

vulnerability.

99

BuggyArray(0x80) FixedArray(0x18) JSArray(0x30)

FixedDoubleArray(0x20) JSArray(0x30) FixedArray(0x18)

ArrayBuffer

Chaff Memory

Chaff Memory

Chaff Memory

Chaff Memory Chaff Memory

Chaff Memory Chaff Memory

Fig. 5.5.: Memory layout of sample chromev8 OOB write after rewritten by CHAFFYSCRIPT

Note that the chaff codes inserted into the sample chromev8 OOB write are only executed

10 times, but still thwart the exploit. This is not like the other samples, in which the chaff codes

are executed thousands of times and change the memory states substantially. In fact, the memory

preparation of this exploit expects the memory layout as shown in Figure 5.4. After the chaff code

is inserted, the actual memory layout is close to the layout as shown in Figure 5.5. The chaff

memory breaks adjacent array layout(·). Therefore, the memory preparation of this exploit fails

and this exploit is thwarted eventually. This case further demonstrates the effectiveness of

memory perturbation used in CHAFFYSCRIPT since it uses very few memory perturbation

operations.

5.6.3 Performance

Rewriting Overhead In order to evaluate the rewriting overhead of CHAFFYSCRIPT, we chose

to measure the three popular and large JavaScript libraries - JQuery (mobile-1.4.2), AngularJS

(1.2.5), and React (0.13.3). These libraries are commonly embedded in web pages and relatively

large compared with other JavaScript applications (JQuery has 443KB, AngularJS has 702KB,

React has 587KB). For the evaluation, we rewrote these libraries using CHAFFYSCRIPT 1000

100

Fig. 5.6.: Rewriting Performance on well-known JavaScript libraries

times. We measured the time required to rewrite these libraries, including all the steps required to

generate defanged JavaScript.

We tested two code transformation approaches. The first approach modified the code directly

based upon the offset information collected by the JavaScript parser. The second approach

modified code within the AST. As demonstrated in Figure 5.6. The time spent by the second

approach is 1.67 times more than the first approach. CHAFFYSCRIPT chose the first approach in

the implementation. On average, It took 1̃00ms to rewrite JQuery, AngularJS, and React. Note

that rewriting is a one-time effort and we can further optimize performance by rewriting multiple

scripts concurrently.

Runtime Overhead Next, we evaluated the runtime performance that is incurred on the client

side due to the modified JavaScript code. We leverage Octane, a commonly-used benchmark for

101

(a) (b)

(c) (d)

Fig. 5.7.: Runtime performance overhead under different configurations

Table 5.3: Overall Overhead of CHAFFYSCRIPT on Octane benchmark

Cofiguration Chrome Firefox
a. Runtime Generated RANDOM + GC escaper 5.88% 12.96%
b. Runtime Generated RANDOM 4.54% 7.98%
c. Predefined RANDOM + GC escaper 5.68% 11.27%
d. Predefined RANDOM 4.53% 6.60%

JavaScript engines [91]. For the evaluation, we ran the Octane benchmarks 5 times and used the

mean scores as the final results.

Figure 5.7 illustrates the breakdown of Octane benchmark results. The performance varies

quite a lot for different applications. This is because the runtime overhead is mainly caused by the

inserted chaff code and the number of times that it is executed at runtime, which is very

102

Table 5.4: Memory Overhead of Chrome on Octane benchmark

Usage Original a b c d
Min(MB) 34.4 36.5(6.10%) 36.5(6.10%) 36.5(6.10%) 36.4(5.81%)
Max(MB) 609 659(8.2%) 656(7.71%) 640(5.09%) 638(4.76%)

a, b, c , d refers to the four CHAFFYSCRIPT configurations described in Table 5.3

application dependent. Table 5.3 summarizes the overall overhead on the Octane benchmark

under different CHAFFYSCRIPT configurations. With the strongest protection, CHAFFYSCRIPT

incurs 5.88% overhead in Chrome, and 12.96% in FireFox. With the weakest protection,

CHAFFYSCRIPT incurs 4.53% in Chrome and 6.60% in Firefox. As discussed in Section 5.6.1,

the weakest protection can still provide an acceptable randomness strength. Note that our threat

model is only relevant to non-trusted and attacker-controlled JavaScript. Thus the overhead of

popular JavaScript libraries can be eliminated by whitelisting trusted scripts. This overhead after

the whitelisting should allow CHAFFYSCRIPT to be deployed online to protect users against

JavaScript exploits.

Memory Overhead In theory, the memory overhead should be around 2 times at most. This is

because along with each object allocation, CHAFFYSCRIPT could allocate another object with a

similar size to disturb memory states. If all of the inserted objects by chaff code are not freed

finally by Garbage Collector, the memory usage of the defanged JavaScript should be 2 times of

the original JavaScript.

