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ABSTRACT

Collaborative in-network processing is a major tenet in the fields of control, signal processing, in-

formation theory, and computer science. Agents operating in a coordinated fashion can gain greater

efficiency and operational capability than those perform solo missions. In many such applications

the central task is to compute the global average of agents’ data in a distributed manner. Much

recent attention has been devoted to quantized consensus, where, due to practical constraints, only

quantized communications are allowed between neighboring nodes in order to achieve the average

consensus. This dissertation aims to develop efficient quantized consensus algorithms based on the

alternating direction method of multipliers (ADMM) for networked applications, and in particular,

consensus based detection in large scale sensor networks.

We study the effects of two commonly used uniform quantization schemes, dithered and de-

terministic quantizations, on an ADMM based distributed averaging algorithm. With dithered

quantization, this algorithm yields linear convergence to the desired average in the mean sense

with a bounded variance. When deterministic quantization is employed, the distributed ADMM

either converges to a consensus or cycles with a finite period after a finite-time iteration. In the

cyclic case, local quantized variables have the same sample mean over one period and hence each

node can also reach a consensus. We then obtain an upper bound on the consensus error, which de-

pends only on the quantization resolution and the average degree of the network. This is preferred

in large scale networks where the range of agents’ data and the size of network may be large.

Noticing that existing quantized consensus algorithms, including the above two, adopt infinite-

bit quantizers unless a bound on agents’ data is known a priori, we further develop an ADMM

based quantized consensus algorithm using finite-bit bounded quantizers for possibly unbounded



agents’ data. By picking a small enough ADMM step size, this algorithm can obtain the same

consensus result as using the unbounded deterministic quantizer. We then apply this algorithm to

distributed detection in connected sensor networks where each node can only exchange informa-

tion with its direct neighbors. We establish that, with each node employing an identical one-bit

quantizer for local information exchange, our approach achieves the optimal asymptotic perfor-

mance of centralized detection. The statement is true under three different detection frameworks:

the Bayesian criterion where the maximum a posteriori detector is optimal, the Neyman-Pearson

criterion with a constant type-I error constraint, and the Neyman-Pearson criterion with an expo-

nential type-I error constraint. The key to achieving optimal asymptotic performance is the use of

a one-bit deterministic quantizer with controllable threshold that results in desired consensus error

bounds.
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1

CHAPTER 1

INTRODUCTION

Collaborative in-network processing is a major tenet in the fields of control, signal processing,

information theory, and computer science. Agents operating in a coordinated fashion can gain

greater efficiency and operational capability than those perform solo missions. A fundamental

concern in such systems is the consensus problem which aims to reach an agreement among all

agents. Of particular interest is the distributed average consensus which computes the global av-

erage of agents’ data through only local computations and communications. Originating from

distributed computation and decision-making [1, 2], distributed average consensus has arisen in

various recent applications. For example, coordination for autonomous mobile agents [3–5] can

often be formulated as a consensus average problem and is key to unmanned aerial vehicle (UAV)

formation control and collision avoidance. Another application is in distributed hypothesis testing

over a connected network [6, 7] where independently and identically distributed (i.i.d.) observa-

tions are collected across the network. Invariably, global log-likelihood ratio (LLR) is a sufficient

statistic for all optimal detectors and with i.i.d. data, such a global LLR is simply the average of all

local LLRs. Load balancing [8] is yet another example where task assignment across processors

needs to equalize processing requirement and be completed in a timely manner.

Distributed averaging algorithms refer to iterative algorithms that aim to achieve the average

consensus in a distributed manner. These algorithms are extremely attractive for large scale net-
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works characterized by the lack of centralized access to information. They are also energy efficient

and enhance the survivability of the networks compared with fusion center based processing. How-

ever, real networks can only allow messages with limited length to be transmitted between agents

due to physical constraints such as limited bandwidth, sensor battery power, and computing re-

sources. When a real value is sent from an agent to its neighbors, this value will be truncated or

compressed and it is normally assumed that agents can reliably transmit only quantized data. The

average consensus problem with this quantization constraint is referred to as quantized consensus

in the literature [9], and iterative algorithms that can work with this constraint is called quantized

consensus algorithms. This dissertation focuses on developing efficient quantized consensus algo-

rithms for networked applications and in particular, consensus based detection in large scale sensor

networks.

1.1 Literature Review

1.1.1 Distributed Averaging and Quantized Consensus Algorithms

There are three widely used methods for solving distributed average consensus problems. A clas-

sical approach is to update the state of each node with a weighted average of values from neigh-

boring nodes [10–12]. The matrix, consisting of the weights associated with the edges, is chosen

to be doubly stochastic to ensure convergence to the average. Another method is a gossip based

algorithm, initially introduced in [1] for consensus problems and further studied in [9, 13, 14],

among others. The third approach is to employ the alternating direction method of multipliers

(ADMM) which is an iterative algorithm for solving convex problems and has received much at-

tention recently (see [15] and references therein). The idea is to formulate the data average as

the solution to a least-squares problem and manipulate the ADMM updates to derive a distributed

algorithm [16–18]. Viewed from this point, applying distributed gradient descent or distributed (ac-

celerated) proximal-gradient methods to the least-squares problem results in the classical method

or some variants.
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In the most ideal case where agents are able to send and receive real values with infinite pre-

cision, the three methods can all lead to the desired consensus at the average. When quantization

is imposed, however, these methods do not directly apply. A well studied approach for quantized

consensus is to use dithered quantizers which add noises to agents’ variables before quantiza-

tion [19]. By imposing certain conditions, the quantization error sequence becomes i.i.d. and is

also independent of the input sequence. The classical approach and the gossip based algorithm then

yield the almost sure consensus at a common but random quantization level with the expectation

of the consensus value equal to the desired average [20–22]. To the best of our knowledge, there

have been no existing results on the ADMM based method for quantized consensus. Nevertheless,

since the quantization error of dithered quantizer is zero-mean and has a bounded variance, we can

immediately extend the results in [17, 18] to quantized consensus (see Chapter 3.2). That is, the

ADMM based method using dithered quantization leads to the consensus at the data average in the

mean sense whose variance converges to a finite value.

Meanwhile, studies on distributed average consensus with deterministic quantizers have been

scarcely reported. Deterministic quantization makes the problem much harder to deal with as the

error terms caused by quantization no longer possess tractable statistical characteristics [20, 21].

The authors in [12] show that the classical approach, where a quantization rule that rounds the

values down is adopted, converges to a consensus with an error from the average depending on

the quantization resolution, the number of agents, the agents’ data, and the updated weights of

each agent. In [23], quantized consensus is formulated as a feedback control design problem

for coding/decoding schemes. With an appropriate scaling function and carefully chosen control

gain when some spectral properties of the Laplacian matrix of the underlying fixed undirected

graph is known in advance, the proposed protocol with rounding quantizer is shown to achieve the

exact average consensus asymptotically. A recent result of [24] indicates that this approach, with

appropriate choices of the weights, reaches a quantized consensus close to the average in finite

time or leads all agents’ variables to cycle in a small neighborhood around the average; in the

latter case, however, a consensus is not guaranteed. The gossip based algorithms in [22] and [9]
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have similar results to those of the classical approach with probability one (or at least with high

probability), where the randomness is from the random selection of the edge at each iteration. The

ADMM based algorithms for deterministically quantized consensus, however, have not yet been

explored.

1.1.2 Consensus Based Detection

An application of distributed average consensus lies in distributed detection in sensor networks,

where the local data are LLRs of local observations and their average, called average LLR, is

sufficient to achieve the optimal detection performance under broad conditions [25–31]. Different

from canonical structures where there is a fusion center accessing information, consensus based

detection deals with network inference problems in the absence of any fusion center [6, 7, 32–36].

Sensors iteratively exchange information with their neighbors to arrive at a consensus decision

based on some consensus rules.

Practical channels, especially those employed in large scale sensor networks, are subject to

strict bandwidth and resource limits, and again sensors are normally assumed to be able to reliably

transmit only quantized data. Of particular interest is the extreme case where each sensor can

only send one-bit information. Tsitsiklis established in [30] the optimality of identical likelihood

ratio quantizers in such a setting for a canonical fusion network with communications allowed

from the sensor to the fusion center (i.e., no consensus type iterations). The resulting decay rate

is typically lower than the centralized one under the Neyman-Pearson or maximum a posteoriori

(MAP) criteria. For the tandem network, it was shown in [31] that using a one-bit quantizer at

each sensor can never achieve an exponential decay rate of the error probability under the MAP

criterion. To the best of our knowledge, there is no asymptotic result on consensus based structures

using one-bit quantizer at each node. As such, it is a priori unknown whether one-bit quantization

in a general connected network that allows iterative communications can achieve exponentially

decaying error probability and what would be the optimal exponent if exponentially vanishing error

probability is feasible. Note that if nodes have perfect knowledge of global network topology, one
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can construct schemes that utilize source coding ideas to attain the same optimal error exponent

as in the centralized setting. This, however, is not realistic in most applications where nodes only

have knowledge of their directly connected neighbors.

1.2 Motivations

1.2.1 Consensus Error Bound in Large Networks

We may roughly divide existing quantized consensus algorithms into two types according to their

convergence results: one has asymptotic convergence to the exact average for each agent (e.g.,

[17,18,20–23]) and the other reaches a consensus within finite iterations at a cost of consensus error

from the desired average (see [12, 22]). The second type of algorithms usually adopt deterministic

quantizers and are preferred in situations where consensus needs reaching in finite time, e.g., a team

of members may have to reach some agreement within finite time and can afford some suboptimal

consensuses. Existing algorithms of the second type, however, have increasing consensus error

bounds in the range of agents’ data and the size of network, which may not be satisfactory enough

in large scale networks. This motivates us to develop quantized consensus algorithms that are more

favored in large networks.

1.2.2 Finite-bit Communications

We notice that the quantizers in most existing works are still of infinite bits since the quantizer

output has unbounded range and infinite quantization levels. To our best knowledge, in order

to employ finite-bit communications per iteration, all existing works using uniform quantizers

assume that agents’ data are bounded and the bound is known a priori, which is in general very

restrictive and prohibits many networked applications. For example, consensus based detection

has agents’ data being local LLRS that can be arbitrarily large for common distributions, e.g.,

Gaussian distributions. Naively truncating the agents’ data, however, has no consensus accuracy
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guarantee. This is indeed the reason that there is no asymptotic characterization for consensus

based detection using finite-bit data communications. Thus, quantized consensus algorithms using

bounded quantizer for possibly unbounded data not only reduce the cost of data communications

but also induce potential applications.

1.2.3 Asymptotically Optimal Detection in Sensor Networks

Sensor networks in today’s applications can be very large. In the scenario of distributed detection,

this implies the error exponent, assuming for now that error probabilities can decay exponentially

in the size of networks, matters. Consensus based detection in sensor networks has been widely

studied in [6,7,32–36] where exponential decay of error probabilities are indeed achieved in either

online or offline settings. However, not only the error exponent is suboptimal to the centralized one

in general, but also the data communicated among linked sensors are of infinite levels and hence

of infinite bits. Simply using truncation to achieve finite-bit data communications do not have

the same exponential decay results. Therefore, it is unknown if using finite-bit communications

can lead to exponential decaying error probabilities, not to mention the optimal error exponent in

centralized settings where all the observations are available for decision making.

On the other hand, the work of [30, 31] indicates that one-bit communications in general are

not sufficient to achieve the optimal exponential decay of error probabilities in fusion center based

schemes. This is not surprising as the information is highly compressed: each node send only one-

bit information to the fusion center in parallel schemes or to the serial node in tandem schemes.

In consensus based detection, while nodes can only communicate with their direct neighbors, the

communications are allowed numerous times. In this sense, it might be possible that a quantized

consensus approach can asymptotically achieve the optimal centralized error exponent using only

finite-bit communications per iteration.



7

1.3 Contributions and Organization

Driven by the above facts, this dissertation aims to develop efficient quantized consensus algo-

rithms for large scale networks and to apply them to distributed detection in connected sensor net-

works. We consider bidirectional connected networks with fixed topology and the quantizers used

for data communications are uniform. Nodes can only communicate with their direct neighbors in

a synchronous manner. The ADMM has been known to be an efficient algorithm for large scale op-

timizations and used in various applications such as regression and classification [15]. Moreover,

the work of [37–39] validates the fast convergence of the ADMM and [17, 18] demonstrates the

resilience of the ADMM to noise, link failures, etc. Also noticing that probabilistic quantization

introduces additional randomness on the consensus result, making it difficult to achieve the optimal

exponential decay, we therefore develop quantized consensus algorithms based on the ADMM and

deterministic quantization schemes.

The contributions are summarized as follows:

• We study the effects of dithered and deterministic quantizations on an ADMM based dis-

tributed averaging algorithm. With probabilistic quantization, this algorithm yields linear

convergence to the desired average in the mean sense with a bounded variance. When deter-

ministic quantization is employed, it either converges to a consensus or cycles with a finite

period after a finite-time iteration. In the cyclic case, local quantized variables have the

same sample mean over one period and hence each node can also reach a consensus. We

also obtain an upper bound on the consensus error which depends only on the quantization

resolution and the average degree of the network. A two-stage algorithm is proposed which

combines both probabilistic and deterministic quantizations. Simulations show that the two-

stage algorithm, without picking small algorithm parameter, has consensus errors that are

typically less than one quantization resolution for all connected networks where agents’ data

can be of large variance and magnitudes. These results have been reported in [40–42].

• Noticing the above quantizer needs infinite bits unless some prior information (e.g., bound
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on agents’ data) is known, we use finite-bit bounded quantizers to meet the communication

constraint. We show that all the agent variables either converge to the same quantization

level or cycle around the data average with the same sample mean over one period after a

finite-time iteration. An error bound for the consensus value is obtained which turns out

to be the same as that of using the unbounded deterministic quantizer, provided that the

ADMM step size is small enough. We then study the effect of the algorithm parameter on

our algorithms and propose a decreasing strategy for the parameter selection only using the

number of agents and the number of edges in order to accelerate the algorithm with certain

consensus accuracy guarantee. This part is from the work of [43, 44].

• We apply the ADMM based quantized consensus algorithm with finite-bit bounded quan-

tization to distributed detection in connected sensor networks where each node can only

exchange information with its direct neighbors. We establish that, by employing an identical

one-bit quantizer for local information exchange, each node can achieve the optimal asymp-

totic performance of centralized detection; in particular, each node has its detection error

probability decay exponentially with Chernoff information and Kullback-Leibler divergence

as error exponents under the maximum a posteriori (MAP) criterion and Neyman-Pearson

criterion with constant constraint, respectively. In addition, we examine non-asymptotic per-

formance of the proposed approach and show that the type-I and type-II error probabilities

at each node can be made arbitrarily close to the centralized ones simultaneously when a

continuity condition is satisfied. These results are based on the work of [45, 46].

The rest of this dissertation is organized as follows. Chapter 2 reviews the application of the

ADMM to distributed average consensus. Based on this distributed averaging algorithm, we de-

velop quantized consensus algorithms using unbounded uniform quantizers in Chapter 3 and using

finite-bit uniform quantizers in Chapter 4. In Chapter 5, we apply the proposed algorithm to dis-

tributed detection where only one-bit communication between linked nodes at each iteration is

allowed. Chapter 6 concludes the dissertation and discusses several future research directions.
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1.4 Notations

We use two definitions of rate of convergence for an iterative algorithm. A sequence xk, where

the superscript k stands for time index, is said to converge Q-linearly to a point x∗ if there exists

a number υ ∈ (0, 1) such that limk→∞
‖xk+1−x∗‖
‖xk−x∗‖ = υ with ‖ · ‖ being a vector norm. A sequence

yk is said to converge R-linearly to y∗ if for all k, ‖yk − y∗‖ ≤ ‖xk − x∗‖ where xk converges

Q-linearly to x∗.

We use 0 (without subscript) to denote the all-zero column vector whose dimension can be

decided from the context. 1K is the K-dimensional all-one column vector; 0K and IK are the

K×K all-zero and identity matrices, respectively. Notation⊗ denotes the Kronecker product and

‖x‖2 denotes the Euclidean norm of a vector x. For x ∈ R, dxe is the ceiling function on x, i.e.,

the smallest integer that is greater than or equal to x. Given a positive semidefinite matrix G with

proper dimensions, the G-norm of x is ‖x‖G =
√
xTGx. For a real symmetric matrix Ln×n,

denote its eigenvalues in the ascending order as λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L). For any matrix

M , C(M) denotes its column space.
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CHAPTER 2

REVIEW OF THE ADMM FOR

DISTRIBUTED AVERAGE CONSENSUS

This chapter briefly reviews consensus ADMM (CADMM) for distributed average consensus

where agents can communicate real data of infinite precision, aiming to provide a good under-

standing of how the ADMM works and performs in the distributed setting. We start with the

network model that is used throughout this dissertation.

2.1 Network Model

Consider a connected network of n agents which are bidirectionally connected by m edges (and

thus 2m arcs). We describe this network as a symmetric directed graph Gd = {V ,A} or an

undirected graph Gu = {V , E}, where V is the set of vertices with cardinality |V| = n, A

is the set of arcs with |A| = 2m and E is the set of edges with |E| = m. Define the ori-

ented incidence matrix M− ∈ Rn×2m with respect to Gd as follows: [M−]i,l = 1 if the lth

arc leaves agent i, [M−]i,l = −1 if the lth enters agent i, and [M−]i,l = 0 otherwise. The

unoriented incidence matrix M+ ∈ Rn×2m is defined by setting [M+]i,l = |[M−]i,l|. Denote

Ni = {j : (i, j) ∈ A} as the set of neighbors of agent i. Further define L− = 1
2
M−M

T
− and
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L+ = 1
2
M+M

T
+ which are respectively the signed and signless Laplacian matrices with respect to

Gu. ThenW = 1
2
(L− +L+) = diag{|N1|, |N2|, . . . , |Nn|} is the degree matrix related to Gu, i.e.,

a diagonal matrix with the (i, i)-th entry being |Ni| and other entries being 0.

The following lemma states useful properties about the connected network.

Lemma 2.1 ( [47, 48]). Given a connected network, we have that

a) L− is positive semidefinite and 0 = λ1(L−) < λ2(L−) ≤ λ3(L−) ≤ · · · ≤ λn(L−). L−b = 0

if and only if b ∈ C(1n) with 1n being the all-one vector of dimension n .

b) L+ is positive semidefinite and λn(L+) > 0.

c) C(M−) = C(L−). For every α ∈ C(L−), there exists a unique β ∈ C(MT
− ) such that

α = M−β.

2.2 The ADMM and Consensus ADMM

The ADMM applies in general to the convex optimization problem in the form of

minimize
y1,y2

g1(y1) + g2(y2)

subject to C1y1 +C2y2 = c,

(2.1)

where y1 and y2 are optimization variables, g1 and g2 are convex functions, andC1y1 +C2y2 = c

is a linear constraint on y1 and y2. The ADMM solves a sequence of subproblems involving g1

and g2 one at a time and iterate to converge under mild conditions, e.g., g1 and g2 are proper closed

convex functions and the Lagrangian of (2.1) has a saddle point [15].

