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ABSTRACT

This thesis studies the navigation task for autonomous UAVs to collect digital

data in a risky environment. Three problem formulations are proposed according to

different real-world situations. First, we focus on uniform probabilistic risk and

assume UAV has unlimited amount of energy. With these assumptions, we provide

the graph-based Data-collecting Robot Problem (DRP) model, and propose

heuristic planning solutions that consist of a clustering step and a tour building

step. Experiments show our methods provide high-quality solutions with high

expected reward. Second, we investigate non-uniform probabilistic risk and limited

energy capacity of UAV. We present the Data-collection Problem (DCP) to model

the task. DCP is a grid-based Markov decision process, and we utilize reinforcement

learning with a deep Ensemble Navigation Network (ENN) to tackle the problem.

Given four simple navigation algorithms and some additional heuristic information,

ENN is able to find improved solutions. Finally, we consider the risk in the form of

an opponent and limited energy capacity of UAV, for which we resort to the

Data-collection Game (DCG) model. DCG is a grid-based two-player stochastic

game where the opponent may have different strategies. We propose opponent

modeling to improve data-collection efficiency, design four deep neural networks that

model the opponent’s behavior at different levels, and empirically prove that explicit

opponent modeling with a dedicated network provides superior performance.
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1

1. INTRODUCTION

1.1 Motivation

Robots have been working among humans for many years, on simple and

repetitive tasks such as cashier, phone operator and bank teller, or on dangerous

tasks such as extraterrestrial explorations. With the advances in areas such as

computer vision, machine perception, and control theory, robot’s capabilities and

potentials have been greatly increased. As a result, humans are gradually being

replaced by robots in more complex tasks as driving, package delivery, and

image/video surveillance.

Robots have many advantages over humans. They can vary in sizes to suit the

task to be accomplished, they can perform repetitive tasks faster, they can survive

in harsh environments, and they usually cost less than human employees. In

addition, they are even more reliable when it comes to tasks that require precision,

such as surgery, because they can eliminate human errors. In this thesis, we want to

make use of these good traits in the domain of autonomous data collection.

Consider scientific exploration in an uninhabited environment like a rainforest or

an island. Scientists need to collect data from different locations periodically. But

the environment may be too dangerous for human expedition. It would be too

costly and inefficient. Fortunately, the scientists have a lot of expandable UAVs that
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are able to collect data and communicate with the satellite.1 The autonomous

UAVs are so affordable that even hiring humans to operate them would be more

costly than using autonomous agents to control them instead. The scientists can set

the locations of interests and let the UAVs collect data autonomously. However,

there are threats in the environment that can destroy the UAVs, such as animals

and bad weathers, but the autonomous UAVs can select routes efficiently thanks to

their state-of-art navigation algorithms. When a UAV is navigated to a location of

interest, it can collect data using its various sensors and immediately send the data

back to the base station via satellite. Occasionally, UAVs may be destroyed and lost

forever, but the algorithms anticipate that and can learn from it. Therefore the goal

of the scientists is to collect as much data as possible with a given UAVs. Scenarios

like this motivate the work in this thesis.

1.2 Problem framework

As a general framework for the problems studied in this thesis, we consider a

data-collection task where autonomous robots are to collect digital data. We assume

that the robots have communication capability, so they are able to send and receive

information. When a robot collects a piece of data, it can immediately send the

data to a receiving end, and receives a positive reward amounts to the value of the

data. In addition, we assume there are internal (energy) and/or external

(environment, animal, etc.) threats that can disable the robot, after which the robot

can no longer move or collect data, and the value of the robot, if there is any, is lost.

1The UAVs are, hopefully, made of environment friendly materials.
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We propose three different problem formulations that deal with different

real-world scenarios. The problems have different formalism but they share the

common goal, which is to maximize the total reward collected from the data with

given robots.

1.3 Thesis overview

With the focus on studying the mission of data collection in risky environment,

the rest of this thesis is organized as follows.

Chapter 2 provides some theoretical and technical backgrounds for the other

chapters. Section 2.1 and 2.2 are applied in Chapter 3. Section 2.3, 2.4 and 2.5 are

necessary for both Chapter 4 and Chapter 5. Section 2.6 is utilized by Chapter 5.

Chapter 3 formulates a planning problem on a weighted complete undirected

graph. It assumes a known uniform distribution of risk, which is a probability of the

robot being disabled, and a unspecified number of robots, and it does not consider

energy constraints. This formulation is applicable in cases where finer-grained

modeling of risk is impossible or too costly, and the robots have relatively high

energy capacity. We propose heuristic algorithms to solve the problem. These

heuristic algorithms are able to determine the number of the robots to be deployed

and find routes with high expected reward for the robots.

Chapter 4 formulates a Markov Decision Problem (MDP) in a grid-based world.

It allows for non-uniform risk, and considers the energy constraints. The risk is also

a probability of the robot being disabled. There is only one robot in the MDP and
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the robot is able to go back to the base for recharge. This formulation is application

in a wider range of cases where the risk distribution is diverse and the energy

capacity of the robot is limited. In such cases, a delicate balance of safety and

energy (S&P) needs to be struck, therefore we propose a deep neural network named

the Ensemble Navigation Network (ENN) to automatically find this balance.

Chapter 5 formulates a two-player Stochastic Game (SG) in a grid-based world.

It also considers energy constraint. However, different from the other two

formulations, the SG does not model probabilistic risk. Instead, the risk is in the

form of an opponent. In real-world scenarios, this opponent can model a living

entity such as an animal. The robot not only needs to avoid getting disabled by the

opponent while collecting data, but also needs to worry about going back to the

base for recharge. The focus of Chapter 5 is to use opponent modeling to improve

data-collection performance. We propose four deep neural networks that model the

opponent in different ways.

We move from graph-based formulation in Chapter 3 to grid formulations in

Chapter 4 and 5 due to the following reasons: (1) Although graph is a more general

data structure, grid, as a special type of graph, is usually able to model the

real-world reasonably well, which is why it is often the data structure used in video

games. (2) Grid can be implemented as array which has much better time and space

complexities than graph. (3) Convolutional neural network (CNN), which gained its

popularity from the field of computer vision, can be easily applied to grid world by

treating each cell as a “pixel”. CNN is able to extract localized features and

generalizes well in large state space, both of which are essential for our goal.
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Since Chapter 3 belongs to a different field of research than Chapter 4 and

Chapter 5, to be consistent with each research community’s convention, we do not

share symbols across chapters, i.e., the same symbol may have different meanings in

different chapters. The meaning of symbols are clarified wherever it is necessary. In

addition, we use the terms robot and agent interchangeably, and the terms location

of interest and item interchangeably across the proposal. But these terms are used

properly to the context of discussions.

Finally, Chapter 6 summarizes all the work presented in this thesis and discusses

future directions.
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2. BACKGROUND

In this chapter, we provide some of the theories and technologies used in the other

chapters. Each section assumes the knowledge of all previous sections. Therefore, if

a term is not defined in a certain section, it is defined in the previous ones.

2.1 Hierarchical Clustering

Hierarchical Clustering is a method used to build a hierarchy of clusters. There

are two types of Hierarchical Clustering [30]:

• Agglomerative Hierarchical Clustering builds the hierarchy from bottom

up. Starting from singletons that consists of a single element, it iteratively

merges two clusters into one.

• Divisive Hierarchical Clustering builds the hierarchy from top down.

Starting from one cluster containing all the elements, it iteratively splits one

cluster into two.

In general, the merges and splits follow some greedy criteria and the resulting

hierarchy of clusters is presented in a dendrogram. The dendrogram can be cut at

different positions according to different optimization goals, which result in different

number of clusters. See Figure 2.1 for an example. In the figure, the black dots

represent elements, the solid lines indicate merges or splits, and the dotted lines
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Fig. 2.1.: An example dendrogram from Hierarchical Clustering of 8 elements. The
black dots represent elements. The solid lines indicate merges or splits. The dotted
lines show different positions for cuts. In top-down order, the cuts result in 2, 4 and
6 clusters.

show different positions for cuts. In top-down order, the three cut positions result in

2, 4 and 6 clusters from the same 8 elements.

One of the key characteristics of Hierarchical Clustering is that, unlike more

common clustering methods like k-means Clustering, it does not require a

predefined number of clusters. This is useful when the number of clusters should be

decided based on the clustering criteria, and this clustering method can

automatically cut the dendrogram to produce the optimal number of clusters.
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2.2 Rooted k Minimum Spanning Tree

Given a connected undirected graph with weighted edges, a Minimum Spanning

Tree (MST) is a subset of the edges that connects all the vertices of the graph,

without any cycles, and has the minimum total edge weights. The classical methods

for finding the MST include Prim’s algorithm [27] and Kruskal’s algorithm [17], both

of which have O(m log n) time complexity for a graph of m edges and n vertices.

A k-MST, however, asks for a tree of minimum total edge weights that connects

exactly k vertices. When k is a fixed constant, the solution can be found in

polynomial time by trying all the subsets of size k. When k is a variable, the

problem is NP-hard [22, 29].

A rooted tree is a tree that consists of a selected vertex, called a root. A rooted

k-MST is therefore a MST that has k vertices, one of which must be the root.

Having a root makes Prim’s algorithm easily applicable in finding the k-MST.

Starting from the tree that contains only root, the new vertex with minimal-weight

edge is added to the tree at each iteration. The process has k − 1 iterations, so it is

O(kn) for a graph of n vertices.

2.3 Convolutional Neural Network

Convolutional Neural Networks (CNN) is a bio-inspired feed-forward artificial

neural network that has been the key to the recent breakthroughs in Machine

Learning [21]. It has been successfully applied to fields including computer vision,

speech recognition and natural language processing. Besides these traditional
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Fig. 2.2.: An example of a convolutional layer with input and outputs. The input is
on the left, with a dimension of 8× 8× 3. The outputs are on the right, with varying
dimensions. There are 6 filters. The 2 red (top) filters have filter size 4 × 4 × 3 and
stride size 1. The 4 blue (bottom) filters have filter size 3 × 3 × 3 and stride size 2.
The input is padded with zeros for the blue filters.

supervised learning domains, it is also making aspiring progress in reinforcement

learning domains [23, 24, 34]. The key characteristic of CNN is its reduced number

of network parameters and its ability to extract different localized features from

inputs.

CNN contains one or more convolutional layers, each convolutional layer

contains a number of convolutional matrices of parameters, or filters, of different

sizes. The size of a filter is usually much smaller than that of the input. Each filter

acts as a sliding window over the input matrix. At each step of the sliding, also

referred to as a stride, the filter transforms the input submatrix within the window

to a single value. This transformation, or convolution, is done at every stride during
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the forward pass, and the input matrix is converted to an output matrix of equal or

smaller size. Since the same filter is applied at every stride, the number of

parameters is reduced and the network can be deep, which is proven to be crucial

for its effectiveness [38].

Figure 2.2 shows an example convolutional layer with input and outputs. The

input is on the left, with a dimension of 8× 8× 3. The outputs are on the right,

with varying dimensions. There are 6 filters. The 2 red (top) filters have filter size

4× 4× 3 and stride size 1. The 4 blue (bottom) filters have filter size 3× 3× 3 and

stride size 2. The input is padded with zeros for the blue filters.

During gradient-descent training, filters can specialize towards different

directions [16]. For example, in the field of computer vision, one filter may specialize

in detecting horizontal edges, while another may specialize in detecting vertical

edges; one filter may specialize in colors, while another may specialize in contrasts.

In other words, different filters are able to extract different localized features from

their input.

A convolutional layers is usually followed by a max-pooling layer, which works in

a similar way but, instead of convolving with the input, a filter simply picks the

highest value within the window. The output of the max-pooling layer is therefore

smaller in size than the input, which further reduces the number of network

parameters. At the end, before the output layer, a fully connected layer, as seen in

regular neural networks, is normally used for high-level reasoning. This layer

summarizes the localized features extracted by the convolutional and max-pooling

layers. The summaries are then used for the final output.
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2.4 Markov Decision Process and Stochastic Game

Markov Decision Process (MDP) is an extension of Markov Chain. It satisfies

the Markov property and provides a framework for modeling decision making in

scenarios where the outcome is partially random and partially in the control of the

decision maker. It is commonly used to formulate problems that can be solved by

dynamic programming or reinforcement learning.

In a standard MDP, an agent interacts with an environment over a number of

discrete time steps. At each time step t, the agent receives a state st and selects an

action at from a set of possible actions A according to a policy π, which is a

mapping from states st to actions at. After the action is chosen, the environment

transits from the state st to the next state st+1 according to some transition

probability function T (st, a, st+1) = Pr(st+1|st, at). In return, the agent receives a

scalar reward rt. This process repeats until the agent reaches a terminal state, after

which the process restarts. The discounted accumulated return, or return for short,

is defined as Rt =
∑∞

k=0 γ
krt+k, where the discounting factor γ ∈ [0, 1] signifies the

importance of immediate rewards. The goal of the agent is to maximize the return

for every state st, in other words, to find the optimal policy π∗.

The generalization of MDP to multiagent case is the Stochastic Game (SG), in

which a number of agent interacts with an environment over a number of discrete

time steps. At each time step t, each agent z selects an action a
(z)
t from its own set

of possible actions A(z) according to state st and its policy π(z). All the actions from

all the agents form a joint action a. When the joint action is executed, the
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environment transit from st to st+1 according to transition function

T (st, a, st+1) = Pr(st+1|st, a). In return, each agent z receives a scalar reward r
(z)
t .

The return for agent z is defined as R
(z)
t =

∑∞
k=0 γ

kr
(z)
t+k and the goal of agent z is to

maximize its own return for every state st by finding its optimal policy π(z)∗.

If there is no communication between the agents, SG is the same as MDP in the

perspective of a particular agent z. In addition, if the other agents use fixed policy,

or strategy, they can be considered as part of the environment and the SG can be

reduced to MDP for agent z. But if the other agents use mixed strategy, i.e., their

mappings from states to actions may change, the transition function T become

unstable for agent z, and it is more difficult for z to find π(z)∗.

2.5 Reinforcement Learning

Reinforcement Learning (RL) is a common method for MDPs and SGs. In RL,

the state-action value function Qπ(s, a) = E[Rt|st = s, a] is the expected return for

selecting action a in state s and following policy π afterwards. The optimal value

function Q∗(s, a) = maxπQ
π(s, a) gives the maximum value achievable for state s

and action a by any policy. Similarly, the state-only value function

V π(s) = E[Rt|st = s] is the expected return of state s for following policy π. The

advantage function Aπ(s, a) = Qπ(s, a)− V π(s) indicates the advantage of action a

in state s.
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2.5.1 Q-learning

Q-learning is a value-based RL method [35]. It works by learning the optimal

value function Q∗(s, a) = maxπQ
π(s, a) using the update rule:

Q(st, at)← Q(st, at) + α(rt + γmax
at+1

Q(st+1, at+1)−Q(st, at))

where α is the learning rate that decides the strength of each update, and γ is the

discounting factor. The values of Q(s, a) is traditionally stored in a table, but can

also be in the format of an approximating function if the number of state-action

pairs is intractable. When an approximation function is used, the function is

denoted as Q(s, a; θ) with θ representing the parameters of the function. Q-learning

is model-free and off-policy, which means it does not learn a model for the

environment and it does not maintain a policy. The policy is implicitly obtained by

always choosing action a = arg maxaQ(s, a) ior every state s. In practice, an

ε-greedy strategy, which follows the greedy strategy with probability 1− ε and

selects random action with probability ε, is often used to ensure adequate

exploration of the state space.