To evaluate the actual memory overhead, we ran Octane on Chrome and recorded the memory

usage of JavaScript heap. Table 5.4 summarizes the results. Min refers to the observed minimal

memory usage of JavaScript heap during the running of Octane, while Max refers to the observed

maximal memory usage. As demonstrated in the table, for all four different CHAFFYSCRIPT

103

configurations, the memory overhead never exceeded 8.2%. This is not a big overhead since RAM

has become very cheap and current personal computers are usually equipped with at least 8GB

memory. Thus, CHAFFYSCRIPT can be deployed by users without requiring upgraded hardware.

104

6. SUMMARY AND FUTURE WORK

6.1 Conclusion

The original thesis was that enriched executions can be leveraged to combat malicious

JavaScript. More Specifically, the proposed techniques explore arbitrary paths for detection,

preserve JS-binary semantics for diagnosis, and perturb memory with chaff code for mitigation.

This thesis has been validated in this dissertation.

JSForce demonstrated that it could tolerate invalid object accesses while increasing code

coverage and introducing no runtime errors during execution. As an amplifier technique, JSForce

does not rely on any predefined profile information or full-fledged hosting programs like browsers

or PDF viewers, and it can examine partial JavaScript snippets collected during an attack.

JSForce can be leveraged to greatly improve the detection rate of other dynamic analysis systems

without modification of their detection policies.

JScalpel showed that by bridging the semantic gap between the JavaScript level and binary

level to perform dynamic JS-Binary analysis, we are able to determine the payload injection and

exploitation statements of the JavaScript exploits. Thus a minimized exploit and POV can be

automatically created for exploit signature generation and penetration test.

ChaffyScript illustrated that an enriched execution with memory perturbation could undermine

the memory preparation stage in JavaScript exploits and thus blocks the attack. Moreover, the

deployment of ChaffyScript is very flexible and requires no code change of host software.

105

1 v a r f = f u n c t i o n () {
2 i f (t r u e) {
3 f u n c t i o n g () { r e t u r n 1 ;}
4 } e l s e {
5 f u n c t i o n g () { r e t u r n 2 ;}
6 } ;

7 f u n c t i o n g () { r e t u r n 3 ; } ;
8 r e t u r n g () ;
9 f u n c t i o n g () { r e t u r n 4 ;}

10 }

Fig. 6.1.: A JavaScript Sample Interpreted Differently by Different JavaScript Engines

The core of Enriched Executions is composed of these three techniques to combat malicious

JavaScript. They can be deployed independently on different server or together on the same

server. More specially, JSForce and JScalpel can be deployed on the server to provide off-line

analysis to capture and diagnose malicious JavaScript. ChaffyScript can be deployed either on the

end user’s machine or on the web proxy server to protect against malicious JavaScript. Enriched

Executions combines these three techniques together to effectively defeat malicious JavaScript.

6.2 Limitations and Future Work

6.2.1 Detection

If the syntax of the tested JavaScript code is not correct, JSForce drops the analysis

immediately. The forced execution can introduce syntax error under some cases. For instance, the

parameter of eval is supposed to be correct JavaScript code. When the parameter is calculated

from faked strings created by JSForce, the parameter may become syntax incorrect for eval. In

the future, we expect to develop techniques [110] to automatically fix the syntax error to enable

maximized execution of the code.

While JavaScript language has the official specification from the ECMAScript

community [68], the implementation of the language on different JavaScript engines differs

106

slightly because of the complex features and rapid evolving of JavaScript language. The attacker

can exploit this weakness to create a deliberate script which exhibits differently on JSForce to

evade the analysis. Maffeis et al. [111] discussed such an example presented in Figure 6.1. This

code defines a function f whose behavior is given by one of the declarations of g inside the body

of the anonymous function that returns g. However, different implementations disagree on which

declaration determines the behavior of f. Specifically, a call to f() should return 4, according to

ECMA specification. SpiderMonkey returns 4, while Rhino and Safari return 1, and JScript and

the ECMA4 reference implementations return 2. Attackers can leverage these differences to hide

the decoding key and evade analysis. To counter this, we can implement JSForce on top of

different JavaScript engines, such as SpiderMonkey [76] and Chakra [95].

The current path exploration algorithm can efficiently explore most of the sample in a decent

time. However, there are still some cases that take a considerable length of time to finish. To

exploit this limitation, attackers may place the malicious code deep in the code logic, such that

JSForce could not reach it within a predefined duration. Note that this limitation is not unique for

JSForce. All the path exploration techniques share the same limitation. We leave it as future work

to develop better path exploration algorithms and search heuristics.

JSForce can be evaded by techniques that do not need control-flow branches, e.g., those based

on browser or JavaScript quirks. For example, the property window.innerWidth is defined in

FireFox and Chrome but undefined in Internet Explorer. Therefore, a malicious code that

computed a decoding key from window.innerWidth would obtain a different result in

Firefox/Chrome and IE, and could be used to decode malicious code in specific browsers.

JSForce will not trigger the malicious code path in such cases and can be evaded.