CADMM is obtained by applying the ADMM to minimizing the sum of several convex func-

tions in a distributed manner. Let fi : Rd → R, where d is a positive integer, denote a convex local

objective function that is only known to agent i. In many cooperative applications, the goal is to
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use only local computation and communication to find

x̃∗ = arg min
x̃

n∑
i=1

fi(x̃). (2.2)

To obtain the CADMM, we rewrite the above problem in the ADMM form as:

minimize
{xi},{zij}

n∑
i=1

fi(xi)

subject to xi = zij,xj = zij,∀(i, j) ∈ A,

(2.3)

where xi ∈ Rd is the local copy of the common optimization variable x̃ at agent i and zij ∈ Rd

is an auxiliary variable imposing the consensus constraint on neighboring agents i and j. This

consensus constraint ensures the consensus to be achieved over the entire network, i.e., xi =

xj for all i, j ∈ V , which in turn guarantees that (2.3) is equivalent to (2.2). Further define x ∈

Rnd as a vector concatenating all xi, z ∈ R2md as a vector concatenating all zij , and f(x) =∑n
i=1 fi(xi). Then (2.3) can be written in a matrix form as

minimize
x,z

f(x) + g(z)

subject to Ax+Bz = 0,

(2.4)

where g(z) = 0, and 0 is a column vector with proper dimensions and all entries being 0. Here

B = [−I2md;−I2md] with I2md being a 2md × 2md identity matrix and A = [A1;A2] with

A1,A2 ∈ R2md×nd. If (i, j) ∈ A and zij is the qth block of z, then the (q, i)th block ofA1 and the

(q, j)th block ofA2 are Id; otherwise the corresponding entries are 0d.

With this matrix form, we are ready to write out the ADMM updates. The augmented La-

grangian of (2.4) is

Lρ(x, z,λ) = f(x) + 〈λ,Ax+Bz〉+
ρ

2
‖Ax+Bz‖2

2, (2.5)

where λ = [β;γ] with β,γ ∈ R2md is the Lagrange multiplier and ρ is a positive algorithm
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parameter. At iteration k + 1, the ADMM first obtains xk+1 by minimizing Lρ(x, zk,λk), then

calculates zk+1 by minimizing Lρ(xk+1, z,λk) and finally updates λk+1 using xk+1 and zk+1. The

updates are

x-update :∂f(xk+1) +ATλk + ρAT (Axk+1 +Bzk) = 0,

z-update : BTλk + ρBT (Axk+1 +Bzk+1) = 0,

λ-update : λk+1 − λk − ρ(Axk+1 +Bzk+1) = 0,

(2.6)

where ∂f(xk+1) is a subgradient of f at xk+1. The x-update and z-update can also be viewed as

proximal updates; see [49].

A nice property of the ADMM, known as global convergence, states that the sequence (xk, zk,λk)

generated by (2.6) has a single limit point (x∗, z∗,λ∗) which is a primal-dual solution to (2.5), as

stated in Lemma 2.2.

Lemma 2.2 (Global convergence of the ADMM [15,37,39]). Assume that local objective functions

fi are proper closed convex functions and that the minimum of (2.2) is attainable. For any initial

values x0 ∈ Rnd, z0 ∈ R2md and λ0 ∈ R4md, the update in (2.6) yields that

xk → x∗, zk → z∗, and λk → λ∗ as k →∞,

where (x∗, z∗,λ∗) is a primal-dual solution to (2.5).

While (2.6) provides an efficient centralized algorithm to solve (2.2), it is not clear whether

(2.6) can be carried out in a distributed manner, i.e., data exchanges only occur within neighboring

nodes. Interestingly, Lemma 2.2 states that convergence for the ADMM is guaranteed regardless

of initial values x0, z0 and λ0; there indeed exist initial values that decentralize (2.6). Initialize

β0 = −γ0 and z0 = 1
2
(MT

+⊗Id)x0 where⊗ denotes the Kronecker product. As shown in [16,50],
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the updates in (2.6) lead to the following iterative updates:

∂fi(x
k+1
i ) + 2ρ|Ni|xk+1

i −

(
ρ|Ni|xki + ρ

∑
j∈Ni

xkj −αki

)
= 0,

αk+1
i = αki + ρ

(
|Ni|xk+1

i −
∑
j∈Ni

xk+1
j

)
,

(2.7)

at agent i, whereαki ∈ Rd is the local Lagrangian multiplier of agent i. The above updates are fully

decentralized as the update of xk+1
i andαk+1

i only relies on local and neighboring information. We

refer to (2.7) as CADMM.

The following theorem states the convergence of CADMM, which follows directly from global

convergence of the ADMM.

Lemma 2.3 (Convergence of CADMM [15, 37]). Assume that local objective functions fi are

proper closed convex functions and that the minimum of (2.2) is attainable. Then CADMM is

guaranteed to converge for any x0
i ∈ Rd, [α0

1;α0
2; · · · ;α0

n] ∈ C(L− ⊗ Id), and ρ > 0:

lim
k→∞

xki = x̃∗ and lim
k→∞

αki = α∗i , i = 1, 2, . . . , n,

where x∗1 = · · · = x∗n , x̃∗ and α∗i are a pair of primal and dual solutions to (2.3), and x̃∗ is

optimal to (2.2).

The ADMM and CADMM are also shown to converge linearly when certain convexity assump-

tions on the objective functions fi’s are satisfied; see, e.g., [38,39,50]. As this dissertation focuses

on distributed average consensus, we only consider the convergence rate result when CADMM is

applied to distributed average consensus. This is presented in the next section.

2.3 CADMM for Distributed Average Consensus

Denote by ri ∈ R the measurement at agent i, r the vector that concatenates all ri, and r̄ =

1
n

∑n
i=1 ri the global average. Distributed average consensus then can be solved using CADMM
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by identifying that the average is the unique solution to a least-squares problem, i.e.,

r̄ = arg min
x̃

1

2

n∑
i=1

(x̃− ri)2.

Therefore, we have the CADMM updates for distributed averaging by plugging in fi(x̃) = 1
2
(x̃−

ri)
2:

xk+1
i =

1

1 + 2ρ|Ni|

(
ρ|Ni|xki + ρ

∑
j∈Ni

xkj − αki + ri

)
,

αk+1
i = αki + ρ

(
|Ni|xki −

∑
j∈Ni

xkj

)
.

(2.8)

For ease of presentation, we will use ‘CADMM’ to refer to the above updates and ‘original

CADMM’ for the updates in (2.7) where local objectives are general convex functions. We can

further write (2.8) in a matrix form as

xk+1 = (In + 2ρW )−1(ρL+x
k −αk + r),

αk+1 = αk + ρL−x
k+1,

or more compactly,

sk+1 = Dsk, (2.9)

where sk =
[
xk;αk; r

]
,D0 = (In + 2ρW )−1, and

D =


ρD0L+ −D0 D0

ρ2L−D0L+ In − ρL−D0 ρL−D0

0n 0n In

 . (2.10)

Following (2.9), we can write sk as

sk = Dks0.
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It is thus interesting to investigate how Dk behaves as k → ∞. From (2.10), a logical approach

is to study Dk through the structures of L−,L+ and W ; fortunately, the convergence property

of CADMM provides a simple argument to obtain a rough estimate of D∞, which, nevertheless,

is good enough for our purpose. Note that we also have D∗ = D∞ and s∗ = [x∗;α∗; r] =

[x∞;α∞; r] = s∞ as the optimum due to the convergence of CADMM. The result is given below

Theorem 2.1. ConsiderD defined in (2.10). Then

D∗ =


D11 D12 D13

D21 D22 D23

D31 D32 D33

 =


0n a11

T
n

1
n
1n1

T
n

0n a21
T
n In − 1

n
1n1

T
n

0n 0n In


for fixed a1,a2 ∈ Rn.

Proof. By Lemma 2.3, we have for any s0 that satisfies the initialization condition,

s∞ =


x∞

α∞

r∞

 =


x∗

α∗

r∗

 =


1nr̄

r − 1nr̄

r

 .

Recall that s∞ = D∞s0. If we fix α0 and r0, global convergence implies that s∞ = s∗ regardless

of the initial value x0. Thus Di1 = 0n, i = 1, 2, 3. Similarly, fixing x0 and r0, we must have

D12α
0 = D22α

0 = 0. Since α0 is initialized in the column space of M−M
T
− = 2L− where L−

is the signed Laplacian matrix of a connected undirected graph,D12 andD22 must be respectively

the products of some vectors a1 and a2 in Rn multiplying 1Tn such that D12L− = D22L− = 0.

Knowing the form ofDj1 andDj2 with j = 1, 2, we see that x∞ and α∞ only depend on r0 = r.

Together with the facts that x∞ = x∗ has each entry of itself reaching the data average r̄ = 1
n
rT1n

and thatα∞ = r−1nr̄ for any r, we validateD13 andD23 as given in the theorem. The remaining

blocks,D32 andD33, follow directly from the matrix multiplication.
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Given convergence, we now turn our attention to the rate of convergence of CADMM. Recent

work of [38,39] has established the linear convergence of the ADMM. Unfortunately, their results

do not apply to CADMM as their conditions are not satisfied here. In [38], the step size of the

dual variable update, i.e., ρ in the λ-update of (2.6), need be sufficiently small while CADMM

has a fixed step size ρ that can be any positive number (see Remark 3.3 for further discussion on

the choice of ρ). The linear convergence in [39] is established provided that either g(z) is strongly

convex orB is full row-rank in (2.3). In our formulation, however, g(z) = 0 is not strongly convex

and B = [−I2m;−I2m] is row-rank deficient. Fortunately, [50, Theorem 1] characterizes the

convergence rate of a vector concatenating z and β, which can be used to derive the convergence

rate about sk. Before stating this result in Theorem 2.2, we futher define

uk =

zk
βk

 andG =

ρI2m 02m

02m
1
ρ
I2m

 . (2.11)

Theorem 2.2 (Linear convergence of CADMM for distributed average consensus [50]). Let x0 ∈

Rn and α0 ∈ C(L−). Then uk converges Q-linearly to u∗ = [z∗;β∗], with z∗ = 1
2
M+1nr̄ and β∗

being the unique vector in C(M−) such thatMT
−β
∗ = r − 1nr̄, with respect to theG-norm:

‖uk+1 − u∗‖G ≤
1

1 + η
‖uk − u∗‖G, (2.12)

where ‖uk+1 − u∗‖G =
√

(uk+1 − u∗)TGuk+1 − u∗, η =
√

1 + δ − 1, µ > 1, and

δ = min

{
(µ− 1)λ2(L−)

µλn(L+)
,

2ρλ2(L−)

ρ2λn(L+)λ2(L−) + µ

}
.

Furthermore, sk is R-linearly convergent to s∗ as

‖sk+1 − s∗‖2 ≤

(
1 +

√
2ρλn(L−)

1 + η

)
‖uk − u∗‖G. (2.13)

Indeed, the classical method and gossip based method also converge fast with appropriately
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chosen algorithm parameters. These algorithms, however, require the knowledge of an upper

bound on ri’s in order to select the right algorithm parameters to deal with the bounded quantiza-

tion constraint. In Chapter 4, we will show that the local Lagrangian multipliers αi’s in CADMM

play a key role in handling the bounded quantization.

2.4 Summary

This chapter introduces CADMM for distributed average consensus and its convergence properties.

These results will be used to analyze the proposed quantized CADMM algorithms in the following

two chapters.
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CHAPTER 3

QUANTIZED CONSENSUS BY THE ADMM:

UNBOUNDED QUANTIZATION

This chapter considers distributed average consensus subject to quantized communication con-

straints. For the present chapter, we do not require the quantizer to be of finite bits. However, if

agents’ data are bounded and a bound is known, then truncation can be used before quantization to

achieve finite-bit data communications.

3.1 Model of Quantized Communication

To model the effect of quantized communications, we assume that each agent can store and com-

pute real values with infinite precision; however, an agent can only transmit quantized data through

the channel which are received by its neighbors without any error. The quantization operation is

defined as follows. Let ∆ > 0 be the quantization resolution. Define the quantization lattice in R

by

Λ = {t∆ : t ∈ Z}.

A (uniform) quantizer is a function Q : R→ Λ that maps a real value to some point in Λ. Among

all unbounded quantizers we consider the following two:
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• Probabilistic quantizer Qp defined as follows: for y ∈ [t∆, (t+ 1)∆),

Qp(y) =


t∆, with probability t+ 1− y

∆
,

(t+ 1)∆, with probability y
∆
− t.

(3.1)

• Rounding quantizer Qd which projects y ∈ R to its nearest point in Λ:

Qd(y) = t∆, if
(
t− 1

2

)
∆ < y ≤

(
t+

1

2

)
∆. (3.2)

We point out that probabilistic quantization is equivalent to a dithered quantization method (see

[20, Lemma 2]) while rounding quantization is one of the deterministic quantization schemes.

Through the rest of this dissertation, we mean quantizing each of the entries when the quantizer

has a vector input. Define e(y) = Q(y)− y as the quantization error. It is clear that

|ep(y)| ≤ ∆ and |ed(y)| ≤ 1

2
∆, for any y ∈ R. (3.3)

We will investigate how the quantized communication affects CADMM in the following two

sections. We remark that the results of probabilistic and rounding quantizations can easily extend

to other dithered and deterministic cases, which will be elaborated in Sections 3.2 and 3.3.

3.2 Probabilistic Quantized CADMM (PQ-CADMM)

For ease of presentation, we only study the probabilistic quantization defined in (3.1). The results

can be easily extended to any other dithered quantization as the only information used is the first

and second order moments of the probabilistic quantizer output, which are common properties

among all dithered quantizers. The properties are stated in the following lemma.
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Lemma 3.1 ( [51, Lemma 2]). For every y ∈ R, it holds that

E [Qp(y)] = y and E
[
(y −Qp(y))2] ≤ ∆2

4
.

Furthermore, for any inputs y1 and y2, the quantization errors ep(y1) and ep(y2) are independent

and identically distributed (i.i.d.), and are independent of the inputs y1 and y2 repsectively.

We use the probabilistic quantization to modify the CADMM update (2.8) as

xk+1
i =

1

1 + 2ρ|Ni|

(
ρ|Ni|Qp

(
xkj
)

+ ρ
∑
j∈Ni

Qp
(
xkj
)
− αki + ri

)
,

αk+1
i = αki + ρ

(
|Ni|Qp

(
xk+1
i

)
−
∑
j∈Ni

Qp
(
xk+1
j

))
.

(3.4)

Notice that xki is also quantized at its own node for the (k + 1)th update; the reason will be

given in Remark 3.5. As illustrated in [17], the above iteration can be interpreted as a stochastic

gradient update. Viewed from this point, the quantization operation causes xki to fluctuate around

the quantization-free updates (2.8). The convergence claims are given in Theorem 3.1.

Theorem 3.1. For any x0 ∈ Rn and α0 ∈ C(L−), the probabilistic quantized CADMM (PQ-

CADMM) iteration (3.4) generates xki , i = 1, 2, . . . , n, which converges linearly to the data aver-

age r̄ in the mean sense as k →∞, i.e.,

lim
k→∞

E
[
xki
]

= r̄, i = 1, 2, . . . , n.

In addition, the variance of xki converges to a finite value which depends on the quantization

resolution and the network topology.
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Proof. Taking expectation of both sides of (3.4), we have

E[xk+1
i ] =

1

1 + 2ρ|Ni|

(
ρ|Ni|E

[
Qp(xki )

]
+ ρ

∑
j∈Ni

E
[
Qp(xkj )

]
− E[αki ] + ri

)
,

E[αk+1
i ] = E[αki ] + ρ

(
|Ni|E

[
Qp(xk+1

i )
]
−
∑
j∈Ni

E
[
Qp(xk+1

j )
])

.

(3.5)

Noting that Lemma 3.1 implies E
[
Qp(xki )

]
= E[xki ] and E

[
Qp(xkj )

]
= E[xkj ], we see that (3.5)

takes exactly the same iterations in the mean sense as CADMM for distributed average consensus.

By initializing α0 ∈ L−, we have E[α0] = α0 lies in C(L−), too. The linear convergence of E[xki ]

to r̄ is thus ensured due to Theorem 2.2.

Since Lemma 3.1 also indicates the bounded variance of quantization error, the second claim

follows directly from [17, Proposition 3].

We notice that the convergence of E[xki ] to r̄ with bounded variance does not imply that xk

reaches a consensus when k →∞. Nevertheless, a simple method fixes this problem. The idea is

to calculate the running average x̄ki = 1
k

∑k
l=1 x

l
i, k ≥ 1 at node i. Since the variance is bounded,

one can use similar steps as in [17] together with Chebyshev’s inequality to get that x̄ki → r̄ in

probability.

3.3 Deterministic Quantized CADMM (DQ-CADMM)

Deterministic quantization is usually much harder to handle as the quantization error is not stochas-

tic. Unlike probabilistic quantization, the accumulated error term can blow up; there have been a

few methods proposed to counter such difficulties (see [12, 22, 24]), yet the resulting algorithms

either do not guarantee a consensus or reach a consensus with an error from the desired average

that depends on the number of agents, the quantization resolution, and the agents’ data. To analyze

the consensus reaching result, we first find a finite upper bound on the accumulated error term and

then utilize the property and the initialization condition of local Lagrangian multipliers .
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Let the local data xki be also quantized for the (k+ 1)-th update at node i. The updates become

xk+1
i =

1

1 + 2ρ|Ni|

(
ρ|Ni|Qd

(
xkj
)

+ ρ
∑
j∈Ni

Qd
(
xkj
)
− αki + ri

)
,

αk+1
i = αki + ρ

(
|Ni|Qd

(
xk+1
i

)
−
∑
j∈Ni

Qd
(
xk+1
j

))
.

(3.6)

We can rewrite Qd(xki ) = xki + ed(x
k
i ). Then the αi-update is equivalent to

αk+1
i = αki + ρ

(
|Ni|xk+1

i −
∑
j∈Ni

xk+1
j

)
+ ρ

(
|Ni|ed(xk+1

i )−
∑
j∈Ni

ed(x
k+1
j )

)
,

or written in the matrix form,

αk+1 = αk + ρL−x
k+1 + ρL−ed(x

k+1), (3.7)

where ed(xk+1) denotes the vector concatenating all ed(xk+1
i ). Recalling the CADMM update

(2.9), we can write the matrix form of (3.6) as

sk+1 = D(sk + skx) + skα (3.8)

where skx =
[
ed(x

k);0;0
]

and skα =
[
0; ρL−ed(x

k+1);0
]
. It is important to note the update above

update is deterministic, i.e., given sk1 = sk2 that are some states, we must have sk1+1 = sk2+1.

The result of (3.6) is characterized in the following theorem.

Theorem 3.2. Consider the deterministic quantized CADMM (DQ-CADMM) iteration (3.6). Let

x0 ∈ Rn and α0 ∈ C(L−). Then there exists a finite time iteration k0 ≥ 1 such that for k ≥ k0, all

the quantized variable values

• either converge to the same quantization value:

Qd
(
xk1
)

= Qd
(
xk2
)

= · · · = Qd
(
xkn
)
, x∗Qd ,
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• or cycle around the average r̄ with a finite period T ≥ 2, i.e., Qd
(
xki
)

= Qd
(
xk+T
i

)
, i =

1, 2, . . . , n, and

1

T

T∑
l=1

Qd
(
xk+l

1

)
=

1

T

T∑
l=1

Qd
(
xk+l

2

)
= · · · = 1

T

T∑
l=1

Qd
(
xk+l
n

)
, x̄∗Qd . (3.9)

Furthermore, we have the following error bound for x∗[Qd] ∈
{
x∗Qd , x̄

∗
Qd

}
:

∣∣x∗[Qd] − r̄
∣∣ ≤ (1 + 4ρ

m

n

) ∆

2
, (3.10)

where the upper bound is tight if DQ-CADMM converges.