2.5.2 Policy gradient

Policy gradient is another common method of RL. It is a policy-based method

that optimize a policy approximation function π(a|s; θ) directly. In particular,

REINFORCE [41] is a policy gradient method that updates function parameter θ in



14

the direction of ∇θ log π(at|st; θ)Rt. A baseline bt(st) is usually subtracted from the

return Rt to reduce the variance of gradient estimate while keeping the

unbiasedness, giving a gradient direction ∇θ log π(at|st; θ)(Rt − bt(st)). In practice,

an estimate of the state-only value function V (st; θv) is often used as the baseline,

where θv represents function parameters. This gives us an approximation of the

advantage function A(st, at; θv) = Rt − V (st; θv) where Rt is an estimate of Q(st, at).

The gradient direction then becomes:

∇θ log π(at|st; θ)A(st, at; θv)

Policy gradient is model-free and on-policy. In an actor-critic policy gradient

method, the critic updates the value function parameters, and the actor updates

policy parameters according to the gradient suggested by the critic. Compared to a

value-based method like Q-learning, the advantages of policy gradient include (1)

better convergence properties, (2) effective in high-dimensional or continuous action

spaces and (3) can learn stochastic policies. But it typically converge to local rather

than global optimum, and evaluating a policy is typically inefficient and has high

variance.

2.5.3 Deep Reinforcement Learning

In Deep Reinforcement Learning (DRL), deep neural networks are used as the

approximation functions. As a result, DRL brings the benefits of Deep Learning to

RL. In particular, the key advantages of DRL methods over traditional RL methods
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include (1) its ability to learn from untraceable state space efficiently and (2) its

ability to automatically extract features from inputs.

Deep neural network can approximate the state-action value function Q(s, a; θ).

In their seminal work [23, 24], Mnih et al. proposed the Deep Q Learning algorithm,

which uses a CNN named the Deep Q Network (DQN) as Q(s, a; θ) and achieved

professional-human performance on 49 Atari 2600 games. The Q Network learns by

taking only raw pixels from the console images and game scores as input. It outputs

Q(s, a; θ) for all the actions a ∈ A for a given state s. The same network structure

works well for all the 49 games, showing a hint of general intelligence. During

training, DQN uses a replay buffer to store past experience, which is sampled from

for parameter updates. This helps smooth out learning and avoid oscillations or

divergence of the parameters.

Many works have been done to improve the performance of DQN. Van Hasselt et

al. [39] use Double DQN (D-DQN) to deal with the overestimate problem in

Q-learning. Schaul et al. [33] proposed prioritized experience replay, which uses

more important experience more often to improve learning efficiency. Wang et

al. [40] employ a dueling network architecture to estimate state value function V (s)

and the associated advantage function V (s, a), which are combined to estimate the

state-action value function Q(s, a). This architecture is proven to speed up

convergence.

Deep neural network can also approximate the policy function π(a|s; θ) directly.

In their following work [25], Mnih et al. proposed Asynchronous Advantage

Actor-Critic (A3C) algorithm, which uses a CNN to learn both the policy π(a|s; θ)
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and the V (s; θv) function. This is an actor-critic method where the policy is the

actor and an estimate of Aπ(s, a) using V (s; θv) is the critic. The CNN used in A3C

learns from the same type of input and shares similar network structure as DQN.

A3C uses asynchronous threads to explore state space in parallel to stabilizes

training. It runs faster and performs better or equally good with DQN and all the

extensions of DQN mentioned above. In addition, A3C is easy to implemented

compared with the extensions of DQN, it does not need a replay buffer, and it is

able to learn stochastic policies. Therefore, it is chosen as the learning method of

our work.

2.6 Opponent modeling

Opponent modeling, or agent modeling in general, is a way to improve a

controlled agent’s performance by identifying and exploiting other agents’ behaviors.

In a multiagent environment such as a SG, the environment state st is affected by

the joint action a of all the agents. Let a denote the action of agent z and o denote

the actions of all the other agents, i.e., a = (a, o). From the perspective of z, the

transition function T (s, a, o, s′) and reward function R(s, a, o, s′) are unstable,

because z cannot predict o. As a result, RL methods normally takes a long time to

converge, and the results may be suboptimal.
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If the other agents use a fixed joint strategy, their behaviors can be considered as

part of the environment. Mathematically, let πo be the joint strategy of all the other

agents, the transition function and reward function can be redefined as:

T o(s, a, s′) =
∑
o

πo(o|s, a)T (s, a, o, s′)

Ro(s, a, s′) =
∑
o

πo(o|s, a)R(s, a, o, s′)

(2.1)

Since πo is fixed, T o(s, a, s′) and Ro(s, a, s′) are determined. The multiagent

problem is thus reduced to a single-agent one and agent modeling is not

necessary [13].

But if the other agents use mixed joint strategy, Equation 2.1 becomes:

T ot (s, a, s′) =
∑
o

πot (o|s, a)T (s, a, o, s′)

Ro
t (s, a, s

′) =
∑
o

πot (o|s, a)R(s, a, o, s′)

(2.2)

the policy πot can change over time and so can T ot (s, a, s′) and Ro
t (s, a, s

′). As a

result, the problem cannot be reduced to single-agent. But with an accurate agent

model, πot (o|s, a) can be predicted and exploited. Therefore, the goal of agent

modeling is to predict information, such as strategies or actions, of other agents in

order to smooth learning and improve performance.

Agent modeling is most helpful in games with imperfect information, such as

Poker, because the agent model provides a significant amount of extra information

about the game state and can greatly stabilizes the learning process of the
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controlled agent. In this work, however, the controlled agent has perfect information

about the state, and the objective is to study the effectiveness of different

approaches of agent modeling.
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3. GRAPH FORMULATION WITH UNIFORM RISK

3.1 Chapter overview

In this chapter, we formulate the data-collection task as a planning problem on a

complete undirected graph. This type of multiagent planning problems are generally

considered as variants of the Vehicle Routing Problem (VRP). Although many

variants of VRP are well studied [37], they usually consider agents to be humans or

human operated, implicitly assuming that the assigned tasks are completed with

certainty. In contrast, unexpected events may destroy robots and terminate

assigned tasks. This practical aspect is generally not considered in the VRP

research community.

Unlike existing formulations of the VRPs, in this chapter, the probabilities of

robots breaking down and the value of the robots are explicitly modeled. The value

of a robot can be the hardware cost of the robot or the strategic importance of the

robot quantified by a real number. Therefore, the objective of the proposed

algorithms is to generate a routing plan that maximizes the expected reward with

the optimal number of robots. To our best knowledge, these two aspects, i.e., risks

and value of lost robots, of our formulation are unique to any other existing VRP

formulations.
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3.2 Contributions

• Introducing the Data-collecting Robot Problem (DRP), which explicitly

models the value of robots and the risk of losing robots,

• Introducing heuristics for clustering and tour-building steps for solving DRP,

• Showing that the Greedy Insertion (GI) and Total-Loss (TL) algorithms have

the top performance among tour-building algorithms, and

• Showing that the Progressive Gain-aware Clustering (PGC) algorithm

produces quality results with a better time complexity.

3.3 Problem formulation

The world is modeled as a complete undirected graph G = (V,D, α, β, ψ).

V = {0, 1, . . .} is the set of nodes, where 0 represents the base station and the others

represent the locations of interest. D : V × V → R+ is a symmetric distance

function, i.e., D(u, v) = D(v, u) is the distance between nodes u and v. D satisfies

the triangle inequality. The value of a robot is α. Data collected from location

v ∈ V has a value of β(v). The probability of a robot successfully traversing one

unit distance is ψ, so if a robot traverses from node u to v for u, v ∈ V , the

probability of success is ψD(u,v).

We assume that data at a location is collected only once, which means there is

no extra gain by visiting the same node redundantly. Since G is a complete graph
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that satisfies the triangle inequality, visiting an extra node before a target node

always decreases the expected gain.

A tour t = (v, . . . , 0) for v ∈ V \{0} is a vector of distinct nodes. A robot starts a

tour at node 0, then sequentially visit all the nodes in the vector, which leads it

back to 0 eventually. The objective is to find a plan T consisting a set of tours, that

maximizes the sum of the expected rewards of all the tours. Suppose Dt(u, v) is the

distance between u and v along tour t, Pt(u, v) = ψDt(u,v) is the probability of the

robot successfully traveling from u to v along tour t. We use Pt(v) to denote

Pt(0, v). Let |T | be the cardinality of T , and let t\{0} be the subtour excluding the

final returning edge. We assume that there are unlimited number of robots at

disposal, and the nodes can be left unvisited. Therefore, in addition to generating

the tours, the planning involves deciding the number of robots to deploy and which

nodes to visit.

In addition, we assume that data collection and transmission are instantaneous.

Therefore, the optimal strategy is always to upload the data right after collecting it.

If the robot is at u, the expected marginal gain from v is ψD(u,v)β(v), regardless of

which nodes are visited after v. Without loss of generality, let β(0) = α so that
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Pt(0)α = Pt(0)β(0). Then the objective function can be expressed mathematically

as:

max
∑
t∈T

( ∑
v∈t\{0}

Pt(v)β(v)− (1− Pt(0))α

)

= max
∑
t∈T

(∑
v∈t

Pt(v)β(v)− α
)

= max

(∑
t∈T

∑
v∈t

Pt(v)β(v)− |T |α
)

(3.1)

In this formulation, the inner summation term in Equation 3.1 is referred to as

the (expected) gain (of rewards) from the visiting nodes in a tour t; the expected

cost due to the risk of losing a robot on t is referred as the cost of the tour; and the

difference between the gain from all the nodes in a tour and the cost of the tour is

referred as the reward of the tour.

3.4 Algorithm

Our solution consists of two steps: (1) clustering for the number of robots and

(2) tour building for a single robot. We introduce the Progressive Gain-aware

Clustering (PGC) and compare it with a naive clustering approach. Six tour

building heuristics are proposed and compared.

3.4.1 Clustering for the number of robots

For a thorough discussion of the effects of the number of robots, refer to [14]. In

that work, one important observation is that robots are reluctant to visit a node
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Algorithm 1 Clustering Algorithm Cluster

Input: G, R // G: the world model, R: a cluster evaluation function
Output: S // a set of clusters

1: S ← ∅
2: for all v ∈ V \ {0} do
3: S ← S ∪ {v}
4: end for
5: loop
6: C∗i ← ∅, C∗j ← ∅
7: ∆∗ ← 0 // the highest difference in reward
8: for all Ci ∈ S do
9: for all Cj ∈ S, j > i do

10: ∆← R(Ci ∪ Cj)−R(Ci)−R(Cj)
11: if ∆ > ∆∗ then
12: ∆∗ ← ∆, C∗i ← Ci, C

∗
j ← Cj

13: end if
14: end for
15: end for
16: if ∆∗ = 0 then
17: break
18: end if
19: S ← S \ {C∗i , C∗j } ∪ {C∗i ∪ C∗j }
20: end loop
21: return S

that is too faraway, because there is a higher chance of breaking down as they travel

to the node and therefore the expected reward would be negligible or even negative.

However, if there is a cluster of nodes that are equally faraway, a robot may visit all

of them because the high cost due to the initial long edge to the cluster is effectively

distributed among all the nodes within the cluster. Therefore, clustering methods

should be used to find these clusters. After clustering, the problem is reduced to a

single-robot problem. Each cluster is assigned to one robot and a tour covering all

the nodes in each cluster is generated for one robot.
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We use the Bottom-up Hierarchical Clustering, also known as Agglomerative

Clustering, employed in [14] to determine the number of robots needed. Starting

from single-node clusters, each iteration finds the best merge that gives the highest

increase in total reward. Formally, if R∗(Ci) is the maximum reward a robot can get

from cluster Ci, and Ci ∪ Cj is the merged cluster, then at each step we merge Ci

and Cj that give the maximum positive value R∗(Ci ∪ Cj)−R∗(Ci)−R∗(Cj), until

there’s no more positive merge values. The base node, 0, is excluded from this

process. See Algorithm 1 for more details. The algorithm takes as input an

evaluation function R, which can be R∗ or a function that estimates R∗. Suppose

the time complexity of R is O(m), where m is a polynomial expression as we show

later in this section, and there are n nodes in the graph. This procedure has

O(mn3) operations. However, since the evaluation of one pair of clusters is

completely independent of another, parallelism can be easily achieved, which, in the

best case, is O(m+ n3).

The only way to get R∗(Ci) is to find the optimal tour visiting all the nodes in

cluster Ci for a single robot, which is a variant of the NP-hard MLP [4]. Therefore,

instead of trying to find the optimal tour, we propose six tour-building heuristics,

and use the tours built by the heuristics as estimations of the optimal tour. In

addition, we also propose an efficient clustering heuristic that uses k Minimum

Spanning Tree (k-MST) to estimate the expected reward of a cluster without

explicitly building a tour.
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Algorithm 2 Tour-Building Algorithm BuildTourK

Input: G, C // G: the world model, C: a cluster of nodes
Output: t // a tour contains all the nodes in C

1: t← ∅
2: while C 6= ∅ do
3: u, i← K(C, t) // subroutine K returns a node and an insertion position
4: t← t⊕i u // insert node u after position i of t
5: C ← C \ {u}
6: end while
7: return t

Algorithm Criterion
Insertion
position

Time
complexity

NG Marginal reward of next step end O(n2)

OSA Marginal reward of two steps end O(n3)

TL Total loss from all nodes end O(n3)

GML Marginal reward & min loss end O(n3)

LPG Marginal reward & total loss end O(n3)

GI Marginal reward of insertion anywhere O(n3)

Table 3.1: Overview of tour-building algorithms. Criterion summarizes the what is
evaluated by each algorithm. Insertion position specifies where does an algorithm
insert a new node. Time complexity shows the computational complexity of an
algorithm.

3.4.2 Heuristics for building tours

A partial tour is a vector of nodes (0, . . . , v) for v ∈ V that defines an acyclic

(v 6= 0) or a cyclic (v = 0) path starting from node 0. Given a partial tour t, t⊕i u

is a new partial tour extended by inserting node u after the i-th node of t, ρ(t) is

the reward of t, defined as the gain from all the nodes in t, and |t| is the total

number of nodes, including the starting 0, in t. The marginal reward of an extended

partial tour is calculated as the difference between its reward and the original’s.

The tour-building heuristics are incremental in the sense that they build a tour

by assigning one node at a time. All these six heuristics share the same algorithmic
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structure described in Algorithm 2. The difference is the subroutine for choosing a

node for insertion and the insertion position given a partial tour and a set of

unassigned nodes. The subroutine is denoted as K (subscript of BuildTourK) in

Algorithm 2. Table 3.1 shows an overview of the algorithms.

The Naive Greedy (NG) algorithm (BuildTourKNG
). This simple heuristic

picks the next node solely based on the marginal reward. Formally, to assign the

next node, the algorithm calculates the marginal reward of visiting u next

πNG
t (u) = ρ(t⊕|t| u)− ρ(t) (3.2)

for all unassigned node u in the cluster, and picks the maximum u with πNG
t (u).

The insertion position is always |t|, which means it always appends a node at the

end of a partial tour. This is an O(n2) operation for a cluster of n nodes.

The One-Step-Ahead (OSA) algorithm. This heuristic considers one more

step than NG. Namely, it calculates:

πOSA
t (u) = max

v 6=u

(
ρ(t⊕|t| u⊕|t|+1 v)− ρ(t)

)
(3.3)

for all unassigned u and v, and picks the u with highest πOSA
t (u). The insertion

position is always |t|. Notice that node v is used only for the evaluation of node u,

there is no guarantee in that the next step actually picks node v. This is an O(n3)

operation for a cluster of n nodes.
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The Total-Loss (TL) algorithm. This heuristic calculates the sum of all the

“losses” that visiting a node u incurs, and picks the u that minimizes this total loss.