107

1 xxxxx = ’ ev ’ ;
2 yyyyy = ’ a l ’ ;
3 z z z z z = xxxxx + yyyyy ;
4 a a a a a = app ;
5 t r y {} c a t c h (e) {
6 z z z z z = 1 ;
7 a a a a a = 1 ;
8 }
9 t r y {

10 d = n o t h i s n o t h i s ;
11 z z z z z = 1 ;
12 a a a a a = 1 ;
13 } c a t c h (e) {}
14 a a a a a [z z z z z] (’ ddddd ’ + ’ dd=une ’ + ’ s c a ’ / * * / + / * * / ’ pe ; ’) ;

Fig. 6.2.: The Case of Evading JSForce

Figure 6.2 presents an example that can bypass JSForce. Using normal JavaScript engine,

lines 6-7 and lines 11-12 will not be executed so that aaaaa and zzzzz can be correctly

initialized. However, with JSForce, line 10 will not raise the exception since d will be initialized

as FakedObject. The exponential path exploration can handle this case by exploring all the

possible path combinations. But it is not feasible in practice. Our solution is that we execute the

sample without forced execution when we collect the path predicates at the beginning.

6.2.2 Diagnosis

Vulnerabilities within Filtered Modules If the vulnerability exploited exists within the filtered

modules, the slicer produces the incomplete slice. Current implementation of JScalpel can not

detect exploits that target the filtered modules. In the future, fine-grained analysis can be applied

on these modules to determine which part of the code introduces the dependency and then limit

108

the filter from whole module to some specific code range. This will reduce the number of

vulnerabilities that JScalpel cannot handle.

Debug-Resistant JavaScript In order for JScalpel to be able to analyze a script, it is important

that JScalpel executes the program and monitors from the debugger. Though we did not find any

samples that can detect debuggers, it is possible that exploits could use techniques (e.g.,

timing-based) to determine if a debugger is running and hide the malicious behavior. Currently,

JScalpel is vulnerable to such attacks. It would be an interesting future work to reconstruct

JavaScript-level semantics directly from the Virtual Machine Monitor, similar to how

DroidScope [112]) recovers Java/Dalvik level semantic view.

Impact of JIT-Enabled JavaScript Engine on JScalpel When JIT is enabled on JavaScript

engine, the data flow within JavaScript engine becomes more complex because of the mixture of

code and data. JScalpel may not work in this case. Since JScalpel is designed as an analysis tool

and is not performance sensitive, the analyst can simply disable the JIT engine. However, this

workaround would sacrifice the capability of analyzing attacks that perform JIT spray, as these

attacks rely on the side-effects of the JIT compiler. We leave it as future work to address this issue.

6.2.3 Mitigation

In general, ChaffyScript has the following limitations:

First, attackers may find methods to bypass the JavaScript rewriting process. For instance,

lexer confusing attacks [113] confuse the lexer causing executable code to be interpreted as the

content of strings or comments, allowing an attacker to slip arbitrary unsafe code past a rewriter

109

or verifier. The rewriter of ChaffyScript is vulnerable to this attack. In the future, we would like to

adopt JaTE’s [114] approach by considering all formats of JavaScript comments to gain resilience

to this attack. It is also possible to attack the JavaScript parser esprima with crafted JavaScript. As

a result, the parser will fail and further code transformation cannot be conducted by ChaffyScript.

Fortunately, ChaffyScript can identify such attacks because it can detect esprima errors.

ChaffyScript can alert security researchers for further analysis once such failures are observed.

Second, the JavaScript extraction approach used in deployment may undermine ChaffyScript.

Attackers may hide JavaScript in an unusual way to escape from the extraction, thus preventing

ChaffyScript from rewriting those portions. For instance, attackers may abuse PDF parsers to hide

malicious JavaScript code [109]. This is not a ChaffyScript issue, but rather is a JavaScript

extractor issue. Deployment of a state-of-art JavaScript extractor with ChaffyScript would reduce

the risk of such attacks.

Third, ChaffyScript does not work on hybrid JavaScript exploits. Basically, such kind of

exploits use JavaScript to trigger the vulnerability, and use other script language (e.g.,

ActionScript in Flash) to prepare the memory. This is quite common in recently years since

vector-related rehabilitates in Flash are quite exploit-friendly, allowing construction of arbitrary

memory read/write primitives [115]. However, it is possible to deploy the techniques used in

ChaffyScript on ActionScript to stop such attacks as discussed in the following subsection.

Fourth, attackers may find other objects to prepare the memory instead of String and Array

operations targeted by ChaffyScript. Once these new memory preparation techniques are

identified, ChaffyScript just needs an update to its memory allocation/free candidate discovery

process to reflect the new memory preparation technique.

110

Applicability on the other script-based exploits

JavaScript is not the only script language that can be used to launch exploits; other script

languages like VBScript [116] and ActionScript [117] are commonly used to launch exploits.

These script-based exploits are widely used to create malicious Microsoft Documents (word,

excel, powerpoint,etc.), flash files, web pages [118]. So the questions rises in our mind - Can

ChaffyScript be applied to stop the other script-based exploits?

The answer is yes because of the following reasons:

1) Script-based languages share a similar memory management approach. They all use some

sort of garbage collector to recycle the memory and conduct automatic garbage collection at

runtime.