Proof. See Section 3.7.

Remark 3.1. The result that deterministic quantization may lead the average consensus algorithm

to either convergent or cyclic cases is also reported in [24]. Similar to theirs, one can use the

history of agents’ variables, e.g., running average, to achieve asymptotic convergence at each

node. Different to theirs, while their algorithm can make local variable values close to the true

average in cyclic cases without guaranteeing a consensus, our algorithm can reach a consensus

but does not make the error arbitrarily small in general.

Remark 3.2. We shall mention that x∗Qd or x̄∗Qd need not be unique. This is because, unlike

CADMM, ‖uk − u∗‖G in DQ-CADMM need not decrease monotonically due to the quantization

that occurs on xk at each update. Note also that practical consensus value does not necessarily

meet the error bound and we usually have smaller errors than (3.10) in practice (see simulations).

We hence expect better consensuses when (x0,α0) are initialized closer to the ideal optima, which

leads to a two-stage algorithm for quantized consensus in Section 3.4.

Remark 3.3. An interesting observation of our main result is the ADMM parameter ρ. While

a small ρ indicates a small consensus error bound, the current chapter does not quantify how it

affects the convergence time k0 as well as the cyclic period T . We do not study the optimal selection
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of ρ but simply set ρ = 1 for the present chapter. We will discuss the effect of ρ in more details in

Chapter 4 .

Remark 3.4. Theorem 3.2 for rounding quantization extends straightforward to other determinis-

tic quantizations as the only information used in our proof is the bounded quantization error. In

contrast with [9, 12] where the algorithms may fail for some deterministic quantization schemes,

e.g., the rounding quantization, our results work for all deterministic quantization schemes as long

as a finite quantization error bound is provided.

Remark 3.5. In both PQ-CADMM and DQ-CADMM iterations, xki is quantized for the (k + 1)th

update at node i even though nodes can compute and store real values with infinite precision. The

reason is to guarantee that αk lies in the column space of L− and thus the ideal CADMM update

in either PQ-CADMM or DQ-CADMM (cf. Eq. (3.8)) possesses the linear convergence property

given in Theorem 2.2. If we do not quantize xki at its own node, Theorem 3.1 still holds due to

E[Qp(xki )] = E[xki ] while Theorem 3.2 may fail.

3.4 A Two-Stage Algorithm for Quantized Consensus

Let us summarize the two quantized versions of CADMM: PQ-CADMM converges linearly to

the data average in the mean sense, but it does not guarantee a consensus within finite iterations;

DQ-CADMM, on the other hand, either converges to a consensus or cycles with the same mean of

quantized variable values over one period at each node after a finite-time iteration, but results in an

error from the true average.

As discussed in Remark 3.2, we can first run PQ-CADMM 2K times to obtain x̄i = 1
K

∑2K
k=K+1 x

k
i ,

which is a reasonable estimate of r̄ at node i according to Theorem 3.1. Here K can be chosen

such that E[xKi ] is close enough to r̄ when we have the knowledge of agents’ data and the net-

work topology. Otherwise, we can simply pick K =
⌈
10n

(
log10( 1

∆
+ 1) + 1

)
max{− log10 ρ, 1}

⌉
which works well in practice, or as large as permitted. Also, ᾱi = 1

K

∑2K
k=K+1 α

k
i is a good esti-

mate of α∗i = ri − r̄, and that ᾱ = [ᾱ1; ᾱ2; · · · ; ᾱn] = 1
K

∑2K
k=K+1α

k satisfies the initialization
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condition as αk lies in the column space of L−. We can therefore run DQ-CADMM with this x̄i

and ᾱi as initial values. The probabilistic quantized CADMM followed by deterministic quantized

CADMM (PQDQ-CADMM) is presented in Algorithm 3.1.

Algorithm 3.1 PQDQ-CADMM for quantized consensus
Require: Initialize ρ > 0, K =

⌈
10n

(
log10( 1

∆
+ 1) + 1

)
max{− log10 ρ, 1}

⌉
, x0 = 0,

and α0 = 0.
1: for k = 0, 1, · · · , 2K − 1, every node i do

xk+1
i ← 1

1 + 2ρ|Ni|

ρ|Ni|Qp (xki )+ ρ
∑
j∈Ni

Qp
(
xkj
)
− αki + ri

,
αk+1
i ← αki + ρ

|Ni|Qp (xk+1
i

)
−
∑
j∈Ni

Qp
(
xk+1
j

).
2: end for
3: x2K

i ← 1
K

∑2K
l=K+1 x

l
i, α

2K
i ← 1

K

∑2K
l=K+1 α

l
i, and k ← 2K.

4: repeat
5: every node i do

xk+1
i ← 1

1 + 2ρ|Ni|

ρ|Ni|Qd (xki )+ ρ
∑
j∈Ni

Qd
(
xkj
)
− αki + ri

,
αk+1
i ← αki + ρ

|Ni|Qd (xk+1
i

)
−
∑
j∈Ni

Qd
(
xk+1
j

).
6: k ← k + 1

7: until a predefined stopping criterion (e.g., a maximum iteration number) is satisfied.

3.5 Simulations

This section investigates the performance of DQ-CADMM and PQDQ-CADMM via numerical

examples. To construct a connected graph with n nodes and m edges, we first generate a complete

graph consisting of n nodes, and then randomly remove n(n−1)
2
−m edges while ensuring that the
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network stays connected. Set ∆ = 1 throughout this section and assume that agents’ data have very

high variances in large networks, e.g., let ri ∼ N (0, n4). Throughout the rest of this dissertation,

the average simulated result is taken with respect to both graph and agents’ data; that is, both graph

and agents’ data are randomly generated at each run.

3.5.1 Performance Comparison

We compare our algorithms with those that use deterministic quantization to reach a consensus,

i.e., the gossip based method in [22] and the classical method in [12]. The simulation settings are

• PQDQ-CADMM: Set ρ = 1.

• DQ-CADMM: Set ρ = 1, x0 = 0 and α0 = 0.

• Gossip based method: We randomly pick one edge in A and perform the updating, i.e., if

(i, j) ∈ A is chosen, then xk+1
i = xk+1

j = 1
2

(
Qd(xki ) +Qd(xkj )

)
.

• Classical method: LetW denote the weight matrix of the graph Gd = {V ,A}. The updating

rule is then given by xk+1 = WQrd(xk) where the subscript Qrd(·) denotes the rounding

down quantization. We utilize the Metropolis weights defined in [52]:

Wij =



(1 + max{|Ni|, |Nj|})−1, (i, j) ∈ A,

1−
∑

k∈NiWik, i = j,

0, otherwise.

We simulate a connected network with n = 50 nodes and m = 500 edges. Define the iterative

error as ‖Q(xk)− 1nr̄‖2/
√
n where Q(·) denotes the quantization scheme in the respective algo-

rithms. Plotted in Fig. 3.1 is the iterative error with each value being the average of 1000 runs (the

iterative error is ‖x̄k − 1nr̄‖2 for the PQ-CADMM part of PQDQ-CADMM). Note that we start

the plot of PQDQ-CADMM from the (K + 1)-th iteration as its first K iterations are used only
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to reach a neighborhood of r̄; at the (2K + 1)-th iteration, Qd
(
x2K+1

)
is updated based on the

running average of the (K + 1)-th iteration to the 2K-th iteration. The figure indicates that all the

four algorithms converge to a consensus at one of the quantization levels. The average consensus

error of DQ-CADMM is 1.21, which is much smaller than the upper bound (1
2

+ 2m
n

)∆ = 20.5.

One can also see that PQDQ-CADMM converges almost immediately after the 2K-th iteration.
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Fig. 3.1: Iterative error versus iterations where each plotted value is the average of 1000 runs.

Consensus error: In Fig. 3.2a we fix n = 50 and vary m until the graph is complete. The

gossip based method and the classical method have decreasing consensus errors as m increases.

The consensus error of DQ-CADMM, however, becomes larger as the average degree and therefore

the error bound increase. PQDQ-CADMM has the smallest consensus error whose average of 100

runs is less than 0.40 for all m. We then fix m = 400 and let n vary. Fig. 3.2b shows that the

gossip based method and the classical method have increasing consensus errors as n increases.

The consensus error of DQ-CADMM, on the contrary, decreases when n becomes larger. PQDQ-

CADMM also has the smallest consensus error in this case. In the last setting we fix the average

degree 2m
n

= 10 while varying n. The classical method and the gossip based method then both
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have increasing consensus errors when n and thus the range of agents’ data increase. The consensus

error of DQ-CADMM is relatively small compared with the upper bound (0.5 + 2m
n

)∆ = 10.5 and

decreases when n becomes larger. The proposed PQDQ-CADMM algorithm still has the smallest

consensus error whose average of 100 runs is less than 0.2 for all n.

We conclude that the consensus error of the gossip based method and the classical method

depends on the average degree of the graph as well as the range of agents’ data. Note that their

consensus errors can be extremely large for a sparsely connected graph. DQ-CADMM has an

increasing consensus error when the average degree increases while PQDQ-CADMM performs

almost the same for all network structures in terms of the consensus error.

Convergence time: We study the convergence time of the four algorithms via numerical exam-

ples in Fig. 3.3. Since the gossip based method involves only one edge and the other three methods

utilize all the edges at each iteration, we plot also the quotient of the convergence time of the gos-

sip based method divided by the number of edges, namely, Gossip based method adjusted, in the

figure.

In Fig. 3.3a, the gossip based method and the classical method converge slower as the graph

becomes sparser. When the average degree is fixed, they have longer convergence time as n in-

creases. Therefore, the convergence time of the gossip based method and the classical method is

also affected by the average degree of the graph and the range of agents’ data. Different from the

gossip based and classical methods, we see in Fig. 3.3a that the convergence time of DQ-CADMM

increase as the graph becomes denser. In Fig. 3.3b and Fig. 3.3c, however, the convergence time

also increases while the graph becomes sparser, which is possibly because of the increased distance

between starting variable values and optimal variable values. For PQDQ-CADMM, we observe

that the significant portion of its convergence time is spent on achieving an approximate estimate

of r̄, i.e., running PQ-CADMM with 2K iterations. With good starting points, DQ-CADMM

converges almost immediately.
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Fig. 3.2: Consensus error of the four algorithms where ∆ = 1 and the plotted values are the
average of 100 runs; (a) fixing n = 50 and varyingm ∈ [49, 1225], (b) fixingm = 400 and varying
n ∈ [29, 399], (c) fixing 2m

n
= 10 and varying n ∈ [20, 200].
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Fig. 3.3: Convergence time of the four algorithms where ∆ = 1 and the plotted values are the
average of 100 runs; (a) n = 50 and m ∈ [49, 1225], (b) m = 400 and n ∈ [29, 399], (c) 2m

n
= 10

and n ∈ [20, 200].
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3.5.2 Different Quantization Resolutions

We next consider the effect of the quantization resolution on PQDQ-CADMM. Fig. 3.4 plots con-

sensus errors of PQDQ-CADMM with n = 50 and m ∈ [49, 1225] for ∆ ∈ {0.02, 0.1, 0.5, 2.5}.

The consensus error tends to increase on the average as the quantization resolution becomes larger,

which is not surprising since a coarse quantization indicates a higher loss of information at each

update. We then calculate the ratio of the consensus error to the quantization resolution: the plot-

ted values, which are the averages of 100 runs, all lie in (0.227∆, 0.337∆) and the variances are

less than 0.051. Moreover, the convergence time of each quantization resolution has a mean of

(2K + 2.1) iterations and a variance less than 0.0008, which coincides with our previous analysis

that PQDQ-CADMM converges immediately after the first 2K iterations.
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Fig. 3.4: Consensus error of PQDQ-CADMM with different quantization resolutions, i.e., ∆ ∈
{0.02, 0.1, 0.5, 2.5}, for n = 50 and m ∈ [49, 1225]; each plotted value is the average of 100 runs.



33

3.5.3 Cyclic Case

While we prove that DQ-CADMM either converges or cycles in Theorem 4, we note the above

numerical examples all lead to reach convergence results. Indeed, the proposed deterministic al-

gorithms, DQ-CADMM and PQDQ-CADMM, converges in most cases as shown by the following

simulation. For connected networks with n nodes, we consider star graph which has the small-

est average degree, randomly generated graph that has intermediate average degree, and complete

graph that has the largest average degree. The result is given in Fig. 3.5 where the y-axis represents

the number of cyclic cases in 104 trials. Clearly, DQ-CADMM and PQDQ-CADMM with fixed

parameter ρ = 1 converge in most cases, particularly with large networks. We will study the cyclic

case in more details in Chapter 4.
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Fig. 3.5: Number of cyclic cases in 104 trials.
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3.6 Summary

In this chapter, we propose two quantized versions of CADMM: PQ-CADMM and DQ-CADMM.

PQ-CADMM converges linearly to the data average in the mean sense, but it does not guarantee a

consensus within finite iterations. DQ-CADMM, on the other hand, either converges to a consensus

or cycles with the same mean of quantized variable values over one period at each node after a

finite-time iteration but results in an error from the true average. While deterministic quantization

is somewhat unfavorable due to the cyclic behavior, a notable fact is that there is no randomness

involved. We believe that this property will be useful to some applications, e.g., consensus based

detection using one-bit communications as discussed in Chapter 5.

3.7 Proof of Theorem 3.2

Proof. We prove that DQ-CADMM either converges or cycles after a finite-time iteration and then

use this fact to derive the error bound.

We see from (3.7) that αk must lie in the column space of L− if α0 is initialized in the column

space of L−. Following (3.8), we have

sk = D(sk−1 + sk−1
x ) + sk−1

α

= D
(
D(sk−2 + sk−2

x ) + sk−2
α

)
+Dsk−1

x + sk−1
α

= · · ·

= Dks0 +

(
k∑
i=1

Disk−ix +
k−1∑
j=0

Djsk−1−j
α

)
. (3.11)

The first term is simply the ideal CADMM update which converges to a finite value. We will show

that the accumulated error term
∑k

i=1D
isk−ix +

∑k−1
j=0 D

jsk−1−j
α is bounded and hence that sk

is bounded. Notice that Disk−ix is the i-th update of CADMM with the initial value sk−ix . Let

ulk−i = [zlk−i;β
l
k−i] be the vector that concatenates the primal and dual variables in the ADMM
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iteration (2.6), with initial values z0
k−i = 1

2
MT

+e
k−i
d and β0

k−i = 0 corresponding to skx = [ekd;0;0].

WithG defined in (2.11), we obtain

‖u0
k−i‖2

G = ρ

∥∥∥∥1

2
MT

+e
k−i
d

∥∥∥∥2

2

≤ 1

4
ρ2λn(L+)‖ek−id ‖

2
2

≤ 1

8
ρn∆2λn(L+)(M+),

where the last inequality is from (3.3). Since Theorem 2.1 indicates the form of D∗, we get

D∗sk−ix = 0, i.e., x∗k−i = 0 and α∗k−i = 0. Therefore, u∗k−i = [z∗k−i;β
∗
k−i] = 0 from Lemma

2.1 and the fact that z∗k−i = 1
2
MT

+x
∗
k−i. Noting also that the initialization z0

k−i and β0
k−i meet the

condition of Theorem 2.2, we thus have

‖Disk−ix ‖2 = ‖(Di −D∗)sk−ix ‖2

(a)

≤
(

1 +

√
ρ

1 + δ
2λn(L−)

)
‖ui−1

k−i − u
∗
k−i‖G

(b)

≤ 1

4

(
1 +

√
ρ

1 + δ
2λn(L−)

)(√
1

1 + δ

)i−1√
2ρnλn(L+), (3.12)

where (a) and (b) are due to Theorem 2.2 together with the fact that u∗k−i = 0. Similarly, we have

for j ≥ 1,

‖Djsk−1−j
α ‖2 ≤

1

4

(
1 +

√
ρ

1 + δ
2λn(L−)

)(√
1

1 + δ

)j−1

∆σmax(M−)
√
ρn, (3.13)

and when j = 0,

‖Djsk−1−j
α ‖2 = ‖sk−1

α ‖2 ≤
1

4
ρ∆
√

2nλ(L−). (3.14)



36

Therefore,

∥∥∥∥∥
k∑
i=1

Disk−ix +
k−1∑
j=0

Djsk−1−j
α

∥∥∥∥∥
2

≤
k∑
i=1

‖Disk−ie ‖2 +
k−1∑
j=0

‖Djsk−1−j
α ‖2

≤ ‖sk−1
α ‖2 +

k∑
i=1

(
‖Disk−ie ‖2 + ‖Disk−1−i

α ‖2

)
(a)

≤ 1

4
ρ∆
√

2nλ(L−) +

(
1 +

√
ρ

1 + δ
2λ(L−)

)
× 1

4
∆
√
ρN
(√

2λ(L−) +
√

2λ(L+)
) k∑
i=1

(√
1

1 + δ

)i−1

(3.15)

where (a) is from (3.12)-(3.14). Then (3.15) must be finite for k = 1, 2, . . . , as δ > 0, and thus

sk is bounded. An important fact from (3.8) is that the update of sk+1 and hence sk+1
x is fully

determined by sk + skx due to the deterministic quantization and the CADMM update. Recalling

that ‖skx‖2 = ‖ekd‖2 ≤ ∆
2

√
n and that sk + skx = [Qd(xk);αk; r] with each entry of Qd(xk) being

a multiple of ∆, each entry of α being a multiple of ρ∆, and r being fixed, we conclude that there

are only finite possible states of sk + skx. Therefore, sk is either convergent or cyclic with a finite

period T ≥ 2 after a finite-time iteration.

We next consider error bounds for the consensus value. The consensus error may be studied

directly by calculating the accumulated error term in (3.11). However, the bound in (3.15) is quite

loose in general since it results from the worst case. We alternatively derive the error bounds in the

respective case using the fact that DQ-CADMM either converges or cycles.

Convergent case: The convergence of DQ-CADMM implies that sk+1 = sk for k ≥ k0, and

hence

0 = αk+1 −αk = ρL−Qd(xk+1).

Since L− is the Laplacian matrix of a connected graph Gu, we must have that Qd(xk+1) reaches

a consensus. Now let x∗Qd ∈ Λ denote the convergent quantized value. Then Qd(x∞i ) = x∗Qd for
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i = 1, 2, . . . , n, and x∞i = x∗Qd − e
∗
i . Summing up both sides of (3.6) from i = 1 to n, we have

n∑
i=1

(1 + 2ρ|Ni|)
(
x∗Qd − e

∗
i

)
=

n∑
i=1

(
ρ|Ni|x∗Qd + ρ

∑
j∈Ni

x∗Qd + ri

)
,

which is equivalent to

x∗Qd =
1

n

n∑
i=1

ri +
1

n

n∑
i=1

(1 + 2ρ|Ni|)e∗i .

Here we use the fact that αk lies in the column space of L−, i.e., αk = L−b
k where bk ∈ Rn.

Then
∑n

i=1 α
k
i = (L−b

k)T1 = (bk)T (LT−1) = 0. Recalling that r̄ = 1
n

∑n
i=1 ri and |e∗i | ≤ ∆

2
, we

finally obtain

∣∣x∗Qd − r̄∣∣ ≤ (1

2
+ ρ

2m

n

)
∆.

