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Abstract 

We propose the sharp identifiable bounds of the distribution functions of potential 

outcomes using a panel with fixed T. We allow for the possibility that the statistical 

randomization of treatment assignments is not achieved until unobserved heterogeneity is 

properly controlled for. We use certain stationarity assumptions to obtain the bounds. Dynamics 

in the treatment decisions is allowed as long as the stationarity assumptions are satisfied. In 

particular, we present an example where our assumptions are satisfied and the treatment decision 

of the present time may depend on the treatments and the observed outcomes of the past. As an 

empirical illustration we study the effect of smoking during pregnancy on infant birth weights. 

We found that for the group of switchers the birth weight with smoking is first order 

stochastically dominated by that with non-smoking. 
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1. Introduction 

We study the informational content of repeated treatments for the distributions of potential 

outcomes. In particular, we propose the sharp identifiable bounds of the distribution functions 

of potential outcomes using a panel with fixed T . Treatment assignments are not random 

because of the presence of unobserved heterogeneity. Our approach allows for dynamic 

treatment decisions, where e.g. the treatment decisions at the present time may depend on 

the treatments and the observed outcomes of the past. 

Evaluating policy or treatment effects has been an important topic in diverse disciplines. 

In cases where randomized experiments are not available, it is often assumed that statistical 

randomization is possible: i.e. treatment assignments are independent of potential outcomes 

conditional on covariates, namely observed heterogeneity (e.g. Dehejia and Wahba (2002), 

Firpo (2007), Crump, Hotz, Imbens, and Mitnik (2008), Lee (2009), and Lee and Whang 

(2009)). However, this traditional assumption of unconfoundedness can be violated in 

many applications and treatment variables are often endogenous due to omitted unobserved 

heterogeneity or self–selection. 

As is well summarized in Imbens and Wooldridge (2009) and Heckman and Vytlacil 

(2007a,b), various econometric methods have been developed to address this issue and 

examples include approaches based on instrumental variables (e.g. Angrist, Imbens, and 

Rubin (1996)) and panel data (e.g. Wooldridge (2005), Abrevaya (2006), and Arellano and 

Bonhomme (2012)). 

When treatment effects are heterogeneous, instrumental variable (IV) estimators often lead 

to the analysis of the subpopulation of compliers, which is never identified from data (e.g. 

Heckman and Smith (1997), Djebbari and Smith (2008), Fan and Park (2010)). Panel data 

provide an alternative approach. Below we discuss a few examples of studies on (endogenous) 

treatment effects with panel data. 

A classical example is estimating the wage premium of union membership, in which 

correlations between the union membership and unobserved ability is controlled by fixed 
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effects (e.g., Jones (1982), Blakemore, Hunt, and Kiker (1986), Robinson (1989), Lemieux 

(1998), Budd and Na (2000), and Beck and Fitzenberger (2004)). In health economics, 

Abrevaya (2006) studies the effect of smoking during pregnancy on the infant birthweight 

in a fixed–effect regression setup using pseudo panel data. Jung (2010) studies the effect of 

voluntary information disclosure of health insurance plans on the performance measurements 

of the insurance plans. Ding and Lehrer (2010) study the impact of class size reduction using 

multi–period experiments. We note here that these studies are all parametric and unobserved 

heterogeneity is handled by strong functional form assumptions. 

In this paper, we take a panel data approach but we do not make parametric assumptions. 

Without imposing any parametric structure, we analyze the identification of the (marginal) 

distributions of the potential outcomes, say Yit 
1 and Yit 

0, and obtain their sharp identifiable 

bounds.1 Also, we articulate the subpopulation for which the distribution functions of the 

potential outcomes are point identified. Unlike the group of compliers, this subpopulation is 

identifiable from the data. 

Our model is fully nonparametric and nonseparable, where unobserved heterogeneity is 

allowed. As in the correlated random effect literature (e.g. Mundlak (1978) and Chamberlain 

(1982)), we make a certain stationarity assumption on the distribution of the heterogeneity 

given the treatment history. However, our approach is more general than the correlated 

random effect models in that our stationarity assumption is automatic when the heterogeneity 

is time invariant, in which case its correlation with the treatment assignment can be arbitrary. 

Therefore, our approach keeps the idea of “fixed effects.” We will present an example of an 

economic structure that is allowed in our setup, where we discuss dynamics in the treatment 

decisions. 

In addition to the aforementioned stationarity assumption, we also assume selection–on– 

unobservables and time homogeneity. To be more specific about our assumptions, consider 

the potential outcomes Y 1 and Y 0 of individual i at time t. Let βit be the heterogeneity of it it 

1We do not attempt to identify the distribution function of Yit 
1 − Yit 

0 . For discussions on welfare implications 
of comparisons of the potential outcome distributions, see e.g. Barrett and Donald (2003). 
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individual i at time t, which is not necessarily observed: it is potentially multi–dimensional 

and time varying. The relevance of βit is twofold: it matters to achieve the randomization of 

the treatment assignment Dit (selection–on–unobservables) and the distribution of Yit
j does 

not change as long as βit does not change (time homogeneity). Using these assumptions, we 

utilize penal data to improve the cross–section bounds of Manski (1990b). See Manski and 

Pepper (2012, 2013) and Khan, Ponomareva, and Tamer (2013) for related approaches. 