2) Memory preparation is a general stage in exploits. Attackers require this stage to bypass

mitigation techniques like ASLR, CFG [38] with crafted memory. This stage is also used

by the other script-based exploits.

3) Other script-based languages also execute interpretively and can be rewritten as JavaScript.

This allows ChaffyScript to provide the protection via rewriting.

To demonstrate this, we set up the exploitation environment for CVE-2016-0189 [119]. It is a

VBScript-based exploit targeting a VBScript memory corruption in IE11. We manually applied

ChaffyScript’s rewriting process and insert the memory perturbation code. The test shows that

this exploit is successfully blocked by memory perturbation. This demonstrates that ChaffyScript

can also be applied to stop the other script-based exploits.

111

To apply ChaffyScript on the other script language, we need the corresponding script parser,

and also need to adapt the lightweight typing rules on the new script language since different

languages support different typing systems. These adaptations are feasible and can be

implemented with engineering efforts.

112

References

1. M. Daniel, J. Honoroff, and C. Miller, “Engineering heap overflow exploits with javascript.,” WOOT, vol. 8, pp. 1–6, 2008.

2. F. J. Serna, “The info leak era on software exploitation,” Black Hat USA, 2012.

3. C. Grier, L. Ballard, J. Caballero, N. Chachra, C. J. Dietrich, K. Levchenko, P. Mavrommatis, D. McCoy, A. Nappa, A. Pitsillidis, et al.,

“Manufacturing compromise: the emergence of exploit-as-a-service,” in Proceedings of the 2012 ACM conference on Computer and

communications security, pp. 821–832, ACM, 2012.

4. “2015 symantec internet security threat report.”

http://www.symantec.com/security_response/publications/threatreport.jsp.

5. M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of drive-by-download attacks and malicious javascript code,” in Proceedings of

the 19th International Conference on World Wide Web, 2010.

6. G. Lu and S. Debray, “Automatic simplification of obfuscated javascript code: A semantics-based approach,” in Proceedings of the 2012

IEEE Sixth International Conference on Software Security and Reliability, 2012.

7. B. Hartstein, “Jsunpack: An automatic javascript unpacker,” in ShmooCon convention, 2009.

8. B. Gu, W. Zhang, X. Bai, A. C. Champion, F. Qin, and D. Xuan, “Jsguard: Shellcode detection in javascript,” in Security and Privacy in

Communication Networks, 2013.

9. C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert, “Rozzle: De-cloaking internet malware,” in Security and Privacy (SP), 2012 IEEE

Symposium on, 2012.

10. P. Ratanaworabhan, B. Livshits, and B. Zorn, “Nozzle: A defense against heap-spraying code injection attacks,” in Proceedings of the

Usenix Security Symposium, 2009.

11. C. Curtsinger, B. Livshits, B. G. Zorn, and C. Seifert, “Zozzle: Fast and precise in-browser javascript malware detection.,” in USENIX

Security Symposium, 2011.

12. A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel, and G. Vigna, “Revolver: An automated approach to the detection of evasive

web-based malware.,” in USENIX Security, pp. 637–652, Citeseer, 2013.

13. Y. Cao, X. Pan, Y. Chen, and J. Zhuge, “Jshield: Towards real-time and vulnerability-based detection of polluted drive-by download attacks,”

in the Proceedings of Annual Computer Security Applications Conference (ACSAC), 2014.

14. B. Feinstein, D. Peck, and I. SecureWorks, “Caffeine monkey: Automated collection, detection and analysis of malicious javascript,” Black

Hat USA, 2007.

http://www.symantec.com/security_response/publications/threatreport.jsp

113

15. P. Likarish, E. Jung, and I. Jo, “Obfuscated malicious javascript detection using classification techniques.,” in MALWARE, pp. 47–54,

Citeseer, 2009.

16. C. Seifert, I. Welch, and P. Komisarczuk, “Identification of malicious web pages with static heuristics,” in Telecommunication Networks and

Applications Conference, 2008. ATNAC 2008. Australasian, pp. 91–96, IEEE, 2008.

17. W. Xu, F. Zhang, and S. Zhu, “The power of obfuscation techniques in malicious javascript code: A measurement study,” in Malicious and

Unwanted Software (MALWARE), 2012 7th International Conference on, pp. 9–16, IEEE, 2012.

18. R. Upathilake, Y. Li, and A. Matrawy, “A classification of web browser fingerprinting techniques,” in New Technologies, Mobility and

Security (NTMS), 2015 7th International Conference on, IEEE, 2015.

19. P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song, “A symbolic execution framework for javascript,” in Security and

Privacy (SP), 2010 IEEE Symposium on, 2010.

20. D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld, “Jsflow: Tracking information flow in javascript and its apis,” in Proc. 29th ACM

Symposium on Applied Computing, 2014.

21. M. Zhang, A. Prakash, X. Li, Z. Liang, and H. Yin, “Identifying and analyzing pointer misuses for sophisticated memory-corruption exploit

diagnosis,” in Proceedings of 19th Annual Network & Distributed System Security Symposium, 2012.