The following example shows the tightness of this bound in this convergent case. Consider a

simple two-node network with r1 = −3
2

and r2 = −7
2
. Set both ∆ and ρ to be 1. In this case, we

have m = 1, n = 2, and

L− =

 1 −1

−1 1

 .
We start with Qd(x0

1) = Qd(x0
2) = −1 and α0

1 = −α0
2 = 1. One can easily check Qd(xk1) =

Qd(xk1) = −1 and αk1 = −αk2 = 1, k = 1, 2, . . ., in the updates of (3.6). Hence x∗Qd = −1 and the

consensus error is

∣∣x∗Qd − r̄∣∣ =
3

2
=

(
1

2
+ ρ

2m

n

)
∆.

This coincides with the error bound in (3.10).

Cyclic case: When DQ-CADMM cycles with a period T , we must have sk+T = sk. Thus, for

k ≥ k0, we have that

0 = αk+T −αk = ρL−

T∑
l=1

Qd(xk+l),
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and consequently,
∑T

l=1Qd(x
k+l
i ) reaches a consensus, i.e., (4.7) is true. Now denote

x̄∗Qd =
1

T

T∑
l=1

Qd(xk+l
i ), i = 1, . . . , n.

We then get

∣∣∣∣∣x̄∗Qd − 1

T

T∑
l=1

xk+l
i

∣∣∣∣∣ ≤ 1

T

T∑
l=1

∣∣Qd(xk+l
i )− xk+l

i

∣∣ ≤ ∆

2
. (3.16)

Summing both sides of (3.6) over one period and dividing the sum by T , we have

1

T

T∑
l=1

xk+l
i =

1

1 + 2ρ|Ni|

(
2ρ|Ni|x̄∗Qd −

1

T

T∑
l=1

αk+l
i + ri

)
.

Finally, using (3.16) and following the same steps as in the convergent case, we conclude that

∣∣x̄∗Qd − r̄∣∣ ≤ (1

2
+ ρ

2m

n

)
∆.
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CHAPTER 4

QUANTIZED CONSENSUS BY THE ADMM:

FINITE-BIT BOUNDED QUANTIZATION

It is noted that both PQ-CADMM and DQ-CADMM in Chapter 3 require infinite bits as the output

consists of infinite quantization levels. If it is known a priori that agents’ data ri’s are bounded

and that a bound is known, then existing quantized consensus algorithms can use either truncation

or carefully chosen updating weights such that finite-bit quantizers achieve certain guaranteed

consensus results. The goal of this chapter is to develop quantized consensus algorithms using

finite-bit bounded quantizer for possibly unbounded data.

4.1 Model of Bounded Quantized Communication

Let X be a nonempty compact convex set in R. We assume without loss of generality that X =

[−L,L] for some 0 < L < ∞ since we can always translate the set. Further assume that L is a

multiple of ∆ and set ΛX = [−L,L] ∩ Λ. Define TX (·) as the projection operator that maps a real

value to the nearest point in X . We define a bounded quantizerQb : R→ ΛX by first projecting its

argument onto X and then applying the uniform rounding quantizer Qd(·) defined in (3.2) to the
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projected value, i.e.,

Qb(·) = Qd ◦ TX (·). (4.1)

It is straightforward to see that |Qb(y)| ≤ L for any y ∈ R. Therefore, the bounded quantizer

Qb(·) has 2 L
∆

+ 1 quantization levels which can be represented by dlog2(2 L
∆

+ 1)e bits. We will

use this bounded quantizer to modify the CADMM in the next section.

4.2 Bounded Quantized CADMM (BQ-CADMM)

We now modify the CADMM update in (2.8) using the bounded quantizer Qb(·), referred to as

bounded quantized CADMM (BQ-CADMM), given in Algorithm 4.2.

Algorithm 4.2 BQ-CADMM for quantized consensus
Require: Initialize x0

i = 0 and α0
i = 0 for each agent i, i = 1, 2, · · · , n. Set ρ > 0 and

k = 0.
1: repeat
2: every node i do

xk+1
i ← 1

1 + 2ρ|Ni|

ρ|Ni|Qb (xki )+ ρ
∑
j∈Ni

Qb
(
xkj
)
− αki + ri

,
αk+1
i ← αki + ρ

|Ni|Qb (xk+1
i

)
−
∑
j∈Ni

Qb
(
xk+1
j

).
3: k ← k + 1

4: until a predefined stopping criterion (e.g., a maximum iteration number) is satisfied.

From Algorithm 4.2, BQ-CADMM is quite similar to PQ-CADMM and DQ-CADMM with the

only difference lying in the use ofQb(·) on xki . Letting eb(y) = Qb(y)− y denote the quantization

error of Qb(·), we know that it can be unbounded with unbounded y. As such, it is not clear

now how the bounded quantization affects CADMM and how accurate the consensus can be if a
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consensus can be reached. Meanwhile, if L is chosen to be large enough such that TX
(
xki
)

= xki

for all k, then Qb
(
xki
)

= Qd
(
xki
)

and BQ-CADMM becomes the same as DQ-CADMM. In

this sense, we regard DQ-CADMM as a special case of BQ-CADMM. The rest of this section is

devoted to investigating the performance of BQ-CADMM.

Noticing first that Qb(·) = Qd ◦ TX (·), we can obtain BQ-CADMM by applying the rounding

quantizer Qd(·) to TX
(
xki
)

in the following update:

xk+1
i =

1

1 + 2ρ|Ni|

(
ρ|Ni|TX

(
xki
)

+ ρ
∑
j∈Ni

TX
(
xkj
)
− αki + ri

)
, (4.2)

αk+1
i = αki + ρ

(
|Ni|TX

(
xk+1
i

)
−
∑
j∈Ni

TX
(
xk+1
j

))
. (4.3)

Recalling that TX
(
xk+1
i

)
is the projection of xk+1

i onto X , we can also write (4.2) as

TX
(
xk+1
i

)
= arg min

x̃∈X

1

2
(x̃− ri)2 + ρ|Ni|x̃2 −

(
ρ|Ni|TX

(
xki
)

+ ρ
∑
j∈Ni

TX
(
xkj
)
− αki

)
x̃

= arg min
x̃

1

2
(x̃− ri)2 + IX (x̃) + ρ|Ni|x̃2 −

(
ρ|Ni|TX

(
xki
)

+ ρ
∑
j∈Ni

TX
(
xkj
)

− αki

)
x̃, (4.4)

where IX (x̃) is the indicator function given by

IX (x̃) =


0, if x̃ ∈ X ,

∞, otherwise.

Comparing with the CADMM update in (2.7), we see that (4.4) (and hence (4.2)) together with

(4.3) is the CADMM update with TX
(
xki
)

and αki as local variables and 1
2
(x̃−ri)2 +IX (x̃) as local
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objective functions. Then Lemma 2.3 implies that (4.2) and (4.3) lead to

lim
k→∞
TX (xki ) = arg min

x̃

n∑
i=1

(
1

2
(x̃− ri)2 + IX (x̃)

)
= TX (r̄).

So far we have obtained that BQ-CADMM results from CADMM on a well-solved constrained

least-squares problem with the rounding quantization Qd(·) applied onto xki ; yet we are far from

reaching the convergence characterization on BQ-CADMM. When dithered quantizer is used,

the expected convergence comes from the linear update of CADMM for average consensus (cf.

Eq. (2.9)) as well as the fact that expectation of the output of dithered quantizer is equal to the in-

put. This approach fails to apply to BQ-CADMM because TX (·) is not a linear operator in general

and one can not simply change the order of projection and expectation. Besides, (4.2) and (4.3) no

longer possess the linear convergence rate due to the introduced bounded constraint. As a result,

the idea of using the linear convergence rate for DQ-CADMM does not work for BQ-CADMM.

On the other hand, if we view BQ-CADMM as a result from the CADMM update on the uncon-

strained least-squares problem modified by the bounded quantizer Qb(·), it is still unclear how

BQ-CADMM performs since the quantization error of Qb(·) can be unbounded for an unbounded

input. Fortunately, αki is inherently bounded by BQ-CADMM update as given below.

Lemma 4.1. Consider BQ-CADMM with x0
i = 0 and α0

i = 0 for i = 1, 2, · · · , n. Then αki is

finitely bounded given by

∣∣αki ∣∣ ≤ (1 + 6ρ|Ni|)L+ |ri|.

Proof. See Section 4.6.

The bound on αki immediately implies a bound on xki . Now let skQb = [Qb(xk);αk; r]. We

proceed to rewrite BQ-CADMM as the standard CADMM update on skQ plus an error term caused
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by the bounded quantization. We first have

Qb(xk+1) = xk+1 + eb(x
k+1),

αk+1 = αk + ρL−x
k+1 + ρL−eb(x

k+1),

where eb(xk+1) = Qb(xk+1) − xk+1 is the bounded quantization error. Further defining the

following vector ske = [eb(x
k); ρL−eb(x

k+1);0], we have BQ-CADMM update equivalent to

sk+1
Qb = DskQb + sk+1

e . (4.5)

It is important to note that the above update is deterministic. We will use this fact to establish the

main theorem as given below.

Theorem 4.1. For BQ-CADMM in Algorithm 4.2, there exists a finite time iteration k0 > 0 such

that for k ≥ k0 all the quantized variable values

• either converge to the same quantization value:

Qb
(
xk1
)

= · · · = Qb
(
xkn
)
, x∗Qb ,

where x∗Qb ∈ ΛX and

∣∣x∗Qb − TX (r̄)
∣∣ ≤ (1 + 4ρ

m

n

) ∆

2
, (4.6)

• or cycle around the average r̄ with a finite period T ≥ 2, i.e., xki = xk+T
i , i = 1, 2, . . . , n.

Moreover,

1

T

T∑
l=1

Qb
(
xk+l

1

)
= · · · = 1

T

T∑
l=1

Qb
(
xk+l
n

)
, x̄∗Qb , (4.7)
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and

∣∣x̄∗Qb − r̄∣∣ ≤ (1 + 4ρ
m

n

)
Γ0, where Γ0 , max

{
∆

2
,

4ρnL

1 + 2ρn

}
. (4.8)

Proof. See Section 4.7.

Remark 4.1. Similar to DQ-CADMM’s proof, the proof only uses the deterministic scheme and

the bounded quantization error of rounding quantizer. Thus, similar consensus results also hold

for other deterministic schemes as long as a bounded quantization error is guaranteed, e.g., the

rounding down quantizer.

Remark 4.2. BQ-CADMM uses Qb
(
xki
)

for the (k + 1)-th update at agent i even though agents

can compute and store real values with infinite precision. The reason is to guarantee that αk is

bounded and also lies in C(L−). Theorem 4.1 may fail if αk ∈ C(L−) is not preserved.

Remark 4.3. While BQ-CADMM in Algorithm 4.2 starts with variable values x0 = α0 = 0,

one can use similar arguments to show the same result of Theorem 4.1 for any x0 ∈ Rn and

α0 ∈ C(L−). As a result, we can pick x0 and α0 that are respectively closer to the optima

1nr̄ and r − 1nr̄, which usually leads to better consensus values at a fast speed. Note also that

Theorem 4.1 holds for any ρ > 0. As such, we can use decreasing ρ to accelerate the algorithm

while guaranteeing certain consensus accuracy; more details are provided in Section 4.3 where

the effect of ρ on BQ-CADMM is discussed.

Remark 4.4. With convergence or small enough ρ such that Γ0 ≤ ∆
2

, the error bound (4.6) and

(4.8) are exactly the same as those of DQ-CADMM when r̄ ∈ X . In contrast with [21, 23] where

the data need be bounded and the bound is known, BQ-CADMM only requires the data average to

lie in Xwhile the agents data can be arbitrary, at a loss of asymptotic convergence to the desired

average. This not only saves the energy of data communication but can also induce potential

applications; see, e.g., consensus based detection via one-bit communication in Chapter 5.
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While the proposed algorithm is not guaranteed to converge for all cases, we can use the history

of agents’ variable values (e.g., the running average technique) to reach asymptotic convergence

at a consensus. As such, we refer to x∗Qb in the convergent case and x̄∗Qb in the cyclic case as the

resulting consensus value. As a a direct result from Theorem 4.1, the following corollary states

that BQ-CADMM must converge when the data average is much beyond the bounded set X .

Corollary 1. BQ-CADMM must converge to a consensus at a quantization level in ΛX when

||r̄| − L| >
(

1 + 4ρ
n

m

)
Γ0.

If we further pick ρ < n
4m

, then Qb(xki ) must converge to sgn(r̄)L where sgn(r̄) = 1 if r̄ > 0 and

sgn(r̄) = −1 if r̄ < 0.

The error bounds in Theorem 4.1 also indicate that BQ-CADMM reaches a consensus within a

neighborhood of r̄. In the case where r̄ is far from the set X , however, one will suffer from a large

consensus error. Pick ρ small enough such that Γ0 ≤ ∆
2

and assume that L �
(
1 + 4ρm

n

)
∆
2

(e.g,

L ≥ 5
(
1 + 4ρm

n

)
∆
2

). Then Corollary 1 implies that r̄ is possibly beyond X when BQ-CADMM

converges at |x∗Qb| = L. Since TX (r̄) = sgn(r̄)L and
∣∣x∗Qb − TX (r̄)

∣∣ ≤ (1 + 4ρm
n

)
∆
2

from (4.6)

when r̄ /∈ X , each agent can subtract sgn(x∗Qb)L from ri and hence
∣∣r̄ − sgn(x∗Qb)L

∣∣ = |r̄| − L.

We can then run BQ-CADMM with data ri− sgn(x∗Qb)L and check the resulting convergent value

again. We repeat this process until BQ-CADMM converges to |x∗Qb| 6= L or reaches a cyclic result.

The consensus value at each agent is simply the sum of the final consensus value and the subtracted

values from each running. The above is referred to as the extended BQ-CADMM (EBQ-CADMM)

presented in Algorithm 4.3.

It is straightforward to see that EBQ-CADMM calls BQ-CADMM at most d|r̄|/Le + 1 times.

We have the following theorem directly from Theorem 4.1 and Corollary 1.

Theorem 4.2. Assume that L �
(
1 + 4ρm

n

)
∆
2

. For any agents’ data ri’s, EBQ-CADMM in

Algorithm 4.3 yields that

t1 = · · · = tn , t∗,
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Algorithm 4.3 EBQ-CADMM for quantized consensus
Require: Initialize ti = 0 for each agent i, i = 1, 2, · · · , n. Pick ρ > 0 such that

Γ0 ≤ ∆
2

.
1: while true do
2: Run BQ-CADMM with data ri at agent i such that either a convergent or cyclic

result is achieved. Denote the consensus value as xBQ.
3: if |xBQ| = L then
4: set ti = ti + sgn(xBQ)L and ri = ri − sgn(xBQ)L

5: else
6: break
7: end if
8: end while
9: return ti = ti + xBQ

and

|t∗ − r̄| ≤
(

1 + 4ρ
m

n

) ∆

2
.

4.3 Effect of Algorithm Parameter

In this section, we discuss the effect of the algorithm parameter ρ on BQ-CADMM and EBQ-

CADMM. Since L can be large enough such that Qb(xi) = Qd(xi), the discussion also covers

DQ-CADMM using rounding quantizer in Chapter 3 where the effect of ρ is not explored.

4.3.1 Consensus Error

As seen from (4.6) and (4.8), it is clear that the error bound increases in ρ. Therefore, one can

pick ρ small enough to achieve a certain consensus accuracy. For example, if ρ ≤ min
{

n
4m
, ∆

8nL

}
,

then the resulting consensus value of EBQ-CADMM is within one quantization resolution of the

desired average. Also note that the practical consensus error is usually much smaller than the error

bound (see simulations).
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4.3.2 Cyclic Period

While the current analysis does not characterize the cyclic period, our simulations in Section 4.3.2

show that BQ-CADMM converges in most cases, particularly with small enough ρ. When the

algorithm cycles, the period depends on the network structure, agents’ data as well as the algorithm

parameter, and varies in [2, 15] of all simulated cases. An important observation is that the cyclic

period of all our simulations consists of two consecutive quantization levels for each node. Indeed,

we can derive tighter consensus error bounds if it is known a priori that the cyclic period only has

two consecutive quantization levels, e.g., we can substitute L by ∆ for Γ0 in Thoerem 5.5. See

also Chapter 5 where a binary quantizer of two quantization levels is used at each node.

4.3.3 Convergence Time

Here we refer to the smallest k0 with convergent result or k0 + T with cyclic result as the con-

vergence time. First notice that it is of no meaning to consider the convergence time without

any constraint on the consensus error. To see this, recall that BQ-CADMM has initial variable

values x0
i = α0

i = 0 at each agent i and the first iteration has x1
i = 1

1+2ρ|Ni|ri at the first it-

eration. If ρ is chosen large enough, e.g., ρ > 1
2

maxi ri, such that |x1
i | < ∆

2
, then we have

Qb(xki ) = αki = 0, k = 0, 1, . . . , for all i and the convergence time is k0 = 1. Thus, we consider

the selection of ρ to accelerate BQ-CADMM under some consensus accuracy constraint.

Since BQ-CADMM can be viewed as applying the bounded quantization to the unstrained

least-squares problem and the quantization error is shown to be bounded, a natural approach is

to select ρ that accelerates CADMM. In [50], the optimal parameter is chosen to maximize the

convergence rate η given in Theorem 2.2. However, this parameter selection may not meet the

consensus accuracy requirement and indeed does provide the best practical performance. Mean-

while, we notice that to compute such ρ requires the knowledge of network structure, which might

be unrealistic in large scale networks. Therefore, we propose a heuristic selection ρ = n
m

which

only requires the number of nodes and the number of edges. Our intuition is based on the fact that
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a larger m
n

indicates that an agent on the average has more neighboring information to update itself.

Therefore, a smaller ρ provides adequate updates towards the consensus. On the contrary, when

agents have less information available, a larger ρ can help accelerate the speed. The good perfor-

mance of this selection is validated by the simulations. Furthermore, in the case where ρ = n
m

does

not satisfy the consensus accuracy constraint, we come up with a decreasing strategy for parameter

selection starting with this ρ such that the convergence time is much shortened.

4.4 Simulations

This section investigates the proposed algorithms via numerical examples. We construct a random

connected network in the same way as in Section 3.5. Let ∆ = 1 throughout this section.

4.4.1 Consensus Error

We first illustrate how BQ-CADMM and EBQ-CADMM proceed by showing the trajectories of

agents’ variables. We simulate a connected network with n = 50 nodes and m = 100 edges.

Let L = n
2

= 25, ρ = n
m

= 0.5 and ri ∼ N (n, n2). Set also the maximum iteration number

of each BQ-CADMM to 50. By this setting, it is very likely to have |r̄| > L and we thus apply

EBQ-CADMM for data averaging. The trajectories of Qb(xki ) + ti, i = 1, 2, . . . , n are plotted in

Fig. 4.1. In this example, the desired average is r̄ = 44.20 and the resulting consensus value of

EBQ-CADMM is t∗ = 44. The consensus error is |r̄ − t∗| = 0.20, which is much smaller than the

error bound (1 + 4ρm
n

)∆
2

= 2.5. The figure also indicates that EBQ-CADMM calls BQ-CADMM

twice with the first and second calls converging at the 17-th and 33-th iteration, respectively. As a

note, we run the simulation with this setup for 10, 000 times and no cyclic result is observed.