The loss from a node v incurred by visiting u 6= v is defined as:

δt(u, v) =

(
ρ(t⊕|t| v)− ρ(t)

)
−
(
ρ(t⊕|t| u⊕|t|+1 v)− ρ(t⊕|t| u)

)
(3.4)

where ρ(t⊕|t| v)− ρ(t) is the marginal reward of appending v to t, while

ρ(t⊕|t| u⊕|t|+1 v)− ρ(t⊕|t| u) is the marginal reward of appending v to t⊕|t| u. The

difference of these two signifies the minimum reduction in the marginal reward of

appending v to a partial tour caused by appending u first. For each assignment, TL

calculates:

πTL
t (u) =

∑
v 6=u

δt(u, v) (3.5)

for all the unassigned u and v, and picks the u with the minimum πTL
t (u). The

insertion position is always |t|. This takes O(n3) operations for a cluster of size n.

The Gain-Minus-Loss (GML) algorithm. This heuristic calculates the

difference of gain (marginal reward) and loss; then it uses only the minimum loss

instead of the total. For each assignment, the algorithm calculates:

πGML
t (u) = πNG

t (u)−min
v 6=u

δt(u, v) (3.6)

for all unassigned u and v, and picks the u with the maximum πGML
t (u). The

insertion position is always |t|. This is an O(n3) operations for a cluster size n.
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The Loss-Per-Gain (LPG) algorithm. This heuristic considers both gain

and total loss by taking the ratio of the total loss to the gain. For each assignment,

the algorithm calculates:

πLPG
t (u) =

πTL
t (u)

πNG
t (u)

(3.7)

for all the unassigned u, and picks the u with the minimum πLPG
t (u). The insertion

position is always |t|. This is an O(n3) operation for a cluster of n nodes.

The Greedy Insertion (GI) algorithm. This algorithm is a single-robot

variation of the Sequential Greedy Algorithm (SGA) proposed in [8]1. At each step,

GI assigns the next node by trying out all the possible insertions of all the

unassigned nodes, and picks the one with the highest marginal reward. However, for

each partial tour, this algorithm calculates the reward of the corresponding cyclic

partial tour, which appends node 0 at the end and sets β(0) = α (see Section 3.3).

Formally, given the partial tour t, inserting node u after the i-th node of t gives a

marginal reward:

πGI
t (u, i) = ρ(t⊕i u⊕|t| 0)− ρ(t⊕|t| 0) (3.8)

At each assignment, the algorithm calculates πGI
t (u, i) for all the unassigned u and

all the integral i ∈ [1, |t|], and chooses the u and i with the maximum πGI
t (u, i). This

is an O(n3) operation for a cluster of n nodes.

Other than GI, all these algorithms build a partial tour by inserting nodes at the

end, and therefore can be adopted for online planning. Since GI needs to insert

1The reward function in our problem does not satisfy the Diminishing Marginal Gain property, so
the performance guarantee of SGA doesn’t hold.
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node at any position of a partial tour and the robot cannot change the path already

taken, it can only be used offline.

With a small modification (see Section 3.5), the above tour-building algorithms

can be used as the input function R in Algorithm 1 to evaluate cluster merging. All

of the algorithms except NG have O(n3) time. Fortunately, all the O(n3) algorithms

can reduce the time complexity by at most a factor of n using parallelism, because

the evaluation of one candidate node is independent of another.

3.4.3 The Progressive Gain-aware Clustering algorithm

The Progressive Gain-aware Clustering algorithm (PGC) has a better time

complexity than the naive clustering. Based on the technique of using rooted

k-MST to approximate the optimal solution of MLP [5, 7], PGC estimates the

reward obtainable from a cluster without building a tour. Algorithm 3 shows the

merging procedure. The complete algorithm is in Algorithm 4, which follows a

similar structure as the clustering algorithm.

The data structures associated with an existing cluster Ci are: (1) an entry node

ei which is the closest node to the base node in the cluster; (2) an estimated gain gi

from all the nodes in the cluster; (3) an estimated cost ci due to the risk of losing

the robot; (4) an adjacency list Li that keeps track of the Minimum Spanning Tree

(MST) of the nodes in the cluster, where Li(v) is the list of neighbors of node v in

the MST; and (5) a total length li that is the sum of all the edge lengths in the
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Algorithm 3 PGC Merging Algorithm PGCMerge

Input: G, (Ci, ei, li, gi, ci,Li), (Cj, ej, lj, gj, cj,Lj) // G: the world model, (Ci, ei, li,
gi, ci,Li): data structure of Ci, see Section 3.4.3

Output: (Cij, eij, lij, gij, cij,Lij) // data structure of Cij
1: Cij ← Ci ∪ Cj
2: if D(0, ei) > D(0, ej) then
3: swap(i, j)
4: end if
5: eij ← ei, d← +∞
6: for all vi ∈ Ci do
7: for all vj ∈ Cj do
8: if D(vi, vj) < d then
9: d← D(vi, vj), v

∗
i ← vi, v

∗
j ← vj

10: end if
11: end for
12: end for
13: Lij ← Li ∪ Lj ∪ {{v∗i , v∗j}}
14: H ← {(D(v∗i , v

∗
j ), v

∗
j )} // min-heap as BFS queue, sorted on the edge length

15: M ← Ci // the visited nodes
16: lij ← li, gij ← gi
17: while H 6= ∅ do
18: d, v ← H.pop // the top of H
19: lij ← lij + d, gij ← gij + ψD(0,eij)+lijβ(v), M ←M ∪ {v}
20: for all u ∈ Lj(v), u /∈M do
21: H ← H ∪ {(D(u, v), u)}
22: end for
23: end while
24: cij ← (1− ψD(0,ei)+D(0,ej)+lij)α
25: return (Cij, eij, lij, gij, cij,Lij)

MST. For the rest of this section, subscript ij is used to denote a variable associated

with cluster Ci ∪ Cj. For example, Cij is Ci ∪ Cj and eij is the entry node of Cij.

Given Ci and Cj, the estimated reward before merging is computed trivially as

gi − ci + gj − cj. But the computation of the estimated reward after merging is more

complicate. The first step is to choose the entry node eij ∈ {ei, ej} of Cij to be the

one that is closer to the base node. Without loss of generality, assume eij = ei.

Then the algorithm obtains Lij by merging Li and Lj and adding the shortest edge
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Algorithm 4 PGC Algorithm PGC

Input: G // the world model
Output: S // a set of clusters

1: S ← ∅
2: for all v ∈ V \ {0} do
3: Cv ← {v}, ev ← v, lv ← 0, gv ← ψD(0,v)β(v), cv ← (1− ψ2D(0,v))α, Lv ← ∅
4: S ← S ∪ Cv
5: end for
6: loop
7: C∗i ← ∅, C∗j ← ∅, C∗k ← ∅, ∆∗ ← 0
8: for all Ci ∈ S do
9: for all Cj ∈ S, j > i do

10: (Ck, . . . , gk, ck, . . .)← PGCMerge((Ci, . . . , gi, ci, . . .), (Cj, . . . , gj, cj, . . .))
11: ∆← (gk − ck)− (gi − ci)− (gj − cj)
12: if ∆ > ∆∗ then
13: ∆∗ ← ∆, C∗i ← Ci, C

∗
j ← Cj, C

∗
k ← Ck

14: end if
15: end for
16: end for
17: if ∆∗ = 0 then
18: break
19: end if
20: S ← S \ {C∗i , C∗j } ∪ {C∗k}
21: end loop
22: return S

that connects nodes vi ∈ Ci and vj ∈ Cj. To compute gij, we perform a breadth-first

search (BFS) starting from node vi on the MST of Cij, with all the nodes in Ci

marked as visited, lij set to li and gij set to gi. At each iteration, the shortest edge

that connects the visited subtree to an unvisited node is picked. Its length is added

to lij, and the unvisited node on the edge, say v, is marked as visited. Assume at

this point there are n visited nodes, then lij is the total edge length of the n-MST of

Cij rooted at node eij, which can be used as a lower-bound of the n-th node’s

latency in the optimal minimum-latency tour of Cij starting from node eij. After

adding this edge, gij is increased by ψD(0,eij)+lijβ(v), where ψ is the probability of
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Algorithm 5 BuildTourK + Cluster

Input: G // the world model
Output: T // a plan of tours

1: T ← ∅
2: S ← Cluster(G,BuildTourK

′) // BuildTourK
′ returns the reward of the built tour

3: for all C ∈ S do
4: t← BuildTourK(G,C), T ← T ∪ {t}
5: end for
6: return T

the robot successfully traveling one unit distance, and β(v) is the reward of node v.

At last, the estimated cost is calculated as cij = (1− ψD(0,ei)+D(0,ej)+lij)α, where α is

the value of the robot, and the estimated reward is gij − cij.

Finding the closest nodes vi and vj is O(n2) for two clusters of size n each; BFS

is O(n) as the graph is a tree. Other operations are constant. Therefore, merging

takes O(n2).

For the whole algorithm, assume the graph contains N nodes. During one merge

iteration, where all the clusters are pair-wise evaluated and the best pair is merged,

regardless of how many clusters are there: each node is paired with each of the

O(N) nodes outside its own cluster exactly once for finding vis and vjs; each node is

visited O(N) times in all the BFS’s; and there are O(N) constant operations.

Therefore, one iteration is O(N2) and the whole algorithm is O(N3). Note that,

given an O(n2) evaluation function R, a similar argument, which considers nodes

instead of clusters, can be made for the clustering algorithm in Algorithm 1. It

makes the overall time complexity of Algorithm 1 O(N4) instead of O(N5).

3.5 Evaluation
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Algorithm 6 BuildTourK + PGC

Input: G // the world model
Output: T // a plan of tours

1: T ← ∅, S ← PGC(G)
2: for all C ∈ S do
3: t← BuildTourK(G,C), T ← T ∪ {t}
4: end for
5: return T

We run experiments with two clustering algorithms, the naive clustering

algorithm (NC) in Algorithm 1 and PGC in Algorithm 4, combined with each of six

tour-building heuristics (NG, OSA, TL, GML, LPG and GI) in Algorithm 2.

Therefore, there are 12 different combinations of clustering and tour-building

algorithms (2× 6). The tour-building-NC combinations are detailed in Algorithm 5,

where BuildTourK
′ is the variation of BuildTourK that still uses K to build tours but

returns the reward of the built tour instead of the tour itself. The

tour-building-PGC combinations are in Algorithm 6.

For each combination, we run experiments with different robot values and

different variances in node rewards, which is also referred to as node variance. For

each combination of clustering and tour building, robot value, and node variance,

we experiment on 100 uniformly random graphs, each of which contains 100 nodes

within a world of size 100× 100. The success rate ψ is fixed to 0.99. The results are

averaged from the 100 runs. Since the problem is NP-hard, computing the optimal

solution is infeasible. Therefore we compare the solutions given by our algorithms.

Section 3.5.1 compares the performance (quality of solution) of the tour-building

heuristics when they are combined with NC with node reward drawn from a integral
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uniform distribution from 4 to 6. Section 3.5.2 shows the results of the

tour-building-PGC combinations to compare PGC’s performance against NC, when

node reward drawn from a integral uniform distribution from 4 to 6. Finally,

Section 3.5.3 discusses the interesting effects of changing the node variance.

3.5.1 Comparison of tour-building algorithms

To evaluate the performance of the six tour-building heuristics, we use NC for

clustering and draw the node rewards from a integral uniform distribution from 4 to

6, then plot the normalized mean of expected reward against different robot values

(α). The normalized mean of expected reward is the ratio of the mean in an

experimental setting to the maximum, which is obtained in the setting where the

robot value is 0, i.e. there is no cost in losing robot, and therefore the best plan is

to send one robot to each node. The value of standard deviation is normalized by

the same factor in order to be meaningful. The combined algorithms are described

in Algorithm 5, and the plot is in Figure 3.1.

As shown in Figure 3.1, the six combinations have different performances. The

order from high to low is GI, TL, LPG, OSA, GML and NG, with GI, TL and LPG

being nearly identical, and GML and NG being nearly identical. Although, as

shown in Section 3.5.3, the difference between GI, TL and LPG becomes more

obvious when the data variance becomes larger. The standard deviation is relatively

large for larger robot values for all the algorithms. This indicates that when the

robot value is high, the algorithms are less stable. One possible reason is that, due
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to the high cost of losing robot, even a small difference in distance can change the

decision made by an algorithm.

GI being the best is not surprising, because insertion-based construction

methods generally perform better than nearest-neighbor heuristics [31]. All the

other five construction methods are only able to look ahead by appending new

nodes to the end of a partial tour. Therefore, they are intuitively less powerful than

any nearest-neighbor heuristics that adjust tours in various places. Consequently, it

is surprising that TL, which takes only losses into account, performs almost as well

as GI. Since NG and OSA consider the gain from the immediate next steps, and

LPG and GML consider both gain and loss, this result indicates that the immediate

loss, which is caused by robot traveling extra distance that discounts future gains,

has more impact on the overall performance the immediate gain.

In addition, one advantage of a “look-ahead” heuristic like TL is that it can be

easily adopted for online planning, in cases where nodes of interest appears

dynamically, or edge length is not known until the robot reaches a node. And as

shown by the results, TL performs almost as well as GI that requires all information

before making decisions.

3.5.2 Comparison of clustering algorithms

To evaluate the performance of the PGC algorithm, we run the same

experiments as in Section 3.5.1, with PGC instead of NC. The algorithms are
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described in Algorithm 6, and the results are shown in Figure 3.2; the performance

ranking is consistent with the ranking in using NC in Section 3.5.1.

To give a clearer comparison of PGC and NC, we plot the ratios of

tour-building-PGC’s expected reward to those of tour-building-NC, against different

robot values (α) in Figure 3.3. PGC gives good results when combined with better

tour building algorithms. Specifically, when combined with GI, TL or LPG, the

ratio is above 0.8 when the robot value is below 30. However, when the robot value

becomes relatively high, the performance ratio is fairly low. For example, when the

robot value is around 60, the ratio is only about 0.4. It should be noted that, when

the robot value is very high, above 60 in our experiments, the cost becomes too high

that the algorithms rarely send out any robot at all. In such cases, the measures

have a large variance and are therefore less indicative. They are included in the

results only for completeness. PGC’s performance downgrades when

low-performance tour-building algorithms are used, which indicates that a better

performing tour-building heuristic has more stable performance and is less sensitive

to the choice of clustering algorithm.

3.5.3 Effect of node reward variance

We also evaluate the effects of node variance on the performance of the proposed

algorithms. The same experiments as those in Section 3.5.1 and 3.5.2 are done with

the node rewards randomly sampled from integral uniform distributions from 1 to 9,

shown in Figure 3.4, and all set to 5, shown in Figure 3.5.
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Interestingly, when the difference in performance of the tour-building algorithms

varies in accordance with the node variance. Namely, as seen in Figure 3.4, when

node variance becomes larger, the difference in performance becomes larger, and

vice versa in Figure 3.5.

With respect to the performance of PGC, as shown in Figure 3.4(b), 3.4(c),

3.5(b) and 3.5(c), the result is similar to that of in Section 3.5.2. Namely, PGC

performs well for low robot values (< 30) but bad for high robot values (30 to 60).

In addition, comparing across node variances, PGC performs better for larger node

variance.