22. J. Newsome and D. Song, “Dynamic taint analysis: Automatic detection, analysis, and signature generation of exploit attacks on commodity

software,” in Proceedings of the Network and Distributed Systems Security Symposium, Feb. 2005.

23. K. Z. Snow, S. Krishnan, F. Monrose, and N. Provos, “Shellos: Enabling fast detection and forensic analysis of code injection attacks.,” in

USENIX Security Symposium, 2011.

24. H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama: Capturing system-wide information flow for malware detection and

analysis,” in Proceedings of the 14th ACM Conference on Computer and Communications Security, (New York, NY, USA), 2007.

25. A. Prakash, H. Yin, and Z. Liang, “Enforcing system-wide control flow integrity for exploit detection and diagnosis,” in Proceedings of the

8th ACM SIGSAC Symposium on Information, Computer and Communications Security, 2013.

26. C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir, “Browsershield: Vulnerability-driven filtering of dynamic html,” ACM

Transactions on the Web (TWEB), 2007.

27. M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow integrity,” in Proceedings of the 12th ACM conference on Computer and

communications security, pp. 340–353, ACM, 2005.

28. V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song, “Code-pointer integrity.,” in OSDI, vol. 14, p. 00000, 2014.

114

29. V. Pappas, M. Polychronakis, and A. D. Keromytis, “Transparent rop exploit mitigation using indirect branch tracing.,” in USENIX Security,

vol. 30, p. 38, 2013.

30. V. Pappas, “kbouncer: Efficient and transparent rop mitigation,” tech. rep. Citeseer, 2012.

31. “Pwn2own.” https://en.wikipedia.org/wiki/Pwn2Own.

32. “Geekpwn.” http://2017.geekpwn.org/1024/en/index.html.

33. K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee, “Aslr-guard: Stopping address space leakage for code reuse attacks,” in

Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 280–291, ACM, 2015.

34. C. Grier, L. Ballard, J. Caballero, N. Chachra, C. J. Dietrich, K. Levchenko, P. Mavrommatis, D. McCoy, A. Nappa, A. Pitsillidis, N. Provos,

M. Z. Rafique, M. A. Rajab, C. Rossow, K. Thomas, V. Paxson, S. Savage, and G. M. Voelker, “Manufacturing compromise: The emergence

of exploit-as-a-service,” in Proceedings of the 2012 ACM Conference on Computer and Communications Security, 2012.

35. “Cve details.” http://www.cvedetails.com/.

36. “Rop is dying and your exploit mitigations are on life support.” https://www.endgame.com/blog/technical-blog/

rop-dying-and-your-exploit-mitigations-are-life-support.

37. “The enhanced mitigation experience toolkit.”

https://support.microsoft.com/en-us/help/2458544/the-enhanced-mitigation-experience-toolkit.

38. “Control flow guard.”

https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx.

39. S. Labs, “Malware with your mocha? obfuscation and anti-emulation tricks in malicious javascript..”

http://www.sophos.com/en-us/why-sophos/our-people/technical-papers/malware-with-your-mocha.aspx.

40. “Plugindetect: Browser plugin detector..” http://www.pinlady.net/PluginDetect/.

41. K. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-grained

address space layout randomization,” in Security and Privacy (SP), 2013 IEEE Symposium on, May 2013.

42. G. Richards, S. Lebresne, B. Burg, and J. Vitek, “An analysis of the dynamic behavior of javascript programs,” in ACM Sigplan Notices,

vol. 45, pp. 1–12, ACM, 2010.

43. J. G. Politz, S. Eliopoulos, A. Guha, and S. Krishnamurthi, “Adsafety: Type-based verification of javascript sandboxing,” arXiv preprint

arXiv:1506.07813, 2015.

https://en.wikipedia.org/wiki/Pwn2Own
http://2017.geekpwn.org/1024/en/index.html
http://www.cvedetails.com/
https://www.endgame.com/blog/technical-blog/rop-dying-and-your-exploit-mitigations-are-life-support
https://www.endgame.com/blog/technical-blog/rop-dying-and-your-exploit-mitigations-are-life-support
https://support.microsoft.com/en-us/help/2458544/the-enhanced-mitigation-experience-toolkit
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx

115

44. A. Taly, Ú. Erlingsson, J. C. Mitchell, M. S. Miller, and J. Nagra, “Automated analysis of security-critical javascript apis,” in Security and

Privacy (SP), 2011 IEEE Symposium on, pp. 363–378, IEEE, 2011.

45. S. Bandhakavi, S. T. King, P. Madhusudan, and M. Winslett, “Vex: Vetting browser extensions for security vulnerabilities.,” in USENIX

Security Symposium, vol. 10, pp. 339–354, 2010.

46. D. Liu, H. Wang, and A. Stavrou, “Detecting malicious javascript in pdf through document instrumentation,” in Dependable Systems and

Networks (DSN), 2014 44th Annual IEEE/IFIP International Conference on, 2014.

47. K. Rieck, T. Krueger, and A. Dewald, “Cujo: efficient detection and prevention of drive-by-download attacks,” in Proceedings of the 26th

Annual Computer Security Applications Conference, 2010.