We next compare the proposed algorithms with DQ-CADMM that uses rounding quantizer

Qd(·) to investigate the effect of the bounded constraint. Denote t = [t1; t2; · · · ; tn] for EBQ-
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Fig. 4.1: Trajectories of EBQ-CADMM; n = 50, m = 100, L = n
2
, ∆ = 1, ρ = 0.5, and

ri ∼ (n, n2).

CADMM and define the iterative error as

∥∥Qb(xk)− 1nr̄
∥∥

2
/
√
n, BQ-CADMM,∥∥Qb(xk) + t− 1nr̄
∥∥

2
/
√
n, EBQ-CADMM,∥∥Qd(xk)− 1nr̄

∥∥
2
/
√
n, DQ-CADMM,

which is equal to the consensus error when a consensus is reached. Set n = 75, m = 200 and

L = n
2
. Pick ρ = 0.5 for CADMM based algorithms and set the maximum iteration number of each

BQ-CADMM call in EBQ-CADMM to 50. We consider two cases: one with the average in the

bounded set and the other with the average outside the set. Specifically, we generate ri ∼ N (0, n2)

and run the distributed averaging algorithms twice with data ri and ri + 3n, respectively. Note

that we use BQ-CADMM for the former case since the average lies in the bounded set with high

probability. Simulation result is presented in Fig. 4.2. From Fig. 4.2, we see that all the CADMM

based algorithms converges to consensuses after certain iterations with consensus errors much

smaller than the upper bound 1.83. When r̄ ∈ X , BQ-CADMM performs almost the same as DQ-
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Fig. 4.2: Iterative errors of BQ-CADMM, EBQ-CADMM, and DQ-CADMM. n = 75, m = 200,
L = n

2
, ∆ = 1, ρ = 0.5, and ri ∼ N (0, n2).

CADMM. When |r̄| > L, however, DQ-CADMM converges much faster than EBQ-CADMM.

This is because each BQ-CADMM call has iterations running even when a consensus is reached.

Also indicated by EBQ-CADMM is that the closer r̄ is to the set X , a longer convergence time

BQ-CADMM takes.

4.4.2 Cyclic Period

Since the convergent case can be viewed as the cyclic case with period T = 1, we first investigate

whether BQ-CADMM converges or cycles in various settings. Notice that the quantized consensus

algorithm converges in the above examples and indeed, BQ-CADMM and hence EBQ-CADMM

tend to converge, particularly with small enough ρ. To illustrate this, we simulate star graphs which

have the smallest number of edges for a connected network, randomly generated connected graphs

with intermediate numbers of edges, and complete graphs which have the highest number of edges.

As Corollary 1 indicates that BQ-CADMM must converge when r̄ is far from the bounded set X ,

we set L = 30 and generate ri ∼ N (0, 100) + r0 where r0 ∼ N (0, 25) such that most simulated
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cases have r̄ ∈ X . We then run BQ-CADMM with different ρ for the same data. The simulation

result is plotted in Fig. 4.3 where each plotted value denotes the empirical probability of cyclic

result in 10, 000 runs.
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Fig. 4.3: Empirical probability of cyclic case of BQ-CADMM in 10, 000 runs; ri ∼ N (0, 100)+r0

with r0 ∼ N (0, 25), L = 30 and ∆ = 1. (a) star graph, (b) randomly generated graph with
m =

⌈
(n+2)(n−1)

4

⌉
, (c) complete graph.

Fig. 4.3 indicates that BQ-CADMM always converges for large enough ρ with which the con-

sensus result has a large error bound, as discussed in Section 4.3.3. When ρ decreases, the number

of cyclic cases first increases and then decreases to 0. In particular, BQ-CADMM converges in all
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simulated examples with small enough ρ. Another interesting observation is that peak occurrence

of the cyclic case differs for different network structures. The star network has highest cyclic cases

around ρ = 0.5 n
m

and a larger network indicates less cyclic cases, while the intermediate and com-

plete networks have cyclic cases centered around ρ = 5 n
m

with larger networks having more cyclic

cases.

In the same example, we also record the cyclic period when BQ-CADMM indeed cycles. We

observe that the period of star networks is always 2 for all n and ρ, and the intermediate and

complete networks have periods between 8 and 15. While we cannot draw firm conclusions on

cyclic period from the simulation result, we do find that the period in all cyclic cases consists of

two consecutive quantization levels for each node, which can help derive better error bounds as

discussed in Section 4.3.2.

To study how ρ affects the convergence time of BQ-CADMM, we plot in Fig. 4 the average con-

vergence time of the same example in the above section. We observe that BQ-CADMM converges

immediately for large enough ρ but again a large consensus error may exist. The convergence time

is about 10 when running BQ-CADMM with ρ = n
m

for all n and network structures. For small

ρ, the convergence time decreases exponentially as ρ increases. The network structure also plays

an important role here. For the star network, the convergence time is almost the same for all n

and a larger n results in a slightly longer convergence time. On the other hand, the intermediate

and complete networks have longer convergence time with smaller n. Comparing the convergence

time of the same network size, we also find that a denser network tends to converge faster for the

same ρ

4.4.3 Decreasing Strategy for Parameter Selection

To achieve high consensus accuracy (e.g., the consensus error is within one quantization resolu-

tion), the consensus error bound of the cyclic case in Theorem 4.1 implies that one may need to

pick a very small ρ which can make BQ-CADMM slow to reach convergence or cycling. Fortu-

nately, simulations indicate that BQ-CADMM converges in most cases and ρ can be larger to meet
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Fig. 4.4: Convergence time of BQ-CADMM where each plotted value is the average of 10, 000
runs; ri ∼ N (0, 100) + r0 with r0 ∼ N (0, 25), L = 30 and ∆ = 1. (a) star graph, (b) randomly
generated graph with m =

⌈
(n+2)(n−1)

4

⌉
, (c) complete graph.
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the consensus error requirement in convergent cases. As such, we can start BQ-CADMM with a

large ρ for a number of iterations. Even though the local variables may not converge, they become

close to the optima. We then pick a small ρ and run BQ-CADMM with the current local variable

values. We continue this process until either a convergence is reached and ρ is such that the con-

sensus error bound (4.6) meets the required consensus accuracy, or ρ is small enough such that the

cyclic error bound (4.8) satisfies the accuracy requirement. We suggest starting with ρ = n
m

as it

performs reasonably well in terms of both consensus accuracy and convergence time, as seen from

Fig. 4.3 and Fig. 4.4.

To further illustrate the strategy with decreasing step size, we next apply it to the same example

in Section 4.3.2. Starting with ρ = n
m

, we run BQ-CADMM for 50 iterations if ρ > 10−4 and then

reduce it by a factor of 10. We repeat this process until ρ < 10−4 with which we run BQ-CADMM

long enough such that either convergence or cycling is reached. The average convergence time

of this strategy is presented in Table 4.1. As one can see, this strategy reduces dramatically the

convergence time. In addition, most iterations occur when ρ > 10−4 and BQ-CADMM only takes

a few more iterations to reach the convergence in all simulated cases when ρ ≤ 10−4.

Table 4.1: Average convergence time of BQ-CADMM with and without using the decreasing
strategy for parameter selection.

Structure Nodes Decreasing Parameter Fixed Parameter

Star
20 251.2 3.97× 104

50 253.9 4.14× 104

100 257.1 4.24× 104

Intermediate
20 203.9 5.13× 103

50 159.2 1.94× 103

100 160.6 0.94× 103

Complete
20 203.3 2.00× 103

50 158.7 0.84× 103

100 160.4 0.43× 103
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4.5 Summary

This chapter presents quantized consensus algorithms, BQ-CADMM and its extended version

EBQ-CADMM, that use finite-bit communications for possibly unbounded data. We provide con-

sensus error bounds to characterize their consensus accuracy and also use numerical examples

to examine the convergence time and cyclic behavior. A diminishing step size strategy is then

proposed which significantly accelerates the proposed algorithms.

4.6 Proof of Lemma 4.1

Proof. The proof is mainly based on the fact that |Qb(x̃)| ≤ L for any x̃ ∈ R. We first prove the

following:

TX (xk+1
i ) =


−L, if αki > (1 + 4ρ|Ni|)L+ |ri| ,

L, if αki < − (1 + 4ρ|Ni|)L− |ri| .

Assume that TX (xk+1
i ) > −L if αki > (1 + 4ρ|Ni|)L + |ri|. Similar to (4.4), the xi-update of

BQ-CADMM implies that TX (xk+1
i ) minimizes a constrained least-squares function:

TX (xk+1
i ) = arg min

x̃∈X

1

2
(x̃− ri)2 +ρ|Ni|x̃2−

ρ|Ni|Qb(xki ) + ρ
∑
j∈Ni

Qb(xkj )− αki + ri

x̃
, arg min

x̃∈X
Gk
i (x̃) + αki x̃,

where, for ease of presentation, we define

Gk
i (x̃) ,

1

2
(x̃− ri)2 + ρ|Ni|x̃2 −

ρ|Ni|Qb(xki ) + ρ
∑
j∈Ni

Qb(xkj ) + ri

x̃.
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Since |Qb(x̃)| ≤ L for any x̃ ∈ R, one can verify that Gk
i (x̃) is Lipschitz continuous over X : for

any x̃, ỹ ∈ X ,

∣∣Gk
i (x̃)−Gk

i (ỹ)
∣∣ < ((1 + 4ρ|Ni|)L+ |ri|) |x̃− ỹ| .

Now letting x̃ = −L ∈ X , we have

Gk
i (x̃) + αki (x̃)−

(
Gk
i

(
TX (xk+1

i )
)

+ αki TX (xk+1
i )

)
= Gk

i (−L)−Gk
i

(
TX (xk+1

i

)
− αkiL− αki TX (xk+1

i )

<
(
(1 + 4ρ|Ni|)L+ |ri| − αki

)(
TX (xk+1

i ) + L
)
,

< 0,

where the last inequality is because αki > (1 + 4ρ|Ni|)L + |ri| and TX (xk+1
i ) > −L. This

contradicts the fact that TX (xk+1
i ) minimizes Gk

i (x̃) + αki x̃ over X . That TX (xk+1
i ) = L for

αki < − (1 + 4ρ|Ni|)L− |ri| can be shown analogously.

If TX (xk+1
i ) = −L, the bounded quantization scheme implies Qb(xk+1

i ) = −L ≤ Qb(xk+1
j )

for any j ∈ Ni. Therefore, if αki > (1 + 4ρ|Ni|)L+ |ri|, we get

αk+1
i = αki + ρ|Ni|Qb(xk+1

i )− ρ
∑
j∈Ni

Qb(xk+1
j ) ≤ αki .

Similarly, αk+1
i ≥ αki if αki < −(1 + 4ρ|Ni|)L− |ri|.

Next consider |αki | ≤ (1+4ρ|Ni|)L+|ri|. In this case, we can simply use the triangle inequality

to conclude that

|αk+1
i | ≤ |αki |+ ρ|Ni|

∣∣Qb(xk+1
i )

∣∣+ ρ
∑
j∈Ni

∣∣Qb(xk+1
i )

∣∣
≤ (1 + 6ρ|Ni|)L+ |ri|.
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Since α0
i = 0, we finally have |αki | ≤ (1 + 6ρ|Ni|)L+ |ri| for all k.

4.7 Proof of Theorem 4.1

Proof. We first show that the sequence skQb is either convergent or cyclic. Note first that Qb(xki )

is bounded by L and can only be a multiple of ∆. Similarly, αki is bounded as per Lemma 4.1

and also a multiple of ρ∆ as seen from the αi-update of BQ-CADMM. Thus, skQb can only have

finitely many states as ρ and ∆ are both positive. By (4.5) it is clear that BQ-CADMM update of

sk+1
Qb is deterministic and only relies on skQb . Therefore, skQb must be either convergent or cyclic

with a finite period T ≥ 2 after a finite time iteration denoted as k0. The rest is to use this fact to

establish the consensus error bound in the respective case.

Convergent case: In this case we know αk+1 = αk for k ≥ k0. Then the α-update and

Lemma 2.1 implies

Qb(xk) ∈ C(1N),

i.e.,Qb(xk) reaches a consensus at the same quantization level in ΛX . Letting e∗i = x∗Qb −TX (x∗i ),

we have |e∗i | ≤ ∆
2

since Qb(·) = Q ◦ TX (·). Now taking k → ∞ on both sides of (4.4) and using

the optimality condition for minimizing a convex function (see, e.g., [53]), we get

TX (x∗i )− ri + 2ρ|Ni|TX (x∗i ) + ∂IX (TX (x∗i ))−

(
ρ|Ni|x∗Qb + ρ

∑
j∈Ni

x∗Q − α∗i

)
= 0,

where ∂IX (TX (x∗i )) denotes a subgradient of IX (·) at TX (x∗i ). After rearranging and plugging in

TX (x∗i ) = x∗Qb − e
∗
i , we obtain

x∗Qb + e∗i − ri + ∂IX
(
x∗Qb − e

∗
i

)
+ α∗i = 2

∑
j∈Ni

|Ni|e∗j . (4.9)
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Summing up both sides of (4.9) from i = 1 to n yields

n∑
i=1

(
x∗Qb + e∗i − ri + ∂IX

(
x∗Qb − e

∗
i

))
= 2

n∑
i=1

|Ni|e∗i , (4.10)

where
∑N

i=1 α
∗
i = 0 is due toα∗ ∈ C(L−) and Lemma 2.1. Since TX (r̄) = arg minx̃

∑N
i=1

(
1
2
(x̃−

ri)
2 + IX (x̃)

)
, we also have1

N∑
i=1

(TX (r̄)− ri + ∂IX (TX (r̄))) = 0. (4.11)

Subtracting (4.11) from (4.10), we get that

N∑
i=1

(
TX (r̄)− x∗Qb + ∂IX (TX (r̄))− ∂IX

(
x∗Qb − e

∗
i

))
=

N∑
i=1

(2|Ni|+ 1) e∗i . (4.12)

We may only consider the case where |TX (r̄) − x∗Qb| >
1
2
∆ for otherwise (4.6) holds trivially.

Recalling that |e∗i | ≤ ∆
2

, we get

(TX (r̄)− x∗Qb)
(
TX (r̄)− (x∗Qb + e∗i )

)
≥ 0.

Note that the convexity of IX (·) also implies

(
∂IX (TX (r̄))− ∂IX

(
x∗Qb + e∗i

)) (
TX (r̄)− (x∗Qb + e∗i )

)
≥ 0.

Therefore, TX (r̄) − x∗Qb and IX (TX (r̄)) − ∂IX
(
x∗Qb + e∗i

)
have the same sign and hence the fol-

lowing is true:

∣∣TX (r̄)− x∗Qb + ∂IX (TX (r̄))− ∂IX
(
x∗Qb + e∗i

)∣∣ ≥ ∣∣TX (r̄)− x∗Qb
∣∣ .

1Here ∂IX (TX (r̄)) denotes a subgradient, i.e., an element from the subdifferential of IX (·) at TX (r̄); we simply
use the same notation for all the subgradients despite the fact that they might be different values.
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Together with (4.12), we can establish the upper bound

∣∣x∗Qb − TX (r̄)
∣∣ ≤ 1

n

∣∣∣∣∣
n∑
i=1

(2ρ|Ni|+ 1) e∗i

∣∣∣∣∣ ≤
(

1 + ρ
4m

n

)
∆

2
,

where we use the fact that
∑n

i=1 |Ni| = 2m for an undirected connected graph.

Cyclic case: Similar to the convergent case, that skQb cycles with a period T implies

αk+T −αk = ρL−

T∑
l=1

Qb(xk+l) = 0,

which then leads to (4.7) by Lemma 2.1. While the bound on αki in Lemma 4.1 imposes a bound

on xki through the xi-update, we can derive a tighter bound by utilizing the cyclic fact.

Consider the local variables xki over one period. When xki ∈ X for the whole period (and hence

for all k ≥ k0), we simply have |eb(xki )| ≤ ∆
2

. If there is some xk+1
i > L with k ≥ k0 +T −1, then

there must exist k′ ≤ k which is the largest index such that Qb(xk
′
i ) < L and Qb(xk

′+1
i ) = L, for

otherwise Qb(xki ) converges and hence BQ-CADMM must converge due to (4.7). Then we have

Qb(xk
′+l
i ) = L for l = 1, 2, . . . k + 1− k′. Recalling the αi-update, we get αk

′+l
i ≤ αk

′
i as L is the

largest quantization value. We can further write the xk+1
i -update as

xk+1
i =

1

1 + 2ρ|Ni|

(
ρ|Ni|Qb(xki ) + ρ

∑
j∈Ni

Qb(xkj )− αki + ri

)
(a)

≤ 1

1 + 2ρ|Ni|

(
2ρ|Ni|L− αk

′

i + ri

)
(b)
= xk

′

i +
ρ

1 + 2ρ|Ni|

(
2|Ni|L+

∑
j∈Ni

Qb(xk
′

j )− |Ni|Qb(xk
′

i )

− |Ni|Qb(xk
′−1
i )−

∑
j∈Ni

Qb(xk
′−1
j )

)
(c)

≤ 5ρ|Ni|L
1 + 2ρ|Ni|

+ xk
′

i −
ρ|Ni|

1 + 2ρ|Ni|
Qb(xk

′

i ), (4.13)

where (a) and (c) are due to fact that Qb(x̃) ≤ L for any x̃ ∈ R, and (b) is from the BQ-CADMM
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update at the k′-th iteration. Since k′ is the index such that Qb(xk
′
i ) < L, we see that (4.13) takes

the largest value at xk′i = L− ∆
2

. This further implies for k ≥ k0,

xki ≤ L− ∆

2
+

4ρ|Ni|L
1 + 2ρ|Ni|

+
ρ|Ni|∆

1 + 2ρ|Ni|
< L+

4ρ|Ni|L
1 + 2ρ|Ni|

.

Similarly, one can show that

xki > −L−
4ρ|Ni|L

1 + 2ρ|Ni|
, for k ≥ k0.

Therefore, the quantization error satisfies

∣∣eb(xki )∣∣ ≤ max

{
∆

2
,

4ρ|Ni|L
1 + 2ρ|Ni|

}
, Γ0, k ≥ k0.

We can now use similar argument in Chapter 3 to derive the error bound. Summing the local

variable values over one period and using the above inequality we get

∣∣∣∣∣ 1

T

T∑
l=1

Qb(xk+l
i )− 1

T

T∑
l=0

xk+l
i

∣∣∣∣∣ =

∣∣∣∣∣x̄∗Qb − 1

T

T∑
l=0

xk+l
i

∣∣∣∣∣ ≤ Γ0. (4.14)

By the xi-update, we can also get

(1 + 2ρ|Ni|)
1

T

T∑
l=1

xk+l
i − ρ|Ni|

1

T

T∑
l=1

Qb(xk+l
i )

− ρ
∑
j∈Ni

(
1

T

T∑
l=1

Qb(xk+l
i )

)
+

T∑
l=1

αk+l
i − ri = 0.

Summing both sides of the above equality from i = 1 to n and using (4.7) leads to

n∑
i=1

(
(1 + 2ρ|Ni|)

1

T

T∑
l=1

xk+l
i

)
−

n∑
i=1

(
2ρ|Ni|

1

T

T∑
l=1

Qb(xk+l
i )

)
+

n∑
i=1

ri = 0.