3.6 Related work

A large volume of literature exists on route planning problems such as the

Traveling Salesman Problems (TSPs) and the Vehicle Routing Problems (VRPs). In

[11], several variations of the TSPs with profits are defined. The objective function

may be the maximization of the collected total profit (Orienteering Problem), the

minimization of the total traveling cost (Prize-Collecting TSP) or the optimization

of a combination of both (Profitable Tour Problem). Traditionally, except for the

Orienteering Problem, these problems assume a single-tour solution for only one

vehicle [2]. Archetti et al. [2] use the term VRPs with profits to refer to the class of

problems involving multiple vehicles.

The above problems are company centric because they maximize the payoff for

the party that executes the plan. Some problems are customer centric, which means
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that the average satisfaction rate of all customers is the most important

requirement. The Minimum Latency Problem (MLP) is a general formulation for

such a goal with variations such as: the traveling repairman’s problem, the delivery

man problem, the cumulative TSP, the cumulative capacitated vehicle problem,

TSP with cumulative costs, and the school bus driver problem. [26] gives a

comprehensive taxonomy of MLP problems in many different parameters such as

the characteristics of nodes, arcs, the depot, vehicles, etc.

Most of the problems studied in the VRP literature do not consider the value of

the vehicles or the risk of losing them. As mentioned above, the value of a vehicle

can be the monetary cost of the vehicle or strategic importance of the vehicle,

quantified by a real number. An interesting exception is the Cash-in-Transit VRP

[36], which takes into account the values carried by the vehicle and the risk of the

vehicles being robbed. However, since the risk is modeled as an integer constraint, it

is not optimized as an objective and there’s no uncertainty involved in executing

plans. Also in CIT, all the customers must be visited, however, in our problem, as

long as the reward is maximized, not all customers are to be visited.

In DRP, robots are deployed to collect items available at each location in a large

area. Because we consider these robots to be UAVs, robots can travel from one

location to another through the straight-line route between them. This assumption

makes the problem environment a fully connected graph. The data can be

photograph, video, temperature, etc. The robots are set off from a base station,

where they need to return.
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The closest work to DRP is the discounted-reward TSP problem studied in [5],

where the reward a robot can get from a location is discounted by the distance it

has to travel to reach there. However, in their work, the robot does not have to

return to the base and its value is not considered, which makes the reward always

positive. In DRP, the expected reward from a location is discounted due to the

uncertainty of robot’s breakdown along the route, and due to the value of the robot,

the reward can be negative. The Multiple Agents Maximum Collection Problem [10]

is similar to the discounted-reward TSP in the sense that the rewards decreases over

time. However, the reward function is linear and it doesn’t consider the agent’s

value either.

3.7 Conclusion

In this chapter, the Data-collecting Robot Problem is formulated as a planning

problem on a complete graph. The objective is to maximize the expected reward of

a plan (a set of tours). The expected reward is determined by both the gain from

visiting nodes and loss of robots.

Six tour-building heuristics are proposed and compared. Among them, GI

performs the best, followed closely by TL. However, since GI modifies a partial tour

at any point, it cannot be used for online planning. TL, on the other hand, builds a

tour by appending nodes at the end of a partial tour, so it can be adopted for online

planning and we empirically prove that it performs almost as good as GI. We also

propose PGC heuristic for clustering. With a better time complexity, this algorithm
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approximates the naive clustering algorithm well for low robot values, and it does

better when node variance becomes larger. In addition, we discover that the most

important factor in maximizing the reward is the immediate loss. Another

interesting observation is that the difference of performance among tour-building

algorithms increases as the data variance increases.
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(a) Normalized mean of expected reward.

(b) Normalized standard deviation of expected reward.

Fig. 3.1.: The performance of tour-building algorithm combined with NC. Node
rewards range from 4 to 6. The x-axes show the robot value α and the y-axes show
(a) the average of the expected reward from 100 runs, where the values are normalized
against the maximum, and (b) the standard deviations of the expected reward from
100 runs.
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(a) Normalized mean of expected reward.

(b) Normalized standard deviation of expected reward.

Fig. 3.2.: The performance of tour-building algorithm combined with PGC. Node
rewards range from 4 to 6. The meanings of the charts are the same as those in
Figure 3.1.
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Fig. 3.3.: The performance ratio of PGC to NC. Node rewards range from 4 to
6.The x-axis shows the robot value α and the y-axis shows the ratio of the averaged
expected reward of PGC to that of NC.
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(a) Performance of tour-building-NC.

(b) Performance of tour-building-PGC.

(c) Performance ratio of PGC to NC.

Fig. 3.4.: Node rewards range from 1
to 9. The meanings of the charts are
the same as those in Figure 3.1 and Fig-
ure 3.3.

(a) Performance of tour-building-NC.

(b) Performance of tour-building-PGC.

(c) Performance ratio of PGC to NC.

Fig. 3.5.: Node rewards are all 5. The
meanings of the charts are the same as
those in Figure 3.1 and Figure 3.3.
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4. GRID FORMULATION WITH NON-UNIFORM RISK

AND ENERGY CONSTRAINT

4.1 Chapter overview

In Chapter 3, we assume a uniform distribution of risk and unlimited energy of

robots. With these assumptions, the problem is formulated as a planning problem

on a complete graph, the objective is to decide which locations of interests should

be visited, in what order, and by how many robots, at the same time. Heuristic

algorithms that consist of clustering step and tour-building step are proposed.

However, in more realistic situations, the distribution of risk is not uniform, and

robot’s energy may run out and needs to be recharged. In such cases, more

elaborate formulation is necessary. Inspired by [19, 20], where graph-based

algorithms are employed to solve grid-based Markov Decision Process, we formulate

DCP in a grid world, which enables us to model non-uniform risks. In addition, our

formulation considers energy consumption of robots; a robot is destroyed if it runs

out of energy during data collection. Therefore the solution needs to consider

recharging at base station.

The energy constraint greatly increases the difficulty of the problem, especially

in an environment of non-uniform risk. When there is a short path with high risk

and a long path with low risk, decisions need to be made based on various factors,
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such as the risk, current energy level, distance to the recharging station, positions of

other locations of interests, etc. A good solution will find an effective balance

between safety and energy (S&E). Due to this difficulty, the objective in this

formulation is to collect as much data as possible using given UAVs, i.e., the

solution does not consider whether a location should be visited or how many robots

should be used. In this chapter, we first propose heuristic algorithms for navigating

the UAVs, then we use deep neural network to learn a linear combination of the

heuristics, which is proved to be more effective and efficient.

4.2 Contributions

• Proposing the Data-collection Problem (DCP), a Markov Decision Process

that models autonomous data-collection in risky environment under energy

constraints. Good solution of DCP needs to find good balance between safety

and energy (S&E).

• Designing four navigation algorithms that have different priorities between

S&E during navigation.

• Developing the Ensemble Navigation Network (ENN) that learns new heuristic

from the four navigation algorithms and other heuristic information.

• Showing that ENN is able to find better balance between S&E from the given

heuristics.
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4.3 Problem formulation

DCP is a Markov Decision Process (MDP) on a N ×N grid of cells. Each cell

(x, y) has a risk value ρx,y, which is visible to the agent and indicates the probability

of the agent being disabled when visiting the cell. Cell (0, 0) is the base station,

whose risk ρ0,0 = 0. Each item or the agent in the world occupies one cell. See

Figure 4.1 for an example. In Figure 4.1a, the robot represents the agent, the

money bags represent items, and the house represents the base. In Figure 4.1b, the

numbers are the risk values. In addition to the information shown in the figure,

there is a current energy level and a maximum energy level of the agent.

The MDP proceeds in discrete time steps. The initial state s0 is randomly

generated, therefore the initial locations of the agent and items are random. At each

step t, the agent receives the state of the environment st, and selects an action at

from the action set A = {stay, up, down, left, right, up-left, up-right, down-left,

down-right} according to some policy π, which is a mapping from states st to

actions at. In return, the agent receives the next state st+1 and a scalar reward rt.

This process repeats until the agent reaches a terminal state, after which the

process restarts.

The transition from st to st+1 is as follows. The agent first moves to a adjacent

cell according to at. If at makes the agent go out of a grid boundary, the agent stays

along the axis perpendicular to that boundary. The agent then collects item if there

is any in the new cell, after which the agent may be disabled with a probability

equals to the risk of the cell. At the end, the energy level of the agent is reduced by
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(a) The base, agent and items.

(b) The risk distribution.

Fig. 4.1.: An example of the DCP environment. (a) shows the locations of the base,
agent and items. The robot represents the agent. The money bags represent items.
The house represents the base. (b) shows a color-coded risk distribution, where the
numbers are the risk values.
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one, regardless of what action was taken, unless it is in the base. If the agent is in

the base, its energy level is restored to the maximum. Otherwise, if the energy level

drops to 0, the agent is disabled.

Items contain positive rewards, whose values are non-uniform and visible to the

agents. The agent obtains a reward immediately after it collects an item, which is

returned to the agent as rt. There is no negative reward when the agent is disabled.

The terminal state is reached when the agent is disabled or all the items are

collected. The objective is to maximize the total reward collected in an episode, i.e.,

from initial state to terminal state, of the process.

4.4 Algorithm

In this section, we first choose a planning algorithm from previous work for

navigation without energy constraint, which then is used in designing four

navigation algorithms that have different priorities between S&E during navigation

with energy constraint. With these four navigation algorithms as heuristic inputs, a

deep neural network is eventually developed for finding the balance between S&E in

DCP.

4.4.1 Maximizing reward without energy constraint

As a starting point, we ignore the energy constraint for the time being and focus

on finding the path that maximizes the expected reward from collecting items. This

reduces the problem to the one similar to the the one in Chapter 3 [42], where six



50

(a) (b) (c)

Fig. 4.2.: Extracing a complete undirected graph from a game state. (a) shows the
original game state. The bottom grid contains risk values. (b) shows the safest paths
calculated by Dijkstra’s Algorithm for (from top down) the agent, the left item and
the right item. The numbers are success probabilities instead of risk values. (c) shows
the complete undirected graph created from the safest paths. The nodes represent the
agent and items, and the edge weights are the success probabilities of safest paths.

Algorithm Reward Avg. Reward SD.

Naive-Greedy (NG) 15.64 8.51

One-Step-Ahead (OSA) 19.18 8.80

Total-Loss (TL) 20.05 8.58

Gain-Minus-Loss (GML) 18.09 9.02

Loss-Per-Gain (LPG) 20.25 8.40

Table 4.1: Results of experiments on the tour-building heuristics from Chapter 3
adopted to DCP. The average is taken from 10,000 runs. For every run, there is one
agent with infinite amount of energy, the total reward is 30, and the risk distribution
is as Figure 4.1b. Reward Avg. is the average of total reward collected during a
game. Reward SD. is the standard deviation.
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Algorithm 7 Loss-Per-Gain (LPG)

Input: Current state s, action set A, the safest paths P·,· calculated by Dijkstra’s
Algorithm, see Section 4.4.1 for more details

Output: Agent’s action a and the target item i∗

Initialize minimum loss-per-gain v∗ ← +∞
Get agent location (xz, yz) from s
for all item i in current state s do

Initialize loss-per-gain v ← +∞
Get location (xi, yi) and reward ri of item i from s
for all item j 6= i in current state s do

Get location (xj, yj) and reward rj of item j from s
Compute the difference in success probabilities

∆ = Pxz ,yz(xj, yj)− Pxz ,yz(xi, yi)× Pxi,yi(xj, yj)
v ← v + ∆× rj

end for
v ← v/(Pxz ,yz(xi, yi)× ri)
if v < v∗ then
v∗ ← v, i∗ ← i

end if
end for
Select the a ∈ A that follows the safest path from (xz, yz) to (xi∗ , yi∗) according to
Pxz ,yz
return a, i∗

heuristics were proposed to maximize expected reward from a graph-based world.

Out of the six, five heuristics are shown to solve the DCP without incurring high

time complexity.

To adopt the heuristics, Dijkstra’s algorithm [9] can be used to compute the

safest path from any cell to any other cell on the grid. Given agent’s and items’

locations, a complete undirected graph can be built from the grid, where a node

represents a key cell in the grid that contains the agent or an item, and the edge

weight represents success probability of traveling from one key cell to another alone

the safest path. See Figure 4.2 for an example, which shows how a 3× 3 grid of the

agent and two items is converted to a graph. Figure 4.2a is the state of the
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environment. Figure 4.2b shows the success probabilities of following the safest path

from any key cell to any other cell. In top-down order, the three grids are for the

agent cell, the left item cell and the right item cell. The red arrows indicate the

safest paths from one key cell to another. Finally, Figure 4.2c is the constructed

graph, where the edge weights are from the cells containing the arrow heads in

Figure 4.2b.

The tour-building heuristics from Chapter 3 can then be applied to find paths

that have high expected reward. To test which heuristic works best in DCP without

energy constraint, we run simulations on 10,000 randomly generated environments.1

In all the environments, the risk distribution in Figure 4.1b is used, and the total

reward is 30. The allocation of rewards is a multinomial distribution over the 8× 8

options with 30 repeats, so the number of items is random. Table 4.1 shows the

averaged results. Reward means the total reward collected during one episode.

Energy means the total energy consumed during an episode. Loss-Per-Gain (LPG)

algorithm gives the highest reward on average. Algorithm 7 presents the LPG

algorithm that is adopted to DCP. In the algorithm, Px,y(x′, y′) stands for the

success probability of following the safest path from cell (x, y) to cell (x′, y′).

4.4.2 Navigation under energy constraint

With the energy constraint, a navigation algorithm needs to consider both

collecting items and going back to the base station for recharging. There are two

1Although expected reward can be calculated, simulation results are used to make it consistent with
the other results of this chapter.
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Algorithm 8 Closest-First (CF)

Input: Current state s, action set A
Output: Agent’s action a and the target item i∗

Initialize minimum distance d∗ ← +∞
Get agent location (xz, yz) from s
for all item i in current state s do

Get location (xi, yi) of item i from s
d←max(|xz − xi|, |yz − yi|)
if d < d∗ then
d∗ ← d, i∗ ← i

end if
end for
Select the a ∈ A that minimizes max(|xz − xi∗ |, |yz − yi∗|)
return a, i∗

extreme routes to take for navigating to the base station. One extreme is to follow

the shortest path by going directly towards the base station, which uses the least

amount of energy but can be risky. The other extreme is to follow the safest path

calculated by Dijkstra’s algorithm, which is the least risky but may be longer and

therefore cost more energy.

Similarly, there are two extremes for collecting items, but these are intractable

to compute, so we use the LPG algorithm in Algorithm 7 to approximate the

safety-conservative extreme and the Closest-First (CF) algorithm, which always

navigates an agent towards the item that has the minimal Manhattan distance

regardless of the reward and risk, as an approximate to the energy-conservative

extreme. Algorithm 8 presents the CF algorithm.

From the above-mentioned four methods, called planning algorithms hereafter,

four navigation algorithms are designed:
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Algorithm 9 Structure of the navigation algorithms discussed in Section 4.4.2

Input: Current state s, planning algorithm N0 for navigation to base, planning al-
gorithm N1 for navigation to items, assume N0 and N1 take a location (x, y) as
input and return an action that follows a path from (x, y) to a target, the target
(an item or the base), and the length of the path

Output: Agent’s action a
Get energy level e of agent from s
Get location (xz, yz) of agent from s
a0, , ← N0(xz, yz) // “ ” means the value is not useful
a1, i

∗, l1 ← N1(xz, yz)
Get location (xi∗ , yi∗) of item i∗ from s
, , l′0 ← N0(xi∗ , yi∗)

if e < l1 + l′0 then
a← a0 // Go to the base

else
a← a1 // Go to the item

end if
return a

• Safe-Reward uses LPG to navigate to items, and follows the shortest path

back to the base.