A similar assumption of time homogeneity was used in Chernozhukov, Fernández-Val, 

Hahn, and Newey (2013, CFHN hereafter). However, our assumptions are not formulated in 

a regression setup and we do not treat Dt as a a control variable to obtain time homogeneity. 

An advantage of our approach is that we can explicitly consider dynamics in the treatment 

decisions. In Subsection 2.4, we present an example where all of our assumptions are satisfied 

and dynamic treatment decisions are allowed. However, note please that precisely modeling a 

dynamic structure of treatment decisions is not the focus of this paper. For merits and costs 

of modeling a dynamic structure of treatment decisions, see Heckman and Navarro (2007). 

The remainder of the paper is organized as follows. In Section 2 we introduce the basic 

framework and discuss our assumptions in a few subsections, where we also discuss an example 

of dynamic treatment decisions. In Section 3 we present the sharp identifiable bounds of the 

potential outcome distributions and discuss inferential issues of them by illustrating some 

hypotheses of potential interest. Section 4 presents an empirical illustration that studies 

the effect of smoking on birthweight using the pseudo panel data constructed by Abrevaya 

(2006). 

2. The Framework 

2.1. Potential Outcome Distributions. We consider the panel data {(Yit, Dit) : i = 

1, · · · , N, t = 1, · · · , T }, where Dit is a binary treatment variable, and Yit is an outcome 

variable of interest. In our identification analysis we assume that T is fixed and we ignore 
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(strictly) exogenous covariates. The observed outcome Yit is given as 

Yit = DitYit 
1 + (1 − Dit)Yit 

0 , 

where potential outcomes Y 1 and Y 0 are never observed together and we observe onlyit it 

one of them depending on the treatment status Dit. For example, let Dit be an indicator 

of mother i’s smoking status during the pregnancy of the tth baby. Then, the baby’s 

counterfactual birthweight if the mother had and had not smoked would be denoted by Yit 
1 

and Y 0, respectively, and we only observe either Y 1 or Y 0, depending on whether the mother it it it 

actually smoked or not during the tth pregnancy. 

Such a counterfactual setup is now standard, at least in the cross-section context, where 

the common objective is to compare some features of the distributions of the potential 

outcomes. This objective is usually achieved by assuming randomized treatment assignments 

conditional on observed heterogeneity (e.g., Dehejia and Wahba (2002), Firpo (2007), Crump, 

Hotz, Imbens, and Mitnik (2008), Lee (2009), and Lee and Whang (2009)). However, as we 

emphasized in the introduction, one of our main goals is to avoid this standard assumption 

and allow the possibility that complete randomization may not be achieved until unobserved 

heterogeneity is controlled for. 

Our objects of interest are the (marginal) distribution functions of the potential outcomes: 

Fit
j (y) = P(Yit

j ≤ y) for j = 0, 1 and for y ∈ R. 

When the assumption of randomized treatment assignments fails to hold, point identification 

of Fit
j is generally not available. However, using the idea of Manski (1990a), their (pointwisely) 

identifiable bounds can be obtained as 

P(Yit ≤ y, Dit = j) ≤ Fit
j (y) ≤ P(Yit ≤ y, Dit = j) + P(Dit = 1 − j), (1) 

which is sharp in the cross–section context. In what follows we show that these Manski–type 

bounds can be improved when data on repeated treatments are available. 
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Recall that βit represents individual heterogeneity, which is relevant to achieve the ran-

domization of the treatment assignment and the distributional homogeneity of the potential 

outcomes. In principle, βit can be vector–valued, where some elements may be excluded from 

either the Dit equation or the Yit
j equation. It will be helpful to have the following equations 

in mind: for j = 0, 1, 

Y j = gj (γit, �
j ), (2)it it

Dit = h(δit, ηit), (3) 

where βit includes the relevant elements of γit and δit. When γit = δit = αi so that βit is 

simply αi, it is a panel data model with static treatment decisions and “fixed effects.” 

Below we discuss our assumptions in detail. Since we focus on an identification analysis, 

we will suppress the subindex i throughout the paper. For a sequence of generic random 
−→ 

variables {A1, A2, · · · }, we let A t = (A1, A2, · · · , At) denote the history of A up to time t. 

We will omit the usual qualifier “almost surely” when there is no possibility of confusion. 

2.2. Selection–on–Unobservables. The first assumption is that the omission of the un-

observed heterogeneity is the only source of endogeneity and that complete randomization 

can be achieved when βt is controlled for. More precisely, at time t, we assume that each of 

the potential outcomes is independent of the history of the treatment assignments up to t if 

the history of heterogeneity up to t is controlled for. 

−→jAssumption 1. For j = 0, 1 and for all t = 1, 2, · · · , T , Yt is independent of D t conditional 
−→ 

on β t. 

Assumption 1 looks similar to but much more flexible than the standard assumption of 

unconfoundedness (also known as the selection–on–observables assumption), because the 

source of confounding is allowed to be unobserved. Also, note that Assumption 1 does not 

impose restrictions on the joint distribution of (Yt 
1, Y t 

0) but it does on the marginals of them. 