Finally, plugging in (4.14) and dividing both sides of the above equation by n, we can bound the
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consensus error as

∣∣x̄∗Qb − r̄∣∣ ≤ (1 + 4ρ
m

n

)
Γ0.

This completes the proof.
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CHAPTER 5

CONSENSUS BASED DETECTION IN

SENSOR NETWORKS VIA ONE-BIT

COMMUNICATIONS

This chapter considers distributed detection over general connected sensor networks using iterative

distributed averaging algorithms, with the goal to reach a consensus decision among all sensors in

the network. We will show that one-bit communication between linked sensors at each iteration

achieves optimal asymptotic performance as centralized settings, which we owe to the use of de-

terministic quantization scheme.

5.1 Problem and Preliminary

Section 5.1.1 states the problem of this chapter and Section 5.1.2 introduces preliminary concepts

and results that will be used to prove our main results in Section 5.3.
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5.1.1 Problem Statement

Consider a connected n-node sensor network with m bi-directional links. Each sensor i, i =

1, 2, . . . , n, has its own observation yi. We model this network as a connected undirected graph

with n nodes and m edges. Let Ni denote the set of directly linked nodes of node i and |Ni| its

cardinality. Here node i is not considered as a linked node of itself, i.e., i /∈ Ni. Then n−1 ≤ m ≤
n(n−1)

2
, 1 ≤ |Ni| ≤ n − 1, and 2m =

∑n
i=1 |Ni|. Assume that the observations yn originate from

an i.i.d. source Q(y) with alphabet Σ that can be either a finite set or any Polish space.1 Denote

P(Σ) as the space of probability measures on Σ. We consider two hypotheses

• H1 : Q = P1 ∈ P(Σ),

• H2 : Q = P2 ∈ P(Σ),

with prior probabilities π1 and π2 = 1 − π1, respectively. Let An ⊆ Σn denote the acceptance

region for H1 andAcn = Σn \An the critical region. Then the type-I and type-II error probabilities

are respectively

αn = P1(Acn) and βn = P2(An).

We investigate the asymptotic detection performance via consensus based approaches where

sensors can only reliably exchange one-bit information with its neighbors at each iteration. To en-

sure autonomy in a large sensor network, local sensors, or more precisely, local computations and

communications, do not require the information about the global network structure. We consider

the following three criteria for large connected sensor networks:

• Neyman-Pearson criterion with constant constraint: for a given α ∈ (0, 1),

maximize lim inf
n→∞

− 1

n
log βn,

subject to lim
n→∞

αn ≤ α.

1We follow [54] to use Polish space in order not to be distracted by measurability concerns. In many applications
like ours, Σ is either a finite set or a subset of Rd for some d ∈ Z+. Definition of Polish space can be found
in [54, pp. 358].
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• MAP criterion: given π1, π2 ∈ (0, 1),

maximize lim inf
n→∞

− 1

n
log (π1αn + π2βn) .

• Neyman-Pearson criterion with exponential constraint: for a given γ ∈ (0, D(P2||P1)),

maximize lim inf
n→∞

− 1

n
log βn,

subject to lim
n→∞

αn ≤ 2−nγ.

It is a priori unknown a) if exponentially vanishing error probabilities in the network size can

be achieved given only one-bit local information exchange; and b) what would be the optimal error

exponent if indeed exponentially decaying error probabilities can be attained. Before introducing

the consensus based scheme for the construction of acceptance regions, we first review centralized

results that act as performance bounds for distributed detection.

5.1.2 Preliminaries

Throughout the rest of this chapter, we assume that P1 ∈ P(Σ) and P2 ∈ P(Σ) are absolutely

mutually continuous. We begin with the definition of relative entropy.

Definition 1. The relative entropy or Kullback-Leibler divergence between P1 and P2 is defined as

D(P1‖P2) =

∫
Σ

log
dP1

dP2

dP1 = EP1

(
log

dP1

dP2

)
,

where dP1/dP2 stands for the Radon-Nikodym derivative of P1 with respect to P2.

For ease of presentation, we write dP1 and dP2 as p1 and p2, respectively. Using the weak law

of large numbers, we can derive the following asymptotic equipartition property for the relative

entropy.
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Theorem 5.1 ([55, Theorem 11.8.1]). Let yn be a sequence of random variables drawn i.i.d. ac-

cording to P1, and let P2 be any other measure from P(Σ). Then

1

n
log

p1(yn)

p2(yn)
→ D(P1‖P2) in probability.

Definition 2. For a fixed n and ε > 0, a sequence yn ∈ Σn is said to be relative entropy typical if

and only if

D(P1‖P2)− ε ≤ 1

n
log

p1(yn)

p2(yn)
≤ D(P1‖P2) + ε.

The set of relative entropy typical sequences is called the relative entropy typical set A(n)
ε (P1‖P2).

We then have the following lemma as a direct consequence of Theorem 5.1.

Lemma 5.1 ([55, Theorem 11.8.2]). Given any positive ε,

P1

(
A(n)
ε (P1‖P2)

)
> 1− ε,

provided that n is sufficiently large.

With the above definitions, we are ready to present Stein’s lemma which provides the best

exponent for type-II error probability under the Neyman-Pearson criterion with constant constraint

on type-I error probability.

Theorem 5.2 (Stein’s Lemma [55, Theorem 11.8.3], [54, Lemma 3.4.7]). Let yn be i.i.d. ∼ Q.

Consider the hypothesis between two alternatives H1 : Q = P1 and H2 : Q = P2, where 0 <

D(P1‖P2) < ∞. Let βαn be the infimum of βn among all tests with αn ≤ α. Then for any

0 < α < 1,

lim
n→∞

− 1

n
log βαn = D(P1‖P2),

which can be asymptotically achieved by choosing the acceptance region as A(n)
ε (P1‖P2) with

ε→ 0.
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Under the Bayesian framework, Chernoff theorem provides the best error exponent for the error

probability.

Theorem 5.3 (Chernoff [55, Theorem 11.9.1], [54, Lemma 3.4.7]). For π1 > 0 and π2 > 0, the

best achievable exponent in the Bayesian probability of error is given by

lim inf
n→∞

− 1

n
log(π1αn + π2βn) = C(P1, P2),

where C(P1, P2) is the Chernoff information defined as

C(P1, P2) , − min
0≤λ≤1

log

(∫
Σ

p1(y)λp2(y)1−λdy

)
.

We next present the centralized results under the Neyman-Pearson criterion with exponential

constraint via large deviations. Define the logarithmic moment generating function of the LLR as

Λ(λ) = logEP1

(
e
−λ log

p1(y)
p2(y)

)
, λ ∈ R.

Notice that Λ(0) = Λ(1) = 0 for the hypothesis testing problem as P1 and P2 are mutually

absolutely continuous. The Fenchel-Legendre transform of Λ(λ), which characterizes the large

deviations associated with the empirical mean of i.i.d. random variables, is defined as

Λ∗(τ) , sup
λ∈R
{λτ − Λ(λ)}.

A useful property of Λ∗(·) is stated in the following lemma, which is a direct result of [54,

Lemma 2.2.5].

Lemma 5.2. Λ∗(τ) is a non-decreasing convex function for τ > −D(P1‖P2).

The following theorem then characterizes the large deviations of the probabilities of error under

likelihood ratio tests.
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Theorem 5.4 ([54, Theorem 3.4.3]). Let the acceptance region for H1 be

{
yn :

1

n
log

p1(yn)

p2(yn)
> −τ

}
. (5.1)

Given τ ∈ (−D(P1‖P2), D(P2‖P1)), the error probabilities satisfy

lim
n→∞

− 1

n
logαn = Λ∗(τ) > 0,

and

lim
n→∞

− 1

n
log βn = Λ∗(τ)− τ > 0.

The acceptance region in (5.1) is referred to as Neyman-Pearson test in the literature. It is

straightforward to see that the type-II error probability βn becomes larger as τ increases. Thus,

Theorem 5.4 together with the optimality of Neyman-Pearson test (see, e.g., [54, 55]) implies that

the optimal error exponent under the Neyman-Pearson criterion with exponential constraint is given

by

lim inf
n→∞

− 1

n
log βn = Λ∗(τ ∗)− τ ∗,

where τ ∗ is the smallest value in (−D(P1‖P2), D(P2‖P1)) such that Λ∗(τ ∗) = γ and must exist for

γ ∈ (0, D(P2‖P1)) as per Stein’s lemma and Lemma 5.2. The corresponding acceptance region is

then given by the Neyman-Pearson test in (5.1) with τ = τ ∗.

Also shown in [54], both Stein’s lemma and Chernoff theorem can be deduced from Theo-

rem 5.4. An interesting fact is that the Chernoff information is equal to the Fenchel-Legendre

transform of Λ(·) evaluated at zero, i.e., C(P1, P2) = Λ∗(0). Instead of directly studying the

Neyman-Pearson criterion with exponential constraint via large deviations, we will first consider

the Neyman-Pearson criterion with constant constraint and the Bayesian criterion in Section 5.3 to

help illustrate our approach. In order to apply consensus based approaches, notice that for all the

three criteria reviewed in Section 5.1.2, the optimal detectors (i.e., acceptance regions) all amount
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to a form of threshold test of the global log-likelihood ratio (LLR). With distributed detection, if

one can reconstruct such a statistic, then optimal detection performance in the centralized setting

can be attained. Since the global LLR is equivalent to the average of all local LLR values, this

motivates the average consensus approach for distributed detection where local LLRs are treated

as local agent data. The next section introduces such a distributed averaging algorithm that uses

only one-bit quantizer at each node.

5.2 Distributed Average Consensus using One-Bit Commu-

nications

The BQ-CADMM approach proposed in Chapter 4 uses a finite-bit quantizer that consists of a

projection operator followed by the uniform rounding quantizer. Due to this rounding quantizer,

the resulting consensus value is subject to a consensus error from the desired average and the

derived error bound has a non-vanishing constant error term (cf. Theorem 4.1). This fact implies

that the global LLR thus the consensus based approach is in itself insufficient if one is to attain the

same asymptotic performance of the centralized case. We therefore adopt a new binary quantizer

with controllable threshold such that the consensus error can be arbitrarily small if consensus is

reached at a specific quantization point.

We now construct the one-bit quantizer in a similar fashion to that of Chapter 4: composition

of (uniform) quantization and projection. Given quantization resolution ∆ > 0 and a predefined

quantization point a ∈ R, let Q(·) be a uniform quantizer defined as

Q(x) = a+ t∆, if a+ t∆− δ < x ≤ a+ (t+ 1)∆− δ,

where x ∈ R, t ∈ Z, and δ ∈ (0,∆). If we pick a = 0 and δ = ∆
2

, then Q(·) becomes the usual

rounding quantizer. Let X = [a, a + ∆] and denote by TX : R → X the projection operator that
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maps x ∈ R to the nearest point in X , i.e.,

TX (x) =



a, if x < a,

x, if a ≤ x ≤ a+ ∆,

a+ ∆, otherwise.

The one-bit quantizer is defined as

Qδ(·) = Q ◦ TX (·), (5.2)

which we refer to as δ-quantizer. One can easily verify that the δ-quantizer is equivalent to a binary

threshold quantizer

Qδ(x) =


a, if x ≤ a+ ∆− δ,

a+ ∆, otherwise.

Presented in Algorithm 5.4 is BQ-CADMM with this δ-quantizer, where ri ∈ R denotes the

local data, i.e., local LLR at node i, and ρ is the algorithm parameter that can be any positive

value. It is straightforward to see that BQ-CADMM2 is fully distributed since the updates of local

variables xk+1
i and αk+1

i only rely on its local and neighboring information. While similar results

of BQ-CADMM using this δ-quantizer can be obtained as a direct generalization of Theorem 4.1,

we can derive tighter consensus error bounds based on the fact that there are only two quantization

values. This is stated in Thereom 5.5.

Theorem 5.5. Let r̄ = 1
n

∑n
i=1 ri denote the data average. For BQ-CADMM using the δ-quantizer

Qδ(·), there exists a finite-time iteration k0 such that for k ≥ k0, all the quantized variable values

2Throughout the rest of this chapter, ‘BQ-CADMM’ stands for the algorithm with the δ-quantizer; we use ‘original
BQ-CADMM’ to represent the algorithm with the bounded rounding quantizer in Chapter 4
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Algorithm 5.4 BQ-CADMM with the δ-quantizer
Require: Initialize x0

i = 0 and α0
i = 0 for each agent i, i = 1, 2, · · · , n. Set ρ > 0 and

k = 0.
1: repeat
2: every agent i do

xk+1
i =

1

1 + 2ρ|Ni|

(
ρ|Ni|Qδ(xki ) + ρ

∑
j∈Ni

Qδ(xkj )− αki + ri

)
,

αk+1
i =αki + ρ

(
|Ni|Qδ(xk+1

i )−
∑
j∈Ni

Qδ(xk+1
j )

)
.

set k = k + 1.
3: until a predefined stopping criterion (e.g., a maximum iteration number) is satisfied.

either

• converge to the same quantization value:

Qδ(xk1) = Qδ(xk2) = · · · = Qδ(xkn) , x∗Qδ ∈ {a, a+ ∆},

where x∗Qδ satisfies the following error bound

∣∣x∗Qδ −TX (r̄)
∣∣ ≤


(
1 + 4ρm

n

)
(∆− δ), if x∗Qδ = a,(

1 + 4ρm
n

)
δ, if x∗Qδ = a+ ∆,

(5.3)

• or cycle around the true average r̄ with a finite period T ≥ 2, i.e., xki = xk+T
i , i =

1, 2, · · · , n. Furthermore,

T−1∑
l=0

Qδ(xk+l
1 ) =

T−1∑
l=0

Qδ(xk+l
2 ) = · · · =

T−1∑
l=0

Qδ(xk+l
n ), (5.4)
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and

|r̄ − (a+ ∆− δ)| < 6ρn∆. (5.5)

Proof. See Section 5.7.

Remark 5.1. Contrasting with original BQ-CADMM that has a uniform consensus error bound

when the algorithm converges, using the δ-quantizer results in error bounds that are dependent

on the consensus value. This is achieved by the asymmetric rounding of the δ-quantizer. Clearly,

choosing a small δ relative to ∆
2

will skew the quantizer toward 0. Thus, when consensus is reached

at a+ ∆, the consensus error is ensured to be small too.

Remark 5.2. While Theorem 5.5 only requires a connected network, the convergence time (the

smallest k0 in convergent cases or the smallest k0 +T in cyclic cases) depends on the agents’ data,

the network structure as well as the algorithm parameter ρ. Besides, BQ-CADMM converges in

most cases, particularly with large and dense networks or small enough algorithm parameters, as

shown in Chapter 4.

Remark 5.3. It is worth noting the choice of the algorithm parameter ρ. For BQ-CADMM to work,

i.e., Theorem 5.5 to hold, ρ can be any positive value and does not depend on other parameters;

however, to guarantee certain accuracy as we will do in the next section, ρ has to be selected

according to related quantities such as number of nodes and number of edges. In addition, the

choice of ρ has an impact on whether convergence or oscillation can happen. To see this, consider

r̄ 6= a + ∆ − δ. Then (5.5) is violated with small enough ρ and convergence must be reached.

This may also explain why small algorithm parameters are likely to yield convergence results in

our simulations where r̄ itself is random.
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5.3 Optimal Asymptotic Performance

This section establishes the optimal asymptotic performance under the three criteria. We use the

consensus result from BQ-CADMM with appropriate algorithm parameter and quantizer setup to

construct acceptance regions that can asymptotically achieve the optimal performance in central-

ized settings.

5.3.1 Neyman-Pearson Criterion with Constant Constraint

In Stein’s lemma, the relative entropy typical set A(n)
ε (P1‖P2) can achieve the optimal error expo-

nent in the centralized setting with diminishing ε. Consequently, by picking suitable ρ and small

enough δ we can construct an acceptance region that is similar to A(n)
ε (P1‖P2) to achieve the same

error exponent. The result is presented in the following theorem..

Theorem 5.6. Let yn be i.i.d. ∼ Q. Consider the hypothesis between two alternatives, H1 : Q =

P1 and H2 : Q = P2, where 0 < D(P1‖P2) < ∞. Let ri = log p1(yi)
p2(yi)

be the local data at node i.

Set a = 0, ∆ = D(P1‖P2), and

ρ = min

{
δ

6nD(P1‖P2)
,
n

4m

}
.

Assume that BQ-CADMM runs sufficiently long such that either convergence or cycling occurs.

Let the acceptance region for H1 be

Aδn = {yn : BQ-CADMM cycles}
⋃
{yn : BQ-CADMM converges at x∗Qδ = D(P1‖P2)}.

Then given any 0 < δ < D(P1‖P2),

P1

((
Aδn
)c)

<
1

2
δ, for n sufficiently large. (5.6)
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Moreover,

lim
δ→0

lim
n→∞

− 1

n
logP2

(
Aδn
)

= D(P1‖P2). (5.7)

Proof. In this case we have r̄ = 1
n

log p1(yn)
p2(yn)

. We first find a sufficient condition for yn ∈ Aδn to

establish (5.6). If yn /∈ Aδn, then BQ-CADMM converges at x∗Qδ = 0 and hence (5.3) implies

∣∣∣∣TX ( 1

n
log

p1(yn)

p2(yn)

)∣∣∣∣ ≤ (1 + 4ρ
m

n

)
(D(P1‖P2)− δ).

Picking 0 < ρ ≤ ρ1 , nδ
9m(D(P1‖P2)−δ) , we have

(
1 + 4ρ

m

n

)
(D(P1‖P2)− δ) ≤ D(P1‖P2)− 5

9
δ.

Thus, if yn is such that
∣∣∣ 1
n

log p1(yn)
p2(yn)

−D(P1‖P2)
∣∣∣ ≤ 1

2
δ, yn must lie in Aδn as TX (·) projects a real

value to the nearest point in X = [0, D(P1‖P2)]. Therefore,

Aδn ⊇
{
yn :

∣∣∣∣ 1n log
p1(yn)

p2(yn)
−D(P1‖P2)

∣∣∣∣ ≤ 1

2
δ

}
= A

(n)
1
2
δ
(P1‖P2).

Hence, (5.6) is true according to Lemma 5.1.

We next show that Aδn can asymptotically achieve the optimal error exponent by identifying a

necessary condition for yn ∈ Aδn. When convergence happens, x∗Qδ = D(P1‖P2) and (5.3) implies

that

∣∣∣∣TX ( 1

n
log

p1(yn)

p2(yn)

)
−D(P1‖P2)

∣∣∣∣ ≤ (1 + 4ρ
m

n

)
δ.

If we again pick ρ small enough, e.g., 0 < ρ ≤ ρ2 , n
4m

, then
(
1 + 4ρm

n

)
δ ≤ 2δ. Thus,

TX
(

1

n
log

p1(yn)

p2(yn)

)
≥ D(P1‖P2)− 2δ.
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Recall the definition of TX (·), we have

1

n
log

p1(yn)

p2(yn)
≥ D(P1‖P2)− 2δ. (5.8)

Now if BQ-CADMM cycles, we have from Theorem 5.5 that

∣∣∣∣ 1n log
p1(yn)

p2(yn)
− (D(P1‖P2)− δ)

∣∣∣∣ < 6ρn∆.

Letting ρ ≤ ρ3 = δ
6nD(P1‖P2)

, we conclude that (5.8) is also true. Thus, if yn ∈ Aδn, we have

p2(yn) ≤ p1(yn)2−n(D(P1‖P2)−2δ).