• Safe-Recharge uses CF to navigate to items, and follows the safest path

back to the base.

• Safe-Both uses LPG to navigate to items, and follows the safest path back to

the base.

• Safe-Neither uses CF to navigate to items, and follows the shortest path

back to the base.

Algorithm 9 shows the details of these algorithms, which follow the same

structure but use different planning algorithms. The navigation algorithms only

consider if there is enough energy to reach the next item. With pre-calculated safest
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path information, their time complexities are of the same order as those of the

planning algorithms. This makes them ideal to be used in the deep learning method

discussed in the following. More effective algorithms can be crafted by considering

every step during the navigation, however, that would increase the time complexity

by a factor linear to the number of steps from the current location to the target.

4.4.3 Finding the balance

Finding a good balance between S&E manually requires creating elaborate rules,

which easily becomes intractable for large and diverse environments. Therefore, we

proposed an Ensemble Navigation Network (ENN) to learn good balance using a

linear combination of the above-mentioned navigation algorithms and some other

information discussed in the following. Figure 4.3 shows the structure of ENN.

Structure of ENN

The ENN is composed of a Convolutional Neural Network (CNN) and one or

more heuristics discussed above. The heuristics, Hi for i ∈ [1, n] and n ∈ N+, take

state s as input and generate an action vector Hi(s) which gives each action a ∈ A a

score. The CNN takes state s as input and generates one weight wi(s; θ) vector for

each action vector of the heuristics, a bias b(s; θ) and a state value estimation



56

Fig. 4.3.: Structure of ENN. ENN is composed of a Convolultional Neural Network
(CNN) and a number of heuristics Hi, all of which take game state s as input. The
heuristics output action vectors Hi(s) and the CNN outputs one weight wi(s; θ) for
each action vector, a bias b(s; θ), and a state value estimation V (s; θv), where θ and
θv represent network parameters. The final policy π(s; θ) is a softmax function σ of
a linear combination of all the outputs.

V (s; θv), where θ and θv represent the network parameters. The final policy π(s; θ)

is a softmax function σ of a linear combination of all the outputs:

π(s; θ) = σ(
n∑
i=1

wi(s; θ)×Hi(s) + b(s; θ))

where × denotes element-wise multiplication, also known as the Hadamard product.
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The CNN in ENN

The core of proposed ENN is CNN. As CNN’s input, a state s is represented by

two N ×N matrices, M item and Magent. M item represents the locations of items, the

value at the x-th row y-th column, mitem
xy , is the reward of the item at coordinate

(x, y). If there is no item at (x, y), mitem
xy = 0. Magent encodes the agent’s current

location and energy level. magent
xy = e where e is the current energy level if agent is

at coordinate (x, y), magent
xy = 0 otherwise.

The CNN takes the two matrices M item and Magent as input. Following the input

layer is a number of convolutional layers, after which is a fully connected layer that

summarizes features from the last convolutional layer. The final layer is the output

layer, which gives the aforementioned weights wi(s; θ), bias b(s; θ) and state value

estimation V (s; θv) linear outputs. V (s; θv) is the critic in the actor-critic learning

system2. Although the network parameters θ and θv are shown differently for

generality, they share all the parameters except for those in the output layer in our

experiments.

The Heuristics in ENN

There are ten heuristics in ENN, each of which gives an action vector that

consists of a score for each action a ∈ A. The four navigation algorithms proposed

in Section 4.4.2 are used as heuristics. Their action vectors are one-hot vectors that

indicate the chosen actions. Other than these four, the followings are also included:

2The actor is the final policy generated by ENN.
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• Loss-Per-Gain gives a one-hot vector for the action chosen by LPG

algorithm.

• Closest-First gives a one-hot vector for the action chosen by CF algorithm.

• Safe-Trip-Home gives a one-hot vector for the action that follows the safest

path to base.

• Fast-Trip-Home gives a one-hot vector for the action that follows the

shortest path to base.

• Distance-To-Home gives a score for each action that is the

shortest-distance-to-base after the actions is taken.

• Risk gives a score for each action that is the risk of taking the action.

Training

The pseudocode for the training procedure of ENN is presented in Algorithm 10.

This procedure is adopted from the the Asynchronous Advantage Actor-Critic

(A3C) algorithm in [25], which requires multiple threads to run in parallel to

counteract the dependencies among consecutive steps and hence stabilizes training.

All the threads share the same network, but each thread has its own environment

and performs optimization updates asynchronously. Adam optimization algorithm

[15] with a linearly decaying learning rate is used for training.

In order to compute a single update, a thread needs to use the global network to

proceed for tmax steps or until the terminal state is reached. For each state st, the
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Algorithm 10 Training procedure of a thread from [25]

Input: Shared iteration counter T and maximum Tmax, shared step maximum tmax,
shard network parameter θ and θv
while T < Tmax do
T ← T + 1
if st is not defined or is terminal then

Initialize a new environment
end if
Initialize step counter t← 0
repeat

Store current parameters θ′ ← θ, θ′v ← θv
Get current state st
Select action at according to policy π(at|st; θ′)
Execute action at and receive reward rt and state st+1

t← t+ 1
until st is terminal or t = tmax

Initialize Rt =

{
0, if st is terminal

V (st; θ
′
v), otherwise

for i← t− 1 to 0 do
Ri ← ri + γRi+1

end for
Update θ and θv using data batch from steps 0, . . . , t− 1

end while

global network generates a policy π(at|st; θ), which is used to sample an action at

from the action set A, and a value estimate V (st; θv) for state st. The thread

receives the reward rt and the next state st+1 from the environment after the action

is taken. With a maximum of tmax number of (st, at, rt, st+1) tuples, the thread

performs batch gradient descent to minimize the loss function. This process repeats

until a total number of Tmax updates are performed by all the threads.

The loss function mainly consists of two terms. Let θ′ and θ′v be the parameters

before a parameter update, st, at and rt be the state, action and reward at time step
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t, and γ be the discounting factor that signifies immediate rewards. The first term

specifies the loss from the policy:

Lπ(θ) = − log π(at|st; θ)A(st, at; θ
′
v)

where A(st, at; θ
′
v) =

∑k−1
i=0 γ

irt+i + γkV (st+k; θ
′
v)− V (st; θ

′
v) is the estimate of the

advantage of taking action at in state st, and k is the number of time steps in a

parameter update.

The second term specifies the loss from the estimate of value function, a Huber

loss is used instead of simple squared error loss:

Lv(θv) =


0.5(Rt − V (st; θv))

2, if |Rt − V (st; θv)| ≤ 1

|Rt − V (st; θv)| − 0.5, otherwise

where Rt =
∑k−1

i=0 γ
irt+i + γkV (st+k; θ

′
v) for k time steps.

4.5 Evalution

This section compares ENN with the navigation algorithms proposed in

Section 4.4.2 in different environmental settings. In all the following experiments,

ENN has two convolutional layers, all of which have filters of size 3× 3 and strides

of size 1 with same paddings3. The filter counts are 32 and 16 in that order. The

3Input is padded with 0s so that the input and output are of the same size.
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Risk distribution ρ(0) ρ(1) ρ(2) ρ(3)

Low Risk 0.01 0.02 0.04 0.08

Medium Risk 0.01 0.03 0.09 0.27

High Risk 0.01 0.04 0.16 0.64

Table 4.2: Risk values of the three different risk distributions used in Section 4.5.1.
Each distribution has four layers of risk values. From outer to inner, the risk values
are ρ(0), ρ(1), ρ(2) and ρ(3). As an example, high risk is shown in Figure 4.1b.

fully connected layer has 256 hidden units. All the hidden layers are followed by

rectifier nonlinearity. The network is implemented using TensorFlow [1].

All the trainings are done in 1 million steps by 16 threads, i.e. Tmax = 1,000,000.

The maximum batch size tmax = 32. We use a reward discount factor γ = 0.99. For

the Adam optimizer, the initial learning rate is set to 1× 10−4 and is linearly

annealed to 0 over the course of training. The β1 and β2 parameters of Adam

optimizer are set to 0.9 and 0.999 respectively.

The output of ENN is used as a stochastic policy in all the experiments, i.e.,

instead of always choosing the action with the highest probability, the agent

randomly samples an action from the probability mass function defined by the

output. This helps break symmetries during navigation when the agent is trapped

into infinite loops.

We also observed the behavior of ENN for about 100 episodes, so the following

discussions are based on both the experimental results and our observations.
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Algorithm
Reward Energy Reward / Energy

Avg. SD. Incr.% Avg. SD. Incr.% Avg. SD. Incr.%
Safe-Reward 11.55 6.38 13.99 29.65 19.75 -19.49 0.495 0.301 38.18
Safe-Recharge 7.39 5.33 78.26 12.03 9.42 98.46 0.691 0.339 -0.95
Safe-Both 8.51 5.16 54.73 24.35 18.27 -1.99 0.429 0.241 59.52
Safe-Neither 8.05 6.08 63.45 11.05 9.85 116.07 0.854 0.341 -19.87
ENN 13.16 7.17 — 23.87 16.88 — 0.685 0.314 —

Table 4.3: Results of experiments on the high-risk distribution specified in Table 4.2.
The average is taken from 10,000 runs. For every run, the total reward is 30, and
the initial and maximal energy of agent is 8 and 16 respectively. Reward is the
total reward collected during a game. Energy is the total energy consumed during
a game. Reward / Energy is the reward collected per energy consumed during a
game. Avg. means the average over 10,000 runs. SD. is the standard deviation.
Incr.% is ENN’s increment as a percentage of an algorithm’s corresponding average.
For example, Safe-Reward’s reward incr.% is the difference between ENN’s reward
and Safe-Reward’s reward as a percentage of Safe-Reward’s.

Algorithm
Reward Energy Reward / Energy

Avg. SD. Incr.% Avg. SD. Incr.% Avg. SD. Incr.%
Safe-Reward 13.43 6.62 9.66 33.14 19.88 -25.94 0.495 0.266 44.31
Safe-Recharge 9.51 6.95 54.84 17.56 15.36 39.77 0.625 0.311 14.33
Safe-Both 9.08 5.45 62.21 25.05 18.58 -2.03 0.439 0.241 62.80
Safe-Neither 12.04 8.17 22.34 19.16 16.80 28.09 0.771 0.312 -7.34
ENN 14.73 7.51 — 24.54 16.46 — 0.715 0.302 —

Table 4.4: Results of experiments on the medium-risk distribution specified in Ta-
ble 4.2. Terms used in the table and other experimental settings are the same as
Table 4.3.

Algorithm
Reward Energy Reward / Energy

Avg. SD. Incr.% Avg. SD. Incr.% Avg. SD. Incr.%
Safe-Reward 18.08 8.37 7.10 39.55 23.23 -14.09 0.546 0.238 17.37
Safe-Recharge 13.41 8.42 44.34 27.58 21.54 23.21 0.578 0.269 11.00
Safe-Both 11.78 6.82 64.38 29.90 21.64 13.64 0.478 0.245 34.07
Safe-Neither 17.88 9.60 8.29 34.30 24.83 -0.93 0.655 0.265 -2.08
ENN 19.36 8.87 — 33.98 18.68 — 0.641 0.250 —

Table 4.5: Results of experiments on the low-risk distribution specified in Table 4.2.
Terms used in the table and other experimental settings are the same as Table 4.3.
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4.5.1 Different risk distributions

We first consider environments of 8× 8 cells. The initial state of an environment

contains a random number of items with a total reward of 30. The initialization of

items is a random process that repeatedly puts a reward of 1 to a random cell in the

environment, which follows a multinomial distribution of 30 repeats over 64 choices.

The initial energy level of agent is 8 and the maximum energy level is 16, which is

large enough for a round trip from the base station to any other cell with some

leeway. With this setting, the number of states is of the order of

6430 + 6429 + . . .+ 640 due to the arrangement of rewards.

Three different risk distributions are considered in this section. Each

distribution has four risk values ρ(0), ρ(1), ρ(2) and ρ(3) that form four layers in the

environment. In Figure 4.1b, the distribution, denoted as high risk, has ρ(0) = 0.01,

ρ(1) = 0.04, ρ(2) = 0.16 and ρ(3) = 0.64. Table 4.2 shows the risk values for all three

distributions: high risk, medium risk and low risk. The terms high, medium and low

describe both the risk values and the differences between risk values, or the risk

gradient.

The results of experiments on the high-risks, medium-risk and low-risk

environments are shown in Table 4.3, Table 4.4 and Table 4.5 respectively. ENN

constantly performs the best in all the risk distributions, followed by the

Safe-Reward navigation algorithm. The others’ performance vary with the risk

distribution. In the tables, the difference in measurement between ENN and a
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navigation algorithm is shown as a percentage of the navigation algorithm’s

measurement, highlighted in bold.

In high-risk environments, as shown in Table 4.3, Safe-Reward collects 11.55

rewards and consumes 29.65 energy per episode on average. This gives it a 0.495

reward per energy (RPE)4. In comparison, ENN can collect 13.16 rewards, which is

about 65% of the LPG result in Section 4.4.1 where agent has infinite energy, and

consumes 23.87 energy per episode on average. With 0.685 RPE, ENN achieves a

13.99% increase in rewards and a 38.18% increase in RPE over Safe-Reward.

As the risk distribution varies from high to low, ENN’s advantage in reward

collection decreases, this is possibly because as the variance in risk values decreases,

the difference between expected rewards of different routes become smaller. The

only exception is the Safe-Both navigation algorithm, for which ENN’s advantage

increases. This is because Safe-Both follows the safest paths both towards the items

and towards the base, this makes the route too long to be finished and the agent

stays in base most of the time. Therefore for this algorithm, energy is a much more

limiting factor than risk, and reducing the risk does not improve its reward

collection as much as for the others.

The situation for RPE is more interesting. As the risk distribution goes from

high to low, ENN’s advantage goes up then down. There are two ways for ENN to

improve upon the navigation algorithms, (a) is via saving energy by taking a

shorter path of higher risk, and (b) is via improving safety by following a safer yet

longer path and thus consuming more energy. (a) increases RPE and (b) decreases

4Reward per energy is also an average over 10,000 runs.
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it. In a medium-risk environment, (a) has better effect compared to that in a

high-risk environment, therefore the improvement in RPE is better. In a low-risk

environment, (a) should have even better effect. However, since the risk is too low,

the agent can collect most of the items, and as the items are collected, the reward

density decreases and the distances between items increase regardless of what route

is taken. This undermines the effect of (a) and decreases ENN’s advantage in RPE.

But there is any exception in this RPE trend for the Safe-Neither algorithm, for

which ENN’s advantage is negative and monotonically increases. This is because

Safe-Neither completely disregards the risk by always following the shortest path,

which provides high RPE. But as the risk decreases, the agent survives for longer, so

the density of reward decreases and so does Safe-Neither’s RPE.

Another interesting observation is that, Safe-Both performs better compared to

Safe-Recharge and Safe-Neither in terms of reward collected in high-risk

environments, but becomes worse in medium-risk and low-risk environments,

because shortest paths are more beneficial in safer environments.