48. S. Chen, K. Pattabiraman, Z. Kalbarczyk, and R. K. Iyer, “Formal reasoning of various categories of widely exploited security vulnerabilities

using pointer taintedness semantics,” in Security and Protection in Information Processing Systems, 2004.

49. A. Slowinska and H. Bos, “The age of data: pinpointing guilty bytes in polymorphic buffer overflows on heap or stack,” in 23rd Annual

Computer Security Applications Conference (ACSAC’07), December 2007.

50. C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson, L. Lozano, and G. Pike, “Enforcing forward-edge control-flow integrity

in gcc & llvm.,” in USENIX Security Symposium, pp. 941–955, 2014.

51. C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and W. Zou, “Practical control flow integrity and randomization

for binary executables,” in Security and Privacy (SP), 2013 IEEE Symposium on, pp. 559–573, IEEE, 2013.

52. A. Prakash, H. Yin, and Z. Liang, “Enforcing system-wide control flow integrity for exploit detection and diagnosis,” in Proceedings of the

8th ACM SIGSAC symposium on Information, computer and communications security, pp. 311–322, ACM, 2013.

53. G. Maisuradze, M. Backes, and C. Rossow, “Dachshund: Digging for and securing against (non-) blinded constants in jit code,” 2017.

54. X. Chen, A. Slowinska, D. Andriesse, H. Bos, and C. Giuffrida, “Stackarmor: Comprehensive protection from stack-based memory error

vulnerabilities for binaries.,” in NDSS, 2015.

55. Y. Cheng, Z. Zhou, Y. Miao, X. Ding, H. DENG, et al., “Ropecker: A generic and practical approach for defending against rop attack,” 2014.

56. B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “Aslr on the line: Practical cache attacks on the mmu,” NDSS (Feb. 2017), 2017.

57. F. Gadaleta, Y. Younan, and W. Joosen, “Bubble: A javascript engine level countermeasure against heap-spraying attacks,” in International

Symposium on Engineering Secure Software and Systems, pp. 1–17, Springer, 2010.

58. L. A. Meyerovich and B. Livshits, “Conscript: Specifying and enforcing fine-grained security policies for javascript in the browser,” in

Security and Privacy (SP), 2010 IEEE Symposium on, pp. 481–496, IEEE, 2010.

116

59. K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham, “Fingerprinting information in javascript implementations,” Proceedings of W2SP,

vol. 2, 2011.

60. M. Mulazzani, P. Reschl, M. Huber, M. Leithner, S. Schrittwieser, E. Weippl, and F. Wien, “Fast and reliable browser identification with

javascript engine fingerprinting,” in Web 2.0 Workshop on Security and Privacy (W2SP), vol. 5, 2013.

61. M.-T. Trinh, D.-H. Chu, and J. Jaffar, “S3: A symbolic string solver for vulnerability detection in web applications,” in Proceedings of the

2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 1232–1243, ACM, 2014.

62. F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su, “X-force: Force-executing binary programs for security applications,” in Proceedings

of the 2014 USENIX Security Symposium, San Diego, CA (August 2014), 2014.

63. Z. Deng, B. Saltaformaggio, X. Zhang, and D. Xu, “iris: Vetting private api abuse in ios applications,” in Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security, pp. 44–56, ACM, 2015.

64. “V8 javascript engine.” https://code.google.com/p/v8/.

65. D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, and H. Yin, “Automatically identifying trigger-based behavior in malware,” in

Botnet Detection, pp. 65–88, Springer, 2008.

66. D. Y. Wang, S. Savage, and G. M. Voelker, “Cloak and dagger: dynamics of web search cloaking,” in Proceedings of the 18th ACM

conference on Computer and communications security, pp. 477–490, ACM, 2011.

67. “Sputnik.” https://code.google.com/p/sputniktests/.

68. http://www.ecmascript.org/.

69. P. Thiemann, “Towards a type system for analyzing javascript programs,” in Programming Languages and Systems, pp. 408–422, Springer,

2005.

70. U. Hölzle, C. Chambers, and D. Ungar, “Optimizing dynamically-typed object-oriented languages with polymorphic inline caches,” in

ECOOP’91 European Conference on Object-Oriented Programming, Springer, 1991.

71. “Virus total.” https://www.virustotal.com/.

72. http://contagiodump.blogspot.com/2013/03/16800-clean-and-11960-malicious-files.html.

73. http://malware-traffic-analysis.net/.

74. http://threatglass.com/.

75. http://www.alexa.com/topsites.

http://www.ecmascript.org/
https://www.virustotal.com/
http://contagiodump.blogspot.com/2013/03/16800-clean-and-11960-malicious-files.html
http://malware-traffic-analysis.net/
http://threatglass.com/
http://www.alexa.com/topsites

117

76. https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey.

77. M. Weiser, “Program slicing,” in Proceedings of the 5th international conference on Software engineering, IEEE Press, 1981.