7 

Assumption 1 requires that βt be the only source of confounding. To be more concrete, 

consider equations (2) and (3). If βt = γt = δt = α, then Assumption 1 is simply saying that 

�j −→
t is independent of η t. Note however that Assumption 1 does not rule out dynamics in 

Dt. For example, if δt = (Dt−1, α) and γt = α, then letting βt = α shows that Assumption 1 

j −→again requires the independence of �t and η t. 

Therefore, Assumption 1 is an assumption of no confounding conditional on heterogeneity, 

which is common in the treatment effect literature. The only difference from the standard 

randomization assumption is that the relevant heterogeneity need not be observed. 

2.3. Time Homogeneity. The second set of assumptions is time homogeneity. 

Assumption 2. For j = 0, 1, for all b and y and for all t and s, we have 

P(Yt
j ≤ y|βt = b) = P(Y j ≤ y|βs = b).s 

Moreover, when s ≤ t, Yt
j is independent of βs conditional on βt. 

jThe first part of Assumption 2 is the time homogeneity of Yt given βt. The second part of 

Assumption 2 says that dynamics or trends, if any, should be captured by βt. For instance, if 

γt in (2) includes Y j , then serial dependence in {�j } is not allowed. t−1 t 

A similar assumption to Assumption 2 is used in CFHN in a nonparametric regression 

setup and in Khan, Ponomareva, and Tamer (2013) in a more parametric setup. It is worth 

comparing Assumption 2 with CFHN here. 

CFHN assume time homogeneity on �t = (�1, �0), where �
j is the error term in equation t t t 

(2). For example, when t = 2 and s = 1, focusing on time invariant heterogeneity α, they 

require that the distribution of �2 given D1, D2, and α be the same as the distribution of �1 

given D1 and α. Within our counterfactual outcome framework with potentially time varying 

heterogeneity and in view of Assumption 1, a naive modification of CFHN might seem to 
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be the distributional equivalence of Y2 
j given β1, β2 and Y1 

j given β1, but this is not so.2 

Assumption 2 seems to be the only natural assumption of time homogeneity in our setup. 

When there is a time trend in Yt
j , Assumption 2 can still be satisfied as long as βt includes 

the time trend. However, we do not recommend this approach, because our next assumption 

is necessarily violated in that case. Addressing issues of time trends generally requires 

additional assumptions. For instance, we may assume that Yt 
1 and Yt 

0 have a common trend 

that is additively separable. Then, the observed outcome Yt will have the same (additively 

separable) trend, in which case we can attempt to estimate and subtract the trend to get the 

data satisfying time homogeneity. 

We now make one more assumption of time homogeneity. 

−→ 
Assumption 3. For all s ≤ t, βt and βs have the same distribution conditional on D s. 

Assumption 3 is similar to the correlated random effect assumption of e.g. Mundlak 

(1978) and Chamberlain (1982) in that it directly imposes restrictions on the distribution 

of heterogeneity given the history of the treatment assignments. However, Assumption 3 

is more general than the correlated random effect assumption. For instance, if βt is time 

invariant, then Assumption 3 is automatically satisfied and there are no restrictions on the 

dependence of the treatment history and βt. 

However, Assumption 3 is different from assuming that βt is time invariant. For instance, 

when T = 2, if (D1, β1) and (D2, β2) has the same distribution, then Assumption 3 is satisfied 

when the distribution of D2 given (D1, β1) is the same as that of D1 given (D2, β2). This is a 

time reversibility condition. When T > 2, Assumption 3 becomes more restrictive. 

Assumptions 1–3 also impose restrictions on the joint dynamics of Yt 
0, Y t 

1 and Dt. To be 

more concrete, consider equations (2) and (3) again. Suppose that γt includes Dt−1 so that 

in view of Assumption 1, βt includes Dt−1. Then, Assumption 3 will be violated unless βt 

depends on the entire history of the treatment assignments. Therefore, our assumptions do 

j j2I.e. P(Y ≤ ·|β1 = a, β2 = b) = P(Y ≤ ·|β1 = a) for all a, b is an unnatural assumption unless βt is time 2 1 
invariant. 
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not allow for the dynamics of Yt
j such that Yt

j depends on Dt−1. We rule out the possibility 

that the treatment decisions of the economic agent may change the natural evolution of the 

potential outcomes. 

However, our assumptions do not rule out the dynamics of Dt such that Dt may depend 

on Dt−1 and Yt−1 = Dt−1Yt
1 
−1 + (1 − Dt−1)Yt

0 
−1. In the next subsection we present a specific 

example where our assumptions are satisfied and dynamic treatment decisions are allowed. 

2.4. A Canonical Example: Dynamic Treatment Decisions. We now discuss a struc-

tural example with sufficient conditions for our assumptions. Consider the following version 

of (2) and (3): for j = 0, 1, 

Yt
j = gj (µt, α, �

j
t ), (4) 

Dt = h(Yt−1, Dt−1, α, ηt), (5) 

where Yt and Dt are observables and α represents a time invariant type. µt is individual het-

�jerogeneity that is excluded from Dt. t and ηt are idiosyncratic errors, which are independent 

−→of ( µ t, α). Further, we assume that {(�0, �1, ηt)} is independent and identically distributed t t 

(i.i.d.), where (�0 
t , �

1 
t ), and ηt are independent of each other. 