4.5.2 Effect of reward density

To study the effect of reward density, we run additional experiments with 15

total rewards instead of 30. The risk distribution is fixed to high risk shown in

Figure 4.1b. And the other experimental settings are the same as those in

Section 4.5.1. The same network trained in Section 4.5.1 is used here because the

network has experienced states with 15 or less reward during training.
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Algorithm
Reward Energy Reward / Energy

Avg. SD. Incr.% Avg. SD. Incr.% Avg. SD. Incr.%
Safe-Reward 6.42 3.65 17.57 24.31 15.80 -23.23 0.327 0.232 49.19
Safe-Recharge 4.11 3.12 83.81 11.05 8.71 68.90 0.448 0.314 9.10
Safe-Both 4.60 2.96 64.00 19.60 13.69 -4.79 0.265 0.176 83.96
Safe-Neither 4.78 3.62 57.90 10.10 9.49 84.84 0.594 0.311 -17.80
ENN 7.55 3.76 — 18.66 12.39 — 0.488 0.235 —

Table 4.6: Results of experiments where the total reward is 15. Terms used in the
table and other experimental settings are the same as Table 4.3.



67

Algorithm
Reward Energy Reward / Energy

Avg. SD. Incr.% Avg. SD. Incr.% Avg. SD. Incr.%
Safe-Reward 17.66 9.10 12.01 34.18 21.14 14.30 0.598 0.235 -5.44
Safe-Recharge 10.46 7.71 89.04 12.66 10.61 208.71 0.948 0.312 -40.35
Safe-Both 19.43 8.71 1.82 41.10 21.87 -4.92 0.536 0.218 5.49
Safe-Neither 9.73 7.17 103.34 10.87 9.31 259.36 1.001 0.298 -43.50
ENN 19.78 8.54 — 39.07 20.29 — 0.566 0.229 —

Table 4.7: Results of experiments where the initial and maximum energy levels are
set to 16 and 32 respectively. Terms used in the table and other experimental settings
are the same as Table 4.3.

As shown in Table 4.6, compared to the numbers in Table 4.3, ENN has better

advantage over all the navigation algorithms. This indicates that ENN is more

effective in navigating towards items than the any navigation algorithm alone.

Notice the low reward density does not decrease ENN’s advantage in RPE as it

does in the low-risk environment in Section 4.5.1. This is simply because ENN

collects much more reward than the navigation algorithms, which outweighs the

influence of low reward density on RPE.

4.5.3 Effect of energy capacity

To study the effect of energy capacity, we run additional experiments with initial

and maximum energy set to 16 and 32 respectively. The risk distribution is fixed to

high risk shown in Figure 4.1b. And the other experimental settings are the same as

those in Section 4.5.1. A new ENN is trained with the new energy capacity because

the network used in Section 4.5.1 has never experienced states with energy level

higher than 16 during training.
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Algorithm
Reward Energy Reward / Energy

Avg. SD. Incr.% Avg. SD. Incr.% Avg. SD. Incr.%
Safe-Reward 0.70 0.46 18.78 5.80 4.60 15.46 0.232 0.308 16.98
Safe-Recharge 0.43 0.50 93.82 5.32 3.33 25.99 0.164 0.273 65.67
Safe-Both 0.45 0.50 84.57 5.83 3.33 14.85 0.156 0.269 74.10
Safe-Neither 0.55 0.50 52.09 4.78 3.68 40.22 0.228 0.317 18.93
ENN 0.83 0.37 — 6.70 9.32 — 0.272 0.294 —

Table 4.8: Results of experiments where there is only one item of reward one in the
environment. Terms used in the table and other experimental settings are the same
as Table 4.3.

As shown in Table 4.7, with more energy at disposal, the algorithms that take

advantage of safest paths really shine. Specifically, Safe-Both and Safe-Reward

become dominantly better than Safe-Recharge and Safe-Neither, with Safe-Both

being the best. ENN’s advantage over Safe-Both is trivial because the need to

change Safe-Both’s choices, and save energy, too small to make a difference in

reward collection.

Another fact worth noting is that with 16 initial and 32 maximum energy, ENN

and Safe-Both can collect over 19 reward per episode, which is above 95% of the

performance of LPG algorithm with infinite energy shown in Table 4.1.

4.5.4 Single-item data collection

To show ENN’s advantage in data-collection efficiency in a different perspective.

We run additional experiments with the same environmental settings as those in

Table 4.3 except the number of item and the total reward are both set to 1, i.e.,

there is always one single item of reward one in any initial state. The same network

trained in Section 4.5.1 is used in these experiments.
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Algorithm
Reward Energy Reward / Energy

Avg. SD. Incr.% Avg. SD. Incr.% Avg. SD. Incr.%
Safe-Reward 11.74 6.36 -37.10 30.17 19.69 -30.09 0.491 0.300 -13.85
Safe-Recharge 7.41 5.42 -0.31 12.17 9.64 73.28 0.683 0.336 -38.07
Safe-Both 8.56 5.20 -13.75 24.52 18.33 -13.99 0.428 0.248 -1.11
Safe-Neither 8.16 6.12 -9.49 11.19 9.86 88.52 0.852 0.344 -50.38
Linear Learner 7.39 4.55 — 21.09 17.18 — 0.423 0.241 —

Table 4.9: Results of experiments for a simple linear learner. Terms used in the
table and other experimental settings are the same as Table 4.3.

Algorithm
Reward Energy Reward / Energy

Avg. SD. Incr.% Avg. SD. Incr.% Avg. SD. Incr.%
Safe-Reward 11.74 6.45 -22.99 30.13 19.70 -66.54 0.484 0.276 107.99
Safe-Recharge 7.45 5.39 21.30 12.24 9.69 -17.61 0.688 0.343 46.33
Safe-Both 8.53 5.14 6.01 24.46 18.18 -58.77 0.425 0.241 137.12
Safe-Neither 8.13 6.16 11.18 11.21 10.01 -10.05 0.851 0.346 18.34
EQN 9.04 4.42 — 10.08 9.21 — 1.007 0.352 —

Table 4.10: Results of experiments for the EQN shown in Figure 4.4. Terms used
in the table and other experimental settings are the same as Table 4.3.

From Table 4.8, we can see that the advantages of ENN over the navigation

algorithms are all much higher, compared to those shown in Table 4.3. The

minimum increment percentage of average episode reward is now 18.78% for the

Safe-Reward algorithm. And noticeably, the advantages of RPE are now all

positive. ENN is shown to be more energy-efficient than the Safe-Neither algorithm

which always follows the shortest path, because it is able to successfully collect the

item more often due to its choice of safer routes.



70

Fig. 4.4.: Structure of EQN. EQN is composed of a Convolultional Neural Network
(CNN) and a number of heuristics Hi, all of which take game state s as input. The
heuristics output action vectors Hi(s) and the CNN outputs one weight wi(s; θ) for
each action vector and a bias b(s; θ), where θ represents network parameters. The
final output is an estimate of the state-action value function Q(s, a; θ) for every action
a, which is a linear combination of all the heuristic outputs.
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4.5.5 Comparison to other learning methods

In this section, we compare ENN with alternative learning methods. Additional

agents are trained in the same environmental settings as those in Table 4.3, and are

evaluated with experiments.

The first method is a simple linear learner. This learner uses a linear function to

approximate the policy π(a|s; θ), and another linear function to approximate the

state-only value function V (s; θv). The training procedure is the same as that of

ENN (Algorithm 10). The results for this linear learner is shown in Table 4.9. We

can see that this simple learner performs worse than the worst navigation algorithm,

Safe-Recharge. This is mainly due to two reasons: (1) the linear learner does not

have the help from the heuristics, some of which are designed to maximize expected

reward in a probabilistic environment, and (2) the linear learner’s simple structure

is not able to deal with the large state space and therefore does not generalize well.

The second method is an Ensemble Q Network (EQN) that is inspired by the

Deep Q Network from [23] and [24]. The structure of EQN is shown in Figure 4.4,

which is the same as that of ENN except for the final output. The final output is an

approximation of the state-action value function Q(s, a; θ) as a linear combination of

all the heuristic outputs. The same set of heuristics presented in Section 4.4.3 are

used. The training procedure is the Asynchronous n-step Q-learning algorithm

found in [25]. For evaluation, the ε-greedy policy is employed where ε = 0.05. The

results are shown in Table 4.10, which indicate that EQN does not perform as well
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as our ENN in terms of average episode reward, but it does perform significantly

better in terms of average RPE.

Since most of the heuristics provide information on actions, ENN is able to

leverage them better than EQN because ENN generates policy (probability of each

action) directly while EQN generates the state-action value function (evaluation of

state and action). EQN needs to learn a function of higher dimension and therefore

its convergence is slower. On the other hand, EQN is inherently better at evaluating

how good a state is, which is directly related to the current energy level. Therefore

EQN is better at staying in high-energy states and has better RPEs than ENN.

4.6 Related work

Markov Decision Processes (MDPs) with mean payoff objectives (total reward

collected) have been heavily studied since the 60s. See [28] for a comprehensive

survey. And MDPs with energy constraints are also studied quite extensively [18].

However, the combination of the two has just started to attract attention. The most

recent and related work is [6], where the Energy Markov Decision Process (EMDP)

is proposed. Given an EMDP and its initial state, the task is to compute a safe

strategy that maximizes the expcted mean payoff, where safe means the energy

never drops to 0. The focus of their work is to construct approximations of optimal

strategies, using linear programming methods, with different assumptions of the

problem structure. In contrast, our work focuses on providing a practical end-to-end

solution using deep reinforcement learning.
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Lane and Kaelbling model a robotic package delivery problem as MDP [19, 20].

To deal with the intractable number of states, they create action macros that treats

an entire policy of the MDP as an action, then the original problem is reduced to

subproblems with much smaller state spaces and a problem of selecting the order in

which the packages should be delivered. The grid-based MDP is partially

transformed to a graph-based optimization problem, and off-the-shelf combinatorial

optimization routines for the Traveling Salesman Problem is employed to achieve a

exponential speedup. Their work considers the stochasticity of robot movement, but

it does not have any kind of energy constraint.

4.7 Conclusion

In this chapter, Data-collection Problem (DCP) is proposed. The problem

models a situation, in which a robotic agent collecting digital data in a risky

environment under energy constraint. A good solution finds a good balance between

safety and energy (S&E).

Four navigation algorithms that have different priorities during the mission are

designed. They represent different optimization goals, e.g. safety-first or energy-first.

A Ensemble Navigation Network (ENN), which consists of a Convolutional Neural

Network and a number of heuristics including the four navigation algorithms, is

developed to automatically find a good balance between S&E.

ENN is trained using deep reinforcement learning and has superior performance

in all the experiments conducted. From the experiments, we learn that ENN has
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better advantage over the four navigation algorithms when the risk in the

environment is high, when the density of reward is low, and when the amount of

energy is limited.
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5. GRID FORMULATION WITH OPPONENT AND

ENERGY CONSTRAINT

5.1 Chapter overview

The previous chapters consider the risk as a probability of robot being disabled,

which is an abstract way of modeling risk. The solution are concerned with how to

move the robot in the static environment so that it can collect more data before

disabled. We first use expected reward as an optimization goal to create plans in

Chapter 3, then use reinforcement learning to make the robot learns through

trial-and-error in Chapter 4.

In the real world, the risk can come from internal factors such as hardware

issues, or from external factors from the environment. For the external factors,

however, they can be static, like tree branches, or they can be dynamic, like

thunderstorms or animals. While modeling all these different types of risk in a

unified probabilistic way is reasonable, there are patterns in the dynamic type that

we can exploit to further improve data-collection efficiency.

In this chapter, we model the dynamic risk as a deterministic one in the form of

an opponent agent. The data-collecting agent is disabled when comes close to the

opponent. The opponent has different types of behaviors, which exhibit different

action patterns. These behaviors correspond to the behaviors of the thunderstorms



76

or animals in our motivating example. For example, a thunderstorm usually moves

towards the same direction in a short period of time; an animal, such as a bird or a

monkey, may move from point A to point B repeated for daily routines, or it may

chase a robot because it perceives the robot as a threat. If the robot can recognize

these behaviors, it can improve its own safety greatly and collect more data.

Therefore, our goal is to recognize the opponent’s behaviors from the exhibited

patterns, and effectively avoid the opponent while collecting data.

5.2 Contributions

• Proposing the Data-collection Game (DCG), a Stochastic Game that models

autonomous data-collection in an environment with opponent under energy

constraints. The opponent may employ different strategies, which can be

exploited to improve data-collection efficiency.

• Designing four deep neural networks for navigation the data-collecting agent

in DCG. Three of the networks model the opponent, implicitly or explicitly.

• Empirically showing that opponent modeling significantly improve

data-collection performance by helping the agent make more effective

movements, and explicit opponent modeling help the networks converge faster

during training.
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Fig. 5.1.: An example of the DCG environment. The robot represents the collector.
The ghost represents the adversary. The money bags represent items. The house
represents the base.
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5.3 Problem formulation

DCG is a two-player Stochastic Game (SG) on a N ×N grid of cells. The

controlled player is the data-collecting agent, referred to as the collector hereafter,

and the other player is the opponent agent, referred to as the opponent hereafter.

The opponent has a set of strategies Π, from which it uniformly randomly chooses

one for each episode of the game. Cell (0, 0) is the base. Each agent or item

occupies one cell. See Figure 5.1 for an example. In the figure, the robot represents

the collector, the ghost represents the opponent, the money bags represent items,

and the house represents the base.

The SG proceeds in discrete time steps. In the initial state s0, the collector is

located in the base, but the locations of the opponent and items are randomly

selected. At each step t, the collector receives the state of the environment st, and

selects an action at from the action set A = {stay, up, down, left, right, up-left,

up-right, down-left, down-right} according to some policy π, which is a mapping

from states st to actions at. The opponent automatically selects an action ot

according to its strategy/policy πo ∈ Π. The actions selected by both agents form a

joint action, which is then executed upon the environment. In return, the collector

receives the next state st+1 and a scalar reward rt. This process repeats until the

terminal state is reached, after which it restarts.

The transition from state st to state st+1 is defined as follows. The opponent

first makes a move according to its action ot. If this movement leads the opponent

to the same cell as the collector, the collector is disabled. Otherwise, the collects
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makes a move according to its action at. If this movements leads the collector to a

cell that contains an item, the item is collected. If the collector ends up in the same

cell as the opponent, the collector is disabled. Any movement that would lead an

agent out of the grid boundary makes the agent stays along the axis perpendicular

to that boundary. At the end, the energy level of the collector is reduced by one,

regardless of what action was taken, unless it is in the base. If the collector is in the

base, its energy level is restored to the maximum. Otherwise, if the energy level

drops to 0, the collector is disabled.

Items contain positive rewards, whose values are non-uniform and visible to the

agents. The collector obtains a reward immediately after it collects an item, which

is returned to the collector as the scalar reward rt for time step t. There is no

negative reward when the collector is disabled. The terminal state is reached when

either the collector is disabled or all the items are collected. The objective is to

maximize the total reward collected by the collector in an episode, i.e., from initial

state to terminal state, of the game.

The game is similar to the Pacman game, however, there are two major

differences: (1) the collector needs to consider its energy level so it has to make

precise moves and go back for recharge periodically, and (2) the opponent can

employ different strategies and therefore exhibit different behaviors.
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5.4 Algorithm

To study the effect of OM, we use four different deep neural networks to control

the collector in DCG. These networks have different ways to model opponents. In

this section, θ, θv and θo represent network parameters. They are reused across

subsections for succinctness, but no parameters are shared between different

networks unless explicit stated.