Therefore,

− 1

n
logP2(Aδn) = − 1

n
log

∫
Aδn
p2(yn)dy

≥ − 1

n
log

(
2−n(D(P1‖P2)−2δ)

∫
Aδn
p1(yn)dy

)
≥ D(P1‖P2)− 2δ,

which, together with Stein’s lemma, implies (5.7).

The proof is complete by choosing ρ = min{ρ1, ρ2, ρ3} and noting that δ < D(P1‖P2) and

m ≤ n(n−1)
2

.

Therefore, by choosing small enough δ, we have that αn < 1
2
δ ≤ α for large n and that the

type-II error exponent is arbitrarily close to the optimal error exponent D(P1‖P2). Moreover, the

above proof implies that as long as δ → 0 with n→∞, we can get

lim
n→∞

− 1

n
log βn = D(P1‖P2). (5.9)

On the other hand, δ cannot decrease too fast in order to satisfy the type-I error constraint. With
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finite alphabet, an option is from Hoeffding’s test [56] by setting δ = |Σ| logn
n

where |Σ| denotes the

cardinality of the alphabet. In general, there is not such a universal selection of δ. Fortunately, we

can always calculate δ such that P1

(
A

(n)
1
2
δ

)
= 1−α, and it is not hard to show that this δ diminishes

in n. If the above choice is greater than or equal to D(P1‖P2), we can simply set δ = D(P1‖P2)
2

to

ensure 0 < δ < D(P1‖P2). In this way, (5.9) is guaranteed under the type-I error constraint.

5.3.2 MAP Criterion

Unlike the Neyman-Pearson criterion with constant constraint, the MAP criterion does not require

δ to be diminishing. As one will see, this is because the optimal acceptance region converges to

the same set asymptotically for any positive prior probabilities. Specifically, it is well-known that

the optimal acceptance region for any n under the MAP criterion is

{
yn :

1

n
log

p1(yn)

p2(yn)
>

1

n
log

π2

π1

}
, (5.10)

provided that π1 and π2 are both positive. Chernoff theorem thus indicates that

lim inf
n→∞

− 1

n
logP1

({
yn :

1

n
log

p1(yn)

p2(yn)
≤ 1

n
log

π2

π1

})
= lim inf

n→∞
− 1

n
logP2

({
yn :

1

n
log

p1(yn)

p2(yn)
>

1

n
log

π2

π1

})
= C(P1, P2). (5.11)

We remark that (5.11) does not depend on particular values of π1 and π2 as long as they are positive.

The following theorem states the best achievable exponent for the Bayesian error probability.

Theorem 5.7. Let yn be i.i.d∼ Q. Consider the hypothesis betweenH1 : Q = P1 andH2 : Q = P2

with positive prior probabilities π1 and π2, respectively. For the δ-quantizer Qδ(·), set a = −1,

∆ = 2, and δ = 1. Set also the local data ri = log p1(yi)
p2(yi)

and the algorithm parameter ρ = 1
12n2 .

Assume that BQ-CADMM runs sufficiently long such that either the convergence or cycling occurs.
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Let the acceptance region for H1 be

An ={yn : BQ-CADMM cycles}
⋃
{yn : BQ-CADMM converges at x∗Qδ = 1}.

Then the error exponent is given by

lim inf
n→∞

− 1

n
log(π1αn + π2βn) = C(P1, P2).

Proof. With this setup, the δ-quantizer has the threshold at a + ∆ − δ = 0. First note that if

BQ-CADMM results in oscillation, Theorem 5.5 implies

∣∣∣∣ 1n log
p1(yn)

p2(yn)

∣∣∣∣ < 6ρn∆ =
1

n
,

where the last inequality is because ρ = 1
12n2 .

In the convergent case, we first use a necessary condition for x∗Qδ = 1 to show that

lim inf
n→∞

− 1

n
log βn ≥ C(P1, P2).

By Theorem 5.5, when x∗Qδ = 1, yn must satisfy

∣∣∣∣TX ( 1

n
log

p1(yn)

p2(yn)

)
− 1

∣∣∣∣ < 1 + 4ρ
m

n
.

If we pick ρ ≤ 1
4m

and recall that TX (·) is the projection operator that maps a real value to the

nearest point in X = [−1, 1], the above inequality indicates that yn is such that

1

n
log

p1(yn)

p2(yn)
> − 1

n
.
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Together with the cyclic case, we get

An ⊆
{
yn :

1

n
log

p1(yn)

p2(yn)
> − 1

n

}
.

Hence,

βn = P2(An) ≤ P2

({
yn :

1

n
log

p1(yn)

p2(yn)
> − 1

n

})
.

Comparing with (5.10), we see that {yn : 1
n

log p1(yn)
p2(yn)

> − 1
n
} is the optimal acceptance region

for the hypothesis testing problem with prior probabilities 2
3

and 1
3

under H1 and H2, respectively.

Therefore, (5.11) implies that

lim inf
n→∞

− 1

n
log βn

≥ lim inf
n→∞

− 1

n
logP2

({
yn :

1

n
log

p1(yn)

p2(yn)
> − 1

n

})
= C(P1, P2). (5.12)

We next find a sufficient condition for yn ∈ An to establish

lim inf
n→∞

− 1

n
logαn ≥ C(P1, P2). (5.13)

When yn /∈ An, convergence must be reached with x∗Qδ = −1 and we have

∣∣∣∣TX ( 1

n
log

p1(yn)

p2(yn)

)
+ 1

∣∣∣∣ ≤ 1 + 4ρ
m

n
.

Therefore, when n ≥ 2 and ρ ≤ 1
4m

,

Acn ⊆
{
yn :

1

n
log

p1(yn)

p2(yn)
≤ 1

n

}
.

Since
{
yn : 1

n
log p1(yn)

p2(yn)
> 1

n

}
is the optimal acceptance region for the hypothesis testing problem

with prior probabilities 1
3

and 2
3
, (5.13) can be shown similarly.
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Finally, combining (5.12) and (5.13) we have

lim inf
n→∞

− 1

n
log (π1αn + π2βn) ≥ C(P1, P2).

The proof is complete by Chernoff theorem and the fact thatm ≤ n(n−1)
2

for a connected undirected

graph.

Remark 5.4. It appears that choosing ρ = 1
12n2 , which can be very small, may make BQ-CADMM

slow. Fortunately, BQ-CADMM is more likely to converge with larger n and we only need ρ ≤ 1
4m

if convergence happens. The decreasing strategy in Chapter 4 for ρ can also be used to accelerate

the speed of BQ-CADMM.

The above theorem indicates that the consensus approach achieves the optimal error exponent

which is given by Chernoff theorem. A direct extension is to consider multi-hypothesis testing.

We will show that our consensus based approach can also achieve the centralized error exponent

under MAP criterion if BQ-CADMM are run multiple times. Under the w-th hypothesis, denote

the probability measure by Pw and prior probability by πw, where w = 1, 2, · · · ,W for some

integer W ≥ 2. We also denote dPw as pw. Assume that all πw are positive and that Pw and Pw′ are

absolutely mutually continuous for any w 6= w′. The centralized MAP rule for the w-th hypothesis

is given by

A∗w(n) =

{
yn : πwpw(yn) ≥ max

w′<w
πw′pw′(y

n), πwpw(yn) > max
w′>w

πw′pw′(y
n)

}
.

For ease of presentation, define the following Neyman-Pearson test between two different hypothe-

ses

V w,w′

n =


{
yn : 1

n

∑
i log pw(yi)

pw′ (y
i)
≥ 1

n
log

πw′
πw

}
, if w′ < w,{

yn : 1
n

∑
i log pw(yi)

pw′ (y
i)
> 1

n
log

πw′
πw

}
, if w′ > w.

Then we can write A∗w(n) =
⋃
w′ 6=wV

w,w′
n for a given w. Two useful facts about V w,w′

n are stated

as follows:
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• V w,w′
n = Σn \ V w′,w

n ,
(
V w′,w
n

)c
.

• Consider binary hypothesis testing between Pw and P ′w with prior probabilities πw
πw+πw′

and
πw′

πw+πw′
, respectively. Then V w,w′

n is the optimal acceptance region for Pw under MAP crite-

rion. Thus, Chernoff theorem implies

lim inf
n→∞

− 1

n
logPw

((
V w,w′

n

)c)
= lim inf

n→∞
− 1

n
logPw′

(
V w,w′

n

)
= C(Pw, Pw′).

Now consider the optimal Bayesian error for the multi-hypothesis testing

P ∗e =
∑
w

πwPw((A∗w(n))c).

Noting that Pw((A∗w(n))c) = Pw

(⋃
w′ 6=w

(
V w,w′
n

)c)
, we get the following

max
w′ 6=w

Pw

((
V w,w′

n

)c)
≤ Pw((A∗w(n))c) ≤

∑
w′ 6=w

Pw

((
V w,w′

n

)c)
. (5.14)

Thus, we get the error exponent

lim inf
n→∞

− 1

n
logPw((A∗w(n))c) = min

w′ 6=w
C(Pw, Pw′),

where w is prefixed. Hence, the centralized error exponent is

lim inf
n→∞

− 1

n
logP ∗e = min

w
min
w′ 6=w

C(Pw, Pw′).

To apply our consensus based approach, we next use the bubble sorting idea to construct the

MAP detector: starting with w = 1 and w′ = 2, test whether yn ∈ V w,w′
n ; if yes, keep this w, and

otherwise, set w = w′; increment w′ = w′ + 1 and test again if yn ∈ V w,w′
n ; continue this process

until the W -th hypothesis is involved. It is straightforward to see that the final w is the output

of the MAP detector. Recall that the acceptance region in Theorem 5.7, when testing between
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Pw and Pw′ , achieves the same optimal error exponent as V w,w′
n . We may replace V w,w′

n with this

acceptance region, denoted by Aw,w′n , to implement the consensus based approach. In summary,

the above algorithm runs BQ-CADMM W − 1 times to make a decision for the multi-hypothesis

testing problem.

To study how this algorithm performs, letAw(n) be the acceptance region for the w-th hypoth-

esis resulting from the W − 1 runs of BQ-CADMM. For the first hypothesis to be selected, yn

must be such that yn ∈
⋂
w′ 6=1A1,w′

n and conversely, if yn ∈
⋂
w′ 6=1A1,w′

n , we must select the first

hypothesis. Thus, A1(n) =
⋂
w′ 6=1A1,w′

n . Similar to (5.14) and using Theorem 5.7, we have

lim inf
n→∞

− 1

n
logP1((A1(n))c) = min

w′ 6=1
C(P1, P

′
w).

For 2 ≤ w ≤ W − 1, if the final decision is w, then the (w − 1)-th run of BQ-CADMM must

accept w. At the same time, yn must lie in Aw,w′n for any w′ > w. Thus,

( ⋂
w′<w

(Aw
′,w

n (n))c

)⋂( ⋂
w′>w

Aw,w′n

)
⊂ Aw(n) ⊂

⋂
w′>w

Aw,w′n .

Recalling the definition of Aw,w′n , we conclude that

min
w′ 6=w

C(Pw, Pw′) ≤ lim inf
n→∞

− 1

n
logPw((Aw(n))c) ≤ min

w′>w
C(Pw, Pw′).

For the W -th hypothesis, similar argument shows that

min
w′ 6=W

C(PW , Pw′) ≤ lim inf
n→∞

− 1

n
logPW ((AW (n))c) ≤ max

w′ 6=W
C(PW , Pw′).

Finally, it is noted that the Bayesian error is Pe =
∑

w πwPw((Aw(n))c) and that its error exponent

lim infn→∞− 1
n

logPe is decided by the lowest error exponent of Pw((Aw(n))c). Together with the
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symmetry property of C(Pw, Pw′) (i.e., C(Pw, Pw′) = C(Pw′ , Pw)), we conclude that

lim inf
n→∞

− 1

n
logPe = min

w
min
w′ 6=w

C(Pw, Pw′). (5.15)

which is the optimal error exponent in centralized case. The result is summarized in the following

theorem.

Theorem 5.8. Consider multi-hypothesis testing with hypotheses Pw, w = 1, 2, · · · ,W for some

integerW ≥ 2. Assume that the prior probability πw for each hypothesis is positive and that the hy-

potheses Pw are absolutely mutually continuos with each other. Using W −1 runs of BQ-CADMM

with the same quantizer and algorithm parameters in Theorem 5.7, each node can achieve the

optimal centralized error exponent under the MAP criterion, which is given in (5.15).

5.3.3 Neyman-Pearson Criterion with Exponential Constraint

We now consider the Neyman-Pearson criterion with exponential constraint based on large devi-

ations techniques. Similar to the above two cases, the key is to pick appropriate algorithm and

quantizer parameters such that the constructed acceptance region approaches the optimal central-

ized one asymptotically.

Theorem 5.9. Let yn be i.i.d. ∼ Q. Consider the hypothesis testing between H1 : Q = P1

and H2 : Q = P2 and assume that 0 < D(P1‖P2), D(P2‖P1) < ∞. Set a = −D(P2‖P1),

∆ = D(P1‖P2) +D(P2‖P1), and δ = D(P1‖P2) + τ with τ ∈ (−D(P1‖P2), D(P2‖P1)). Set also

ri = log p1(yi)
p2(yi)

and

ρ =
1

6n2((D(P1‖P2) +D(P2‖P1))
.

Assume that BQ-CADMM runs sufficiently long such that either convergence or cycling occurs.

Let the acceptance region for H1 be

An ={yn : BQ-CADMM cycles}
⋃
{yn : BQ-CADMM converges at x∗Qδ =D(P1‖P2)}.
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Then we have

lim inf
n→∞

− 1

n
logαn = Λ∗(τ),

and

lim inf
n→∞

− 1

n
log βn = Λ∗(τ)− τ.

Proof. The δ-quantizer of this setup has its threshold at −τ . The proof is similar to previous ones

and we hence omit some details.

We first find a necessary condition for yn ∈ An. If yn 6∈ An, BQ-CADMM must reach a

consensus at x∗Qδ = −D(P2‖P1). Then Theorem 5.5 implies

∣∣∣∣∣∣∣TX
(

1

n
log

p1(yn)

p2(yn)

)
+D(P2‖P1)

∣∣∣∣∣∣∣ ≤
(

1 + 4ρ
m

n

)
(D(P2‖P1)− τ) .

Picking ρ small enough, e.g., ρ < 1
4m(D(P1‖P2)−τ)

, we get

1

n
log

p1(yn)

p2(yn)
≤ −τ +

1

n
.

This further indicates

An ⊆
{
yn :

1

n
log

p1(yn)

p2(yn)
> −τ +

1

n

}
.

Therefore,

lim inf
n→∞

− 1

n
log βn

≥ lim inf
n→∞

− 1

n
logP1

({
yn :

1

n
log

p1(yn)

p2(yn)
> −τ +

1

n

})
= Λ∗(τ)− τ, (5.16)
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where the last equality is due to Lemma 5.2 and Theorem 5.4.

We next find a sufficient condition for yn ∈ An. If yn results in a cyclic result of BQ-CADMM,

we must have ∣∣∣∣ 1n log
p1(yn)

p2(yn)
+ τ

∣∣∣∣ ≤ 6ρn(D(P1‖P2) +D(P2‖P1)).

For the other case where the convergence is reached at x∗Qδ = D(P1‖P2), we have

∣∣∣∣∣∣∣TX
(

1

n
log

p1(yn)

p2(yn)

)
−D(P1‖P2)

∣∣∣∣∣∣∣ ≤
(

1 + 4ρ
m

n

)
(D(P1‖P2) + τ) .

With ρ = 1
6n2∆

, we can verify that

An ⊆
{

1

n
log

p1(yn)

p2(yn)
≥ −τ − 1

n

}
,

and thus

lim inf
n→∞

− 1

n
logαn ≥ Λ∗(τ). (5.17)

Finally, the optimality of the Neyman-Pearson test and Theorem 5.4 establish the equalities in

(5.16) and (5.17).

Therefore, by replacing τ = τ ∗ where τ ∗ is the optimal value in the centralized case, each

node achieves the optimal centralized error exponent in Theorem 5.4 under the Neyman-Pearson

criterion with exponential constraint.

5.3.4 Remarks

We have the following remarks regarding to our main results.
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5.3.4.1 Parameter Selection

We focus on the Neyman-Pearson criterion with exponential constraint as both Stein’s lemma and

Chernoff theorem can be deduced from it. It is noted that we simply pick one setup for the δ-

quantizer to accommodate all possible −D(P1‖P2) < τ < D(P2‖P1) in Theorem 5.9. Indeed, the

quantizer parameters can be chosen from a quite broad set. With given τ in the Neyman-Pearson

test of (5.1), one can pick any a and ∆ to satisfy a < −τ < a + ∆. Then δ can be chosen

such that 0 < δ < ∆ and the threshold a + ∆ − δ → −τ as n → ∞. To guarantee the optimal

asymptotic performance, the algorithm parameter ρmust be small enough making 6ρn∆→ 0 with

n → ∞. This setup of quantizer and algorithm parameters can be similarly verified by exploring

the sufficient and necessary conditions on the acceptance region.

It is worth noting that while the optimal error exponent only requires the constructed acceptance

region to asymptotically approach the centralized one, suitable quantizer setup and step size can

improve significantly the non-asymptotic performance; see Section 5.4 and Section 5.5.1. Besides,

our choice of ρ is obtained from worst-case consensus error bounds that are generally loose and in

turn result in loose ρ. Thus, our algorithm is very likely to perform well without requiring ρ to be

very small; see also the simulation result in Section 5.5.1 when n is small.

5.3.4.2 Practical Concerns

In our main theorems, the acceptance regions all rely on the average LLR and seem to require

knowledge of all the observations yn. Fortunately, they can be fully characterized by local results

according to Theorem 5.5. Assume that either convergence or cycling has been reached. Then

Theorem 5.5 guarantees that a consensus is reached at all the nodes. That is, if a node converges

at a (or a + ∆), every other node reaches a convergence at a (or a + ∆); if the node cycles, every

other node cycles. As such, each node can make the same decision determined by the acceptance

region.

Another concern might be on the stopping criterion at each node. A natural approach is to

set the maximum number of iterations at the beginning, which then requires characterization on
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convergence time of BQ-CADMM. In light of this, our present results lacks theoretic analysis on

convergence time and we alternatively conduct simulations to see how fast BQ-CADMM proceeds.

An upper bound on convergence time, which may depend on the network topology and agents’

data, may still be insufficient as these quantities are locally unknown. There also exist some

approaches that run additional algorithms to determine if a consensus has been reached in a fully

distributed manner (see, e.g., [57, 58]). Noticing that these additional algorithms may take much

time in large networks, we doubt if it is worth to use them due to the extra data communications.

In general, we have not yet seen any efficient and guaranteed solution to stopping distributed

averaging algorithms.

As to determining the cyclic state, nodes may record a certain number of consecutive variable

values and check if any cycle exists. Indeed, the cyclic behavior can be ignored without losing any

optimality in terms of error exponents. To see this, consider rejecting H1 if oscillation happens. It

can be similarly shown that the same error exponent is achieved under each criterion. Therefore,

nodes can make their decision based on their current state to achieve optimal asymptotic perfor-

mance, but they fail to reach a consensus when oscillation occurs. Moreover, as shown by our

simulation in Section 5.5.1, convergence almost always happens with the choice of ρ = 1
4m

when

n becomes large.