To verify our assumptions it is convenient to represent (5) as follows: 

−→ − − −→ → →� 0 � 1Dt = H(Y0, D0, α, µ t−1, t−1, t−1, η t), (6) 

where Y0, D0 are initial values: we will interpret Assumptions 1–3 conditional on the initial 

values of Y0 and D0. Let βt = (µt, α). Then, by inspection of (4) and (6), Assumptions 1 and 

2 are clearly satisfied. For Assumption 3, note that if {µt} is serially independent given α, 
−→ 

then µt is independent of D s for all s ≤ t given α. Therefore, Assumption 3 is satisfied when 

the distribution of µt given α does not vary over time. 

Therefore, equations (4) and (5) show an example of a structural model that is allowed under 

our assumptions. Equation (5) is of our interest. At time t when the economic agent makes a 
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decision about Dt she has information for Yt−1 and Dt−1 (along with α) but she does not have 

information for Yt
1 
−1 − Yt

0 
−1 or Yt 

1 − Yt 
0 . In this situation the agent may choose Dt by simply 

considering E(Y 1 −Yt
0 
−1+k|Yt−1, Dt−1, α) and/or Corr(Y 1 −Yt

0 
−1, Y t

1
+k −Y 0 |Yt−1, Dt−1, α)t−1+k t−1 t+k

with k = 0, 1, 2, · · · . Equation (5) allows for this possibility of dynamic treatment decisions. 

In the birthweight example of Section 4, assuming that the potential birthweights depend 

only on the mother’s time invariant type, the following possibility is allowed: when a smoking 

mother observes a less healthy baby (i.e. a low Yt−1), she suspects that smoking may have 

had a bad influence on the baby’s health this time (i.e. a high E(Y 1 − Y 0 |Yt−1, Dt−1, α)),t−1 t−1

which will be reflected in the smoking decision during the next pregnancy. 

3. The Sharp Bounds of Ft
j 

3.1. Bounds Identification. Based on Assumptions 1–3, we now obtain the sharp identified 

bounds of the potential outcome distribution functions. Note first that under Assumptions 

2 and 3, Ft
j (y) does not depend on t. Therefore, we will simply write F j (y) without the 

subindex t. 

For each j = 0, 1 and t = 1, 2, · · · , T , we first define 

pj 1(y) = P(Y1 ≤ y, D1 = j), 

pjs(y) = P(Ys ≤ y, D1 = · · · = Ds−1 = 1 − j, Ds = j), for s = 2, 3, · · · , T, 

and 

TX 
Lj (y) = Lj

T (y) = pjs(y), (7) 
s=1 

U j (y) = UT
j (y) = Lj

T (y) + P(D1 = · · · = DT = 1 − j). (8) 

The following theorem shows the pointwisely sharp bounds of the potential outcome distri-

butions under Assumptions 1–3. 
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Theorem 1. Under Assumptions 1–3, for each y ∈ R and j = 0, 1, we have 

0 ≤ Lj (y) ≤ F j (y) ≤ U j (y) ≤ 1, (9) 

where the bounds by Lj (y) and U j (y) are pointwisely sharp. 

Theorem 1 shows that the bounds become tighter as T increases. In fact, the upper 

and lower bounds coincide when T → ∞. Also, for the subpopulation characterized by 

P(D1 = · · · = DT = 1 − j) = 0, F j (y) is point identified for every y. 

The bounds in Theorem 1 are only pointwisely sharp. The idea of functional sharp bounds 

has also been discussed in the literature (e.g. Henry and Mourifié (2012)), but we do not 

discuss this issue in this paper. In fact, functional sharp bounds do not provide an advantage 

in testing for first order stochastic dominance, which we will consider in Section 4. 

We focus on the identification of the unconditional distributions of the potential outcomes. 

However, one may be interested in conditional distributions of the potential outcomes, where 

the conditioning is on some covariates. When the conditioning variables are time–invariant 

covariates such as gender, race, or simply the entire history over t = 1, · · · , T of any (time-

varying) covariates, Theorem 1 can be readily extended to the conditional distribution 

functions as long as Assumptions 1 through 3 hold conditional on those covariates. However, 

even with a single conditioning variable, when the conditioning variable is time-varying and T 

is large, conditioning on the entire history of the covariates may not be practically attractive. 

In this case, conditioning only on the contemporaneous covariates can be of practical interest. 

If we assume time–invariant (unobserved) heterogeneity and have no dynamics, then we can 

derive a similar result to Theorem 1 under the exchangeability assumption of the covariate 

distribution given unobserved heterogeneity. However, it is too special a situation in a panel 

data setup and we do not formally present this result here. 

3.2. Inferences. When F j is not point identified, it is not straightforward to consider any 

direct statistical inferences on F j . However, from Theorem 1, we have the identified bounds 
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of F j , where the bounds Lj (·) and U j (·) are easy to estimate. For instance, provided that 

we have independent and identically distributed observations across i, both Lj (·) and U j (·) 

can be estimated by empirical–distribution–like estimators and a well–developed distribution 

theory is readily available for such estimators (e.g. Van der Vaart (2000)). Inferences for a 

partially identified nonparametric object is generally challenging. However, once we formulate 

hypotheses of interest for which test statistics only depend on the bound estimators, we can 

easily conduct statistical inferences. In this section, without detailing implementation–related 

issues, we briefly discuss some hypotheses of potential interest that can be formulated based 

on the identified bounds in (9). 