78. A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing input,” Software Engineering, IEEE Transactions on, 2002.

79. A. Henderson, A. Prakash, L. K. Yan, X. Hu, X. Wang, R. Zhou, and H. Yin, “Make it work, make it right, make it fast: Building a

platform-neutral whole-system dynamic binary analysis platform,” in Proceedings of the 2014 International Symposium on Software Testing

and Analysis, 2014.

80. “Active script debugging overview.” http://msdn.microsoft.com/en-us/library/z537xb90(v=vs.94).aspx.

81. N. Burow, S. A. Carr, S. Brunthaler, M. Payer, J. Nash, P. Larsen, and M. Franz, “Control-flow integrity: Precision, security, and

performance,” arXiv preprint arXiv:1602.04056, 2016.

82. F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz, “Counterfeit object-oriented programming: On the difficulty of

preventing code reuse attacks in c++ applications,” in Security and Privacy (SP), 2015 IEEE Symposium on, IEEE, 2015.

83. A. Slowinska and H. Bos, “Pointless tainting? evaluating the practicality of pointer tainting,” in Proceedings of the 4th ACM European

conference on Computer systems, ACM, 2009.

84. “The T.J. Watson Libraries for Analysis (WALA).” http://wala.sourceforge.net/.

85. H. Shacham, “The geometry of innocent flesh on the bone: Return-into-libc without function calls (on the x86),” in Proceedings of the 14th

ACM conference on Computer and communications security, 2007.

86. B. Eshete, A. Alhuzhali, M. Monshizadeh, P. Porras, and V. Yegneswaran, “Ekhunter: A counter-offensive toolkit for exploit kit infiltration,”

in Proceedings of the 22nd Annual Network and Distributed System Security Symposium, Feb 2015.

87. “National vulnerability database.” ”https://nvd.nist.gov/”.

88. C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating transformations,” tech. rep., Department of Computer Science, The

University of Auckland, New Zealand, 1997.

89. “Detailed analysis exp/20111255-a.” http://www.sophos.com/en-us/threat-center/threat-analyses/

viruses-and-spyware/Exp˜20111255-A/detailed-analysis.aspx.

90. B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka, N. Narula, and N. Fullagar, “Native client: A sandbox for

portable, untrusted x86 native code,” in Security and Privacy, 2009 30th IEEE Symposium on, pp. 79–93, IEEE, 2009.

91. “The javascript benchmark suite for the mordern web.” https://developers.google.com/octane/.

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
http://wala.sourceforge.net/
https://nvd.nist.gov/
http://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/Exp~20111255-A/detailed-analysis.aspx
http://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/Exp~20111255-A/detailed-analysis.aspx
https://developers.google.com/octane/

118

92. S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi, S. Brunthaler, and M. Franz, “Readactor: Practical code

randomization resilient to memory disclosure,” in Security and Privacy (SP), 2015 IEEE Symposium on, pp. 763–780, IEEE, 2015.

93. A. Sintsov, “Writing jit-spray shellcode for fun and profit,” Writing, 2010.

94. “Chrome v8 engine.” https://developers.google.com/v8/.

95. https://github.com/Microsoft/ChakraCore.

96. “Javascriptcore.” https://trac.webkit.org/wiki/JavaScriptCore.

97. A. Sotirov, “Heap feng shui in javascript,” Black Hat Europe, 2007.

98. “The art of leaks: The return of fengshui.”

https://cansecwest.com/slides/2014/The%20Art%20of%20Leaks%20-%20read%20version%20-%20Yoyo.pdf.

99. “Random number generator attack.” https://en.wikipedia.org/wiki/Random_number_generator_attack.

100. Y. Yu, “Write once, pwn anywhere,” BlackHat, 2014.

101. E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic, “Noxes: a client-side solution for mitigating cross-site scripting attacks,” in Proceedings

of the 2006 ACM symposium on Applied computing, pp. 330–337, ACM, 2006.

102. A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses for cross-site request forgery,” in Proceedings of the 15th ACM conference on

Computer and communications security, pp. 75–88, ACM, 2008.

103. C. Anderson, P. Giannini, and S. Drossopoulou, “Towards type inference for javascript,” in European conference on Object-oriented

programming, pp. 428–452, Springer, 2005.

104. “Ecmascript parsing infrastructure for multipurpose analysis.” http://esprima.org/.

105. “Ecmascript js ast traversal functions.” https://github.com/estools/estraverse.

106. “Node.js.” https://nodejs.org/en/.

107. “Http mitm proxy.” https://github.com/joeferner/node-http-mitm-proxy.

108. “Peepdf: a python tool to explore pdf files.” https://github.com/jesparza/peepdf.