5.4.1 State representation

For all of the networks, a state st of the environment is represented by two

N ×N matrices, M item
t and Magent

t . M item
t represents the locations of items at time

t, the value at the x-th row y-th column, mitem
t,x,y, is the reward of the item at

coordinate (x, y) at time t. mitem
t,x,y = 0 if there is no item at (x, y) at t. Magent

t

encodes the agents’ locations and the energy level of the collector at time t.

magent
t,x,y = e where e is the current energy level if the collector is at coordinate (x, y)

at t, magent
t,x,y = −1 if the opponent is at coordinate (x, y) at t, magent

t,x,y = 0 otherwise.

5.4.2 No Opponent Modeling

The Vanilla Navigation Network (VNN) is a Convolutional Neural Network that

takes only the state s as input. Following the input layer is a number of

convolutional layers, after which is a fully connected layer that summarizes features

from the last convolutional layer. The final layer is the output layer, which consists

of a policy π(s; θ) as a softmax output that is a probability mass function over the



81

Fig. 5.2.: Structure of VNN in Section 5.4.2. VNN is a Convolultional Neural
Network. It takes state s as input, and gives the policy π(s, h; θ) and the value
estimation V (s, h; θv) as outputs, where θ and θv are network parameters.
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Fig. 5.3.: Structure of IMNN in Section 5.4.3. IMNN is a Convolultional Neural
Network. It takes state s and history h as inputs, and gives the policy π(s, h; θ) and
the value estimation V (s, h; θv) as outputs, where θ and θv are network parameters.

action set A, and an estimate of the state value function V (s; θv) as a linear output.

Although the network parameters θ and θv are shown differently for generality, they

share all the parameters except for those in the output layer in our experiments.

The structure of VNN is shown in Figure 5.2.

Because VNN only have the current state as input, it does not have enough

information to model the opponent.

Similar as in Section 4.4.3, the loss function consists of two terms, one for the

loss from policy π(s; θ), the other for the loss from value estimation V (s; θv). And

the training procedure is adopted from the the Asynchronous Advantage

Actor-Critic (A3C) algorithm in [25], shown in Algorithm 10.

5.4.3 Implicit Opponent Modeling

The Implicit Modeling Navigation Network (IMNN) has the same network

structure as the VNN in Section 5.4.2, expect for the input layer. Instead of only

taking the current state st as input, it also takes the history h of agents’ locations.
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Fig. 5.4.: Structure of EMNN in Section 5.4.4. EMNN is a Convolultional Neural
Network. It takes state s and history h as inputs, and gives the policy π(s, h; θ), the
value estimation V (s, h; θv), and opponent strategy πo(s, h; θo) as outputs, where θ,
θv and θo are network parameters.

This history has a fixed length k, so the input consists of matrices

M item
t ,Magent

t ,Magent
t−1 , . . . ,Magent

t−k for time t. It has the same types of outputs: a

policy π(s, h; θ) and value estimation V (s, h; θv). The structure of IMNN is shown in

Figure 5.3.

Because IMNN have the history of the opponent’s behavior, it is able to predict

its action and take advantage of the prediction implicitly. See Section 5.5 for more

discussion on the effect of this implicit modeling.

The loss function and training procedure of IMNN are the same as those of VNN

in Section 5.4.2, with a slight modification of how the input is obtained.

5.4.4 Explicit Opponent Modeling with same network

The Explicit Modeling Navigation Network (EMNN) has the same network

structure as the IMNN in Section 5.4.3, expect for the output layer. In addition to
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Algorithm 11 Training procedure of a thread for EMNN in Section 5.4.4

Input: Shared iteration counter T and maximum Tmax, shared step maximum tmax,
shard network parameter θ, θv and θo
while T < Tmax do
T ← T + 1
if st is not defined or is terminal then

Initialize a new environment
end if
Initialize step counter t← 0
repeat

Store current parameters θ′ ← θ, θ′v ← θv, θ
′
o ← θo

Get current state st and history ht
Select action at according to policy π(at|st, ht; θ′)
Execute action at and receive reward rt, state st+1, and opponent action ot
t← t+ 1

until st is terminal or t = tmax

Initialize Rt =

{
0, if st is terminal

V (st, ht; θ
′
v), otherwise

for i← t− 1 to 0 do
Ri ← ri + γRi+1

end for
Update θ, θv, and θo using data batch from steps 0, . . . , t− 1

end while

the policy π(s, h; θ) and value estimation V (s, h; θv), it also gives a prediction of the

opponent strategy πo(s, h; θo). In experiments, θ, θv and θo share the same

parameters except for those in the output layer. The structure of EMNN is shown

in Figure 5.4.

In addition to the policy loss and the value estimation loss, EMNN’s loss

function has an extra cross entropy term:

Lo(θo) = α
∑
a∈A

−I(a) log πo(a|s, h; θo) (5.1)
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Fig. 5.5.: Structure of OMN and CoNN in Section 5.4.4. OMN and CoNN are
Convolultional Neural Networks. OMN takes state s and history h as inputs, and
gives the opponent strategy πo(s, h; θo) as output. CoNN takes state s, history h,
and opponent strategy πo as inputs, and gives the policy π(s, h, πo; θ) and the value
estimation V (s, h, πo; θv) as outputs. θ, θv and θo are network parameters.

where α specifies the strength of the term, I is an indicator function that returns 1

if a is the action taken by the opponent and 0 otherwise, and πo(a|s, h; θo) is the

probability assigned to action a by the network. Lo(θo) measures the accuracy of

πo(s, h; θo) against the actual action taken by the opponent. The training procedure

is detailed in Algorithm 11.

5.4.5 Explicit Opponent Modeling with separate network

A designated network named Opponent Modeling Network (OMN) is used for

explicit opponent modeling. The OMN has the same hidden layers as VNN. It takes

s and h as input and produces πo(s, h; θo) as the output. Combined with s and h,

this output is used as input to another network called Cooperating Navigation

Network (CoNN), which also has the same hidden layers but maintains the policy
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Algorithm 12 Training procedure of a thread for OMN and CoNN in Section 5.4.5

Input: Shared iteration counter T and maximum Tmax, shared step maximum tmax,
shard network parameter θ, θv and θo
while T < Tmax do
T ← T + 1
if st is not defined or is terminal then

Initialize a new environment
end if
Initialize step counter t← 0
repeat

Store current parameters θ′ ← θ, θ′v ← θv, θ
′
o ← θo

Get current state st and history ht
Get prediction of opponent strategy πo(st, ht; θo)
Select action at according to policy π(at|st, ht, πo(st, ht; θo); θ′)
Execute action at and receive reward rt, state st+1, and opponent action ot
t← t+ 1

until st is terminal or t = tmax

Initialize Rt =

{
0, if st is terminal

V (st, ht, π
o(st, ht; θo); θ

′
v), otherwise

for i← t− 1 to 0 do
Ri ← ri + γRi+1

end for
Update θ, θv, and θo using data batch from steps 0, . . . , t− 1

end while

π(s, h, πo; θ) and value estimation V (s, h, πo; θv). The structures of the OMN and

CoNN are shown in Figure 5.5.

The loss function of CoNN is the same as that of IMNN. The loss function of

OMN only contains the cross entropy loss defined by Equation 5.1. The training

procedure is presented in Algorithm 12.

5.4.6 Comparison of the networks

VNN can only see the current state of the environment, so it does not have any

way to model the opponent. On the contrary, all the other networks have access to
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the location history of the environment, which can be used to infer the strategy of

the opponent.

IMNN is a simple extension of VNN that takes the history as additional input,

and, as VNN, its optimization goal is to solely maximize the total reward collected

during an episode of the game, i.e., it does not try to predict the behavior of the

opponent explicitly.

EMNN is an extension of IMNN. With the same inputs, EMNN tries to

maximize the episode reward and correctly predict the action of the opponent at the

same time. Although the prediction of the opponent action is not used in

controlling the collector in any way, it helps in shaping the network parameters

during optimization.

OMN is an completely isolated network whose solo goal is to predict the action

of the opponent. This makes the opponent modeling task more straightforward for

the learning procedure, therefore the accuracy of opponent modeling is potentially

better than that of EMNN. CoNN then uses the prediction from OMN, the state

and history to maximize episode reward.

5.5 Evaluation

In this section, we compare the performance of the networks proposed in

Section 5.4. We first talk about the environmental settings, the network structure

and hyperparameters used in all the experiments, then we experiment on the

networks in various perspectives.
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5.5.1 Environmental settings

As the standard setting, the environment has a size of 5× 5 with 10 total

rewards. The allocation of items is a random process that repeatedly puts a reward

of 1 to a random cell in the environment, which follows a multinomial distribution

of 10 repeats over 25 choices. This makes the number of states in the order of

2510 + 259 + . . .+ 250 due to the arrangement of rewards. The maximum energy

level of the collector is 15. There is one collector and one opponent. The collector’s

policy is stochastic, i.e., the output of network is considered as a probability mass

function over the action space. For each game state, an action is randomly drawn

from the policy according to the probability distribution. The opponent has 3

strategies in its strategy set Π:

• patrol the opponent chooses a random location other than the base, and

moves back and forth between the initial location and the chosen one.

• restricted the opponent always moves towards the collector, but the

opponent can only choose actions from A− = {stay, up, down, left, right}, i.e.,

it cannot move diagonally.

• with-fog if the collector is on the top or left edge, the opponent cannot see

the collector and therefore it stays, otherwise the opponent moves towards the

collector with any action from A.

The opponent uniformly randomly chooses a strategy from Π for each episode of the

game and follows it for the entire episode.
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5.5.2 Network structure and hyperparameters

In our experiments, all the networks have the same types of hidden layers:

following the input layer are two convolutional layers with 3× 3 filters, stride size 1

and same paddings1, and the filter counts are 32 and 16; afterwards there is a fully

connected layer with 256 neurons, which is followed by the output layer. For the

networks with opponent modeling, the length of history k = 10. All the networks

are implemented using TensorFlow [1].

Unless otherwise stated, training is done by 16 threads in 1 million steps, i.e.,

Tmax = 1,000,000. The maximum batch size tmax = 32. The reward discount factor

γ = 0.99. We use Adam optimizer [15] for optimization. The initial learning rate is

set to 1× 10−4 and is linearly annealed to 0 over the course of training. The β1 and

β2 parameters of Adam are set to 0.9 and 0.999 respectively.

5.5.3 Evaluation in the standard setting

We run experiments in 10,000 randomly generated environments. The results on

reward collected per episode, or episode reward, are shown in Figure 5.6. The results

on reward collected per energy spent in an episode, or reward per energy (RPE), are

shown in Figure 5.7.

As shown in Figure 5.6, the effect of opponent modeling on episode reward is

significant. With implicit modeling, IMNN collectors collect about 9% more reward

on average compared to VNN collectors. With explicit modeling, EMNN collectors

1Input is padded with 0s so that the input and output are of the same size.
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Fig. 5.6.: Results on episode reward for networks trained in 1 million steps. The
labeled bars in the chart show the averaged episode rewards over 10,000 episodes.
The error bars are the standard deviations.

Fig. 5.7.: Results on reward per energy (RPE) for networks trained in 1 million
steps. The labeled bars in the chart show the averaged RPEs over 10,000 episodes.
The error bars are the standard deviations.
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with α = 0.001 can collect about 17% more and OMN + CoNN collectors can

collect above 19% more rewards. OMN + CoNN achieve highest reward with the

smallest standard deviation. These improvements are significant because collecting

items becomes more difficult as items are collected.

We can see that explicit modeling works better than implicit modeling, and

using a separate network for the modeling gives only slight improvement in

performance over using the same network. However, our experiments show EMNN’s

accuracy in predicting opponent actions is only around 75%, but OMN’s accuracy

can achieve over 98%. In DCG, the impact of opponent action on the game state is

limited: it can only move to the 8 adjacent cells. So the benefit of predicting the

action is relatively small. Therefore, OMN’s high accuracy in opponent modeling

may have better impact on performance in other domains where the opponent

action has higher impact on game states, such as Poker.

The RPE results in Figure 5.7 indicates EMNN with α = 0.0001 is the best in

RPE compared with the others, followed by VNN. To understand this result, we

need to realize that RPE is affected by the density of the rewards, i.e., the average

distance between any two items. Namely, the higher the density the higher the

RPE, regardless of the network. As the items are collected, the density decreases,

and so does the RPE. With that in mind, EMNN with α = 0.0001 and VNN having

better RPE than the others is no longer surprising. However, EMNN with

α = 0.001 also obtains a good RPE even though it can collect high reward. This

shows, when trained in 1 million steps, EMNN with α = 0.001 uses energy more

efficiently than OMN + CoNN.
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Fig. 5.8.: Results on episode reward for different maximum energy levels. The
labeled bars in the chart show the averaged episode rewards over 10,000 episodes.
The error bars show the standard deviations.

Since we show that α = 0.001 gives the best results of EMNN, we only evaluate

EMNN with α = 0.001 and use “EMNN” to refer “EMNN with α = 0.001” for the

rest of this section.

5.5.4 Effect of energy capacity

To study the effect of energy capacity, we train additional networks with

maximum energy level set to 10 and 20. All the other settings remain the same for

these additional networks. Then, for each energy capacity, 10,000 experiments are

conducted for each type of the networks. The results are shown in Figure 5.8 and

Figure 5.9.
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Fig. 5.9.: Results on reward per energy (RPE) for different maximum energy levels.
The labeled bars in the chart show the averaged RPE over 10,000 episodes. The error
bars show the standard deviations.
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Figure 5.8 shows the average episode reward for different maximum energy

levels. Apart from VNN, all the networks have reduced episode reward when the

maximum energy level is reduced to 10, and all of them have similar but smaller

episode reward when the maximum energy level is increased to 20. When the energy

capacity is reduced, the collector’s ability to evade the opponent is reduced, and

hence the episode reward drops. However, when the energy capacity is improved,

the extra energy does not help because 15 energy is enough to make most of the

strategic movements necessary to avoid the opponent. Furthermore, it even affects

the episode reward slightly. This is probably due to the extra steps the collector is

now able to take, which may lead it to terminal situations.

As for VNN, it has similar episode reward when the energy capacity is increased,

while has larger episode reward when the energy capacity is decreased. This shows

that VNN is not able to use energy as efficiently as the networks with opponent

modeling. Compared with the 10-to-15 change for the others, it is only when the

max energy level is changed from 15 to 20, can VNN make better movements and

collect more rewards.

Figure 5.9 shows the average RPE for different maximum energy levels. The

results indicate that, when the energy capacity is increased to 20, the RPE of all the

networks does not change much. This backs up the previous statement that 15

energy is enough for the collector to make most of the strategic movements, which

are the main reason for energy waste. On the other hand, when the energy capacity

is reduced to 10, it is not enough to make the strategic movements. Therefore the
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Fig. 5.10.: Reward areas of different sizes. The sizes are defined by the edge length
in terms of the number of cells in the square. For a given reward area, one item of
reward one is uniformly randomly placed in a cell within the square.

collector frequently gives up on items that are considered too “hard” to collect, and

the RPE increases.

5.5.5 Investigation on the behaviors

To investigate more on the behaviors of the networks, we run additional

experiments using the networks trained in Section 5.5.3. In these experiments,

instead of using a random number of items with 10 total rewards, we place only 1

item with 1 reward in the environment. The location of the item is uniformly

randomly chosen in a given square of varying size. This greatly reduces the size of

state space. However, because the networks never encounter any state with only 1

item of reward 1 and no history during training, these limited number of states are
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Fig. 5.11.: Results on episode reward for different sizes of reward area. The labeled
bars in the chart show the averaged episode rewards over 10,000 episodes. The error
bars show the standard deviations. In each episode, there is only 1 item of reward
1, and it is randomly placed in a square to the bottom-right of the grid. The size of
reward area indicates the edge length of the square.
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Fig. 5.12.: Results on reward per energy (RPE) for different sizes of reward area.
The labeled bars in the chart show the averaged RPE over 10,000 episodes. The error
bars show the standard deviations. In each episode, there is only 1 item of reward
1, and it is randomly placed in a square to the bottom-right of the grid. The size of
reward area indicates the edge length of the square.
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actually from similar but new state spaces. Therefore, these results also show the

generalization capabilities of the networks.