One possibility is directly comparing the potential outcome distributions over the entire 

support, such as stochastic dominance relations. More precisely, we reparametrize (9) in 

terms of the parameter of interest Δ(y) = F 1(y) − F 0(y) as ⎞⎛⎞⎛ ⎜⎜⎜⎜⎜⎜⎜⎝ 

−1 1 

1 −1 

−1 0 

⎟⎟⎟⎟⎟⎟⎟⎠ 

⎜⎜⎜⎜⎜⎜⎜⎝ 

−L0(y) 

U0(y) 

−L1(y) 

⎟⎟⎟⎟⎟⎟⎟⎠ 

, 

⎞⎛ ⎞⎛ 
L0(y) ≤ F 1(y) − Δ(y) ≤ U0(y) F 1(y)⎝ ⎠ ⇐⇒ ⎝ ⎠ ≤ 
L1(y) ≤ F 1(y) ≤ U1(y) Δ(y) 

1 0 U1(y) 

(10) 

which is a set of (nonparametric) linear moment inequalities. Let θ = (F 1 , Δ)0 and let ΘT 

be the identified set such that all elements in ΘT satisfy (10). Then, we can construct a 

confidence region for θ, at least pointwisely for each y, following the recent development in 

the partial identification literature: see e.g., Andrews, Berry, and Jia (2004), Chernozhukov, 

Hong, and Tamer (2007), Beresteanu and Molinari (2008), Rosen (2008), Romano and Shaikh 

(2010), Kim (2009), Andrews and Soares (2010), and Chernozhukov, Lee, and Rosen (2013). 

The only complications here are that θ is a nonparametric object and that we are interested 

only in the subvector of θ. However, these complications can be resolved once we clarify the 

hypothesis of interest. To be more specific, consider testing first order stochastic dominance 
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relations: e.g. Δ(y) ≥ 0 for all y. 3 Since Δ is only partially identified, directly testing 

“Δ(y) ≥ 0 for all y” is not possible but there are two possibilities: ⎧ ⎪⎪⎨ ⎪⎪⎩ 

H0
∗ 
,a : ∀θ ∈ ΘT , Δ(y) ≥ 0 for all y 

(11) 
H1
∗ 
,a : ∃θ ∈ ΘT , Δ(y) < 0 for some y, 

⎧ ⎪⎪⎨ ⎪⎪⎩ 

or

H∗ ∃θ ∈ ΘT , Δ(y) ≥ 0 for all y0,b : 
(12) 

H∗ ∀θ ∈ ΘT , Δ(y) < 0 for some y.1,b : 

It turns out that tests for (11) or (12) can be done easily because the parametric analysis of 

Hahn and Ridder (2009) can be extended to show that (11) and (12) are equivalent to ⎧ ⎪⎪⎨ 

⎧ ⎪⎪⎨: U0(y) ≤ L1(y) H0,b : L0(y) ≤ U1(y)H0,a for all y for all y 
(13)⎪⎪⎩ 

⎪⎪⎩: U0(y) > L1(y) H1,b : L0(y) > U1(y)H1,a for some y, for some y, 

respectively. The proof of the equivalence is provided in the appendix. Testing for the 

hypotheses in (13) is a standard task (e.g., Linton, Song, and Whang (2010)). Testing higher 

order stochastic dominance can be similarly done. 

The bounds in (9) can be inverted to obtain bounds on the quantiles of the potential 

outcomes: 

QUj (τ) ≤ QF j (τ) ≤ QLj (τ) for τ ∈ (0, 1), (14) 

where QF (τ) = inf{y : F (y) ≥ τ }. Therefore, comparing particular quantiles of the potential 

outcomes is not any more difficult than testing stochastic dominance as above. 

Note, however, that the bounds in (14) do not always provide informative bounds on 

the expectations of the potential outcomes, because the bounds in (14) are not generally 

jintegrable. This problem can be resolved when the support of Yt is known to be bounded. 

3In testing first order stochastic dominance, choosing a null between “Δ(y) ≥ 0 for all y” and “Δ(y) ≤ 0 for 
all y” can be an issue. In Section 4 we consider both possibilities. For an alternative approach to this issue, 
see Gupta and Panchapakesan (1979). We thank an anonymous referee for this reference. 
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Suppose that M j and mj are the upper and the lower bounds of the support of Yt
j . It then 

follows that 

max{mj , QUj (τ)} ≤ QF j (τ ) ≤ min{M j , QLj (τ)} for τ ∈ (0, 1), (15) 

after which integrating over τ ∈ (0, 1) yields bounds for E(Yt
j ). Therefore, inference on the 

average treatment effects can also be similarly done. 