5.3.4.3 Comparison with Fusion Center Based Structures

By enabling sensors and fusion center to transmit and receive data, the parallel and tandem net-

works are equivalent to the undirected star and path graphs, respectively. As such, the parallel

and tandem networks can be regarded as special cases of consensus type structures. It is impor-

tant to note that we achieve the optimal error exponent as in centralized settings at a cost of more

data transmissions. The fusion center based structures need n and n − 1 data transmissions for

the parallel and tandem networks, respectively. The consensus based structure, however, has each

sensor sending one bit to its neighbors and hence there are in total 2m bits per iteration. To see

how many bits are needed for decision making at all nodes, it requires the characterization on the
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convergence time of BQ-CADMM. While the current work cannot characterize convergence time,

we will conduct numerical examples in Section 5.5 to evaluate it empirically.

5.4 Non-asymptotic Performance

While this chapter targets asymptotic characterizations on detection error probabilities, we are also

interested in non-asymptotic performance of the proposed approach. For a broad class of criteria,

including the Neyman-Pearson criterion and Bayesian criterion, the optimal acceptance region for

H1 is defined by a likelihood ratio test with a suitably chosen threshold

A∗n =

{
yn :

1

n
log

p1(yn)

p2(yn)
> τ ∗

}
,

where τ ∗ ∈ R and n is finite. Similar to the asymptotic setting, we will use the consensus result

of BQ-CADMM to construct an acceptance region whose type-I and type-II error probabilities are

arbitrarily close to the centralized ones.

Set a = τ ∗−1, ∆ = 2, and δ = 1 for the δ-quantizer. Then the threshold in this setup is τ ∗. Set

also ri = log p1(yi)
p2(yi)

. We again run BQ-CADMM long enough such that either a convergent result

or cyclic result is reached. Let the acceptance region for H1 be

An ={yn : BQ-CADMM cycles}
⋃
{yn : BQ-CADMM converges at x∗Qδ = τ ∗ + 1}.

We next find sufficient and necessary conditions for yn ∈ An. If yn 6∈ An, BQ-CADMM

converges at x∗Qδ = τ ∗ − 1. We get

|τ ∗ − 1− TX (r̄)| ≤
(

1 + 4ρ
m

n

)
.
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Then the projection operator TX (·) implies that we must have yn ∈ An if

r̄ − τ ∗ > 4ρ
m

n
.

When yn ∈ An, BQ-CADMM either cycles or converges at x∗Qδ = τ ∗ + 1. Thus, yn must be such

that either

|r̄ − τ ∗| < 12ρn, or r̄ − τ ∗ ≥ −4ρ
m

n
.

Thus, for Q ∈ {P1, P2} we get

Q

({
yn :

1

n
log

p1(yn)

p2(yn)
> τ ∗ + 4ρ

m

n

})
≤ Q(An)

≤ Q
({

yn :
1

n
log

p1(yn)

p2(yn)
> τ ∗ −max

{
12ρn, 4ρ

m

n

}})
.

Let z = 1
n

log p1(yn)
p2(yn)

and denote its cumulative distribution function as Q(τ) = Q ({z : z ≤ τ}).

We can further write the above as

1−Q
(
τ ∗ + 4ρ

m

n

)
≤ Q(An) ≤ 1−Q

(
τ ∗ −max

{
12ρn, 4ρ

m

n

})
.

Recall that Q(A∗n) = 1 − Q(τ ∗), we have that Q(An) → Q(A∗n) as ρ → 0 given that Q(τ) is

continuous at τ = τ ∗. Therefore, when the continuity condition holds for both P1 and P2, we can

make the type-I and type-II error probabilities arbitrarily close to the optimal ones by picking small

enough ρ and attain the same centralized performance asymptotically under each criterion.
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5.5 Simulations

5.5.1 Non-asymptotic Performance

We first consider the following hypothesis testing problem between two Gaussian distributions in

star networks:

• H1 : P1 = N (1, 10),

• H2 : P2 = N (−1, 10).

For finite n and positive π1 and π2, the optimal centralized acceptance region for H1 under the

MAP criterion is {
yn :

1

n

(
2

n∑
i=1

yi

)
>

1

n
ln
π2

π1

}
,

and the corresponding Bayesian error probability is given by

Pe = π1qfunc

((
1− 1

2n
ln
π2

π1

)√
n

10

)
+ π2qfunc

((
1 +

1

2n
ln
π2

π1

)√
n

10

)
, (5.18)

where qfunc(·) denotes the complementary distribution function for standard Gaussian distribu-

tion. We perform Monte Carlo simulations to estimate the actual Bayesian error probability of

our approach and compare it with (5.18). In the spirit of Remark 5.4, we run BQ-CADMM with

ρ = 1
4m

and check if BQ-CADMM converges to the right hypothesis. If BQ-CADMM cycles,

we rerun BQ-CADMM with ρ = 1
12n2 and make the decision based on the new consensus result.

Summarized in Fig. 5.1 and Fig. 5.2 are the Monte Carlo results for the Gaussian example with

different prior probabilities: π1 = 0.5 and π1 = 0.1.

We observe from Fig. 5.1 that the consensus based error probabilities of the two cases are both

very close to the centralized error probability with π1 = 0.5 for all n. That said, in the case of

π1 = 0.1, the consensus based approach has its error probability far from the centralized one when

n is small. This is because we use δ = 1 in the consensus based approach for all positive prior
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probabilities and consequently, the acceptance region is very different from the optimal centralized

one with π1 = 0.1 for small n. Similar to the setup of the δ-quantizer in Section 5.4, we pick

δ = 1 + 1
n

log π2
π1

such that the threshold of the δ-quantizer becomes 1
n

log π2
π1

. Running the example

with π1 = 0.1 again, we obtain the new error probability very close to the optimal one for all n

(see the dashed line with cross markers in Fig. 5.1). In addition, we record the number of trials in

which BQ-CADMM cycles with ρ = 1
4m

. As plotted in Fig. 5.2, it is lcear that BQ-CADMM tends

to converge as n increases.

5.5.2 Convergence Time

Our next simulation investigates the convergence time of the proposed approach. Given the number

of nodes, we consider the above Gaussian example with π1 = 0.5 over star graph which has the

smallest number of edges for a connected network, complete graph which has the largest number of

edges, and randomly generated connected graphs with intermediate numbers of edges. A random

graph with n nodes andm edges is generated as follows: first generate a complete graph of n nodes

and then randomly remove n(n−1)
2
−m edges while ensuring the graph stays connected. Since we

have shown that BQ-CADMM with this example is more likely to converge with larger n, we only

count the convergent cases and pick ρ = 1
4m

for BQ-CADMM.

Simulation result is shown in Fig. 5.3. The plotted value is the average of 2, 000 runs in which

both data and graph are randomly generated at each run. One can see that sparser and larger

networks usually have longer convergence time and that the average convergence time for all cases

is approximately O(n log n). As a result, in a sensor network with n nodes and m edges, the

proposed approach requires approximatelyO(mn log n) bits of data transmissions for the Gaussian

example.

Noticing that the above simulation uses a fixed algorithm parameter for BQ-CADMM, we now

apply a decreasing parameter strategy which is shown to dramatically reduce the convergence time

in Chapter 4. Start with ρ = n
m

. If ρ > 1
4m

, we run BQ-CADMM for 50 iterations and then reduce

it by a factor of 10. We repeat this process until ρ ≤ 1
4m

with which we run BQ-CADMM long
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Fig. 5.3: Convergence time of BQ-CADMM for the Gaussian example with π1 = 0.5; each
plotted value is the average of 2, 000 runs.

enough such that either convergence or cycling occurs. The average convergence time is shown

in Fig. 5.4. Comparing with fixed parameter strategy, we observe that the decreasing strategy

runs 50 dlog10(4n)e iterations before ρ meets the accuracy requirement and makes BQ-CADMM

proceed faster at early stages. When ρ indeed satisfies the required accuracy, it only takes a few

iterations before reaching the final state. With the decreasing parameter strategy for BQ-CADMM,

we conjecture that the consensus based approach requires O(m log n) bits of data transmissions on

the average to achieve the optimal asymptotic performance for the Gaussian example.

5.6 Summary

This chapter studies asymptotic performance of consensus based detection using BQ-CADMM.

Different from original BQ-CADMM that has a constant term in the consensus error bound, we

construct a binary quantizer with controllable threshold such that the consensus value can be of

desired accuracy. We then show that each node can achieve the same optimal error exponent as in
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Fig. 5.4: Convergence time of BQ-CADMM using decreasing parameter strategy for the Gaussian
example with π1 = 0.5; each plotted value is the average of 2, 000 runs.

centralized cases under three common criteria. Non-asymptotic behavior of the proposed approach

is also addressed.

5.7 Proof of Theorem 5.5

Proof. By the definition of Qδ(·) in (5.2), it is clear that |Qδ(x)− TX (x)| < ∆ < ∞ for x ∈ R.

Together with the deterministic property (i.e., Qδ(x1) = Qδ(x2) if x1 = x2), that BQ-CADMM

using this δ-quantizer either converges or cycles with every node having the same sum of quantized

variable values over one period can be shown by the same idea as that of Theorem 4.1. What

remains is to derive the error bounds in the respective cases.

Convergent case: With convergence, we can write xki = x∗i for k ≥ k0. To show the error bound

(5.3), denote e∗i = TX (x∗i )− x∗Qδ . Consider first x∗Qδ = a and assume that |x∗Qδ −TX (r̄)| > ∆− δ;

otherwise, the error bound holds trivially. Following the same steps of the consensus error proof
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of Theorem 4.1, we obtain that

∣∣x∗Qδ − TX (r̄)
∣∣ ≤ 1

n

n∑
i=1

(2ρ|Ni|+ 1) |e∗i |.

Since
∑n

i=1 |Ni| = 2m, it remains to find an upper bound for e∗i . Note that Qδ(x∗i ) = x∗Qδ = a

implies TX (x∗i ) ∈ [a, a+ ∆− δ] and hence |e∗i | = |TX (x∗i )− a| ≤ ∆− δ. Similar argument proves

the error bound for x∗Qδ = a+ ∆ and is omitted.

Cyclic case: We will show that xki is close to the threshold a + ∆ − δ and then use this fact

to characterize the difference between the threshold and the data average. Assume that the cycling

state has been reached, i.e., k ≥ k0. With only two quantization values a and a + ∆, there are at

most four possible cases for two consecutive agent values Qδ(xki ) and Qδ(xk+1
i ). We now discuss

these cases one by one and before this, we write the following useful update from the xi- and

αi-updates in Algorithm 1:

xk+1
i =

1

1 + 2ρ|Ni|

ρ|Ni|Qδ(xki ) + ρ
∑
j∈Ni

Qδ(xkj )− αki + ri



=
1

1 + 2ρ|Ni|

ρ|Ni|Qδ(xki ) + ρ
∑
j∈Ni

Qδ(xkj )− αk−1
i − ρ|Ni|Qδ(xki ) + ρ

∑
j∈Ni

Qδ(xkj ) + ri



= xki +
1

1 + 2ρ|Ni|

2ρ
∑
j∈Ni

Qδ(xkj )− ρ|Ni|Qδ(xk−1
i )− ρ

∑
j∈Ni

Qδ(xk−1
j )

. (5.19)

• Case 1: Qδ(xki ) = a and Qδ(xk+1
i ) = a + ∆. By the definition of δ-quantizer, we have

xki ≤ a + ∆ − δ < xk+1
i . Following (5.19) and using the fact that only a and a + ∆ can be

the output of Qδ(·), we also get xk+1
i ≤ a+ ∆− δ + 2ρ|Ni|

1+2ρ|Ni|∆. In summary, we have

a+ ∆− δ < xk+1
i ≤ a+ ∆− δ +

2ρ|Ni|
1 + 2ρ|Ni|

∆.
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• Case 2: Qδ(xki ) = a+ ∆ and Qδ(xk+1
i ) = a. Similar to Case 1, it can be shown that

a+ ∆− δ − 2ρ|Ni|
1 + 2ρ|Ni|

∆ < xk+1
i ≤ a+ ∆− δ.

• Case 3: Qδ(xki ) = a + ∆ and Qδ(xk+1
i ) = a + ∆. We can immediately conclude that

xk+1
i > a+ ∆− δ. To find an upper bound on xk+1

i , consider the αi-update at index k:

αki = αk−1
i + ρ|Ni|Qδ(xki )− ρ

∑
j∈Ni

Qδ(xkj ) ≥ αk−1
i ,

where inequality follows from Qδ(xki ) = a + ∆. By induction, we have αk′i ≤ αki where

k′ < k is the largest index such that Qδ(xk
′
i ) = a. Note that such k′ always exists for

k ≥ k0 + T as a result of the cyclic behavior and (5.4). Then we have

xk+1
i =

1

1 + 2ρ|Ni|

ρ|Ni|Qδ(xki ) + ρ
∑
j∈Ni

Qδ(xkj )− αki + ri



≤ 1

1 + 2ρ|Ni|

ρ|Ni|Qδ(xki ) + ρ
∑
j∈Ni

Qδ(xkj )− αk
′

i + ri



= xk
′

i +
1

1 + 2ρ|Ni|

ρ|Ni|Qδ(xki ) + ρ
∑
j∈Ni

Qδ(xkj ) + ρ
∑
j∈Ni

Qδ(xk
′

j )− ρ|Ni|Qδ(xk
′

i )

− ρ|Ni|Qδ(xk
′−1
i )− ρ

∑
j∈Ni

Qδ(xk
′−1
j )

, (5.20)

where the last equality is obtained by the xi- and αi-updates at the k′-th iteration. As

Qδ(xk
′
i ) = a, we have

xk+1
i ≤ a+ ∆− δ +

3ρ|Ni|
1 + 2ρ|Ni|

∆.
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• Case 4: Qδ(xki ) = a and Qδ(xk+1
i ) = a. Similar to Case 3, we can get

a+ ∆− δ − 3ρ|Ni|
1 + 2ρ|Ni|

∆ < xk+1
i ≤ a+ ∆− δ.

Summarizing all the four cases and using the fact that |Ni| < n, we conclude the following:

|xki − (a+ ∆− δ)| ≤ 3ρ|Ni|
1 + 2ρ|Ni|

∆ <
3ρn

1 + 2ρn
∆, for k ≥ k0. (5.21)

With (5.21), we can now bound xki −Qδ(xki ) with k ≥ k0. If Qδ(xki ) = a, then

a+ ∆− δ − 3ρn

1 + 2ρn
∆ < xki ≤ a+ ∆− δ.

Thus,

|xki −Qδ(xki )| ≤ max

{∣∣∣∣∆− δ − 3ρn

1 + 2ρn
∆

∣∣∣∣ ,∆− δ} .
When Qδ(xki ) = a+ ∆, we can similarly derive

|xki −Qδ(xki )| ≤ max

{∣∣∣∣ 3ρn

1 + 2ρn
∆− δ

∣∣∣∣ , δ} .
As 0 < δ < ∆, we finally have

|xki −Qδ(xki )| <
3

2
∆. (5.22)

To bound the difference between the threshold a + ∆ − δ and the data average r̄, we sum up

the variable values over one period for k ≥ k0 and get

∣∣∣∣∣
∑T−1

l=0 xk+l
i

T
− (a+ ∆− δ)

∣∣∣∣∣ < 3ρn

1 + 2ρn
∆, (5.23)
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and

∣∣∣∣∣
∑T−1

l=0 xk+l
i

T
−
∑T−1

l=0 Qδ(x
k+l
i )

T

∣∣∣∣∣ < 3

2
∆, (5.24)

where (5.23) is from (5.21) and (5.24) is from (5.22). Also summing up both sides of the xi-update

of BQ-CADMM over a period yields that

(1 + 2ρ|Ni|)
∑T−1

l=0 xk+l
i

T
− ρ|Ni

∑T−1
l=0 Qδ(x

k+l
i )

T

− ρ
∑
j∈Ni

∑T−1
l=0 Qδ(x

k+l
j )

T
+

∑T−1
l=0 αk+l

i

T
− ri = 0. (5.25)

Further summing up both sides (5.25) from i = 1 to n, we have

n∑
i=1

(1 + 2ρ|Ni|)
∑T−1

l=0 xk+l
i

T
−

n∑
i=1

2ρ|Ni|
∑T−1

l=0 Qδ(x
k+l
i )

T
−

n∑
i=1

ri = 0, (5.26)

where we use the fact
∑n

i=1 α
k
i = 0 for any k (cf. Section 4.7) together with (5.4). To complete the

proof, we divide both sides of (5.26) by n and use (5.23) and (5.24), which leads to

|r̄ − (a+ ∆− δ)| < 4ρ
m

n

3

2
∆ +

3ρn

1 + 2ρn
< 6ρn∆.

where the second inequality is because m ≤ n(n−1)
2

for a connected undirected graph.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

This dissertation develops efficient ADMM based algorithms for quantized consensus in large scale

networks. With dithered quantization, PQ-CADMM achieves asymptotic convergence to the exact

average. When deterministic quantization is employed, the modified CADMM algorithms, DQ-

CADMM and BQ-CADMM, either converge to a consensus or cycle with the sample mean over

a period reaching a consensus. We also establish consensus error bounds that do not depend on

agents data nor the network size. The effect of ADMM step size is studied and a decreasing strategy

is proposed to accelerate the algorithm under certain consensus accuracy guarantee. Finally, we

apply BQ-CADMM to distributed detection in connected sensor networks where sensors can only

communicate with their immediate neighbors at each iteration. By employing an identical one-

bit quantizer, each node can achieve the optimal asymptotic performance of centralized detection

under three commonly used criteria.

The current results also motivate several future research directions:

6.1 Characterization on Convergence Time

Our simulations show that DQ-CADMM and BQ-CADMM with fixed step size proceed very fast

to the convergent value or the cyclic period. Indeed, the decreasing strategy for step size leads
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to approximately O(log n) convergence time in the Gaussian example in Section 5.5.2. However,

we still lack the characterizations on convergence time and cyclic period, which play a key role

in implementing the algorithms, e.g., setting the maximum iteration number for DQ-CADMM or

BQ-CADMM to guarantee convergent or cyclic states. The difficult part for the present approach

is that only the deterministic and bounded error properties of deterministic quantization schemes

can be utilized.

6.2 General Convex Functions

In this dissertation, we only use CADMM to solve distributed average consensus by formulating it

as a least-squares problem. The CADMM algorithm, in fact, can handle general convex objective

functions. Thus, it is interesting to investigate how a quantized version of the CADMM works for

general convex objectives. This consideration is hard since the local functions, unlike quadratic

functions that have linear gradients, may have nonlinear gradient or even be non-smooth. Some

initial results have been reported in [59], yet further effort is needed to broaden the results to more

general cases.

6.3 Online/Sequential Setting for Distributed Detection

In Chapter 5, we consider asymptotic characterizations with respect to the number of sensors, while

each sensor has only one observation. Another popular setting is that the number of sensors is finite

and that each sensor may consecutively receive observations about the common phenomenon. To

our best knowledge, there are no results characterizing the asymptotic performance when one-bit

data communication is used. It is possible to extend our approach to these setting by accommodat-

ing temporal observations.
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[9] A. Kashyap, T. Başar, and R. Srikant, “Quantized consensus,” Automatica, vol. 43, no. 7, pp.

1192–1203, 2007.

[10] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Syst. Contr. Lett.,

vol. 53, no. 1, pp. 65–78, 2004.
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