See Figure 5.10 for the different squares used to select the location. The square

is referred to as the reward area, and the edge length of the square is referred to as

the size of reward area hereafter. We use 1 to 4 as the size of reward area. Size 5 is

not used because the opponent strategy with-fog treats the cells on the top and

left edges differently. The smaller the reward area is, the more difficult it is for the

collector to collect the item. Because it is more likely for the collector to be

intercepted by the opponent, the collector needs to make precise and effective moves

to be able to collect the item. The experimental results on episode reward are

shown in Figure 5.11, and those on RPE are shown in Figure 5.12.

Figure 5.11 shows, as expected, as the size of the reward area decreases, the

average episode reward for all the networks decreases. However, networks with

opponent modeling always perform better than the network without opponent

modeling (VNN), especially in the extreme case where the reward area size is 1.

This reaffirms that opponent modeling helps improving data-collection performance.

Between the opponent modeling networks, OMN + CoNN is able to collect the item

most frequently, followed closely by EMNN. IMNN’s performance is suboptimal,

indicating explicit opponent modeling is more effective than implicit modeling.

As for RPE, Figure 5.12 shows, similarly as for the episode reward, the energy

efficiency decreases as the size of the reward area goes down. More importantly, the

results also indicate that explicit modeling has better energy efficiency than implicit

or no modeling. In addition, as the size of the reward area becomes smaller,
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OMN + CoNN becomes dominantly superior than the other networks. This

strongly suggests that OMN + CoNN is able to make very precise movements and

hence save energy during data collection, probably thanks to its accurate prediction

of the opponent action.

The above-mentioned results show the networks’ behaviors in a high-level

statistically. The conclusion is that opponent modeling, especially explicit modeling

using separate network (OMN + CoNN), helps the collector make precise and

effective movements. To demonstrate this conclusion more clearly, we present three

typical gameplays of VNN and OMN + CoNN, one for each opponent strategy

specified in Section 5.5.1 in Figure 5.13, 5.14, and 5.15. In the figures, the robot

represents the collector, the ghost represents the opponent, and the money bag

represents the item. The base and the energy level of the collector are not shown.

The reward of the item is one. The numbers under the grids show the time steps,

and the number on the top and left edges of the first grid are the coordinates of the

grid cells. The three big dots between grids indicate omitted steps, while those at

the end indicates infinite number of steps, i.e., the episode never reaches a terminal

state. In these examples, all the games have the same initial state, and the collector

uses deterministic policy, i.e., the collector always selects the action with the highest

probability.

In Figure 5.13, the opponent uses the patrol strategy. The VNN collector keeps

trying to find an opening for approaching the item, but it cannot because the

opponent is moving back and forth and the collector cannot recognize the pattern.

VNN collector is hence stuck and the episode never reaches a terminal state. On the
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(a) VNN

(b) OMN + CoNN

Fig. 5.13.: Gameplays of VNN and OMN + CoNN when the opponent uses the
patrol strategy. The robot represents the collector, the ghost represents the oppo-
nent, and the money bag represents the item. The base and the energy level of the
collector are not shown. The reward of the item is one. The numbers under the grids
show the time steps, and the number on the top and left edges of the first grid are
the coordinates of the grid cells. The three big dots between grids indicate omitted
steps, while those at the end indicates infinite number of steps.
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(a) VNN

(b) OMN + CoNN

Fig. 5.14.: Gameplays of VNN and OMN + CoNN when the opponent uses the
restricted strategy. The robot represents the collector, the ghost represents the
opponent, and the money bag represents the item. The base and the energy level
of the collector are not shown. The reward of the item is one. The numbers under
the grids show the time steps, and the number on the top and left edges of the first
grid are the coordinates of the grid cells. The three big dots between grids indicate
omitted steps, while those at the end indicates infinite number of steps.
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(a) VNN

(b) OMN + CoNN

Fig. 5.15.: Gameplays of VNN and OMN + CoNN when the opponent uses the with-
fog strategy. The robot represents the collector, the ghost represents the opponent,
and the money bag represents the item. The base and the energy level of the collector
are not shown. The reward of the item is one. The numbers under the grids show
the time steps, and the number on the top and left edges of the first grid are the
coordinates of the grid cells. The three big dots between grids indicate omitted steps.



103

other hand, the OMN + CoNN collector is able to find the right opening, at step 9,

and cross the opponent’s patrol route, successfully collecting the item.

In Figure 5.14, the opponent uses the restricted strategy. The VNN collector

moves back and forth because the opponent keeps chasing it and there is no space

for the collect to go pass the opponent. As a result, the collector is once again stuck

and the episode never reaches a terminal state. On the contrary, the OMN + CoNN

collector is able to recognize the movement pattern of the opponent, and to exploit

that pattern by moving diagonally. Thus, it is able to quickly obtain the item.

However, the actions of the OMN + CoNN collector is not perfect, as shown in step

10 of Figure 5.14b.

In Figure 5.15, the opponent uses the with-fog strategy. In this case, the VNN

collector gives up after wasting some energy, because the opponent stays beside the

item. However, the OMN + CoNN collector is able to lure the opponent to one side

of the environment, then go to the other side within the “fog”, and finally collect

the item.

These examples are deliberately selected to show, more concretely and in more

details, the advantages of opponent modeling. In these cases, OMN + CoNN has

much better performance than VNN, because VNN is not able to collect the item at

all. It is worth noting that, in other cases, VNN does sometime outperform

OMN + CoNN in terms of energy efficiency, i.e., VNN uses less steps than

OMN + CoNN, which probably thanks to its simpler network structure. However,

we have not observed a case where VNN is able to collect the item but

OMN + CoNN is not.
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Fig. 5.16.: Results on episode reward for networks trained in 5 million steps. The
labeled bars in the chart show the averaged episode rewards over 10,000 episodes.
The error bars are the standard deviations.

5.5.6 Five million steps of training

To understand the full potential of all the networks, we train additional networks

for 5 million steps, i.e., Tmax = 5,000,000, and run experiments in 10,000 randomly

generated environments. This number of steps is chosen because all the networks

completely converge after training, i.e., there is no more performance improvement

after 5 million steps for any network. The results on episode reward are shown in

Figure 5.16. The results on RPE are shown in Figure 5.17.

As shown in Figure 5.16, the episode rewards of all the networks are improved

compared with those in Figure 5.6. IMNN, EMNN and OMN + CoNN have similar

episode rewards, which are more than 15% improvement over VNN and have smaller
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Fig. 5.17.: Results on reward per energy (RPE) for networks trained in 5 million
steps. The labeled bars in the chart show the averaged RPEs over 10,000 episodes.
The error bars are the standard deviations.
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standard deviations. OMN + CoNN is the best and achieving over 9 out of 10

rewards and has the smallest standard deviation. These results further confirm that

opponent modeling, either implicit or explicit, have a significant positive impact on

performance.

Comparing the episode rewards from Figure 5.6 and Figure 5.16, we also see

that EMNN and OMN + CoNN perform better than IMNN when trained in 1

million steps but they all perform similarly when trained in 5 million steps, this

indicates that networks with explicit opponent modeling converge faster than that

with implicit opponent modeling. In addition, the performance difference between

EMNN and OMN + CoNN is also smaller when trained in 5 million steps,

indicating the separate OMN with high accuracy provides the fastest convergence.

Figure 5.17 shows that, compared with those in Figure 5.7, the RPEs of all the

networks are improved after 5 million steps of training, which means the agents

learn to use energy more efficiently during training. OMN + CoNN achieves the

best RPE, indicating that OMN’s high accuracy in predicting the opponent action

makes the collector collect rewards more efficiently. This is probably because the

actions chosen by CoNN are more precise and thus the collector wastes less energy.

VNN has higher RPE than IMNN, because it collects less reward and its reward

density is generally higher than that of IMNN. This conclusion is backed up by high

standard deviation of VNN.
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Fig. 5.18.: Results on episode reward for networks trained in 1 million steps. The
labeled bars in the chart show the averaged episode rewards over 10,000 episodes.
The error bars are the standard deviations. The with-fog strategy is replaced by
the double-blind with-fog strategy where agents cannot see each other when the
collector goes into special “foggy” cells.
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Fig. 5.19.: Results on reward per energy (RPE) for networks trained in 1 million
steps. The labeled bars in the chart show the averaged RPEs over 10,000 episodes.
The error bars are the standard deviations. The with-fog strategy is replaced by
the double-blind with-fog strategy where agents cannot see each other when the
collector goes into special “foggy” cells.
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5.5.7 Change of opponent strategy

In this section, we replace the with-fog policy of the opponent with a more

symmetric double-blind with-fog policy where both agents cannot see each other

when the collector goes into the special “foggy” cells. The other policies stay the

same. All the networks are retrained for 1 million steps and the results are

presented in Figure 5.18 and 5.19.

From Figure 5.18, we can see that the performance of EMNN and OMN + CoNN

stay almost the same with the change of opponent policy, but VNN and IMNN

perform better, compared to the results in Figure 5.6. Gameplays of all the agents

show that the behaviors of all the opponent-modeling networks do not change much

with the different opponent strategy set. This is expected because these networks

are able to see the history of the states. Even though they cannot see the opponent

in the current state, they can learn to deduct this information from the history

during training. On the other hand, this change does affect the VNN since it does

not have access to the history, and the gameplays show that VNN agent simply stays

in the base when the opponent chooses the new double-blind with-fog strategy.

The improvements of VNN and IMNN are likely due to more focused training.

Without the explicit goal of predicting the opponent behavior, VNN and IMNN

learn to associate rewards to the actions taken in the current state. Because the

current state will very often not contain any information about the opponent when

double-blind with-fog is chosen, there is not as much to learn in such situations.

As a result, the optimization of VNN and IMNN during training is focused more on
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the other opponent strategies, and the convergence for those strategies is thus

faster. Since VNN and IMNN do not do well for the original with-fog strategy

anyway, the overall performance of them are improved.

The RPE results in Figure 5.19 is again not indicative and is only shown for

completeness, because the average distance between items increases as items are

collected and the RPE will decrease as a result. But they are consistent with the

results in Figure 5.7.

5.6 Related work

Most opponent modeling works are done in the domain of Poker games.

Ganzfried and Sandholm [12] combine game theoretic reasoning and pure opponent

modeling to a hybrid method that can exploit suboptimal opponents in Limit Texas

Hold’em. Their method first computes an approximate equilibrium of the game.

Then, as it plays by following the equilibrium strategy, it uses a Bayesian model to

record the opponent’s deviation from the equilibrium. After a number of games, it

starts to exploit the opponent using a best response strategy based on the opponent

model. In [32] and [3], different strategies are computed offline based on domain

knowledge or past experience in Texas Hold’em. These “experts” are then selected

online using multi-arm bandit algorithm, which models the opponents implicitly.

The above-mentioned methods require either domain knowledge or special property

of the game being played. As a consequence, their applicability is limited to specific

domains.
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Recently, He et. al. [13] apply Deep Reinforcement Learning to opponent

modeling. In their work, two types of networks are designed. The first one simply

concatenates the network parameters learned from the opponent behaviors to those

learned from game states. The second one uses an expert network to capture

different aspects of the game state, and uses a gating network to learn how to

interpret the expert network’s output according to the opponent behavior. Their

networks are trained using Deep Q Learning [23, 24] with either implicit or explicit

opponent modeling (with additional signal from the opponent actions). The

methods are verified in a simulated soccer game and the quiz bowl trivia game.

Similar to our methods, their approaches are neural based and do not require

domain knowledge, so they can be adopted to other domains.

5.7 Conclusion

In this chapter, Data-collection Game (DCG) is proposed. It is a two-player

Stochastic Game that models a robotic agent collecting digital data, under energy

constraint, in an environment that contains an opponent agent. The opponent agent

may employ different strategies. Therefore being able to identify the opponent

strategy can potentially benefit the data-collecting agent (collector).

Four deep neural networks are designed to learn the game. The Vanilla

Navigation Network (VNN) learns to play based only on the current state. The

Implicit Modeling Navigation Network (IMNN) learns to play based on the current

state and the location history of the agents. The Explicit Modeling Navigation
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Network (EMNN) learns to play as well as to predict the opponent action, based on

the current state and the location history of the agents. The Opponent Modeling

Network (OMN) paired with the Cooperating Navigation Network (CoNN) have the

same goals as EMNN but use a separate network, the OMN, to focus on modeling

the opponent.

All the networks are trained using deep reinforcement learning methods. From

the experiments, we learn that opponent modeling, either implicit or explicit,

greatly improves the data-collecting performance of the collector. However, explicit

modeling speeds up convergence during training, especially when the opponent

model is accurate. In addition, an accurate opponent model also helps the collector

collect data more efficiently, achieving high reward per energy (RPE).
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6. SUMMARY AND FUTURE WORK

In this thesis, we first formulate the task of data collection as a planning problem on

a complete graph, named the Data-collecting Robot Problem (DRP), where the risk

is modeled as a probability of robot being disabled or destroyed. The objective is to

maximize the expected reward that is determined by both the gain from visiting

nodes and loss of robots. This formulation assumes a uniform risk distribution and

unlimited energy of robot, among others. Heuristic planning algorithms that consist

of a clustering step and a tour-building step are proposed to solve the problem.

Secondly, we relax the assumption to non-uniform probabilistic risk and limited

energy, and formulate the task as a Markov Decision Process called the

Data-collection Problem (DCP). The goal is to collect maximal reward with given

robot. The key of good solution is to find good balance between safety and energy

(S&E). We propose four navigation algorithms that have different priorities in S&E

during data collection, and design an Ensemble Navigation Network (ENN) for

automatically finding improved solutions from heuristic inputs. ENN is trained

using reinforcement learning and is empirically proved to provide better

performance.

Finally, we formulate the data-collection task as a Stochastic Game named the

Data-collection Game (DCG), where the risk is in the form of an opponent instead

of a probability distribution, and the robot still has energy constraints. The goal is
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still to collect maximal reward with given robot. However, since the opponent can

take different strategies to interfere with data collection, opponent modeling is

utilized to improve performance. Three deep neural networks are designed to model

the opponent in different ways, which are trained using reinforcement learning. We

show good opponent modeling gives superior data-collection results in experiments.

As future directions, more constraints, such as time and number of robots, can

be added to make DRP more realistic and general. For DCP, heuristics with more

elaborate handcrafted rules can be designed to improve ENN, and it would be

interesting to generalize the problem to multiagent and/or multiple bases. With

respect to DCG, we are interested in generalizing the game to one with multiple

data-collecting agents, so that the agents can cooperate to collect data more

efficiently under the influence of the opponent. In addition, a combination of the

risk models in DCP and DCG can produce fascinating problems where the risk

exists as moving distributions, which may require a hierarchical structure for

reinforcement learning. Last but not least, currently the energy level in DCP and

DCG is a simple part of state representation, and therefore changing the maximum

energy level often means a fresh network needs to be trained from scratch. In other

words, the networks does not really understand what energy level means. Therefore,

it is an intriguing task to investigate on better network generalization with respect

to energy level, where a trained neural network can better understand what the

value of energy level means and works well for all possible maximum energy levels.
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