4. An Empirical Illustration: Birth Weight and Stochastic Dominance 

As an empirical illustration, we analyze the effect of smoking during pregnancy on infant’s 

birthweight (e.g., Permutt and Hebel (1989), Evans and Ringel (1999), Abrevaya (2006), 

and Abrevaya and Dahl (2008)). Let Fit
j (·) denote the potential birthweight distribution of 

mother i’s tth baby and let Dit be the indicator of mother i’s smoking status during the tth 

pregnancy with Dit = 1 indicating smoking. We will obtain the bound estimates of potential 

birthweight distributions for the populations of ever–smokers and switchers. We will then 

use them to formally test for the presence of first order stochastic dominance. 

Our analysis is based on the (pseudo panel) data set constructed by Abrevaya (2006) 

from the U.S. Natality Data Set in 1990–1998. We select the “matched panel #3” as it is 

constructed in the most conservative way. The same data set (but only with the switchers) is 

also used by Arellano and Bonhomme (2012) in the random coefficients panel model. We start 

with the n = 2, 137 sample of those who had three births (T = 3) and had ever smoked during 

pregnancy (ever–smokers), i.e. Dit = 1 at least for one period t. Among these ever–smokers, 

692 mothers smoked during all of the three pregnancies (always–smokers), which leaves 1, 445 

switchers. The focus of our analysis is on the ever–smokers and the switchers. We did not 

include those who never smoked (never–smokers) in our analysis because the sample size 

of never–smokers is too large (i.e., 82.7% of the entire sample of three births) to obtain 

any meaningful bounds. Moreover, from the policy perspective, ever–smokers make a more 
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relevant population under the presumption that ever–smokers may quit smoking in the future 

but never–smokers are unlikely to start smoking during pregnancy. 

A mother’s smoking choice should generally be correlated with her health–related life–style 

factors, which are confounding variables to explain the causal effects of smoking on a baby’s 

birthweight. Therefore, the complete randomization of treatment assignments will not be 

achieved until those confounding factors are properly controlled for. However, many of 

such life–style factors are hard or nearly impossible to observe and they are frequently time 

varying. Those unobserved life–style factors correspond to βit in Assumption 1. Note that, 

as discussed in Section 2.2, Assumption 1 allows for the possibility that a smoking status 

during the tth pregnancy may depend on her smoking status and birth outcomes in the past. 

Therefore, a general form of dynamics is allowed, but we do not attempt to specifically model 

the smoking decision in our framework. 

Figures 1 and 2 show the bound estimates of the distribution functions of potential 

birthweights for ever–smokers and switchers, respectively.4 The case of T = 3 shows the 

bounds that are estimated by all the three time periods and the case of T = 1 is the cross– 

sectional Manski type bounds. The case of T = 2 shows the bounds based on the two period 

panel. Note that all the estimated bounds become tighter as T increases. In particular, 

with T = 3, F 1(·) is point–identified in both Figures 1 and 2, which is explained by the 

fact that never–smokers are excluded from our analysis. In Figure 2, both F 1 and F 0 are 

point–identified with T = 3. 

Consider Figure 1 first. Fb1(·) is located above the lower bound estimate of F 0(·) over all 

birthweights, which suggests that there may exist F 0 that first order stochastically dominates 

F 1 . However, Fb1(·) is clearly above the upper bound estimate of F 0(·) around the birthweight 

near 3, 500 grams, suggesting that there cannot exist F 0(·) that is first-order stochastically 

dominated by F 1(·). In comparison, Figure 2 depicts the bound estimates for switchers by 

excluding always–smokers from the sample. In Figure 2, with T = 3, both F 1(·) and F 0(·) are 

4Dotted and dashed lines show (pointwise) 95% confidence sets for F j (y) for each y, using Imbens and Manski 
(2004) and Stoye (2009). 
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point identified, from which we can easily tell that F 0(·) first–order stochastically dominates 

F 1(·). 

Table 1 shows the results of formal tests of stochastic dominance, which consider null and 

alternative hypotheses given as (11) and (12) (or as (13) in their dual forms). The p–values 

are obtained by using the bootstrap method of Linton, Song, and Whang (2010). Specifically, 

in the case of (11), we use a Cramér–von Mises type statistic based on Z 
max{U0(y) − L1(y), 0}2 w(y)dy, 

where we use the empirical density of Yit on equi–spaced 100 grid points for the weight 

function w(·). We choose Linton, Song, and Whang (2010)’s weight function q(·) = 1 and 

the cutoff value cn = 2n
−1/2 log log n, following what their simulation studies guide. Each 

column in Table 1 summarizes the bootstrap p–values for each hypothesis, which are obtained 

from 1, 000 replications. With T = 3 and for the ever–smoker group, we conclude that the 

true F 0 may first–order stochastically dominate F 1 . For the switcher group there is clear 

evidence of first order stochastic dominance. These results re-enforce the existing empirical 

findings such as Abrevaya and Dahl (2008) and Arellano and Bonhomme (2012). Also notice 

that, different from Abadie (2002), the stochastic dominance result for the switcher group is 

obtained without using instrumental variables. 

Bound estimates of the potential outcome distributions in Figures 1 and 2 also imply 

bound estimates of the quantiles and the means of the potential outcomes as (14) and (15) 

in Section 3.2. Table 2 summarizes the median and mean bound estimates of each potential 

outcome distributions, from which we can also obtain bounds of the median treatment effects 

or the average treatment effects. 