109. C. Carmony, X. Hu, H. Yin, A. V. Bhaskar, and M. Zhang, “Extract me if you can: Abusing pdf parsers in malware detectors.,” in NDSS,

2016.

https://developers.google.com/v8/
https://github.com/Microsoft/ChakraCore
https://trac.webkit.org/wiki/JavaScriptCore
https://cansecwest.com/slides/2014/The%20Art%20of%20Leaks%20-%20read%20version%20-%20Yoyo.pdf
https://en.wikipedia.org/wiki/Random_number_generator_attack
http://esprima.org/
https://github.com/estools/estraverse
https://nodejs.org/en/
https://github.com/joeferner/node-http-mitm-proxy
https://github.com/jesparza/peepdf

119

110. D. T. Barnard and R. C. Holt, “Hierarchic syntax error repair for lr grammars,” International Journal of Computer & Information Sciences,

vol. 11, no. 4, pp. 231–258, 1982.

111. S. Maffeis, J. C. Mitchell, and A. Taly, “An operational semantics for javascript,” in Programming languages and systems, pp. 307–325,

Springer, 2008.

112. L. K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the os and dalvik semantic views for dynamic android malware analysis,” in

Proceedings of the 21st USENIX Conference on Security Symposium, 2012.

113. “Lexer confusing attack.” https://github.com/google/caja/wiki/JsControlFormatChars.

114. T. Tran, R. Pelizzi, and R. Sekar, “Jate: Transparent and efficient javascript confinement,” in Proceedings of the 31st Annual Computer

Security Applications Conference, pp. 151–160, ACM, 2015.

115. “Aslr bypass apocalypse in recent zero-day exploits.” https://www.fireeye.com/blog/threat-research/2013/10/

aslr-bypass-apocalypse-in-lately-zero-day-exploits.html.

116. “Vbscript.” https://en.wikipedia.org/wiki/VBScript.

117. “Actionscript technology center.” http://www.adobe.com/devnet/actionscript.html.

118. “Akbuilder is the latest exploit kit to target word documents, spread malware.” https://nakedsecurity.sophos.com/2017/02/

07/akbuilder-is-the-latest-exploit-kit-to-target-word-documents-spread-malware/.

119. “Proof-of-concept exploit for cve-2016-0189 (vbscript memory corruption in ie11).”

https://github.com/theori-io/cve-2016-0189.

https://github.com/google/caja/wiki/JsControlFormatChars
https://www.fireeye.com/blog/threat-research/2013/10/aslr-bypass-apocalypse-in-lately-zero-day-exploits.html
https://www.fireeye.com/blog/threat-research/2013/10/aslr-bypass-apocalypse-in-lately-zero-day-exploits.html
https://en.wikipedia.org/wiki/VBScript
http://www.adobe.com/devnet/actionscript.html
https://nakedsecurity.sophos.com/2017/02/07/akbuilder-is-the-latest-exploit-kit-to-target-word-documents-spread-malware/
https://nakedsecurity.sophos.com/2017/02/07/akbuilder-is-the-latest-exploit-kit-to-target-word-documents-spread-malware/
https://github.com/theori-io/cve-2016-0189

120

VITA

Xunchao Hu was born in Feicheng, Shandong Province, China. He received his Bachelor of

Science degree in Software Engineering and Master of Science degree in Control Science and

Engineering from Xi’an Jiaotong University, China. He received his PhD in Electrical and

Computer Engineering from Syracuse University in December 2017.

	DETECTION, DIAGNOSIS AND MITIGATION OF MALICIOUS JAVASCRIPT WITH ENRICHED JAVASCRIPT EXECUTIONS
	Recommended Citation

	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Thesis Statement

	Background
	JavaScript Exploits
	Anatomy of a JavaScript Attack
	Unique Features of Malicious JavaScript

	Detection
	Diagnosis
	Mitigation

	A Forced Execution Engine for Malicious JavaScript Detection
	Introduction
	Background and Overview
	JavaScript Forced Execution
	Forced Execution Semantics
	Path Exploration in JSForce

	Implementation
	Evaluation
	Dataset & Experiment Setup
	Correctness
	Effectiveness
	Runtime Performance
	JSForce vs. Rozzle

	Case Study

	Semantics-Preserving Dissection of JavaScript Exploits via Dynamic JS-Binary Analysis
	Introduction
	Problem Statement and Overview
	Problem Statement
	JScalpel– Overview

	Multi-level Tracing and Slicing-Source Identification
	Context-Aware Multi-Level Tracing
	Identifying Slicing Sources

	Multi-level Slicing
	Binary-level Slicing
	JavaScript Slicing
	Minimized Exploit Script and PoV Generation

	Evaluation
	Minimizing Exploits
	PoV Generation
	Effects of Filtering
	Case Study – CVE-2011-1255

	Vulnerability-Agnostic Defense of JavaScript Exploits via Memory Perturbation
	Introduction
	Technical background and motivation
	Defense of JavaScript Exploits
	Memory Preparation
	Memory Perturbation Techniques
	Our Mitigation Solution

	Threat Model and Scope
	Design
	Memory Allocation/De-Allocation Candidate discovery
	Lightweight Type Inference
	Chaff Code Generation

	Implementation
	HTML Protector
	Possible implementation of PDF protector

	Evaluation
	Security Analysis
	Effectiveness
	Performance

	Summary and Future Work
	Conclusion
	Limitations and Future Work
	Detection
	Diagnosis
	Mitigation

	VITA