Finally, we comment that we detrend all birthweight observations by adjusting their means 

for each t for this analysis, because there is a folk belief that the first born tend to be lighter 

than those born in the later order on average. Using the original data without detrending 

did not change a meaningful difference though. 
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Null Hypothesis Type-a 
(all F 0 and F 1 satisfies) 
F 0 FSD F 1 F 1 FSD F 0 

Type-b 
(there exist F 0 and F 1 s.t.) 
F 0 FSD F 1 F 1 FSD F 0 

Ever–Smokers (n = 2137) 
T = 1 0.000 
T = 2 0.000 
T = 3 0.000 

0.000 
0.000 
0.000 

0.905 
0.937 
0.943 

0.899 
0.919 
0.000 

Switchers (n = 1445) 
T = 1 
T = 2 
T = 3 

0.000 
0.000 
0.660 

0.000 
0.000 
0.000 

0.888 
0.914 
0.660 

0.896 
0.913 
0.000 

Table 1. p–values of the First-order Stochastic Dominance tests (3–births) 

Median 
F 0 

Mean Median 
F 1 

Mean 

Ever–Smokers (n = 2137) 
T = 1 [ 440.0, 4933.0] 
T = 2 [2737.5, 3833.4] 
T = 3 [3050.6, 3676.9] 

[1236.6, 3974.1] 
[1811.0, 3768.4] 
[2073.9, 3611.9] 

[2737.5, 3520.3] 
[3102.8, 3311.6] 

3207.2 

[1961.3, 3462.5] 
[2508.2, 3078.5] 

2855.2 

Switchers (n = 1445) 
T = 1 [2372.2, 3990.0] 
T = 2 [3311.6, 3468.1] 
T = 3 3363.7 

[1779.6, 3681.2] 
[2677.6, 3251.8] 

3016.9 

[ 680.0,4763.0] 
[3050.6, 3363.7] 

3207.2 

[1779.6, 3681.2] 
[2294.3, 3164.1] 

2876.0 

Table 2. Median and mean bounds (3–births) 

We have also conducted the same analysis for a few more sub-populations with three births, 

but the overall results do not change, either. For instance, the subgroup of those who ever 

drank alcohol during at least one of the pregnancies (ever–drinkers) was considered. For 

this group the bounds of F 1 were tighter (with T = 1, 2) than the bounds from all the ever 

smoker observations, i.e. P(never smoke|ever drink) < P(never smoke) as we would expect. 
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Figure 1. Bounds of the Distributions of Potential Birthweights (Ever–Smokers) 
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Figure 2. Bounds of the Distributions of Potential Birthweights (Switchers) 
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5. Appendix 

Throughout the appendix, µA(·) and µA|B(·|b) represent the probability distribution of A 

and the conditional distribution of A given B = b, respectively, where A and B are generic 

random variables. 

5.1. The proof of Theorem 1. We only consider j = 1 because j = 0 is symmetric. For a 

given t, note that 

P(Y 1 ≤ y) = P(Y 1 ≤ y, D1 = 1) + P(Y 1 ≤ y, D1 = 0, D2 = 1) t t t 

+ · · · + P(Yt 
1 ≤ y, D1 = D2 = · · · = Dt−1 = 0, Dt = 1) 

+ P(Yt 
1 ≤ y, D1 = D2 = · · · = Dt−1 = Dt = 0). (16) 

Now, for any s ≤ t, we have Z −→ − − − − − −→ → → → → →
P(Yt 

1 ≤ y, D s = d s) = P(Yt 
1 ≤ y, D s = d s| β t = b t)dµ−→ ( b t)β t Z 

A1 − − − − − − −→ → → → → → → 
= P( = | = b t)P(Y 1 ≤ y| = → ( b t)D s d s β t t β t b t)dµ−β t Z 
A2 − − − − −→ → → → → 
= P(D s = d s| β t = b t)P(Yt 

1 ≤ y|βt → b t)= bt)dµ−β t 
( Z Z −→ − − − −→ → → → 

= bt)P(Y 1 →= P(D s = d s| β t−1 = b t−1, βt t ≤ y|βt = bt)dµ− ( b t−1|bt)dµβt (bt)β t−1|βt Z →−→ −
= P( = |βt = bt)P(Y 1 ≤ y|βt = bt)dµβt (bt)D s d s t Z → →A2,A3 − −
= P(D s = d s|βs = bt)P(Ys 

1 ≤ y|βs = bt)dµβs (bt) (17) Z −→ − − − −→ → → → 
β s−1 →= P(D s = d s| = b s−1, βs = bt)P(Y 1 ≤ y|βs = bt)dµ− ( b s−1, bt)s β s−1,βs Z 

A2 −→ − − − − − −→ → → → → → 
= P( = | β s−1 = b s−1, βs = bt)P(Y 1 ≤ y| β s−1 = b s−1, βs → ( b s−1, bt)D s d s = bt)dµ−s β s−1,βs Z −→ − − − −→ → → →A
= 
1 P(Y 1 ≤ y, D s = d s| β s−1 = b s−1, βs → ( b s−1, bt)= bt)dµ−s β s−1,βs 

→−→ −
=P(Ys 

1 ≤ y, D s = d s). 
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Figure 3. Graphical Illustration of the Duality 

Therefore, equation (16) is thus equal to 

P(Yt 
1 ≤ y) = P(Y1 ≤ y, D1 = 1) + P(Y2 ≤ y, D1 = 0, D2 = 1) 

Δ 

+· · · · · ·+P(Yt ≤ y, D1 = · · · = Dt−1 = 0, Dt = 1)+P(Yt 
1 ≤ y, D1 = · · · = Dt−1 = 0, Dt = 0). 

Here, by the expression in (17), the last term is equal to Z 
P(D1 = · · = Dt = 0|βt = bt)P(Y 1 ≤ y|βt = bt)dµβt (bt), (18)· = Dt−1 t 

where our assumptions do not impose any restrictions on the support of P(Y 1 ≤ y|βt = bt).t 

Therefore, the sharp bounds of (18) will be the interval between 0 and P(D1 = · · · = Dt = 0), 

which yields the sharp bound of P(Yt 
1 ≤ y) as desired. � 

5.2. Duality. 

Proposition 1. The hypotheses in (11) and (12) are equivalent to the hypotheses in (13), 

respectively. 
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Before we formally prove this duality, we illustrate it in Figure 3. The outside box denotes 

the parameter space Θ = [−1, 1] × [0, 1], and the inside area of dashed lines denotes two 

inequalities, L1 ≤ F 1 ≤ U1 . For the other two inequalities involving (F 1 − Δ), we consider 

three different sets of (L0, U0), and represent them as dotted lines. Thus, Figure 3 shows 

three identified sets, ΘA , ΘB , and ΘC , where we can easily check if all or some of Δ in each 

identified set is positive or not. Now it is clear that H0
∗ 
,a and H0,a are equivalent: all Δ in 

the identified set are positive whenever U0 is less than L1 as the case of ΘC . Conversely, if 

U0 is bigger than L1, then there exist negative Δ in the identified set. Similarly, H0
∗ 
,b and 

H0,b are equivalent: there exist positive Δ in the identified set whenever L0 is less than U1 as 

the case of ΘB , and all Δ in the identified set are negative whenever L0 is bigger than U1 as 

the case of ΘA . 

We now formally prove the duality result. In each case it suffices to show the equivalence of 

the null hypotheses. For simplicity, we assume that both Yt 
0 and Yt 

1 have unbounded support 

R. We first show the equivalence of H0
∗ 
,a and the first null hypothesis, say H0,a, of (13). 

• Equivalence of H0
∗ 
,a and H0,a 

(i) Sufficiency: Let H0
∗ 
,a be true. Suppose that H0,a does not hold. Then, there exist some 

ỹ ∈ R such that U0(ỹ) −L1(ỹ) > 0. We need to show that there exist F 0 and F 1 contradicting 

to H0
∗ 
,a. For any � > 0, define F 0(·) and F 1(·) as follows: (a) F 0(y) = L0(y) for y < ỹ; (b) 

F 1(y) = U1(y) for y ≥ ỹ+�; (c) F 0(y) = U0(y) and F 1(y) = L1(y) otherwise. By construction, 

they are distribution functions satisfying the inequalities of (9), but F 0(ỹ) > F 1(ỹ) that 

contradicts to H0
∗ 
,a. 

(ii) Necessity: Let H0,a be true. Then, for all y ∈ R, U0(y) − L1(y) ≤ 0. For any F 0 and F 1 

satisfying the inequalities in (9), this implies F 0(y) ≤ U0(y) ≤ L1(y) ≤ F 1(y) for all y ∈ R 

and thus H0
∗ 
,a holds. 

We next show the equivalence of H0
∗ 
,b and the second null hypothesis, say H0,b in (13). 

• Equivalence of H0
∗ 
,b and H0,b 
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(i) Sufficiency: Let H0
∗ 
,b be true. Then, there exist distribution functions F 0 and F 1 such that, 

for any y ∈ R, they satisfy the inequalities in Theorem 1 and F 0(y) ≤ F 1(y). Fix such F 0 and 

F 1 and suppose that H0,b is not true. Then, there exists ỹ ∈ R such that L0(ỹ) − U1(ỹ) > 0. 

Since F 0 and F 1 satisfy the inequalities in (9), this implies F 1(ỹ) ≤ U1(ỹ) < L0(ỹ) ≤ F 0(ỹ). 

Therefore, F 1(ỹ) < F 0(ỹ), which contradicts to H∗ 
0,b. 

(ii) Necessity: Let H0,b be true. We prove this by constructing distribution functions 

F 0 and F 1 satisfying the inequalities in (9) and F 0(y) ≤ F 1(y) for all y ∈ R. For some 

constants c1 < c2, define F 0 and F 1 as follows: (a) F 1(y) = max{L0(y), L1(y)} for y < c1; 

(b) F 0(y) = min{U0(y), U1(y)} for y ≥ c2; (c) F 0(y) = L0(y) and F 1(y) = U1(y) otherwise. 

Then, F 0(y) and F 1(y) satisfy the inequalities in (9) and F 0(y) ≤ F 1(y) for all y ∈ R by 

construction. Note also that F 0 and F 1 are distribution functions since they are CADLAG 

and go to 1 and 0 as y → +∞ and y → −∞, respectively. � 
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